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CHAPTER 2
Limiting spectra of inhomogeneous

random graphs

This chapter is based on:
L. Avena, R.S. Hazra, N. Malhotra. Limiting spectra of inhomogeneous random
graphs. [arxiv:2312.02805 ], 2023.

Abstract

We consider sparse inhomogeneous Erdős-Rényi random graph ensembles where
edges are connected independently with probability pij . We assume that pij =
εNf(wi, wj) where (wi)i≥1 is a sequence of deterministic weights, f is a bounded
function and NεN → λ ∈ (0,∞). We characterise the limiting moments in
terms of graph homomorphisms and also classify the contributing partitions.
We present an analytic way to determine the Stieltjes transform of the limiting
measure. The convergence of the empirical distribution function follows from
the theory of local weak convergence in many examples but we do not rely on
this theory and exploit combinatorial and analytic techniques to derive some
interesting properties of the limit. We extend the methods of Khorunzhy et al.
[2004] and show that a fixed point equation determines the limiting measure.
The limiting measure crucially depends on λ and it is known that in the homo-
geneous case, if λ → ∞, the measure converges weakly to the semicircular law
(Jung and Lee [2018]). We extend this result of interpolating between the sparse
and dense regimes to the inhomogeneous setting and show that as λ→ ∞, the
measure converges weakly to a measure which is known as the operator-valued
semicircular law.

https://arxiv.org/pdf/2312.02805
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§2.1 Introduction

Homogeneous Erdős-Rényi Random Graphs (ERRG) serve as the basis for many
mathematical theories in random graphs. Real-world networks are highly in-
homogeneous and have a far more complex structure. Various attempts have
been made to generalise this to other kinds of random graph models. One of the
successful extensions is the inhomogeneous Erdős-Rényi random graph model
introduced by Bollobás et al. [2007]. This graph has N vertices labelled by
[N ] = 1, ..., N , and edges are present independently with probability pij given
by pij =

f(xi,xj)
N ∧ 1, where f is a nice symmetric kernel on a state space S ×S,

and xi are certain attributes associated with vertex i belonging to S. If f is
bounded, the graph is a sparse random graph. To introduce the non-sparse
regime, in this article, we consider a small variant of the above inhomogeneous
random graph. The vertex set remains the same, but the connection probabil-
ities are given by

pij = εNf(wi, wj) ∧ 1, (2.1)

where εN is a tuning parameter, (wi) is a sequence of deterministic weights,
and f is a symmetric, bounded function on [0,∞)2. The weights can also be
generally random, but we do not consider this case. Note that when NεN → ∞,
the average degree is unbounded, and when NεN = O(1), the average degree
is bounded. We call the former case dense and the latter case sparse. In the
sparse case, the properties of the connected components were studied in Bol-
lobás et al. [2007]. They studied the properties of the connected components
and their relationship with the branching process. It was shown that the largest
component of the graph has a size of order N if the operator norm of the kernel
operator corresponding to f is strictly greater than 1 (see also [van der Hofstad,
2024, Theorem 3.9]). In the subcritical case, the sizes of the largest connec-
ted components can exhibit different behaviour compared to the ERRG. The
study of the largest connected components in various inhomogeneous random
graphs has attracted a lot of attention (see, for example, Bhamidi et al. [2010],
Broutin et al. [2021], Bet et al. [2023], van der Hofstad [2013], Devroye and
Fraiman [2014]). In this chapter, we are interested in the empirical distribution
of the eigenvalues of the adjacency matrix of the graph and how the transition
occurs from the sparse to the dense case in terms of the limiting spectral dis-
tribution. There hasn’t been much literature in this area, even though various
specific graphs have been studied. For example, the largest eigenvalue of the
sparse Chung-Lu random graph was studied in Chung et al. [2003], and this was
extended to an inhomogeneous setting by Benaych-Georges et al. [2020, 2019].
The bulk of the spectrum of sparse graphs is mainly studied through local weak
convergence. Here, we present a unifying approach to understanding both the
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sparse and the dense cases, allowing us to interpolate between the two regimes.
In the case of homogeneous ERRG, it is known that in the dense case, the

empirical distribution converges to the semicircle law after an appropriate scal-
ing (Tran et al. [2013]). In the sparse case, it converges to a measure that
depends on the parameter NεN → λ. The behaviour is much more complic-
ated in the sparse case. Various interesting properties were predicted by Bauer
and Golinelli [2001]. The existence of the limiting distribution was proved by
Khorunzhy et al. [2004], who also showed some interesting properties of the
moments and the limiting Stieltjes transform. The local geometric behaviour
of sparse random graphs can be well studied using the theory of local weak
convergence (LWC), which builds on the works Aldous and Lyons [2007] and
Benjamini and Schramm [2001]. It roughly describes how a graph looks like in
the limit around a uniformly chosen vertex. For a detailed review of LWC and
various other applications, see van der Hofstad [2024]. In a remarkable work
by Bordenave and Lelarge [2010], it was proved that if a graph with N vertices
converges locally weakly to a Galton-Watson tree, then the Stieltjes transform
of the empirical spectral distribution converges in L1 to the Stieltjes transform
of the spectral measure of the tree, and it satisfies a recursive distributional
equation. The example of homogeneous ERRG was treated in [Bordenave and
Lelarge, 2010, Example 2]. The limiting measure of sparse ERRG depends on
λ and is still very non-explicit. It was proved by Bordenave et al. [2017], Arras
and Bordenave [2023] that the measure has an absolutely continuous component
if and only if λ > 1. The size of the atom at the origin was shown by Bordenave
et al. [2011], and the nature of the atomic part of the measure was studied in the
same article. The study of so-called extended states at origin was initiated in
Coste and Salez [2021], and it was shown that for λ < e, there were no extended
states, and for λ > e, it has extended states. All these results were conjectured
in Bauer and Golinelli [2001]. Most of these results on local limits show that
properties are generally true for unimodular Galton-Watson trees.

In the simulations of Bauer and Golinelli [2001], it is clear that when λ

is slightly larger than 1, the limiting measure already starts taking the shape
of the semicircle law. It was shown in Jung and Lee [2018] that indeed, if
λ → ∞, then the limiting measure converges to the semicircle law. In the
general case, the moments of the limiting measure depend on certain kinds of
graph homomorphism counts, which also appeared in the works of Zhu [2020].
Although the theory of local weak convergence is very useful, we do not know if
it can be used to derive the moments of the limiting measure. In Chakrabarty
et al. [2021b], they considered IER to have weights wi = i/N , and NεN → ∞.
This result can be extended to general deterministic weights without significant
effort, and we state this general result in Section 2.2. The limiting measure is
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well-known in the free probability literature and appears as a universal object in
many inhomogeneous systems, referred to as the operator-valued semicircle law
[Speicher, 2011, Theorem 22.7.2]. The Stieltjes transform satisfies a recursive
analytic equation.

Our contribution
As mentioned earlier, although the convergence of the empirical spectral distri-
bution of graphs with a local-weak limit follows from the general result in Bor-
denave and Lelarge [2010], the limiting moments and contributing partitions are
not known in full generality. It is also unclear how closely the limiting measures
align in the sparse and dense regimes. Our main motivation for the work comes
from [Jung and Lee, 2018, Theorem 1], which addresses these issues in the case
of ERRG. We extend the results from ERRG to inhomogeneous models. We
explicitly derive the moments of the limiting measure for the inhomogeneous
setting, extending the works of Khorunzhy et al. [2004], albeit with a different
proof. We also study the Stieltjes transform of the limiting measure, following
the idea of Khorunzhy et al. [2004], and attempt an expansion of it for λ large
enough. This has also gained attention in the physics literature, see references in
Akara-pipattana and Evnin [2023]. We show that when λ≫ 1, the limiting mo-
ments closely resemble those of the IER, as derived in Chakrabarty et al. [2021b]
and also implied by the work of Zhu [2020]. We derive the Stieltjes transform
in the sparse setting using a fixed-point equation. The fixed point is simpler
in the case of homogeneous ERRG, but in the inhomogeneous case, it becomes
more complex. We explicitly characterise this fixed-point equation. We believe
that in the future, this will aid in determining the rate of convergence of the
empirical spectral distribution, which can be precisely quantified in terms of λ
and N . The rates of convergence in the free central limit theorem were recently
explored in Banna and Mai [2023], but these results are not directly applicable
to our setting. We leave this as an open problem. Obtaining an explicit rate
of convergence will provide an exact explanation of why the limiting measure
in the sparse setting is very close to the non-sparse setting for relatively small
λ > 1. We believe that the methods used in this article will be applicable in a
setting even when the local limits of the graphs are not tree-like.

Brief summary of the results
The two main results of this work aim to characterise the limiting spectral meas-
ure of inhomogeneous Erdős-Rényi random graphs. Our first result, Theorem
2.3.7, gives a characterisation of the moments of this measure, where the kth

moment for any k ≥ 0 is described in terms of homomorphism densities of the
inhomogeneity function f and special classes of partitions of the tuple [k]. We
can recover the moments of the dense regime asymptotically (as λ→ ∞) using
this result. The second result, Theorem 2.3.9, provides an analytic character-

42



§2.2. Setting

C
hapter

T
w

o

isation of the measure. In particular, we provide an analytic characterisation of
a functional of the resolvent of the adjacency matrix in terms of a fixed-point
equation. As a consequence, in Corollaries 2.3.10 and 2.3.11, we obtain the
Stieltjes transform of the sparse and dense limiting measures. The form of the
limiting Stieltjes transform can be seen as an alternative description of the form
obtained through local weak convergence (whenever it applies).

Outline
We begin Section 2.2 by describing the model and stating the results of the dense
regime. We state the assumptions on the sparse setting more explicitly and pro-
ceed by stating our main results for this setting. We then describe a relationship
with local weak convergence and also give some examples of popular random
graph models. We show that the sparse Chung-Lu type model falls into our set-
ting, and while the Norros-Reittu model and the Generalised Random Graph
model do not directly fall into our setting, we show that asymptotically the three
models have the same spectral distribution, which has a free-multiplicative part
that can be seen from our main results.

In Section 2.4 we prove our first main result, which takes a combinatorial
approach, and we set up all the necessary tools used in proving the result. We
identify the moments of the limiting spectral measure in terms of partitions
of a tuple and graph-homomorphism densities. We provide a characterisation
of the partitions and explicit expressions for the moments that are given by
homomorphism densities defined based on these partitions. We further identify
a leading order of the moments and a polynomial in λ−1, which was also seen
for the homogeneous setting in Jung and Lee [2018].

In Section 2.5 we prove our second main result, which in contrast has an ana-
lytic flavour. We set up the relevant analytic structures, and instead of working
directly with the Stieltjes Transform, we work with a functional of the resolvent
of the adjacency matrix, which was introduced in Khorunzhy et al. [2004]. We
borrow both fundamental and advanced tools from analysis to provide an exact
analytic characterisation of the limiting spectral measure. We conclude with
the Appendix as Section 2.6 where we state the key analytic tools we use in
Section 2.5.

§2.2 Setting

§2.2.1 Model
We consider the inhomogeneous Erdős-Rényi random graph (IER) GN on the
vertex set [N ] = {1, . . . , N} where edges are added independently with prob-
ability pij . As mentioned before, we will assume that pij has a special form
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as
pij = εNf(wi, wj) ∧ 1 ,

where εN is a tuning parameter such that εN → 0, (wi)i≥1 is a sequence of
deterministic non-negative weights and f : [0,∞)2 → [0,∞) is bounded and
continuous. We will use PN to denote the law of this random graph, and we will
drop the subscript N for notational convenience, and E will be the expectation
with respect to the law P. We will always assume that N is large enough and
hence εN is small enough to make pij ≤ 1 since f is bounded.

Let MN denote the adjacency matrix of the graph GN , that is, the (i, j)-th
entry is 1 if i shares an edge with j, and 0 otherwise. So MN is a symmetric
matrix, where any entry MN (i, j) is distributed as Bernoulli random variable
with parameter pij as in (2.1) and {MN (i, j), i ≥ j} is an independent collection.
Instead of studying the adjacency matrix MN we will study the scaled adjacency
matrix. In particular, we do a CLT-type scaling by the variance of the entries,
that is, we study the matrix

1√
NεN (1− εN )

MN . (2.2)

The empirical measure which puts mass 1/N on each eigenvalue of an N × N

random matrix AN is called the Empirical Spectral Distribution of AN , and is
denoted by

ESD(AN ) :=
1

N

N∑
i=1

δλi
. (2.3)

We are interested in studying the following object:

ESD

(
MN√

NεN (1− εN )

)
=

1

N

N∑
i=1

δλi
,

where λ1, . . . , λN are the eigenvalues of (NεN (1− εN ))−1/2MN .
We are interested in the weak convergence (in probability) of the above

measure and the limiting measure is called the Limiting Spectral Distribution
(LSD). The limiting measure depends on the following two geometric regimes
in random graphs and its properties differ in the two cases:

• Dense Regime: εN → 0 and NεN → ∞. The connectivity regime with
NεN ≫ C logN falls in this regime.

• Sparse Regime : εN → 0 and NεN → λ ∈ (0,∞).
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Dense regime
In literature, the dense regime is characterised by εN ≡ constant but we will not
use the features of dense graphs in this article and hence by abuse of terminology,
we say that a graph is dense when it is not sparse. Let us now recall briefly what
happens in the dense regime. The following result was proved in Chakrabarty
et al. [2021b] and can also be obtained from Zhu [2020].

Theorem 2.2.1 (ESD in the dense case).
Consider the IER graph with pij as in (2.1) with εN → 0 and NεN → ∞ .
Suppose the deterministic weights satisfy the following assumption:

Let oN be an uniform random variable on [N ] and let WN = woN . We
assume that there exists a W with law µw such that

WN
d−→W.

Then there exists a measure µf which is compactly supported such that

lim
N→∞

ESD

(
MN√

NεN (1− εN )

)
= µf weakly in probability.

Many interesting properties of this limiting measure are known. To define
the moments we need a quantity which is similar to the homomorphism density
of graphons. Define

t(Hk, f, µw) :=

∫
[0,∞)k

∏
{a,b}∈E(Hk)

f(wa, wb)µ
⊗

k
w (dw) , (2.4)

where Hk is a simple graph on k vertices with the edge set E(Hk), µ
⊗

k
w (·) is

the k-fold product measure of µw(·), and w = (w1, ..., wk). If we restrict the
range of f to [0, 1] and take µw(·) as the Lebesgue measure on [0, 1], then this
quantity is the standard graph homomorphism density (see Lovász and Szegedy
[2006]).

The rooted planar tree is a planar graph with no cycles, with one distin-
guished vertex as a root, and with a choice of ordering at each vertex. The
ordering defines a way to explore the tree starting at the root. One of the al-
gorithms used for traversing the rooted planar trees is depth-first search. An
enumeration of the vertices of a tree is said to have depth-first search order if
it is the output of the depth-first search.

We now recall the definition of a Stieltjes transform of a measure µ on R.
For z ∈ C+, where C+ is the upper half complex plane, the Stieltjes Transform
of a measure µ is given by

Sµ(z) =

∫
R

1

x− z
µ(dx).
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The following proposition gives the properties of the measure µf which appears
in Theorem 2.2.1.
Proposition 2.2.2.
(a) [ Moments] The measure µf is the unique probability measure identified

by the following moments:∫
x2kµf (dx) =

Ck∑
j=1

t(T k+1
j , f, µw),

∫
x2k+1µf (dx) = 0, k ≥ 0, (2.5)

where T k+1
j is the jth rooted planar tree with k + 1 vertices and Ck is the

kth Catalan number.

(b) [Stieltjes transform] There exists an unique analytic function H defined
on C+ × [0,∞) such that

Sµf
(z) =

∫ ∞
0

H(z, x)µw(dx),

and H(z, x) satisfies the integral equation

zH(z, x) = 1 +H(z, x)

∫ ∞
0

H(z, y)f(x, y)µw(d y), x ≥ 0. (2.6)

Example 2.2.3 (Rank 1).
One special case which arises in many examples of random graphs, and will
be discussed later is when f has a multiplicative structure, that is, f(x, y) =

r(x)r(y), where r : [0,∞) → [0,∞) is a bounded continuous function. In this
case, the measure

µf = µs ⊠ µr(W )

where µsc is the standard semicircle law and µr(W ) is the law of r(W ) and ⊠
is the free multiplicative convolution of the two measures. When r is identically
equal to 1 then µf = µs, the standard semicircle law. We refer to [Chakrabarty
et al., 2021b, Theorem 1.3] for details.

Sparse regime
The seminal work of Bordenave and Lelarge [2010] characterises the limiting
spectral distribution for locally tree-like graphs. In particular, if one takes AN

to be the scaled adjacency matrix as given in (2.2) of a random graph GN , they
show that if the following hold:

• The sequence of random graphs {GN}N≥1 have a weak limit G;

• For a uniformly chosen root oN ∈ GN , the degree sequence of the rooted
graph (deg(GN , oN ))N≥1 is uniformly integrable;
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• Let G∗ denote the set of rooted isomorphism classes of rooted connected
locally finite graphs, and let U2(G) be the distribution on G∗ × G∗ of the
pair of rooted graphs ((G, o1), (G, o2)), where o1, o2 are uniformly chosen
roots of G. Then, U2(GN ) converges weakly to G ⊗ G, that is, to two
independent and identical copies of G;

then, there exists a unique probability measure µλ on R such that ESD(AN ) =⇒
µλ weakly in probability as N → ∞. Furthermore, it is shown that when f ≡ 1,
the measure µλ represents the expected spectral measure associated with the
root of a Galton-Watson tree with an offspring distribution of Poi(λ) and weights
1/

√
λ. This result comes from the theory of local weak convergence, also known

as Benjamini-Schramm convergence (see van der Hofstad [2024], Benjamini and
Schramm [2001]), which is a powerful tool to study spectral measures associated
with many sparse random graph models.

In particular, consider the space H of holomorphic functions f : C+ → C+,
equipped with the topology induced by uniform convergence on compact sets.
Then, this is a complete separable metrizable compact space. The resolvent of
the adjacency operator is given as

RAN
(z) = (AN − zI)−1

for each z ∈ C+. The map z 7→ RAN
(z)(i, i) is in H, and the Stieltjes transform

of ESD(AN ) is given by trRAN
(z), where tr = N−1Tr denotes the norm-

alised trace operator. Let G∗ denote the set of rooted isomorphism classes of
rooted connected locally finite graphs. Assume that the random graph sequence
(GN )N≥1 has the random local limit G ∈ G∗, and further that G is a Galton
Watson Tree with degree distribution F∗, that is, a rooted random tree obtained
from a Galton-Watson process with root having offspring distribution F∗ and
all children having a distribution F (which may or may not be the same as F∗).

Let SAN
(z) denote the Stieltjes transform of the empirical measure ESD(AN ).

It was shown in [Bordenave and Lelarge, 2010, Theorem 2] that there exists a
unique probability measure Q on H, such that for each z ∈ C+

Y (z)
d
=

(
z +

P∑
i=1

Yi(z)

)−1

where P has distribution F and Y, {Yi}i≥1 are i.i.d. with law Q and independent
of P . Moreover

lim
N→∞

SAN
(z) = EX(z) in L1 ,
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where X(z) is such that:

X(z)
d
= −

(
z +

P∗∑
i=1

Yi(z)

)−1
, (2.7)

where {Yi}i≥1 are i.i.d. copies with law Q, and P∗ is a random variable inde-
pendent of {Yi}i≥1 having distribution F∗.

In [Bordenave and Lelarge, 2010, Example 2], we see that the sparse Erdős-
Rényi random graph with p = λ

N falls in their setup, and in particular, P is
distributed as Poi(λ). For a general f , [Bordenave and Lelarge, 2010, Theorem
1] still guarantees the existence of µλ, since the graphs we will consider will
have a local weak limit known as the multi-type branching process (see [van der
Hofstad, 2024, Chapter 3] for more details). As f is bounded, we get that the
degree sequence will still remain uniformly integrable. As mentioned before
we will not follow this well-known route of local weak convergence. Instead,
we show the above convergence through albeit classical methods. We now in-
troduce the conditions under which we will work. We will have the following
sparsity assumption on εN and a regularity assumption on the function f and
the weights:

A.1 Connectivity function: Let f : [0,∞)2 → [0,∞) be a bounded, con-
tinuous function, with |f | ≤ Cf ∈ (0,∞),

A.2 Sparsity assumption : NεN → λ ∈ (0,∞),

A.3 Assumption on weights: Let oN be an uniform random variable on [N ]

and let WN = woN . We assume that there exists a W with law µw such
that

WN
d−→W.

We make some preliminary remarks about the assumptions. Since f is
bounded, we can easily see that f is µw−integrable. In the sparse setting,
in most important examples, the graph is locally tree-like and this can be seen
from the theory of local weak convergence.

Note that the limit λ → ∞ recovers the dense regime. By this choice, we
can see that 1−εN ≈ 1 as N becomes very large, and NεN (1−εN ) → λ. Thus,
our matrix of interest is a scaled adjacency matrix now defined as follows:

AN =
1√
λ
MN . (2.8)
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§2.3 Main Results

In this subsection, we state the main results of this article. As mentioned before
in the introduction, we would like to understand first the limiting empirical
distribution of the sparse inhomogeneous Erdős Rényi (IER) random graph and
also study the behaviour of the measure when the sparsity parameter increases.
Recall that the adjacency matrix is defined in (2.8) and the empirical spectral
distribution is denoted by ESD(AN ) (see (2.3)). In what follows, we will see
that

lim
N→∞

ESD(AN ) = µλ weakly in probability (2.9)

and µλ ⇒ µf where µf is as in Theorem 2.2.1. For the homogeneous case,
where f ≡ 1, we get the final limit as the classical Wigner’s semicircle law, that
is, µf = µs. These iterated limits were studied in Jung and Lee [2018]. An
interesting open question is how close µλ is to µf . Although we do not manage
to give an explicit estimate, through the moment method we show that it is
very close and the structure of the moments of µf is hidden inside the structure
of the moments of µλ. This will be our first result. To describe the moments
we need to introduce some notation.

§2.3.1 Method of moments: Combinatorial Approach
We first define the Special Symmetric Partitions which was introduced in Bose
et al. [2022]. Let P(k) denote the set of partitions of k and P2(k) be the set of
pair partitions where each block has size 2. Let NC(k) be the set of non-crossing
partitions of [k] and NC2(k) be the set of non-crossing pair partitions of [k].
Note that |NC2(2k)| = 1

k+1

(
2k
k

)
and these are known as the Catalan numbers

and represent the even moments of the semicircle distribution.

Partition terminology. Let π be a partition of a tuple [k]. Let π consist of
disjoint blocks V1, V2, . . . , Vm, for some 1 ≤ m ≤ k. We arrange the blocks in
the ascending order of their smallest element. For any block Vi, a sub-block is
defined to be a subset of consecutive integers in the block. Two elements j and
k in a block Vi are said to be successive if for all a between j and k, a /∈ Vi.

Definition 2.3.1 (Special Symmetric Partition).
A partition π of a tuple [k] = {1, 2, ..., k} is said to be a Special Symmetric
partition if it satisfies the following:

• All blocks of π are of even size.
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• Let V ∈ π be any arbitrary block, and let a, b ∈ V be two successive
elements in V with b > a. Then, either of the following is true:

1. b = a+ 1, or,

2. between a and b there are sub-blocks of even size.
In other words, there are blocks V1, V2, . . . , Vℓ, such that there ex-
ist elements {ai1 , ai1+1, . . . , ai1+k1} ∈ V1, {ai2 , . . . , ai2+k2} ∈ V2,
. . . , {ail , . . . , aiℓ+kℓ} ∈ Vℓ, with a = ai1 − 1 and b = aiℓ+kℓ + 1,
such that k1, k2, . . . , kℓ are even.

We denote the class of Special Symmetric partitions as SS(k). Note that for
k odd, SS(k) = ∅. For example, take π = {{1, 4, 5, 8}, {2, 3, 6, 7}, {9, 10}} ∈
SS(10). Note here that between 4 and 5 in the first block, there are no elements
from the other blocks, and between 5 and 8, there is the sub-block {6, 7} that
is of even size.

In Bose et al. [2022] a more elaborate definition was given and this is useful
in computations. Later, it was shown by [Pernici, 2021, Section 3] that the
definition in Bose et al. [2022] is equivalent to the above one. In Pernici [2021],
the set SS(2k) is denoted by P (2)

2 (k), a special subclass of k-divisible partitions.
These partitions appeared as “Clickable Partitions” in Ryan [1998], where they
were introduced to describe the limit distribution of dense random matrix mod-
els, and in the same spirit, they were also used for sparse random graphs in the
paper Male [2017].

Remark 2.3.2.
We note down some important properties of SS(k):

1. If k is even, then

{π ∈ SS(k) : |π| = k/2} = {π ∈ NC2(k)}.

2. SS(2k) = NC(2k) for 1 ≤ k ≤ 3. When k ≥ 4, there are partitions
π ∈ SS(2k) that are either crossing or non-paired. For example, for k = 8,
{{1, 2, 5, 6}, {3, 4, 7, 8}} is a Special Symmetric partition. In particular,
crossings start appearing when there are at least two or more blocks in a
partition having 4 or more elements.

3. The set of Special Symmetric partitions are in one-to-one correspondence
with coloured rooted trees (see [Bose et al., 2022, Lemma 5.1]) and these
trees appeared first in the analysis in the works of Bauer and Golinelli
[2001].
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Any partition π ∈ P(k) can be realized as a permutation of [k], that is, a
mapping from [k] → [k]. Let Sk denote the set of permutations on k elements.
Let γ = (1, 2, . . . , k) ∈ Sk be the shift by 1 modulo k. We will be interested in
the compositions of the two permutations γ and π, denoted by γπ, and this will
be seen below as a partition.

Remark 2.3.3.
While π is a partition and γ is a permutation, we do a composition in the
permutation sense. We read the partition π as a permutation, compose it with
the permutation γ, and finally read γπ as a partition. As an example, consider
π = {{1, 2}, {3, 4}} and γ = (1, 2, 3, 4). To compute γπ, we read π as (1, 2)(3, 4),
and compute γπ = (1, 3)(2)(4). We finally read γπ as {{1, 3}, {2}, {4}}.

Definition 2.3.4 (Graph associated to a partition).
For a fixed k ≥ 1, let γ denote the cyclic permutation (1, 2, . . . , k). For a
partition π, we define Gγπ = (Vγπ, Eγπ) as a rooted, labelled graph associated
with any partition π of [k], constructed as follows.

• Initially consider the vertex set Vγπ = [k] and perform a closed walk on
[k] as 1 → 2 → 3 → · · · → k → 1 and with each step of the walk, add an
edge.

• Evaluate γπ, which will be of the form γπ = {V1, V2, . . . , Vm} for some
m ≥ 1 where {Vi}i are disjoint blocks. Then, collapse vertices in Vγπ to
a single vertex if they belong to the same block in γπ, and collapse the
corresponding edges. Thus, Vγπ = {V1, . . . , Vm}.

• Finally root and label the graph as follows.

– Root: We always assume that the first element of the closed walk (in
this case ‘1’) is in V1, and we fix the block V1 as the root.

– Label: Each vertex Vi gets labelled with the elements belonging to the
corresponding block in γπ.

Example 2.3.5.
Consider for example partitions of k = 6 and reading the partitions as permuta-
tions and evaluating their composition with γ gives us:

(a) π1 = {{1, 2, 5, 6}, {3, 4}},

(b) π2 = {{1, 2, 3, 4}, {5, 6}},

(c) π3 = {{1, 6}, {2, 3, 4, 5}}.

(a) γπ1 = {{1, 3, 5}, {2, 6}, {4}},

(b) γπ2 = {{1, 3, 5}, {2, 4}, {6}},

(c) γπ3 = {{1}, {2, 4, 6}, {3, 5}}.

The corresponding graphs Gγπ1 , Gγπ2 and Gγπ3 are as follows:
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2,61,3,5

4

1,3,5 2,4

6

2,4,6 1

3,5

One can see that structurally the three graphs are the same. However, if we root
them on V1, then the first two graphs are different from the third. Further, if we
label the vertices as shown, all three graphs become distinct.

Example 2.3.6.
Here, we illustrate the type of graph structures that can occur for π ∈ SS(k).
Consider k = 8, and the following three partitions.

(a) π1 = {{1, 2, 3, 4}, {5, 6, 7, 8}}.

(b) π2 = {{1, 4, 5, 8}, {2, 3, 6, 7}}.

(c) π3 = {{1, 2, 4, 5}, {3, 6, 7, 8}}.

(a) γπ1 = {{1, 3, 5, 7}, {2, 4}, {6, 8}},

(b) γπ2 = {{(1, 5}, {2, 4, 6, 8}, {3, 7}},

(c) γπ3 = {{1, 3, 7}, {2, 5}, {4, 6, 8}}.

Then, π1, π2 ∈ SS(8) but π3 /∈ SS(8). Moreover, π1 is non-crossing whereas
π2 has 2 crossings. The corresponding graphs are as below.

2,41,3,5,7

6,8

2,4,6,8 1,5

3,7

4,6,8 1,3,7

2,5

The following result is the first main result of the article. This is an extension
of the results obtained recently in Bose et al. [2022] and the homogeneous case
obtained in Jung and Lee [2018].

Theorem 2.3.7 (Identification of moments).
(a) Let AN be the adjacency matrix of the sparse IER random graph as defined
in (2.8) satisfying assumptions A.1–A.3. Then there exists a deterministic
measure µλ such that

lim
N→∞

ESD(AN ) = µλ weakly in probability.
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Moreover, µλ is uniquely determined by its moments, which are given as follows:

mk(µλ) =

∫
xkµλ(dx) =


0, k is odd,
k/2+1∑
l=2

∑
π∈SS(k):
|γπ|=l

λl−1−
k
2 t(Gγπ, f, µw), k is even,

(2.10)
where SS(k) is the set of all Special Symmetric partitions of [k] as defined
in Definition 2.3.1, Gγπ is the graph associated to a partition π as defined in
Definition 2.3.4, and t is the homomorphism density as in (2.4).

(b) As λ→ ∞,
µλ ⇒ µf ,

where µf is the measure described in Theorem 2.2.1.

Remark 2.3.8.
Note that limiting second moment is given by m2 = t(Gγπ, f, µw) where π =

{1, 2} and γπ = {{1}, {2}}. Hence Gγπ is the graph with 2 vertices and 1 edge.
Therefore

m2(µλ) =

∫
(0,∞]2

f(x, y)µw(dx)µw(d y) ,

and hence the measure is non-degenerate.

§2.3.2 Stieltjes transform: Analytic approach
It is well-known that µλ can be characterised by its Stieltjes transform, which,
in turn, can be characterised by a random recursive equation. Local weak
convergence is a powerful tool for studying the Stieltjes transform of spectral
measures associated with sparse random graphs. However, it becomes challen-
ging to provide accurate estimates on the Stieltjes transform to study local laws
and extreme values. Therefore, we present an alternative approach to studying
the Stieltjes transform of the spectral measure of IER graphs. The ideas used
here originate from the works of Khorunzhy et al. [2004].

We denote the upper half complex plane by

C+ = {z ∈ C : z = ζ + ιη, η > 0}.

For an analytic approach to the problem, we analyse the resolvent of this matrix,
defined as

RAN
(z) := (AN − zI)−1, z ∈ C+.
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The Stieltjes transform of the empirical spectral distribution of AN is given by

SAN
(z) =

∫
R

1

x− z
ESD(AN )(dx) = tr(RAN

(z)),

where tr denotes the normalised trace. To get more refined estimates we need
an additional assumption on the connectivity function:

A.4 f : [0,∞)2 → [0,∞) is symmetric and bounded by a constant Cf . Moreover,
f is Lipschitz in one coordinate, that is, for all x1, x2, y ∈ [0,∞),

|f(x1, y)− f(x2, y)| ≤ CL|x1 − x2|

where CL is the Lipschitz constant for f .

To state the result we will need a Banach space of analytic functions. Con-
sider the space B defined by

B =

{
ϕ : [0,∞)× [0,∞) → C analytic

∣∣∣∣∣ sup
x,y≥0

|ϕ(x, y)|√
1 + y

<∞

}
(2.11)

and take the norm
∥ϕ∥B = sup

x,y≥0

|ϕ(x, y)|√
1 + y

.

Then, (B, ∥ · ∥B) is a Banach space. We defer the proof of this in Proposition
2.6 in the appendix.

Consider the function GN : [0,∞)× C+ given by

GN (u, z) :=
1

N

N∑
i=1

eι̇ur
N
ii (z) (2.12)

where rNii (z) = RAN
(z)(i, i), the ith diagonal element of the resolvent of AN . It

turns out that

∂GN (u, z)

∂u

∣∣∣∣
u=0

= SAN
(z)

and hence one can derive a form of the limiting Stieltjes transform.

Theorem 2.3.9 (Analytic functional of the resolvent).
Let AN be the adjacency of the IER random graph as defined in (2.8) and
satisfying assumptions (A.2)–(A.4). Further, consider GN as defined in (2.12).
Define the function df (x) as

df (y) =

∫ ∞
0

f(x, y)µw(dx). (2.13)
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Then, for z ∈ C+ there exists a function ϕ∗(x, u) := ϕ∗z(x, u) ∈ B such that for
each z ∈ C+ and uniformly in u ∈ (0, 1] we have

lim
N→∞

E[GN (u, z)]

= 1−
√
u

∫ ∞
0

e−λdf (y)
∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y,v/λ) d v µw(d y) (2.14)

and
Var[GN (u, z)] → 0.

Here, ϕ∗ := ϕ∗z is a unique analytic solution (in the space B) for the fixed point
equation:

ϕ∗(x, u)

= Fz(ϕ
∗)(x, u)

= df (x)−
∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y, vλ) d v

)
µw(d y),

(2.15)

where J1 is the Bessel function of the first order of the first kind defined as

J1(x) =
x

2

∞∑
k=0

(−1)k(x2/4)k

k!(k + 1)!
. (2.16)

Observe that there is a slight difference in the right-hand sides of (2.14) and
(2.15) but in the case f ≡ 1 both are the same. The next corollary describes
the convergence of the Stieltjes transform.

Corollary 2.3.10 (Identification of the Stieltjes Transform).
Under the assumptions of the above theorem, we have that any z ∈ C+,

SAN
(z) → Sµλ

(z) in probability,

where µλ is as in Theorem 2.3.7. The Sµλ
(·) satisfies the following equation:

Sµλ
(z) = ι̇

∫ ∞
0

e−λdf (y)
∫ ∞
0

eι̇vzeλϕ
∗
z(y,

v
λ
) d v µw(d y), z ∈ C+. (2.17)

To recover the dense regime, we study the asymptotic λ → ∞ as in the next
corollary.
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Corollary 2.3.11 (Stieltjes Transform as λ → ∞).
For λ→ ∞, we have that

lim
λ→∞

Sµλ
(z) = Sµf

(z) (2.18)

for each z ∈ C+, where Sµf
(z) satisfies an integral equation given by

Sµf
(z) :=

∫ ∞
0

H(z, x)µw(dx) , (2.19)

where H(z, x) satisfies the f dependent fixed point equation (2.6).

Remark 2.3.12 (The case f ≡ 1).
In the case when f ≡ 1, we recover the homogeneous setting. We know ϕ∗z
satisfies the fixed point equation (2.15). If we substitute f ≡ 1 in (2.15) we get

ϕ∗(x, u) = 1−
√
u

∫ ∞
0

e−λ
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y, vλ) d v

)
µw(d y) .

We see that the right-hand side has no dependency on the parameter x, and so,
we have a unique analytical functional ϕ̃∗(u) = ϕ∗(x, u) that satisfies the fixed
point equation

ϕ̃∗(u) = 1− e−λ
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ̃
∗(v/λ) d v . (2.20)

This matches the result of Khorunzhy et al. [2004].
From Example 2 of Bordenave and Lelarge [2010], we have that ϕ̃∗z has the

form ϕ̃∗z(u) = E[eι̇uX(z)] for each z ∈ C+, where X(z) has the law Q as described
in (2.7). So, for any z ∈ C+, we have

Sµλ
(z) = ι̇

∫ ∞
0

eι̇vze
−λ+λE

[
eι̇

v
λ
X(z)

]
)
d v = ι̇

∫ ∞
0

eι̇vzφP

(
E
[
eι̇

v
λ
X(z)

])
d v ,

where

φP (z) = E[zP ] = eλ(z−1), , P ∼ Poi(λ) .

§2.3.3 Examples
We now list out a few examples of the model that can be approached by our
methods.
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Example 1: Homogeneous Erdős-Rényi Random Graph. When we
have f ≡ 1, the model reduces to the standard homogeneous Erdős-Rényi graph
with edge probability p = λ/N . As discussed, in this case the moments of µλ
can be computed. In particular, we have t(Gγπ, f, µw) = 1 for all π. Hence we
have

m2k(µλ) =
k∑

l=1

λl−k|{π ∈ SS(2k) : |π| = l}|

= |NC2(2k)|+
k−1∑
l=1

λl−k|{π ∈ SS(2k) : |π| = l}| .

Since the (even) moments of the semicircle law are given by the Catalan num-
bers, it is immediate that

lim
λ→∞

m2k(µλ) = m2k(µs).

Hence Theorem 2.3.7(b) is true in this special case. It is known that µλ has an
absolutely continuous spectrum when λ > 1 (see Bordenave et al. [2017], Arras
and Bordenave [2023]). In this case, the Stieltjes transform is given by

Sµλ
(z) = −ι̇

∫ ∞
0

eι̇vze−λ+λϕ̃∗(v/λ) d v ,

and ϕ̃∗(v/λ) satisfies the equation (2.20). What is interesting and cannot be
immediately derived from our results is the rate of convergence of the measure
µλ to µs as λ becomes large. In the simulation below we consider the λ = 10 and
the simulation already suggests the appearance of semicircle law. We believe
the representation above of the Stieltjes transform as in Corollary 2.3.10 can be
used to prove the rate of convergence as done in the classical Wigner case in
Bai [1999].

Example 2: Chung-Lu Random Graph. Let (di)i∈[n] be a graphical se-
quence and denote by m1 =

∑
i di and m∞ = maxi di, the total and the max-

imum degree, respectively. Let f be defined on [0, 1]2 as

f(x, y) = xy ∧ 1

and

wi =
di
m∞

, εN =
m2
∞

m1
.

We can choose an appropriate degree sequence (di)i≥1 such that m∞ = o(
√
m1)

and NεN → λ. The connection probabilities will be given by

pclij = εN

(
didj
m2
∞

∧ 1

)
=
didj
m1

.
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(a) λ = 5. (b) λ = 10.

Figure 2.1: The homogeneous Erdős-Rényi Random Graph on 10,000 vertices.

Let oN be a uniformly chosen vertex and doN be the degree of this vertex.
We assume that

doN
m∞

d→W

where W has law µw which is compactly supported. Then the conditions of
Theorem 2.3.7 are satisfied. Hence there exists a limiting spectral distribution
which we call µCL,λ and the even moments can identified in the following way.

Let SSℓ(2k) be the set of Special Symmetric partitions with ℓ blocks. Then,∫
R
x2kµCL,λ(dx) =

k∑
ℓ=1

∑
π∈SSℓ(2k)

λℓ−kt(Gγπ, f, µw)

=
2k∑
ℓ=1

∑
π∈SSℓ(2k)

λℓ−k
|γπ|∏
j=1

∫
R
xbj(γπ)µw(dx) ,

where b1(σ), · · · , b#σ(σ) denotes the size of the blocks of a partition σ. For σ ∈
NC2(k), its Kreweras complement K(σ) is the maximal non-crossing partition
σ̄ of {1̄, . . . , k̄}, such that σ ∪ σ̄ is a non-crossing partition of {1̄, 1, . . . , k̄, k}.
For example,

K ({{1, 2}, {3, 4}, {5, 6}}) = {{1}, {2, 4, 6}, {3}, {5}},
K ({({1, 2}, {3, 6}, {4, 5}, {7, 8}}) = {{1, 3, 7}, {4, 6}, {2}, {5}, {8}}.

Note that this slightly differs from the standard notation of Kreweras comple-
ment in Nica and Speicher [2006] but for pairings, the π and π−1 coincide. It
follows easily that when π ∈ NC2(2k), γπ can be replaced by K(π). The benefit
of this representation is the following. It follows from [Nica and Speicher, 2006,
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Page 228] that∫
R
x2k(µw ⊠ µs)(dx) =

∑
π∈NC2(2k)

k+1∏
j=1

∫
R
xbj(K(π))µw(dx),

where µw ⊠ µs is the free multiplicative convolution of the measures µw and
semicircle law µs. Hence the moments of µCL,λ can be written as∫

R
x2kµCL,λ(dx) =

∫
R
x2k(µw ⊠ µs)(dx)

+
k−1∑
ℓ=1

∑
π∈SSℓ(2k)

λℓ−k
|γπ|∏
j=1

∫
R
xbj(γπ)µw(dx) .

This also shows that

lim
λ→∞

∫
R
x2kµCL,λ(dx) =

∫
R
x2k(µw ⊠ µs)(dx),

and consequently, µf is of the form µw ⊠ µs.

Remark 2.3.13.
We want to add a remark about heavy-tailed degrees. Our conditions are not
satisfied when the degree sequence follows a power-law distribution. In that case,
the wi need to be scaled differently, and the limiting W will not have a compact
support. For further discussion on inhomogeneous random graphs with heavy
tails, we refer to [van der Hofstad, 2017, Chapter 6].

Example 3: Generalised random graph. Again, let (di) be as above. Let
f(x, y) = xy

1+xy and wi = d1/
√
m1. Then,

pgrgij =
didj

m1 + didj
.

Although the above example does not directly fall in our set-up (due to lack of
εN ), one can still derive the limiting spectral distribution using the Chung-Lu
model. We will use the following two facts. The first is a fact, which is the
Hoffman-Wielandt inequality from [Bai, 1999, Corollary A.41].

Fact 2.3.14.
If dL denotes the Lévy distance between two probability measures, then for N×N
symmetric matrices A and B,

d3L (ESD(A),ESD(B)) ≤ 1

N
Tr
(
(A−B)2

)
.
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The following is a fact about the coupling of two Bernoulli random variables
with parameters p and q (see [van der Hofstad, 2024, Theorem 2.9])

Fact 2.3.15.
There exits a coupling between X ∼ Ber(p) and Y ∼ Ber(q) such that

P(X ̸= Y ) = |p− q|.

Using the above coupling, we can construct a sequence of independent Bernoulli
random variables (bij) and (cij) with parameters pclij and qgrgij , respectively. Let
Mcl

N and Mgrg
N be the adjacency matrices of Chung-Lu and generalised random

graph models, respectively, with the above coupled Bernoulli random variables.
Suppose the sequence (di)i∈[n] satisfies the assumptions described in Example 2
and let NεN → λ and Acl

N = λ−1/2Mcl
N and Agrg

N = λ−1/2Mgrg
N . Then,

E
[
d3L

(
ESD(Acl

N ),ESD(Agrg
N )
)]

≤ 1

N
E
[
Tr(Acl

N −Agrg
N )2

]
=

1

Nλ
E

 N∑
i,j=1

(bij − cij)
2


=

1

λN
E

 N∑
i,j=1

(bij − cij)
2
1{bij ̸=cij}


≤ 1

λN

N∑
i,j=1

P(bij ̸= cij) ≤
1

λN

N∑
i,j=1

∣∣∣pclij − pgrgij

∣∣∣ ,
since (bij − cij)

2 can be trivially bounded by 1. Using x− x
1+x ≤ x2

1+x ≤ x2 for
any x > 0, we have

pclij − pgrgij =
didj
m1

− didj
m1 + didj

≤
d2i d

2
j

m2
1

≤ m4
∞

m2
1

.

Therefore

E
[
d3L

(
ESD(Acl

N ),ESD(Agrg
N )
)]

≤ C

λN

N∑
i,j=1

m4
∞

m2
1

=
C

λN
N2m

4
∞

m2
1

≤ O

(
Nm4

∞
m2

1

)
.

If we consider m∞ = o(m
1/4
1 ), then the empirical distribution functions

are close. Now using Markov inequality and the fact that ESD(Acl
N ) converges

weakly in probability to µCL,λ it follows that

lim
N→∞

ESD(Agrg
N ) = µCL,λ weakly in probability.
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Example 4: Norros-Reittu. Let (di)i be a given sequence and wi =
di√
m1

.
Take f(x, y) = 1− exp(−xy). Then,

pnrij = 1− exp

(
−didj
m1

)
.

Again, the form of the above connection probability does not fall directly in our
set-up, but we can show that Norros-Reittu model is close to the generalised
random graph models. Let Anr

N = λ−1/2Mnr
N where Mnr

N is the adjacency of the
Norros-Reittu model. Without loss of generality, we assume that we can couple
Bernoulli random variable cij and dij with parameters pgrgij and pnrij using Fact
2.3.15. Just as in the previous example, it follows using Fact 2.3.14 that

E
[
d3L
(
ESD(Agrg

N ),ESD(Anr
N )
)]

≤ 1

λN

N∑
i,j=1

E
[
(cij − dij)

21{cij ̸=dij}

]
.

We bound trivially (cij − dij)
2 by a constant C1 > 0 and hence we get that

E
[
d3L
(
ESD(Agrg

N ),ESD(Anr
N )
)]

≤ C1

λN

N∑
i,j=1

P (cij ̸= dij)

=
C1

λN

∑
i ̸=j

(pnrij − pgrgij ) .

Now, for i ̸= j,

pnrij − pgrgij =

(
1− exp

(
−didj
m1

)
− didj
m1 + didj

)
=

(
d2i d

2
j

m2
1 +m1didj

)
+
λ

N
O

(
d2i d

2
j

m2
1

)

≤ C ′
d2i d

2
j

m2
1

,

for some constant C ′ > 0. Therefore, for some new constant C ′1 > 0,

E
[
d3L
(
ESD(Agrg

N ),ESD(Anr
N )
)]

≤ C ′1
λN

m2
2

m2
1

(2.21)

where m2 =
∑N

i=1 d
2
i . Since W has compact support, we have that m2

Nm∞
→

E[W 2] and m1
Nm∞

→ E[W ]. So m2
2

m2
1

is bounded for large N and hence the right
hand side of (2.21) goes to 0. This shows that

lim
N→∞

ESD(Anr
N ) = µCL,λ weakly in probability.
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Figure 2.2: Spectral distributions for the Chung-Lu random graph, the generalised ran-
dom graph, and the Norros-Reittu random graph on 10,000 vertices with {di}i uniformly
generated integers in [1, 5]

Example 5: Inhomogeneous Random Graphs. Let wi = i
N and f :

[0, 1]2 → [0, 1] be any continuous function. Then,

pij = εNf

(
i

N
,
j

N

)
.

This is a case which falls directly into our set-up if we assume NεN → λ and
the measure µw is the Lebesgue measure. The other examples considered in this
section are mostly of the rank-1 type but through this example, one can achieve
limiting measures which are of a wide variety.

(a) λ = 5. (b) λ = 10.

Figure 2.3: The Inhomogeneous Random Graph on 10,000 vertices, with the inhomo-
geneity function f(x, y) = r1(x)r1(y) + r2(x)r2(y), where r1(x) = x

1+x and r2(x) = x.

We note that in van der Hofstad [2024], inhomogeneous random graphs are
introduced in a much more abstract setting, following the works of Bollobás et al.
[2007]. The connectivity function f is generally continuous and also satisfies
reducibility properties. The above examples also fall under the setup described
there.
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§2.4 Existence, uniqueness, and moments

In this section we will prove the main result Theorem 2.3.7 using the method of
moments.

We begin with a small observation. Recall from Assumption A.3 that if oN
is an uniformly chosen vertex and WN = woN and we assume WN

d−→ W . This
means that WN has a distribution function FN (x) given by

FN (x) =
1

N

N∑
i=1

1{wi≤x}

and if we denote by F the distribution of W then for any continuity point x of
F we have

FN (x) → F (x).

Also for any bounded continuous function g, we have E[g(WN )] → E[g(W )].
Let o1, . . . , ok be i.i.d. Uniform random variables on [N ]. Let WN,i = woi for
i = 1, . . . , k. Then

(WN,1, ...,WN,k)
d−→ (W1,W2, ...,Wk)

where W1, . . . ,Wk are k independent copies of the limiting variable W . Hence
for any bounded continuous g in k-variables we have

E [g(WN,1, . . . ,WN,k)] → E [g(W1, . . . ,Wk)] . (2.22)

In our model, we can allow self-loops as we are not imposing that f(x, x) = 0

but the presence of self-loops does not affect the ESD. The following lemma
shows that we can remove the self-loops.

Lemma 2.4.1 (Diagonal contribution).
Let ÃN be the matrix AN with zero on the diagonal, and let dL denote the Lévy
distance. Then,

dL

(
ESD(ÃN ),ESD(AN )

)
P−→ 0 .

In particular, if ESD(AN ) converges weakly in probability to µλ, then so will
ESD(ÃN ) and visa-versa.

Proof. Let DN denote the diagonal of AN . Then, DN = AN − ÃN . Using Fact
2.3.14 we have

d3L

(
ESD(ÃN ),ESD(AN )

)
≤ 1

N
Tr(D2

N ) =
1

Nλ

∑
1≤i≤N

a2ii .
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Hence we have

E
[
d3L

(
ESD(ÃN ),ESD(AN )

)]
≤

√
λ

N2

∑
1≤i≤N

f (wi, wi)

≤ Cf

√
λ

N
,

for some constant Cf , which comes from the fact that f is bounded. The result
follows using Markov’s inequality.

We are now ready to begin with the proofs of the main results.

§2.4.1 Expected Moments
We split up the proof into three parts. To ease the notation we abbreviate the
empirical spectral distribution and its expectation as

µN,λ(·) = ESD(AN )(·) and µ̄N,λ(·) = E[ESD[AN ]](·) = 1

N

N∑
i=1

P(λi ∈ ·) .

(2.23)
Note that µ̄N,λ is now a deterministic measure, for which we compute the mo-
ments as∫

xkµ̄N,λ(dx) =
1

N

N∑
i=1

∫
R
xkP(λi ∈ dx) =

1

N

N∑
i=1

E[λki ] = E[tr(Ak
N )] ,

where tr denotes the normalised trace. Using the trace formula it follows that

E[tr(Ak
N )] =

1

N
E[Tr(Ak

N )] =
1

Nλk/2

∑
1≤i1,i2,...,ik≤N

E[ai1i2ai2i3 ...aiki1 ] , (2.24)

where aij are entries of the adjacency matrix M. We compute the expected mo-
ments and demonstrate that they are finite. Subsequently, we establish a con-
centration result to show that the moments of the empirical measure converge
to mk in probability. Next, we prove that the sequence mk satisfies Carleman’s
condition, thereby uniquely determining the limiting measure.

Let SS(k) be the set of Special Symmetric partitions, and γ = (1, 2, . . . , k)

be the cyclic permutation. For the following computations, one has to read the
partition π as a permutation, with elements of a block in the partition set in an
ascending manner in the permutation. That is, if π = {{1, 2, 5, 6}, {3, 4}}, then
the corresponding permutation is (1, 2, 5, 6)(3, 4).
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Lemma 2.4.2 (Expected moments).
Let µN,λ be the ESD of AN and µ̄N,λ = EµN,λ. Let γπ be decomposed into
blocks of the form

γπ = {V1, V2, . . . , Vm}.

where m = |γπ| be the number of blocks. Define Fγπ as

Fγπ := {i ∈ Nk | ij = ij′ if and only if there exists l ∈ [m] s.t. j, j′ ∈ Vl}.
(2.25)

Then,∫
xkµ̄N,λ(dx) = (2.26)O(λk/2N−1), k odd∑
π∈SS(k)

λ|γπ|−1−k/2
∑

i∈Fγπ

1
N |γπ|

∏
(a,b)∈Eγπ

f (wia , wib) + O(λk/2N−1), k even .

(2.27)

Example 2.4.3.
For k = 4, take π = {{1, 2}, {3, 4}}. Then, γπ = {{1, 3}, {2}, {4}}. We see that
tuples of the form (1, 2, 1, 3) and (2, 3, 2, 4) belong in Fγπ.

Proof of Lemma 2.4.2. Recall from (2.24) that

1

Nλk/2
E[Tr(Ak

N )] =
1

Nλk/2

∑
i∈Nk

E[ai1i2ai2i3 ...aiki1 ],

where i = (i1, . . . , ik). The term ai1i2ai2i3 ...aiki1 is associated with the closed
walk i1i2 . . . iki1. Let the set of distinct vertices and edges along a closed walk
correspond to a k-tuple i be denoted by V (i) and E(i), respectively. An edge
that connects vertices ij and ij+1, will be denoted by e = (ij , ij+1). Without
loss of generality, we assume that in V (i) we assign the positions where the first
of distinct indices appear in i.

For example, for the 4-tuple i = (1, 2, 1, 3), we have V (i) = {1, 2, 4}. So,
E(i) = {(1, 2), (1, 4)}. Since

ai1i2ai2i3 ...aiki1 = 1 if and only alal+1 = 1 for all (l, l + 1) ∈ E(i)

we can rewrite (2.24) as

1

Nλk/2
E[Tr(Ak

N )] =
1

Nλk/2

∑
1≤ij≤N :j∈V (i)

(
λ

N

)|E(i)| ∏
(a,b)∈E(i)

f(wia , wib) .

(2.28)
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Let π be a partition of [k] := {1, 2, . . . , k} and γπ = {V1, V2, . . . , Vm}, where
m = |γπ|. Recall the definition of Fγπ as in (2.25) and also the graph Gγπ

corresponding to γπ as in Definition 2.3.4. Note that for a fixed i ∈ Fγπ,
V (i) = Vγπ and E(i) = Eγπ. Moreover, if i, i′ ∈ Fγπ, then V (i) = V (i′) and
E(i) = E(i′). Using this formulation, we can rewrite our summation in (2.28)
once again as

1

Nλk/2
E[Tr(Ak

N )] =
1

Nλk/2

∑
π∈P(k)

∑
i∈Fγπ

(
λ

N

)|Eγπ | ∏
(a,b)∈Eγπ

f (wia , wib) .

Since |γπ| = |V (i)|, we can multiply and divide by N |γπ| to get

1

Nλk/2
E[Tr(Ak

N )]

=
∑

π∈P(k)

1

N |γπ|

∑
i∈Fγπ

λ|Eγπ |−k/2N |γπ|−|Eγπ |−1
∏

(a,b)∈Eγπ

f (wia , wib) .

Note that since f is bounded, then the product is bounded. For a fixed k and
a partition π of [k], |Eγπ| ≤ k. One can also see that |Fγπ| ∼ N |γπ|. We thus
focus only on λ|Eγπ |−k/2N |γπ|−|Eγπ |−1. For this to contribute, a tuple i must
yield a tree structure in Gγπ, this will give us |V (i)| = |E(i)|+ 1, which would
imply |γπ| = |Eγπ| + 1. In particular, all tuples i ∈ Fγπ such that Gγπ is a
coloured rooted tree as defined in Definition 2.3.4 contribute to the summation.

For other graphs with |V (i)| < |E(i)|+ 1, the leading error would be of the
order O(N−1). The leading order error is given when Gγπ is a k-cycle and hence
the error is of the order of λk/2N−1. Thus, our sum reduces to

1

Nλk/2
E[Tr(Ak

N )]

=
∑

π∈P(k):
Gγπ is a

rooted labelled tree

∑
i∈Fγπ

λ|Eγπ |−k/2 1

N |γπ|

∏
(a,b)∈Eγπ

f (wia , wib) + O(λk/2N−1).

Thus rewriting the expression with |Eγπ| = |γπ|+ 1 we get,

1

Nλk/2
E[Tr(Ak

N )] (2.29)

=
∑

π∈P(k):
Gγπ is a

rooted labelled tree

λ|γπ|+1−k/2
∑

i∈Fγπ

1

N |γπ|

∏
(a,b)∈Eγπ

f (wia , wib) + O(λk/2N−1).

(2.30)
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Remark 2.4.4.
We would like to remark here that if there exists an edge e, such that it is
traversed only once in the closed walk, then the graph cannot be a tree. Consider,
without loss of generality, that this edge e is (1, 2), with 1 ∈ V1 and 2 ∈ V2, as
in figure 2.4, where V1, V2 ∈ γπ. Here C1 and C2 are the remaining components
of the graph Gγπ.

V2V1C1 C2

Figure 2.4: Graph associated to γπ having blocks V1 and V2 with the edge between them
traversed only once.

Thus, since the closed walk 1 → 2, 2 → 3, . . . k → 1 has to return back to V1,
it has to do so via C1 since the edge e cannot be traversed again. Clearly, this
will form a cycle in the graph. Thus, every edge must be traversed at least twice.

It is well-known (see Nica and Speicher [2006]) that for π ∈ NC2(k) if and only
if |γπ| = 1+k/2, but in the above setting we shall see that other partitions will
also contribute as |Fγπ| ∼ N |γπ|. In particular, we need to sum over only those
π that give rise to a tree structure. We show in a series of characterizations that
the resulting partitions are SS(k).

Characterising partitions
Recall from Definition 2.3.4 that to construct a graph Gγπ associated with
a partition π of [k], we need to evaluate γπ to construct the vertex set and
then perform a closed walk. We prove a property that will play a key role in
characterising partitions in the proof of Theorem 2.3.7.

Property 1: Block characterisation. For π ∈ P(k) with γπ = {V1, . . . , Vl},
if Gγπ has a tree structure, then all elements of a block Vj , ∀ 1 ≤ j ≤ l, have
either all odd elements or all even elements.

Proof of Property 1. For simplicity, we show that the first block has this prop-
erty. Assume that V1 has all odd elements except one special element a ∈ [k].
We assume that element ‘1’ belongs to V1.

Recall from the definition of Gγπ that we first perform a closed walk on [k]

as 1 → 2 → 3 → . . . → k → 1, and then collapse elements of the same block of
γπ into a single vertex. Thus, if a − 1 (or a + 1) belongs to V1, then we get a
self-loop since a− 1 and a collapse to the same vertex and the edge a− 1 → a

(or a→ a+ 1) forms a loop, which does not give a tree structure. Hence a− 1

(respectively a+ 1) is not in V1.
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Now, suppose a − 1 ∈ Vj for some j ̸= 1. Then, there exists a path from
V1 to Vj of length t > 1, since if t = 1, the closed walk 1 → 2 → . . . would
imply that a−2 ∈ V1, which contradicts our claim. Now, if t > 1, the next edge
{a − 1 → a} from the closed walk will be from Vj to V1, leading to a cycle in
the graph. Thus, violating property 1 yields a graph that is not a tree.

Property 2: Initial characterisation of π. If π ∈ P(k) then in any block
of π, no two consecutive elements can either be both odd or both even.

Proof of Property 2. Suppose a1 and a2 belong in the same block of π with no
elements between them, and a1 < a2, either both even or both odd. Then in
γπ, a1 and a2 + 1 belong in the same block, which contradicts Property 1.

Property 3: Diagonal terms. If π is a contributing partition, then for any
i = (i1, . . . , ik) in Fγπ, each element of i must be pairwise distinct, that is,
i1 ̸= i2, i2 ̸= i3, . . . , ik−1 ̸= ik.

Proof of Property 3. Suppose not, and assume ia = ia+1 for some 1 ≤ a ≤ k−1.
Then, in γπ, ‘a’ and ‘a+1’ belong to the same block. This contradicts Property
1.

We now use the above properties for further characterisation of the partitions.

Lemma 2.4.5.
Every block in π must be of even size.

Proof of Lemma 2.4.5. We prove this by contradiction. Consider an odd-sized
block V = {l1, . . . , lr} ∈ π with l1 < l2 < · · · < lr. Assume that l1 is odd. By
Property 2, l2 must be even, and by continuing the argument, we have that at
every even position, the element is even, and at odd positions, it is odd. Since
r is odd, and lr is in the rth position, which is an odd position, lr must be odd.
Then, in γπ, the element lr will map to the element l1 +1 which is even, which
contradicts Property 1. A similar argument holds when l1 is taken to be even.
This proves the result.

Corollary 2.4.6 (Vanishing odd moments).
The odd moments vanish as N → ∞.

Proof of Corollary 2.4.6. Recall that partitions whose graphs do not yield a tree
structure contribute to the error term with leading order O(N−1). For k odd,
every π ∈ SS(k) must have at least one block of odd size. Therefore, Lemma
2.4.5 is violated, and consequently, the odd moments vanish asymptotically.
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Proposition 2.4.7.
Let π ∈ P(k) such that Gγπ is a rooted labelled tree. Then π must satisfy the
following properties.

• All blocks of the partition must be of even size.

• Between any two successive elements of a block, there are sub-blocks of
even sizes.

Proof of Proposition 2.4.7. The first condition is already proved using Lemma
2.4.5. For the second condition, begin by considering a block B that is of the
form

B = {. . . , a1, a1 + 1, . . . , a1 + e, a2, . . .}

with a1−1 /∈ B, and there doesn’t exist any element a′ such that a1+e < a′ < a2
and a′ ∈ B. The sub-block here of interest is {a1, a1 + 1, . . . , a1 + e}. We claim
that this sub-block has an odd number of elements, or equivalently, e is an
even number. We can also assume, without loss of generality, that a1 is an odd
number. As a consequence of Property 2, a2 must be even. If we now evaluate
γπ using the above information, we have that γπ contains the following three
(and possibly more) blocks.

V1 = {. . . , a1, a1 + 2, . . . , a1 + e, a2 + 1, . . .},
V2 = {. . . , a1 + 1, a1 + 3, . . . , a1 + e− 1, a1 + e+ 1, . . .},
V3 = {. . . , a2, . . .}.

Thus, the graph associated with γπ will be as shown in Figure 2.5, where C1,
C2, and C3 are the remaining components of the graph.

V2V1

V3

C1 C2

C3

Figure 2.5: Graph associated to γπ having blocks V1, V2 and V3.

We now focus on the closed walk that occurs on the tuple [k]. Since this
is a closed walk, it does not matter if instead of beginning at 1, we begin at
an arbitrary element k1 ∈ [k] and perform {k1 → k1 + 1, . . . , k → 1, 1 →
2, . . . , k1 − 1 → k1}. So, we pick a1 as the starting point and consequently,
without loss of generality, we assume the walk begins at V1.
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The walk will immediately proceed to move back and forth between V1 and
V2 due to the path {a1 → a1 +1, a1 +1 → a1 +2, . . . , a1 + e→ a1 + e+1}, and
will eventually end at V2.

Now, the walk will jump from V2 into the component C2. On the other
hand, when the walk eventually enters V3, it will move at least once to V1, due
to the path {a2 → a2 + 1}. So, to preserve the tree structure, the walk must
first come back to V2 and then proceed to V3 via V1. Thus, there is an element
a′ such that a′ ∈ V2 and a′ + 1 ∈ V1, where a′ > a1 + e and a′ < a2. Therefore,
in γπ, a1+ e maps to a′+1. This implies that a1+ e and a′ belong to the same
block in π, and thus, a′ ∈ B. This contradicts our construction, and therefore,
the walk must form a cycle from V2 or C2 to either C1, C3 or V3.

Recall the definition of Special Symmetric Partitions as provided in Definition
2.3.1, where the two properties outlined in Proposition 2.4.7 are the main charac-
teristics. As a result, we have demonstrated (2.26), leading us to the conclusion
of the proof of Lemma 2.4.2.

We would now like to take limits in (2.26) and finally get the expression for
the moments. The following lemma is an easy consequence of Lemma 2.22 and
the fact that |Fγπ| ∼ N |γπ|.

Lemma 2.4.8.
Let π ∈ SS(k) and Fγπ be as in Lemma 2.4.2. Also, Gγπ = (Vγπ, Eγπ) be the
graph as in Definition 2.3.4.

lim
N→∞

∑
i∈Fγπ

1

N |γπ|

∏
(a,b)∈Eγπ

f (wia , wib)

=

∫
[0,∞)|γπ|

∏
(a,b)∈Eγπ

f(wa, wb)µ
⊗
|γπ|

w (dw). (2.31)

Now, going back to equation (2.29) and taking limits gives us

lim
N→∞

E[tr(Ak
N )] =

0, k odd∑
π∈SS(k)

λ|γπ|−1−k/2t(Gγπ, f, µw), k even . (2.32)

Now, the sum over SS(k) can be further split up as the sum over NC2(k) and
the remaining partitions. Moreover, for π ∈ SS(k), we have |Vγπ| = |γπ| ∈
{2, 3, . . . , k/2 + 1}. In particular, for π ∈ NC2(k), |γπ| = k/2 + 1, and when π
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is the full partition {{1, 2, . . . , k}}, |γπ| = 2. So, we can write

lim
N→∞

E[tr(Ak
N )] =

0, k odd∑
π∈NC2(k)

t(Gγπ, f, µw) +
k/2∑
l=2

∑
π∈SS(k)\NC2(k):

|γπ|=l

λl−1−k/2t(Gγπ, f, µw), k even .

(2.33)

§2.4.2 Concentration and uniqueness
We now show a concentration result to obtain convergence in probability.

Lemma 2.4.9 (Concentration of trace).
For all k ≥ 0, we have that

Var
[
tr(Ak

N )
]
= ON ((λN)−1) .

Proof. We shall proceed to compute the variance

Var
[
tr(Ak

N )
]
.

Let i and i′ denote the tuples

i = {i1, . . . , ik}, i′ = {ik+1, . . . , i2k}

and denote by P (i) the expectation

P (i) = E[ai1i2ai2i3 . . . aiki1 ] .

Similarly, we have

P (i′) = E[aik+1ik+2
aik+2ik+3

. . . ai2kik+1
] .

For the tuple i, we can define a closed walk as in the proof of Lemma 2.4.2 to
get a graph G(i) := (V (i), E(i)). In the same spirit, one can define G(i, i′) =
(V (i, i′), E(i, i′)), with the closed walk now performed as

1 → 2 → . . . k → 1, k + 1 → k + 2 → . . . 2k → k + 1 ,

where the jump from 1 to k + 1 is without an edge. Then, we can define

P (i, i′) = E[ai1i2ai2i3 . . . aiki1aik+1ik+2
. . . ai2kik+1

] .
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With this notation set up, one can see that

Var
[
tr(Ak

N )
]
=

1

N2

[
E[(Tr(Ak

N )2]− (E[Tr(Ak
N )])2

]
=

1

N2λk

N∑
i1,i2,...,ik,ik+1,...,i2k=1

P (i, i′)− P (i)P (i′) .
(2.34)

We remark here that the construction of the graph G(i, i′) is similar to how we
did in Lemma 2.4.2, with the essential difference being the closed walk structure
over two separate k−tuples.

Suppose that E(i) ∩ E(i′) = ϕ. Then by independence, (2.34) becomes 0.
Thus, we must have E(i)∩E(i′) ̸= ϕ. Moreover, due to remark 2.4.4, each term
must appear at least twice in P (i, i′), that is, each edge in E(i, i′) is traversed
at least twice. This implies that the maximum number of edges our graph can
have is k.

Next, note that the only way the graph G(i, i′) will be disconnected is when
the closed walk over the two k− tuples yields two disjoint graphs, and thus we
once again obtain P (i, i′) = P (i)P (i′).

Thus, our computation boils down to the case where G(i, i′) is a connected
graph, with each edge appearing at least twice, and E(i) ∩ E(i′) ̸= ϕ. Note
that one can have G(i, i′) to be connected and still have E(i) ∩ E(i′) = ϕ, for
example when i1 and ik+1 are collapsed into the same vertex. This gives us that
|V (i, i′)| ≤ |E(i, i′)|+ 1 ≤ k + 1. Using |f | ≤ Cf gives us that

Var
[
tr(Ak

N )
]
≤ Cf

1

N2λk
N |V |

(
λ

N

)|E|
= Cfλ

|E|−kN |V |−|E|−2 = ON (N−1) .

This completes the proof.

An immediate consequence from Chebychev’s inequality is that the moments
concentrate around their mean as N → ∞. In other words, for all k ≥ 1,

lim
N→∞

tr(Ak
N ) = mk(µλ) in probability,

where mk(µλ) are as in (2.10). To conclude Theorem 2.3.7, we now further
analyse the sequence {mk}k≥0, and show that it is unique for the measure µλ.
A measure µ is said to be uniquely determined by its moment sequence {mk}k≥0
if the following holds (Carleman’s condition):∑

k≥0
m
−1/2k
2k = ∞. (2.35)
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Lemma 2.4.10 (Uniqueness of moments).
For λ bounded away from 0, that is, λ > 0, the moments uniquely determine the
limiting spectral measure.

Proof. Let mk denote the kth moment. Since f is bounded, we have

m2k =
∑

π∈SS(2k)

λ|γπ|−1−k
∫
[0,1]|γπ|

∏
(ab)∈Eγπ

f(xa, xb)

|γπ|∏
i=1

µw(dxi)

≤
∑

π∈SS(2k)

C
|γπ|
f λ|γπ|−1−k

=
k+1∑
l=2

∑
π∈SS(2k):|γπ|=l

C l
fλ

l−1−k,

Let Ak be defined as

Ak =

{
1, if λ ≥ 1,

λ−k, if 1 > λ > 0.

Then,

m2k ≤ Ck+1
f Ak

k+1∑
l=2

|{π ∈ SS(2k) : |γπ| = l}|

≤ AkC
k+1
f |{SS(2k)}|

≤ AkC
k+1
f (2k)2k,

where the last inequality follows since SS(2k) ⊂ P (2k) and |P (2k)| is bounded
by 2k2k. Thus,

m
−1/2k
2k ≥ 1

2k
√
Cf

.
1

(AkCf )
1
2k

So, we have the series
∑

k≥1m
−1/2k
2k to be lower bounded by

∑
k≥1 ak, where

ak =
1

2k
√
Cf

.
1

(AkCf )
1
2k

=
1

C1ke
1
2k

log(AkCf )
.

Thus,

ak =

{
e−C2/2k

C1k
, for λ ≥ 1 ,

√
λe−C2/2k

C1k
, for λ < 1 .

Since e−x > 1− x, we see that the series
∑

k≥1 ak diverges, and consequently,∑
k≥0

m
−1/2k
2k = ∞.
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§2.5 Stieltjes Transform and analytic description

§2.5.1 Resolvent and Stieltjes Transform
We fix a z ∈ C+ throughout this argument, with ℑ(z) = η > 0. Recall that the
resolvent is given by

RAN
(z) := (AN − zI)−1, z ∈ C+.

The Stieltjes transform of the empirical spectral distribution of AN is given by

SAN
(z) =

∫
R

1

x− z
ESD(AN )(dx) = tr(RAN

(z)), (2.36)

where tr denotes the normalised trace.

Lemma 2.5.1 (Resolvent Properties).
For any z ∈ C+, 1 ≤ i, j ≤ N , the following properties are well-known for the
resolvent RA of an N ×N matrix A.

(i) Analytic: z 7→ RA(z)(i, j) is an analytic function on C+ → C+.

(ii) Bounded : ∥RA(z)∥op ≤ ℑ(z)−1, where ∥·∥op denotes the operator norm.

(iii) Normal : RA(z)RA(z)∗ = RA(z)
∗RA(z).

(iv) Diagonals are bounded: |RA(z)(i, j)| ≤ ℑ(z)−1.

(v) Trace bounded: | tr(RA(z))| ≤ ℑ(z)−1. In particular,∣∣tr(Rp
A(z))

∣∣ ≤ ℑ(z)−p, for any p ≥ 1.

For the first three properties see [Bordenave, 2019, Chapter 3]. Note that
the property (iv) follows from (iii) by the following argument:

|RA(z)(i, j)| ≤ |⟨δi, RA(z)δj⟩| ≤ sup
v:∥v∥=1

|⟨δi,RA(z)δj⟩| = ∥RA(z)∥op.

The last property (v) follows from (iv). We now state the Ward’s identity, for
which we refer the reader to [Erdős and Yau, 2017, Lemma 8.3].

Lemma 2.5.2 (Ward’s identity).
Let A be a Hermitian matrix and RA be the resolvent. Let z ∈ C+. Then for
any fixed k, we have ∑

l ̸=k

|RA(l, k)|2 = 1

η
ℑ(RA(k, k)).

74



§2.5. Stieltjes Transform and analytic description

C
hapter

T
w

o

Since we have already shown in the previous section limn→∞ ESD(AN ) = µλ
weakly in probability and hence it follows that for any z ∈ C+

lim
N→∞

SAN
(z) → Sµλ

(z).

Due to the involved structure of the moments, it is not immediately evident
what the limiting Stieltjes transform looks like.

Recall the notation of expected empirical spectral distribution of AN from
(2.23). Let S̄AN

(z) denote the Stieltjes transform of µ̄N,λ. Notice that S̄AN
(z) =

E[SAN
(z)]. It is known that if a measure µN converges weakly in probability to a

measure µ, then the corresponding Stieltjes transforms converge. In particular,
we have the following lemma.

Lemma 2.5.3.
Anderson et al. [2010, Theorem 2.4.4] A sequence of measures µN converge
weakly in probability to a measure µ if and only if SµN (z) converges in probability
to Sµ(z) for each z ∈ C+.

Thus, we compute an expression for the expected Stieltjes transform SĀN
, and

using convergence in probability from Theorem 2.3.7, we can claim that the
Stieltjes transform SAN

(z) converges in probability to the same expression. For
ease of notation we shall denote by rNkk(z) := RAN

(z)(k, k) for 1 ≤ k ≤ N .
The following identity can be found in Abramowitz and Stegun [1964]. For

any complex number z ∈ C+, we have for all u ≥ 0,

eι̇uz = 1−
√
u

∫ ∞
0

J1(2
√
uv)√
v

e−ι̇vz
−1

d v, (2.37)

where J1(x) is the first-order Bessel function of the first kind given by (2.16).
Note that for all x ≥ 0, | J1(x)| ≤ 1 (see [Abramowitz and Stegun, 1964, Chapter
9]). We know that the resolvent maps the upper half complex plane to the upper
half complex plane. Thus, we begin by fixing rNjj(z), the jth diagonal entry of
the N ×N resolvent matrix, as our complex variable in C+. So we can get

eι̇ur
N
jj(z) = 1−

√
u

∫ ∞
0

J1(2
√
uv)√
v

e−ι̇v(r
N
jj)

−1

d v . (2.38)

If we look at
∑N

j=1 e
ι̇urNjj(z) then the relation between the Stieltjes transform

and the above equation becomes apparent. It turns out that

SAN
(z) =

∂

∂u

1

N

N∑
j=1

eι̇ur
N
jj(z)

∣∣∣∣∣∣
u=0

. (2.39)
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To understand the Stieltjes transform we will first try to understand the
behaviour of (2.38). We will adapt the approach of Khorunzhy et al. [2004].
For ease of notation, for what follows, ∥ · ∥ will denote the norm ∥ · ∥B as defined
in (2.11), unless stated otherwise.

Proposition 2.5.4.
Let rNjj := rNjj(z) denote the jth diagonal entry of the resolvent RAN

(z). Let

dj =
1

N

N∑
k=1

f(wj , wk) (2.40)

and for any b > 0 define the function gN : (0,∞)× (0,∞)×C+ → C as follows

gN (x, b, z) :=
1

N

N∑
k=1

f(x,wk)e
ι̇brNkk(z) . (2.41)

Then, for any z ∈ C+,

E[er
N
jj ] = 1−e−λdj

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v+qN,λ(u, z) , (2.42)

where qN,λ(u, z) = O
(

λ
√
u

η5/2
√
N

)
.

We begin by stating two results we use in this proof. Note that we conveniently
drop the dependence on z for rNjj(z), since we fix z ∈ C+ throughout and hence
just use the notation rNjj .

Fact 2.5.5 (Exponential Inequalities).
The following holds for any real numbers a, b ∈ R and complex numbers z1, z2 ∈
C+.

|eaι̇z1 − eaι̇z2 | ≤ |a∥z1 − z2| (2.43)

|ea − eb| ≤ |a− b|e|a|+|b| (2.44)

Proof of Proposition 2.5.4. For the resolvent of a matrix with zero diagonal, we
have the relation

rNjj = −

z + ∑
k,l ̸=j

r̃N−1kl akjalj

−1 ,

76



§2.5. Stieltjes Transform and analytic description

C
hapter

T
w

o

for any diagonal element rNjj of the resolvent RAN
(z), where r̃N−1kl := r̃N−1kl (z)

are the entries of the resolvent of A
(j)
N−1 in z ∈ C+, which is the adjacency

matrix with deleted jth row and column. Plugging into (2.37) yields

eι̇ur
N
jj = 1−

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vz exp

ι̇v ∑
k,l ̸=j

r̃N−1kl akjalj

 d v . (2.45)

Adding and subtracting the appropriate exponential to (2.45) yields

eι̇ur
N
jj = 1−

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vz exp

ι̇v∑
k ̸=j

r̃N−1kk a2kj

d v + E1 , (2.46)

where E1 is an error term given by

E1 =

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vz

exp

ι̇v ∑
k,l ̸=j

r̃N−1kl akjalj

− exp

ι̇v∑
k ̸=j

r̃N−1kk a2kj

 d v .

It is easy to see that for z ∈ C+ with ℜ(z) = ζ ∈ R and ℑ(z) = η > 0, we have
|eι̇vz| = |eι̇ζve−ηv| ≤ e−ηv. Thus,

|E1| =∣∣∣∣∣∣√u
∫ ∞
0

J1(2
√
uv)√
v

eι̇vz

exp

ι̇v ∑
k,l ̸=j

r̃N−1kl akjalj

− exp

ι̇v∑
k ̸=j

r̃N−1kk a2kj

d v

∣∣∣∣∣∣
≤

√
u

∫ ∞
0

ve−ηv√
v

∑
k≤N

∑
l ̸=k

|r̃N−1kl |akjalj d v

=

(√
u

∫ ∞
0

√
ve−ηv d v

)∑
k≤N

∑
l ̸=k

|r̃N−1kl |akjalj

(2.47)

where in the last step, we use inequality (2.43) and the bound | J1(x)| ≤ 1 for
x ≥ 0. Note that in the last sum in (2.47), the entries akj and alj are independent
of one another, and of r̃N−1kl . Thus, since f is bounded by a constant Cf , taking
expectation on the summation gives us

E

∑
l ̸=k

|r̃N−1kl |akjalj

 ≤
λC2

f

N2

∑
l ̸=k

|r̃N−1kl | (2.48)
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since aij are distributed as Bernoulli random variables with parameter pij , and
are scaled by a factor λ−1/2. Using (2.48) and taking expectation in (2.47) gives
us

E [|E1|] ≤ C2
f

√
u

∫ ∞
0

√
ve−ηvλ

N2

∑
k≤N

∑
l ̸=k

E[|r̃N−1kl |] d v

≤ C2
f

√
u

∫ ∞
0

√
ve−ηvλ

N
√
N

E

∑
k≤N

∑
l ̸=k

|r̃N−1kl |2
 1

2

d v (Cauchy-Schwarz)

≤ C2
f

√
u

∫ ∞
0

√
ve−ηvλ

N
√
Nη

E

∑
k≤N

(ℑ(r̃N−1kk ))
1
2

d v (using Lemma 2.5.2)

≤ C2
f

√
u

∫ ∞
0

√
ve−ηvλ√
Nη

d v (using property (iv) from Lemma 2.5.1)

= C2
f

√
uλ

η5/2
√
N

∫ ∞
0

√
ηve−ηv d (ηv) = O

(
λ
√
u

η5/2
√
N

)
,

where in the last step we do a change of variable ηv = v′ to show the integral is
finite. So, if we now take an expectation in (2.46), we get

E[eι̇ur
N
jj ] = 1−

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj

d v+qN,λ(u, z),

(2.49)
where qN,λ(u, z) = O

(
λ
√
u

η5/2
√
N

)
. Note that the expectation could be pulled in-

side the integral in (2.46) using Fubini’s Theorem since the integral is bounded
above by a constant. To evaluate the expectation inside (2.49), we use a condi-
tioning argument as follows. We have

E

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj

 = E

E
exp

 ι̇v∑
k ̸=j

r̃N−1kk a2kj

∣∣∣∣∣∣A(j)
N−1

 .
Evaluating the conditional expectation yields
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E

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj


= E

[
N∏
k=1

(
1− λ

N
f(wk, wj) +

λ

N
f(wk, wj)e

ι̇vr̃N−1
kk /λ

)]

= E

[
N∏
k=1

(
1 +

λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

))]

= E

[
N∏
k=1

(
exp

(
λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

))
+ q′k(N,λ)

)]
, (2.50)

where q′k(N,λ) is an error given by

q′k(N,λ)

= 1 +
λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

)
− exp

(
λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

))
.

Since |eι̇vr̃
N−1
kk /λ − 1| ≤ 2, doing a Taylor expansion for the exponential term in

q′k(N,λ) gives us

|q′k(N,λ)| ≤
4C2

fλ
2

N2
= O

(
λ2

N2

)
. (2.51)

We can write

E

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj


= E

[
N∏
k=1

(
exp

(
λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

)))]
+ E[E2] , (2.52)

where E2 is an expression involving all the other terms of the product in (2.50).
To get the order of E2, we take a supremum over k in (2.50) and compute
the binomial expansion of the form (a + b)N modulo the leading term aN . In
particular, since |eι̇vr̃

N−1
kk /λ − 1| ≤ 2, and again using (2.51), we have

|E2| ≤
N∑
j=1

(
N

j

)(
e

2λCf
N

)N−j
(
4C2

fλ
2

N2

)j

,
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which for some constant Ca > 0 and N large enough further simplifies to

|E2| ≤ Ca

N∑
j=1

(2Cfλ)
2jN je−

2jλCf
N N−2j

= Ca

N∑
j=1

(2Cfλ)
2jN−je−

2jλCf
N = Ca

4Cfλ
2N−1e−

2λCf
N

1− 4Cfλ2N−1e
−

2λCf
N

,

where the last equality is due to the sum being a geometric series. Thus,

|E2| = O

(
λ2

N

)
, (2.53)

which is a faster error than qN,λ(u, z) so we can later absorb it into the existing
error of (2.49). Thus, using (2.53), we can rewrite (2.52) as

E

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj

 = E
[
e−λdj exp

(
λg̃N−1

(
wj ,

v

λ
, z
))]

+O

(
λ2

N

)
(2.54)

where

dj =
1

N

N∑
k=1

f(wj , wk) and g̃N−1(wj , b, z) =
N∑
k=1

f(wj , wk)e
ι̇br̃N−1

kk . (2.55)

Note that g̃N is a bounded function and is bounded above by Cf . To get the
error down from the exponent, we again use inequality (2.44).

To conclude the proof of the proposition, we need to return to an expression
involving terms of the form rNkk of the original resolvent. To do so, we do an
interpolation argument. Let 0 ≤ t ≤ 1 and define At

N = (1 − t)AN + tA
(j)
N−1

with the resolvent RAt
N
(z), whose entries we denote by rNkl(t) := rNkl(z, t), that

also implicitly depends on z but we drop that for convenience of notation. Also,
define

gt
N (wj , b, z) =

1

N

N∑
i=1

f(wi, wj)e
ι̇brNkk(t) .

We remark using property (i) from Lemma 2.5.1 that gt
N is also bounded above

by Cf for all values of t, since the complex exponential eι̇brNkk(t) is bounded by 1
for any b ≥ 0 and 1 ≤ k ≤ N . In particular, we have that |gN (x, b, z)| ≤ Cf for
all x, b ≥ 0.
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Our target function is gN (wj , b, z) = 1
N

N∑
i=1

f(wi, wj)e
ι̇brNkk . By the funda-

mental theorem of calculus,

|gN (wj , b, z)− g̃N−1(wj , b, z)| =
∣∣g0

N (wj , b, z)− g1
N (wj , b, z)

∣∣
=

∣∣∣∣∫ 1

0

∂

∂t
gt
N d t

∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

b

N

N∑
k=1

eι̇br
N
kk(t)

∂

∂t
rNkk(t)

∣∣∣∣∣ .
Now, RAt

N
(z) = (At

N − zI)−1 and thus, d
d t RAt

N
(z) = −RAt

N
(z)

dAt
N

d t RAt
N
(z).

Note that dAt
N

d t = −JN , where JN is given by

JN (k, l) =

{
0, if k, l ̸= j

akl, if k = j or l = j .

Thus,

|gN (wj , b, z)− g̃N−1(wj , b, z)|

=

∣∣∣∣∣∣
∫ 1

0

b

N

N∑
k=1

eι̇br
N
kk(t)

N∑
m,n=1

rNkm(t)
∂atmn

∂t
rNnk(t)

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

b

N

N∑
k=1

eι̇br
N
kk(t)

N∑
m=1

rNkm(t)amjr
N
jk(t) d t

∣∣∣∣∣
≤
∫ 1

0

b

N

N∑
k=1

N∑
m=1

|rNkm(t)amjr
N
jk(t)|d t (2.56)

since the complex exponential eι̇brNkk(t) is trivially bounded by 1 as rNkk(t) ∈ C+.
Then, using Cauchy-Schwarz and Lemma 2.5.2 in (2.56), we have

|gN (wj , b, z)− g̃N−1(wj , b, z)|

≤
∫ 1

0

b

N

N∑
k=1

|rNjk(t)|
(
ℑ(rNkk(t))

η

)1/2
(

N∑
m=1

a2mj

)1/2

d t .

Bounding ℑ(rNkk(t)) by 1/η (Property (iv) of Lemma 2.5.1) and taking expect-
ation, we get

E[|gN (wj , b, z)− g̃N−1(wj , b, z)|] ≤
∫ 1

0

b

Nη
E

 N∑
k=1

|rNjk(t)|

(
N∑

m=1

a2mj

)1/2
d t .

(2.57)
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Now, again using Cauchy-Schwarz and Lemma 2.5.2, we have for some constant
C ′ that

N∑
k=1

|rNjk(t)| ≤
√
N

(
N∑
k=1

|rNjk(t)|2
)1/2

≤ C ′
√
N

√
η
. (2.58)

Thus, using (2.58) and Jensen’s inequality on the function
√
X in (2.57), we get

E[|gN (wj , b, z)− g̃N−1(wj , b, z)|] ≤
∫ 1

0

b

Nη
E

C ′√N√
η

(
N∑

m=1

a2mj

)1/2
d t

≤ C ′
∫ 1

0

b√
Nη3/2

(
E

[
N∑

m=1

a2mj

])1/2

d t .

Since f is bounded, we have for some new constant C ′f that

E[|gN (wj , b, z)− g̃N−1(wj , b, z)|] ≤
C ′fb

√
λ

η3/2
√
N
.

Using the fact that gt
N is bounded by Cf for all t, we get

E[|eλg̃N−1 − eλgN |] ≤ E[|g̃N−1 − gN |]e2Cfλ = O

( √
λ

η3/2
√
N

)
.

Since this is an error of the same order as qN,λ(u, z), we can absorb it into the
existing error qN,λ. Finally, using (2.54) and the interpolation argument allows
us to write (2.49) as

E[eι̇ur
N
jj ] = 1− e−λdj

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v + qN,λ(u, z) ,

which proves the proposition.

Now, consider the expression (2.42) from the Proposition 2.5.4. If we multiply
throughout by f(x,wj) and then sum over j, and finally scale by N , we get

E[gN (x, u, z)] =
1

N

N∑
j=1

f(x,wj)

− 1

N

N∑
j=1

f(x,wj)e
−λdj√u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v

(2.59)

+ qN,λ(u, z) .
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Consider the space of Lipschitz functions Lip(R) defined as

Lip(R) =

{
h ∈ Cb(R) : sup

x
|h(x)| ≤ 1, sup

x̸=y

|h(x)− h(y)|
|x− y|

≤ CL, 0 < CL <∞

}
.

Now, under the bounded Lipshitz metric dBL(·, ·) given by

dBL(µ, ν) = sup
h∈Lip(R)

{∣∣∣∣∫ hdµ−
∫
hd ν

∣∣∣∣} ,

we have
µWN

=⇒ µw if and only if dBL(µWN
, µw) → 0,

where WN = woN for a uniformly chosen vertex oN . So, taking f to be Lipschitz
in one coordinate (and since we already have that f is bounded), the first term
in the RHS of (2.59) becomes

1

N

N∑
j=1

f(x,wj) =

∫
f(x, y)µWN

(d y) ≤ df (x) + EN , (2.60)

where EN = dBL(µWN
, µw).

Recall from (2.13) that we have

df (wj) :=

∫
f(x,wj)µw(dx).

Then, one simply gets

|e−λdj − e−λdf (wj)| ≤ λENe2λ. (2.61)

Thus, using (2.60) and (2.61) in (2.42) gives us

E[gN (x, u, z)]

= df (x)−
1

N

N∑
j=1

f(x,wj)e
−λdf (wj)

(√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v

)
(2.62)

+ q̃N,λ(u, z) ,

where
q̃N,λ(u, z) = qN,λ(u, z) + O(EN ).

Finally, for a fixed x ∈ [0,∞), define

Ig(y) = f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)
.

Then, we have the following lemma.
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Lemma 2.5.6.
Ig(y) is Lipschitz.

Proof. Consider Ig(y) as defined. Then,

|∂yIg(y)|

≤
∣∣∣∣∂yf(x, y)e−λdf (y)(√u∫ ∞

0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)∣∣∣∣
+

∣∣∣∣f(x, y)e−λdf (y)∂ydf (y)(√u∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)∣∣∣∣
+

∣∣∣∣f(x, y)e−λdf (y)(√u∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
∂ygN (y, v/λ, z) d v

)∣∣∣∣ .
(2.63)

Recall that a function is Lipschitz if and only if it has a bounded derivative.
Thus, if f is Lipschitz in y, the first term in (2.63) is uniformly bounded in y.
Moreover, this makes the second term in (2.63) bounded as well since

|∂ydf (y)| ≤
∫ ∞
0

|∂yf(x, y)|µw(dx) (2.64)

is bounded. To justify interchanging the derivative and the integral in (2.64),
we have to utilise Theorem 2.6.2 for which we need to verify the following
conditions.

• f(x, y) is µw−integrable for each y and the map y 7→ f(x, y) is continuous
for each x.

• For each x, the derivative ∂yf(x, y) exists.

• For each y, there is a µw−integrable function Ψy(x) and a neighbourhood
Uy containing y, such that for all y′ ∈ Uy, |∂y′f(x, y′)| ≤ Ψy(x).

The first and second are trivial to check, and by Lipschitz property, since
∂yf(x, y) ≡ const., we have Ψy(x) ≡ const, which is integrable on [0,∞) since
µw is a probability measure.

Finally, for notational convenience, let h(y, v) be denote

h(y, v) =
J1(2

√
uv)√
v

eι̇vzE
[
eλgN (y,v,z)

]
.

Once again, we need to verify the three conditions as above to apply Theorem
2.6.2. Note that h(y, v) is integrable with respect to v. Moreover,

∂yh(y, v) = h(y, v)∂ygN (y, v, z)
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where one can compute

∂ygN (y, v, z) =
1

N

N∑
k=1

∂yf(wk, y)e
ι̇vrkk ,

which again is bounded. Thus, ∂yh(y, v) exists, and is bounded above by
C0v

− 1
2 e−ηv, which is integrable with respect to v. This verifies the three con-

ditions and allows us to pull the derivative inside the third term in (2.63), and
also makes that term bounded. Thus, Ig(y) is Lipschitz.

Since Ig(y) is Lipschitz, we can exploit the weak convergence of µw under the
Lipschitz metric dBL in (2.62) to give us

E[gN (x, u, z)]

= df (x)

−
∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)
µw(d y)

(2.65)

+ q̃N,λ(u, z) .

Recall the Banach space as defined in (2.11), and consider ϕ ∈ (B, ∥ · ∥). In this
space, consider the map

Fz(ϕ)(x, u)

= df (x)−
√
u

∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ(y,
v
λ
,z) d v

)
µw(d y).

(2.66)

Note that ϕ also implicitly depends on z but we drop that for notational purposes
since we fix z throughout.

Take ϕ1, ϕ2 ∈ (B, ∥ · ∥) such that ∥ϕ1∥, ∥ϕ2∥ ≤ Cf . Then, using the norm we
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defined in (2.11) and inequality 2.44, from (2.66) we get

∥Fz(ϕ1)− Fz(ϕ2)∥

≤ sup
x,u≥0

√
1

1 + u

∣∣∣∣∫ ∞
0

f(x, y)e−λdf (y)

×
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vz
(
eλϕ1(y, vλ) − eλϕ2(y, vλ)

)
d v

)
µw(d y)

∣∣∣∣
≤ sup

u≥0

√
1

1 + u

∫ ∞
0

∫ ∞
0

λ√
v
e−ηv

∣∣∣ϕ1 (y, v
λ

)
− ϕ2

(
y,
v

λ

)∣∣∣
× eλ|ϕ1(y, vλ)|+λ|ϕ2(y, vλ)| d v µw(d y)

≤ λ∥ϕ1 − ϕ2∥
∫ ∞
0

∫ ∞
0

λ√
v
e−ηv sup

y,v≥0

√
1 + v/λ√
1 + v/λ

eλ|ϕ1(y, vλ)|+λ|ϕ2(y, vλ)| d v µw(d y)

≤ λ∥ϕ1 − ϕ2∥
∫ ∞
0

∫ ∞
0

√
1 + v/λ√

v
e−ηv exp

(
λ
√
1 + v/λ(∥ϕ1∥+ ∥ϕ2∥)

)
d v µw(d y)

≤ ∥ϕ1 − ϕ2∥
∫ ∞
0

(
e−ηv√
v

+
e−ηv√
λ

)
e2Cf

√
λv d v ≤ C1

η5/2
∥ϕ1 − ϕ2∥ ,

where C1 is the constant upper bound to the integral of the form∫ ∞
0

c1e
−c2x+c3

√
x dx

for some c3 > 0, and is finite. Taking η > 0 sufficiently large, we get that Fz

is a contraction in an open ball B ⊂ B of radius Cf < ∞, and thus, by the
Banach Fixed Point Theorem, there exists a unique ϕ∗ such that ϕ∗ = Fz(ϕ

∗)

for Fz : B → B.

We are now ready to prove a concentration result. Recall the function GN (u)

defined in (2.12) as

GN (u) =
1

N

N∑
i=1

eι̇ur
N
ii .

If we now define a new function G̃N (x, u) that acts identically on the first
coordinate as

G̃N (x, u) := GN (u),

then one can see that supx,u
1√
1+u

G̃N (x, u) < ∞, and so G̃N (x, u) ∈ B, and

consequently, a concentration result for G̃N would imply concentration for GN .
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Proposition 2.5.7 (Concentration and convergence).
For any z ∈ C+ and x ∈ [0,∞), and uniformly over u in [0, 1], we have

E[gN (x, u, z)]
N→∞−−−−→ ϕ∗(x, u). Further, we have

E
[
∥gN − E[gN ]∥2

]
= o(1), and

E
[∥∥∥G̃N − E[G̃N ]

∥∥∥2] = o(1) .

Proof of Proposition 2.5.7. Let δN (x, u, z) denote the error

δN (x, u, z) := eλgN (x,u,z) − eλE[gN (x,u,z)].

Let 1 ≤ k ̸= l ≤ N and consider the covariance

Ak,l := E[eι̇ur
N
kkeι̇ur

N
ll ]− E[eι̇ur

N
kk ]E[eι̇ur

N
kk ]. (2.67)

Using (2.46) for the first term and Proposition 2.5.4 for the second term, we get

Ak,l =

− E[Tj ]− E[Tk]

+ u

∫ ∫
J1(2

√
uv1)√
v1

J1(2
√
uv2)√
v2

eι̇(v1+v2)zE

[
e
ι̇v1

∑
l̸=j

r̃N−1
ll a2jl+ι̇v2

∑
l ̸=k

r̃N−1
ll a2kl

]
d v1 d v2

+ E[T̃j ] + E[T̃k]

− u

∫ ∫
J1(2

√
uv1)√
v1

J1(2
√
uv2)√
v2

eι̇(v1+v2)zE
[
eλgN (wj ,

v1
λ
,z)+λgN (wk,

v2
λ
,z)
]
d v1 d v2 ,

(2.68)

where Ti and T̃i are the RHS of equations (2.46) and (2.42) respectively, and
differ by the error qN,λ(u, z) in expectation. In the first double integral of
(2.68), one can do the interpolation argument term-wise, and obtain the error
CIq

2
N,λ(u, z)+ q

2
N,λ(u, z) by making a difference with the second double integral

in (2.68), where CI is the constant upper bound to T̃k for any k. Thus, we have
that

|Ak,l| ≤ C ′IqN,λ(u, z) + q2N,λ(u, z). (2.69)

Using inequality 2.44 on δN (x, u, z) gives us

E[|δN (x, u, z)|2]

= E
[∣∣∣eλgN (x,u,z) − eλE[gN (x,u,z)]

∣∣∣2] ≤ C1E
[
|gN (x, u, z)− E[gN (x, u, z)]|2

]
.
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since |gN (x, v, z)| ≤ Cf and C1 = e2λCf . We can now bound this by using the
definition of gN to get

E[|δN (x, u, z)|2]

≤ C1

N2

∣∣∣∣∣∣
N∑

k,l=1

E[f(x,wk)e
ι̇urNkkf(x,wl)e

ι̇urNll ]− E[f(x,wk)e
ι̇urNkk ]E[f(x,wl)e

ι̇urNll ]

∣∣∣∣∣∣ .
(2.70)

Since f is deterministic, we can pull it out of the expectation and take it com-
mon, giving us

E[|δN (x, u, z)|2] ≤ C1

N2

∣∣∣∣∣∣
N∑

k,l=1

f(x,wk)f(x,wl)Ak,l

∣∣∣∣∣∣ ,
where Ak,l is as in (2.67). We can conclude using the triangle inequality that

E[|δN (x, u, z)|2] ≤ C1C
2
f sup

k,l
|Ak,l| = O

(
λ
√
u

η5/2
√
N

)
. (2.71)

For η > 0 sufficiently large, taking the norm, we get

E
[∥∥∥eλgN − eλE[gN ]

∥∥∥2] = o(1) . (2.72)

However, δN is a bounded analytic function in [0,∞)2×C+. Using the identity
theorem from complex analysis, which states that if two holomorphic functions
agree in an open set of the domain then they must agree everywhere on the
domain, we have that since δN → 0 on an open set of the upper-half complex
plane, it must approach 0 everywhere on the upper-half plane. Since the error
in (2.71) can be absorbed in q̃N,λ(u, z), using 2.44 gives us

E[gN (x, u, z)]

= df (x)−
∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλE[gN(y,
v
λ
,z)] d v

)
µw(d y)

+ q̃N,λ(u, z) ,

(2.73)

where the error vanishes in the norm as

∥q̃N,λ∥ = ∥qN,λ(u, z) + O(EN )∥ ≤ sup
x,u≥0

∣∣∣∣C λ
√
u

η5/2
√
N

∣∣∣∣+ EN = o(1) .
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Now, consider the function G̃N (x, u) and the error

∆N (u) := G̃N (x, u)− E[G̃N (x, u)].

By definition of G̃N , one can see that expanding ∆N (u) will yield an expression
similar to (2.70) modulo f , and so, using (2.69) again, we get that

E[|∆N |2] ≤ C1C
2
f sup

k,l
|Ak,l| = O

(
λ
√
u

η5/2
√
N

)
.

By taking the norm and again using the identity theorem, we get that ∆N

vanishes in [0,∞)2 × C+ and thus

E
[∥∥∥G̃N − E[G̃N ]

∥∥∥2] = o(1) . (2.74)

A quick inspection of (2.70) shows that in fact we also have the concentration
for gN , since the RHS is precisely the upper bound on

E[|gN (x, u, z)− E[gN (x, u, z)]|2],

and so,
E
[
∥gN − E[gN ]∥2

]
= o(1). (2.75)

Finally, comparing (2.73) with the contraction mapping (2.66), we have the
following:

E[gN (x, u, z)] = Fz(E[gN (x, u, z)]) + q̃N,λ(u, z) ,

ϕ∗(x, u) = Fz(ϕ
∗(x, u)).

So, with η > 0 large enough and Fz being a contraction on B ⊂ B of radius Cf ,
we have

∥E[gN ]− ϕ∗∥ ≤ ∥Fz(E[gN ])− Fz(ϕ
∗)∥+ ∥q̃N∥ ,

and consequently,

1

2
∥E[gN ]− ϕ∗∥ ≤ ∥q̃N∥.

Thus, since ∥EgN∥ ≤ Cf ,

∥E[gN ]− ϕ∗∥ N→∞−−−−→ 0.

As a quick remark, notice that

∥ϕ∗∥ ≤ Cf , (2.76)
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since gN is bounded.
Now, since E[gN (x, u, z)] is an analytic function on [0,∞)2 × C+, we have

limN→∞ E[gN (x, u, z)] is an analytic function. Again from the identity theorem
of complex analysis, since limN→∞ E[gN ] and ϕ∗ are analytic and agree on an
open set of [0,∞)2×C+, they agree everywhere in the complex domain [0,∞)2×
C+, and thus the convergence holds for any z ∈ C+. Note that for a fixed
z ∈ C+, although both the functionals E[gN ] and ϕ∗ live in (B, ∥ · ∥B), the
domain of ϕ∗ is [0,∞)2×C+ since E[gN ] has the domain [0,∞)2×C+. Now, for
each z ∈ C+, fixing u in the compact set [0, 1] gives us that for each x ∈ [0,∞)

and uniformly over u ∈ [0, 1],

E[gN (x, u, z)]
N→∞−−−−→ ϕ∗(x, u) (2.77)

We can now prove Theorem 2.3.9.

Proof of Theorem 2.3.9. Equation (2.74) proves the concentration statement of
Theorem 2.3.9. Recall that we had shown that

E
[
eι̇ur

N
jj

]
= 1− e−λdj

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v + qN,λ(u, z) ,

and so,

E[GN (u, z)] =
1

N

N∑
j=1

E[eι̇ur
N
jj ]

= 1− 1

N

N∑
j=1

e−λdj
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v + qN,λ(u, z) .

(2.78)

Next, we see that the function

Ĩg(y) = e−λdf (y)
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y,v/λ) d v

is Lipschitz by using an argument similar to Lemma 2.5.6. Thus, we get

E[GN (u, z)] =

1−
∫ ∞
0

e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)
µw(d y) + q̃N,λ(u, z) .

Since from Proposition 2.5.7 we have concentration for gN , using inequality
(2.44) we have that

E[GN (u, z)] =

1−
∫ ∞
0

e−λdf (y)
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλE[gN(y,
v
λ
,z)] d v µw(d y) + q̃N,λ(u, z) .
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Finally, taking the limit N → ∞ gives us

lim
N→∞

E[GN (u, z)] =

1−
∫ ∞
0

e−λdf (y)
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y,v/λ) d v µw(d y) , (2.79)

completing the proof of Theorem 2.3.9.

§2.5.2 Deriving the expression for the Stieltjes Trans-
form

Since we took u to be in [0, 1], we can take a derivative with respect to u and
evaluate it at u = 0. Recall from equation (2.78) that we have

E[GN (u, z)] =
1

N
E

N∑
j=1

eι̇ur
N
jj

= 1− 1

N

N∑
j=1

e−λdj
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v + qN,λ(u, z) .

Note that by definition, GN (u, z) is a bounded function, and thus by DCT,
limit operations can be interchanged with expectation. We would like to take
a derivative with respect to u and evaluate at u = 0 to extract out tr(RAN

(z))

from the LHS of (2.78). On the other hand, we would first like to take N → ∞
for the RHS to remove the error term. To interchange these operations, we have
the following result.
Proposition 2.5.8.
Both the limits limN→∞

∂
∂uE[GN (u, z)]

∣∣
u=0

and ∂
∂u limN→∞ E[GN (u, z)]

∣∣
u=0

ex-
ist and are equal.

Proof. We fix a z ∈ C+. Now, limN→∞ E[GN (u, z)] exists due to the RHS of
(2.78), which we denote by G(u, z). If we define HN (u, z) and H(u, z) as

HN (u, z) =
E[GN (u, z)]− E[GN (0, z)]

u
,

H(u, z) =
G(u, z)−G(0, z)

u
.

Then,

lim
u→0

HN (u, z) =
∂

∂u
E[GN (u, z)]

∣∣∣∣
u=0

,

lim
u→0

H(u, z) =
∂

∂u
G(u, z)

∣∣∣∣
u=0

.
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We would like to claim

lim
N→∞

∂

∂u
E[GN (u, z)]

∣∣∣∣
u=0

=
∂

∂u
G(u, z)

∣∣∣∣
u=0

.

Thus, we want to interchange the order of limits. Note that

lim
N→∞

HN (u, z) = H(u, z)

uniformly in u ∈ (0, 1], and

lim
u→0

HN (u, z) =
∂

∂u
E[GN (u, z)]

∣∣∣∣
u=0

= E[tr(RAN
(z))]

for each N , where the limit can be taken inside the expectation using dominated
convergence. Thus, using [Rudin, 1976, Theorem 7.11], we have that the limits
limu→0H(u, z) and limN→∞ E[tr(RAN

(z))] exist and are equal.

We are now ready to prove Corollary 2.3.10.

Proof of Corollary 2.3.10. We now do precisely as we stated before Proposition
2.5.8. We evaluate the derivative at u = 0 and then take N → ∞ on the
LHS of (2.78), and we do the reverse for the RHS of (2.78). Note that since
limN→∞ µN,λ = µλ in probability, SAN

(z) → Sµλ
(z) and also S̄AN

(z) → Sµλ
(z)

as N → ∞ for all z ∈ C+. Thus, we then obtain using Proposition 2.5.8

ι̇Sµλ
(z)

= ι̇ lim
N→∞

S̄AN
(z)

(2.36)
= ι̇ lim

N→∞
E tr(RAN

(z))
(2.39)
= lim

N→∞

∂

∂u
E[GN (u, z)]

∣∣∣∣
u=0

=
∂

∂u
lim

N→∞
E[GN (u, z)]

∣∣∣∣
u=0

(2.79)
= − ∂

∂u

∫ ∞
0

e−λdf (y)
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗
z(y, vλ) d v µw(d y)

∣∣∣∣
u=0

= −
∫ ∞
0

e−λdf (y)
∂

∂u

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗
z(y, vλ) d v µw(d y)

∣∣∣∣
u=0

. (2.80)

We now wish to evaluate the derivative on the RHS of (2.80). Let K(u) denote

K(u) :=
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗
z(y, vλ) d v. (2.81)

Observe that∑
k≥0

∫ ∞
0

vk

k!(k + 1)!
e−ηv d v =

∑
k≥0

Γ(k + 1)

k!(k + 1)!ηk
≤ e1/η (2.82)
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for η > 0 by a change of variables. If we expand the Bessel function as defined
in (2.16) in equation (2.81) and take the absolute value, we observe using (2.82)
and using |ϕ∗(x, u)| ≤ Cf (from (2.76)), that we can use Fubini’s Theorem to
interchange the integral with the summand. Thus, we have

K(u) =
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗
z(y, vλ) d v

=
√
u

∫ ∞
0

1√
v

∞∑
k=0

(−1)k(
√
uv)2k+1

k!(k + 1)!
eι̇vzeλϕ

∗
z(y, vλ) d v

=
∞∑
k=0

(−1)kuk+1

k!(k + 1)!

∫ ∞
0

vkeι̇vzeλϕ
∗
z(y, vλ) d v .

Denote by Ik(y) the integral

Ik(y) :=

∫
vkeι̇vzeλϕ

∗
z(y, vλ) d v .

Therefore,

K(u)

u
=

∞∑
k=0

(−1)kuk

k!(k + 1)!
Ik(y) = I0(y) +

∑
k≥1

(−1)kuk

k!(k + 1)!
Ik(y) =: I0(y) +

∞∑
k=1

ak(u) ,

(2.83)
where ak(u) denotes

ak(u) :=
(−1)kukIk(y)

k!(k + 1)!
.

Note that for any k, we have that Ik(y) is finite since

|Ik(y)| ≤
∫ ∞
0

vke−ηveCfλ d v =
eCfλ

ηk+1
Γ(k + 1) .

Since K(0) = 0 and by (2.83) it follows that

∂

∂u
K(u)

∣∣∣∣
u=0

= lim
u→0

K(u)

u
= I0(y) + lim

u→0

∑
k≥1

ak(u), (2.84)

Therefore we would like to evaluate limu→0
∑

k≥1 ak(u). Note that

|ak(u)| ≤
eCfλΓ(k + 1)

ηk+1k!(k + 1)!

, as u is bounded by 1. Note that the series

∑
k≥1

Γ(k + 1)eCfλ

k!(k + 1)!ηk+1
=

eCfλ

η2

∑
k≥0

1

ηk(k + 2)!
≤ eCfλe

1
η

η2
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converges, and consequently by the dominated convergence theorem, we have

lim
u→0

∑
k≥1

ak(u) =
∑
k≥1

lim
u→0

ak(u) = 0.

Thus by (2.84) we have

lim
u→0

K(u)

u
= I0(y).

Therefore we get

ι̇Sµλ
(z) = −

∫ ∞
0

e−λdf (y)I0(y)µw(d y)−
∫ ∞
0

e−λdf (y)
∫ ∞
0

eι̇vzeλϕ
∗
z(y,

v
λ
) d v µw(d y).

To conclude the argument, we use Lemma 2.5.3 with Theorem 2.3.7 to state
that SAN

(z) converges in probability to Sµλ
(z) for each z ∈ C+.

We conclude with the proof of Corollary 2.3.11

Proof of Corollary 2.3.11. From Corollary 2.3.10, we have

Sµλ
(z) = ι̇

∫ ∞
0

∫ ∞
0

eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v µw(d y).

Recall that

ϕ∗(x, u)

= df (x)−
∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y, vλ) d v

)
µw(d y)

(2.85)

is the unique analytical solution of the fixed point equation as in (2.66). Ex-
panding the Bessel function J1(x) in (2.85) using (2.16) gives

ϕ∗(x, u)

= df (x)−
∫ ∞
0

f(x, y)e−λdf (y)

∫ ∞
0

∑
k≥0

(−1)kuk+1vk

k!(k + 1)!
eι̇vzeλϕ

∗(y, vλ) d v

µw(d y).

(2.86)

We would like to interchange the summand and integral with respect to v in
(2.86). Using the z = ζ + ι̇η for some ζ ∈ R and η > 0, we have that∑

k≥0

∫ ∞
0

∣∣∣∣(−1)kuk+1vk

k!(k + 1)!
eι̇vze−λdf (y)+λϕ∗(y,v/λ)

∣∣∣∣ d v
≤ eCfλ−λdf (y)

∑
k≥0

uk+1Γ(k + 1)

k!(k + 1)!ηk+1
≤ u

η
eCfλ−λdf (y)eu/η.
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Thus, by Fubini’s Theorem, we can interchange the summand with the integral
with respect to v, giving us

ϕ∗(x, u) =

df (x)−
∫ ∞
0

f(x, y)e−λdf (y)

∑
k≥0

(−1)kuk+1

k!(k + 1)!

∫ ∞
0

vkeι̇vzeλϕ
∗(y, vλ) d v

µw(d y).

(2.87)

Now, denote by Hλ(z, y) the function

Hλ(z, y) := ι̇

∫ ∞
0

eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v. (2.88)

Then, by Corollary 2.3.10, we can see that Sµλ
(z) =

∫∞
0 Hλ(z, y)µw(d y). From

(2.87) we get that

ϕ∗(x, u) = df (x)− u

∫ ∞
0

f(x, y)

∫ ∞
0

eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v µw(d y)

−
∫ ∞
0

f(x, y)
∑
k≥1

∫ ∞
0

(−1)kuk+1vk

k!(k + 1)!
eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v µw(d y),

and so, we can write

ϕ∗(x, u) = df (x) + ι̇u

∫ ∞
0

f(x, y)Hλ(z, y)µw(d y) + T (x, u, λ, z) (2.89)

where

T (x, u, λ, z)

:= −
∫ ∞
0

f(x, y)
∑
k≥1

∫ ∞
0

(−1)kuk+1vk

k!(k + 1)!
eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v µw(d y).

(2.90)

Substituting u = v/λ for v ∈ R+ in (2.89) and multiplying throughout by λ, we
have

−λdf (x) + λϕ∗(x, v/λ) = ι̇v

∫ ∞
0

f(x, y)Hλ(z, y)µw(d y) + λT (x, v/λ, λ, z).

We begin by claiming the following:

Claim 2.5.9.
For any x, u ≥ 0, we have

|e−λdf (x)+λϕ∗(x,u)| ≤ 1. (2.91)
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Then, one can see that

|T (x, v/λ, λ, z)| ≤
∫ ∞
0

f(x, y)
v

λη

∑
k≥1

vkΓ(k + 1)

ηkλkk!(k + 1)!

µw(d y)

≤ v2

λ2η2
e

v
ηλdf (x),

and so for each v ∈ (0,∞)

lim
λ→∞

λ|T (x, v/λ, λ, z)| → 0.

Thus, from (2.89), for any v we have

lim
λ→∞

(−λdf (x) + λϕ∗(x, v/λ)) = ι̇v lim
λ→∞

∫ ∞
0

f(x, y)Hλ(z, y)µw(d y). (2.92)

What remains now is to justify Claim 2.5.9, and taking the limit λ→ ∞ inside
the integral in (2.92).

First we consider the homogeneous case when f ≡ 1. Recall from Remark
2.3.12, that due to the lack of dependency of one coordinate, we denote ϕ̃∗(u) =
ϕ∗(x, v/λ) Then,

ϕ̃∗(u) = 1−
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vze−λ+λϕ̃∗(v/λ) d v,

and from (2.92) we have limλ→∞(−λ+ λϕ̃∗(v/λ)) = ι̇v Sµf
(z). Moreover, from

Corollary 2.3.10, we have

Sµλ
(z) = ι̇

∫ ∞
0

eι̇vze−λ+λϕ̃∗(v/λ) d v.

Since f ≡ 1, from (2.76) we have that Cf = 1 and |ϕ̃∗| ≤ 1. Then, |e−λ+λϕ̃∗ | ≤ 1,
justifying Claim 2.5.9. Thus, the expression inside the integral is uniformly
bounded by e−ηv. Using dominated convergence, we can pull the limit λ → ∞
inside the integral to obtain

Sµf
(z) = ι̇

∫ ∞
0

eι̇vzeι̇v Sµf (z) d v = − 1

z + Sµf
(z)

,

which is precisely the Stieltjes transform of the semicircle law.
In the case of general f , recall from (2.77) that for any x and u,

ϕ∗(x, u) = lim
N→∞

1

N
E

[
N∑
i=1

f(x,wi)e
ι̇urNii

]
.
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Now, for any N , by trivially bounding the complex exponential eι̇urNii by 1 for
any i, we have that∣∣∣∣∣ 1N E

N∑
i=1

f(x,wi)e
ι̇urNii

∣∣∣∣∣ ≤ 1

N

N∑
i=1

|f(x,wi)| =
1

N

N∑
i=1

f(x,wi).

Thus, by triangle inequality, we have that

|ϕ∗(x, u)| ≤ |ϕ∗(x, u)− E[gN (x, u, z)]|+ 1

N

N∑
i=1

f(x,wi).

Thus, we have that

− λ

N

N∑
i=1

f(x,wi) + λ|ϕ∗(x, u)| ≤ λ
√
1 + u

1√
1 + u

|ϕ∗(x, u)− E[gN (x, u, z)]|

≤ λ
√
1 + u ∥ϕ∗ − EgN∥B. (2.93)

Taking N → ∞ on both sides in (2.93) yields that

−λdf (x) + λ|ϕ∗(x, u)| ≤ 0.

Using this, we conclude that∣∣∣e−λdf (x)+λϕ∗(x,u)
∣∣∣ ≤ e−λdf (x)eλ|ϕ

∗(x,u)| ≤ 1 (2.94)

for any x and u, proving Claim 2.5.9. Now, to evaluate limλ→∞ Sµλ
(z), we take

the limit inside the integral in the RHS of (2.17) using DCT, which we can use
from (2.94). This gives us

Sµf
(z) = lim

λ→∞
Sµλ

(z) = ι̇

∫ ∞
0

∫ ∞
0

eι̇vz lim
λ→∞

(
e−λdf (y)+λϕ∗(y,v/λ)

)
d v µw(d y).

and so, using (2.92), we get

Sµf
(z) = ι̇

∫ ∞
0

∫ ∞
0

eι̇vz lim
λ→∞

eι̇v
∫∞
0 f(x,y)Hλ(z,x)µw(dx) d v µw(d y). (2.95)

Recall from (2.88) that

Hλ(z, y) = ι̇

∫ ∞
0

eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v.

Again using (2.94), we have that the integral is bounded in absolute value, and
so, using DCT allows us to define

H(z, y) := lim
λ→∞

Hλ(z, y)
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where
∫∞
0 H(z, y)µw(d y) = Sµf

(z). Moreover, since |Hλ(z, y)| is bounded by a
constant, and µw is a probability measure, we use DCT once again to take the
limit λ→ ∞ inside

∫∞
0 f(x, y)Hλ(z, x)µw(dx). Thus, we obtain

Sµf
(z) = ι̇

∫ ∞
0

∫ ∞
0

eι̇vzeι̇v
∫∞
0 f(x,y)H(z,x)µw(dx) d v µw(d y)

= −
∫ ∞
0

µw(d y)

z +
∫∞
0 f(x, y)H(z, x)µw(dx)

.

The proof follows by observing that H(z, x) satisfies the analytic equation
defined in (2.6).

§2.6 Appendix

Proposition 2.6.1 (Banach Space).
Let X = [0,∞)2 and consider the space B defined by

B =

{
ϕ : X → C analytic

∣∣∣∣∣ sup
x,y≥0

|ϕ(x, y)|√
1 + y

<∞

}

and consider the norm
∥ϕ∥B = sup

x,y≥0

|ϕ(x, y)|√
1 + y

.

Then, (B, ∥ · ∥B) is a Banach space.

Proof of Proposition 2.6. For ease of notation, throughout this argument, ∥·∥ :=

∥ · ∥B. Clearly ∥ · ∥ is a norm, and thus, (B, ∥ · ∥B) is a normed vector space.
Let {ϕn}n be a Cauchy sequence in (B, ∥ · ∥B). Thus, for all ϵ > 0, there is

an Nε ∈ N such that for all m,n > Nε,

∥ϕm − ϕn∥ < ε.

Let µ be the Lebesgue measure on X. Define

Emn = {(x, y) ∈ X : |ϕn(x, y)− ϕm(x, y)| > ∥ϕn − ϕm∥
√

1 + y}.

Then, µ(Emn) = 0. Let E =
⋃
m,n

Emn and F = Ec. Then, µ(E) = 0, and

F = {(x, y) ∈ X : |ϕn(x, y)− ϕm(x, y)| ≤ ∥ϕn − ϕm∥
√

1 + y}.
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So, for all ε > 0, we have an Nε such that for all (x, y) ∈ F and m,n > Nε,

|ϕn(x, y)− ϕm(x, y)| < ε
√
1 + y.

Let ψm(x, y) := ϕm(x,y)√
1+y

. Then, we have for all (x, y) ∈ F and m,n > Nε

|ψn(x, y)− ψm(x, y)| < ε.

In other words, for all (x, y) ∈ F , denoting an = ψn(x, y) gives us that {an}n is a
Cauchy sequence in the metric space (C, |·|). Since C is a complete metric space,
for all (x, y) ∈ F , there exists a limit a := limn an, that is, for all (x, y) ∈ F ,
there exists a ψ such that

ψ(x, y) := lim
n→∞

ψn(x, y).

For (x, y) ∈ E with µ(E) = 0, ψ(x, y) = 0. This is a well-defined limit. Note
that since ϕn lives in (B, ∥·∥B), ψn lives in (L∞(X), ∥·∥∞), and we thus conclude
that

∥ψn − ψm∥∞ < ε.

Passing the limit through m, we have

∥ψn − ψ∥∞ < ε.

For all (x, y) ∈ X, define

ϕ(x, y) = ψ(x, y)
√
1 + y.

One can see that ∥ϕn − ϕ∥ = ∥ψn − ψ∥∞. Use triangle inequality to conclude
ϕ ∈ (B, ∥ · ∥B)

For the next theorem, we refer the reader to [Billingsley, 2012, Theorem 16.8].

Theorem 2.6.2 (Interchanging derivative and integral).
Consider the measure space (Ω,F , µ) and an open set A ⊂ R. Let f : A×Ω → C
be such that for each x ∈ A, ω 7→ f(x, ω) is µ−integrable, and moreover for
µ−a.e. ω, x 7→ f(x, ω) is continuous. Consider the function g : A→ C defined
by

g(x) =

∫
Ω
f(x, ω)µ(dω).

Suppose that for each ω the partial derivative ∂xf(x, ω) of f with respect to
x exists. Then, if for every x, there is a non-negative µ−integrable function
hx : Ω → C and a neighbourhood Ux containing x such that for all x′ ∈ Ux,
|∂x′f(x′, ω)| ≤ hx(ω), then, g(x) is continuously differentiable and

∂xg(x) =

∫
Ω
∂xf(x, ω)µ(dω).
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