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CHAPTER 4
Scale-free percolation: The graph

Laplacian

This chapter is based on:
R.S. Hazra, N. Malhotra. Spectral properties of the Laplacian of scale-free per-
colation models. [arxiv:2504.17552 ], 2025.

Abstract

We consider scale free percolation on a discrete torus VN of size N . Condi-
tionally on an i.i.d. sequence of Pareto weights (Wi)i∈VN

with tail exponent
τ − 1 > 0, we connect any two points i and j on the torus with probability

pij =
WiWj

∥i− j∥α
∧ 1

for some parameter α > 0. We focus on the (centered) Laplacian operator of
this random graph and study its empirical spectral distribution. We explicitly
identify the limiting distribution when α < 1 and τ > 3, in terms of the spectral
distribution of some non-commutative unbounded operators.

https://arxiv.org/pdf/2504.17552
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§4.1 Introduction

In recent years, many random graph models have been proposed to model real-
life networks. These models aim to capture three key properties that real-world
networks exhibit: scale-free nature of the degree distribution, small-world prop-
erty, and high clustering coefficients [van der Hofstad, 2024]. It is generally diffi-
cult to find random graph models which incorporate all three features. Classical
random graph models typically fail to capture scale-freeness, small-world beha-
viour, and high clustering simultaneously. For instance, the Erdős-Rényi model
only exhibits the small-world property, while models like Chung-Lu, Norros-
Reittu, and preferential attachment models are scale-free (Chung and Lu [2002],
Barabási and Albert [1999] and small-world but have clustering coefficients that
vanish as the network grows. In contrast, regular lattices have high clustering
but large typical distances. The Watts-Strogatz model (Watts and Strogatz
[1998]) was an early attempt to create a network with high clustering and small-
world features, but it does not produce scale-free degree distributions.

Scale-free percolation, introduced in Deijfen et al. [2013], blends ideas from
long-range percolation (see e.g. Berger [2002]) with inhomogeneous random
graphs such as the Norros–Reittu model. In this framework, vertices are posi-
tioned on the Zd lattice, and each vertex x is independently assigned a random
weight Wx. These weights follow a power-law distribution:

P(W > w) = w−(τ−1)L(w),

where τ > 1 and L(w) is a slowly varying function at infinity.
Edges between pairs of vertices x and y are added independently, with a

probability that increases with the product of their weights and decreases with
their Euclidean distance. The edge probability is given by

pxy = 1− exp

(
−λ WxWy

∥x− y∥α

)
, (4.1)

where λ, α > 0 are model parameters and ∥·∥ denotes the Euclidean norm. This
model has been proposed as a suitable representation for certain real-world sys-
tems, such as interbank networks, where both spatial structure and heavy-tailed
connectivity distributions are relevant (Deprez et al. [2015]). Various properties
of the model are now well known and we refer to the articles by Jorritsma et al.
[2024], Cipriani and Salvi [2024], Cipriani et al. [2025], Heydenreich et al. [2017],
Dalmau and Salvi [2021] for further references.

In recent times, there has been a lot of interest in the models which have
connection probabilities similar to (4.1). Kernel-based spatial random graphs
encompass a wide variety of classical random graph models where vertices are
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embedded in some metric space. In their simplest form (see Jorritsma et al.
[2023] for a more complete exposition) they can be defined as follows. Let V be
the vertex set of the graph and sample a collection of weights (Wi)i∈V , which
are independent and identically distributed (i.i.d.), serving as marks on the
vertices. Conditionally on the weights, two vertices i and j are connected by an
undirected edge with probability

P (i↔ j |Wi,Wj) = κ(Wi,Wj)∥i− j∥−α ∧ 1 , (4.2)

where κ is a symmetric kernel, ∥i − j∥ denotes the distance between the two
vertices in the underlying metric space and α > 0 is a constant parameter. In a
recent article, the present authors with A. Cipriani and M. Salvi (Cipriani et al.
[2025]) proved the spectral properties of the adjacency matrix when α < d and
the weights have a finite mean. In the above setting, the model was considered
on a torus of side length N so that the adjacency operator as a matrix was
easier to describe. In this article, we aim to extend this study to the case of a
Laplacian matrix. Although our approach would extend to general kernel-based
models, we shall stick to the product form kernel, that is, κ(x, y) = xy, so that
the ideas can be clearly presented. It is one of the few cases where the limiting
distribution can be explicitly described.

The Laplacian of a graph with N vertices is defined as AN − DN where
AN is the adjacency matrix and DN is the diagonal matrix where the i-th di-
agonal entry corresponds to the i-th degree. When the entries of the matrix
are not restricted to 0 or 1, the matrix is also referred to as the Markov matrix
(Bryc et al. [2006], Bordenave et al. [2014]). The graph Laplacian serves as
the discrete analogue of the continuous Laplacian, essential in diffusion theory
and network flow analysis. The Laplacian matrix has several key applications:
The Kirchhoff Matrix-Tree Theorem relates the determinant of the Laplacian
to the count of spanning trees in a graph (Chung [1997]), the multiplicity of the
zero eigenvalue indicates the number of connected components (Chung [1997]),
the second-smallest eigenvalue, known as the Fiedler value or the algebraic con-
nectivity, measures the graph’s connectivity; higher values signify stronger con-
nectivity De Abreu [2007]. For a comprehensive overview of spectral methods
in graph theory, refer to Chung’s monograph Chung [1997] and Spielman’s book
Spielman [2012]. In modern machine learning, spectral techniques are pivotal
in spectral clustering algorithms, where the techniques use the Laplacian eigen-
values and eigenvectors for dimensionality reduction before applying clustering
algorithms like k-means (Abbe et al. [2020], Abbe [2017]). It is particularly
effective for detecting clusters that are not linearly separable. Recent advance-
ments integrate spectral clustering with graph neural networks to enhance graph
pooling operations (Bianchi et al. [2020]). Spectral algorithms are also crucial
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for identifying communities within networks by analysing the spectral properties
of the graph (Chung [1997]).

Bryc et al. [2006] established that for large symmetric matrices with inde-
pendent and identically distributed entries, the empirical spectral distribution
(ESD) of the corresponding Laplacian matrix converges to the free convolution
of the semicircle law and the standard Gaussian distribution. In the context
of sparse Erdős–Rényi graphs, Huang and Landon [2020] studied the local law
of the ESD of the Laplacian matrix. They demonstrated that the Stieltjes
transform of the ESD closely approximates that of the free convolution of the
semicircle law and a standard Gaussian distribution down to the scale N−1.
Additionally, they showed that the gap statistics and averaged correlation func-
tions align with those of the Gaussian Orthogonal Ensemble in the bulk. Ding
and Jiang [2010] investigated the spectral distributions of adjacency and Lapla-
cian matrices of random graphs, assuming that the variance of the entries of
an N × N adjacency matrix depends only on N . They established the con-
vergence of the ESD of these matrices under such conditions. These results of
the Erdős-Rényi random graphs were extended to the inhomogeneous setting
by Chakrabarty et al. [2021b]. In a recent work, Chatterjee and Hazra [2022]
derived a combinatorial way to describe the limiting moments for a wide variety
of random matrix models with a variance profile.
Our contribution
The empirical spectral distribution of the (centred) Laplacian of a graph that
incorporates spatial distance has not been studied before. For example, we are
not aware of a result that describes the spectral properties of the Laplacian for
the long-range percolation model. Our main contribution is that we establish
this result for the scale-free percolation model on the torus. We restrict ourselves
to the dense regime, that is, α < 1. We show that under mild assumptions on
the weights (having finite variance), we establish the existence of the limiting
distribution. It turns out to be a distribution that involves the Gaussian, the
semicircle, and the Pareto distribution. In a symbolic (and rather informal)
way, it is given by the spectral law of

W 1/2SW 1/2 +m1W
1/4GW 1/4,

where W is an unbounded operator with spectral law given by the Pareto dis-
tribution, S is a bounded compact operator whose spectral law is the semicircle
law, and G is an unbounded operator whose law is given by the Gaussian dis-
tribution. Finally, m1 is the first moment of W . The interaction between these
operators comes from the fact that in the non-commutative space, {W,G} is a
commutative algebra, freely independent of S. Similar results have been estab-
lished when the weights are bounded and degenerate, and no spatial distances
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are involved (Chatterjee and Hazra [2022] and Chakrabarty et al. [2021b]). The
present work extends the results to settings that involve random heavy-tailed
weights and spatial distances.
Outline of the article
In section 4.2 we explicitly describe the setup of the model and state our main
results. In Theorem 4.2.1 we show the existence of the limiting spectral dis-
tribution, and in Theorem 4.2.5, we identify the measure and state some of
its properties. In Section 4.3 we first introduce a Gaussianised version of the
matrix, and this helps us to simplify the variance profile. We then truncate
the weights and decouple the diagonal, which allows us to apply the moment
method. In Section 4.4 we identify the limiting moments of the decoupled Lapla-
cian and show that it does not depend on the spatial parameter α > 0, which
is crucial in the identification of the limiting measure of the original Laplacian.
Finally, in Section 4.5 we identify the limiting measure using results from free
probability. In Appendix 4.6 we provide references to some of the results we use
in our proofs, which are collections of results from other articles and are stated
here for completeness.

§4.2 Setup and main results

In this section we describe the setup of the model and also state the main results.

§4.2.1 Setup
(a) Vertex set: the vertex set is VN := {1, 2, . . . , N}. The vertex set is equipped

with torus the distance ∥i− j∥, where

∥i− j∥ = |i− j| ∧ (N − |i− j|).

(b) Weights: the weights (Wi)i∈VN
are i.i.d. random variables sampled from a

Pareto distribution W (whose law we denote by P) with parameter τ − 1,
where τ > 1. That is,

P(W > t) = t−(τ−1)1{t≥1} + 1{t<1}. (4.3)

(c) Long-range parameter: α > 0 is a parameter which controls the influence
of the distance between vertices on their connection probability.

(d) Connectivity function: conditional on the weights, each pair of distinct
vertices i and j is connected independently with probability PW (i↔ j) given
by

PW (i↔ j) := P(i↔ j |Wi,Wj) =
WiWj

∥i− j∥α
∧ 1. (4.4)

163



4. Scale-free percolation: The graph Laplacian

C
ha

pt
er

Fo
ur

We will be using the short-hand notation pij := P(i ↔ j | Wi,Wj) for con-
venience. Note that the graph does not have self-loops.

In what follows, we denote by P = P⊗PW the joint law of the weights and
the edge variables. Note that P depends on N , but we will omit this dependence
for simplicity. Let E,E, and EW denote the expectation with respect to P,P,
and PW respectively.

The associated graph is connected, as nearest neighbours with respect to the
torus distance are always linked. Let us denote the random graph generated by
our choice of edge probabilities by GN . Let AGN

denote the adjacency matrix
(operator) associated with this random graph, defined as

AGN
(i, j) =

{
1 if i↔ j,

0 otherwise.

Since the graph is finite and undirected, the adjacency matrix is always self-
adjoint and has real eigenvalues. Let

DGN
= Diag(d1, · · · , dN )

where di denotes the degree of the vertex i and in this case given by

di =
∑
j ̸=i

AGN
(i, j).

We will consider the Laplacian of the matrix, which is denoted as follows:

∆GN
= AGN

− DGN
.

In general, when α < 1, the eigenvalue distribution requires scaling in order to
observe meaningful limiting behaviour. In Cipriani et al. [2025], it was shown
that an appropriate scaling of the adjacency matrix, under which the conver-
gence of the bulk eigenvalue distribution can be studied, is given by

cN =
1

N

∑
i ̸=j∈VN

1

∥i− j∥α
∼ c0N

1−α, (4.5)

where c0 is a positive constant. The scaled adjacency matrix is then defined as

AN :=
AGN√
cN
. (4.6)

We define the corresponding (scaled) Laplacian as

∆N = AN −DN ,
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where DN is given by DN = Diag(d1, · · · ,dN ) with

di =
∑
k ̸=i

AN (i, k).

The empirical measure that assigns a mass of 1/N to each eigenvalue of the
N ×N random matrix MN is called the Empirical Spectral Distribution (ESD)
of MN , denoted as

ESD (MN ) :=
1

N

N∑
i=1

δλi
,

where λ1 ≤ λ2 ≤ . . . ≤ λN are the eigenvalues of MN . We are interested in the
centred Laplacian matrix for the bulk distribution. So define

∆◦N = ∆N − E[∆N ] (4.7)

where E[∆N ](i, j) = E[∆N (i, j)]. If we define A◦N = AN − E[AN ] and D◦N
is the diagonal matrix Diag(d◦1, . . . ,d

◦
N ) where d◦i =

∑
k ̸=iA

◦
N (i, k), then it is

easy to see that
∆◦N = A◦N −D◦N .

In this article we will be interested in understanding the behaviour of ESD(∆◦N )

as N → ∞.

§4.2.2 Main Results

The Lévy-Prokhorov distance dL : P(R)2 → [0,+∞) between two probability
measures µ and ν on R is defined as

dL(µ, ν) := inf
{
ε > 0 | µ(A) ≤ ν (Aε)+ε and ν(A) ≤ µ (Aε)+ε ∀A ∈ B(R)

}
,

where B(R) denotes the Borel σ-algebra on R, and Aε is the ε-neighbourhood
of A. For a sequence of random probability measures (µN )N≥0, we say that

lim
N→∞

µN = µ0 in P-probability

if, for every ε > 0,
lim

N→∞
P(dL(µN , µ0) > ε) = 0.

Our first main result is existential and is as follows.
Theorem 4.2.1.
Consider the random graph GN on VN with connection probabilities given by
(4.4) with parameters τ > 3 and 0 < α < 1. Let ESD(∆◦N ) be the empirical
spectral distribution of ∆◦N defined in (4.7). Then there exists a deterministic
measure ντ on R such that

lim
N→∞

ESD(∆o
N ) = ντ in P–probability .
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The characterisation of ντ is achieved by results from the theory of free
probability. For convenience, we state some technical definitions. We refer the
readers to [Anderson et al., 2010, Chapter 5] for further details.

For the following definitions, we refer the reader to Mingo and Speicher
[2017], and recall from Chapter 1 that a W ∗−algebra is a C∗-algebra of bounded
operators on a Hilbert space closed in the weak operator topology.

Definition 4.2.2.
Let (A, φ) be a W ∗-probability space, where A is a W ∗-algebra, and φ is a
faithful, tracial state. A densely defined operator T is said to be affiliated with
A if for every bounded measurable function h, we have h(T ) ∈ A. The law
(or distribution) L(T ) of such an affiliated operator T is the unique probability
measure on R satisfying

φ(h(T )) =

∫
R
h(x) dL(T )(x).

For a collection of self-adjoint operators T1, . . . , Tn, their joint distribution
is described by specifying

φ(h1(Ti1) . . . hk(Tik)),

for all k ≥ 1, all index sequences i1, . . . , ik ∈ {1, . . . , n}, and all bounded meas-
urable functions h1, . . . , hk : R → R.

Definition 4.2.3.
Let (A, φ) be a W ∗-probability space, and suppose a1, a2 ∈ A. Then a1 and a2
are said to be freely independent if

φ(p1(ai1) . . . pn(ain)) = 0,

for every n ≥ 1, every sequence i1, . . . , in ∈ {1, 2} with ij ̸= ij+1 for all j =

1, . . . , n− 1, and all polynomials p1, . . . , pn in one variable satisfying

φ(pj(aij )) = 0, for all j = 1, . . . , n.

Definition 4.2.4.
Let a1, . . . , ak and b1, . . . , bm be operators affiliated with A. The families (a1, . . . , ak)
and (b1, . . . , bm) are freely independent if and only if

p(h1(a1) . . . hk(ak)) and q(g1(b1) . . . gm(bm))

are freely independent for all bounded measurable functions h1, . . . , hk and g1, . . . , gm,
and for all polynomials p and q in k and m non-commutative variables, respect-
ively.
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We are now ready to state our second main result.

Theorem 4.2.5.
Under the assumptions of Theorem 4.2.1, the limiting measure ντ can be iden-
tified as

ντ = L
(
T
1/2
W TsT

1/2
W +E[W ]T

1/4
W TgT

1/4
W

)
.

Here, Tg and TW are commuting self-adjoint operators affiliated with a W ∗-
probability space (A, φ) such that, for bounded measurable functions h1, h2 from
R to itself,

φ (h1 (Tg)h2 (TW )) =

(∫ ∞
−∞

h1(x)ϕ(x)dx

)(∫ ∞
1

h2(u)(τ − 1)u−τdu

)
with ϕ the standard normal density. Furthermore, Ts has a standard semi-

circle law and is freely independent of (Tg, TW ).
In particular, when W is degenerate, say W ≡ 1, then ντ is given by the free

additive convolution of semicircle and Gaussian law.

§4.2.3 Discussion and simulations
(a) We now briefly describe the main steps of the proof.

1. Gaussianisation: In the first step, we show that replacing the Bernoulli
entries with Gaussian entries having the same mean and variance res-
ults in empirical spectral distributions that are close.

2. Simplification of the variance profile: In this step, we show that
the variance profile can be simplified to WiWj/∥i − j∥α, effectively
removing the truncation at 1.

3. Truncation: Here, we show that in the Gaussian matrix, the weights
Wi can be replaced by the truncated weights Wm

i =Wi1Wi≤m.

4. Decoupling the diagonal: In this step, we show that the Laplacian
can be viewed as the sum of two independent random matrices (con-
ditionally on the weights). Thus, we replace the diagonal matrix DN

with an independent copy YN , which has the same variance profile.

5. Moment method: With truncated weights and decoupled matrices,
we apply the moment method to show convergence of the empirical
spectral distribution and identify the limiting moments. A key obser-
vation is that the limiting measure and the method are independent
of α, so the results remain valid even when α = 0.
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6. Identification of the limiting measure: Finally, we first identify the
limiting measure in the case of truncated weights. These are typically
associated with bounded operators (except in the Gaussian case). We
then use techniques from Bercovici and Voiculescu [1993] to remove
the truncation and identify the limiting measure in the general case.

(b) We now present some simulations that illustrate how the proof outline
aligns with a specific value of α. In Figure 4.1, we plot the eigenvalue
distribution of the centred Laplacian matrix, with the parameter range
N = 6000, α = 0.5 and τ = 4.1. A crucial step in the proof of Theorem
4.2.1 requires us to replace the Bernoulli entries with Gaussian entries
with the same variance profile. Also in the Gaussian case, we can simplify
the variance to the following form:

WiWj

∥i− j∥α

for any (i, j)th entry. We compare the two spectra in Figure 4.2. We also
consider the Gaussianised Laplacian matrix with a decoupled diagonal,
and in Section 4.5, we apply an idea used in Cipriani et al. [2025], where
we take α = 0. We also compare the spectrum of this matrix to the
original centred Laplacian in Figure 4.2. We see that the spectra are quite
similar.

Figure 4.1: Spectrum of the centred Laplacian matrix .

(c) We remark that our results can be extended in two directions. Although
we state and prove them for the case d = 1 and α < 1, they naturally
generalise to any dimension d ≥ 1 and α < d. In that case, the scaling
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Figure 4.2: Comparing the spectrum of the centred Laplacian with the Gaussianised
and the decoupled case.

constant requires an adjustment, with cN ∼ c0(d)N
d−α. For ease of

presentation, we restrict ourselves to d = 1 in this work.

Another possible extension of our first result involves modifying the con-
nection probabilities between vertices i and j to

pij =
κσ(Wi,Wj)

∥i− j∥α
∧ 1,

where κσ(x, y) = (x ∨ y)(x ∧ y)σ. In this setting, we additionally assume
0 < σ < (τ − 1). Such extensions have been studied in the context of
adjacency matrices in Cipriani et al. [2025]. We strongly believe that
in this case the limiting spectral distribution will exist, but it would be
challenging to identify the limiting measure.

§4.2.4 Notation
We will use the Landau notation oN , ON indicating in the subscript the vari-
able under which we take the asymptotic (typically this variable will grow
to infinity unless otherwise specified). Universal positive constants are de-
noted as c, c1, . . . , and their value may change with each occurrence. For
an N × N matrix A = (aij)

N
i, j=1 we use Tr(A) :=

∑N
i=1 aii for the trace

and tr(A) := N−1Tr(A) for the normalised trace. When n ∈ N we write
[n] := {1, 2, . . . , n}. We denote the cardinality of a set A as #A, and, with a
slight abuse of notation, #σ also denotes the number of cycles in a permutation
σ.

§4.3 Gaussianisation and setup for main proofs

To prove Theorem 4.2.1, we construct a Laplacian matrix with truncated weights
and a simplified variance profile, with the diagonal decoupled from the adjacency
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matrix. We follow the ideas of Cipriani et al. [2025], albeit with a slightly
modified approach, as follows:

(a) We begin by Gaussianising the matrix ∆o
N to obtain a matrix ∆̄N , using

the ideas of Chatterjee [2005]. Since we have τ > 3, the proof proceeds
without the need to truncate the weight sequence {Wi}i∈VN

.

(b) We then tweak the entries of ∆̄N further through a series of lemmas to
obtain the Laplacian matrix ∆̂N,g, whose corresponding adjacency has
mean-zero Gaussian entries and a simplified variance profile.

(c) Next, we truncate the weights {Wi}i∈VN
at m ≥ 1, and construct the

corresponding matrix ∆N,g,m. We show that, in P-probability, the Lévy
distance vanishes in the iterated limit m→ ∞ and N → ∞.

(d) We conclude by decoupling the diagonal of the matrix ∆N,g,m from the
off-diagonal terms. This follows from classical results used in studying the
spectrum of Laplacian matrices.

§4.3.1 Gaussianisation
Suppose (Gi,j)i>j is a sequence of i.i.d. N(0, 1) random variables and independ-
ent of the sequence (Wi)i∈VN

. Define

ĀN =


√

pij(1−pij)√
cN

Gi∧j,i∨j +
µij√
cN

i ̸= j

0 i = j,

where µij = pij −E[pij ]. Let ∆̄N be the corresponding Laplacian of the matrix
ĀN . Let h be a 3 times differentiable function on R such that

max
0≤k≤3

sup
x∈R

|h(k)(x)| <∞ ,

where h(k) is the k-th derivative of h. Define the resolvent of the N ×N matrix
MN as

RMN
(z) = (MN − z IN )−1 , z ∈ C+,

where IN is the N ×N identity matrix and C+ is the upper-half complex plane.
Further, define Hz(MN ) = SMN

(z) = tr(RMN
(z)) for z ∈ C+.

Lemma 4.3.1 (Gaussianisation of ∆N).
Consider ∆̄N and ∆o

N defined as above. Then for any h as above,

lim
N→∞

∣∣E[h(ℜHz(∆̄N ))]− E[h(ℜHz(∆
o
N ))]

∣∣ = 0 ,

and
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lim
N→∞

∣∣E[h(ℑHz(∆̄N ))]− E[h(ℑHz(∆
o
N ))]

∣∣ = 0 .

The proof is very similar to the one presented in Chatterjee and Hazra
[2022] and is modified along the lines of Cipriani et al. [2025]. It uses the
classical result of Chatterjee [2005], and we only give a brief sketch by showing
the estimates of the error probabilities in this setting. In Cipriani et al. [2025],
the Gaussianisation was done with truncated weights, but here we will not need
that.

Proof. Following the proof of Cipriani et al. [2025] for the Laplacian, we define,
conditional on the weights (Wi)i∈VN

, a sequence of independent random vari-
ables. Let Xb = (Xb

ij)1≤i<j≤N be a vector with Xb
ij ∼ Ber(pij)− E[pij ]. Simil-

arly, take another vector Xg = (Xg
ij)1≤i<j≤N with Xg

ij ∼ N(µij , pij(1− pij)).
Let n = N(N − 1)/2 and x = (xij)1≤i<j≤N ∈ Rn. Define R(x) to be the

matrix-valued differentiable function given by

R(x) := (MN (x)− z IN )−1,

where MN (·) is the matrix-valued differentiable function that maps a vector in
Rn to the space of N ×N Hermitian matrices, given by

MN (x)ij =


c
−1/2
N xij if i < j,

c
−1/2
N xji if i > j,

−c−1/2N

∑
k ̸=i xik if i = j.

Then, we see that ∆o
N = MN (Xb) and ∆̄N = MN (Xg). Note that

EW [Xb
ij ] = EW [Xg

ij ] = µij ,

and
EW [(Xb

ij)
2] = EW [(Xg

ij)
2] = pij + E[pij ]2 − 2pijE[pij ].

Consequently, using [Chatterjee, 2005, Theorem 1.1] we have that∣∣E[h(ℜHz(∆̄N ))]− E[h(ℜHz(∆
o
N ))]

∣∣
=
∣∣E [EW [h(ℜHz(∆̄N ))− h(ℜHz(∆

o
N ))]

]∣∣
≤ C1(h)λ2(H)

∑
1≤i<j≤N

E[(Xb
ij)

21|Xb
ij |>KN

] + E[(Xg
ij)

21|Xg
ij |>KN

] (4.8)

+ C2(h)λ3(H)
∑

1≤i<j≤N
E[(Xb

ij)
31|Xb

ij |≤KN
] + E[(Xg

ij)
31|Xg

ij |≤KN
] (4.9)
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where λ2(H) ≤ C2(ℑz) 1
NcN

and λ3(H) ≤ C3(ℑz) 1

Nc
3/2
N

.

We first deal with the terms in (4.8). Note that since pij ≤ 1, we have
|Xb

ij | ≤ 1, and as a consequence, for any KN ≥ 2, the first term in (4.8) is zero.
For the Gaussian term, applying the Cauchy-Schwarz inequality followed by the
second-moment Markov inequality yields

E[(Xg
ij)

21|Xg
ij |>KN

] ≤ E[(Xg
ij)

4]1/2P(Xg
ij > KN )1/2 ≤ K−1N E[(Xg

ij)
4]1/2E[(Xg

ij)
2]1/2.

Since E[(Xg
ij)

2] = E[pij+E[pij ]2−2pijE[pij ]] ≤ E[pij ], and similarly, E[(Xg
ij)

4] ≤
E[p2ij ], we have

λ2(H)
∑

1≤i<j≤N
E[(Xg

ij)
21|Xg

ij |>KN
]

≤ λ2(H)

KN

∑
1≤i<j≤N

E[W 2
i ]

1/2E[W 2
j ]

1/2

∥i− j∥α
E[Wi]

1/2E[Wj ]
1/2

∥i− j∥α/2

≤ λ2(H)

KN
E[W1]E[W 2

1 ]N
2− 3α

2

≤ c̃2E[W1]E[W 2
1 ]N

2− 3α
2

KNN2−α = ON (N−α/2K−1N ),

where the last equality follows as τ > 3 and c̃2 is a constant depending on ℑ(z)
only. For the term containing the third moments, we see that

λ3(H)
∑

1≤i<j≤N
E[(Xb

ij)
31|Xb

ij |≤KN
] + E[(Xg

ij)
31|Xg

ij |≤KN
]

≤ λ3(H)KN

∑
1≤i≤j≤N

E[(Xb
ij)

2] + E[(Xg
ij)

2]

≤ λ3(H)KN2E[W1]
2

∑
1≤i≤j≤N

1

∥i− j∥α

≤ c3(ℑz)
Nc

3/2
N

KNE[W1]
2NcN ≤ c̃3KNc

−1/2
N .

Here c̃3 is a constant depending on ℑ(z). Choosing any 2 ≤ KN ≪ c
1/2
N , both

terms go to zero. This completes the proof of the Gaussianisation.

§4.3.2 Simplification of the variance profile
We now proceed with a series of lemmas to simplify the variance profile of our
Gaussianised matrix. First, we construct a new matrix ∆N,g as the Laplacian
corresponding to the matrix AN,g, defined as follows:
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Suppose (Gi,j)i>j is a sequence of i.i.d. N(0, 1) random variables as before,
and independent of the sequence (Wi)i∈VN

. Define

AN,g =


√

pij(1−pij)√
cN

Gi∧j,i∨j i ̸= j

0 i = j.

We now have the following result.
Lemma 4.3.2.
Let ∆̄N and ∆N,g be as defined above. Then,

lim
N→∞

P(dL(ESD(∆̄N ),ESD(∆N,g)) > ε) = 0.

Proof. The proof follows using Proposition 4.6.1. Taking expectation on the dL
distance, we have

E
[
d3L(ESD(∆N,g,ESD(∆̄N )

]
≤ 1

N
ETr

(
(∆N,g − ∆̄N )2

)
=

1

N
E

 ∑
1≤i,j≤N

(
∆N,g(i, j)− ∆̄N (i, j)

)2
=

1

N

∑
1≤i ̸=j≤N

E
[
(AN,g(i, j)− ĀN (i, j))2

]

+
1

N

N∑
i=1

E

∑
k ̸=i

AN,g(i, k)− ĀN (i, k)

2 .
We deal with the last two terms separately. The first term is bounded above by

1

NcN

∑
i ̸=j

E[µ2ij ] ≤
1

NcN

∑
i ̸=j

E[W 2
1 ]

2

∥i− j∥2α
≈ N2−2α

N2−α = N−α → 0.

Next, we have that∑
k ̸=i

AN,g(i, k)− ĀN (i, k) ≤ 1
√
cN

∑
k ̸=i

pik = c
−1/2
N .

This makes the second term of the order oN (cN ). We conclude the proof using
Markov’s inequality.

Define for i ̸= j

ÃN,g(i, j) =

√
pij√
cN
Gi∧j,i∨j

and put zero on the diagonal. Here (Gi,j)i≥j are the i.i.d. N(0, 1) random
variables used in the previous result. Let ∆̃N,g be analogously defined. The
next lemma shows that ∆N,g and ∆̃N,g have asymptotically the same spectrum.
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Lemma 4.3.3.

lim
N→∞

P
(
dL(ESD(∆̃N,g),ESD(∆N,g)) > ε

)
= 0.

Proof. Again using Proposition 4.6.1, we have that

E
[
d3L(ESD(∆̃N,g),ESD(∆N,g))

]
≤ 1

N
ETr

(
(∆N,g − ∆̃N,g)

2
)

=
1

N
E

 ∑
1≤i,j≤N

(
∆N,g(i, j)− ∆̃N,g(i, j)

)2
=

1

N

∑
1≤i ̸=j≤N

E
[
(AN,g(i, j)− ÃN,g)

2
]

+
1

N

N∑
i=1

E

∑
k ̸=i

AN,g(i, k)− ÃN,g(i, k)

2
Dealing with the last two terms separately as before, we proceed by bounding

the first term by

1

NcN

∑
i ̸=j

E[W 2
1 ]

2

∥i− j∥2α
≈ N2−2α

N2−α = N−α → 0.

Expanding the square in the second term, we have

1

N

N∑
i=1

E

∑
k ̸=i

AN,g(i, k)− ÃN,g(i, k)

2
=

1

N

N∑
i=1

∑
k ̸=i

E
[(

AN,g(i, k)− ÃN,g(i, k)
)2]

+
1

N

N∑
i=1

∑
k ̸=i

∑
ℓ̸=i,k

E
[(

AN,g(i, k)− ÃN,g(i, k)
)(

AN,g(i, ℓ)− ÃN,g(i, ℓ)
)]
.

Again, the first term in above sum is of the order N−α and the expectation
in the second term is zero. Indeed, using the independence between (Wi)i∈VN

and Gi,j we have for k ̸= ℓ,

E
[(

AN,g(i, k)− ÃN,g(i, k)
)(

AN,g(i, ℓ)− ÃN,g(i, ℓ)
)]

= E
[
(
√
pik(1− pik)−

√
pik)(

√
piℓ(1− piℓ)−

√
piℓ)
]
E[Gi,kGi,ℓ] = 0.

This completes the proof of the lemma.
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We conclude this subsection with one final simplification. For any i ̸= j, let

rij =
WiWj

∥i− j∥α
,

and let rii = 0. Define the matrix ÂN,g as follows: for i ̸= j,

ÂN,g(i, j) =

√
ri∧j,i∨j√
cN

Gi∧j,i∨j

and put 0 on the diagonal. Define Laplacian matrix ∆̂N,g accordingly with
ÂN,g.

Lemma 4.3.4.

lim
N→∞

P
(
dL(ESD(∆̃N,g),ESD(∆̂N,g)) > ε

)
= 0.

Proof. For any 1 ≤ i ̸= j ≤ N , define the set Cij = {rij < 1}. Let (Xi,j)i≥j be
defined as follows

Xij =

√
rij√
cN
G′ij ,

where (G′ij)i≥j be a sequence of independent N(0, 1) random variables, inde-
pendent of the previously defined (Gij) and (Wi)i∈VN

. Define a symmetric
matrix LN,g as follows: for 1 ≤ i < j ≤ N ,

LN,g(i, j) = ÃN,g(i, j)1Cij +Xij1Ccij .

We put zero on the diagonal and consider the ∆L as the Laplacian matrix
corresponding to LN,g. Note that LN,g has the same distribution as ÂN,g and
hence the ∆L has the same distribution as ∆̂N,g.

By Proposition 4.6.1, we again have

E
[
d3
(
ESD(∆L),ESD(∆̃N,g)

)]
≤ 1

N
E

 ∑
1≤i,j≤N

(
∆L(i, j)− ∆̃N,g(i, j)

)2
=

1

N

∑
1≤i ̸=j≤N

E
[
(LN,g(i, j)− ÃN,g(i, j))

2
]

+
1

N

N∑
i=1

E

∑
k ̸=i

LN,g(i, k)− ÃN,g(i, k)

2 .
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Expanding terms on the right-hand side, we obtain

E
[
d3
(
ESD(∆L),ESD(∆̃N,g)

)]
≤ 4

N

∑
1≤i ̸=j≤N

E
[
(LN,g(i, j)− ÃN,g(i, j))

2
]

≤ +
1

N

N∑
i=1

∑
k ̸=i

∑
ℓ ̸=i,k

E
[(
LN,g(i, k)− ÃN,g(i, k)

)(
LN,g(i, ℓ)− ÃN,g(i, ℓ)

)]
Again, we deal with the two sums separately. The first sum can be bounded

above as follows:
4

N

∑
1≤i ̸=j≤N

E
[
(LN,g(i, j)− ÃN,g(i, j))

2
]

≤ 4

N

∑
1≤i ̸=j≤N

E
[
(ÃN,g(i, j)−Xij)

21Cij
]

≤ 8

N

∑
1≤i ̸=j≤N

E
[
ÃN,g(i, j)

21Cij
]
+ E

[
X2

ij1Cij
]

≤ 1

NcN

N∑
i ̸=j∈VN

E[G2
i∧j,i∨j1Ccij ] +E[X2

ij1Ccij ]

≤ 1

NcN

N∑
i ̸=j∈VN

P(Cc
ij) +E[X4

ij ]
1/2P(Cc

ij)
1/2

≤ 1

NcN

N∑
i ̸=j∈VN

P(Cc
ij) +

3E[W 2
i W

2
j ]

1/2

∥i− j∥α
P(Cc

ij)
1/2

≤ C(N−α(τ−2) +N−
α
2
(τ−1)) = oN (1),

where we have used in the last line the following estimate:

P(Cc
ij) ≤ P (WiWj ≥ ∥i− j∥α) ≤ c

∥i− j∥α(τ−1)

which follows from Lemma 4.6.2. For the second term note that

E
[(
LN,g(i, k)− ÃN,g(i, k)

)(
LN,g(i, ℓ)− ÃN,g(i, ℓ)

)]
=

1

cN
E[

√
pik

√
piℓ1Ccij1Cciℓ ]E[GikGiℓ]

− 1

cN
E[

√
pik

√
riℓ1Ccij1Cciℓ ]E[GikG

′
iℓ]−

1

cN
E[

√
rik

√
piℓ1Cc

ij
1Cc

iℓ
]E[G′ikGiℓ]

+
1

cN
E[

√
rik

√
riℓ1Cc

ij
1Cc

iℓ
]E[G′ikG′iℓ],
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and since k ̸= ℓ, all the above terms are zero. Thus the proof follows.

§4.3.3 Truncation
Let m > 1 be a truncation threshold and define Wm

i = Wi1Wi≤m for any
i ∈ VN . For all N ∈ N, we define a new random matrix as follows: Let

rmij =
Wm

i W
m
j

∥i− j∥α
i ̸= j ∈ VN ,

and let AN,g,m be defined for i ̸= j as

AN,g,m(i, j) =

√
rmij√
cN

Gi∧j,i∨j ,

and put 0 on the diagonal. Analogously define ∆N,g,m.

Lemma 4.3.5 (Truncation).
For every δ > 0 one has

lim sup
m→∞

lim
N→∞

P
(
dL(ESD(∆N,g,m),ESD(∆̃N,g)) > δ

)
= 0 .

Proof. The proof follows the same idea as the previous lemmas. Recall that

ÂN,g(i, j) =

√
rij√
cN
Gi∧j,i∨j

for all i ̸= j, with 0 on the diagonal, and ∆̂N,g is the corresponding Laplacian.
Once again, we have

E
[
d3
(
ESD(∆N,g,m),ESD(∆̂N,g)

)]
≤ 1

N
E

 ∑
1≤i,j≤N

(
∆N,g,m(i, j)− ∆̂N,g(i, j)

)2
=

1

N

∑
1≤i ̸=j≤N

E
[
(AN,g,m(i, j)− ÂN,g(i, j))

2
]

+
1

N

N∑
i=1

E

∑
k ̸=i

AN,g,m(i, k)− ÂN,g(i, k)

2
≤ 4

N

∑
1≤i ̸=j≤N

E
[
(AN,g,m(i, j)− ÂN,g(i, j))

2
]

+
1

N

N∑
i=1

∑
k ̸=i

∑
ℓ̸=i,k

E
[(

AN,g,m(i, k)− ÂN,g(i, k)
)(

AN,g,m(i, ℓ)− ÂN,g(i, ℓ)
)]
.
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The proof of Lemma 4.3.4 aids us by taking care of the second factor in the last
line, which turns out to be equal to 0 by the independence of Gaussian terms.
For the first term, the common Gaussian factor pulls out by independence,
yielding the upper bound

4

NcN

∑
1≤i ̸=j≤N

E

[(√
WiWj −

√
Wm

i W
m
j

)2]
∥i− j∥α

≤ 4

NcN

∑
1≤i ̸=j≤N

E[WiWj −Wm
i W

m
j ]

∥i− j∥α
,

where the inequality follows by using the identity (a − b)2 ≤ |a2 − b2| for any
a, b ≥ 1. Adding and subtracting the term WiW

m
j inside the expectation gives

us that

4

N

∑
1≤i ̸=j≤N

E
[
(AN,g,m(i, j)− ÂN,g(i, j))

2
]

≤ 4

NcN

∑
1≤i ̸=j≤N

E[Wi]E[Wj1{Wj>m}] +E[Wm
j ]E[Wi1{Wi>m}]

∥i− j∥α

≤ Cτ

NcN

∑
1≤i ̸=j≤N

m2−τ

∥i− j∥α
= Om(m2−τ ),

where the last inequality follows from Lemma 4.6.3, with Cτ a τ−dependent
constant. Markov inequality concludes the proof.

§4.3.4 Decoupling
Since we now have bounded weights, the decoupling result follows from the argu-
ments from [Bryc et al., 2006, Lemma 4.12]. See also the proof of [Chakrabarty
et al., 2021b, Lemma 4.2] for the inhomogeneous extension.

Lemma 4.3.6.
Let (Zi : i ≥ 1) be a family of i.i.d. standard normal random variables, inde-
pendent of (Gi,j : 1 ≤ i ≤ j). Define a diagonal matrix YN of order N by

YN (i, i) = Zi

√∑
k ̸=i r

m
ik

cN
, 1 ≤ i ≤ N.

and let
∆N,g,c = AN,g,m + YN . (4.10)
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Then for every m > 1, and for any k ∈ N,

lim
N→∞

1

N
E
(
Tr
[
(∆N,g,c)

2k − (∆N,g,m)2k
])

= 0.

and
lim

N→∞

1

N2
E
(
Tr2

[
(∆N,g,c)

k
]
− Tr2

[
(∆N,g,m)k

])
= 0.

§4.4 Moment method: Existence and uniqueness of
the limit

We begin by stating a key proposition that describes the limit of the empirical
spectral distribution of ∆N,g,c. The majority of this section will be devoted to
the proof of this proposition, and so, we defer the proof of the proposition to
page 180.

Proposition 4.4.1.
Let ESD(∆N,g,c) be the empirical spectral distribution of ∆N,g,c defined in (4.10).
Then there exists a deterministic measure ντ on R such that

lim
N→∞

ESD(∆N,g,c) = ντ,m in P–probability .

We now use Proposition 4.4.1 and tools from Appendix 4.6 and Section 4.3
to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Combining Proposition 4.4.1 with Lemma 4.3.6 gives
us that

lim
N→∞

ESD(∆N,g,m) = ντ,m in P–probability . (4.11)

To show the existence of the limit ντ := limm→∞ ντ,m, we wish to apply Lemma
4.6.5. Equation (4.11) satisfies Condition (1) of Lemma 4.6.5. Moreover, Con-
dition (2) can be easily verified by Lemma 4.3.5. Thus, there exists a unique
limit ντ such that

lim
N→∞

ESD(∆̃N,g) = ντ in P–probability . (4.12)

Combining equation (4.12) with Lemma 4.3.4, and subsequently with Lemma
4.3.3 and Lemma 4.3.2 yields

lim
N→∞

ESD(∆̄N ) = ντ in P–probability . (4.13)

We now wish to show that the limiting empirical spectral distribution for ∆◦N
is ντ in P–probability. To this end, note that for any h satisfying conditions of

179



4. Scale-free percolation: The graph Laplacian

C
ha

pt
er

Fo
ur

Lemma 4.3.1, and Hz as in subsection 4.3.1, we have by the means of Lemma
4.3.1 that

lim
N→∞

h (ℜ(Hz(∆
◦
N ))) = h (ℜSντ (z)) .

The above characterises convergence in law. However, since ντ is a deterministic
measure, the above convergence holds in P–probability, and analogously for
ℑ(Hz(∆

◦
N )). This gives us that

lim
N→∞

SESD(∆◦
N )(z) = Sντ (z) in P–probability .

Since convergence of Stieltjes transforms characterises weak convergence, we
obtain

lim
N→∞

ESD(∆◦N ) = ντ in P–probability ,

completing the proof.

We now provide the proof of Proposition 4.4.1. We borrow the main ideas of
Chatterjee and Hazra [2022, Section 5.2.1, 5.2.2], and adapt them to our setting
using the results of Cipriani et al. [2025, Section 4.4].

Proof of Proposition 4.4.1. The proof of the moment method is valid when the
weights are bounded, and so for notational convenience, in this proof we will
drop the dependence on m from {rmij }i,j∈VN

. Thus, for the remainder of the
proof, we have that

rij =
Wm

i W
m
j

∥i− j∥α
.

We apply the method of moments to show the convergence to the law ντ,m. The
proof is split up into three parts as follows:

(a) For any k ≥ 1, we compute the expected moment

E
∫ ∞
1

xk ESD(∆N,g,c)(dx),

and show that as N → ∞, the above quantity converges to a value 0 <

Mk <∞ for k even, and 0 otherwise.

(b) We then show concentration by proving (under the law P) that

Var

(∫ ∞
1

xk ESD(∆N,g,c)(dx)

)
→ 0 as N → ∞.

(c) Lastly, we show that the sequence {Mk}k≥1 uniquely determines a limiting
measure.
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Step 1. We begin by considering that k is even. By using the expansion for
(a+ b)k, it is easy to see that

E
∫ ∞
1

xk ESD(∆N,g,c)(dx) =
1

N
E
[
Tr
(
∆k

N,g,c

)]
=

1

N

∑
m1,...,mk,
n1,...,nk

E
[
Tr
(
Am1

N,g,mY
n1
N . . .Amk

N,g,mY
nk
N

)]
,

where AN,g,m and YN are as in Lemma 4.3.6, and {mi, ni}1≤i≤k are such that∑k
i=1mi + ni = k.

Let M(p) and N(p) be defined as

M(p) =

p∑
i=1

mi, N(p) =

p∑
i=1

ni

for any 1 ≤ p ≤ k. To expand the trace term, we sum over all i = (i1, . . . , iM(k)+N(k)+1) ∈
[N ]M(k)+N(k)+1, where [p] := {1, 2, . . . , p}, and we identify iM(k)+N(k)+1 ≡ i1.
Then, from Chatterjee and Hazra [2022, Eq. 5.2.2], we have

1

N
Tr
(
Am1

N,g,mY
n1
N . . .Amk

N,g,mY
nk
N

)
=

1

N

N∑
i1,...,iM(k)=1

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1

M(k)∏
j=1

√
rijij+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2 k∏

j=1

Z
nj

i1+M(j)
,

(4.14)

where also in (4.14) we identify iM(k)+1 ≡ i1. Taking expectation in (4.14), we
have that

E
[
tr
(
Am1

N,g,mY
n1
N . . .Amk

N,g,mY
nk
N

)]
=

1

N

∑
i1,...,iM(k)

E

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1


× E

M(k)∏
j=1

√
rijij+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2

E

 k∏
j=1

Z
nj

i1+M(j)

 .
(4.15)

It is well known that the expectation over a product of independent Gaussian
random variables is simplified using the Wick’s formula (see Lemma 4.6.7). In
particular, if one were to partition the tuple {1, . . . ,K} for some non-negative
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integer K, the contributing partitions are typically non-crossing pair partitions
(Nica and Speicher [2006]).

We now introduce some notation from Cipriani et al. [2025]. For any fixed
non-negative even integer K, let P2(K) and NC2(K) be the set of all pair
partitions and the set of all non-crossing pair partitions of [K], respectively.
Let γ = (1, . . . ,K) ∈ SK be the right-shift permutation (modulo K), and for
any π which is a pair-partition, we identify it as a permutation of [K], and read
γπ as a composition of permutations. Further, for any π ∈ P2(K), let Catπ
denote the set

Catπ := Catπ(K,N) = {i ∈ [N ]K : ir = iγπ(r) for all r ∈ [K]}.

Let C(K,N) = Catcπ, the complement of Catπ, wherein we have ir = iπ(r) for
any r. By Wick’s formula for the Gaussian terms {Gi,j}, since the the sum over
tuples i would be reduced to the sum over pair partitions π ∈ P2(K) and the
associated tuples i ∈ Catπ ∪ C(K,N), we can write∑

i∈[K]N

=
∑

π∈P2(K)

∑
i∈C(K,N)

+
∑

π∈NC2(K)

∑
i∈Catπ

+
∑

π∈P2(K)\NC2(K)

∑
i∈Catπ

. (4.16)

To analyse further, we use a key tool in the proof which is the following fact
(Cipriani et al. [2025, Claim 4.10]).
Fact 4.4.2.
Let K be an even non-negative integer. Then, we have the following to be true:

(a) For any π ∈ NC2(K), we have

lim
N→∞

1

Nc
K/2
N

∑
i∈Catπ

∏
(r,s)∈π

1

∥ir − ir+1∥α
= 1 .

(b) For any pair partition π, if i ∈ C(K,N), then,

lim
N→∞

1

Nc
K/2
N

∑
i∈C(K,N)

∏
(r,s)∈π

1

∥ir − ir+1∥α
= 0 .

(c) For a partition π ∈ P2(K) \NC2(K), we have

lim
N→∞

1

Nc
K/2
N

∑
i∈Catπ∪C(K,N)

∏
(r,s)∈π

1

∥ir − ir+1∥α
= 0 .

Let π̃ := γπ for any choice of π. From Chatterjee [2005, Eq. 5.2.5], we have
that

E(π̃) := E

 k∏
j=1

Z
nj

i1+M(j)

 =
∏
u∈π̃

E

 ∏
j∈[k]:

1+M(j)∈u

Z
nj

ℓu

 <∞, (4.17)
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where u is a block in π̃ and ℓu its representative element. Note that this does
not depend on the choice of i, and to obtain a non-zero contribution, we must
have that for all u ∈ π̃, ∑

j∈[k]:1+M(j)∈u

nj ≡ 0 (mod 2). (4.18)

Observe that E
[∏M(k)

j=1 Gij∧ij+1,ij∨ij+1

]
depends only on π̃ and not the choice

of i, and as a consequence, we can define

Φ(π̃) := E

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1

 <∞ . (4.19)

Next, note that the sum

1

cN

N∑
t=1

ri1+M(j)t = ON (1) (4.20)

by definition of cN (and the weights are uniformly bounded). Finally, if we look
at the terms

E


M(k)∏

j=1

rijij+1

cN

1/2
 , (4.21)

we can again bound the weights above by m. Recall that Wick’s formula on
the Gaussian terms imposes the restriction on choices of i. Using these facts, in
combination with (4.17), (4.19), and (4.20), we have that (4.15) gets bounded
by

(4.15) ≤ C

NcN

∑
π∈P2(M(k))

∑
i∈Catπ∪C(M(k),N)

Φ(π̃)E(π̃)
∏

(r,s)∈π

m2

∥ir − ir+1∥α
.

(4.22)

If we split (4.22) as (4.16), then using Fact 4.4.2, we see that in the cases when
π ∈ P2(M(k)) and i ∈ C(M(k), N), and when π ∈ P2(M(k)) \NC2(M(k)) for
all i, the contribution in the limit N → ∞ is 0.

We are now in the setting where we take π ∈ NC2(M(k)) and π̃ := γπ,
and i ∈ Catπ. First, note that π̃ is a partition of [M(k)]. We remark that if
M(k) ≡ 1 (mod 2) then NC2(M(k)) = ∅, and so, M(k) must be even.

Next, we focus on analysing the product
∏M(k)

j=1

√
rmijij+1

appearing in (4.15).
We wish to show that this depends only on π, and not on the choice of i. We

183



4. Scale-free percolation: The graph Laplacian

C
ha

pt
er

Fo
ur

follow the idea of Cipriani et al. [2025], wherein one constructs a graph associated
to a chosen partition π, and any tuple i ∈ Catπ is equivalent to a tuple ĩ with as
many distinct indices as the number of vertices in the constructed graph. First,
note that the coordinates are pairwise distinct (we take rii = 0 for all i). Next,
we construct a preliminary graph from the closed walk i1 → i2 → . . . iM(k) → i1.
Lastly, we collapse vertices and edges that are matched in Catπ, and we denote
the resulting graph as Gπ̃, since it does not depend on the choice of i but rather
the choice of π itself. The resulting graph Gπ̃ is the graph associated to the
partition π, and we refer the reader to Definition 4.6.8 for a formal description.
For clarity, consider the following example:

Let M(k) = 4, and let π = {{1, 2}, {3, 4}}. Then, π̃ = {{1, 3}, {2}, {4}}.
For any i ∈ Catπ, we see that i1 = i3, and i2, i4 are independent indices. Now,
Gπ̃ is a graph on 3 vertices, which are labelled as {{1, 3}}, {2} and {4}, and so
its corresponding tuple ĩ is exactly the same as i.

We then have, from Chatterjee and Hazra [2022, Eq. 5.2.12], that

M(k)∏
j=1

√
rmijij+1

=
∏
e∈Eπ̃

rte/2e , (4.23)

where Eπ̃ is the edge set of Gπ̃ and te is the number of times an edge e is
traversed in the closed walk on Gπ̃. Also observe

Φ(π̃) = E

 ∏
e∈Eπ̃

Gte
e

 .
Consequently, we must have that te to be even for all e, since the Gaussian terms
are independent and mean 0. We claim that te = 2 for all e ∈ Eπ̃. Indeed, if for
all e, te ≥ 2 with at least one e′ such that te′ > 2, then,

∑
e∈Eπ̃

te > 2|Eπ̃|. Since
Gπ̃ is connected, |Eπ̃| ≥ |Vπ̃| − 1 = M(k)/2, where Vπ̃ is the vertex set. Thus,∑

e∈Eπ̃
te > M(k). But,

∑
e te = M(k), gives a contradiction. We conclude

that te = 2 for all e ∈ Eπ̃.
A similar contradiction arises when we assume that there exists a self-loop in
Gπ̃. Thus Gπ̃ is a tree on M(k)

2 +1 vertices with each edge traversed twice in the
closed walk. As a consequence, every Gaussian term in Φ(π̃) appears exactly
twice, and so, Φ(π̃) = 1.

Let bs be the sth block of π̃ and let ℓs its representative element. Define

γs := # {1 ≤ j ≤ k : 1 +M(j) ∈ bs} ,

and
{s1, s2, . . . , sγs} = {1 ≤ j ≤ k : 1 +M(j) ∈ bs} .
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We then have

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2

=

M(k)
2

+1∏
s=1

(
1

cN

N∑
t=1

rℓst

)∑γs
j=1 nsj /2

. (4.24)

Note that
γs∑
j=1

nsj =
∑

j∈[k]:1+M(j)∈bs

nj .

Let us define ñs :=
∑γs

j=1 nsj/2. Then,

∑
s:bs∈π̃

ñs =
N(k)

2
. (4.25)

Using Chatterjee and Hazra [2022, Eq. 5.2.16], we obtain

1

Nc
M(k)

2
N

∑
i∈Catπ

M(k)∏
j=1

√
rijij+1

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2

=
1

Nc
M(k)+N(k)

2
N

∑
ℓ1 ̸=... ̸=ℓM(k)/2+1,

p(s,1),...,p(s,ñs):s∈
[
M(k)

2
+1

]
∏

(u,v)∈Eπ̃

rℓuℓv

M(k)
2

+1∏
s=1

ñs∏
t=1

rℓsp(s,t) , (4.26)

where for any two blocks bs1 and bs2 , {p(s1, 1), p(s1, 2), . . .} and {p(s2, 1), p(s2, 2), . . .}
are non-intersecting sets of indices {p1, p2, . . . , pñs1

} and {p′1, p′2, . . . , p′ñs2
}. Note

that for (u, v) ∈ Eπ̃, rℓuℓv = ruv as before, but we rewrite in terms of repres-
entative elements to indicate common factors with the terms rℓsp(s,t) . Taking
expectation in (4.26) gives us

E[(4.26)]

=
1

Nc
M(k)+N(k)

2
N

∑
ℓ1 ̸=... ̸=ℓM(k)

2 +1

E

 ∏
(u,v)∈Eπ̃

Wm
ℓu
Wm

ℓv

∥ℓu − ℓv∥α

×
∑

p(s,1),...,p(s,ñs):

s∈
[
M(k)

2
+1

]
M(k)

2
+1∏

s=1

ñs∏
t=1

Wm
ℓs
Wm

p(s,t)

∥ℓs − p(s,t)∥α

 . (4.27)
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The vertex set Vπ̃ of the graph Gπ̃ yields M(k)/2 + 1 distinct indices, due to
the tree structure. Using Fact 4.4.2, we see that the factor of∑

ℓ1,...,ℓM(k)
2 +1

∏
(u,v)∈Eπ̃

1

∥ℓu − ℓv∥α

is of the order of ON

(
c
M(k)

2
N

)
since the weights are uniformly bounded in the

range [1,m]. For the second summand in (4.27), the index ℓs already appears
in the graph Gπ̃, and for any s, we have ñs many distinct indices from the
sequence {ps,t}, and summing over all s yields N(k)/2 many distinct indices

due to (4.25). The second summation is therefore of the order of ON

(
c
N(k)

2
N

)
.

We claim that as N → ∞, (4.27) converges to the limit

E

 ∏
(u,v)∈Eπ̃

Wm
ℓuW

m
ℓv

M(k)
2

+1∏
s=1

ñs∏
t=1

Wm
ℓs Wp(s,t)

 .
First, note that the weights are bounded, and so, (4.27) is bounded above and
below. Next, we note that with the scaling of NcM(k)/2

N , we have

lim
N→∞

1

Nc
M(k)/2
N

∑
ℓ1 ̸=... ̸=ℓM(k)

2 +1

E

 ∏
(u,v)∈Eπ̃

Wm
ℓu
Wm

ℓv

∥ℓu − ℓv∥α

 = E

 ∏
(u,v)∈Eπ̃

Wm
ℓuW

m
ℓv

 ,
which is the moments of the adjacency matrix of the model as in Cipriani et al.
[2025]. Thus, combinatorially, the first summand in (4.27) corresponds with
the graph Gπ̃, as defined in Definition 4.5. Now, consider a modification of
the graph as follows: For each vertex s in Gπ̃, attach ñs many independent
leaves, and call the new graph G̃π̃. We refer to Chatterjee and Hazra [2022] for
a detailed description, and Figure 4.3 for a visual representation.

The second summand over the sequence {ps,t} for each s corresponds to
the added leaves, since the only common index with the original graph is the
index ℓs for each s. Keeping the index ℓs fixed (since it is summed out in the
first summand involving the indices ℓ1 ̸= . . . ̸= ℓM(k)

2
+1

) , we see that with the
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s1Gπ̃

(s1, 1)

(s1, 2)

(s1, 3)

s2

(s2, 1)(s2, 2)

(s2, 3) (s2, 4)

Figure 4.3: Modifying the graph Gπ̃ to construct G̃π̃. Here, we pick two vertices s1, s2 ∈
Vπ̃, with ñs1 = 3, ñs2 = 4.

scaling cN(k)/2
N we have

lim
N→∞

1

c
N(k)/2
N

E

 ∑
p(s,1),...,p(s,ñs )

M(k)
2

+1∏
s=1

ñs∏
t=1

Wm
ℓs
Wm

p(s,t)

∥ℓs − p(s,t)∥α

∣∣∣∣∣∣∣Wm
ℓs


= E


M(k)

2
+1∏

s=1

ñs∏
t=1

Wm
ℓs W

m
p(s,t)

∣∣∣∣∣∣∣Wm
ℓs

 .
Due to the compact support of the weights, it is now easy to conclude that

lim
N→∞

(4.27) = E

 ∏
(u,v)∈Eπ̃

Wm
ℓuW

m
ℓv

M(k)
2

+1∏
s=1

ñs∏
t=1

Wm
ℓs Wp(s,t)

 =: t(G̃π̃,W
m)

(4.28)

where Wm = (Wm
1 ,W

m
2 , . . .) and G̃π̃ is the modified graph as described above

and illustrated in Figure 4.3.
We can therefore conclude that for all even k,

lim
N→∞

1

N
E
[
tr(∆k

N,g,c)
]
=

∑
m1,...,mk,
n1,...,nk

∑
π∈NC2(M(k))

E(π̃)t(G̃π̃,W
m) . (4.29)

Now, consider the case when k is odd. Due to (4.18), we have that M(k)

must be odd. Thus, π cannot be a pair partition, and in particular, π ̸∈

187



4. Scale-free percolation: The graph Laplacian

C
ha

pt
er

Fo
ur

NC2(M(k)). Consider the term Φ(π̃) in (4.19), and notice that by Wick’s
formula, this term is identically 0 if M(k) is odd. Since the other expecta-
tions in (4.15) are of order ON (1), we conclude that the odd moments are 0 in
expectation.

Step 2. We now wish to show the concentration of the moments. Define

P (i)

:= E

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1

M(k)∏
j=1

√
rijij+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2 k∏

j=1

Z
nj

i1+M(j)

 ,
and

P (i, i′)

:= E

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1

M(k)∏
j=1

√
rijij+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2 k∏

j=1

Z
nj

i1+M(j)

×
M(k)∏
j=1

Gi′j∧i′j+1,i
′
j∨i′j+1

M(k)∏
j=1

√
ri′ji′j+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri′
1+M(j)

t

)nj
2 k∏

j=1

Z
nj

i′
1+M(j)

 .
Then,

Var

(∫
R
xk ESD(∆N,g,c)(dx)

)
=

1

N2

∑
m1,...,mk,
n1,...,nk

∑
i,i′:[M(k)]→[N ]

[
P (i, i′)− P (i)P (i′)

]
, (4.30)

and we would like to show (4.30) → 0. If i and i′ have no common indices, then
P (i, i′) = P (i)P (i′) by independence. If there is exactly one common index,
say i1 = i′1, then by independence of Gaussian terms, the factors E[Gi1,i2 ] and
E[Gi1,i′2

] would pull out, causing (4.30) to be identically 0. Thus, we have at
least one matching of the form (i1, i2) = (i′1, i

′
2).

Let us begin by taking k to be even. Consider exactly one matching, which
we take to be (i1, i2) = (i′1, i

′
2) without loss of generality. Let π, π′ be partitions

of {1, 2, . . . ,M(k)}, {1′, 2′, . . . ,M(k)′} respectively. Let
∑(1) denote the sum

over index sets i, i′ with exactly one matching. Then, we have by an extension
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of the previous argument

1

N2

∑(1)

i,i′:[M(k)]→[N ]

P (i, i′)

≤ 1

N2c
M(k)
N

∑
π,π′

Φ(π̃)E(π̃)Φ(π̃′)E(π̃′)
∑
i,i′

E

ri1i2 M(k)∏
j=2

√
rijij+1

M(k)∏
j=2

√
ri′ji′j+1

 .
(4.31)

Expanding the expression for rij and using the fact that Wm
i ≤ m gives us that

(4.31) is bounded above by

m2M(k)

N2c
M(k)
N

∑
π

Φ(π̃)E(π̃)Φ(π̃′)E(π̃′)
∑
i,i′

1

∥i1 − i2∥α

M(k)∏
j=1

1

∥ij − ij+1∥α/2
1

∥i′j − i′j+1∥α/2
.

(4.32)

We are now precisely in the setting of Cipriani et al. [2025], and in particular,
following the ideas from Cipriani et al. [2025, p24] and using Fact 4.4.2, we
obtain that the right-hand side of (4.32) is of order ON (c−1N ). For t matchings
in i, i′, the order is O(c−tN ), giving us that (4.26) is of order O(c−1N ) when k is
even.

The argument for the case where k is odd is similar. Since the optimal
order is achieved when we take i \ {i1, i2} ∈ Catπ and i′ \ {i′1, i′2} ∈ Catπ′ , with
π, π′ ∈ NC2(M(k)), one cannot construct these partitions with k being odd with
the restriction from (4.18) imposing that M(k) must be odd. Consequently, we
have convergence in P–probability of the moments of ESD(∆N,g,c). Thus, we
conclude that

lim
N→∞

tr(∆k
N,g,c) =Mk in P–probability ,

where

Mk =

{∑
M(k)

∑
π∈NC2(M(k)) t(G̃π̃,W

m)E(π̃) , k even,
0 , k odd ,

(4.33)

where M(k) is the multiset of all numbers (m1, . . . ,mk, n1, . . . , nk) that appear
in the expansion (a+ b)k for two non-commutative variables a and b.

Step 3. We are now left to show that these moments uniquely determine a
limiting measure. This follows from Chatterjee and Hazra [2022, Section 5.2.2],
but we show the bounds for the sake of completeness.
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First, from Chatterjee and Hazra [2022, Section 5.2.2], we have that E(π̃) ≤
2kk!. Next, observe from (4.28) that |t(G̃π̃,W

m)| ≤ (m2)
k
2 = m2, since Wi ≤ m

for all i and G̃π̃ is a graph on k
2 +1 vertices with k

2 edges. Lastly, |NC2(M(k)| ≤
|NC2(k)| = Ck, where Ck is the kth Catalan number, and moreover, |M(k)| ≤
2k. Combining these, we have

βk := |Mk| ≤ 2k.Ck.m
k.2kk! = (4m)kCkk! .

Using Sterling’s approximation, we have

1

k
β

1
k
k ≤ 4m

(k + 1)
1
k

.
4e−(1+

1
k )

π
1
k

,

where π here is now the usual constant, and subsequently, we have

lim sup
k→∞

1

2k
β

1
2k
2k <∞ . (4.34)

Equation (4.34) is a well-known criteria to show that the moments uniquely
determine the limiting measure (see Lin [2017, Theorem 1]). This completes
the argument.

§4.5 Identification of the limit

§4.5.1 Removing geometry
In Section 4.4, we show the existence of a unique limiting measure ντ such that

lim
N→∞

ESD(∆◦N ) = ντ in P–probability .

We have also shown that ντ is the limiting measure for the ESD of the Laplacian
matrix ∆̂N,g. In particular, through the proof of Proposition 4.4.1, we show
that the limit ντ,m is independent of the choice of α, and consequently, ντ is
α–independent. We then use the idea of substituting α = 0 from Cipriani et al.
[2025, Section 6] in the matrix ∆̂N,g, to obtain the Laplacian matrix ∆◦N,g,
which corresponds to the adjacency matrix A◦N,g with entries given by

A◦N,g(i, j) =


√

WiWj√
N

Gi∧j,i∨j , i ̸= j

0, i = j.

Then, limN→∞ ESD(∆◦N,g) = ντ in P–probability. Recall that for all 1 ≤ i ≤ N ,
Wm

i :=Wi1Wi≤m for any m ≥ 1. We can now apply Lemmas 4.3.5 and 4.3.6 to
contruct a matrix ∆◦N,g,c = A◦N,g,m + Y ◦N such that

lim sup
m→∞

lim
N→∞

P
(
dL(ESD(∆◦N,g),ESD(∆◦N,g,c)) > δ

)
= 0 ,
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where

A◦N,g,m(i, j) =


√

Wm
i Wm

j√
N

Gi∧j,i∨j , i ̸= j

0, i = j,

and Y ◦N is a diagonal matrix with entries

Y ◦N (i, i) = Zi

√∑
k ̸=iW

m
i W

m
k

N
.

By Proposition 4.4.1, we have that limN→∞ ESD(∆◦N,g,c) = ντ,m in P–probability.
Thus, we begin by identifying ντ,m. To that end, consider the matrix ∆̂◦N,g,c :=

AN,g,c + Ŷ ◦N , with AN,g,c as before, and Ŷ ◦N a diagonal matrix with entries

Ŷ ◦N (i, i) = Zi

√
Wm

1

√
E[Wm

1 ] .

We now have the following lemma.
Lemma 4.5.1.
Let ∆◦N,g,c and ∆̂◦N,g,c be as defined above. Then,

lim
N→∞

P
(
dL(ESD(∆◦N,g,c),ESD(∆̂◦N,g,c)) > δ

)
= 0 .

Proof. We apply Proposition 4.6.1 to obtain

E
[
dL(ESD(∆◦N,g,c),ESD(∆̂◦N,g,c))

3
]

≤ 1

N
E

N∑
i=1

(
Y ◦N (i, i)− Ŷ ◦N (i, i)

)2

≤ 1

N
E[Z2

1 ]E[Wm
1 ]

N∑
i=1

E



√∑

k ̸=iW
m
k

√
N

−
√
E[Wm

1 ]

2


≤ m

N

N∑
i=1

E

[∣∣∣∣∣
∑N

k=1W
m
k

N
−E[Wm

1 ]

∣∣∣∣∣
]
. (4.35)

We have that (Wm
i )i∈VN

is a bounded sequence of i.i.d. random variables, and
in particular have finite variance. By the strong law of large numbers, we have
that

lim
N→∞

∑N
k=1W

m
k

N
= E[Wm

1 ] P–almost surely .

However, by the boundedness of the weights, we have that N−1
∑N

i=1W
m
i

is uniformly bounded by m, which is integrable (with respect to E). By the
dominated convergence theorem, we have convergence in L1, and consequently,
(4.35) goes to 0 as N → ∞. We conclude with Markov’s inequality.
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We can now conclude that ντ,m is the limiting measure of the ESD of the
matrix ∆̂◦N,g,c.

§4.5.2 Identification of the truncated measure
We have that

lim
N→∞

ESD(∆̂◦N,g,c) = ντ,m in P–probability .

Notice that ∆̂◦N,g,c can be written as

∆̂◦N,g,c = A◦N,g,m + Ŷ ◦N

= W1/2
m

(
1√
N

G

)
W1/2

m +
√
E[Wm

1 ]W1/4
m ZW1/4

m ,

where Wm = Diag(Wm
1 , . . . ,W

m
N ), G is a standard Wigner matrix with i. i. d

N(0, 1) entries above the diagonal and 0 on the diagonal, and Z is a diagonal
matrix with i.i.d. N(0, 1) entries.

First, we need to show that

lim
N→∞

ESD

(
W1/2

m

(
1√
N

G

)
W1/2

m +
√

E[Wm
1 ]W1/4

m

(
1√
N

Z

)
W1/4

m

)
= L

(
T
1/2
Wm

TsT
1/2
Wm

+
√
E[Wm]T

1/4
Wm

TgT
1/4
Wm

)
weakly in probability .

This easily follows by retracing the arguments in the proof of [Chakrabarty
et al., 2021b, Theorem 1.3] and using the Lemma 4.6.6 presented in the ap-
pendix. This shows that

ντ,m = L
(
T
1/2
Wm

TsT
1/2
Wm

+
√

E[Wm]T
1/4
Wm

TgT
1/4
Wm

)
.

§4.5.3 Identification of the limiting measure
We now conclude with the proof of Theorem 4.2.5.

Proof of Theorem 4.2.5. Consider the measure µWm and µW which are laws of
Wm =W1W≤m and W respectively. Also consider µg and µs to be the laws of
the standard Gaussian and semicircle law, respectively. We have for all t ∈ R,

|FµWm (t)− FµW (t)| ≤ ε (4.36)

for m large enough. Hence from [Bercovici and Voiculescu, 1993, Theorem 3.9]
there exists aW ∗ probability space (A,φ) and self-adjoint operators TWm , TW , Tg
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and Ts affiliated to (A,φ) and projection p ∈ A such that pTWmp = pTW p and
φ(p) ≥ 1−ε. Also the spectral laws of TWm , TW , Tg and Ts are given respectively
by µWm , µW , µg and µs respectively.

We can consider the commutative subalgebra generated by {TWm , Tg}. Then
using [Bercovici and Voiculescu, 1993, Proposition 4.1], it is possible to generate
random variable from {TWm , Tg} that is free from Ts. Analogously, one can do
the same for {TW , Tg}.

Consider a self-adjoint polynomial Qm of {TWm , Tg, Ts} and let the law
of this polynomial be given by νm. Similarly, let Q be the same self-adjoint
polynomial of {TW , Tg, Ts} and ν be its law. Then using pTWmp = pTW p and
(4.36) and [Bercovici and Voiculescu, 1993, Corollary 4.5 and Theorem 3.9] we
have that d∞(νm, ν) ≤ ε for all m large enough. Here d∞ is the Kolmogorov
distance. Picking Q(x, y, z) = x1/2yx1/2 + cx1/4zx1/4 for some constant c =√
E[W ], completes the proof.

§4.6 Appendix

In this section we collect some technical lemmas that are used in the proofs of
our main results.

§4.6.1 Technical lemmas
For bounding the dL distance between the ESDs of two matrices, we will need
the following inequality, due to Hoffman and Wielandt (see Bai and Silverstein
[2010, Corollary A.41]).

Proposition 4.6.1 (Hoffman-Wielandt inequality).
Let A and B be two N ×N normal matrices and let ESD(A) and ESD(B) be
their ESDs, respectively. Then,

dL (ESD(A),ESD(B))3 ≤ 1

N
Tr [(A−B)(A−B)∗] . (4.37)

Here A∗ denotes the conjugate transpose of A. Moreover, if A and B are two
Hermitian matrices of size N ×N , then

N∑
i=1

(λi(A)− λi(B))2 ≤ Tr[(A−B)2]. (4.38)

The next two straightforward lemmas control the tail of the product of two
Pareto random variables and the expectation of a truncated Pareto.
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Lemma 4.6.2.
Let X and Y be two independent Pareto r.v.’s with parameters β1 and β2
respectively, with β1 ≤ β2. There exist constants c1 = c1(β1, β2) > 0 and
c2 = c2(β1) > 0 such that

P(XY > t) =

{
c1t
−β1 if β1 < β2

c2t
−β1 log t if β1 = β2.

Lemma 4.6.3.
Let X be a Pareto random variable with law P and parameter β > 1. For any
m > 0 it holds

E [X1X≥m] =
β

(β − 1)
m1−β.

We state one final auxiliary lemma related to the approximation of sums by
integrals.

Lemma 4.6.4.
Let β ∈ (0, 1]. Then there exists a constant c1 = c1(β) > 0 such that

1

N

∑
i ̸=j∈VN

1

∥i− j∥β
∼ c1max{N1−β, logN}. (4.39)

If instead β > 1, there exists a constant c2 > 0 such that

1

N

∑
i ̸=j∈VN

1

∥i− j∥β
∼ c2 .

We end this section by quoting, for the reader’s convenience, the following
lemma from Chakrabarty et al. [2016, Fact 4.3].

Lemma 4.6.5.
Let (Σ, d) be a complete metric space, and let (Ω,A, P ) be a probability space.
Suppose that

(
Xmn : (m,n) ∈ {1, 2, . . . ,∞}2\{∞,∞}

)
is a family of random

elements in Σ, that is, measurable maps from Ω to Σ, the latter being equipped
with the Borel σ-field induced by d. Assume that

(1) for all fixed 1 ≤ m <∞

lim
n→∞

d (Xmn, Xm∞) = 0 in P -probability.

(2) For all ε > 0,

lim
m→∞

lim sup
n→∞

P (d (Xmn, X∞n) > ε) = 0.
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Then, there exists a random element X∞∞ of Σ such that

lim
m→∞

d (Xm∞, X∞∞) = 0 in P -probability (4.40)

and
lim
n→∞

d (X∞n, X∞∞) = 0 in P -probability.

Furthermore, if Xm∞ is deterministic for all m, then so is X∞∞, and (4.40)
simplifies to

lim
m→∞

d (Xm∞, X∞∞) = 0. (4.41)

Lemma 4.6.6 (Fact A.4 Chakrabarty et al. [2021b]).
Suppose that WN is an N × N scaled standard Gaussian Wigner matrix, i.e.,
a symmetric matrix whose upper triangular entries are i.i.d. normal with mean
zero and variance 1/N . Let D1

N and D2
N be (possibly random) N×N symmetric

matrices such that there exists a deterministic C satisfying

sup
N≥1,i=1,2

∥∥Di
N

∥∥ ≤ C <∞

where ∥ · ∥ denotes the usual matrix norm (which is same as the largest
singular value for a symmetric matrix). Furthermore, assume that there is a
W ∗-probability space (A, φ) in which there are self-adjoint elements d1 and d2
such that, for any polynomial p in two variables, it

lim
N→∞

1

N
Tr
(
p
(
D1

N , D
2
N

))
= φ (p (d1, d2)) a.s.

Finally, suppose that
(
D1

N , D
2
N

)
is independent of WN . Then there exists

a self-adjoint element s in A (possibly after expansion) that has the standard
semicircle distribution and is freely independent of (d1, d2), and is such that

lim
N→∞

1

N
Tr
(
p
(
WN , D

1
N , D

2
N

))
= φ (p (s, d1, d2)) a.s.

for any polynomial p in three variables.

Lemma 4.6.7 (Wick’s formula).
Let (X1, X2, . . . , Xn) be a real Gaussian vector, then, and P2(k) the set of pair
partitions of [k]. Then, for any 1 ≤ k ≤ n,

E[Xi1 · · ·Xik ] =
∑

π∈P2(k)

∏
(r,s)∈π

E[XirXis ] . (4.42)

We borrow the following definition from Avena et al. [2023, Definition 2.3].
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Definition 4.6.8 (Graph associated to a partition).
For a fixed k ≥ 1, let γ denote the cyclic permutation (1, 2, . . . , k). For a
partition π, we define Gγπ = (Vγπ, Eγπ) as a rooted, labelled directed graph
associated with any partition π of [k], constructed as follows.

• Initially consider the vertex set Vγπ = [k] and perform a closed walk on
[k] as 1 → 2 → 3 → · · · → k → 1 and with each step of the walk, add an
edge.

• Evaluate γπ, which will be of the form γπ = {V1, V2, . . . , Vm} for some
m ≥ 1 where {Vi}1≤i≤m are disjoint blocks. Then, collapse vertices in
Vγπ to a single vertex if they belong to the same block in γπ, and collapse
the corresponding edges. Thus, Vγπ = {V1, . . . , Vm}.

• Finally root and label the graph as follows.

– Root: we always assume that the first element of the closed walk (in
this case ‘1’) is in V1, and we fix the block V1 as the root.

– Label: each vertex Vi gets labelled with the elements belonging to the
corresponding block in γπ.
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