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CHAPTER 5

Discussion and future directions

In this short chapter, we show some simulations of spectral distributions of
random graph models discussed in the previous chapters. We focus on the
cases not covered by our main results and compare them with the previous
simulations. This leaves us with many open directions for the future.
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5. Discussion and future directions

§5.1 Introduction

This thesis establishes new results in the study of spectral analysis of inhomogen-
eous random graph models, providing further insight into the area and opening
the door to multiple directions for further research. We discuss some of the
open directions in this chapter.

Chapter 2 extends results of the homogeneous Erdgs-Rényi random graph to
the inhomogeneous setting, providing a characterisation of the limiting spectral
measure of the adjacency matrix. While the limit is not explicitly known, we
provide a combinatorial expression for the moments and an analytic description
of the Stieltjes transform, which complements the random graph description
that one can obtain from Bordenave and Lelarge [2010], since the model has
a local weak limit that is a multi-type branching process (see van der Hofstad
[2024]). However, the results are restricted to the setting where vertex weights
(w;) are deterministic, and a natural extension would be to consider random
weights with f an almost surely continuous connectivity function. As seen in
Remark 2.3.13, our proof techniques require that W (which is the random vari-

able such that w,,, LA W) is compactly supported. What also remains unknown
is the rate of convergence of the measure py to py, even in the homogeneous
setting where p1y = pg.. These questions naturally arise due to the works of Bai
and Silverstein [2010], Augeri [2025], Jung and Lee [2018], Tran et al. [2013],
however, we believe that the fixed-point equation as in Theorem 2.3.9 needs
further analysis to describe the rate of convergence of Stieltjes transforms. Fur-
thermore, the extension of results from Bordenave et al. [2011], Coste and Salez
[2021], Salez [2020] remains an open question in the inhomogeneous setting.

Spectral properties of kernel-based random graphs (as introduced in Jor-
ritsma et al. [2023]), and in particular of the scale-free percolation model, are a
relatively untouched topic. Chapters 3 and 4 now provide a foundation for this
topic. We consider random Pareto weights on the vertices, with tail exponent
7 — 1, 7 > 1. The spectral properties of the adjacency matrix are described in
Chapter 3 for kernel-based random graphs with the kernel structure

K(z,y) = (zVy)(zAy)?

where ¢ < 7 — 2. One extension would be to consider a far more general
kernel. The above multiplicative structure simplifies calculations significantly.
We also restrict ourselves to 7 > 2, where the weights have finite mean. This
is crucial in the truncation step, since for a truncation at m > 1, the error
2=7_ We believe that this is a technical assumption. Analogously,
we do not consider o > 7 — 1. Due to the rank one nature of the kernel when

rate is m

o = 1, we can characterise the limiting measure using tools from free probability.
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§5.2. Erdds-Rényi Random graph

Consequently, we observe an interesting tail asymptotic, where the measure has
a power-law tail with exponent 2(7 — 1). When o # 1, this becomes more
challenging, and we believe that the tail may not have a power-law decay but
rather a more complicated behaviour. A more interesting direction is the case
when o« > 1, with 7 > 2. This yields a sparse random graph, for which the
existence of a limiting measure is guaranteed by Bordenave and Lelarge [2010)].
However, since the local weak limit of the random graph is not locally tree-like,
there is no description of the measure. This will require a novel approach, and
the spectrum of the centred and non-centred adjacency matrices will differ.

The Laplacian matrix of the scale-free percolation model is analysed in
Chapter 4. The existence of the limiting measure is achieved by computing
the moments, which is far more challenging than computing the moments of
the adjacency matrix. We believe that this will be the primary challenge when
attempting to extend the results to the kernel as described in Chapter 3. We
also restrict ourselves to 7 > 3, and an extension to 7 > 2 will require better
bounds in the Gaussianisation step, as well as ensuring that the decoupling of
the diagonal holds. Decoupling is an essential step for the moment method,
without which the approach becomes highly complicated.

Outline of the chapter

The first part of the chapter is devoted to the homogeneous Erdds-Rényi random
graph ERy(p) with p = A/N. We simulate the spectrum of the adjacency matrix
for increasing A to illustrate that, for a A such that 1 < A < log N, u) starts
taking the shape of us. (with possible atoms). We then simulate the spectrum
of the Laplacian matrix, moving from the sparse to the dense case, and show
why centring becomes essential as the graph becomes more dense.

The second part of the chapter showcases simulations for the scale-free per-
colation model. We simulate the spectra of the adjacency matrix for a combin-
ation of a and 7, to analyse the cases where a(7 —1) > 1 and a(7 —1) < 1. We
also simulate the spectrum of the long-range percolation model with increasing
«, to illustrate the sparse setting. We compare the resolvent matrices of the
long-range percolation model, GOE model, and ERx(A/N) with A > 1. We
conclude with the centred Laplacian matrix of the scale-free percolation model
for varying 7, namely the infinite mean regime, the infinite variance regime, and
the finite variance regime.

§5.2 Erdés-Rényi Random graph

Consider the homogeneous Erdgs-Rényi random graph ERx(p) on N vertices,
with p = A/N for some A € (0,00). If Ag, is the adjacency matrix of this
graph, then define Ay = A~V 2Ag, as the scaled adjacency matrix. This
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5. Discussion and future directions

falls under the setting of Chapter 2 as a special case. In particular, Theorem
2.3.7 (and also results from Jung and Lee [2018], Bordenave and Lelarge [2010],
Tran et al. [2013]) tells us that there exists a unique limiting measure p such
that limy_ 0o ESD(AN) = wy in probability, and py = pse as A — oo.
Further, from Bordenave and Lelarge [2010], if Ay is the scaled Laplacian
matrix of this graph, then there exists a unique limiting measure vy such that
limy o0 ESD(Ax) = vy in probability. It follows from Khorunzhy et al. [2004]
that vy = s B pg, where 4 is the Gaussian law.

§5.2.1 Adjacency matrix

Consider the scaled adjacency matrix A of this graph. In Chapter 2, we see
that in the limit N — oo, the ESD of Ay and that of the centred matrix
AN — E[Ay] are close in probability, and so we can study the non-centred
matrix directly.

Size=2000 size=2000

= Eigenvalue distribution = Eigenvalue distribution

(a) X = 0.9. () A=1.9
. - ; T |
MR
>
A
e <R
O 1A SRR 1
(c) A= 3.5. (d) X =9.

Figure 5.1: Eigenvalue distributions of the adjacency of ERn(A/N) with N = 2000.

In Figure 5.1, we see the eigenvalue distributions of this matrix with N =
2000 for varying values of A\. For A < 1, we observe “spikes”, indicating that
the measure has many atoms (in line with Salez [2020]). For A > 1, we observe
a continuous part, indicating the presence of a density (in line with Arras and
Bordenave [2023]). When A > log N (A = 9), we observe a distribution that
resembles the semicircle law, with an outlier that is the largest eigenvalue, which
is of the order v\ (see Erdés et al. [2013]).
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§5.2. Erdds-Rényi Random graph

The interesting case is when A is “large”, but smaller than log N. We observe
at A = 3.5 for N = 2000 that there is a spike at the eigenvalue 0, indicating the
presence of an atom. However, the remaining distribution begins to take the
shape of a semicircle distribution. This indicates that the rate of convergence
in A is relatively fast. While we were not able to prove this, we believe that the
metric defined by Stieltjes transforms as in Augeri [2025] can aid in determining
this rate of convergence. Through moments, we heuristically see a possible
candidate for the convergence rate. The 2k—th moment of ) is

/ 2y (dx) = Cp + Err(A ) = / 2% g (dz) + Err(A71),
R R

where Err(A~!) is an error term with leading order A~! and C} is the k—th
Catalan number. We leave the optimal rate of convergence as an open problem.

size=3000 size=3000

> ™ H 111
1. 1 i,

-2 Y o 1 2 3 i b 5 2 i

(a) Degrees d; ~ Unif[1,10]. (b) Degrees d; ~ Pareto(r — 1), with T = 3.5.

Figure 5.2: Spectral distributions of adjacency matrices of IER models, with edge prob-
ability p;; = A1, where (d;)N., is a given degree sequence and my = vazl d;.
N = 3000.

idj
m1+didj

§5.2.2 Laplacian matrix

From Bordenave and Lelarge [2010], we have the existence of vy for the ESD of
the graph Laplacian when the graph is sparse. We see in Figure 5.3 that the
spectra of the centred and non-centred Laplacian differ significantly, in particu-
lar when the sparsity parameter increases. For dense graphs with a fixed p, the
spectrum of the Laplacian is a Dirac mass at p (see Bryc et al. [2006]), which is
what we observe in Figure 5.3c. It is only meaningful to study the spectrum of
the centred Laplacian in the dense setting. Understanding the ESD and identi-
fying the limiting measure in the general inhomogeneous setting is still an open
problem. Also, it is unclear whether for any A > 0, the limiting measure always
has an absolutely continuous spectrum. It would be interesting to derive the
behaviour of the atoms for A < 1.
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5. Discussion and future directions

size=3000, A=1.5 size=3000, A=9

il L

- 1] 1 2

= Centred Lapiacian
=1 Non-centred Lay

il
.

= 5 Y 1

(a) p=A/N, A=1.5. (b)) p=A/N, X=09.

size=3000. p=0.5

(¢) p = 0.5, with the non-centred Laplacian

scaled by N instead of \/Np(1 — p).

Figure 5.3: Spectral distributions of the Laplacian matrices of ERRG, with N = 3000.

§5.3 Scale-Free percolation

Let us consider the model from Chapter 4, which is a special case of the model
from Chapter 3. We take the discrete torus on N vertices and an i.i.d. se-
quence of Pareto weights (Wl)fil Conditionally on the weights, we add edges
independently with probability

Wil
= A,
P9 =gl
where a > 0 is a parameter of choice and || - || is the torus distance. In the dense

case, we scale the adjacency and Laplacian matrices with the scaling factor
ey ~ N7 for o < 1. In the sparse case, when o > 1, we scale by a constant
scaling ((a), which is the Riemann-Zeta function evaluated at a.

§5.3.1 Adjacency matrix

The degrees of vertices in the model are heavy-tailed with parameter v :=
a(t — 1) (see Deijfen et al. [2013], Cipriani and Salvi [2024]). We simulate the
eigenvalue distribution of the scaled adjacency matrix Ay for the regimes v < 1
and v > 1. For 7 > 1, we have two sub-regimes, namely when o < 1 and o > 1,
and similarly for v < 1, giving us a total of 4 regimes, as in Figure 5.4. While we
have theoretical results for Figure 5.4a, wherein we also see that the centred and
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§5.3. Scale-Free percolation

non-centred adjacency matrices are spectrally close, we believe extension to the
setting simulated in Figure 5.4b should be possible with some modifications to
deal with infinite-mean weights, though the spectrum may differ in the centred
and non-centred cases. The eigenvalue distributions in Figures 5.4a and 5.4c
look similar, where the parameter v > 1. Similarly, the eigenvalue distribution
in Figures 5.4b and 5.4d have a similar shape, where v < 1. This indicates that
~ possibly plays a role in the limiting spectrum, though we do not see this in
Chapters 3 and 4. We believe that the limiting measures exist in all regimes
after appropriate scaling and may be random in certain cases.

size=5000, alpha=07. tau=35 size=5000, alpha=0.7, tau=2.2

= Eigenvalue distribution

= Eigenvalue distribution

(a) «=0.7, 7 = 3.5.

size=5000, alpha=1.2, tau=2.5

= Eigenualue distribution

2 0 2

(c)a=1217=205.

5ize=5000, alpha=0.7, tau=35

= Eigenvalue distribution

(a) Centred adjacency.

(b) a=0.7,17=22.

size=5000, alpha=12, tau=1.5

= Eigenualue distribution

(d) a =12, 7=15.

Figure 5.4: Spectral distributions of the centred adjacency matrices of scale-free percol-
ation, with N = 5000.

size=5000, alpha=0.7, tau=35

= Eigenvalue distribution

] H o =

(b) Non-centred adjacency.

Figure 5.5: Spectral distributions of the centred and non-centred adjacency matrices of
scale-free percolation, with N = 5000, o = 0.7, 7 = 3.5.
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5. Discussion and future directions

For the long-range percolation model (that is, for W; = 1) in Figure 5.6, we
observe the semicircle law when o < 1. At @ = 1, the shape is still semicircle-
like, though we observe some concentration towards the centre. For a € (1,2),
we still observe the presence of a density, with possible atoms at 0, and o = 2,
this density begins to break down. For o > 2, where the model behaves similarly
to bond percolation, the spectrum starts to break down. Such transitions in
forms of percolative behaviour in different regimes have already been observed
in long-range percolation theory (Berger [2002]). It would be interesting to see
this behaviour in the spectrum also.

size=3000, alpha=0.5 size=3000, alpha=1

= Eigenvalue distribution

(a) a =0.5. (b) a=1.

size=3000, alpha=1.5 size=3000, alpha=2

= Eigenvalue distribution == Eigenvalue distribution

(c) a=1.5. (d) oo =2.

Figure 5.6: Spectral distributions of the centred adjacency matrices of long-range per-
colation, with N = 3000.

size=3000, alpha=2.5 size=3000, alpha=3.5

Figure 5.6: (continued)
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§5.3. Scale-Free percolation

§5.3.2 Resolvent Matrix

Recall that for a random matrix Ay, one can define the resolvent as Ra , (2) =
(AN — 21)7L. For some models, there is a concentration on the diagonal of the
resolvent matrix, which makes computation easier. For example, let A be the
GOE, with Ay(i,) = An(j,i) < N=Y/2N(0,1). With the following heuristic,
we can see how concentration on the diagonal of the resolvent occurs:

With Schur’s complement formula from Bordenave [2019], we have

1

Tii =

where 75 = R, )(2) = (Ag\i,) —2I)7!, and A%) is Ay with the i—th row
N

and column deleted. We briefly recall the heuristics from Chapter 2.1. Taking

expectation, we get

1
Elry] = —E = i )
[ ] Z_|_Zj’k;AlTJkAN(%])AN(Z?k)]
. 1
2+ E X s P AN (i ) AN B)|
1 1

i+E {Z#z rjjAN(iaj)Q} 2t u(Ray(2)

%

)

and so for N large, the diagonal terms are in some sense “replaced” by the
Stieltjes transform of ps., with the off-diagonal terms vanishing as N — oc.

This concentration may not happen in other models. Notably, in the sparse
case of the long-range percolation model, we see that there seems to be signific-
ant mass at the off-diagonal terms.

This suggests that understanding the local convergence for these models
is a significant challenge, as most methods require a critical understanding of
the resolvent matrix, which roughly concentrates around the diagonal for the
classical Gaussian models (Anderson et al. [2010], Bordenave [2019]).
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§5.3.3 Laplacian matrix

For the scaled Laplacian matrix of the scale-free percolation model, we have
theoretical results for the existence of a limiting distribution when the weights
have finite variance, as in Figure 5.8a. We observe that as 7 decreases, that is,
the weights become more heavy-tailed, the mass at 0 for the measure increases
as well, and when we have infinite mean weights, as in Figure 5.8c, there is an

207



o
=
<
~
O
+~
(@)
pt
(av]
(-]
==
)

5. Discussion and future directions

Resolvent heatmap for GOE

Resolvent heatmap for LRP, a=0.5

Figure 5.7: Logarithmic resolvent heat maps for centred adjacencies of LRP, GOE,
and ERRG models, with N = 1000. We take z = 1 + 2i, evaluate the resolvent, and
compute the absolute values of the entries. We add N~2 to each entry and compute
the logarithm of the value and plot a heat map.

indication of an atom present at 0. We expect the results to be true under the
assumption of finite mean for the weights. We remark that the Gaussianisation
and decoupling steps may fail when we have infinite variance for the weights,
and so, a new approach has to be taken to tackle the problem. We leave the
case of finite mean and infinite variance open.

In Figure 5.9, we simulate the eigenvalue distributions of the centred Lapla-
cian matrix of the LRP and SFP models, when o > 1. We observe that for
the LRP, the spectrum breaks down when a > 2, as in Figure 5.9b, whereas
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§5.3. Scale-Free percolation

Resolvent heatmap for LRP, =15

(d) LRP, with a = 1.5.

Figure 5.7: (continued)

we observe a density-like shape in Figure 5.9a. For the SFP models, we keep
a = 1.5 fixed, and observe that the distribution skews less when the weights
become more heavy-tailed and the graph becomes denser, as in Figure 5.9d.
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5. Discussion and future directions

size=2000, alpha=0.5, tau=3.1 size=2000, alpha=05, tau=2.1

= Eigenvalue distribution

= Eigenvalue distribution o

size=2000, alpha=05, tau=1.1

= Eigenvalue distribution, ¥ axis truncated

(c) T=1.1.

Figure 5.8: Spectral distributions of the centred Laplacian matriz of scale-free percola-
tion, with N = 2000, o = 0.5.
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(a) LRP, a = 1.5. (b) LRP, o = 2.5.
size=2000, alpha=1.5, tau=3.5 size=2000, alpha=1.5, tau=2.5
040 =3 Eigenvalue distributon =3 Eigenvalue distrioution
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035 0ss
030 050
025 025
[ 02
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(c) SFP, o =15, 7 =3.5. (d) SFP, a = 1.5, T = 2.5.

Figure 5.9: Spectral distributions of the centred Laplacian matriz of long-range and
scale-free percolation, with N = 2000.
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