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Summary

Sumimary

This thesis comprises five chapters, three of which contain the core mathematical
content. We study the limiting spectral distributions of random graph models
with vertex inhomogeneity. In particular, we focus on the adjacency matrix of
the inhomogeneous Erdés—Rényi random graph in the sparse regime, as well as
the adjacency and Laplacian matrices for random graph models that incorporate
spatial structure.

Random graph models provide a mathematical framework for understanding
complex networks observed in fields such as physics, biology, computer science,
and the social sciences. The classical Erdés—Rényi model, in which edges are
added independently with equal probability, serves as a foundational model
that continues to yield deep insights. Spectral graph theory plays a key role in
this context, connecting the eigenvalues and eigenvectors of the adjacency and
Laplacian matrices of graphs to structural and geometric properties of graphs.
For instance, the Perron—Frobenius theorem ensures a unique largest eigenvalue
for the adjacency matrix of a connected graph, with a corresponding posit-
ive eigenvector. More broadly, the spectrum gives information about the graph
connectivity, subgraph counts, the chromatic number, and other topological fea-
tures. Laplacian eigenvalues are central in the study of diffusion, mixing times
of random walks, and spectral clustering algorithms. Notably, the Kirchhoff
Matrix—Tree Theorem relates the determinant of the combinatorial Laplacian
to the count of the spanning trees of the graph. These connections make spec-
tral analysis a powerful tool for studying the geometry of complex networks.
Chapter 1 provides a detailed introduction to spectral graph theory, random
graphs, and random matrices.

The spectra of the adjacency and Laplacian matrices are well understood in the
dense Erdds-Rényi random graph model. In the sparse case, three main ana-
lytical techniques are used: (i) characterising the limiting spectrum via local
weak limits such as Galton—Watson trees; (ii) using combinatorial methods and
special symmetric partitions to compute the moments of the limiting spectral
measure; (iii) deriving the Stieltjes transform of the limiting measure using a
fixed-point equation in an appropriate Banach space. In Chapter 2, we extend
the Erdés—Rényi random graph model by incorporating deterministic vertex
weights to introduce inhomogeneity, where now edges are added independently
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with a probability proportional to a function of the vertex weights. We study
this model in the sparse setting, where the connectivity function is bounded.
We analyse the empirical spectral distribution of the adjacency matrix using the
moment method and the Stieltjes transform, and describe the limiting distribu-
tion through homomorphism densities, symmetric partitions, and a fixed-point
equation.

Real-world networks often exhibit spatial structure in addition to vertex in-
homogeneity. In Chapter 3, we consider a kernel-based random graph model
on a discrete torus, where the vertices are equipped with random weights that
follow a power-law distribution, and connection probabilities between two ver-
tices depend directly on a function of the two weights and that is inversely
proportional to the torus distance between the two vertices. Using the method
of moments, we study the adjacency matrix of this model and show the ex-
istence and uniqueness of a limiting spectral measure. We further analyse the
measure through its prelimit to show that it is absolutely continuous and non-
degenerate. We characterise the Stieltjes transform of this measure through a
fixed-point equation. When the kernel is rank-one, that is, it has a product
structure, we identify the limiting measure explicitly as a free multiplicative
convolution between the semicircle law and the Pareto law using tools from free
probability.

In Chapter 4, we focus on the centred Laplacian matrix of the rank-one model,
which is known as the Scale-Free percolation model. Using the method of
moments, we show the existence of a unique limiting spectral measure. We
further identify the measure in terms of the spectral distribution of some non-
commutative unbounded operators, again using techniques from free probability
theory.

In Chapter 5, we present simulations and provide a brief discussion of examples
that fall outside the restrictions assumed in the previous chapters.
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