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CHAPTER 3
Adjacency spectra of kernel-based

random graphs

This chapter is based on:
A. Cipriani, R.S. Hazra, N. Malhotra, M. Salvi. Spectrum of dense kernel-based
random graphs. [arxiv:2502:09415 ], 2025.

Abstract

Kernel-based random graphs (KBRGs) are a broad class of random graph mod-
els that account for inhomogeneity among vertices. We consider KBRGs on a
discrete d−dimensional torus VN of size Nd. Conditionally on an i.i.d. sequence
of Pareto weights (Wi)i∈VN

with tail exponent τ − 1 > 0, we connect any two
points i and j on the torus with probability

pij =
κσ(Wi,Wj)

∥i− j∥α
∧ 1

for some parameter α > 0 and κσ(u, v) = (u ∨ v)(u ∧ v)σ for some σ ∈ (0, τ −
1). We focus on the adjacency operator of this random graph and study its
empirical spectral distribution. For α < d and τ > 2, we show that a non-trivial
limiting distribution exists as N → ∞ and that the corresponding measure µσ,τ
is absolutely continuous with respect to the Lebesgue measure. µσ,τ is given by
an operator-valued semicircle law, whose Stieltjes transform is characterised by
a fixed point equation in an appropriate Banach space. We analyse the moments
of µσ,τ and prove that the second moment is finite even when the weights have
infinite variance. In the case σ = 1, corresponding to the so-called scale-free
percolation random graph, we can explicitly describe the limiting measure and
study its tail.

https://arxiv.org/pdf/2502.09415
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§3.1 Introduction

Kernel-based spatial random graphs encompass a wide variety of classical ran-
dom graph models where vertices are embedded in some metric space. In their
simplest form (see Jorritsma et al. [2023] for a more complete exposition) they
can be defined as follows. Let V be the vertex set of the graph and sample
a collection of weights (Wi)i∈V , which are independent and identically distrib-
uted (i.i.d.), serving as marks on the vertices. Conditionally on the weights, two
vertices i and j are connected by an undirected edge with probability

P (i↔ j |Wi,Wj) = κ(Wi,Wj)∥i− j∥−α ∧ 1 , (3.1)

where κ is a symmetric kernel, ∥i − j∥ denotes the distance between the two
vertices in the underlying metric space and α > 0 is a constant parameter.
Common choices for κ include:

κtriv(w, v) ≡ 1, κstrong(w, v) = w ∨ v,
κprod(w, v) = w v, κpa(w, v) = (w ∨ v)(w ∧ v)σpa .

In the above σpa = α(τ − 1)/d− 1, where τ − 1 is the exponent of the tail dis-
tribution of the weights, such that the kernel κpa mimics the form that appears
in preferential attachment models [Jorritsma et al., 2023], while the trivial ker-
nel κtriv corresponds to the classical long-range percolation model [Schulman,
1983, Newman and Schulman, 1986]. The kernel κprod yields a model which
is substantially equivalent to scale-free percolation, introduced in Deijfen et al.
[2013], which has connection probabilities of the form

1− exp
(
−WiWj∥i− j∥−α

)
.

Various percolation properties for kernel-based spatial random graphs are known
on Zd and beyond (Deprez et al. [2015], Hao and Heydenreich [2023], van der
Hofstad and Komjáthy [2017], Gracar et al. [2021], Jorritsma et al. [2024], see
also Deprez and Wüthrich [2019], Dalmau and Salvi [2021] for a version of the
same in the continuum) as well as the behaviour of interacting particle systems
on them [Berger, 2002, Heydenreich et al., 2017, Komjáthy and Lodewijks, 2020,
Cipriani and Salvi, 2024, Gracar and Grauer, 2024, Bansaye and Salvi, 2024,
Komjáthy et al., 2023]. In contrast, their spectral properties, to the best of the
authors’ knowledge, have received less attention.

As a branch of random matrix theory, the study of the spectrum of random
graphs has wide applications ranging from the study of random Schrödinger
operators [Carmona and Lacroix, 2012, Geisinger, 2015] and quantum chaos
in physics, to the analysis of community structures [Bordenave et al., 2015]
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and diffusion processes in network science, to the problems of spectral clus-
tering [Champion et al., 2020] and graph embeddings [Gallagher et al., 2024]
in data science. Many challenges remain unsolved in this area, even for the
simplest models. As a prominent example, for bond percolation on Z2 it is
known that the expected spectral measure has a continuous component if and
only if p > pc, but this result has not yet been established in higher dimen-
sions [Bordenave et al., 2017]. In this chapter, we begin the study of spectral
properties of spatial inhomogeneous random graphs, which in turn have been
proposed as models for several real-world networks (see e.g. Dalmau and Salvi
[2021]).

We will work with KBRGs in the typical setting where the weights (Wi)

have support in [1,∞) and the kernel κ is an increasing function of the weights.
Let us recall that in this case the vertices of KBRG random graphs on Zd have
almost surely infinite degree as soon as α < d. Thus, as it happens in many
percolation problems, the regime α > d would be the most appealing (and the
toughest to tackle). In the present work we will focus instead on the dense
case α < d. We consider the discrete torus with Nd vertices equipped with
the torus distance ∥ · ∥. The weights are sampled independently from a Pareto
distribution with parameter τ − 1 with τ > 2. Conditionally on the weights,
vertices i and j are connected independently from other pairs with probability
given by (3.1) with a kernel of the form κσ(w, v) := (w∨ v)(w∧ v)σ. It is worth
noting a difference between our connection probability and that studied recently
in Jorritsma et al. [2023], van der Hofstad et al. [2023], where the connection
probabilities are given by

P (i↔ j |Wi,Wj) =
(
κσ(Wi,Wj)∥i− j∥−d ∧ 1

)α
.

The two forms can be made equivalent through a simple modification of the
weights and an appropriate choice of α.

We call GN the random graph obtained with this procedure and study the
empirical spectral distribution of its adjacency matrix, appropriately scaled.
Note that when α = 0 we recover the (inhomogeneous) Erdős–Rényi random
graph (modulo a tweak inserting a suitable tuning parameter εN ) . In recent
years, there has been significant research on inhomogeneous Erdős–Rényi ran-
dom graphs, which can be equivalently modelled by Wigner matrices with a
variance profile. The limiting spectral distribution of the adjacency matrix of
such graphs has been studied in Chakrabarty et al. [2021b], Zhu [2020], Bose
et al. [2022], while local eigenvalue statistics have been analysed in Dumitriu
and Zhu [2019], Ajanki et al. [2019]. Zhu and Zhu [2024] studies the fluctu-
ations of the linear eigenvalue statistics for a wide range of such inhomogeneous
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graphs. Additionally, various properties of the largest eigenvalue have been in-
vestigated in Cheliotis and Louvaris [2024], Husson [2022], Chakrabarty et al.
[2022], Ducatez et al. [2024]. One of the most significant properties of the lim-
iting spectral measure for random graphs is its absolute continuity with respect
to the Lebesgue measure, which is closely tied to the concept of mean quantum
percolation [Bordenave et al., 2017, Anantharaman et al., 2021, Arras and Bor-
denave, 2023]. Quantum percolation investigates whether the limiting measure
has a non-trivial absolutely continuous spectrum. Recently, it was shown in
Arras and Bordenave [2023] that the adjacency operator of a supercritical Pois-
son Galton-Watson tree has a non-trivial absolutely continuous part when the
average degree is sufficiently large. Additionally, Bordenave et al. [2017] demon-
strated that supercritical bond percolation on Zd has a non-trivial absolutely
continuous part for d = 2. These results motivate similar questions for KBRGs.

Our contributions: Results and proofs
Here below we showcase our main results and the novelties of our proofs Recall
that we work in the regime α < d and τ > 2. We also restrict to values of σ in
(0, τ − 1).

(a) In Theorem 3.2.1 we show that, after scaling the adjacency matrix of GN by
c0N

(d−α)/2, the empirical spectral distribution converges weakly in prob-
ability to a deterministic measure µσ,τ . The classical approach to proving
the convergence of the empirical distribution is generally through either
the method of moments or the Stieltjes transform. However, the limiting
measure is expected to be heavy-tailed (see Figure 3.3) and so it is not de-
termined by its moments. As a consequence, we cannot directly apply the
method of moments. To overcome this issue, we pass through a truncation
argument where we impose a maximal value to the weights, reducing the
problem to well-behaved measures. To simplify the method of moments, we
further reduce the model by substituting the adjacency matrix of GN with
a Gaussian matrix whose entries are centred and have roughly the same
variance as before. This is made possible by a classical result of Chatterjee
[2005]. Once we have shifted our attention to this simpler Gaussianised
matrix with bounded weights, we can use the classical method of moments
using finding its moments is made possible by a combinatorial argument
on partitions and their graphical representation. Finally we remove the
truncation effect.

(b) In Theorem 3.2.2 we investigate the graph corresponding to κprod, that is,
when σ = 1. In this case we can explicitly identify µ1,τ as the free multiplic-
ative convolution of the semicircle law and the measure of the weight distri-
bution. In the σ = 1 case the moment expression derived in Theorem 3.2.1
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simplifies, so the challenge is to recover the limiting measure from those
moments. This is made possible thanks to the extension of the free mul-
tiplicative convolution to measures with unbounded support by Arizmendi
and Pérez-Abreu [2009]. Furthermore, we show that µ1,τ has power-law
tails with exponent 2(τ − 1). This is based on a Breiman-type argument
for free multiplicative convolutions [Kołodziejek and Szpojankowski, 2022].

(c) In Theorem 3.2.3 we explicitly derive the second moment of µσ,τ and prove
that it is finite and non-degenerate. The proof is based on the ideas
of Chakrabarty et al. [2016, Theorem 2.2]. This result is noteworthy be-
cause our weight distribution may exhibit infinite variance in the chosen
range of parameters. To show that the second moment is finite, we need to
establish the uniform integrability of a sequence of measures converging to
the limiting measure. This is achieved through an extension of Skorohod’s
representation theorem for measures that converge weakly in probability.

(d) In Theorem 3.2.4 we prove that µσ,τ is absolutely continuous. What makes
the result possible is that we are able to split the original matrix as a
free sum of a standard Wigner matrix and another Wigner matrix with a
carefully chosen variance profile (yielding, as a by-product, another char-
acterisation of the limit measure µσ,τ ). Once this is established, the result
is a consequence of Biane [1997].

(e) In Theorem 3.2.5 we provide an analytical description of µσ,τ when τ > 3

and σ < τ − 2. Removing the truncation in the method of moments proof
of Theorem 3.2.1 does not yield an explicit characterisation of the limiting
measure. On the other hand, certain moment recursions for the truncated
Gaussian matrix that appear in the proof can be used to derive properties
of µσ,τ through the Stieltjes transform. When the weights are bounded,
the limiting measure corresponds to the operator-valued semicircle law
(Speicher [2011]). Its transform can be expressed in terms of functions
solving an analytic recursive equation (see Avena et al. [2023], Zhu [2020]
for similar results in other random graph ensembles). In our case, when the
weights are heavy-tailed, this is no longer possible. We achieve instead the
convergence of the analytic recursive equation by constructing a suitable
Banach space and demonstrating that it forms a contractive mapping.

Outline of the article.
In Section 3.2 we will define the model and state precisely the main results. In
Section 3.3 we will give some auxiliary results which will be used to prove the
main theorems in the rest of the article. More precisely, in Section 3.4 we will
prove the existence of the limiting ESD, and in Section 3.5 we will give estimates
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on its tail behaviour. In Section 3.6 we will prove the non-degeneracy of the
limiting measure and in Section 3.7 we will show its absolute continuity. Finally,
Section 3.8 is devoted to describing the Stieltjes transform of the limiting ESD.

§3.2 Set-up and main results

§3.2.1 Random graph models
To introduce our models, we use a∧b to denote the minimum of two real numbers
a and b, and a ∨ b to denote their maximum.

(a) Vertex set: the vertex set is VN := {1, 2, . . . , N}d. The vertex set is
equipped with torus the distance ∥i− j∥, where

∥i− j∥ =
d∑

ℓ=1

|iℓ − jℓ| ∧ (N − |iℓ − jℓ|).

(b) Weights: the weights (Wi)i∈VN
are i.i.d. random variables sampled from a

Pareto distribution W (whose law we denote by P) with parameter τ − 1,
where τ > 1. That is,

P(W > t) = t−(τ−1)1{t≥1} + 1{t<1}. (3.2)

(c) Kernel: the kernel function κσ : [0,∞) × [0,∞) → [0,∞) determines how
the weights interact. In this article, we focus on kernel functions of the form

κσ(w, v) := (w ∨ v)(w ∧ v)σ, (3.3)

where σ ≥ 0.

(d) Long-range parameter: α > 0 tunes the influence of the distance between
vertices on their connection probability.

(e) Connectivity function: conditional on the weights, each pair of distinct
vertices i and j is connected independently with probability PW (i↔ j) given
by

PW (i↔ j) := P(i↔ j |Wi,Wj) =
κσ(Wi,Wj)

∥i− j∥α
∧ 1. (3.4)

We will be using the short-hand notation pij := P(i ↔ j | Wi,Wj) for con-
venience. Note that the graph does not have self-loops (see Remark 3.4.1).

The associated graph is connected, as nearest neighbours with respect to
the torus distance are always linked.
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§3.2.2 Spectrum of a random graph
Let us denote the random graph generated by our choice of edge probabilities
by GN . Let AGN

denote the adjacency matrix (operator) associated with this
random graph, defined as

AGN
(i, j) =

{
1 if i↔ j,

0 otherwise.

Since the graph is finite, the adjacency matrix is always self-adjoint and has
real eigenvalues. For α < d, the eigenvalues require a scaling, which turns out
to be independent of the kernel in our setup. Here we assume σ ∈ (0, τ −1) and
τ > 2, ensuring that the vertex weights (Wi)i∈VN

have finite mean. We define
the scaling factor as

cN =
1

Nd

∑
i ̸=j∈VN

1

∥i− j∥α
∼ c0N

d−α, (3.5)

where c0 is a constant depending on α and d, and for two functions f(·) and
g(·) we use f(t) ∼ g(t) to indicate that their quotient f(t)/g(t) tends to one as
t tends to infinity. The scaled adjacency matrix is then defined as

AN :=
AGN√
cN
. (3.6)

The empirical measure that assigns a mass of 1/Nd to each eigenvalue of
the Nd ×Nd random matrix AN is called the Empirical Spectral Distribution
(ESD) of AN , denoted as

ESD (AN ) :=
1

Nd

Nd∑
i=1

δλi
,

where λ1 ≤ λ2 ≤ . . . ≤ λNd are the eigenvalues of AN .

§3.2.3 Main results
We are now ready to state the main result of this article. Let µW denote the law
of W . Here onwards, let P = P⊗PW represent the joint law of the weights and
the edge variables. Note that P depends on N , but we omit this dependence
for simplicity. Let E,E, and EW denote the expectation with respect to P,P,
and PW respectively. Furthermore, if (µN )N≥0 is a sequence of probability
measures, we write limN→∞ µN = µ0 to denote that µ0 is the weak limit of the
measures µN . Since the empirical spectral distribution is a random probability
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measure, we require the notion of convergence in probability in the context of
weak convergence.

The Lévy-Prokhorov distance dL : P(R)2 → [0,+∞) between two probabil-
ity measures µ and ν on R is defined as

dL(µ, ν) := inf
{
ε > 0 | µ(A) ≤ ν (Aε)+ε and ν(A) ≤ µ (Aε)+ε ∀A ∈ B(R)

}
,

where B(R) denotes the Borel σ-algebra on R, and Aε is the ε-neighbourhood
of A. For a sequence of random probability measures (µN )N≥0, we say that

lim
N→∞

µN = µ0 in P-probability

if, for every ε > 0,
lim

N→∞
P(dL(µN , µ0) > ε) = 0.

The first result states the existence of the limiting spectral distribution of
the scaled adjacency matrix.

Theorem 3.2.1 (Limiting spectral distribution).
Consider the random graph GN on VN with connection probabilities given by
(3.4) with parameters τ > 2, 0 < α < d and σ ∈ (0, τ − 1). Let ESD(AN ) be
the empirical spectral distribution of AN defined in (3.6). Then there exists a
deterministic measure µσ,τ on R such that

lim
N→∞

ESD(AN ) = µσ,τ in P–probability .

The remaining results focus of the properties of the limiting measure. First
we note that when we set σ = 1 we can explicitly identify the limiting measure
in terms of free multiplicative convolution. We refer the reader to Anderson
et al. [2010, Section 5.2.3] for an exposition on free multiplicative and additive
convolutions.

For two probability measures µ and ν the free multiplicative convolution
µ ⊠ ν of the two measures is defined as the law of the product ab of free,
random, non-commutative operators a and b, with laws µ and ν respectively.
The free multiplicative convolution for two non-negatively supported measures
was introduced in Bercovici and Voiculescu [1993]. Note that the semicircle
law is not non-negatively supported and hence we use the extended definition
of Arizmendi and Pérez-Abreu [2009] for the multiplicative convolution.

Theorem 3.2.2 (Limiting ESD for σ = 1).
Consider the KBRG for σ = 1, while α, τ are as in the assumptions of The-
orem 3.2.1. The the limiting spectral distribution µ1,τ is given by

µ1,τ = µsc ⊠ µW ,
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where µsc is the semicircle law

µsc(dx) =
1

2π

√
4− x21|x|≤2 dx

and ⊠ is the free multiplicative convolution of the two measures. Moreover, the
limiting measure µ1,τ has a power-law tail, that is,

µ1,τ (x,∞) ∼ 1

2

(
m1(µW )

)τ−1
x−2(τ−1) as x→ ∞,

where m1(ν) denotes the first moment of the probability measure ν.

In the general case, it is hard to explicitly identify the limiting measure, so
we present some characterisations of it. Since we do not impose that τ > 3 and
consequently the weights can have infinite variance, it is not immediate if the
second moment of the limiting measure is non-degenerate and finite. We prove
this in the following result.
Theorem 3.2.3 (Non-degeneracy of the limiting measure).
Under the assumptions of Theorem 3.2.1, the second moment of the limiting
measure µσ,τ is given by∫

R
x2µσ,τ (dx) = (τ − 1)2

∫ ∞
1

∫ ∞
1

1

(x ∧ y)τ−σ(x ∨ y)τ−1
dx d y ∈ (0,∞).

Moreover, for p ∈ N and p < (τ − 1)/(σ ∨ 1), we have
∫
R |x|2p µσ,τ (d x) <∞.

We state the following result as an independent theorem as the absolute
continuity of the KBRG model deserves to be treated separately.
Theorem 3.2.4 (Absolute continuity).
Let τ > 2 and σ ∈ (0, τ − 1), then µσ,τ is symmetric and absolutely continuous
with respect to the Lebesgue measure on R.

We conclude the main results by providing an analytic description of the
limiting measure in terms of its Stieltjes transform when we slightly restrict our
parameters. Recall that, for z ∈ C+, where C+ denotes the upper half-plane of
the complex plane, the Stieltjes transform of a measure µ on R is given by

Sµ(z) =

∫
R

1

x− z
µ(dx) . (3.7)

Theorem 3.2.5 (Stieltjes transform).
Let 0 < α < d, τ > 3 and σ < τ − 2. Then there exists a unique analytic
function a∗ on C+ × [1,∞) such that

Sµσ,τ (z) =

∫ ∞
1

a∗(z, x)µW (dx),

where we recall that µW is the law of the random variable W .
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The function a∗ in the above theorem turns out to be a fixed point of a
contraction mapping on an appropriate Banach space. The equation above
shares similarities with the quadratic vector equations introduced and studied
in Ajanki et al. [2019], although in our setting the measures have unbounded
support. The properties and the proof of Theorem 3.2.5 are discussed in Section
3.8.

Remark 3.2.6 (Higher dimensions).
While we have presented our results for 0 < α < d, our proofs are worked out in
the d = 1 setup. This is in order to avoid notational complications that would
especially affect the clarity of Theorem 3.2.1. The limiting spectral distribution
and its properties remain unchanged for d > 1.

§3.2.4 Examples, simulations and discussion
Firstly, in Figure 3.1 we plot the eigenvalue distribution of the adjacency matrix
of two realisations of kernel-based graphs with different parameters, indicated at
the top of the image. Secondly, in Figure 3.2 we sample 10 realisations of scale-

Figure 3.1: Eigenvalue distribution a KBRG realisation.

free percolation adjacency matrices of size 4000×4000 with σ = 1 and plot their
eigenvalues (in green). We superpose on them the eigenvalues of the product
PNGNPN of a GUE matrix GN with a diagonal matrix PN with i.i.d. entries
distributed as

√
Pareto(τ) (in blue). Note that by Nica and Speicher [2006,

Remark 14.2], Chakrabarty et al. [2021a, Remark 4.3], the a.s. limiting ESD of
PNGNPN is µsc ⊠ µW . All matrices are centred and rescaled by the sample
second moment. Thirdly, to elucidate the tail behaviour of the limiting ESD
when σ = 1 (Theorem 3.2.2) we draw in Figure 3.3 the empirical survival
function of the eigenvalues of a matrix of size 7000× 7000 in x ≥ 1.5.
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Figure 3.2: KBRG eigenvalue distribution and PNGNPN distribution.

Finally, we provide in Figure 3.4 a simulation of the eigenvalues of the Gaus-
sian matrix ÃN,m,g (see (3.24)) when α = 0 and N = 6000. We compare this
picture with the right-hand side of Figure 3.1, which has a small α. We con-
jecture that the atom appearing in the latter is due to high connectivity of the
kernel-based realisation (if α = 0, for all i, j we have that pij is identically one
in (3.4)), whilst in the Gaussian setup this trivialization does not arise.

Figure 3.3: Negative of the log-empirical survival function and tails of Theorem 3.2.2
for x ≥ 1.5.

Remark 3.2.7 (Sparse case).
We expect the case α > d to be very different due to the sparse nature of the
graph. There has been a significant development in the area of spectral prop-
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erties of sparse random graphs using the techniques of local weak convergence
[Bordenave and Lelarge, 2010, Bordenave et al., 2017, 2011]. However, it is not
immediately clear whether these techniques can be employed in our framework
in order to determine the properties of the limiting measure: the underlying ran-
dom graph generated in our model will not be tree-like to begin with. We plan to
address this case in a future work.

§3.3 Notation and preliminary lemmas

In this section, we fix some notation and collect some technical lemmas that
will be used in the proofs of our main results.

§3.3.1 Notation
We will use the Landau notation oN , ON indicating in the subscript the vari-
able under which we take the asymptotic (typically this variable will grow
to infinity unless otherwise specified). Universal positive constants are de-
noted as c, c1, . . . , and their value may change with each occurrence. For
an N × N matrix A = (aij)

N
i, j=1 we use Tr(A) :=

∑N
i=1 aii for the trace

and tr(A) := N−1Tr(A) for the normalised trace. When n ∈ N we write
[n] := {1, 2, . . . , n}. We denote the cardinality of a set A as #A, and, with a
slight abuse of notation, #σ also denotes the number of cycles in a permutation
σ.
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§3.3.2 Technical lemmas
The following proposition, known as the Hoffman-Wielandt inequality, follows
from Bai and Silverstein [2010, Corollary A.41].

Proposition 3.3.1 (Hoffman-Wielandt inequality).
Let A and B be two N ×N normal matrices and let ESD(A) and ESD(B) be
their ESDs, respectively. Then,

dL (ESD(A),ESD(B))3 ≤ 1

N
Tr [(A−B)(A−B)∗] . (3.8)

Here A∗ denotes the conjugate transpose of A. Moreover, if A and B are two
Hermitian matrices of size N ×N , then

N∑
i=1

(λi(A)− λi(B))2 ≤ Tr[(A−B)2]. (3.9)

The next two straightforward lemmas control the tail of the product of two
Pareto random variables and the expectation of a truncated Pareto.
Lemma 3.3.2.
Let X and Y be two independent Pareto r.v.’s with parameters β1 and β2
respectively, with β1 ≤ β2. There exist constants c1 = c1(β1, β2) > 0 and
c2 = c2(β1) > 0 such that

P(XY > t) =

{
c1t
−β1 if β1 < β2

c2t
−β1 log t if β1 = β2.

Lemma 3.3.3.
Let X be a Pareto random variable with law P and parameter β > 1. For any
m > 0 it holds

E [X1X≥m] =
β

(β − 1)
m1−β.

We state one final auxiliary lemma related to the approximation of sums by
integrals.
Lemma 3.3.4.
Let β ∈ (0, 1]. Then there exists a constant c1 = c1(β) > 0 such that

1

N

∑
i ̸=j∈VN

1

∥i− j∥β
∼ c1max{N1−β, logN}. (3.10)

If instead β > 1, there exists a constant c2 > 0 such that

1

N

∑
i ̸=j∈VN

1

∥i− j∥β
∼ c2 .
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We end this section by quoting, for the reader’s convenience, the following
lemma from Chakrabarty et al. [2016, Fact 4.3].

Lemma 3.3.5.
Let (Σ, d) be a complete metric space, and let (Ω,A, P ) be a probability space.
Suppose that

(
Xmn : (m,n) ∈ {1, 2, . . . ,∞}2\{∞,∞}

)
is a family of random

elements in Σ, that is, measurable maps from Ω to Σ, the latter being equipped
with the Borel σ-field induced by d. Assume that

(1) for all fixed 1 ≤ m <∞

lim
n→∞

d (Xmn, Xm∞) = 0 in P -probability.

(2) For all ε > 0,

lim
m→∞

lim sup
n→∞

P (d (Xmn, X∞n) > ε) = 0.

Then, there exists a random element X∞∞ of Σ such that

lim
m→∞

d (Xm∞, X∞∞) = 0 in P -probability (3.11)

and
lim
n→∞

d (X∞n, X∞∞) = 0 in P -probability.

Furthermore, if Xm∞ is deterministic for all m, then so is X∞∞, and (3.11)
simplifies to

lim
m→∞

d (Xm∞, X∞∞) = 0. (3.12)

§3.4 Existence and Uniqueness

The proof of Theorem 3.2.1 is split into several parts and we will now briefly
sketch them.

(1) Truncation: The first part of the proof is a truncation argument on the
unbounded weights (Wi)i∈VN

. We construct a new sequence (Wm
i )i∈VN

that is obtained by truncating the original weights at a value m > 1. We
construct another scaled adjacency matrix AN,m, with entries AN,m(i, j)

distributed as Bernoulli random variables with parameter pmij given by
(3.4) with the weights substituted by the truncated ones. We then show
(see Lemma 3.4.2) that the empirical measure ESD(AN ) is well approxim-
ated by ESD(AN,m), that is, their Lévy distance vanishes in probability
in the limit m→ ∞.
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(2) Gaussianisation: In the second part, we aim to Gaussianise AN,m us-
ing the ideas of Chatterjee [2005]. We begin with the construction of a
centred matrix AN,m, that is obtained by subtracting out the expectation
from each entry of AN,m. We then Gaussianise AN,m, that is, we pass to
another matrix AN,g with each entry AN,g(i, j) being a normal random
variable with mean 0 and the same variance pmij (1 − pmij ) as the corres-
ponding entry of AN,m. Lastly, we tweak the variances of AN,g to obtain
a Gaussian random matrix ÃN,m,g with entries ÃN,m,g(i, j) having mean
0 and variance equal to rmij , the “unbounded version” of pmij (see (3.13)).
Thanks to (3.8), we can show (Lemma 3.4.3, Lemma 3.4.4 and Lemma
3.4.6) that in this whole process we did not lose too much: the Lévy
distance between the empirical measures ESD(AN,m) and ESD(ÃN,m,g)

is small in probability. We remark here that the order of the errors in
Lemmas 3.4.3 and 3.4.6 is N−α, and these steps fail for α = 0.

(3) Identification of the limit: We then proceed to analyse the limit of the
measure ESD(ÃN,m,g) as N goes to infinity. We use Wick’s formula to
compute its expected moments and use a concentration argument to show
the existence of a unique limiting measure

µσ,τ,m := lim
N→∞

ESD(ÃN,m,g)

using Proposition 3.4.9. We conclude the proof of Theorem 3.2.1 by letting
the truncation m go to infinity: using Lemma 3.3.5 we can show that there
is a unique limiting measure µσ,τ such that µσ,τ := limm→∞ µσ,τ,m. In the
case σ = 1 calculations become explicit.

Remark 3.4.1 (Self-loops).
We can use Proposition 3.3.1 to show that having self-loops in the model will not
affect the limiting spectral distribution. Let AN be the scaled adjacency matrix
of the model as defined in (3.6). Now, consider

DN = c
−1/2
N Diag(1, . . . , 1)

to be the N ×N diagonal matrix with all diagonal entries “1”, scaled by a factor
of

√
cN , and AN,SL = AN +DN . If we extend the definition of pij for the case

i = j as pii = 1, then AN,SL will be the scaled adjacency of the random graph
with self-loops. Using (3.8), we get

d3L(µAN
, µAN,SL

) ≤ 1

N
Tr[(AN −AN,SL)

2] =
1

N
Tr[D2

N ] =
N

NcN
= O(c−1N ).
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§3.4.1 Truncation
Now we show that for our analysis the weights can be truncated. More precisely,
let m > 1 be a truncation threshold and define Wm

i = Wi1Wi≤m for any i ∈
VN . For all N ∈ N, we define a new random graph with vertex set VN and
connection probability as follows: conditional on the weights (Wm

i )i∈VN
we

connect i, j ∈ VN with probability

pmij = rmij ∧ 1 with rmij =
(Wm

i ∨Wm
j )(Wm

i ∧Wm
j )σ

∥i− j∥α
i ̸= j ∈ VN .

(3.13)
Let AN,m be the corresponding adjacency matrix scaled by

√
cN and let its ESD

be denotes by ESD(AN,m).
It will be useful later to have the two following easy bounds (following from

Lemma 3.3.4):∑
i ̸=j∈VN

rmij ≤ m1+σNcN ,
∑

i ̸=j∈VN

(rmij )
t ≤ cm2+2σ max{N1−tα, logN} ,

(3.14)

for some constant c > 0 and t > 1 a real number. The second bound is not
optimal, since for some t > 1 such that tα > 1, the upper bound will just be
a constant depending on t and α. However, for our computations, this bound
suffices.
Lemma 3.4.2 (Truncation).
For every δ > 0 one has

lim sup
m→∞

lim
N→∞

P (dL(ESD(AN ),ESD(AN,m)) > δ) = 0 .

Proof. By (3.8) we have that

E
[
d3L (ESD(AN ), ESD(AN,m))

]
≤ 1

NcN
E
[
Tr
(
(AN −AN,m)2

)]
=

1

NcN

∑
i ̸=j∈VN

E
[
(AN (i, j)−AN,m(i, j))21AN (i,j)̸=AN,m(i,j)

]
≤ 1

NcN

∑
i ̸=j∈VN

P (AN (i, j) ̸= AN,m(i, j)) . (3.15)

For fixed i, j we will analyse P (AN (i, j) ̸= AN,m(i, j)) as follows. We notice
that AN (i, j) ̸= AN,m(i, j) can occur only if one between Wi and Wj exceeds
m. Calling

A = {Wi ≥ m > Wj} and B = {Wi ≥Wj ≥ m} (3.16)
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we have, by symmetry of Wi and Wj , that P (AN (i, j) ̸= AN,m(i, j)) equals

2P ({AN (i, j) ̸= AN,m(i, j)} ∩A) + 2P ({AN (i, j) ̸= AN,m(i, j)} ∩B) .

Notice that on the events A and B the variable AN,m(i, j) is always 0. So we
can bound

P ({AN (i, j) ̸= AN,m(i, j)} ∩A)
= P ({AN (i, j) = 1} ∩A)

≤ E
[κσ(Wi,Wj)

∥i− j∥α
1A

]
≤

E[Wi1Wi≥m]E[W σ
j ]

∥i− j∥α
≤ c

m2−τ

∥i− j∥α

for some constant c > 0, where we have used Lemma 3.3.3 and the fact that
E[W σ

j ] <∞. Analogously we can bound the second summand by

P ({AN (i, j) ̸= AN,m(i, j)} ∩B)

≤ E

[
WiW

σ
j

∥i− j∥α
1B

]
≤

E[Wi1Wi≥m]E[W σ
j ]

∥i− j∥α

≤ c
m2−τ

∥i− j∥α
.

Plugging these estimates back into (3.15) we obtain

E
[
d3L (ESD(AN ), ESD(AN,m))

]
≤ 4c

NcN

∑
i ̸=j∈VN

m2−τ

∥i− j∥α
= 4cm2−τ .

We can then conclude by applying Markov’s inequality:

lim sup
m→∞

lim
N→∞

P (dL (ESD(AN ), ESD(AN,m)) > δ)

≤ lim sup
m→∞

lim
N→∞

E
[
d3L (ESD(AN ), ESD(AN,m))

]
δ3

= 0

since τ > 2.

§3.4.2 Centring

Let 1 < m ≤ ∞ and AN,m be the centred and rescaled truncated adjacency
matrix, i.e. the matrix defined as

AN,m(i, j) = AN,m(i, j)− EW [AN,m(i, j)], i ̸= j ∈ VN . (3.17)

Note that here m = ∞ corresponds to the matrix with non-truncated weights.
The following lemma says that the centring does not affect the limiting spectral
distribution.
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Lemma 3.4.3 (Centring).
For any m ∈ (1,∞], under the conditions in Theorem 3.2.1, we have, for all
δ > 0,

lim
N→∞

P
(
dL
(
ESD(AN,m), ESD(AN,m)

)
> δ
)
= 0 ,

where ESD(AN,m) is the empirical spectral distribution of AN,m.

Proof. By (3.8) we have

E
[
d3L
(
ESD(AN,m), ESD(AN,m)

)]
≤ 1

N
E
[
Tr(EW [AN,m]2)

]
=

1

NcN

∑
i ̸=j∈VN

E[pmij ]
2

≤ 1

NcN

∑
i ̸=j∈VN

E [(Wi ∨Wj)(Wi ∧Wj)
σ]2

∥i− j∥2α

≤ c

NcN
max{N1−2α, logN}. (3.18)

Here c is some constant as for τ > 2 and σ < τ − 1 we have

E [(Wi ∨Wj)(Wi ∧Wj)
σ] = 2E

[
WiW

σ
j 1Wi>Wj

]
≤ 2E[Wi]E[W σ

j ] <∞.

In the last inequality we used Lemma 3.3.4. The result follows by applying
Markov’s inequality.

§3.4.3 Gaussianisation
Let {Gi,j , 1 ≤ i ≤ j} be a family of i.i.d. standard Gaussian random variables,
independent of the weights and the graph. Define a symmetric N ×N matrix
AN,m,g by

AN,m,g(i, j) =


√

pmij (1−pmij )√
cN

Gi∧j,i∨j for 1 ≤ i ̸= j ≤ N

0 for i = j.
(3.19)

Notice that the entries of AN,m,g have the same mean and variance of the cor-
responding entries of AN,m. Consider a three-times continuously differentiable
function h : R → R such that

max
0≤k≤3

sup
x∈R

∣∣∣h(k)(x)∣∣∣ <∞

where h(k) denotes the k-th derivative. For an N × N real symmetric matrix
MN define the resolvent of MN as

RMN
(z) = (MN − z IN )−1 , z ∈ C+,
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where IN is the N ×N identity matrix. In particular, if µ := µMN
is the ESD

of MN , the relation between the Stieltjes transform SMN
of µMN

and resolvent
can be expressed as

H(MN ) := SMN
(z) = tr(RMN

(z)), z ∈ C+ (3.20)

[Bai and Silverstein, 2010, Section 1.3.2]. The next result shows that the real
and imaginary parts of the Stieltjes transform of µAN,m

are close to those of
µAN,m,g

. Since one knows that the convergence of the ESD is equivalent to
showing the convergence of the corresponding Stieltjes transform, one can shift
the problem to the Gaussianised setup and work with the matrix AN,m,g.

Lemma 3.4.4 (Gaussianisation).
Consider the matrix AN,m defined in Subsection 3.4.1 and the matrix AN,m,g

defined in (3.19). For any three-times continuously differentiable function h :

R → R such that
max
0≤k≤3

sup
x∈R

∣∣∣h(k)(x)∣∣∣ <∞

we have

lim
N→∞

∣∣∣E [h (ℜH (AN,m,g))]− E
[
h
(
ℜH

(
AN,m

))] ∣∣∣ = 0,

lim
N→∞

∣∣∣E [h (ℑH (AN,m,g))]− E
[
h
(
ℑH

(
AN,m

))] ∣∣∣ = 0 ,

where ℜ and ℑ denote the real and imaginary parts respectively and h(k) denotes
the k-th derivative of h.

To prove the above lemma, we will need the following result from Chatterjee
[2005].

Theorem 3.4.5 (Chatterjee [2005, Theorem 1.1]).
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two vectors of independent ran-
dom variables with finite second moments, taking values in some open interval
I and satisfying, for each i,EXi = EYi and EX2

i = EY 2
i . Let f : In → R be

three-times differentiable in each argument. If we set U = f(X) and V = f(Y),
then for any thrice differentiable h : R → R and any K > 0,

|Eh(U)− Eh(V )| ≤ C1(h)λ2(f)

n∑
i=1

[
E
[
X2

i 1|Xi|>K

]
+ E

[
Y 2
i 1|Yi|>K

]]
+ C2(h)λ3(f)

n∑
i=1

[
E
[
|Xi|3 1|Xi|≤K

]
+ E

[
|Yi|3 1|Yi|≤K

]]
where C1(h) = ∥h′∥∞+ ∥h′′∥∞ , C2(h) =

1
6 ∥h

′∥∞+ 1
2 ∥h

′′∥∞+ 1
6 ∥h

′′′∥∞ and
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λs(f) := sup
{
|∂qi f(x)|

s
q : 1 ≤ i ≤ n, 1 ≤ q ≤ s, x ∈ In

}
,

where ∂qi denotes q-fold differentiation with respect to the i-th coordinate.

Proof of Lemma 3.4.4. We prove this for the real part of the Stieltjes transform.
The bounds for the imaginary part remain the same. We fix a complex number
z ∈ C+, given by z = ℜ(z) + ι̇η with η > 0.

Let n = N(N − 1)/2 and x = (xij)1≤i<j≤N ∈ Rn. Define R(x) to be the
matrix-valued differentiable function given by

R(x) := (MN (x)− z IN )−1,

where MN (·) is the matrix-valued differentiable function that maps a vector in
Rn to the space of N ×N Hermitian matrices, given by

MN (x)ij =


c
−1/2
N xij if i < j,

c
−1/2
N xji if i > j,

0 if i = j.

Since MN is symmetric, it has all real eigenvalues. The function H(MN (x))

admits partial derivatives of all orders. In particular, we denote for any u ∈
{(i, j)}1≤j<i≤n the partial derivative as ∂H/∂xu. For any u ∈ {(i, j)}1≤j<i≤n,
using the identity (MN (x)− z I)R(x) = IN we have

∂R(x)

∂xu
= −R(x)(∂uMN )R(x).

By iterative application of derivatives, three identities were derived in Chatterjee
[2005]:

∂H

∂xu
= − 1

N
Tr

(
∂MN (x)

∂xu
R(x)2

)
,

∂2H

∂x2u
=

2

N
Tr

(
∂MN (x)

∂xu
R(x)

∂MN (x)

∂xu
R(x)2

)
,

∂3H

∂x3u
= − 6

N
Tr

(
∂MN (x)

∂xu
R(x)

∂MN (x)

∂xu
R(x)

∂MN (x)

∂xu
R(x)2

)
.

Note that ∂ijMN (x) is a matrix with c−1/2N at the (i, j)th and (j, i)th entry,
and 0 everywhere else. Using the bounds on Hilbert-Schmidt norms and follow-
ing the exact argument regarding the bounds in equations (4), (5) and (6) in
Chatterjee [2005] we get that∥∥∥∥ ∂H∂xu

∥∥∥∥
∞

≤ 2

ηN
√
cN
,

∥∥∥∥∂2H∂x2u
∥∥∥∥
∞

≤ 4

η3NcN
,

∥∥∥∥∂3H∂x3u
∥∥∥∥
∞

≤ 12

η4Nc
3/2
N

.
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Hence
λ2(H) ≤ 4max

{
1

η4
,
1

η3

}
1

NcN

and
λ3(H) ≤ 12max

{
1

η6
,

1

η9/2
,
1

η4

}
1

Nc
3/2
N

.

Conditional on the weights (Wi)i≥1, consider the following sequence of in-
dependent random variables. Let Xb = (Xb

ij)1≤i<j≤N be a vector with Xb
ij ∼

Ber(pmij ) − pmij . Similarly, take another vector Xg = (Xg
ij)1≤i<j≤N with Xg

ij ∼
N
(
0, pmij (1− pmij )

)
. Then,

AN,m = MN (Xb) and AN,g = MN (Xg)

in law. We have that∣∣E [h (ℜHz (AN,m,g))− h
(
ℜHz

(
AN,m

))] ∣∣
=
∣∣E [EW

[
h (ℜHz (AN,m,g))− h

(
ℜHz

(
AN,m

))]] ∣∣ .
Conditionally on the weights, the sequences Xg and Xb form two vectors of
independent random variables, with EW [Xb

ij ] = EW [Xg
ij ] and EW [(Xb

ij)
2] =

EW [(Xg
ij)

2]. Then, using Theorem 3.4.5 on the conditional expectation

EW [h (ℜHz (AN,m,g))− h
(
ℜHz

(
AN,m

))
] ,

we have that∣∣E [EW [h (ℜHz (AN,m,g))− h
(
ℜHz

(
AN,m

))
]
] ∣∣

≤ C1(h)λ2(H)
∑

1≤i<j≤N
E[(Xb

ij)
21|Xb

ij |>KN
] + E[(Xg

ij)
21|Xg

ij |>KN
] (3.21)

+ C2(h)λ3(H)
∑

1≤i<j≤N
E[(Xb

ij)
31|Xb

ij |≤KN
] + E[(Xg

ij)
31|Xg

ij |≤KN
] , (3.22)

where KN is a (possibly) N−dependent truncation and where we have used
that |∂puℜH| = |ℜ∂ρuH| ≤ |∂puH|. Now using the fact that r/p > 0 we have
|∂puℜH|

r
p ≤ |∂puH|

r
p , and therefore

λr(ℜH) ≤ λr(H).

We begin by evaluating (3.21). To compute the Bernoulli term, notice that
Xb

ij are uniformly bounded by 1, so, for any KN > 1, we automatically have
that ∑

1≤i<j≤N
E[(Xb

ij)
21|Xb

ij |>KN
] = 0 .
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For the Gaussian term, we apply the Cauchy-Schwarz inequality (with respect
to E). Using also the trivial bound pmij ≤ rmij and Markov’s inequality, we obtain∑
1≤i<j≤N

E[(Xg
ij)

21|Xg
ij |>KN

] ≤
∑

1≤i<j≤N
E[(Xg

ij)
4]1/2P(|Xg

ij | > KN )1/2

≤ 3
∑

1≤i<j≤N
E[(rmij )

2]1/2
E[(Xg

ij)
2]1/2

KN
≤ 3

∑
1≤i<j≤N

E[(rmij )
2]1/2

E[rmij ]
1/2

KN

(3.14)
= ON (N ·K−1N max{N1−3α/2, logN}).

We thus conclude that (3.21) is of order

(3.21) = ON (c−1N K−1N max{N1−3α/2, logN}).

For (3.22), we use that for any random variable X we have the bound

E[|X|31|X|≤K ] ≤ KE[X2] .

Hence we can bound∑
1≤i<j≤N

E[(Xb
ij)

31|Xb
ij |≤KN

+ (Xg
ij)

31|Xg
ij |≤KN

]

≤ KN

∑
1≤i<j≤N

E[(Xb
ij)

2 + (Xg
ij)

2]

≤ 2KN

∑
1≤i<j≤N

E[rmij ]
(3.14)
= ON (KNNcN ) .

This yields that (3.22) is of order ON (KNc
−1/2
N ). Choosing KN = ON1 gives us

that ∣∣E [h (ℜH (AN,m,g))]− E
[
h
(
ℜH

(
AN,m

))]∣∣ = oN (1) . (3.23)

A similar argument holds for the imaginary part ℑ(H) and this completes the
proof.

Simplification of the variance structure

To conclude Gaussianisation, we would like to construct a final matrix ÃN,m,g

with a simpler variance structure than that of AN,m,g. We let its entries be

ÃN,m,g(i, j) =

√
rmij√
cN

Gi∧j,i∨j 1 ≤ i, j ≤ N (3.24)

where rmij is as in (3.13) and the {Gi,j : i ≥ j} are the i.i.d. collection of Gaussian
variables used in (3.19). We need to prove that the ESD of this matrix gives
asymptotically a good approximation of the ESD of AN,m,g.
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Lemma 3.4.6 (Simplification of variance).
For any δ > 0

lim
N→∞

P
(
dL(ESD(AN,m,g),ESD(ÃN,m,g)) > δ

)
= 0 .

Proof. Construct a matrix LN,g with entries

LN,g(i, j) =


√

pmij√
cN
Gi∧j,i∨j 1 ≤ i ̸= j ≤ N

0 1 ≤ i = j ≤ N

where pmij = rmij ∧ 1. By (3.8), we have that

E[d3L(ESD(AN,m,g),ESD(LN,g))] ≤
1

NcN

∑
i ̸=j∈VN

E
[
G2

i,jp
m
ij

(√
1− pmij − 1

)2]
≤ 1

NcN

∑
i ̸=j∈VN

E[pmij |(1− pmij )− 1|]

≤ 1

NcN

∑
i ̸=j∈VN

E[(rmij )
2]

(3.14)
= oN (1).

For i ̸= j ∈ VN define the events Aij = {rmij ≤ 1}. Construct yet another
matrix L̃N,g as

L̃N,g(i, j) = LN,g(i, j)1Aij +
Xij√
cN

1Ac
ij

where, conditional on the weights, Xij ∼ N
(
0, rmij

)
are mutually independent

and independent of the {Gi,j}i>j . It is easy to see that L̃N,g = ÃN,m,g in
distribution. So, comparing LN,g with L̃N,g, using (3.8) we get

E[d3L(ESD(L̃N,g),ESD(LN,g))] ≤
1

N

∑
i ̸=j∈VN

E[(LN,g(i, j)− L̃N,g(i, j))
2]

=
1

N

N∑
i ̸=j∈VN

E[(LN,g(i, j)− L̃N,g(i, j))
21Ac

ij
]

=
1

N

N∑
i ̸=j∈VN

E

(√pmij√
cN

Gi∧j,i∨j −
Xij√
cN

)2

1Ac
ij

 .
Using that the Gi, j are centred and independent of the weights, and the Cauchy-
Schwarz inequality, we can develop the square to obtain a further upper bound

123



3. Adjacency spectra of kernel-based random graphs

C
ha

pt
er

T
hr

ee

of the form

1

NcN

N∑
i ̸=j∈VN

E[G2
i∧j,i∨j1Ac

ij
] +E[X2

ij1Ac
ij
]

≤ 1

NcN

N∑
i ̸=j∈VN

P(Ac
ij) +E[X4

ij ]
1/2P(Ac

ij)
1/2

≤ 1

NcN

N∑
i ̸=j∈VN

P(Ac
ij) +

3E[(Wm
i ∨Wm

j )2(Wm
i ∧Wm

j )2σ]1/2

∥i− j∥α
P(Ac

ij)
1/2

= oN (1)

since
P(Ac

ij) ≤ P
(
WiW

σ
j ≥ ∥i− j∥α

)
≤ c

∥i− j∥α((τ−1)∧
τ−1
σ )

.

Using the triangle inequality, we get

E[d3L(ESD(AN,m,g),ESD(ÃN,m,g))] = oN (1) .

We conclude the proof using Markov’s inequality.

§3.4.4 Moment method

Preliminary results: combinatorial setup

We will recall here the combinatorics features of partitions we need in the
chapter, and refer the reader for a detailed exposition to Nica and Speicher
[2006, Chapter 9].

For k ≥ 1, denote by P(2k) the set of partitions of [2k], and by NC(2k) :=
NC([2k]) the set of non-crossing partitions of {1, 2, . . . , 2k}. When we write a
partition, we order its blocks in such a way that the first block always contains
1, and the (i+1)th block contains the smallest element not belonging to any of
the previous i blocks.

In what follows, we shall use Wick’s formula. Let (X1, . . . , Xn) be a real
Gaussian vector, then

E[Xi1 · · ·Xik ] =
∑

π∈P2(2k)

∏
(r,s)∈π

E[XirXis ], (3.25)

where P2(2k) denotes the pair partitions of [2k].
Any partition π ∈ P(k) can be realised as a permutation of [k], that is,

a bijective mapping [k] → [k]. Let Sk denote the set of permutations on k
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elements. Let γ = (1, 2, . . . , k) ∈ Sk be the shift by 1 modulo k. We will be
interested in the composition of two permutations γ and π, denoted by γπ,
which will be seen below as a partition.

As an example, consider π = {{1, 2}, {3, 4}} and γ = (1, 2, 3, 4). To compute
γπ, we read π as (1, 2)(3, 4), and compute γπ = (1, 3)(2)(4). We finally read γπ
as {{1, 3}, {2}, {4}}. We now define a graph associated to a partition, borrowing
the definition from Avena et al. [2023, Definition 2.3].
Definition 3.4.7 (Graph associated to a partition).
For a fixed k ≥ 1, let γ denote the cyclic permutation (1, 2, . . . , k). For a
partition π, we define Gγπ = (Vγπ, Eγπ) as a rooted, labelled directed graph
associated with any partition π of [k], constructed as follows.

• Initially consider the vertex set Vγπ = [k] and perform a closed walk on
[k] as 1 → 2 → 3 → · · · → k → 1 and with each step of the walk, add an
edge.

• Evaluate γπ, which will be of the form γπ = {V1, V2, . . . , Vm} for some
m ≥ 1 where {Vi}1≤i≤m are disjoint blocks. Then, collapse vertices in
Vγπ to a single vertex if they belong to the same block in γπ, and collapse
the corresponding edges. Thus, Vγπ = {V1, . . . , Vm}.

• Finally root and label the graph as follows.

– Root: we always assume that the first element of the closed walk (in
this case ‘1’) is in V1, and we fix the block V1 as the root.

– Label: each vertex Vi gets labelled with the elements belonging to the
corresponding block in γπ.

For the partitions π = {{1, 2}, {3, 4}}, γπ = {{1, 3}, {2}, {4}}, Figure 3.5
illustrates this procedure.

The following lemma is an exercise in Nica and Speicher [2006, Exercise
22.15] and explains also why non-crossing pair partitions will have the dominant
role in the computations that follow. We will denote as NC2(2k) the set of non-
crossing pair partitions of [2k]. For a partition π we let #π the number of its
blocks.
Lemma 3.4.8.
Given π ∈ P2(2k), one has #γπ ≤ k + 1 and the equality holds if and only
π ∈ NC2(2k). If π ∈ NC2(2k), the graph Gγπ is a rooted tree.

Finally, given π ∈ NC2(2k), we define the map T = Tπ : [2k] → [k +

1] as follows. By Lemma 3.4.8, we know that #γπ = k + 1 and let γπ =

{V1, V2, . . . , Vk+1}. Define

Tπ(i) = j if i ∈ Vj . (3.26)
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Figure 3.5: Left: closed walk on [4]. Right: graph associated to γπ = {{1, 3}, {2}, {4}}.
The root is in red.

Moment characterisation

We are now ready to give the proofs on Gaussianisation leading to the main
result of this subsection, the proof of Theorem 3.2.1.

Proposition 3.4.9.
Let ÃN,m,g be defined as in (3.24). Let ESD(ÃN,m,g) be its empirical spectral
distribution. Then, for k ∈ N, one has

lim
N→∞

E
[∫

R
x2k ESD(ÃN,m,g)(dx)

]
=M2k (3.27)

and odd moments are zero. Moreover,

lim
N→∞

Var

(∫
R
x2k ESD(ÃN,m,g)(dx)

)
= 0, (3.28)

where

M2k =
∑

π∈NC2(2k)

E

 ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

 <∞, (3.29)

where κσ is as in (3.3) and E(Gγπ) is the edge set of the tree Gγπ. Moreover,
there exists a unique compactly supported symmetric and deterministic measure
µσ,τ,m characterised by the moment sequence {M2k}k∈N such that

lim
N→∞

ESD(ÃN,m,g) = µσ,τ,m in P-probability. (3.30)
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Proof. Let {Gi,j : 1 ≤ i < j ≤ N} be a sequence of standard independent
centred Gaussian random variables as in (3.24) which is also independent of
(Wi)i∈[N ]. Let G be the matrix

G(i, j) =

{
∥i− j∥−α/2Gi∧j,i∨j i ̸= j

0 i = j
(3.31)

Observe that
ÃN,m,g

d
= Υσ,m ◦ G,

where Υσ,m is the matrix with elements

Υσ,m(i, j) =

√
κσ(Wm

i ,W
m
j )

cN

and ◦ denotes the Hadamard product. Using Wick’s formula (3.25) we have

E
[
tr
(
Ã2k

N,m,g

)]
=

1

NckN

∑′

1≤i1,...,i2k≤N
E

[
2k∏
ℓ=1

Υσ,m(iℓ, iℓ+1)

2k∏
ℓ=1

G(iℓ, iℓ+1)

]

=
1

NckN

∑′

1≤i1,...,i2k≤N
E

[
2k∏
ℓ=1

κ1/2σ (Wm
iℓ
,Wm

iℓ+1
)

]
×

∑
π∈P2(2k)

∏
(r,s)∈π

E [G(ir, ir+1)G(is, is+1)]

=
1

NckN

∑′

1≤i1,...,i2k≤N
E

[
2k∏
ℓ=1

κ1/2σ (Wm
iℓ
,Wm

iℓ+1
)

]

×
∑

π∈P2(2k)

∏
(r,s)∈π

1

∥ir − ir+1∥α
1{ir,ir+1}={is,is+1}, (3.32)

where we set i2k+1 = i1 to ease notation, and (r, s) ∈ π means π(r) = s and
π(s) = r. Here the

∑′ indicates the sum over all the indices (i1, . . . , i2k) such
that iℓ ̸= iℓ+1 for ℓ ∈ [2k]. The condition {ir, ir+1} = {is, is+1} is satisfied in
two cases:

C1) ir = is+1 and is = ir+1, that is, ir = iγπ(r) and is = iγπ(s), or

C2) ir = is and ir+1 = is+1, that is, ir = iπ(r) and ir+1 = iπ(r)+1.

As we are going to show, the limit of (3.32) will be supported on permutations
π ∈ NC2(2k) and such that Case 1) is true for all (r, s) ∈ π. To prove this, let
us define

Catπ,k = {i = (i1, . . . , i2k) ∈ [N ]2k : ir ̸= ir+1, ir = iγπ(r) ∀ r ∈ [2k]}.
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When the condition ir = iγπ(r) holds for all r, we see that i is constant on the
blocks of γπ. We construct a graph G(i) associated to i ∈ Catπ,k by performing
a closed walk i1 → i2 → . . . i2k → i1, and then collapsing elements ir, is into the
same vertex if r, s belong to the same block in γπ. We then collapse multiple
edges. After this, we see that G(i) = Gγπ. Thus, when we sum over i ∈ Catπ,k,
the count is over #γπ many indices.

We split the summation in (3.32) into two parts: a first sum over the non-
crossing pairings and i ∈ Catπ,k, and a second part with all the other terms,
that we call R1. Since we take i ∈ Catπ,k, i is constant on the blocks of γπ.
Using this property, we obtain

E
[
tr
(
Ã2k

N,m,g

)]
=

∑
π∈NC2(2k)

1

NckN

∑
i∈Catπ,k

E

 2k∏
j=1

κ1/2σ (Wm
ij ,W

m
ij+1

)

 ∏
(r,s)∈π

1

∥ir − ir+1∥α
+R1

=
∑

π∈NC2(2k)

1

NckN

∑
i∈Catπ,k

E

 ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

 ∏
(r,s)∈π

1

∥ir − ir+1∥α
+R1

where in the last line we have used that i is constant on the blocks of γπ. Since
the inner expectation no longer depends on i, we get that

E
[
tr
(
Ã2k

N,m,g

)]
=

∑
π∈NC2(2k)

E

 ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

 1

NckN

∑
i∈Catπ,k

∏
(r,s)∈π

1

∥ir − ir+1∥α

+R1.

Now we make the following two claims which will finish the proof.

Claim 3.4.10.
The following hold.

a) For any π ∈ NC2(2k),

lim
N→∞

1

NckN

∑
i∈Catπ,k

∏
(r,s)∈π

1

∥ir − ir+1∥α
= 1.

b) We have that limN→∞R1 = 0.
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With the above claim, whose proof is deferred to page 131, we have that
(3.27) holds. Moreover, the odd moments are identically 0, since there are no
non-crossing pair partitions for tuples of the form {1, 2, . . . , 2k + 1}, k ∈ N. We
now need to now show that (3.28) holds.

We introduce some new notation to prove (3.28). Let j = (j1, . . . , j2k). Let
P (i) denote the expectation

P (i)
(3.31)
:= E

[
2k∏
ℓ=1

κ1/2σ (Wm
iℓ
,Wm

iℓ+1
)G(iℓ, iℓ+1)

]
,

and P (i, j) be

P (i, j) := E

 2k∏
ℓ=1

κ1/2σ (Wm
iℓ
,Wm

iℓ+1
)G(iℓ, iℓ+1)

2k∏
p=1

κ1/2σ (Wm
ip ,W

m
ip+1

)G(ip, ip+1)


(with the usual cyclic convention that 2k + 1 equals 1 for subscripts of indices).
We can then see that

Var

(∫
R
x2k ESD(ÃN,m,g)(dx)

)
=

1

N2c2kN

∑
i,j:[2k]→[N ]

[P (i, j)− P (i)P (j)] .

(3.33)
Note that if the terms involving i and j are completely different, that is, if the
product of the terms G(i1, i2) · · · G(i2k, i1) is independent of G(j1, j2) · · · G(j2k, j1),
then P (i, j) = P (i)P (j), and (3.33) becomes identically 0. Hence, we have

Var

(∫
R
x2kµÃN,m,g

(dx)

)
=

1

N2c2kN

∑(≥1)

i,j:[2k]→[N ]

P (i, j), (3.34)

where
∑(≥1) is over i, j such that there is at least one matching of the form

ÃN,m,g(ir, ir+1) = ÃN,m,g(js, js+1) for some 1 ≤ r, s ≤ 2k − 1. If there is only
one entry of i, say i1, equal to only one entry of j, say j1, then we still have

EW

[
2k∏
ℓ=1

G(iℓ, iℓ+1)G(jℓ, jℓ+1)

]
= 0

since all entries G(iℓ, iℓ+1) are independent (even if i1 = j1) and centred. All the
more, P (i, j) = 0, so let us pass to having two equal indices, that is, a matching.

Let us consider the case when there is exactly one matching. Since both
indices in i and j can be reordered without affecting the variance,without loss of
generality we can assume that the matching is (i1, i2) = (j1, j2), and the rest of
the indices of i are different from the ones in j. One now has i′ = (i3, . . . , i2k)
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and j′ = (j3, . . . , j2k) with 2k−2 indices each, and so we can construct partitions
π, π′ for each of them independently.

For the ease of notation, let

ai,j := κ1/2σ (Wm
i , W

m
j )G(i, j)

and let
∑(1) be the sum over i, j such that there is exactly one matching between

i and j. Using Wick’s formula in the second equality, we have

1

N2c2kN

∑(1)

i,j:[2k]→[N ]

P (i, j)

=
1

N2c2kN

∑(1)

i,j:[2k]→[N ]

E

[
EW

[
2k∏
ℓ=1

aiℓ, iℓ+1
ajℓ, jℓ+1

]]

=
1

N2c2kN

∑
i,j:[2k]→[N ]

E

EW [a2i1,i2 ]
∑

π,π′∈P2({3, ..., 2k})

∏
(r,s)∈π

EW [air, ir+1ais, is+1 ]

×
∏

(r′,s′)∈π′

EW [ajr′ , jr′+1
ajs′ , js′+1

]

 . (3.35)

Following the idea of the proof for (3.27), we assume Claim 3.4.10 to be true to
obtain the optimal order. We will consider i′, j′ ∈ Catπ,k−1, and notice that

EW [a2ℓ,ℓ′ ] ≤
m1+σ

∥ℓ− ℓ′∥α
. (3.36)

Interchanging summands, we obtain

(3.35) =
1

N2c2kN
E

 ∑
π,π′∈P2({3, ..., 2k})

∑
i′,j′∈Catπ,k−1,

i1 ̸=i2∈[N ]

EW
[
a2i1,i2

] ∏
(r,s)∈π

EW
[
a2iriγπ(r)

]

×
∏

(r′,s′)∈π′

EW
[
a2jr′jγπ(r′)

]+R′1

(3.36)
≤ 1

N2c2kN

∑
π,π′∈P2({3, ..., 2k})

∑
i′,j′∈Catπ,k−1,

i1 ̸=i2∈[N ]

m1+σ

∥i1 − i2∥α
∏

(r,s)∈π

m1+σ

∥ir − iγπ(r)∥α

×
∏

(r′,s′)∈π′

m1+σ

∥jr′ − jγπ(r′)∥α
+R′1, (3.37)
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where R′1 is an error term such that limN→∞R′1 = 0, which follows from Claim
3.4.10. The contributing terms of the right-hand side of (3.37) can be upper-
bounded by

1

N2c2kN

∑
π,π′∈P2({3, ..., 2k})

∑
i:i′∈Catπ,k−1,

i1 ̸=i2

m1+σ

∥i1 − i2∥α
∏

(r,s)∈π

m1+σ

∥ir − iγπ(r)∥α

×
∑

j′∈Catπ′,k−1

∏
(r′,s′)∈π′

m1+σ

∥jr′ − jγπ(r′)∥α

=
1

N2c2kN

∑
π,π′∈P2({3, ..., 2k})

∑
i:i′∈Catπ,k−1,

i1 ̸=i2

m1+σ

∥i1 − i2∥α
∏

(r,s)∈π

m1+σ

∥ir − iγπ(r)∥α
ON (Nck−1k ).

Analogously, the sum over i conditioned on i′ ∈ Catπ,k−1 will be at most of
order NckN . Since the sum over partitions is finite and independent of N , we
obtain

1

N2c2kN

∑(1)

i,j:[2k]→[N ]

P (i, j) = ON (c−1N ).

More generally, if one has t pairings of the form (i1, i2) = (j1, j2), . . . , (it−1, it) =

(jt−1, jt), one can use the same argument and instead obtain a faster error of the
order of c−t+1

N , simply due to the set (jt+1, j2, . . . , j2k) now having only 2k − t

independent indices from i. Thus, we conclude

Var

(∫
R
x2kµÃN,m,g

(dx)

)
= ON (c−1N ). (3.38)

This proves (3.28).
To conclude, one can see that

M2k ≤ (m1+σ)kCk, (3.39)

where Ck is the kth Catalan number. Since
∑

k≥1C
−1/2k
k = ∞, so Carle-

man’s condition implies that {M2k}k≥1 uniquely determine the limiting meas-
ure. Therefore we can find C, R > 0 such that for all k ≥ 1 we have M2k ≤
CR2k. In turn, it is a straightforward exercise to show that this implies that
µτ, σ,m is compactly supported, and since it has odd moments equal to zero it is
symmetric. To conclude the proof of Proposition 3.4.9 we use for example Tao
[2012, pg. 134].

Proof of Claim 3.4.10. We first show a). Fix π ∈ NC2(2k). Recall that i ∈
Catπ,k is constant on the blocks of γπ. Therefore the number of free indices
over which we can construct i is #γπ = k + 1 (Lemma 3.4.8).

131



3. Adjacency spectra of kernel-based random graphs

C
ha

pt
er

T
hr

ee

For any π ∈ NC2(2k), there exists at least one block of the form (r, r+1) ∈ π,
where 1 ≤ r ≤ 2k, and 2k + 1 is identified with “1”. Then, {r + 1} ∈ γπ

is a singleton, and consequently, ir+1 is a free index under γπ, that is, under
the summation over indices i1, . . . , i2k, ir+1 runs from 1 to N independent of
other indices. Moreover, as i ∈ Catπ,k, we have ir = ir+2. If we remove the
block (r, r + 1) from π, we obtain π′ ∈ NC2(2k − 2) as a new partition on
{1, 2, . . . , r − 1, r + 2, . . . 2k}. Let i′ be the tuple (i1, i2, . . . , ir−1, ir+2, . . . , i2k).
We then have i′ ∈ Catπ′,k−1. So, we can write

1

NckN

∑
i∈Catπ,k

∏
(r,s)∈π

1

∥ir − is∥α

=
1

NckN

∑
i′∈Catπ′,k−1

 ∏
(r,s)∈π′

1

∥ir − is∥α

 N∑
ir+1=1

1

∥ir+1 − ir+2∥α

 . (3.40)

We now proceed inductively. For k = 1 the result is given by (3.5). Assume
now that we have shown, for some k − 1 ≥ 0 and any π′ ∈ NC2(2(k − 1)), that

lim
N→∞

1

Nck−1N

∑
i′∈Catπ′,k−1

∏
(r,s)∈π′

1

∥ir − is∥α
= 1. (3.41)

We need to show the same statement holds for k, which is precisely Claim
3.4.10a). Now, we have that

(3.40) =
1

Nck−1N

∑
i′∈Catπ′,k−1

 ∏
(r,s)∈π′

1

∥ir − is∥α

 1

cN

N∑
ir+1=1

1

∥ir+2 − ir+1∥α

 .

(3.42)

Taking the limit N → ∞, we have that the second factor in brackets above by
(3.5), and then the remaining expression equals 1 by the induction hypothesis
(3.41). This proves a).

To show b), we now analyse R1 explicitly. We have to deal with two cases:

b.1) π ∈ P2(2k) and i /∈ Catπ,k.

b.2) π ∈ P2(2k) \NC2(k) and i ∈ Catπ,k.

Note that for both cases the following factor involving the weights will not
play any role:

E

 2k∏
j=1

κ1/2σ (Wm
ij ,W

m
ij+1

)

 ≤ mk(1+σ).
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We first deal with Case b.2). From Lemma 3.4.8 we have #γπ ≤ k and
hence

∑
π∈P2(2k)\NC2(2k)

1

NckN

∑
i∈Catπ,k

E

 2k∏
j=1

κ1/2σ (Wm
ij ,W

m
ij+1

)

 ∏
(r,s)∈π

1

∥ir − ir+1∥α

≤ mk(1+σ)
∑

π∈P2(2k)\NC2(2k)

1

NckN

∑
i1∈[N ]

∑
i2,...,ik∈[N ]

1

∥i2∥α . . . ∥ik∥α
,

(3.43)

where (3.43) follows from i being constant on the cycles of γπ. Thus, we get
that the terms involved in Case b.2) give a contribution of the order

(3.43) ≤ cmk(1+σ)
∑

π∈P2(2k)\NC2(2k)

1

N1+k(1−α)N
1+(k−1)(1−α) = ON

1

N1−α = oN (1) .

(3.44)

We now show that the contribution from b.1) is also negligible. Begin by
fixing a partition π. For any tuple i, we construct a corresponding graph G(i)

(recall that when i ∈ Catπ,k we ended up with G(i) = Gγπ). For i ̸∈ Catπ,k,
G(i) is constructed by a closed walk i1 → i2 → . . . i2k → i1, thereby adding
the edges (ip, ip+1)

2k
p=1 with i2k+1 = i1. We then collapse indices ir, is into the

same vertex when {ir, ir+1} = {is, is+1}, which can be justified by (3.32). We
then proceed by collapsing the multiple edges and looking at the skeleton graph
G(i), with vertex set V (i). Hence, we see that

∑
π∈P2(2k)

1

NckN

∑′

i:[2k]→[N ]

E

 2k∏
j=1

κ1/2σ (Wm
ij ,W

m
ij+1

)

 ∏
(r,s)∈π

1

∥ir − ir+1∥α

≤ mk(1+σ)
∑

π∈P2(2k)

1

NckN
N1+(#V (i)−1)(1−α)

≤ ON (#V (i)−k−1)(1−α). (3.45)

since m > 1 is fixed and the sum over the set P2(2k) is finite. We see that the
only non-trivial contribution comes when #V (i) = k + 1, which signifies that
G(i) is a tree. Now we claim that for any π ∈ P2(2k) and i /∈ Catπ,k we have
#V (i) < k + 1.

When i /∈ Catπ,k, it implies that there exists at least one (r, s) ∈ π, such
that ir = is and ir+1 = is+1. Let us begin by assuming that there exists exactly
one such pair. Observe that due to the restrictions in

∑′, no pair-wise indices
are same, hence s can neither be r + 1, nor r − 1. Now consider the reduced
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partition π′ = π \ (r, s). Observe that π′ ∈ P2(2k)({1, . . . , r − 1, r + 1, . . . , s −
1, s + 1, . . . , 2k}). Note that now i′ ∈ Catπ′, k−1, so its contribution to (3.37)
is of the order of N1+(k−1)(1−α), which comes from the tree G(i′) on k vertices,
and where i′ are the (2k−2) indices which are obtained by removal of (ir, ir+1).
So, all we are left to show is that due to Case 2), ir and is will not give rise to
a new vertex in G(i).

Now, there exists an r < e < s− 1 such that (e, s− 1) ∈ π. Due to Case 2),
we have that ir = is contribute to the same vertex in G(i). Also ie = is and
ie+1 = is−1 due to Case 1). This implies that ir = is = ie, where ie is already
a contributing index in G(i′). This implies that G(i) is a tree on at most k
vertices, and hence #V (i) ≤ k. This shows that the contribution in (3.45) goes
to 0.

The case for which there is more than one pair breaking the constraint in
Catπ, k leads to an even smaller order. When none of the pairs satisfy the
constraint then ir = iπ(r) for all r and hence i is constant on the blocks of π.
So #V (i) ≤ k and again the contribution in (3.45) goes to 0, thus proving the
claim.

We wish to highlight that Proposition 3.4.9 is in fact more general, and works
beyond the kernels κσ defined in (3.3).

Remark 3.4.11.
The statement of Proposition 3.4.9 holds when we replace the entries of ÃN,m,g

in (3.24) by √
κ(Wi, Wj)

cN ∥i− j∥α
Gi∧j,i∨j 1 ≤ i, j ≤ N

for any function κ : [1, ∞)2 → [0,∞) which is symmetric and such that, for all
k ∈ N,

E

 2k∏
j=1

√
κ(Xj , Xj+1)

 <∞ (3.46)

where X1, . . . , X2k are i.i.d. random variables in [1,∞).

In our case the kernels κ(x, y) := κσ(x, y)1x,y≤m satisfy (3.46).

Proof of Theorem 3.2.1. To prove the final result, we shall use Lemma 3.3.5 with
the complete metric space Σ = P(R) and metric dL. Recall also the definition
of ÃN,m,g resp. AN,m of (3.24) resp. (3.17). In Proposition 3.4.9 we have shown
that there exists a (deterministic) measure µσ,τ,m such that, for every m > 0,

lim
N→∞

ESD(ÃN,m,g) = µσ,τ,m in P–probability.
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Hence for any h satisfying the assumptions of Lemma 3.4.4 and H as in (3.20)
it follows that

lim
N→∞

E
[
h
(
ℜH

(
ÃN,m,g

))]
= h

(
ℜ Sµσ,τ,m(z)

)
.

and thus, by means of Lemma 3.4.4 and Lemma 3.4.6,

lim
N→∞

E
[
h
(
ℜH

(
AN,m

))]
= h

(
ℜ Sµσ,τ,m(z)

)
.

Since the above holds true for any h satisfying the assumptions of Lemma 3.4.4
and µσ,τ,m is deterministic, it follows that

lim
N→∞

ℜH
(
AN,m

)
= ℜ Sµσ,τ,m(z) in P–probability.

A similar argument for the imaginary part shows that

lim
N→∞

ℑH
(
AN,m

)
= ℑ Sµσ,τ,m(z) in P–probability.

Combining the real and imaginary parts, we have, for any z ∈ C+,

lim
N→∞

SESD(AN,m)(z) = Sµσ,τ,m(z) in P–probability.

Since the convergence of the Stieltjes transform characterises weak convergence,
we have

lim
N→∞

ESD(AN,m) = µσ,τ,m in P–probability.

From Lemma 3.4.6 and Lemma 3.4.3, it also follows that, for every δ > 0 and
m > 0,

lim sup
N→∞

P(dL(µAN,m
, µσ,τ,m) > δ) = 0.

This shows condition (1) of Lemma 3.3.5. Condition (2) follows from Lemma
3.4.2 where we have proved that

lim sup
m→∞

lim
N→∞

P
(
dL(µAN,m

, µAN
) > δ

)
= 0.

Thus, it follows from Lemma 3.3.5 that there exists a deterministic measure
µσ,τ such that

lim
m→∞

dL(µσ,τ,m, µσ,τ ) = 0, (3.47)

and hence using the triangle inequality the result follows.
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§3.5 Scale-Free Percolation: A special case

Proof of Theorem 3.2.2. Step 1: identification. We are now dealing with the
special case of σ = 1. We go back to the moments of µσ,τ,m. Let γπ =

(V1, . . . , Vk+1) and let ℓi = #Vi (with a slight abuse of notation, we are viewing
here Vi as a set rather than a cycle). Since σ = 1, κσ(Wm

u ,W
m
v ) =Wm

u W
m
v . It

follows that

M2k =
∑

π∈NC2(2k)

E

 ∏
(u,v)∈E(Gγπ)

Wm
u W

m
v


=

∑
π∈NC2(2k)

k+1∏
i=1

E[(Wm
1 )ℓi ]

=

∫
R
x2kµsc ⊠ µW,m(dx).

The last equality follows from the combinatorial expression of the moments
of the free multiplicative convolution of the semicircle element with an element
whose law is given by µW,m (see Nica and Speicher [2006, Theorem 14.4]).
Consider the map x 7→ x2 from R → [0,∞) and let µ2 be the push-forward of
a probability measure µ under this mapping, so that µsc is pushed forward to
µ2sc. Then by Bercovici and Voiculescu [1993, Corollary 6.7] it follows that

lim
m→∞

µW,m ⊠ µ2sc ⊠ µW,m = µW ⊠ µ2sc ⊠ µW .

A consequence of Arizmendi and Pérez-Abreu [2009, Lemma 8] is that

µW,m ⊠ µ2sc ⊠ µW,m = (µsc ⊠ µW,m)2

and
µW ⊠ µ2sc ⊠ µW = (µsc ⊠ µW )2. (3.48)

Thus
lim

m→∞
(µsc ⊠ µW,m)2 = (µsc ⊠ µW )2.

Observe that µsc ⊠ µW,m and µsc ⊠ µW are symmetric around the origin [Ariz-
mendi and Pérez-Abreu, 2009, Theorem 7], hence we have that

lim
m→∞

dL(µsc ⊠ µW , µsc ⊠ µW,m) = lim
m→∞

dL(µsc ⊠ µW , µ1,τ,m, ) = 0.

Theorem 3.2.1 then implies that the ESD(AN ) converges to µsc ⊠ µW weakly
in probability.
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Step 2: tail asymptotics. In the following we use the recent results of
Kołodziejek and Szpojankowski [2022, Lemma 7.2] from which we also borrow
the notation. The free probability analogue of the classical Breiman’s lemma is
as follows: let µ, ν be probability measures and

µ(x,∞) ∼ x−βL(x) (3.49)

with L(·) a slowly varying function [Kołodziejek and Szpojankowski, 2022,
Definition 1.1]. Assume furthermore that the ⌊β + 1⌋-th moment of ν exists:

m⌊β+1⌋(ν) <∞.

Then
µ⊠ ν(x,∞) ∼ mβ

1 (ν)µ(x,∞)

with m1(ν) the first moment of ν.
Since µW ⊠ µsc is a symmetric measure we have, using Kołodziejek and

Szpojankowski [2022, equation (7.3)] and (3.48),

µW ⊠ µsc(x,∞) =
1

2
(µW ⊠ µsc)

2(x2,∞) =
1

2
µW ⊠ µ2sc ⊠ µW (x2,∞). (3.50)

By the commutativity and associativity of the free multiplicative convolution [Nica
and Speicher, 2006, Remark 14.2] we have µW ⊠ µ2sc ⊠ µW = µ2sc ⊠ µW ⊠ µW .
Let νW := µW ⊠ µW . Then a consequence of Kołodziejek and Szpojankowski
[2022, Theorem 1.3(iv)] is that

νW (x,∞) ∼ (m1(µW ))τ−1 µW (x,∞). (3.51)

Therefore νW satisfies (3.49) with β := τ −1, and clearly m⌊τ⌋(µ2sc) <∞. Thus,
applying Kołodziejek and Szpojankowski [2022, Lemma 7.2],

(µsc ⊠ νW ) (x,∞)
(3.50)
=

1

2
µW ⊠ µ2sc ⊠ µW (x2,∞)

∼ 1

2

(
m1(µ

2
sc)
)τ−1

νW (x2,∞)

(3.51)∼ 1

2

(
m1(µ

2
sc)
)τ−1

(m1(µW ))τ−1 µW (x2,∞)

∼ 1

2

(
m1(µ

2
sc)
)τ−1

(m1(µW ))τ−1 x−2(τ−1).

We can conclude noting that m1(µW ) is finite since τ > 2 and m1(µ
2
sc) =

m2(µsc) = 1 [Arizmendi and Pérez-Abreu, 2009, Proposition 5 a)].
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§3.6 Non-degeneracy of the limiting measure

The proof of Theorem 3.2.3 follows the arguments in Chakrabarty et al. [2016,
Theorem 2.2]. A key observation is that the limiting measure µσ,τ does not
depend on the parameter α. This will allow us to deal with an easier model,
formally corresponding to the case α = 0, that does not feel the influence of
the torus’ geometry. The lack of geometry also allows us to work on a unique
probability space. More precisely, let (Gi,j)i,j≥1 be an i.i.d. sequence of N (0, 1)

random variables, and let (Wi)i≥1 be an i.i.d. sequence of Pareto-distributed
random variables with parameter τ − 1. Assume they are defined on the same
probability space (Ω,F ,P). Define the N ×N matrix

BN,m = N−1/2
√
κσ(Wm

i ,W
m
j )Gi∧j,i∨j .

Let BN,∞ denote the matrix with non-truncated weights. The following result
can be proven exactly as in Proposition 3.4.9.

Proposition 3.6.1.
Let ESD(BN,m) be the empirical spectral distribution of BN,m. Then for all
m ≥ 1,

lim
N→∞

ESD(BN,m) = µσ,τ,m in P-probability.

Moreover,
lim

N→∞
ESD(BN,∞) = µσ,τ in P-probability.

We use this result to prove Theorem 3.2.3. Recall that, for a distribution
function F , the generalised inverse is given by

F←(y) := inf{x ∈ R : F (x) ≥ y}, 0 < y < 1.

Proof of Theorem 3.2.3. From Proposition 3.6.1, it follows that there exists a
subsequence (Nk)k≥1 such that µNk,m converges weakly almost surely to µσ,τ,m;
that is,

lim
k→∞

dL(ESD(BNk,m), µσ,τ,m) = 0 P-almost surely. (3.52)

For a n × n matrix A, let us denote by λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) its
eigenvalues. For fixed integers 1 ≤ k < ∞, 1 < m < ∞, define the following
random variables on the probability space (Ω×(0, 1),F⊗B(0, 1),P = P×Leb):

Zk,m(ω, x) = λ⌈Nkx⌉
(
BNk,m(ω)

)
, ω ∈ Ω, x ∈ (0, 1),
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and
Zk,∞(ω, x) := λ⌈Nkx⌉

(
BNk,∞(ω)

)
, ω ∈ Ω, x ∈ (0, 1).

Let Fm be the distribution function of µσ, τ,m (we suppress the dependence on
σ and τ in Fm for ease of notation), and define

Z∞,m(ω, x) := F←m (x), ω ∈ Ω, x ∈ (0, 1).

Now consider L2(Ω× (0, 1)) with the P measure. This is a complete metric
space, with d(X,Y ) = E[(X − Y )2]. Our aim is to use Lemma 3.3.5 applied
to the sequence of random variables Zk,m. We proceed therefore to check as-
sumptions (1) and (2) of the lemma. These will directly follow if we prove
that

lim
k→∞

E
[
(Zk,m − Z∞,m)2

]
= 0 (3.53)

and
lim

m→∞
lim
k→∞

E
[
(Zk,m − Zk,∞)2

]
= 0. (3.54)

We start by (3.53). First of all we show that

lim
k→∞

Zk,m = Z∞,m P-almost surely. (3.55)

Define

A := A′ × (0, 1)

:=

{
ω ∈ Ω : lim

k→∞
dL(ESD(BNk,m), µσ,τ,m) = 0, ∀m > 1

}
× (0, 1) .

Observe that P(A) = 1 due to (3.52) and Leb(0, 1) = 1. To prove (3.55), it
suffices to show that, for all ω ∈ A′,

lim
k→∞

Zk,m(ω, x) = Z∞,m(ω, x), x ∈ (0, 1). (3.56)

Let Fk,m(ω, ·) be the distribution function of ESD(BNk,m(ω)). On A, we
have Fk,m(ω, x) → Fm(x) for all x at which Fm is continuous. Note that

Zk,m(ω, x) = F←k,m(ω, x).

It then follows from Resnick [2008, Proposition 0.1] that for all x ∈ (0, 1)

lim
k→∞

F←k,m(x) = F←m (x).

Thus, we have proved (3.55).
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Next, we show that for all m ≥ 1,

{Z2
k,m : 1 ≤ k <∞} is uniformly integrable. (3.57)

It suffices to show that supk≥1 E[Z4
k,m] <∞. Since ⌈Nkx⌉ is constant on intervals

of length 1/Nk, it easily follows that

lim
k→∞

E[Z4
k,m] = lim

k→∞

1

Nk
E

[
Nk∑
i=1

λi(BNk,m)4

]

= lim
k→∞

1

Nk
ETr(B4

Nk,m
) =

∫
R
x4 µσ,τ,m(dx) <∞

using (3.27) and (3.29), hence (3.57) is proven. Using this and (3.55), we obtain
(3.53).

We move to (3.54). To prove this note that

E
[
(Zk,m − Zk,∞)2

]
=

1

Nk
E

 Nk∑
j=1

(
λj(BNk,m)− λj(BNk,∞)

)2
(3.9)
≤ 1

Nk
E
[
Tr
(
(BNk,m −BNk,∞)2

)]
=

1

Nk
E

 Nk∑
i,j=1

(
BNk,m(i, j)−BNk,∞(i, j)

)2 .
Reasoning as in the proof of Lemma 3.4.2, it follows that

1

Nk
E

 Nk∑
i,j=1

(BNk,m(i, j)−BNk,∞(i, j))2


=

1

N2
k

Nk∑
i,j=1

E

[(√
κσ(Wm

i ,W
m
j )−

√
κσ(Wi,Wj)

)2
]

≤ 2

N2
k

Nk∑
i,j=1

E
[
κσ(Wi,Wj)1Wj<m<Wi

]
+

2

N2
k

Nk∑
i,j=1

E
[
κσ(Wi,Wj)1Wi≥Wj>m

]
.

We can use similar bounds as for Lemma 3.4.2, which yield that both summands
have order at most m2−τ . Hence (3.54) follows, since τ > 2.
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Since we have now checked assumptions (1) and (2) of Lemma 3.3.5, it
follows that there exists Z∞ ∈ L2(Ω× (0, 1)) such that

lim
m→∞

E
[
(Z∞,m − Z∞)2

]
= 0.

Let U be a uniform random variable on (0, 1). Then F←m (U) has the same
distribution as µσ,τ,m. Since µσ,τ,m converges weakly to µσ,τ by (3.47), Z∞ has
law µσ,τ . Hence

lim
m→∞

E[Z2
∞,m] = lim

m→∞

∫
R
x2 µσ,τ,m(dx) =

∫
R
x2 µσ,τ (dx),

and

lim
m→∞

∫
R
x2 µσ,τ,m(dx) = (τ − 1)2

∫ ∞
1

∫ ∞
1

1

(x ∧ y)τ−σ(x ∨ y)τ−1
dx d y

which can be easily obtained from (3.29) with k = 1. This completes the proof
of the first part.

Since limm→∞ µσ,τ,m = µσ,τ weakly, we apply Fatou’s lemma to obtain∫
x2p µσ,τ (dx) ≤ lim inf

m→∞

∫
x2p µσ,τ,m(dx) = lim

m→∞
M2p,

where, recalling (3.29),

M2p =
∑

π∈NC2(2p)

E

 ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

 .
For σ > 0, we observe that (x ∧ y)σ(x ∨ y) ≤ (xy)σ∨1. Thus,

M2p ≤
∑

π∈NC2(2p)

p+1∏
i=1

E
[
(Wm

i )(σ∨1)#Vi

]
, (3.58)

where {V1, . . . , Vp+1} are the blocks of γπ. Due to Lemma 3.4.8, it follows that
max1≤i≤p+1#Vi ≤ p, typically achieved by partitions π such that

γπ = {(1, 3, . . . , 2p− 1), (2), (4), . . . , (2p)}.

This shows that the maximum moment bound required for the right-hand side
of (3.58) to remain finite is E[(Wi)

p(σ∨1)]. Since Wi has a tail index of τ − 1, if
p(σ∨1) < τ −1, then E[(Wi)

p(σ∨1)] <∞. Therefore, M2p is uniformly bounded
in m, completing the proof of the theorem.
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§3.7 Absolute continuity and symmetry

We begin by showing absolute continuity. We shall use the following fact from
Chakrabarty and Hazra [2016, Fact 2.1], which follows from Nica and Speicher
[2006, Proposition 22.32].

Lemma 3.7.1.
Assume that, for each N,AN is a N × N Gaussian Wigner matrix scaled by√
N , that is, (AN (i, j) : 1 ≤ i ≤ j ≤ N) are i.i.d. normal random variables with

mean zero and variance 1/N , and AN (j, i) = AN (i, j). Suppose that BN is a
N ×N random matrix, such that for all k ≥ 1

lim
N→∞

1

N
Tr
(
Bk

N

)
=

∫
R
xkµ(dx)

in probability, for some compactly supported (deterministic) probability measure
µ. Furthermore, let the families (AN : N ≥ 1) and (BN : N ≥ 1) be independ-
ent. Then for all k ≥ 1

lim
N→∞

1

N
EF Tr

[
(AN +BN )k

]
=

∫
R
xkµ⊞ µsc(dx)

in probability, where F := σ (BN : N ≥ 1) and EF denotes the conditional ex-
pectation with respect to F .

Proof of Theorem 3.2.4. We consider the truncated weights (Wm
i )i≥1. Let Γm

be an N ×N matrix with entries given by

Γm(i, j) =
√
κσ(Wm

i ,W
m
j ).

Given δ ∈ (0, 1), define the function gδ,m such that

gδ,m(Wm
i ,W

m
j )2 =

(√
κσ(Wm

i ,W
m
j )− δ

)2
+ 2δ

(√
κσ(Wm

i ,W
m
j )− δ

)
.

As a consequence

gδ,m(Wm
i ,W

m
j )2 + δ2 = κσ(W

m
i ,W

m
j ) . (3.59)

Define the matrix Γgδ,m(i, j) = gδ,m(Wm
i ,W

m
j ). Let {Gi,j}1≤i,j≤N be i.i.d. stand-

ard Gaussian random variables, independent of the sequence (Wi)i≥1. Denote
by GN the matrix with entries

GN (i, j) =
1√
N
Gi∧j,i∨j .
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Define
B

(1)
N,m = Γm ◦GN .

Similarly, define
B

(2)
N,m = Γgδ,m ◦GN .

Lastly, consider a sequence of i.i.d. standard Gaussian random variables (G′i,j)1≤i,j≤N ,
independent of the sigma field F generated by (Wi)i≥1, (Gi,j)i,j≥1. Define a
matrix B

(3)
N,m with entries

B
(3)
N,m(i, j) =

1√
N
G′i∧j,i∨j .

We claim that, conditionally on (Wi)i∈[N ],

B
(1)
N,m

d
= B

(2)
N,m + δB

(3)
N,m. (3.60)

Indeed, conditionally on (Wi)i∈[N ], the entries of B(1)
N,m, B(2)

N,m, and B
(3)
N,m are

normally distributed. Thus, it is sufficient to compare the mean and variance
of the entries. All the variables in question have mean zero and the variances
match, too, due to (3.59). Following Proposition 3.6.1, there exists a measure
µgδ,m such that

lim
N→∞

1

N
Tr
(
(B

(2)
N,m)k

)
=

∫
R
xk µgδ,m(dx)

in probability. In particular, we recall the expression for the even moments of
µgδ,m given in (3.29):

M2k =
∑

π∈NC2(2k)

E

 ∏
(u,v)∈E(Gγπ)

g2δ,m(Wm
u ,W

m
v )

 .
Since g2δ,m(Wm

u ,W
m
v ) ≤ κσ(W

m
u ,W

m
v ), it follows that µgδ,m is uniquely determ-

ined by its moments, and is also compactly supported (Corollary 3.4.11). This
verifies the first condition of Lemma 3.7.1. Since B

(3)
N,m is a standard Wigner

matrix, it follows from Lemma 3.7.1 that

lim
N→∞

1

N
EF
[
Tr
(
(B

(2)
N,m + δB

(3)
N,m)k

)]
=

∫
R
xk (µgδ,m ⊞ µsc,δ)(dx),

where µsc,δ is the semicircular law with variance δ2 and density

µsc,δ(dx) =
1

2πδ

√
4−

(x
δ

)2
1|x|≤2δ dx, x ∈ R.
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Since both µgδ,m and µsc,δ are compactly supported, so is µgδ,m ⊞µsc,δ, and thus
the measure is completely determined by its moments.

From Proposition 3.4.9 we have

lim
N→∞

E
[
1

N
EF [Tr(B

(1)
N,m)k]

]
=

∫
R
xk µσ,τ,m(dx)

and

lim
N→∞

Var

(
1

N
EF [Tr((B

(1)
N,m)k)]

)
≤ lim

N→∞
Var

(
1

N
Tr((B

(1)
N,m)k)

)
= 0.

Thus,

lim
N→∞

1

N
EF
[
Tr(B

(1)
N,m)k

]
=

∫
R
xk µσ,τ,m(dx)

in probability. Since the measures are uniquely determined by their moments,
this shows that

µσ,τ,m = µgδ,m ⊞ µsc,δ. (3.61)

We show that there exists µgδ such that

lim
m→∞

dL(µgδ,m , µgδ) = 0. (3.62)

If we can prove this, using Bercovici and Voiculescu [1993, Proposition 4.13] it
will follow that

lim
m→∞

dL(µgδ,m ⊞ µsc,δ, µgδ ⊞ µsc,δ) ≤ lim
m→∞

dL(µgδ,m , µgδ) = 0. (3.63)

To show (3.62), we employ Lemma 3.3.5. Note that, from Remark 3.4.11, we
get that for any fixed m ≥ 1 one has

lim
N→∞

dL
(
µ
B

(2)
N,m

, µgδ,m
)
= 0 in P-probability

where µ
B

(2)
N,m

is the empirical spectral distribution of B(2)
N,m.

This establishes condition (1) of Lemma 3.3.5. To complete the proof, we
need to verify condition (2), namely,

lim
m→∞

lim sup
N→∞

P
(
dL(ESD(B

(2)
N,m),ESD(B

(2)
N )) > ε

)
= 0. (3.64)

Here B
(2)
N is defined as B

(2)
N,∞ with m = ∞. From Proposition 3.3.1 we see that

dL

(
ESD(B

(2)
N,m),ESD(B

(2)
N )
)3

≤ 1

N
Tr
((

B
(2)
N,m −BN

)2)
=

1

N2

N∑
i,j=1

(
Γgδ,m(i, j)− Γgδ,∞(i, j)

)2
G2

i∧j,i∨j .
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Hence we have

E
[
dL
(
ESD(B

(2)
N,m),ESD(B

(2)
N )
)3] ≤ 1

N2

N∑
i ̸=j=1

E[
(
Γgδ,m(i, j)− Γgδ,∞(i, j)

)2
]

≤ 2

N2

N∑
i ̸=j=1

E
[
gδ,∞(Wi, Wj)

2
(
1Wj<m<Wi + 1Wi>Wj>m

)]
≤ 2

N2

N∑
i ̸=j=1

E
[
κσ(Wi,Wj)

(
1Wj<m<Wi + 1Wi>Wj>m

)]
.

Just as in the proof of (3.54), it follows that the last term is bounded by Cm2−τ .
Thus, using Markov’s inequality, condition (2) of Lemma 3.3.5 holds, too. In
conclusion, we can show that there exists µgδ such that

lim
m→∞

dL(µgδ,m ⊞ µsc,δ, µσ,τ )
(3.61)
= lim

m→∞
dL(µσ,τ,m, µσ,τ )

(3.47)
= 0

(3.63)
= lim

m→∞
dL(µgδ,m ⊞ µsc,δ, µgδ ⊞ µsc,δ).

Therefore it must be that µσ,τ = µgδ ⊞ µsc,δ. The right-hand side is absolutely
continuous, as shown by Biane [1997, Corollary 2].

Finally, to show symmetry, we see that µσ,τ does not give weight to singletons
by absolute continuity. Therefore, in light of the weak convergence stated
in (3.47),

µσ, τ (−∞, −x) = lim
m→∞

µσ, τ,m(−∞, −x)

= lim
m→∞

µσ, τ,m(x, +∞) = µσ, τ (x, +∞)

for all x ≥ 0. This completes the proof.

§3.8 Stieltjes transform of the limiting measure

To prove Theorem 3.2.5, we first identify the Stieltjes transform for the measure
µσ,τ,m. We then proceed to take the limit m → ∞, which requires a functional
analytic approach. Throughout this section, we fix z ∈ C+, given as z = ξ + ι̇η

with η > 0. If µ is a probability measure having all its moments {mk}k≥1, it
follows from the definition of Stieltjes transform (3.7) that, for any z ∈ C+,

Sµ(z) = −
∑
k≥0

mk

zk+1
, (3.65)

where the Laurent series on the right-hand side of (3.65) converges for |z| >
R > 0, with supp(µ) = [−R,R].
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§3.8.1 Stieltjes transform for truncated weights
To derive a characterisation of the limiting measure µσ,τ , we need to first study
the truncated version µσ,τ,m. We borrow ideas from the proof of Chakrabarty
et al. [2015, Theorem 4.1]. The main result of this subsection will be Proposi-
tion 3.8.1, which requires a few technical lemmas to prove. The results in this
subsection hold for the regime τ > 2 and σ < τ − 1, as before.

We have that the (even) moments for the measure µσ,τ,m are given by (3.29).
Using these, we derive a representation of Sµσ,τ,m(z).

Proposition 3.8.1.
For τ > 2 and σ ∈ (0, τ − 1) there exists a function a(z, x) = am(z, x) defined
on C+ × [1,∞) such that

Sµσ,τ,m(z) =

∫ ∞
1

a(z, x)µW,m(dx) ,

where µW,m is the law of the truncated weights (Wm
i ). Moreover, a(z, x) satisfies

the following recursive equation:

a(z, x)

(
z +

∫ ∞
1

a(z, y)κσ(x, y)µW,m(d y)

)
= −1 . (3.66)

Before tackling the proof of the proposition, we lay the ground with two
auxiliary results. For any k ≥ 1 and π ∈ NC2(2k), recall the map Tπ of (3.26),
where γπ = {V1, . . . , Vk+1}. Consider the mapping Lπ : [1,∞)k+1 → R defined
as

Lπ(x) = κ1/2σ (xTπ(1), xTπ(2))κ
1/2
σ (xTπ(2), xTπ(3)) . . . κ

1/2
σ (xTπ(2k), xTπ(1)) (3.67)

and the function Hπ : R → R+ given as

Hπ(y) =

∫
[1,∞)k

Lπ(y, x2, . . . , xk+1)µ
⊗k
W,m(dx′) , (3.68)

where we are integrating over x′ = (x2, . . . , xk+1) ∈ [1,∞)k.

Lemma 3.8.2.
Let {M2k}k≥1 be as in (3.29). Then

M2k =
∑

π∈NC2(2k)

∫ ∞
1

Hπ(y)µW,m(d y).
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Proof of Lemma 3.8.2. We begin by evaluating the integral on the right-hand
side. We have∫ ∞

1
Hπ(y)µW,m(d y)

=

∫ ∞
1

∫
[1,∞)k

Lπ(y, x2, . . . , xk+1)µ
⊗k
W,m(dx′)µW,m(d y)

=

∫
[1,∞)k+1

κ1/2σ (xTπ(1), xTπ(2)) · · ·κ
1/2
σ (xTπ(2k), xTπ(1))µ

⊗k+1
W,m (dx).

We know that, for π ∈ NC2(2k), #γπ = k + 1 and so the graph Gγπ has k + 1

vertices. Furthermore, when we perform a closed walk of the form 1 → 2 →
. . . → 2k → 1 on the (unoriented) graph Gγπ, we traverse each edge exactly
twice. In particular, the product κ1/2σ (xTπ(1), xTπ(2)) · · ·κ

1/2
σ (xTπ(2k), xTπ(1)) has

2k terms with k matchings, and so

κ1/2σ (xTπ(1), xTπ(2)) · · ·κ
1/2
σ (xTπ(2k), xTπ(1)) =

∏
(u,v)∈E(Gγπ)

κσ(xu, xv) .

We then have that∫ ∞
1

Hπ(y)µW,m(d y) =

∫
[1,∞)k+1

∏
(u,v)∈E(Gγπ)

κσ(xu, xv)µ
⊗k+1
W,m (dx)

= E

[ ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

]
,

which concludes the proof.

We show now some properties of Hπ that will help us in the upcoming compu-
tations.

Lemma 3.8.3.
Let k ≥ 1 and let Hπ be as defined in (3.68). Let π ∈ NC2(2k). Then,

(1) If π = (1, 2k)∪π1, where π1 is a non-crossing pair partition of {2, . . . , 2k−
1}, then,

Hπ(y) =

∫ ∞
1

Hπ1(x)κσ(x, y)µW,m(dx). (3.69)

(2) If π = π1 ∪ π2, then Hπ(·) = Hπ1(·)Hπ2(·).
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Proof of Lemma 3.8.3. We first prove property (1). Let π = (1, 2k)∪π1. Then,
γπ = {(1), V2, . . . , Vk+1}. We know that 2 ∈ V2 and then γπ(2k) = 2 ∈ V2.
Now, fix x1 = y. Then

Hπ(y)

=

∫
[1,∞)k

Lπ(y, x2, . . . , xk+1)µ
⊗k
W,m(dx′)

=

∫
[1,∞)k

κ1/2σ (y, x2)κ
1/2
σ (x2, xTπ(3)) . . . κ

1/2
σ (xTπ(2k−1), x2)κ

1/2
σ (x2, y)µ

⊗k
W,m(dx′)

=

∫ ∞
1

κσ(y, x2)

×
∫

[1,∞)k−1

κ1/2σ (x2, xTπ(3)) . . . κ
1/2
σ (xTπ(2k−1), x2)µ

⊗k−1
W,m (dx′′)µW,m(dx2)

=

∫ ∞
1

κσ(y, x2)Hπ1(x2)µW,m(dx2),

which is what we desired.
For property (2), let π = π1 ∪ π2, with π1 ∈ NC2({1, 2, . . . , 2r}) and π2 ∈

NC2({2r + 1, . . . , 2k}) and let us consider the function Hπ(y) with y = x1 =

xTπ(1). Then,

Hπ(y) =∫
[1,∞)k

κ1/2σ (y, xTπ(2)) . . . κ
1/2
σ (xTπ(2r), xTπ(2r+1)) . . . κ

1/2
σ (xTπ(2k), y)µ

⊗k
W,m(dx′).

We now claim that this integral can be split up into two integrals. First, consider
the element xTπ(1). Since we assume that ‘1’ maps to V1 ∈ γπ, all elements of
V1 are mapped to y. To understand where other elements are mapped, we will
state a claim and see its consequences to this proof, and then prove it on 149.

Claim 3.8.4.
Under γπ, the elements {2, . . . , 2r} are mapped to the blocks

V1 ∪ {V2, . . . , Vr′} ⊂ γπ ,

and the elements {2r + 1, . . . , 2k} are mapped to the blocks

V1 ∪ {Vr′+1, . . . , Vk+1} ⊂ γπ ,

where r′ < k + 1 is some index. In particular γπ(2r + 1) ∈ V1.
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From this claim we have that

Hπ(y)

=

∫
[1,∞)k

κ1/2σ (y, xTπ(2)) . . . κ
1/2
σ (xTπ(2r), xTπ(2r+1)) . . . κ

1/2
σ (xTπ(2k), y)µ

⊗k
W,m(dx′)

=

∫
[1,∞)k

κ1/2σ (y, xTπ(2)) . . . κ
1/2
σ (xTπ(2r), y) . . . κ

1/2
σ (xTπ(2k), y)µ

⊗k
W,m(dx′)

=

∫
[1,∞)r′

κ1/2σ (y, xTπ(2)) . . . κ
1/2
σ (xTπ(2r), y)µ

⊗r′
W,m(dx(r′))

×
∫
[1,∞)k−r′

κ1/2σ (y, xTπ(2r+2)) . . . κ
1/2
σ (xTπ(2k), y)µ

⊗(k−r′)
W,m (dx(k−r′))

= Hπ1(y)Hπ2(y).

This concludes the proof.

Proof of Claim 3.8.4. Let γ1 resp. γ2 be the shift by one on [2r] resp. {2r +
1, . . . , 2k}. To prove this claim, it suffices to analyse the special indices {1, 2r, 2r+
1, 2k}, since γ1 and γ2 are cyclic permutations on [2r] and {2r + 1, . . . , 2k},
respectively. We will be using the fact that all elements in a block of γπ must be
either all odd or all even [Avena et al., 2023, Property 1], and that any pairing
in π must have one element odd and the other even [Avena et al., 2023, Property
2].

(a) We already have 1 ∈ V1. Now, let (o1, 2k) ∈ π2, for some o1 such that
o1 ≥ 2r + 1. Then, o1 must be odd. Now, o1 + 1 is even, and cannot
belong to V1. Thus γπ(2k) = o1 + 1 ∈ {Vr′+1, . . . , V2k}. This takes care
of the index 2k.

(b) Let us continue with (o2, 2r) ∈ π1 for some o2. We know that o2 must be
odd. Thus, γπ(2r) = o2 + 1 ∈ {V2, . . . , Vr′} =: γ1π1 \ V1. This resolves
the case of 2r.

(c) Lastly, by construction, γπ(o2) = 2r+1, which brings us to the last special
element. Since o2 and 2r+1 belong to the same block in γπ, it suffices to
show that this block is V1, that is, the block to which element 1 belongs.
Now, if (1, o2 − 1) ∈ π1, we are done, since γπ(1) = o2. Suppose not,
and let (1, e1) ∈ π1 for some even integer e1. Similarly as before, if now
(e1 + 1, o2 − 1) ∈ π1, we are done. Since π1 and π2 act on the first 2r

elements and the remaining 2k − 2r elements respectively, then, by the
non-crossing nature, there is a sequence of even integers {ei}ti=1 such that
(1, e1), (e1 + 1, e2), . . . , (et + 1, o2 − 1) ∈ π1. Computing γπ recursively
gives us that γπ(1) = o2, and so γπ(2r + 1) ∈ V1.
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This proves the claim.

We are now ready to prove Proposition 3.8.1.

Proof of Proposition 3.8.1. We now derive the Stieltjes transform of the meas-
ure µσ,τ,m. Using (3.65) and Proposition 3.4.9, we have that

Sµσ,τ,m(z) = −
∑
k≥0

M2k

z2k+1
.

Using Lemma 3.8.2 we substitute the expression for M2k. We have

Sµσ,τ,m(z) = −
∑
k≥0

1

z2k+1

∫ ∞
1

∑
π∈NC2(2k)

Hπ(x)µW,m(dx)

= −
∫ ∞
1

∑
k≥0

∑
π∈NC2(2k)

Hπ(x)

z2k+1
µW,m(dx), (3.70)

where we could interchange the integral and the sum by Fubini’s theorem. Now,
we define the function a(z, x) as

a(z, x) := −
∑
k≥0

∑
π∈NC2(2k)

Hπ(x)

z2k+1
. (3.71)

Then using (3.70) we have

Sµσ,τ,m(z) =

∫ ∞
1

a(z, x)µW,m(dx).

We now state some properties of the function a(z, x). Firstly, for any z ∈ C+

the map x 7→ a(z, x) is in L∞([1,∞), µW,m) as Hπ is bounded . Secondly, for
any x ∈ [1,∞), the map z 7→ a(z, x) is analytic in C, which follows from the
Laurent series expansion. Finally we see that a(z, x) lies in C+, for any z ∈ C+

and x > 1. Indeed, for any ℑ(z) > 0, the expansion on the right-hand side
of (3.71) will always have a non-trivial imaginary part. Thus, since a(·, ·) is
analytic, it will either lie completely in C− or C+, since it can never take values
in R. However, SµW,m(z) ∈ C+, and thus, a(z, x) ∈ C+ for any z ∈ C+ and
x > 1.

To write down a functional recursion for a(·, ·) it is convenient to use the
notion of words. Any partition π can be associated to a word w, with any
elements in i, j ∈ [2k] being associated with the same letter in w if i, j are in the
same block of π. For example, π = {{1, 2}, {3, 4}} can be written as w = aabb.
In particular, any partition π ∈ NC2(2k) can be associated to a word w of the
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form w = aw1aw2, where w1, w2 are words that can be empty. For any word
w associated to a partition π, let Hπ = Hw. Furthermore, for w ∈ NC2(2k)

we mean a word w whose associated partition π is in NC2(2k). Then we have,
using Lemma 3.8.3 in the third equality,

a(z, x) = −
∑
k≥0

∑
w∈NC2(2k)

Hw(x)

z2k+1

= −1

z
−
∑
k≥1

∑
w∈NC2(2k)
w=aw1aw2

Haw1aw2(x)

z2k+1

= −1

z
−
∑
k≥1

∑
w∈NC2(2k)
w=aw1aw2

Haw1a(x)Hw2(x)

z2k+1

= −1

z
− 1

z

∑
k≥1

k∑
ℓ=1

∑
w1∈NC2(2ℓ−2)

Haw1a(x)

z2ℓ−2+1

∑
w2∈NC2(2k−2ℓ)

Hw2(x)

z2k−2ℓ+1
.

(3.72)

One can see that the word aw1a has as corresponding partition (1, 2ℓ)∪π1, with
π1 ∈ NC2(2ℓ− 2). Using (3.69) from Lemma 3.8.3, we have

a(z, x)

= −1

z
− 1

z

∑
k≥1

k∑
ℓ=1

∑
w1∈NC2(2ℓ−2)

1

z2ℓ−1

∫ ∞
1

Hw1(y)κσ(x, y)µW,m(d y)

×
∑

w2∈NC2(2k−2ℓ)

Hw2(x)

z2k−2ℓ+1

= −1

z
− 1

z

∑
k≥1

k∑
ℓ=1

∑
π2∈NC2(2k−2ℓ)

Hπ2(x)

z2k−2ℓ+1

×
∑

π1∈NC2(2ℓ−2)

1

z2ℓ−1

∫ ∞
1

Hπ1(y)κσ(x, y)µW,m(d y)

= −1

z
− a(z, x)

z

∫ ∞
1

a(z, y)κσ(x, y)µW,m(d y).

Thus, we have (3.66), which completes the proof of Proposition 3.8.1.

Remark 3.8.5.
Equation (3.66) gives an analytic description of a in terms of the recursive
equation. Now, for any z ∈ C+, we have that

z = ι̇

∫ ∞
0

e−ι̇tz
−1

d t. (3.73)
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Since a(z, x) ∈ C+ for any fixed x ∈ [1,∞), applying (3.73) to a(z, x) and using
(3.66) gives us that

a(z, x) = ι̇

∫ ∞
0

eι̇tz exp

{
ι̇t

∫ ∞
1

a(z, y)κσ(x, y)µW,m(d y)

}
d t. (3.74)

An immediate consequence of (3.74) is that a(z, x) is uniformly bounded in x

and m. Indeed, if we take z = ξ + ι̇η with η > 0, we have that

|a(z, x)| ≤
∫ ∞
0

e−ηt
∣∣∣∣exp{ι̇t∫ ∞

1
a(z, y)κσ(x, y)µW,m(d y)

}∣∣∣∣d t
≤
∫ ∞
0

e−ηt d t =
1

η
. (3.75)

The bound in the second line holds since a(z, x) ∈ C+, and so∫ ∞
1

a(z, y)κσ(x, y)µW,m(d y) ∈ C+

as κσ ≥ 1.

§3.8.2 Limiting Stieltjes transform
We now set up the framework required to prove Theorem 3.2.5. For the re-
mainder of this section, denote az(x) := a(z, x), which implicitly depends on m.
We wish to extend Proposition 3.8.1 to the measure µσ,τ by passing to the limit
m → ∞. We have a natural candidate for the function a∗ in Theorem 3.2.5,
which should be the limit of a(·, ·) as m tends to infinity. We now formalise this
idea through a series of lemmas.

Since our goal now is to show Theorem 3.2.5 we are going to work for the
remainder of this section with the following parameters:

(a) τ > 3,

(b) σ < τ − 2, and

(c) a parameter β such that 2 ∨ 1 + σ < β < τ − 1.

Let C+
= C+ ∪ R be the closure of C+, and let ν be the measure defined as

ν(dx) = x−β dx. (3.76)

Consider the space L1([1,∞), ν) of all functions f : [1,∞) → C+ that are
L1−integrable with respect to ν.
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Definition 3.8.6.
Let B denote the Banach space B := (L1([1,∞), ν), ∥·∥1), where the norm ∥·∥1 is
the L1 norm with respect to ν as in (3.76), which is defined for f ∈ L1([1,∞), ν)

as
∥f∥1 :=

∫ ∞
1

|f(x)|x−β dx. (3.77)

Recall that µW,m denotes the law of the truncated weights (Wm
x )x, given as

µW,m(·) = c−1m µw(·)1{·≤m},

where cm = 1 −m−(τ−1) is a normalizing constant converging to 1 as m tends
to infinity, and µW is the Pareto law defined in (3.2). For z ∈ C+, let Tz denote
the map

Tzf(·) = ι̇

∫ ∞
0

eι̇tz exp

{
ι̇t

∫ ∞
1

f(y)κσ(·, y)µW (d y)

}
d t. (3.78)

Then, we have the following result.
Lemma 3.8.7.
There exists a constant c̃ = c̃(τ, σ, β) such that, for all z ∈ C+ with ℑ(z)2 =

η2 > c̃ Tz : B → B is a contraction mapping, with a contraction constant c̃η−2.

Proof of Lemma 3.8.7. We first need to show that, for any f ∈ B, one has
Tzf ∈ B. Indeed, for x ≥ 1 it holds that∣∣Tzf(x)∣∣ ≤ ∫ ∞

0
e−ηt

∣∣∣∣exp{ι̇t∫ ∞
1

f(y)κσ(x, y)µW (d y)

}∣∣∣∣d t ≤ 1

η
,

where the last inequality holds as f(y) ∈ C+ for any y ≥ 1, and thus the second
complex exponential is bounded by 1. Since |Tzf(·)| is uniformly bounded, it is
L1−integrable with respect to ν, and so Tz(B) ⊆ B.

Now, we wish to show Tz is a contraction. Let us take f1, f2 ∈ B. Recall
that for any z1, z2 ∈ C+ and t > 0, we have

|eι̇tz1 − eι̇tz2 | ≤ t|z1 − z2|. (3.79)

Then, for any x ∈ [1,∞) we have that

|Tzf1(x)− Tzf2(x)|

=

∣∣∣∣ι̇ ∫ ∞
0

eι̇tz
(
eι̇t

∫∞
1 f1(y)κσ(x,y)µW (d y) − eι̇t

∫∞
1 f2(y)κσ(x,y)µW (d y)

)
d t

∣∣∣∣
≤
∫ ∞
0

e−ηt
∣∣∣eι̇t ∫∞

1 f1(y)κσ(x,y)µW (d y) − eι̇t
∫∞
1 f2(y)κσ(x,y)µW (d y)

∣∣∣ d t
≤
∫ ∞
0

e−ηtt

∣∣∣∣∫ ∞
1

(f1(y)− f2(y))κσ(x, y)µW (d y)

∣∣∣∣d t, (3.80)
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where in (3.80) we use (3.79). Now, evaluating the integral over t in (3.80), we
obtain

|Tzf1(x)− Tzf2(x)|

≤ (τ − 1)

η2

∫ ∞
1

|f1(y)− f2(y)|κσ(x, y)y−τ d y, (3.81)

where we explicitly write down the Pareto law µW (d y) := (τ−1)y−τ d y. Recall
that κσ(x, y) = (x ∧ y)(x ∨ y)σ. Thus, (3.81) becomes

|Tzf1(x)− Tzf2(x)|

≤ τ − 1

η2

(∫ x

1
|f1(y)− f2(y)|xyσ−τ d y +

∫ ∞
x

|f1(y)− f2(y)|xσy1−τ d y
)
.

Integrating with respect to ν gives us

∥Tzf1 − Tzf2∥1

≤ τ − 1

η2

∫ ∞
1

(
x

∫ x

1
|f1(y)− f2(y)|yσ−τ d y

)
x−β dx

+
τ − 1

η2

∫ ∞
1

(
xσ
∫ ∞
x

|f1(y)− f2(y)|y1−τ d y
)
x−β dx

=
τ − 1

η2

(∫ ∞
1

|f1(y)− f2(y)|yσ−τ
∫ ∞
y

x1−β dx d y

+

∫ ∞
1

|f1(y)− f2(y)|y1−τ
∫ y

1
xσ−β dx d y

)
. (3.82)

Using β > 2, the first integral in (3.82) can be bounded by∫ ∞
1

|f1(y)− f2(y)|yσ−τ
∫ ∞
y

x1−β dx d y

= c1

∫ ∞
1

|f1(y)− f2(y)|y−βy2+σ−τ d y ≤ c1∥f1 − f2∥1 , (3.83)

since y2+σ−τ ≤ 1 and c1 = 1/(β − 2). Similarly, the second integral in (3.82)
gives us∫ ∞

1
|f1(y)− f2(y)|y1−τ

∫ y

1
xσ−β dx d y ≤ c2

∫ ∞
1

|f1(y)− f2(y)|y1−τ d y

≤ c2∥f1 − f2∥1, (3.84)

with c2 = 1/(β − 1 − σ), where for the last line we have used 1 − τ < −β.
Combining (3.83) and (3.84) in (3.82) gives us that

∥Tzf1 − Tzf2∥1 ≤
c̃

η2
∥f1 − f2∥1 , (3.85)
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where c̃ is a constant depending on τ, σ and β. Thus, taking η > 0 to be
sufficiently large such that η >

√
c̃ gives us that Tz is a contraction mapping on

B, hence proving the result.

The following corollary is immediate from the Banach fixed-point theorem for
contraction mappings.

Corollary 3.8.8.
Let Tz : B → B be the contraction map given in (3.78). Then, there exists a
unique analytic function a∗z ∈ B such that Tz(a∗z) = a∗z.

We know from (3.74) that

az(x) = ι̇

∫ ∞
0

eι̇tz exp

{
ι̇t

∫ ∞
1

c−1m az(y)κσ(x, y)1{y≤m}µW (d y)

}
d t . (3.86)

Define ãz as

ãz(x) = ι̇

∫ ∞
0

eι̇tz exp

{
ι̇t

∫ ∞
1

c−1m az(y)κσ(x, y)µW (d y)

}
d t . (3.87)

Then, ãz = Tz(c
−1
m az). We now have the following lemma.

Lemma 3.8.9.
Let az and ãz be as in (3.86) and (3.87), respectively. Then,

∥az − ãz∥1 ≤
C(m)

η3
,

where C(m) is a constant depending on m such that limm→∞C(m) = 0.

Proof of Lemma 3.8.9. Since az ∈ B, we again use (3.79) to get

|az(x)− ãz(x)| ≤
∫ ∞
0

e−ηtt

∣∣∣∣∫ ∞
m

c−1m az(y)κσ(x, y)µW (d y)

∣∣∣∣ d t
≤ τ − 1

cmη2

∫ ∞
m

|az(y)|κσ(x, y)y−τ d y , (3.88)

where we evaluate the integral over t to get the factor of η−2 in (3.88). Recall
that cm = 1−m−(τ−1). Using (3.75), we have that

|az(x)− ãz(x)| ≤
τ − 1

cmη3

∫ ∞
m

κσ(x, y)y
−τ d y. (3.89)

Since κσ(x, y) ≤ (xy)1∨σ, we have

|az(x)− ãz(x)| ≤
τ − 1

cmη3
x1∨σ

∫ ∞
m

y(1∨σ)−τ d y =
(τ − 1)m(1∨σ)−(τ−1)

cm((τ − 1)− (1 ∨ σ))η3
x1∨σ,

(3.90)
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where we use the fact that τ > max(2, 1 + σ), and so the integral evaluated in
(3.90) is finite. Define

c(m) :=
(τ − 1)c−1m m(1∨σ)−(τ−1)

(τ − 1)− (1 ∨ σ)
.

Since cm tends to one, and m(1∨σ)−(τ−1) tends to zero we have c(m) = om(1).
Now, integrating both sides of (3.90) against x−β dx gives us

∥az − ãz∥1 ≤
c(m)

η3

∫ ∞
1

x1∨σ−β dx =
C(m)

η3
, (3.91)

since β > 2 ∨ 1 + σ, and where C(m) = om(1), completing the proof.

We are now at the penultimate step, where we have the necessary tools to
show the convergence of az to a∗z in the space B.

Lemma 3.8.10.
Let a∗z be the unique fixed point of the contraction map Tz defined in (3.78).
Then, we have that

lim
m→∞

∥az − a∗z∥1 = 0 . (3.92)

Proof of Lemma 3.8.10. We have, using Lemma 3.8.9 and the fact that Tz is a
contraction, that

∥az − a∗z∥1 ≤ ∥az − ãz∥1 + ∥ãz − a∗z∥1
≤ C(m)η−3 + ∥Tz(c−1m az)− Tz(a

∗
z)∥1

≤ C(m)η−3 + c̃η−2∥c−1m az − a∗z∥1
≤ C(m)η−3 + c̃η−2c−1m ∥az − a∗z∥1 + c̃η−2∥a∗z∥1|c−1m − 1| .

Thus, choosing η > 0 such that 0 < 1− c̃c−1m η−2 < 1, we have that

∥az − a∗z∥1 ≤
1

1− Cτ c
−1
m η−2

(
C(m)η−3 + Cτη

−2∥a∗z∥1|c−1m − 1|
)
. (3.93)

Now, as m → ∞, we have that C(m) → 0, and cm → 1. Since ∥a∗z∥ < ∞, we
have that the right-hand side of (3.93) goes to 0 as m→ ∞. Thus, ∥az−a∗z∥1 →
0 as m→ ∞ for z in an appropriate domain Dη ⊂ C+. However, in the complex
variable z, the domains of az and a∗z are C+. Since the convergence holds for
an open set of this domain (that is, in Dη ⊂ C+), by the identity theorem of
complex analysis, the convergence holds everywhere in C+, that is, for each
z ∈ C+.
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We now proceed towards a proof of Theorem 3.2.5, and to achieve this we
wish to take the limit m → ∞ to characterise Sµσ,τ . We know that since
limm→∞ µσ,τ,m = µσ,τ , then for each z ∈ C+, limm→∞ Sµσ,τ,m(z) = Sµσ,τ (z).

Proof of Theorem 3.2.5. Let a∗z be the unique fixed point of the contraction
mapping Tz as in Corollary 3.8.8, and let Sµσ,τ (z) be the Stieltjes transform of
µσ,τ for any z ∈ C+. We wish to show that

Sµσ,τ (z) =

∫ ∞
1

a∗z(x)µW (dx).

We have that ∣∣∣∣∫ ∞
1

az(x)µW,m(dx)−
∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣
≤
∣∣∣∣∫ ∞

1
az(x)µW,m(dx)−

∫ ∞
1

a∗z(x)µW,m(dx)

∣∣∣∣
+

∣∣∣∣∫ ∞
1

a∗z(x)µW,m(dx)−
∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣ . (3.94)

The first term in (3.94) can be evaluated as∣∣∣∣∫ ∞
1

az(x)µW,m(dx)−
∫ ∞
1

a∗z(x)µW,m(dx)

∣∣∣∣
≤ (τ − 1)c−1m

∫ m

1
|az(x)− a∗z(x)|x−τ dx

≤ (τ − 1)c−1m

∫ ∞
1

|az(x)− a∗z(x)|x−βxβ−τ dx

≤ (τ − 1)c−1m ∥az − a∗z∥1 = om(1), (3.95)

as xβ−τ ≤ 1, and ∥az − a∗z∥1 = om(1) from Lemma 3.8.10. The second term of
(3.94) can be evaluated as∣∣∣∣∫ ∞

1
a∗z(x)µW,m(dx)−

∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣
≤ c−1m

∣∣∣∣∫ m

1
a∗z(x)µW (dx)−

∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣+ ∣∣∣∣∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣ |c−1m − 1|

≤ (τ − 1)

cmη

∫ ∞
m

x−τ dx+
|c−1m − 1|

η
=

(τ − 1)m1−τ

cmη
+

|c−1m − 1|
η

= om(1),

(3.96)

since |a∗z| ≤ η−1. Combining (3.95) and (3.96) completes the proof of the the-
orem.
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