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CHAPTER

Adjacency spectra of kernel-based
random graphs

This chapter is based on:
A. Cipriani, R.S. Hazra, N. Malhotra, M. Salvi. Spectrum of dense kernel-based
random graphs. [arziv:2502:09415], 2025.

Abstract

Kernel-based random graphs (KBRGs) are a broad class of random graph mod-
els that account for inhomogeneity among vertices. We consider KBRGs on a
discrete d—dimensional torus V y of size N¢. Conditionally on an i.i.d. sequence
of Pareto weights (W;);cv, with tail exponent 7 —1 > 0, we connect any two
points ¢ and j on the torus with probability
= 7%(.Wi’.wj) A1

llé — |«
for some parameter a > 0 and k,(u,v) = (u V v)(u A v)? for some o € (0,7 —
1). We focus on the adjacency operator of this random graph and study its
empirical spectral distribution. For o < d and 7 > 2, we show that a non-trivial
limiting distribution exists as N — oo and that the corresponding measure ps -
is absolutely continuous with respect to the Lebesgue measure. fi, -~ is given by
an operator-valued semicircle law, whose Stieltjes transform is characterised by
a fixed point equation in an appropriate Banach space. We analyse the moments
of s~ and prove that the second moment is finite even when the weights have
infinite variance. In the case o = 1, corresponding to the so-called scale-free
percolation random graph, we can explicitly describe the limiting measure and
study its tail.


https://arxiv.org/pdf/2502.09415
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3. Adjacency spectra of kernel-based random graphs

§3.1 Introduction

Kernel-based spatial random graphs encompass a wide variety of classical ran-
dom graph models where vertices are embedded in some metric space. In their
simplest form (see Jorritsma et al. [2023] for a more complete exposition) they
can be defined as follows. Let V be the vertex set of the graph and sample
a collection of weights (W;);cy, which are independent and identically distrib-
uted (i.i.d.), serving as marks on the vertices. Conditionally on the weights, two
vertices ¢ and j are connected by an undirected edge with probability

P (i < j | Wi, W;) = c(Wi, Wj)lli = jlI7* AL, (3.1)

where £ is a symmetric kernel, |7 — j|| denotes the distance between the two
vertices in the underlying metric space and a > 0 is a constant parameter.
Common choices for « include:

Ktriv(wa U) = 17 ’fstrong(wa U) =w Vv,

HProd(U)? U) =wuv, Hpa(w7 U) = (w v U)(w N U)Upa'

In the above opy = (7 — 1)/d — 1, where 7 — 1 is the exponent of the tail dis-
tribution of the weights, such that the kernel xp, mimics the form that appears
in preferential attachment models [Jorritsma et al., 2023|, while the trivial ker-
nel Kyiy corresponds to the classical long-range percolation model [Schulman,
1983, Newman and Schulman, 1986]. The kernel kproq yields a model which
is substantially equivalent to scale-free percolation, introduced in Deijfen et al.
[2013], which has connection probabilities of the form

1 —exp (—WleHZ — j||_a) )

Various percolation properties for kernel-based spatial random graphs are known
on Z% and beyond (Deprez et al. [2015], Hao and Heydenreich [2023], van der
Hofstad and Komjathy [2017], Gracar et al. [2021], Jorritsma et al. [2024], see
also Deprez and Wiithrich [2019], Dalmau and Salvi [2021] for a version of the
same in the continuum) as well as the behaviour of interacting particle systems
on them [Berger, 2002, Heydenreich et al., 2017, Komjathy and Lodewijks, 2020,
Cipriani and Salvi, 2024, Gracar and Grauer, 2024, Bansaye and Salvi, 2024,
Komjathy et al., 2023]. In contrast, their spectral properties, to the best of the
authors’ knowledge, have received less attention.

As a branch of random matrix theory, the study of the spectrum of random
graphs has wide applications ranging from the study of random Schrédinger
operators |[Carmona and Lacroix, 2012, Geisinger, 2015] and quantum chaos
in physics, to the analysis of community structures |[Bordenave et al., 2015]

102



§3.1. Introduction

and diffusion processes in network science, to the problems of spectral clus-
tering [Champion et al., 2020] and graph embeddings |Gallagher et al., 2024]
in data science. Many challenges remain unsolved in this area, even for the
simplest models. As a prominent example, for bond percolation on Z? it is
known that the expected spectral measure has a continuous component if and
only if p > p., but this result has not yet been established in higher dimen-
sions [Bordenave et al., 2017|. In this chapter, we begin the study of spectral
properties of spatial inhomogeneous random graphs, which in turn have been
proposed as models for several real-world networks (see e.g. Dalmau and Salvi
[2021]).

We will work with KBRGs in the typical setting where the weights (W)
have support in [1, 00) and the kernel & is an increasing function of the weights.
Let us recall that in this case the vertices of KBRG random graphs on Z% have
almost surely infinite degree as soon as a < d. Thus, as it happens in many
percolation problems, the regime o > d would be the most appealing (and the
toughest to tackle). In the present work we will focus instead on the dense
case a < d. We consider the discrete torus with N¢ vertices equipped with
the torus distance || - ||. The weights are sampled independently from a Pareto
distribution with parameter 7 — 1 with 7 > 2. Conditionally on the weights,
vertices ¢ and j are connected independently from other pairs with probability
given by (3.1) with a kernel of the form k,(w,v) = (w Vv)(w Av)?. It is worth
noting a difference between our connection probability and that studied recently
in Jorritsma et al. [2023], van der Hofstad et al. [2023], where the connection
probabilities are given by

P(i > j | Wi, W;) = (HU(WZ-,W]-)HZ- il A 1) .

The two forms can be made equivalent through a simple modification of the
weights and an appropriate choice of a.

We call Gy the random graph obtained with this procedure and study the
empirical spectral distribution of its adjacency matrix, appropriately scaled.
Note that when a@ = 0 we recover the (inhomogeneous) Erdés—Rényi random
graph (modulo a tweak inserting a suitable tuning parameter ey) . In recent
years, there has been significant research on inhomogeneous Erdés-Rényi ran-
dom graphs, which can be equivalently modelled by Wigner matrices with a
variance profile. The limiting spectral distribution of the adjacency matrix of
such graphs has been studied in Chakrabarty et al. [2021b], Zhu [2020], Bose
et al. [2022], while local eigenvalue statistics have been analysed in Dumitriu
and Zhu [2019], Ajanki et al. [2019]. Zhu and Zhu [2024] studies the fluctu-
ations of the linear eigenvalue statistics for a wide range of such inhomogeneous
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3. Adjacency spectra of kernel-based random graphs

graphs. Additionally, various properties of the largest eigenvalue have been in-
vestigated in Cheliotis and Louvaris [2024], Husson [2022], Chakrabarty et al.
[2022], Ducatez et al. [2024]. One of the most significant properties of the lim-
iting spectral measure for random graphs is its absolute continuity with respect
to the Lebesgue measure, which is closely tied to the concept of mean quantum
percolation [Bordenave et al., 2017, Anantharaman et al., 2021, Arras and Bor-
denave, 2023]. Quantum percolation investigates whether the limiting measure
has a non-trivial absolutely continuous spectrum. Recently, it was shown in
Arras and Bordenave [2023] that the adjacency operator of a supercritical Pois-
son Galton-Watson tree has a non-trivial absolutely continuous part when the
average degree is sufficiently large. Additionally, Bordenave et al. [2017] demon-
strated that supercritical bond percolation on Z% has a non-trivial absolutely
continuous part for d = 2. These results motivate similar questions for KBRGs.

Our contributions: Results and proofs

Here below we showcase our main results and the novelties of our proofs Recall
that we work in the regime o < d and 7 > 2. We also restrict to values of ¢ in
(0,7 —1).

(a) In Theorem 3.2.1 we show that, after scaling the adjacency matrix of Gy by
coN@=)/2 the empirical spectral distribution converges weakly in prob-
ability to a deterministic measure p, . The classical approach to proving
the convergence of the empirical distribution is generally through either
the method of moments or the Stieltjes transform. However, the limiting
measure is expected to be heavy-tailed (see Figure 3.3) and so it is not de-
termined by its moments. As a consequence, we cannot directly apply the
method of moments. To overcome this issue, we pass through a truncation
argument where we impose a maximal value to the weights, reducing the
problem to well-behaved measures. To simplify the method of moments, we
further reduce the model by substituting the adjacency matrix of Gy with
a Gaussian matrix whose entries are centred and have roughly the same
variance as before. This is made possible by a classical result of Chatterjee
[2005]. Once we have shifted our attention to this simpler Gaussianised
matrix with bounded weights, we can use the classical method of moments
using finding its moments is made possible by a combinatorial argument
on partitions and their graphical representation. Finally we remove the
truncation effect.

(b) In Theorem 3.2.2 we investigate the graph corresponding to Kprod, that is,
when o = 1. In this case we can explicitly identify p; - as the free multiplic-
ative convolution of the semicircle law and the measure of the weight distri-
bution. In the o = 1 case the moment expression derived in Theorem 3.2.1
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§3.1. Introduction

simplifies, so the challenge is to recover the limiting measure from those
moments. This is made possible thanks to the extension of the free mul-
tiplicative convolution to measures with unbounded support by Arizmendi
and Pérez-Abreu [2009]. Furthermore, we show that p; , has power-law
tails with exponent 2(7 — 1). This is based on a Breiman-type argument
for free multiplicative convolutions [Kotodziejek and Szpojankowski, 2022].

(c) In Theorem 3.2.3 we explicitly derive the second moment of p, - and prove
that it is finite and non-degenerate. The proof is based on the ideas
of Chakrabarty et al. [2016, Theorem 2.2|. This result is noteworthy be-
cause our weight distribution may exhibit infinite variance in the chosen
range of parameters. To show that the second moment is finite, we need to
establish the uniform integrability of a sequence of measures converging to
the limiting measure. This is achieved through an extension of Skorohod’s
representation theorem for measures that converge weakly in probability.

(d) In Theorem 3.2.4 we prove that p, - is absolutely continuous. What makes
the result possible is that we are able to split the original matrix as a
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free sum of a standard Wigner matrix and another Wigner matrix with a
carefully chosen variance profile (yielding, as a by-product, another char-
acterisation of the limit measure p, ). Once this is established, the result
is a consequence of Biane [1997].

(e) In Theorem 3.2.5 we provide an analytical description of js, when 7 > 3
and o0 < 7 — 2. Removing the truncation in the method of moments proof
of Theorem 3.2.1 does not yield an explicit characterisation of the limiting
measure. On the other hand, certain moment recursions for the truncated
Gaussian matrix that appear in the proof can be used to derive properties
of s through the Stieltjes transform. When the weights are bounded,
the limiting measure corresponds to the operator-valued semicircle law
(Speicher [2011]). Its transform can be expressed in terms of functions
solving an analytic recursive equation (see Avena et al. [2023], Zhu [2020]
for similar results in other random graph ensembles). In our case, when the
weights are heavy-tailed, this is no longer possible. We achieve instead the
convergence of the analytic recursive equation by constructing a suitable
Banach space and demonstrating that it forms a contractive mapping.

Outline of the article.

In Section 3.2 we will define the model and state precisely the main results. In
Section 3.3 we will give some auxiliary results which will be used to prove the
main theorems in the rest of the article. More precisely, in Section 3.4 we will
prove the existence of the limiting ESD, and in Section 3.5 we will give estimates
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3. Adjacency spectra of kernel-based random graphs

on its tail behaviour. In Section 3.6 we will prove the non-degeneracy of the
limiting measure and in Section 3.7 we will show its absolute continuity. Finally,
Section 3.8 is devoted to describing the Stieltjes transform of the limiting ESD.

§3.2 Set-up and main results

§3.2.1 Random graph models

To introduce our models, we use aAb to denote the minimum of two real numbers

a and b, and a V b to denote their maximum.

(a)

Vertex set: the vertex set is Vy = {1,2,..., N}¢. The vertex set is
equipped with torus the distance ||i — j||, where

d
li = 4l =" lie = jel A (N = |ig — jel)-
=1

Weights: the weights (W;);ev, are i.i.d. random variables sampled from a
Pareto distribution W (whose law we denote by P) with parameter 7 — 1,
where 7 > 1. That is,

P(W>t)=t " D1y + 150 (3.2)

Kernel: the kernel function . : [0,00) x [0,00) — [0,00) determines how
the weights interact. In this article, we focus on kernel functions of the form

Ko (w,v) == (w Vv)(w Av)?, (3.3)
where o > 0.

Long-range parameter: « > 0 tunes the influence of the distance between
vertices on their connection probability.

Connectivity function: conditional on the weights, each pair of distinct

vertices 7 and j is connected independently with probability P (i <> j) given

by

KU(Wi, Wj)
i =gl

We will be using the short-hand notation p;; := P(i < j | W;, W;) for con-

venience. Note that the graph does not have self-loops (see Remark 3.4.1).

PYV (i ) =P« j | W, W;) = Al (3.4)

The associated graph is connected, as nearest neighbours with respect to

the torus distance are always linked.
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§3.2. Set-up and main results

§3.2.2 Spectrum of a random graph

Let us denote the random graph generated by our choice of edge probabilities
by Gy. Let Ag, denote the adjacency matrix (operator) associated with this
random graph, defined as
1 ifiej
Ag,(i,5) = ’
w (i) {O otherwise.

Since the graph is finite, the adjacency matrix is always self-adjoint and has
real eigenvalues. For a < d, the eigenvalues require a scaling, which turns out
to be independent of the kernel in our setup. Here we assume o € (0,7 —1) and
T > 2, ensuring that the vertex weights (W;);cv, have finite mean. We define
the scaling factor as

1 1
_ _ ~ NG 3.5
eN Nd ‘ Z ||Z _j”a o ’ ( )
1£JEV N

where ¢ is a constant depending on « and d, and for two functions f(-) and
g(+) we use f(t) ~ g(t) to indicate that their quotient f(t)/g(t) tends to one as
t tends to infinity. The scaled adjacency matrix is then defined as

Ay = 5N (3.6)

The empirical measure that assigns a mass of 1/N? to each eigenvalue of
the N x N9 random matrix A is called the Empirical Spectral Distribution
(ESD) of Ay, denoted as

ESD (Ay) : NdZ%,

where A1 < Ay < ... < Aya are the eigenvalues of A .

§3.2.3 Main results

We are now ready to state the main result of this article. Let pyy denote the law
of W. Here onwards, let P = P ® P represent the joint law of the weights and
the edge variables. Note that P depends on N, but we omit this dependence
for simplicity. Let E,E, and E"Y denote the expectation with respect to P, P,
and P" respectively. Furthermore, if (uy) N>0 is a sequence of probability
measures, we write limy_,o. iy = o to denote that pg is the weak limit of the
measures py. Since the empirical spectral distribution is a random probability
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3. Adjacency spectra of kernel-based random graphs

measure, we require the notion of convergence in probability in the context of
weak convergence.

The Lévy-Prokhorov distance dy, : P(R)? — [0, +-00) between two probabil-
ity measures p and v on R is defined as

dr(p,v) :=inf {€ > 0| p(A) < v (A%)+e and v(A) < p(A%)+e VAeB(R)},

where B(R) denotes the Borel o-algebra on R, and A° is the e-neighbourhood
of A. For a sequence of random probability measures (fun5)n>0, we say that

lim py = po in P-probability
N—o0

if, for every ¢ > 0,
lim ]P)(dL(MN,,U«O) > 5) =0.
N—o00

The first result states the existence of the limiting spectral distribution of
the scaled adjacency matrix.

Theorem 3.2.1 (Limiting spectral distribution).
Consider the random graph Gy on V with connection probabilities given by
(3.4) with parameters T > 2, 0 < a < d and o € (0,7 —1). Let ESD(Ay) be
the empirical spectral distribution of AN defined in (3.6). Then there ezists a
deterministic measure fi5 - on R such that
lim ESD(AN) = fior in P-probability .
N—oo
The remaining results focus of the properties of the limiting measure. First
we note that when we set 0 = 1 we can explicitly identify the limiting measure
in terms of free multiplicative convolution. We refer the reader to Anderson
et al. [2010, Section 5.2.3] for an exposition on free multiplicative and additive
convolutions.
For two probability measures p and v the free multiplicative convolution
1 X v oof the two measures is defined as the law of the product ab of free,
random, non-commutative operators a and b, with laws p and v respectively.
The free multiplicative convolution for two non-negatively supported measures
was introduced in Bercovici and Voiculescu [1993]. Note that the semicircle
law is not non-negatively supported and hence we use the extended definition
of Arizmendi and Pérez-Abreu [2009] for the multiplicative convolution.

Theorem 3.2.2 (Limiting ESD for o = 1).
Consider the KBRG for o = 1, while o, 7 are as in the assumptions of The-
orem 8.2.1. The the limiting spectral distribution py - is given by

H1,7 = Hsc X MW
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§3.2. Set-up and main results

where pgse 18 the semicircle law

1
:usc(dfp) = 27 V4 — 1:21\a;|<2dx
T <

and X is the free multiplicative convolution of the two measures. Moreover, the
limiting measure p11.+ has a power-law tail, that s,

1 Y
Ml,T(xvoo)Ni(ml(,U/W))T Lp=2r=1) as T — 00,

where my(v) denotes the first moment of the probability measure v.

In the general case, it is hard to explicitly identify the limiting measure, so
we present some characterisations of it. Since we do not impose that 7 > 3 and
consequently the weights can have infinite variance, it is not immediate if the
second moment of the limiting measure is non-degenerate and finite. We prove
this in the following result.

Theorem 3.2.3 (Non-degeneracy of the limiting measure).
Under the assumptions of Theorem 3.2.1, the second moment of the limiting
measure fiq iS5 given by

2 =(r—1)>2 o ! T 00
fiartan) = =17 [ 7 e dedy € 00

Moreover, for p e N and p < (t —1)/(o V 1), we have [ |2|% pio 7 (d ) < 0.

We state the following result as an independent theorem as the absolute
continuity of the KBRG model deserves to be treated separately.

Theorem 3.2.4 (Absolute continuity).
Let 7> 2 and o € (0,7 — 1), then pq . ts symmetric and absolutely continuous
with respect to the Lebesgue measure on R.

We conclude the main results by providing an analytic description of the
limiting measure in terms of its Stieltjes transform when we slightly restrict our
parameters. Recall that, for 2 € CT, where C* denotes the upper half-plane of
the complex plane, the Stieltjes transform of a measure p on R is given by

Su() = [ ——ulda). (3.7)

r—z

Theorem 3.2.5 (Stieltjes transform).
Let 0 < a < d, 7> 3 and 0 < 7 — 2. Then there exists a unique analytic
function a* on C* x [1,00) such that

Sy, () = [ (e, (d),

where we recall that pw s the law of the random variable W.
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3. Adjacency spectra of kernel-based random graphs

The function a* in the above theorem turns out to be a fixed point of a
contraction mapping on an appropriate Banach space. The equation above
shares similarities with the quadratic vector equations introduced and studied
in Ajanki et al. [2019], although in our setting the measures have unbounded
support. The properties and the proof of Theorem 3.2.5 are discussed in Section
3.8.

Remark 3.2.6 (Higher dimensions).

While we have presented our results for 0 < o < d, our proofs are worked out in
the d = 1 setup. This is in order to avoid notational complications that would
especially affect the clarity of Theorem 8.2.1. The limiting spectral distribution
and its properties remain unchanged for d > 1.

§3.2.4 Examples, simulations and discussion

Firstly, in Figure 3.1 we plot the eigenvalue distribution of the adjacency matrix
of two realisations of kernel-based graphs with different parameters, indicated at
the top of the image. Secondly, in Figure 3.2 we sample 10 realisations of scale-

size=5000, alpha=0.8, tau=4, sigma=1.5

Figure 3.1: Figenvalue distribution a KBRG realisation.

free percolation adjacency matrices of size 4000 x 4000 with ¢ = 1 and plot their
eigenvalues (in green). We superpose on them the eigenvalues of the product
PyGpynPy of a GUE matrix Gy with a diagonal matrix Py with i.i.d. entries
distributed as \/Pareto(r) (in blue). Note that by Nica and Speicher [2006,
Remark 14.2], Chakrabarty et al. [2021a, Remark 4.3], the a.s. limiting ESD of
PvGNPy is pse X up. All matrices are centred and rescaled by the sample
second moment. Thirdly, to elucidate the tail behaviour of the limiting ESD
when ¢ = 1 (Theorem 3.2.2) we draw in Figure 3.3 the empirical survival
function of the eigenvalues of a matrix of size 7000 x 7000 in =z > 1.5.
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§3.2. Set-up and main results

size=4000, alpha=0.8, tau=5, sigma=1

Figure 3.2: KBRG eigenvalue distribution and PyGn Py distribution.

Finally, we provide in Figure 3.4 a simulation of the eigenvalues of the Gaus-
sian matrix Ay, (see (3.24)) when o = 0 and N = 6000. We compare this
picture with the right-hand side of Figure 3.1, which has a small a. We con-
jecture that the atom appearing in the latter is due to high connectivity of the
kernel-based realisation (if & = 0, for all 7, j we have that p;; is identically one
in (3.4)), whilst in the Gaussian setup this trivialization does not arise.

size=7000, alpha=0.8, tau=4, sigma=1

71 — -log pix,=)

— y=2{1-1)x
& -
5 -
4 -
3 -

T T T T T T
04 05 06 07 038 09

Figure 3.3: Negative of the log-empirical survival function and tails of Theorem 3.2.2
for x> 1.5.

Remark 3.2.7 (Sparse case).
We expect the case o > d to be very different due to the sparse nature of the
graph. There has been a significant development in the area of spectral prop-
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3. Adjacency spectra of kernel-based random graphs

size=6000, alpha=0, tau=5, sigma=0.2

0.6 i 1 = A, ESD
05
0.4

m il -

§ mm
~ L

-1.0 -0.5 0.0 0.5 10

Figure 8.4: ESD for AN,m,g-

erties of sparse random graphs using the techniques of local weak convergence
[Bordenave and Lelarge, 2010, Bordenave et al., 2017, 2011]. However, it is not
immediately clear whether these techniques can be employed in our framework
i order to determine the properties of the limiting measure: the underlying ran-
dom graph generated in our model will not be tree-like to begin with. We plan to
address this case in a future work.

§3.3 Notation and preliminary lemmas

In this section, we fix some notation and collect some technical lemmas that
will be used in the proofs of our main results.

§3.3.1 Notation

We will use the Landau notation oy, Op indicating in the subscript the vari-
able under which we take the asymptotic (typically this variable will grow
to infinity unless otherwise specified). Universal positive constants are de-
noted as c¢, c1, ..., and their value may change with each occurrence. For
an N x N matrix A = (aij)z]'?[jzl we use Tr(A4) = Zf\il a;; for the trace
and tr(A) := N~ !Tr(A) for the normalised trace. When n € N we write
[n] = {1, 2, ..., n}. We denote the cardinality of a set A as #A, and, with a
slight abuse of notation, #o also denotes the number of cycles in a permutation
.
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§3.3.2 Technical lemmas

The following proposition, known as the Hoffman-Wielandt inequality, follows
from Bai and Silverstein [2010, Corollary A.41].

Proposition 3.3.1 (Hoffman-Wielandt inequality).
Let A and B be two N x N normal matrices and let ESD(A) and ESD(B) be
their ESDs, respectively. Then,

@ammAm%D®»%g%m«A_BxA_Bm. (3.8)

Here A* denotes the conjugate transpose of A. Moreover, if A and B are two
Hermitian matrices of size N x N, then

N
> (N(A) = \i(B))? < Tr[(A —B)?. (3.9)
i=1
The next two straightforward lemmas control the tail of the product of two
Pareto random variables and the expectation of a truncated Pareto.
Lemma 3.3.2.
Let X and Y be two independent Pareto r.v.’s with parameters p1 and (o
respectively, with 81 < Ba. There exist constants ¢1 = c1(f1,02) > 0 and
co = (1) > 0 such that

cit™A if B1 < B2

P@Y>ﬂ:Lﬂ&by if B1 = pa.

Lemma 3.3.3.
Let X be a Pareto random variable with law P and parameter B > 1. For any
m > 0 it holds

B 1-8
E[X1x>ml=———m ".
e R CESY
We state one final auxiliary lemma related to the approximation of sums by
integrals.
Lemma 3.3.4.
Let § € (0, 1]. Then there exists a constant ¢; = ¢1(8) > 0 such that
1 1
— Z T~ A max{ N1~ log N}. (3.10)
oz Tl

If instead B > 1, there exists a constant co > 0 such that

1 1
- T35 ~C2.
N 2 i — 1P

i#jEV N
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3. Adjacency spectra of kernel-based random graphs

We end this section by quoting, for the reader’s convenience, the following
lemma from Chakrabarty et al. [2016, Fact 4.3].

Lemma 3.3.5.

Let (X,d) be a complete metric space, and let (2, A, P) be a probability space.
Suppose that (X, : (m,n) € {1,2,...,00}*\{o0,00}) is a family of random
elements in 3, that is, measurable maps from Q to X, the latter being equipped
with the Borel o-field induced by d. Assume that

(1) for all fired 1 < m < o0

lim d(Xmn, Xmeo) = 0 in P-probability.

n—oo

(2) For alle >0,

lim limsup P (d (Xmn, Xoon) > €) = 0.

m—00 n—oo

Then, there exists a random element Xoooo of X such that

lim d(Xmoo; Xoooo) = 0 in P-probability (3.11)

m—o0

and
lim d(Xoon, Xoooo) = 0 in P-probability.

n—oo

Furthermore, if Xmoo is deterministic for all m, then so is Xoooo, and (3.11)
simplifies to
lim d (Xpmoos Xoooo) = 0. (3.12)

m—r 00

§3.4 Existence and Uniqueness

The proof of Theorem 3.2.1 is split into several parts and we will now briefly
sketch them.

(1) Truncation: The first part of the proof is a truncation argument on the
unbounded weights (W;);cv,. We construct a new sequence (W/");cv
that is obtained by truncating the original weights at a value m > 1. We
construct another scaled adjacency matrix Ay ,, with entries Ay ., (4, j)
distributed as Bernoulli random variables with parameter pj given by
(3.4) with the weights substituted by the truncated ones. We then show
(see Lemma 3.4.2) that the empirical measure ESD(A y) is well approxim-
ated by ESD(An,y), that is, their Lévy distance vanishes in probability

in the limit m — oo.
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(2) Gaussianisation: In the second part, we aim to Gaussianise Ay, us-
ing the ideas of Chatterjee [2005]. We begin with the construction of a
centred matrix Ay, that is obtained by subtracting out the expectation
from each entry of Ay ,,. We then Gaussianise XNM, that is, we pass to
another matrix Ay, with each entry Ay 4(7,7) being a normal random
variable with mean 0 and the same variance pjj(1 — pj) as the corres-
ponding entry of A Nm- Lastly, we tweak the variances of Ay 4 to obtain
a Gaussian random matrix A N,m,g With entries A Nm (4, J) having mean
0 and variance equal to r{7, the “unbounded version” of pj? (see (3.13)).
Thanks to (3.8), we can show (Lemma 3.4.3, Lemma 3.4.4 and Lemma
3.4.6) that in this whole process we did not lose too much: the Lévy
distance between the empirical measures ESD(A ) and ESD(Ay )
is small in probability. We remark here that the order of the errors in
Lemmas 3.4.3 and 3.4.6 is N~¢, and these steps fail for oo = 0.

(3) Identification of the limit: We then proceed to analyse the limit of the
measure ESD(An ) as N goes to infinity. We use Wick’s formula to
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compute its expected moments and use a concentration argument to show
the existence of a unique limiting measure

Ho,rm = ]\}gnoo ESD(AN,m,Q)

using Proposition 3.4.9. We conclude the proof of Theorem 3.2.1 by letting
the truncation m go to infinity: using Lemma 3.3.5 we can show that there
is a unique limiting measure ps - such that pe r = limy, o fto,7m- In the
case 0 = 1 calculations become explicit.

Remark 3.4.1 (Self-loops).

We can use Proposition 3.3.1 to show that having self-loops in the model will not
affect the limiting spectral distribution. Let A be the scaled adjacency matriz
of the model as defined in (3.6). Now, consider

Dy = cy'/* Diag(1,...,1)

to be the N x N diagonal matriz with all diagonal entries “1”, scaled by a factor
of \Jen, and Ay s;, = Ax + Dy. If we extend the definition of pi; for the case
i =J as pi = 1, then AN g1, will be the scaled adjacency of the random graph
with self-loops. Using (3.8), we get

1 1 N i

d3 (1A, Ay s) < v Dl(An - Ansi)?] = N Tr[D3] = New — O(ey )-
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3. Adjacency spectra of kernel-based random graphs

§3.4.1 Truncation

Now we show that for our analysis the weights can be truncated. More precisely,
let m > 1 be a truncation threshold and define W/ = W;1lw,<,, for any i €
V. For all N € N, we define a new random graph with vertex set Vy and
connection probability as follows: conditional on the weights (W/");cv, we

connect ¢, j € Vy with probability

m o m : (Wit v Wim Wit nwihye o
pij =rij N1 with  rli = i i#j€eVny.
(3.13)
Let Ay, be the corresponding adjacency matrix scaled by /cy and let its ESD
be denotes by ESD(An ).
It will be useful later to have the two following easy bounds (following from
Lemma 3.3.4):

Z T < m'T°Ney , Z (T;}Z)t < em?T27 max{ Nt log N},
i#jEV N i#JEVN

(3.14)

for some constant ¢ > 0 and ¢ > 1 a real number. The second bound is not
optimal, since for some ¢ > 1 such that ta > 1, the upper bound will just be
a constant depending on ¢ and «. However, for our computations, this bound
suffices.
Lemma 3.4.2 (Truncation).
For every > 0 one has

limsup lim P (d.(ESD(Ay),ESD(AN,)) >0) =0.

m—oo0 N—00

Proof. By (3.8) we have that
E [d} (ESD(An), ESD(ANm))]
1
< N—CNE [Tr (AN — Anm)?)]

1 . .
=v.o 2. E [(AN(W) ~ AN (7)) 1A (1) A e (0)
CN .~
i#JEVN
1 . .
<o D P(AN(L)) # Axm(i.d)). (3.15)
CN »
7 jGVN

For fixed i, j we will analyse P (An(,7) # ANnm(i,7)) as follows. We notice
that An(i,7) # An,m(i,7) can occur only if one between W; and W; exceeds
m. Calling

A={W;>m>W;} and B ={W; >W; >m} (3.16)
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§3.4. Existence and Uniqueness

we have, by symmetry of W; and W}, that P (An(¢,7) # Anm(i,J)) equals

Notice that on the events A and B the variable Ay, (4, ) is always 0. So we
can bound

]P)({AN(Zvj> 7& AN,m(iaj)} N A)
=P({An(i,j) =1} N A)
<E Mu] < PWilwiemlBWF] | m?
lli = jll* [l — [l lli = jll*
for some constant ¢ > 0, where we have used Lemma 3.3.3 and the fact that
E[W7] < co. Analogously we can bound the second summand by

P ({AN(Zaj) 7é AN,m(i¢j)} N B)

W,W¢ EW,1w.>n|E|W?
§E|:] B:|_ [ le.} [ J]
i — il li — gl

m2f‘r
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SCo—— -
lli =gl
Plugging these estimates back into (3.15) we obtain
4c m2T
E [d} (ESD(Ay), ESD(A < — e = dem? 7.
(@ (BSD(A), BSD(Ax,)] € g Do s = dem
1#JEV N
We can then conclude by applying Markov’s inequality:
limsup lim P (dr (ESD(An), ESD(AN,m)) > 0)
N—o00

m—0o0
E [d3 (ESD(A ESD(A N
< limsup lim [ L (Aw), (Aw, ))]

=0

since T > 2. O

§3.4.2 Centring

Let 1 < m < oo and Ay, be the centred and rescaled truncated adjacency
matrix, i.e. the matrix defined as

Anm(iyj) = Anm(i,j) — EV[ANm(i,j)], i#j€ V. (3.17)

Note that here m = oo corresponds to the matrix with non-truncated weights.
The following lemma says that the centring does not affect the limiting spectral
distribution.
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3. Adjacency spectra of kernel-based random graphs

Lemma 3.4.3 (Centring).
For any m € (1,00], under the conditions in Theorem 3.2.1, we have, for all
6 >0,

lim P (d;(ESD(An,m), ESD(AN,,)) >0) =0,

N—o0

where ESD(AN,m) is the empirical spectral distribution of A .

Proof. By (3.8) we have

E [d} (ESD(AnN,m), ESD(AN,m))] < %E [Tr(EY [Anm]?)]

1 2
= Now 2 EW]

i#jEV N
< ¥ E [(Wi v W;) (Wi A W)
- | pe]
New 2 Tl
< NCCN max{N'72* log N'}. (3.18)

Here c is some constant as for 7 > 2 and ¢ < 7 — 1 we have
E [(W; V W;) (Wi AW;)°] = 2E [W;W7 lw,sw, | < 2E[W]E[W]] < co.

In the last inequality we used Lemma 3.3.4. The result follows by applying
Markov’s inequality. O

§3.4.3 Gaussianisation

Let {G;;,1 <i < j} be a family of i.i.d. standard Gaussian random variables,
independent of the weights and the graph. Define a symmetric N x N matrix

AN,m,g by

P (1-pl) . .
e Gingavj  for1<i#j<N

ANmg(i,J) = (3.19)

0 for i = j.

Notice that the entries of Ay, , have the same mean and variance of the cor-
responding entries of Ay ,,. Consider a three-times continuously differentiable
function A : R — R such that

max sup ’h(k)(x)‘ < 00
0<k<3 zcR

where h(%) denotes the k-th derivative. For an N x N real symmetric matrix
M define the resolvent of My as

Ry (2) = My — 2z1n) 71, zeCH,
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§3.4. Existence and Uniqueness

where Iy is the N x N identity matrix. In particular, if = pnm, is the ESD
of My, the relation between the Stieltjes transform Swp, of um, and resolvent
can be expressed as

H(My) := Smy (2) = tr(Rary (2)), 2z € CT (3.20)

[Bai and Silverstein, 2010, Section 1.3.2]. The next result shows that the real
and imaginary parts of the Stieltjes transform of pzx  are close to those of
KAy, Since one knows that the convergence of the ESD is equivalent to
showing the convergence of the corresponding Stieltjes transform, one can shift
the problem to the Gaussianised setup and work with the matrix Ay ,, 4.

Lemma 3.4.4 (Gaussianisation).
Consider the matriz Ay, defined in Subsection 3.4.1 and the matriz AN m.q
defined in (3.19). For any three-times continuously differentiable function h :
R — R such that

max sup h(k)(m)‘ < 00

0<k<3 zeR

we have

lim B [l (RH (Ann.0)] — E [h (RE (Aym))] | =0,

N—oo

lim ’IE (7 (SH (Anmg))] — E [h (SH (

N—oo

>
=
2

[
JD

where R and S denote the real and imaginary parts respectively and h®) denotes
the k-th derivative of h.

To prove the above lemma, we will need the following result from Chatterjee
[2005].

Theorem 3.4.5 (Chatterjee [2005, Theorem 1.1]).

Let X = (X1,...,Xpn) and Y = (Y1,...,Yy) be two vectors of independent ran-
dom variables with finite second moments, taking values in some open interval
I and satisfying, for each i,EX; = EY; and EX? = EY?. Let f : I — R be
three-times differentiable in each argument. If we set U = f(X) and V = f(Y),
then for any thrice differentiable h : R — R and any K > 0,

n

[ER(U) = ER(V)| < C1(W)X2() ) [E [XP x5 k] + E [V L5 k]]
i=1

+ Ca(h Zn: [ [’Xi|3 1|Xi|s1<} +E [\Yz‘\g 1m|gKH

=1

where Cy(h) = [[1]| o + 1M"]| oo - C2(h) = § |1l + 5 11"l + 5 1" ]| o and
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3. Adjacency spectra of kernel-based random graphs

As(f) = sup{|3gf(a:)|3 1<i<n,1<¢g<s,x€ I"},
where 8 denotes q-fold differentiation with respect to the i-th coordinate.

Proof of Lemma 3.4.4. We prove this for the real part of the Stieltjes transform.
The bounds for the imaginary part remain the same. We fix a complex number
z € C*, given by z = R(2) + in with n > 0.

Let n = N(N —1)/2 and x = (xi;)1<i<j<n € R™. Define R(x) to be the
matrix-valued differentiable function given by

R(x) = (Mn(x) — zIy) 7",

where My (-) is the matrix-valued differentiable function that maps a vector in
R™ to the space of N x N Hermitian matrices, given by

c]_vl/Qxij if i < 7,
My (x)ij = 0;\,1/2:1:]-1’ if i > j,
0 ifi=j.

Since My is symmetric, it has all real eigenvalues. The function H(My(x))
admits partial derivatives of all orders. In particular, we denote for any u €
{(4,7) hi<j<i<n the partial derivative as 0H/0zy. For any u € {(4, ) }hi<j<i<n,
using the identity (My(x) — zI)R(x) = Iy we have

IR (x)

Oz = —R(x)(0uMn)R(x).

By iterative application of derivatives, three identities were derived in Chatterjee
[2005]:

Oty _N Tr ( 0%y R(X) ’

0’H OMy (x) OMy (x) 9

0z NT ( 0y R(x) Oy R(x) ) ’

03H OM y (x) OMy (x) OMy (x) )

e _N Tr ( O R(x) O R(x) . R(x) > .

Note that 0;; My (x) is a matrix with c]_vl/2 at the (i, 7)™ and (j,4)™ entry,
and 0 everywhere else. Using the bounds on Hilbert-Schmidt norms and follow-
ing the exact argument regarding the bounds in equations (4), (5) and (6) in
Chatterjee [2005] we get that

OH
|7l

O3H
03,

12
774Nc%2

4
3NCN

nN,/cN H 0z
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Hence

and

1 1 1) 1
)\3(H)§12max{,,}.
s 2t f N/

Conditional on the weights (W;);>1, consider the following sequence of in-

dependent random variables. Let X, = (Xf’j)lgiqg ~ be a vector with Xf’j ~
Ber(p}) — pij. Similarly, take another vector X, = (X}))1<i<j<n with X7, ~

N (0, el —p;;)). Then,
XN,m = MN(Xb) and AN,g = MN(Xg)
in law. We have that

|E [h (RH. (ANmg)) — h (RH. (Aym))] |
— [E[EY [h(RH. (ANmyg)) — b (RH. (An.m))]] |-

Q
=
)
o]
=
@
=
=
~
@
D

Conditionally on the weights, the sequences X, and Xj form two vectors of
independent random variables, with EW[Xf’j] = EW[X%] and EW[(X%)Q] =
EW[(X%)Q]. Then, using Theorem 3.4.5 on the conditional expectation

EV[h(RH, (ANmg)) — h (RH. (Anm))],
we have that
|E [EY[h (RH. (ANmyg)) — h (RH. (Anm))]] |

<Ci(h)Xa(H) Y E[(X%)21|X§j\>KN]+E[(Xf]j)21\xfj\>KN] (3:21)
1<i<j<N

+ Co(h)A3(H) Z E[<X%)31|ij|§KN] + E[(Xf]j)glmfj\gKN] . (3:22)
1<i<j<N

where Ky is a (possibly) N—dependent truncation and where we have used
that |[OhRH| = |ROGH| < |04H|. Now using the fact that r/p > 0 we have
|OWRH|» < |0LH|?, and therefore

A (RH) < M\ (H).

We begin by evaluating (3.21). To compute the Bernoulli term, notice that
ij are uniformly bounded by 1, so, for any K > 1, we automatically have
that

> ElX))™ x5k, = 0.
1<i<j<N
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3. Adjacency spectra of kernel-based random graphs

For the Gaussian term, we apply the Cauchy-Schwarz inequality (with respect
to E). Using also the trivial bound pij < ri; and Markov’s inequality, we obtain

Y EIX)Lxspiy )< Do EIXDYNRIXG] > Kn)'?

1<i<j<N 1<i<j<N
. E[(X{)?]'/? m E[r}]/?
<3 Z E[(Tij)2]1/2 7}{] <3 Z E[(Tz'j)2]1/2 KJ
1<i<j<N N 1<i<j<N N
(3.14)

=V On(N - Kyt max{N173%2 log N'}).
We thus conclude that (3.21) is of order
(3.21) = On(cy Kt max{N'73%/2 log N'}).
For (3.22), we use that for any random variable X we have the bound
B[ X[*1 <k < KE[XY.
Hence we can bound

Z E[(ij)glmfj\gkjv + (Xigj)31|Xf’j|§KN}
1<i<j<N
<Ky ) EIXH)+ (X))
1<i<j<N
my (3.14)
<2Ky Y E[JJ] = On(KnNey).
1<i<j<N

This yields that (3.22) is of order ON(KNCJ_VUQ). Choosing Ky = On1 gives us
that
|E [ (RH (ANmyg))] —E [h (RH (Anm))]| = on(1). (3.23)

A similar argument holds for the imaginary part S(H) and this completes the
proof. ]
Simplification of the variance structure

To conclude Gaussianisation, we would like to construct a final matrix A N,m,g
with a simpler variance structure than that of Ay, ,. We let its entries be

AN mg(i,j) = Ginjivi 1<i4,j <N (3.24)

where rj7 is as in (3.13) and the {G; ; : @ > j} are the i.i.d. collection of Gaussian

variables used in (3.19). We need to prove that the ESD of this matrix gives
asymptotically a good approximation of the ESD of Ay, 4.
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Lemma 3.4.6 (Simplification of variance).
For any 6 >0

lim P (dy,(BSD(ANmg) ESD(An,m,g)) > 8) =

N—oo

Proof. Construct a matrix Ly , with entries

Vi

<3 | <
Lg(ig) = { vov Coava - L=1FIEN
0 1<i=j<N

where pj} =777 A1. By (3.8), we have that

1 2 @)
3 2 m =
E[d},(ESD(AN,m,g), ESD(Lng))] < New Z [G i <\/1 — P = 1) ] =
1#JEV N §
1 m =
N itjev 3
1 (3.14) '
< No Z E[(Tij) ] on(1).
N A
1#JEV N

For i # j € Vi define the events A;; = {r]7 < 1}. Construct yet another

matrix Ly 4 as

= . . N . X.‘
Lyg(i,7) = LN,g(Zv])lAij +— 1,4%

NG

where, conditional on the weights, X;; ~ N ((), r{?) are mutually independent

and independent of the {G;;}i>;. It is easy to see that EN,g = AN,m,g in
distribution. So, comparing Ly 4 with Ly 4, using (3.8) we get

E[d} (ESD(Ly,g), ESD(Ly,g))] < % > El(Lngli,d) — Lng(i, §))]
#jEV N

N
1 -
N Z [(Livg(iy§) = Dng(i,5))?1ac ]
#jEV
N 2
Ly (Vg - X
N Vaw Cnai — e |G

Using that the G; ; are centred and independent of the weights, and the Cauchy-
Schwarz inequality, we can develop the square to obtain a further upper bound
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3. Adjacency spectra of kernel-based random graphs

of the form
1 N
2 2
New Z E[Gipjivilag] + E[X{1 4 ]
i#J'GVN
Z P(AS) + BX)Y2P(A5)Y?
Z7£.7€VN
m m\2 m m\2011/2
S5 piag) s EOTVIPROT AW
B NCN 7 — 7l Y
i#JjEV N
= on(1)
since c
P(A;) <P WW>1—] —.
() < P ( li= 1) < o

Using the triangle inequality, we get
E[d} (ESD(AN m.g); ESD(AN,m,g))] = on(1).

We conclude the proof using Markov’s inequality. O

§3.4.4 Moment method

Preliminary results: combinatorial setup

We will recall here the combinatorics features of partitions we need in the
chapter, and refer the reader for a detailed exposition to Nica and Speicher
[2006, Chapter 9].

For k > 1, denote by P(2k) the set of partitions of [2k], and by NC(2k) :=
NC([2k]) the set of non-crossing partitions of {1,2,...,2k}. When we write a
partition, we order its blocks in such a way that the first block always contains
1, and the (i + 1)th block contains the smallest element not belonging to any of
the previous ¢ blocks.

In what follows, we shall use Wick’s formula. Let (Xi,...,X,) be a real
Gaussian vector, then

ElX;, - Xy )= Y]] EIX:.Xi), (3.25)

Tw€P2(2k) (r,s)ET

where P3(2k) denotes the pair partitions of [2k].
Any partition 7 € P(k) can be realised as a permutation of [k], that is,
a bijective mapping [k] — [k]. Let Sk denote the set of permutations on k

124



§3.4. Existence and Uniqueness

elements. Let v = (1,2,...,k) € Sk be the shift by 1 modulo k. We will be
interested in the composition of two permutations + and =, denoted by ~m,
which will be seen below as a partition.

As an example, consider m = {{1,2},{3,4}} and v = (1, 2,3,4). To compute
~m, we read 7 as (1,2)(3,4), and compute ym = (1,3)(2)(4). We finally read ym
as {{1,3},{2},{4}}. We now define a graph associated to a partition, borrowing
the definition from Avena et al. [2023, Definition 2.3|.

Definition 3.4.7 (Graph associated to a partition).

For a fized k > 1, let v denote the cyclic permutation (1,2,...,k). For a
partition 7, we define Gyx = (Vyr, Eyx) as a rooted, labelled directed graph
associated with any partition m of [k|, constructed as follows.

o Initially consider the vertex set V., = [k] and perform a closed walk on
k] as1 -2 —=3 — -+ — k — 1 and with each step of the walk, add an
edge.

e FEvaluate ym, which will be of the form vm = {V1,Va,...,V;u} for some
m > 1 where {Vi}i1<i<m are disjoint blocks. Then, collapse vertices in
V. to a single vertex if they belong to the same block in ym, and collapse
the corresponding edges. Thus, Vyr = {V1,...,Vin}.

o Finally root and label the graph as follows.

— Root: we always assume that the first element of the closed walk (in
this case ‘1°) is in Vi, and we fix the block Vi as the root.

— Label: each vertex V; gets labelled with the elements belonging to the
corresponding block in ym.

For the partitions = = {{1, 2}, {3, 4}}, y# = {{1, 3},{2},{4}}, Figure 3.5
illustrates this procedure.

The following lemma is an exercise in Nica and Speicher [2006, Exercise
22.15] and explains also why non-crossing pair partitions will have the dominant
role in the computations that follow. We will denote as NCy(2k) the set of non-
crossing pair partitions of [2k]. For a partition = we let #7 the number of its
blocks.

Lemma 3.4.8.
Given m € Pa(2k), one has #ym < k + 1 and the equality holds if and only
m € NCo(2k). If m € NC>(2k), the graph Gx is a rooted tree.

Finally, given m# € NC2(2k), we define the map 7 = T : [2k] — [k +
1] as follows. By Lemma 3.4.8, we know that #ym = k + 1 and let ym =
{V1,Va, ..., Vis1}. Define

To(i) =7 if i€V (3.26)
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3. Adjacency spectra of kernel-based random graphs

i

4
Va

Figure 3.5: Left: closed walk on [4]. Right: graph associated to ym = {{1, 3}, {2}, {4}}.
The root is in red.

Moment characterisation

We are now ready to give the proofs on Gaussianisation leading to the main
result of this subsection, the proof of Theorem 3.2.1.

Proposition 3.4.9.
Let AN, g be defined as in (3.24). Let ESD(AN . 4) be its empirical spectral
distribution. Then, for k € N, one has

N—oo

lim E [ /R z % ESD(AN7m7g)(d$)} = Moy, (3.27)

and odd moments are zero. Moreover,

lim Var < /R z ESD(AN7m7g)(d$)> =0, (3.28)

N—oo

where
My= > E I swrwm| <o, (3.29)
TeNC2(2k) (u,0)EE(Gyr)

where Ky is as in (3.3) and E(Gyx) is the edge set of the tree Gr. Moreover,
there exists a unique compactly supported symmetric and deterministic measure
Lorm characterised by the moment sequence { Moy }ren such that

lim ESD(ANng) = florm i P-probability. (3.30)

N—oo
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Proof. Let {G;; : 1 < i < j < N} be a sequence of standard independent
centred Gaussian random variables as in (3.24) which is also independent of
(Wi)iein)- Let G be the matrix

| j||me/?
o j):{\z I Ginivs i (3.31)
0 1=7

Observe that
~ d
AN,m,g = Ta,m o g7

where Y, ,, is the matrix with elements

. KU(WZ.W,WW)
Yom(i,j) = TJ

and o denotes the Hadamard product. Using Wick’s formula (3.25) we have

[ (B%a) - g 3

N
N 1<y, igp<N

2% 2%
E |1 Youmiesiesr) [T G0, ie+1)]

/=1 /=1

2k
E HH?/Q W;},Wzﬁl)]

H E [g(ira ir+1)g(i87 is-‘rl)]
TE€P2(2k) (r,s)ET

2k
1 ' 1/2
“N& > E H’%/ WZ7’WZ7Z1)]

N 1<iy,yiogn <N
H _ «@ {ZrﬂrJrl}:{iSJerl}’ (332)
nEPa(2k) (rs)er 1T [lir = iral]

N 1<y, io <N

where we set i1 = i1 to ease notation, and (r,s) € m means 7m(r) = s and
7(s) = r. Here the Y’ indicates the sum over all the indices (iy,...,i;) such
that iy # ig4q for £ € [2k]. The condition {i,, 4,41} = {is,is+1} is satisfied in
two cases:

C1) i, =is41 and is = ip41, that is, i, = Gy () and i = ¢ ~vm(s)s OF

C2) i, =is and ip41 = 541, that is, i, = U (r) and 4,41 = Z7r(7")+1'

As we are going to show, the limit of (3.32) will be supported on permutations
m € NC3(2k) and such that Case 1) is true for all (r,s) € w. To prove this, let
us define

Catmk = {l = (il, Ceey igk) S [N]2k Dl 75 Tpyl, by = Z x(r) Vre [Qk]}
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3. Adjacency spectra of kernel-based random graphs

When the condition i, = iy.(,) holds for all r, we see that i is constant on the
blocks of ym. We construct a graph G(i) associated to i € Cat, j by performing
a closed walk i1 — 19 — .. .49 — i1, and then collapsing elements i,, 75 into the
same vertex if r, s belong to the same block in vw. We then collapse multiple
edges. After this, we see that G(i) = Gx. Thus, when we sum over i € Cat, ;,
the count is over #~m many indices.

We split the summation in (3.32) into two parts: a first sum over the non-
crossing pairings and i € Cat,j, and a second part with all the other terms,
that we call Ri. Since we take i € Catry, i is constant on the blocks of ~y.
Using this property, we obtain

E i (Ang)}

R
)
s 1
_ 12y
i - Z Z E H’i ZTH) H iy — ips1]|® tR
L TrGNCQ(Qk) N icCaty s, (rs)em " "
% —
= 1
= > > Bl I wewrow)) ] e v R

TI'ENCQ(Qk‘) 1€Cat7T k | (u,v)EE(Gyr) (r,s)em

where in the last line we have used that i is constant on the blocks of y7r. Since
the inner expectation no longer depends on i, we get that

® [ (A%
= > E| JI seWrwm|— > H

TeNC2(2k) (u,0)EE(Grr) N icCaty i, (r,s)en
+ R1.

||Z7" - Zr-i-lHa

Now we make the following two claims which will finish the proof.

Claim 3.4.10.
The following hold.

a) For any m € NC5(2k),

lim Z H =1.

— (0%
N—oo0 NCN IECatw,k (,,, S)ETI' H/I"’" 7/7»+1 ||

b) We have that limy_,o, R1 = 0.
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§3.4. Existence and Uniqueness

With the above claim, whose proof is deferred to page 131, we have that
(3.27) holds. Moreover, the odd moments are identically 0, since there are no
non-crossing pair partitions for tuples of the form {1,2,...,2k+ 1},k € N. We
now need to now show that (3.28) holds.

We introduce some new notation to prove (3.28). Let j = (ji1,...,j2r). Let
P(i) denote the expectation

2k
H K“i*/2 Wva W[Zl)g(ig,i”l) )

and P(i,j) be

2k
1 .] =E 11’%1/2 7,1; ) zZ:_l)g(if?iE-i-l) H "/"‘;/2 Wm M/;Tﬂ)g(ipvip—&-l)
p=1

(with the usual cyclic convention that 2k 4 1 equals 1 for subscripts of indices).
We can then see that

Q
=
&
e
S
@
=3
=
=
@
D

- 1
2k _ . RN
Var ([ BSD(Aws)(10)) = e 30 (PGY) - POPGL.
i,j:[2k]—[N]
(3.33)
Note that if the terms involving i and j are completely different, that is, if the
product of the terms G (i1, i2) - - - G(iog, 1) is independent of G(j1, 72) - - - G (J2k, j1),
then P(i,j) = P(i)P(j), and (3.33) becomes identically 0. Hence, we have

. (>1)
Var (/R z? MAN,m,g(dw > NQCQk Z (3.34)

j:[2k]—] ]

where Z(Zl) is over 1i,j such that there is at least one matching of the form
ANmg(ir,ir41) = ANm,g(Js, Js+1) for some 1 < r, s <2k — 1. If there is only
one entry of i, say i1, equal to only one entry of j, say j1, then we still have

EW

2%k
H G (i, i€+1)g(j£7je+1)] =0

(=1

since all entries G(ig,i7+1) are independent (even if i; = j;) and centred. All the
more, P(i,j) = 0, so let us pass to having two equal indices, that is, a matching.

Let us consider the case when there is ezactly one matching. Since both
indices in i and j can be reordered without affecting the variance,without loss of
generality we can assume that the matching is (i1,42) = (j1,j2), and the rest of
the indices of i are different from the ones in j. One now has i’ = (i3, ..., i)
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3. Adjacency spectra of kernel-based random graphs

and j’ = (j3, ..., jor) with 2k—2 indices each, and so we can construct partitions
m, 7 for each of them independently.
For the ease of notation, let

ai; =k 2(W™, WG, j)

and let Z(l) be the sum over i, j such that there is exactly one matching between
i and j. Using Wick’s formula in the second equality, we have

1 1) .
N2c2k Z P(I’J)

N i j:[2k] =[N
r 2k
1 e w

o :W Z E|E Haie7i2+1ajz,je+1]]
= N i j:[2k]—[N] (=1
= _
5 1
= = N2oE > E|EV4] > 1T E%laiivinaiii]
= N ij:[2k]—[N] 7,7 €Pa({3, ..., 2k}) (r,s)Em
S L

w

X H E [ajr,yjr,ﬂajs,’js,ﬂ] . (3.35)
(r',s"en!

Following the idea of the proof for (3.27), we assume Claim 3.4.10 to be true to
obtain the optimal order. We will consider i’,j’ € Cat ;—1, and notice that

140

m
EW[G%,E’] < H

m- (3-36)

Interchanging summands, we obtain

1
(335) = NTC%CE Z Z EY [(112171-2} H EY [a?ﬂ’w(r)]

m,m' €Pa({3,...,2k}) V',jeCatr 11, (r,s)em
117£12€[N]
w 2 /
< I E [“jrzjwwj +R

(r',s")en!

(3.36) 1 1+o 1+o

m m
S B0 VRSP DR e i |

|i7" - 7;wr(r)Ha

m,w' €Pa({3,...,2k}) V',j €Caty jo_1, r,8)ET
i17#12€[N]
1+o
m
X EC— (3.37)
H H]T’ _]'yﬂ(r/)Ha

(r',s")en!
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§3.4. Existence and Uniqueness

where R/ is an error term such that limy_,o R} = 0, which follows from Claim
3.4.10. The contributing terms of the right-hand side of (3.37) can be upper-
bounded by

1 m1+U m1+0'
o DY > e U e
N eN m,m' €P2({3,...,2k}) i:i'€Catr p_1, HZI Z2H (r,s)em HZT ZWT(T)H

11742
ml—i—a
DD | B e
J€eCat,y 4 (1,s")en ”]r’ jvﬂ—(T,)H
1+o m1+0'

1 m
= N22k Z Z [i1 — o] H iy — 4 o
N m,' €P2({3, ..., 2k}) i:ii’€Catr 1, (r,s)em ym(r)
117102
Analogously, the sum over i conditioned on i’ € Cat,;_; will be at most of
order N cﬂ“\,. Since the sum over partitions is finite and independent of N, we

obtain
1

(1) .. —1
N2:2k Z P(i,j) = On(cy )
N4 j:[2k]—[N]
More generally, if one has t pairings of the form (i1,i2) = (j1,72), .-, (it—1,1) =
(jt—1,j¢), one can use the same argument and instead obtain a faster error of the
order of cfvtﬂ, simply due to the set (jiy1,72,---,Jj2r) now having only 2k — ¢
independent indices from i. Thus, we conclude

Var ( /R 22y ANm’g(dx)) = On(cyh). (3.38)

This proves (3.28).
To conclude, one can see that

My, < (m*ro)kcy, (3.39)

where Cj, is the k' Catalan number. Since >, C’k_l/% = o0, so Carle-

man’s condition implies that {May}>1 uniquely determine the limiting meas-
ure. Therefore we can find C', R > 0 such that for all £ > 1 we have My <
CR?*. In turn, it is a straightforward exercise to show that this implies that
lr, o, m 1s compactly supported, and since it has odd moments equal to zero it is
symmetric. To conclude the proof of Proposition 3.4.9 we use for example Tao
[2012, pg. 134].

Proof of Claim 3.4.10. We first show a). Fix m € NCy(2k). Recall that i €

Cat,  is constant on the blocks of ym. Therefore the number of free indices
over which we can construct i is #ym =k + 1 (Lemma 3.4.8).
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3. Adjacency spectra of kernel-based random graphs

For any m € NC3(2k), there exists at least one block of the form (r,r+1) € ™
where 1 < r < 2k, and 2k + 1 is identified with “1”. Then, {r + 1} € 7
is a singleton, and consequently, 7,41 is a free index under m, that is, under
the summation over indices i1, ...,42k, 441 runs from 1 to N independent of
other indices. Moreover, as i € Catry, we have i, = i,49. If we remove the
block (r,7 + 1) from 7, we obtain ' € NC5(2k — 2) as a new partition on
{1,2,...,r —1,r+2,...2k}. Let i be the tuple (i1,i2,...,%r—1,%r42,-.,02K)-
We then have i’ € Caty 1. So, we can write

TP e

C
N icCat, i (r,s €7r
N

1 1 1
= N > 1T T 42,—,01 . (340)

i/GCatW/’k_l (7",5)671'/ i +1:1 ||ZT‘+1 - Z’I’+2”

We now proceed inductively. For k& = 1 the result is given by (3.5). Assume
now that we have shown, for some k — 1 > 0 and any 7’ € NCy(2(k — 1)), that

1
NI N > 1y _ZSHQ =1L (3.41)

i'eCat,s j_q (r,s)€n’

We need to show the same statement holds for k, which is precisely Claim
3.4.10a). Now, we have that

1 1 1 1
(9).4()):?,;[_1 > H‘i N; ——

veCat, ,_; \(rs)er “ | N2 = irga ||

(3.42)

=.
S
|
~
e
)
o

Taking the limit N — oo, we have that the second factor in brackets above by
(3.5), and then the remaining expression equals 1 by the induction hypothesis
(3.41). This proves a).

To show b), we now analyse R; explicitly. We have to deal with two cases:

b.1) 7 € Py(2k) and i ¢ Caty .
b.2) 7 € Pa(2k) \ NCy(k) and i € Caty s

Note that for both cases the following factor involving the weights will not
play any role:

H /ﬂ)l/Q m oy ) < mk(l—&—a)‘

Z]+1
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§3.4. Existence and Uniqueness

We first deal with Case b.2). From Lemma 3.4.8 we have #ym < k and
hence

1 1
Z Nk, Z HNI/Q W) H T =i

lip — dpy1 |

wEP2(2k)\NC2(2k) N ieCaty g (r,s)em
1
SN YRS M Do
7r€732(2k)\NCQ(2k) zle[N iR €[N] a2 flix

(3.43)

where (3.43) follows from i being constant on the cycles of ym. Thus, we get
that the terms involved in Case b.2) give a contribution of the order

1 1 Q

k(1+ 14+(k=1)(1—a) _ _ 5

B43) <em®™ L gV = O g = v (). B
TEP(2k)\NC2 (2k) o

(3.44) 3

We now show that the contribution from b.1) is also negligible. Begin by EB

fixing a partition 7. For any tuple i, we construct a corresponding graph G(i)
(recall that when i € Catr ) we ended up with G(i) = G,»). For i ¢ Cat,y,
G(i) is constructed by a closed walk i1 — i — ...i9p — i1, thereby adding
the edges (zp,zp+1) ¥, with 49511 = i1. We then collapse indices i,, 15 into the
same vertex when {i,, 4,41} = {is, 4541}, which can be justified by (3.32). We
then proceed by collapsing the multiple edges and looking at the skeleton graph
G(i), with vertex set V(i). Hence, we see that

, 2k
DO S N | P E R I | i —

nePa2k) N i:[2k]—>[N] j=1 (rs)er [
k(140) N1+(#V(1) (1—a)
" Z NcN
TEP2(2k)
< ON@#VH)—k=1)(1-a) (3.45)

since m > 1 is fixed and the sum over the set Po(2k) is finite. We see that the
only non-trivial contribution comes when #V (i) = k + 1, which signifies that
G(i) is a tree. Now we claim that for any 7 € P»(2k) and i ¢ Cat, ; we have
#V(i) <k+1.

When i ¢ Cat, j, it implies that there exists at least one (r,s) € m, such
that i, = i5 and 4,11 = i541. Let us begin by assuming that there exists ezactly
one such pair. Observe that due to the restrictions in Y_’, no pair-wise indices
are same, hence s can neither be r 4+ 1, nor » — 1. Now consider the reduced
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3. Adjacency spectra of kernel-based random graphs

partition 7' = 7\ (r,s). Observe that 7’ € Pa(2k)({1,...,r —1,r+1,...,5—
1,s+1,...,2k}). Note that now i’ € Caty j_1, so its contribution to (3.37)
is of the order of N'+*=1D{1=) "which comes from the tree G(i’) on k vertices,
and where i’ are the (2k —2) indices which are obtained by removal of (i,,iy41).
So, all we are left to show is that due to Case 2), i, and is will not give rise to
a new vertex in G(1i).

Now, there exists an r < e < s — 1 such that (e,s — 1) € 7. Due to Case 2),
we have that i, = i, contribute to the same vertex in G(i). Also i, = is and
ie+1 = is—1 due to Case 1). This implies that i, = is = i., where i, is already
a contributing index in G(i’). This implies that G(i) is a tree on at most k
vertices, and hence #V (i) < k. This shows that the contribution in (3.45) goes
to 0.

The case for which there is more than one pair breaking the constraint in
Caty i leads to an even smaller order. When none of the pairs satisfy the
constraint then i, = iy for all r and hence 7 is constant on the blocks of .
So #V (i) < k and again the contribution in (3.45) goes to 0, thus proving the
claim. O

We wish to highlight that Proposition 3.4.9 is in fact more general, and works
beyond the kernels x, defined in (3.3).

Remark 3.4.11.

The statement of Proposition 5.4.9 holds when we replace the entries of Anm g

in (3.24) by
k(Wi, Wj) .
S I G 1<, <N
en i =gl S =R

for any function k : [1, 00)? — [0, 00) which is symmetric and such that, for all
keN,

Ii(Xj,Xj.H) < o0 (346)

where X1, ..., Xo are i.i.d. random variables in [1,00).

In our case the kernels k(x, y) = ko (x, y)1gy<m satisfy (3.46).

Proof of Theorem 3.2.1. To prove the final result, we shall use Lemma 3.3.5 with
the complete metric space ¥ = P(R) and metric dz. Recall also the definition
of AN g Tesp. Ay of (3.24) resp. (3.17). In Proposition 3.4.9 we have shown
that there exists a (deterministic) measure fiy ., such that, for every m > 0,

lim ESD(ANymyg) = llo,7,m in P—probability.
N—oo
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§3.4. Existence and Uniqueness

Hence for any h satisfying the assumptions of Lemma 3.4.4 and H as in (3.20)
it follows that

lim E [h (éRH (AN,m,g))] = h (RS, .. (2))

N—oo

and thus, by means of Lemma 3.4.4 and Lemma 3.4.6,
Jim B[ (RH (B m))] = h (RS0 (2))

Since the above holds true for any h satisfying the assumptions of Lemma 3.4.4
and [t rm is deterministic, it follows that

lim RH (Anm) = RS,,.,..(2) in P-probability.

N—oo

A similar argument for the imaginary part shows that

lim SH (Anm) =S Sy,.,..(2) in P-probability.

N—oo

Q
=
)
o]
=
@
=
=
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@
D

Combining the real and imaginary parts, we have, for any z € CT,

]\}l—l}loo SESD(KN,m)(z) = Syy.rm(2) in P-probability.
Since the convergence of the Stieltjes transform characterises weak convergence,
we have
lim ESD(AN,m) = fio.r,m in P-probability.
N—o00

From Lemma 3.4.6 and Lemma 3.4.3, it also follows that, for every § > 0 and
m > 0,
limsup P(dL(pAy . » Hoyrm) > 6) = 0.

N—oo

This shows condition (1) of Lemma 3.3.5. Condition (2) follows from Lemma
3.4.2 where we have proved that

limsup lim P (dz(pay,,. ay) > 0) =0.

m—r0o0

Thus, it follows from Lemma 3.3.5 that there exists a deterministic measure
o+ such that
lim dr,(torm, tor) =0, (3.47)
m—r0o0

and hence using the triangle inequality the result follows.

135



O
o
~

<

~
~
)

i)

(@)
Q,
=

S

3. Adjacency spectra of kernel-based random graphs

§3.5 Scale-Free Percolation: A special case

Proof of Theorem 3.2.2. Step 1: identification. We are now dealing with the
special case of o = 1. We go back to the moments of figr.m,. Let ym =
(Vi,..., Vika1) and let ¢; = #V; (with a slight abuse of notation, we are viewing
here V; as a set rather than a cycle). Since o = 1, ko (W, W) = WPW,". It
follows that

Myy= Y E I wrwr
TeNC2(2k) (u,0)EE(Gyr)
k+1

= > JlEwm™Y

TENCy(2k) i=1
= / x%ﬂsc&ﬂmm<dx)'
R
The last equality follows from the combinatorial expression of the moments
of the free multiplicative convolution of the semicircle element with an element
whose law is given by pw,, (see Nica and Speicher [2006, Theorem 14.4]).
Consider the map z + 22 from R — [0, 00) and let u? be the push-forward of

a probability measure p under this mapping, so that pg. is pushed forward to
p2.. Then by Bercovici and Voiculescu [1993, Corollary 6.7] it follows that

B pyym B i, R pwn = pw B i, Xy
m—r0o0
A consequence of Arizmendi and Pérez-Abreu [2009, Lemma 8| is that

HW,m X :U*gc X HBwm = (Msc X NW,m)2

and
pow B 2, 8 oy = (pse 8 pow ). (3.48)
Thus
Tim (pse ® pwm)* = (psc ® pow)*.

Observe that pse X pyw,m and pse X py are symmetric around the origin [Ariz-
mendi and Pérez-Abreu, 2009, Theorem 7|, hence we have that

lim dL(Hsc X MWy Hsc X HW,m) = lim dL(Hsc X MWy KU1,7mm, ) = 0.
m—0o0 m—0o0
Theorem 3.2.1 then implies that the ESD(A ) converges to s X puy weakly

in probability.
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§3.5. Scale-Free Percolation: A special case

Step 2: tail asymptotics. In the following we use the recent results of
Kolodziejek and Szpojankowski [2022, Lemma 7.2| from which we also borrow
the notation. The free probability analogue of the classical Breiman’s lemma is
as follows: let u, v be probability measures and

p(z, 00) ~ P L(x) (3.49)

with L(-) a slowly varying function [Kolodziejek and Szpojankowski, 2022,
Definition 1.1]. Assume furthermore that the |8 + 1]-th moment of v exists:

m|g41) (V) < oo.

Then

pRv(z,00) ~ mf (v)u(x, 0)

with m(v) the first moment of v.
Since uw X pge is a symmetric measure we have, using Kotodziejek and
Szpojankowski [2022, equation (7.3)] and (3.48),

Q
=
&
s
S
@
=3
=
=
@
&

1 1
pw B phse(, 00) = 5 (pw B9 prse) (2, 00) = S puw B pu, B puwy (2%, 00). - (3.50)

By the commutativity and associativity of the free multiplicative convolution [Nica
and Speicher, 2006, Remark 14.2] we have puy X p2. X uy = p2. X py X pyy.
Let vy = pw W puw. Then a consequence of Kotodziejek and Szpojankowski
[2022, Theorem 1.3(iv)] is that

v (2,00) ~ (ma(uw))™™" pw (, 00). (3.51)
Therefore vy satisfies (3.49) with 3 := 7—1, and clearly m,|(u2.) < co. Thus,
applying Kotodziejek and Szpojankowski [2022, Lemma 7.2],

(3.50) 1

(1se B vw) (,00) "=" 2w B g, B pay (2%, 00)

~ 5 (mi(2)) (e, )

(3.51) 1

RS (ma () (ma ()™ (2, 00)
~ g ()™ ) 20,

We can conclude noting that mq(uy) is finite since 7 > 2 and mq(p2,) =
ma(pse) = 1 [Arizmendi and Pérez-Abreu, 2009, Proposition 5 a)|. O
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3. Adjacency spectra of kernel-based random graphs

§3.6 Non-degeneracy of the limiting measure

The proof of Theorem 3.2.3 follows the arguments in Chakrabarty et al. [2016,
Theorem 2.2|. A key observation is that the limiting measure p, . does not
depend on the parameter «. This will allow us to deal with an easier model,
formally corresponding to the case o = 0, that does not feel the influence of
the torus’ geometry. The lack of geometry also allows us to work on a unique
probability space. More precisely, let (G; ;)i j>1 be an i.i.d. sequence of N'(0, 1)
random variables, and let (W;);>1 be an i.i.d. sequence of Pareto-distributed
random variables with parameter 7 — 1. Assume they are defined on the same
probability space (2, F,P). Define the N x N matrix

Bym = N712, kg (W, W) Ginjivs -

Let By, denote the matrix with non-truncated weights. The following result
can be proven exactly as in Proposition 3.4.9.

Proposition 3.6.1.
Let ESD(Bn,m) be the empirical spectral distribution of By . Then for all
m > 1,

lim ESD(Bnm) = form  in P-probability.

N—o0

Moreover,
lim ESD(Bn ) = to,r in P-probability.

N—oo

We use this result to prove Theorem 3.2.3. Recall that, for a distribution
function F', the generalised inverse is given by

F(y):=inf{z eR: F(z) >y}, 0<y<l.

Proof of Theorem 3.2.3. From Proposition 3.6.1, it follows that there exists a
subsequence (Nj)k>1 such that py, », converges weakly almost surely to fig 7 m;
that is,

klggo dr,(ESD(BN, m)s bo,rm) = 0 P-almost surely. (3.52)

For a n x n matrix A, let us denote by A;(A) < A(4) < -+ < A (4) its
eigenvalues. For fixed integers 1 < k < 0o, 1 < m < o0, define the following
random variables on the probability space (2 x (0,1), F®B(0,1),P = P x Leb):

Zk,m(w,a:) = )\[ka] (BNk’m(w)), w € Q, x € (0, 1),
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§3.6. Non-degeneracy of the limiting measure

and
Z00(W, T) 1= A[N, 2] (BNk,Oo(w)), weQ, ze(0,1).

Let F;;, be the distribution function of ps, -, m (we suppress the dependence on
o and 7 in F,, for ease of notation), and define

Zoom(w,x) = F(z), we, ze(0,1).

m

Now consider L?(2 x (0,1)) with the P measure. This is a complete metric
space, with d(X,Y) = E[(X — Y)?]. Our aim is to use Lemma 3.3.5 applied
to the sequence of random variables Zj, ,,,. We proceed therefore to check as-
sumptions (1) and (2) of the lemma. These will directly follow if we prove
that

lim E [(Zk,m - Zoqm)ﬂ =0 (3.53) Q

and E,
. . 20 ~

Jim_ lim E [(ka — Ziooo) ] = 0. (3.54) .

o)

D

We start by (3.53). First of all we show that

lim Zj,, = Zoo,m P-almost surely. (3.55)

k—o00

Define
A=A"%x(0,1)

= {w € Q: lim dr(ESD(Bn, m), tto,r,m) = 0, Vm > 1} x (0,1).
k—o0

Observe that P(A) = 1 due to (3.52) and Leb(0,1) = 1. To prove (3.55), it
suffices to show that, for all w € A’,

lim Zjm(w,2) = Zoom(w,z), x € (0,1). (3.56)

k—o0

Let Fjm(w,-) be the distribution function of ESD(Bn, m(w)). On A, we
have Fj, ,(w,2) = Fpp(x) for all  at which F}, is continuous. Note that

Zm(w, ) = Fi, (w, ).
It then follows from Resnick [2008, Proposition 0.1] that for all z € (0,1)
lim F,, (z) = F (x).
k—oo 7

Thus, we have proved (3.55).
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3. Adjacency spectra of kernel-based random graphs

Next, we show that for all m > 1,
{Z; ;1 < k < oo} is uniformly integrable. (3.57)

It suffices to show that sup,~; E[Z}},,,] < co. Since [ Njz] is constant on intervals
of length 1/Ny, it easily follows that

Z)\ (BNym) ]

1
= lim 7ETI‘(BN;€ m) - / .2124 Ncm',m(dx) <0
R

k—oo IV

lim E[ka] = lim —E

k—o0 k—oo NN,

using (3.27) and (3.29), hence (3.57) is proven. Using this and (3.55), we obtain
(3.53).
We move to (3.54). To prove this note that

Ny

~ E Z ()‘j<BNk7m) - )‘j(BNk,oo))Q

j=1

1
Ny,

O
o
~
<
~
~
)
i)
(@)
Q,
=
S

E |(Zkm — Zn)’] =

(39 1
< FkE [Tr ((BNgm — By,.0)? )}
Ni

LB (Brm(ind) — Browolis )

ij=1

1
~ N,

Reasoning as in the proof of Lemma 3.4.2, it follows that

Ny

1 g Z (Brgm(iy §) = Bryoo(is 5))?

( o (W7 W) — wa(Wi,Wﬂﬂ

Nk
2
<= Z E [ke(Wi, W) 1w, <mew]
koij=1
2
+ N2 Z E [/{"o’(m’ W])1W12W]>Mj| :
koij=1

We can use similar bounds as for Lemma 3.4.2, which yield that both summands
have order at most m?~7. Hence (3.54) follows, since 7 > 2.
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§3.6. Non-degeneracy of the limiting measure

Since we have now checked assumptions (1) and (2) of Lemma 3.3.5, it
follows that there exists Zo, € L?(£2 x (0, 1)) such that

lim E |[(Zoom — Zoo)?| = 0.

m— 00

Let U be a uniform random variable on (0,1). Then F (U) has the same
distribution as fig rm. Since iy rm converges weakly to pig r by (3.47), Zs has
law pio . Hence

lim E[Z2 ] = lim [ 2%psrm(dz) = / 2% g (d ),

)

and

o0 o 1
lim a:ZMUTm dz)=(r—-1 2/ / dxdy
Ry R A A Y Y R AT

which can be easily obtained from (3.29) with & = 1. This completes the proof
of the first part.

Since limy, o0 flo,7m = Ho,r Weakly, we apply Fatou’s lemma to obtain

Q
=
)
o]
=
@
=
=
~
@
D

/$2p lu’U,T(dx) < limjnf/x2p NU,T,m(d ZL‘) = mlgnoo M2p7

m— 00

where, recalling (3.29),

My= Y B| [ meviw
meNC2(2p) (u,0)EE(Gyr)

For o > 0, we observe that (z Ay)?(z Vy) < (zy)°V!. Thus,

p+1

My < Y JIE[wmevn#i], (3.58)
TENCy(2p) i=1

where {Vi,...,Vp41} are the blocks of ym. Due to Lemma 3.4.8, it follows that
maxi<ij<p+1 #Vi < p, typically achieved by partitions 7 such that

yr={(1,3,...,2p—1),(2),(4),...,(2p)}.

This shows that the maximum moment bound required for the right-hand side
of (3.58) to remain finite is E[(W;)P(°VD]. Since W; has a tail index of 7 — 1, if
p(o V1) < 7—1, then E[(W;)P®VD] < co. Therefore, My, is uniformly bounded
in m, completing the proof of the theorem. O
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3. Adjacency spectra of kernel-based random graphs

§3.7 Absolute continuity and symmetry

We begin by showing absolute continuity. We shall use the following fact from
Chakrabarty and Hazra [2016, Fact 2.1|, which follows from Nica and Speicher
[2006, Proposition 22.32].

Lemma 3.7.1.

Assume that, for each N, Ay is a N x N Gaussian Wigner matriz scaled by
VN, that is, (An(i,§) : 1 <i < j < N) are i.i.d. normal random variables with
mean zero and variance 1/N, and An(j,i) = An(i,7). Suppose that By is a
N x N random matriz, such that for all k > 1

lim NTT <BN> —/Ra: wu(dx)

N—oo

in probability, for some compactly supported (deterministic) probability measure
w. Furthermore, let the families (An : N > 1) and (By : N > 1) be independ-
ent. Then for all k > 1

1
lim —EzTr [(ANA—BN)IC} = / ¥ B prge(d x)
N R

N—oo

in probability, where F := o (Bn : N > 1) and Ex denotes the conditional ex-
pectation with respect to F.

Proof of Theorem 3.2.4. We consider the truncated weights (W/");>1. Let I'y,

7
be an N x N matrix with entries given by

Fm(zaj) = KU(Wz’m7W]m)'
Given § € (0,1), define the function gs,,, such that
2
9o (Wi W2 = (i (W, W) = 6) "+ 28 (o (W, W) = )
As a consequence
Gom (W™, W) + 6% = ko (W], W) . (3.59)

Define the matrix I'g; (4, j) = go,m (W™, W]"). Let {Gi ;}1<ij<n beii.d. stand-
ard Gaussian random variables, independent of the sequence (W;);>1. Denote
by & the matrix with entries
. 1
Gy (i, j) = ﬁGi/\j,ivj .
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§3.7. Absolute continuity and symmetry

Define
B, =Tmo®y.

Similarly, define
Bg\Qf,)m = Fgé,m 0 ®N °

Lastly, consider a sequence of i.i.d. standard Gaussian random variables (G; j)lg,jg N

independent of the sigma field F generated by (W;)i>1,(Gij)ij>1. Define a
3)

. 3 . )
matrix B Nm with entries

1
ﬁG;/\j,i\/]’ .

We claim that, conditionally on (W;);c(n,

By, £ By +iBY . (3.60)

Indeed, conditionally on (W;);cn], the entries of Bg\l,?m, ng?m,
normally distributed. Thus, it is sufficient to compare the mean and variance
of the entries. All the variables in question have mean zero and the variances
match, too, due to (3.59). Following Proposition 3.6.1, there exists a measure
Hgs., such that

and Bg\?,’)m are

Q
=
)
o]
=
@
=
=
~
@
D

.1 2
lim NTr ((Bgv)m)k) = /R:Ek,ug&m(dx)

N—oo

in probability. In particular, we recall the expression for the even moments of
Hgs.,, Siven in (3.29):

My= > E| I @n.wrwr
TENCo(2k) (u,0)EE(Gyn)

Since g3, (W, W) < ko (W, W), it follows that s, . is uniquely determ-
ined by its moments, and is also compactly supported (Corollary 3.4.11). This
verifies the first condition of Lemma 3.7.1. Since Bg\?;)m is a standard Wigner
matrix, it follows from Lemma 3.7.1 that ’

. 1
lim NE]: [Tr ((Bg\%)m + 5B537)m)k)1| = /ka (Mgé,m H Msc,é)(d .1‘),

N—o0

where fi,. 5 is the semicircular law with variance 62 and density

1 T\ 2
Hsc,d(d$) = 975 4— (5) 1|$|S25 dz, zeR
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3. Adjacency spectra of kernel-based random graphs

Since both s m and fis. 5 are compactly supported, so is Hgs m B .5, and thus
the measure is completely determined by its moments.
From Proposition 3.4.9 we have

lim E { NE;[Tr(B(l) ) ]] = /R 2ty 7 (d )

N—oo

and

lim Var <JbE;[Tr((B%)m)k)]> < lim Var <]17 Tr((BE&?m)k)) =0.

N—oo N—oo

Thus,
1

lim —Er [T&“(Bg\l,)m)k] = / 2" g 7m(d )
N ' R

N—o0

in probability. Since the measures are uniquely determined by their moments,
this shows that

fo,rm = Mgy B fises- (3.61)

O
o
~

<

~
~
)

i)

(@)
Q,
=

S

We show that there exists g, such that

n}i_rfloo dr, (/’l’g6,m s tgs) = 0. (3.62)

If we can prove this, using Bercovici and Voiculescu [1993, Proposition 4.13] it
will follow that

Wy_{noo dL(:ugg,m H pise,5, pgs B Usc,z?) < m%gnoo dL(Mga,mmuga) = 0. (3.63)

To show (3.62), we employ Lemma 3.3.5. Note that, from Remark 3.4.11, we
get that for any fixed m > 1 one has

A}i_r}noo dr, (MBE\f?m’Mg&m) =0 in P-probability

where ,uB(z) is the empirical spectral distribution of B( )

This establishes condition (1) of Lemma 3.3.5. To complete the proof, we
need to verify condition (2), namely,

lim limsupP(dz (ESD(BY,), ESD(BY)) > €) = 0. (3.64)

m—ro0 N—o00

Here BS\Q,) is defined as B%?OO with m = co. From Proposition 3.3.1 we see that
31
d (ESD(BY),). ESD(BY)) < - Tr ((ng}m ~By)’)

1 . 2
Z 9s5,m Z ] Fgé,oo(,L’])) GZ/\j A2

= \
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§3.8. Stieltjes transform of the limiting measure

Hence we have

N
1
E[dL(ESD(Bﬁ}m),ESDU 3} FZ (Tgsm (i:5) = Ts o (i 1))

N
Z 95 OO(W17 W; ) (]—WJ<m<Wl + 1W1>W]>m)]
;ﬁ =1

> N2 Z ’ia WZ)W ) (1Wj<m<W¢ + 1W¢>Wj>m)] .
i#j=1
Just as in the proof of (3.54), it follows that the last term is bounded by Cm?~7.
Thus, using Markov’s inequality, condition (2) of Lemma 3.3.5 holds, too. In
conclusion, we can show that there exists 45 such that

) (3.61) . (3.47)
lim dL(Mga,m B psess oyr) = 1m dr(pigrm, o) =0
m—0o0 m—0o0

(3.63) ..
- Tr}gnoo dr (Mga,m H pse,d5 Hgs B 1hsc,s)-

Q
=
&
e
S
@
=3
=
=
@
D

Therefore it must be that p1, - = prg; B pige,5. The right-hand side is absolutely
continuous, as shown by Biane [1997, Corollary 2].

Finally, to show symmetry, we see that 1, - does not give weight to singletons
by absolute continuity. Therefore, in light of the weak convergence stated
n (3.47),

Uo,7(—00, =) = lim pig 7 m(—00, —2)
m—0o0

= lim Mo, T, m(m +OO) /1077'(*%7 +OO)

m—r0o0

for all x > 0. This completes the proof. O

§3.8 Stieltjes transform of the limiting measure

To prove Theorem 3.2.5, we first identify the Stieltjes transform for the measure
to.rm- We then proceed to take the limit m — oo, which requires a functional
analytic approach. Throughout this section, we fix z € CT, given as z = £ + in
with n > 0. If p is a probability measure having all its moments {my}r>1, it
follows from the definition of Stieltjes transform (3.7) that, for any z € Ct,

Suz) =~ % (3.65)

k>0

where the Laurent series on the right-hand side of (3.65) converges for |z| >
R > 0, with supp(p) = [-R, R].
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3. Adjacency spectra of kernel-based random graphs

§3.8.1 Stieltjes transform for truncated weights

To derive a characterisation of the limiting measure pis -, we need to first study
the truncated version (s rm. We borrow ideas from the proof of Chakrabarty
et al. [2015, Theorem 4.1]. The main result of this subsection will be Proposi-
tion 3.8.1, which requires a few technical lemmas to prove. The results in this
subsection hold for the regime 7 > 2 and ¢ < 7 — 1, as before.

We have that the (even) moments for the measure p, 7, are given by (3.29).
Using these, we derive a representation of S, . .. (2).

Proposition 3.8.1.
For > 2 and o € (0, 7 — 1) there exists a function a(z,x) = am(z,z) defined
on CT x [1,00) such that

Sy (2) = / a2, D)wam(d )
1

where fuy,m is the law of the truncated weights (W™). Moreover, a(z,x) satisfies
the following recursive equation:

oea) (24 [T aGproloimn(an) = -1 369

Before tackling the proof of the proposition, we lay the ground with two
auxiliary results. For any k > 1 and m € NCy(2k), recall the map T of (3.26),
where ym = {Vi,...,Viy1}. Consider the mapping Ly : [1,00)%"! — R defined
as

1/2(

La(x) = 62 (27 (1) 2722) )5 2 (27220, 27 (3)) - - - K 2 (T (2k), T2 (1)) (3.67)

and the function H; : R — R™ given as

Hi(y) = /[ el 22 T i (4), (3.68)

where we are integrating over x’ = (z2,...,2p41) € [1,00)F.

Lemma 3.8.2.
Let {May}r>1 be as in (3.29). Then

Ma= 3 [ Hmn(ay)

TENCy(2k) 71
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§3.8. Stieltjes transform of the limiting measure

Proof of Lemma 3.8.2. We begin by evaluating the integral on the right-hand
side. We have

/ Ho () piwom(d )
/ / La(y, s, ops )EE () v (d )

_/[1 . ’%17/2(377“(1)7377,42)) Hl/2($ﬂ(2k),$ﬁ,(1))/i%k$ (dx).

We know that, for 7 € NC2(2k), #ym = k + 1 and so the graph Gy, has k + 1
vertices. Furthermore, when we perform a closed walk of the form 1 — 2 —

. — 2k — 1 on the (unoriented) graph G, we traverse each edge ezactly
twice. In particular, the product K,(ly/z(ﬂ?'];r(l), TT(2)) Ii};/Q(xTﬂ(gk),xﬂ(l)) has
2k terms with k matchings, and so

k2@ rre) kP En e rnm) = [ Rel@e ).
(u,v)€E(Gyr)

Q
=
)
o]
=
@
=
=
~
@
D

We then have that

OoH7T m(d :/ Ko (T, Ty Ok+1q x
| = [T ol rnitax

(u,v)€E(Gyr)

=K

H Ko (Wy', W)

(u,0) EB(Gryr)

which concludes the proof. O

We show now some properties of H, that will help us in the upcoming compu-
tations.

Lemma 3.8.3.
Let k > 1 and let Hy be as defined in (3.68). Let m € NCo(2k). Then,

(1) If m = (1,2k)Umy, where 1 is a non-crossing pair partition of {2, ..., 2k—
1}, then,
o0
Hely) = [ Hoy (@)oo 9) i (d2). (3.69)
1

(2) If m = m Uma, then Hr (") = Hyp, (*)Hry(¢).
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3. Adjacency spectra of kernel-based random graphs

Proof of Lemma 3.8.3. We first prove property (1). Let 7 = (1,2k)Umy. Then,
vy ={(1),Va,...,Vir1}. We know that 2 € V5 and then yn(2k) = 2 € Vs,
Now, fix x1 = y. Then

H(y)

= /[1 . L:(y,za,..., xk+1)u%}fm(dxl)

= \/[1 )k K/(]}/Q(yu $2)/€£/2(3§'2, xﬂ(?))) e /{,(]7'_/2<Qj'7;r(2k71),1132)5;;'_/2(.%2’ y)ﬂ%}fm(d X/)

oy .

X / ko (w2, 27, (3)) - - Ky 2 (07 o 1)s T2) i (AX) pwm (d 2)

[1700)16—1
— / b (s 22) o (22) i (d ),
1

which is what we desired.

For property (2), let m = m; Umg, with m; € NCy({1,2,...,2r}) and m €
NCy({2r +1,...,2k}) and let us consider the function H(y) with y = 21 =
xﬂ(l) Then,

Hy(y) =
1/2

/[1 N K207, 2) - 5 (@7 20 BT 2041)) - - B! (BT (2 WG (AX).

We now claim that this integral can be split up into two integrals. First, consider
the element @7 (1). Since we assume that ‘1’ maps to V3 € vy, all elements of
V1 are mapped to y. To understand where other elements are mapped, we will
state a claim and see its consequences to this proof, and then prove it on 149.

Claim 3.8.4.
Under ym, the elements {2,...,2r} are mapped to the blocks

Vlu{‘/Q""7‘/;’/} Com,
and the elements {2r + 1,...,2k} are mapped to the blocks
Viu{Viga, o, Vet oy,

where v’ < k41 is some index. In particular yw(2r +1) € V.
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§3.8. Stieltjes transform of the limiting measure

From this claim we have that

Hx(y)
1/2(

:/[1 )k'l{i'/2(y’x7—7r(2))'"H(17'/2(x7—7r(2r)7x7'7r(2r+1))"‘K/a' $77r(2k)’y)ﬂ<§/’fm(dxl)
:/[1 )k Ii},/2(?/,337—7r(2))...n;/2(x7;r(2r),y),,_né/2(xﬂ(2k)’y)ﬂ%lfm(dx/)

= /[1 ) s e D (A7)

x /[ o 52T ) g i (@)
= Hp, (y)Hﬂ'Q (y>
This concludes the proof. ]

Proof of Claim 3.8.4. Let 1 resp. 72 be the shift by one on [2r] resp. {2r +
1, ..., 2k}. To prove this claim, it suffices to analyse the special indices {1, 2r, 2r+
1,2k}, since 1 and 79 are cyclic permutations on [2r] and {2r + 1, ..., 2k},
respectively. We will be using the fact that all elements in a block of v must be
either all odd or all even [Avena et al., 2023, Property 1|, and that any pairing
in 7 must have one element odd and the other even [Avena et al., 2023, Property
2.

(a) We already have 1 € V;. Now, let (01,2k) € mg, for some o7 such that
o1 > 2r + 1. Then, o; must be odd. Now, o7 + 1 is even, and cannot
belong to Vi. Thus y7(2k) = 01 +1 € {V,r41,..., Var}. This takes care
of the index 2k.

(b) Let us continue with (02, 2r) € m for some 03. We know that o2 must be
odd. Thus, yw(2r) = 02 +1 € {Va,...,Viv} =: y9m \ Vi. This resolves
the case of 2r.

(c) Lastly, by construction, ym(02) = 2r+1, which brings us to the last special
element. Since o2 and 2r 4 1 belong to the same block in v, it suffices to
show that this block is V7, that is, the block to which element 1 belongs.
Now, if (1,00 — 1) € 71, we are done, since ym(1) = o02. Suppose not,
and let (1,e1) € m; for some even integer e;. Similarly as before, if now
(e1 + 1,09 — 1) € m, we are done. Since m; and 7o act on the first 2r
elements and the remaining 2k — 2r elements respectively, then, by the
non-crossing nature, there is a sequence of even integers {ei}§:1 such that
(Lye1),(e1 + 1,e2),...,(et + 1,02 — 1) € m;. Computing 7 recursively
gives us that yw(1) = 09, and so yw(2r + 1) € V4.
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3. Adjacency spectra of kernel-based random graphs

This proves the claim. ]

We are now ready to prove Proposition 3.8.1.

Proof of Proposition 3.8.1. We now derive the Stieltjes transform of the meas-
ure fio.rm. Using (3.65) and Proposition 3.4.9, we have that

Moy,
Spto.rm (2) = =D et
k>0

Using Lemma 3.8.2 we substitute the expression for Ms,. We have

Stern(2) =~ X ey / S He()pwm(de)

k>0 TeNC>(2k)

— (Y ¥ L, (3.10)

k>0 €N Cy (2k)

where we could interchange the integral and the sum by Fubini’s theorem. Now,
we define the function a(z,z) as

H,(x
-y oy 9 (371)

k>0 1€ NCy(2k)

Then using (3.70) we have

Sovin(2) = [ alz,0)nnda).

We now state some properties of the function a(z,z). Firstly, for any z € C*
the map z — a(z, ) is in L*([1,00), ppw,m) as Hy is bounded . Secondly, for
any = € [1,00), the map z — a(z,z) is analytic in C, which follows from the
Laurent series expansion. Finally we see that a(z, ) lies in CT, for any z € C*
and x > 1. Indeed, for any (z) > 0, the expansion on the right-hand side
of (3.71) will always have a non-trivial imaginary part. Thus, since a(-,-) is
analytic, it will either lie completely in C~ or CT, since it can never take values
in R. However, Sy, .(z) € C*, and thus, a(z,z) € C* for any z € C* and
x> 1.

To write down a functional recursion for a(-,-) it is convenient to use the
notion of words. Any partition 7m can be associated to a word w, with any
elements in i, j € [2k] being associated with the same letter in w if 4, j are in the
same block of w. For example, m = {{1,2},{3,4}} can be written as w = aabb.
In particular, any partition m € NC5(2k) can be associated to a word w of the
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§3.8. Stieltjes transform of the limiting measure

form w = awiawsy, where wi, wo are words that can be empty. For any word
w associated to a partition m, let Hy = H,,. Furthermore, for w € NC5(2k)
we mean a word w whose associated partition 7 is in NC2(2k). Then we have,
using Lemma 3.8.3 in the third equality,
Hy()
=2 >
k>0 weNCs(2k)
__1_ D Hawyaw, ()
- S2k+1

k>1 weNCy(2k)
w=awiaw

Heywyo(z)Hy,y (2
:_7_2 Z 2(2k)+1 )

k>1weNC2(2k)
w=awiawsy

1 1 k Hawa H’LU
~ iy oy el s M)

E>1£=1 w1 eNC2(20—2) w2 ENCy(2k—20)

(3.72)

One can see that the word aw;a has as corresponding partition (1,2¢) Ury, with
m € NC2(2¢ — 2). Using (3.69) from Lemma 3.8.3, we have

a(z,x)

1 oo
- 22 >t Ha@r i (dy)
Z k=1 0=1 w eNCy (20-2) 1
Hy, ()
X Z z2k72€+1
waENCo(2k—20)
R T H,,(z)
T2z ZZ Z 22k—20+1
k>1 0=1 1€ NCo(2k—20)

D S e )

m ENC2(20—2)
1 00
- _ - _ CL(Z,.CL')/I a(z,y)l{g(l’,y)/«LW,m(dy)'

z z

Thus, we have (3.66), which completes the proof of Proposition 3.8.1. ]

Remark 3.8.5.
Equation (3.66) gives an analytic description of a in terms of the recursive
equation. Now, for any z € CT, we have that

z—L/’ e i ¢ (3.73)
0
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3. Adjacency spectra of kernel-based random graphs

Since a(z,x) € CT for any fived x € [1,00), applying (3.73) to a(z,z) and using
(3.66) gives us that

a(z,z) = z/ooo et exp {it /Ioo a(z, ) ko (2, y) pwm(d y)} dt. (3.74)

An immediate consequence of (3.74) is that a(z,z) is uniformly bounded in x
and m. Indeed, if we take z = & + in with n > 0, we have that

o0
la(z, x)| S/ e
0

o0 1
< / oMt = 1. (3.75)
0 n

exp {L‘t /IOO a(z,y)ko (@, y) wm(d y)}‘ dt

The bound in the second line holds since a(z,z) € CT, and so

/1 " 4z 9)ro (@, v)wam(dy) € CF

as kg > 1.

§3.8.2 Limiting Stieltjes transform

We now set up the framework required to prove Theorem 3.2.5. For the re-
mainder of this section, denote a,(z) := a(z, z), which implicitly depends on m.
We wish to extend Proposition 3.8.1 to the measure 5 by passing to the limit
m — 00. We have a natural candidate for the function a* in Theorem 3.2.5,
which should be the limit of a(-, -) as m tends to infinity. We now formalise this
idea through a series of lemmas.
Since our goal now is to show Theorem 3.2.5 we are going to work for the

remainder of this section with the following parameters:

(a) 7> 3,

(b) 0 <7 —2, and

(c) a parameter 8 such that 2V1+o< <7 —1.
Let C" = C*T UR be the closure of C*, and let v be the measure defined as

vidz) =2 dax. (3.76)

Consider the space L!'([1,00),v) of all functions f : [1,00) — C" that are
L' —integrable with respect to v.
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§3.8. Stieltjes transform of the limiting measure

Definition 3.8.6.

Let B denote the Banach space B := (L([1,00),v),|-|[1), where the norm ||-||1 is
the L' norm with respect to v as in (3.76), which is defined for f € L*([1,00),v)
as

I = | (@) da. (3.77)

Recall that iy, denotes the law of the truncated weights (W)"),, given as

T

MW,m() = Cr_nluw(')]l{'ﬁm}a
where ¢, =1 —m (D isa normalizing constant converging to 1 as m tends
to infinity, and py is the Pareto law defined in (3.2). For z € C*, let T, denote

the map

v =i [ e it [ st pian far (3.78)

Then, we have the following result.

Lemma 3.8.7.
There exists a constant ¢ = &(t,0,3) such that, for all z € C* with S(2)? =

n? > ¢ T, : B— B is a contraction mapping, with a contraction constant én=2.

Proof of Lemma 3.8.7. We first need to show that, for any f € B, one has
T.f € B. Indeed, for x > 1 it holds that

s < [T exp{us | f(y)ﬂa(x,y)uw(dy)}’dt <

where the last inequality holds as f(y) € CT for any y > 1, and thus the second
complex exponential is bounded by 1. Since |T% f(-)| is uniformly bounded, it is
L'—integrable with respect to v, and so T,(B) C B.

Now, we wish to show T, is a contraction. Let us take fi, fo € B. Recall
that for any 21,29 € CT and t > 0, we have

|21 — ef22| <ty — 2. (3.79)
Then, for any x € [1,00) we have that

|Tzf1('r) - Tzf2($)’
i / itz (eit I A @)se(@y)nw (dy) _ oit [ fa(y)ro (@y)nw(d y)) d t‘
0

o0
</ e M
0
oo
< / e M
0

it 77 i)k (@y)uw (dy) _ it [ f2(y)ko (z,y)nw (dy) ‘ dt

[ (1) = o)) et y>] d, (3.80)
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3. Adjacency spectra of kernel-based random graphs

where in (3.80) we use (3.79). Now, evaluating the integral over ¢ in (3.80), we
obtain

T2 f1(z) — T: fa(a)]

< C20 [T 140 - 2wty ay 38

where we explicitly write down the Pareto law pw (dy) := (7—1)y~ " dy. Recall
that ks (z,y) = (z Ay)(x Vy)?. Thus, (3.81) becomes

T, f1(x) — Ts fo(z)]
7-—1 / |f1(y (y)|zy™™ Tdy+/ |f1(y)ff2(y)|xay1—7dy).

T

Integrating with respect to v gives us

T f1 —T. f21

< (/m )| ”—Tdy>x—6daz
+Tn;1 A (a: / h() - <y>\y“dy)xﬁdx
- (/100|f1(y) —f2<y>ry“-T/y°°x1—ﬁdwdy

+ [T1nw) - pt [T dxdy) . (3.82)

Using 8 > 2, the first integral in (3.82) can be bounded by

/ S - Rl / TP dady
1 Y
— o /1 AW - RO dy <allfi — foli, (383)

since y>77°7 < 1 and ¢; = 1/(8 — 2). Similarly, the second integral in (3.82)
gives us

) Y [
/ W) — LWl / P dady < o / A1) — F()ly' " dy
1 1 1
< el fi — fall1, (3.84)

with ¢g = 1/(8 — 1 — o), where for the last line we have used 1 — 7 < —p.
Combining (3.83) and (3.84) in (3.82) gives us that

I
T f1— T2 fal1 < ﬁ”fl — fall1, (3.85)
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§3.8. Stieltjes transform of the limiting measure

where ¢ is a constant depending on 7, ¢ and . Thus, taking n > 0 to be
sufficiently large such that 7 > v/ gives us that T, is a contraction mapping on
B, hence proving the result. O

The following corollary is immediate from the Banach fixed-point theorem for
contraction mappings.

Corollary 3.8.8.
Let T, : B — B be the contraction map given in (3.78). Then, there ezists a
unique analytic function a} € B such that T,(a}) = aj.

We know from (3.74) that

a(z) = i/ el exp {Lt/ c;zlaz(y)/ﬁg(x,y)]l{y<m},uw(dy)} dt. (3.86)
0 1

Define a, as
wo) =i [ een i [T Gla e an e @8
0 1

Then, a, = T,(c,,'a,). We now have the following lemma.

Lemma 3.8.9.
Let a, and a, be as in (3.86) and (3.87), respectively. Then,

- C(m
las — asfy < €0

where C(m) is a constant depending on m such that lim,, ., C(m) = 0.

Proof of Lemma 3.8.9. Since a, € B, we again use (3.79) to get
o
lay(x) — a.(z)] < / e 't
0

T—1 [
< -7 '
< [ laee ey, (389)

[ etotumote ()| as

where we evaluate the integral over ¢ to get the factor of 72 in (3.88). Recall
that ¢, = 1 —m~ ("~ Using (3.75), we have that

5 T—1 [ .,
(@) = () < T [ ol d. (3.89)

)1\/0

Since kq(z,y) < (zy)"'?, we have

a T—1 1Vo /Oo (1vo)— (T — 1)m(1VU)7(7-71) v
z - Uz S a9 T d — 0"
|a (x) ‘ (x)| Cm773x m Y Y Cm((T — 1) - (1 V 0'))773x
(3.90)
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3. Adjacency spectra of kernel-based random graphs

where we use the fact that 7 > max(2,1 + o), and so the integral evaluated in
(3.90) is finite. Define
(7_ _ I)C;llm(l\/a)f(rfl)

o(m) = (r—1)—(1Vo)

Since ¢, tends to one, and m1V?)=("=1) tends to zero we have c(m) = 0,,(1).
Now, integrating both sides of (3.90) against =7 d x gives us

. c(m) [ _ C(m
Jor —asl < S50 [T arvesag = S50, (3.91)
n 1 n
since > 2V 1+ o, and where C(m) = 0,,(1), completing the proof. O

We are now at the penultimate step, where we have the necessary tools to
show the convergence of a, to a} in the space B.

Lemma 3.8.10.
Let a% be the unique fived point of the contraction map T, defined in (3.78).
Then, we have that
lim [jay, —a}]1 =0. (3.92)
m—0o0
Proof of Lemma 3.8.10. We have, using Lemma 3.8.9 and the fact that T}, is a
contraction, that

la. —azlli < lla. — a1 + ||a. — aZll1
< Cm)n> + | Ta(cptaz) — To(al) |
< C(m)n~ % +én ?|eytas — ailh

< Clmn™> + e ey, llaz — azlls + en~?|lazlllen,’ — 1.

Thus, choosing 7 > 0 such that 0 < 1 — éc,,,'n~2 < 1, we have that

1

1 __o

a, —a; < —F
o~ atlh < ;5

(Cm)n™ + Crn~llazllalen,’ —11) - (3.98)
Now, as m — oo, we have that C'(m) — 0, and ¢,, — 1. Since ||a}| < oo, we
have that the right-hand side of (3.93) goes to 0 as m — oco. Thus, ||a,—a}|1 —
0 as m — oo for z in an appropriate domain D,, C C*. However, in the complex
variable z, the domains of a, and a¥ are CT. Since the convergence holds for
an open set of this domain (that is, in D,y C CT), by the identity theorem of

complex analysis, the convergence holds everywhere in C*, that is, for each
zeCt. O
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§3.8. Stieltjes transform of the limiting measure

We now proceed towards a proof of Theorem 3.2.5, and to achieve this we
wish to take the limit m — oo to characterise S,, . We know that since
limy 00 flo,rm = Ho,r, then for each z € C, limp, o0 Sy, 1, (2) = Sy, . (2)-

Proof of Theorem 3.2.5. Let a} be the unique fixed point of the contraction
mapping 7, as in Corollary 3.8.8, and let S, . () be the Stieltjes transform of
o+ for any z € C*. We wish to show that

S0, () = [ at(ohmn(da).
We have that
/1 0. (@) (d ) — /1 a2 (@) (d 2)
/1 02 (@) m(d ) — / 0 (@) v (d )

<

| [ a@mn(n) - [ e, (3.94)
The first term in (3.94) can be evaluated as
[ a@mna) - [ @)
<(r- D! [ auta) - aia)le " da
<(r-— 1)07;1 /00 la.(z) — ai(m)\x*ﬁxﬁ”dx
<(r- 1)%1\\; — az[ly = om(1), (3.95)

as %77 < 1, and ||a, — a?||1 = om(1) from Lemma 3.8.10. The second term of
(3.94) can be evaluated as

| [ a@mntaa) - [~ o)

<t | [ )uw(dw)—/looai(x)uw(dx)+/1ooa§( ()| et — 1

o) [0 el o1 (- Dm T et —1]

< P /m dz + ” = - + » = o (1),
(3.96)

since |a%| < n~!. Combining (3.95) and (3.96) completes the proof of the the-
orem. O
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