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CHAPTER 2

Limiting spectra of inhomogeneous
random graphs

This chapter is based on:
L. Avena, R.S. Hazra, N. Malhotra. Limiting spectra of inhomogeneous random
graphs. |arziv:2312.02805], 2023.

Abstract

We consider sparse inhomogeneous Erdgs-Rényi random graph ensembles where
edges are connected independently with probability p;;. We assume that p;; =
en f(w;, w;) where (w;);>1 is a sequence of deterministic weights, f is a bounded
function and Ney — A € (0,00). We characterise the limiting moments in
terms of graph homomorphisms and also classify the contributing partitions.
We present an analytic way to determine the Stieltjes transform of the limiting
measure. The convergence of the empirical distribution function follows from
the theory of local weak convergence in many examples but we do not rely on
this theory and exploit combinatorial and analytic techniques to derive some
interesting properties of the limit. We extend the methods of Khorunzhy et al.
[2004] and show that a fixed point equation determines the limiting measure.
The limiting measure crucially depends on A and it is known that in the homo-
geneous case, if A — oo, the measure converges weakly to the semicircular law
(Jung and Lee [2018]). We extend this result of interpolating between the sparse
and dense regimes to the inhomogeneous setting and show that as A — oo, the
measure converges weakly to a measure which is known as the operator-valued
semicircular law.


https://arxiv.org/pdf/2312.02805

Q
t
=
~
)
L
o}
(av]
=
)

2. Limiting spectra of inhomogeneous random graphs

§2.1 Introduction

Homogeneous Erdés-Rényi Random Graphs (ERRG) serve as the basis for many
mathematical theories in random graphs. Real-world networks are highly in-
homogeneous and have a far more complex structure. Various attempts have
been made to generalise this to other kinds of random graph models. One of the
successful extensions is the inhomogeneous Erdgs-Rényi random graph model
introduced by Bollobas et al. [2007]. This graph has N vertices labelled by
[N] =1,...,N, and edges are present independently with probability p;; given
by pij = w A1, where f is a nice symmetric kernel on a state space S x .5,
and x; are certain attributes associated with vertex ¢ belonging to S. If f is
bounded, the graph is a sparse random graph. To introduce the non-sparse
regime, in this article, we consider a small variant of the above inhomogeneous
random graph. The vertex set remains the same, but the connection probabil-
ities are given by

Pij = st(wi,wj) A1, (2.1)

where €y is a tuning parameter, (w;) is a sequence of deterministic weights,
and f is a symmetric, bounded function on [0,00)2. The weights can also be
generally random, but we do not consider this case. Note that when Ney — oo,
the average degree is unbounded, and when Ney = O(1), the average degree
is bounded. We call the former case dense and the latter case sparse. In the
sparse case, the properties of the connected components were studied in Bol-
lobas et al. [2007]. They studied the properties of the connected components
and their relationship with the branching process. It was shown that the largest
component of the graph has a size of order NN if the operator norm of the kernel
operator corresponding to f is strictly greater than 1 (see also |[van der Hofstad,
2024, Theorem 3.9]). In the subcritical case, the sizes of the largest connec-
ted components can exhibit different behaviour compared to the ERRG. The
study of the largest connected components in various inhomogeneous random
graphs has attracted a lot of attention (see, for example, Bhamidi et al. [2010],
Broutin et al. [2021], Bet et al. [2023], van der Hofstad [2013], Devroye and
Fraiman [2014]). In this chapter, we are interested in the empirical distribution
of the eigenvalues of the adjacency matrix of the graph and how the transition
occurs from the sparse to the dense case in terms of the limiting spectral dis-
tribution. There hasn’t been much literature in this area, even though various
specific graphs have been studied. For example, the largest eigenvalue of the
sparse Chung-Lu random graph was studied in Chung et al. [2003|, and this was
extended to an inhomogeneous setting by Benaych-Georges et al. [2020, 2019].
The bulk of the spectrum of sparse graphs is mainly studied through local weak
convergence. Here, we present a unifying approach to understanding both the
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§2.1. Introduction

sparse and the dense cases, allowing us to interpolate between the two regimes.

In the case of homogeneous ERRG, it is known that in the dense case, the
empirical distribution converges to the semicircle law after an appropriate scal-
ing (Tran et al. [2013]). In the sparse case, it converges to a measure that
depends on the parameter Ney — A. The behaviour is much more complic-
ated in the sparse case. Various interesting properties were predicted by Bauer
and Golinelli [2001]. The existence of the limiting distribution was proved by
Khorunzhy et al. [2004], who also showed some interesting properties of the
moments and the limiting Stieltjes transform. The local geometric behaviour
of sparse random graphs can be well studied using the theory of local weak
convergence (LWC), which builds on the works Aldous and Lyons [2007] and
Benjamini and Schramm [2001]. It roughly describes how a graph looks like in
the limit around a uniformly chosen vertex. For a detailed review of LWC and
various other applications, see van der Hofstad [2024]. In a remarkable work
by Bordenave and Lelarge [2010], it was proved that if a graph with N vertices
converges locally weakly to a Galton-Watson tree, then the Stieltjes transform
of the empirical spectral distribution converges in L' to the Stieltjes transform
of the spectral measure of the tree, and it satisfies a recursive distributional
equation. The example of homogeneous ERRG was treated in [Bordenave and
Lelarge, 2010, Example 2|. The limiting measure of sparse ERRG depends on
A and is still very non-explicit. It was proved by Bordenave et al. [2017], Arras
and Bordenave [2023| that the measure has an absolutely continuous component
if and only if A > 1. The size of the atom at the origin was shown by Bordenave
et al. [2011], and the nature of the atomic part of the measure was studied in the
same article. The study of so-called extended states at origin was initiated in
Coste and Salez [2021], and it was shown that for A < e, there were no extended
states, and for A > e, it has extended states. All these results were conjectured
in Bauer and Golinelli [2001]. Most of these results on local limits show that
properties are generally true for unimodular Galton-Watson trees.

In the simulations of Bauer and Golinelli [2001], it is clear that when A
is slightly larger than 1, the limiting measure already starts taking the shape
of the semicircle law. It was shown in Jung and Lee [2018| that indeed, if
A — 00, then the limiting measure converges to the semicircle law. In the
general case, the moments of the limiting measure depend on certain kinds of
graph homomorphism counts, which also appeared in the works of Zhu [2020)].
Although the theory of local weak convergence is very useful, we do not know if
it can be used to derive the moments of the limiting measure. In Chakrabarty
et al. [2021b], they considered IER to have weights w; = i/N, and Ney — oo.
This result can be extended to general deterministic weights without significant
effort, and we state this general result in Section 2.2. The limiting measure is
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2. Limiting spectra of inhomogeneous random graphs

well-known in the free probability literature and appears as a universal object in
many inhomogeneous systems, referred to as the operator-valued semicircle law
[Speicher, 2011, Theorem 22.7.2]. The Stieltjes transform satisfies a recursive
analytic equation.

Our contribution

As mentioned earlier, although the convergence of the empirical spectral distri-
bution of graphs with a local-weak limit follows from the general result in Bor-
denave and Lelarge [2010], the limiting moments and contributing partitions are
not known in full generality. It is also unclear how closely the limiting measures
align in the sparse and dense regimes. Our main motivation for the work comes
from |Jung and Lee, 2018, Theorem 1|, which addresses these issues in the case
of ERRG. We extend the results from ERRG to inhomogeneous models. We
explicitly derive the moments of the limiting measure for the inhomogeneous
setting, extending the works of Khorunzhy et al. [2004], albeit with a different
proof. We also study the Stieltjes transform of the limiting measure, following
the idea of Khorunzhy et al. [2004], and attempt an expansion of it for A large
enough. This has also gained attention in the physics literature, see references in
Akara-pipattana and Evnin [2023]. We show that when A > 1, the limiting mo-
ments closely resemble those of the IER, as derived in Chakrabarty et al. [2021b]
and also implied by the work of Zhu [2020]. We derive the Stieltjes transform
in the sparse setting using a fixed-point equation. The fixed point is simpler
in the case of homogeneous ERRG, but in the inhomogeneous case, it becomes
more complex. We explicitly characterise this fixed-point equation. We believe
that in the future, this will aid in determining the rate of convergence of the
empirical spectral distribution, which can be precisely quantified in terms of A
and . The rates of convergence in the free central limit theorem were recently
explored in Banna and Mai [2023], but these results are not directly applicable
to our setting. We leave this as an open problem. Obtaining an explicit rate
of convergence will provide an exact explanation of why the limiting measure
in the sparse setting is very close to the non-sparse setting for relatively small
A > 1. We believe that the methods used in this article will be applicable in a
setting even when the local limits of the graphs are not tree-like.

Brief summary of the results

The two main results of this work aim to characterise the limiting spectral meas-
ure of inhomogeneous Erdés-Rényi random graphs. Our first result, Theorem
2.3.7, gives a characterisation of the moments of this measure, where the k"
moment for any k > 0 is described in terms of homomorphism densities of the
inhomogeneity function f and special classes of partitions of the tuple [k]. We
can recover the moments of the dense regime asymptotically (as A — 00) using
this result. The second result, Theorem 2.3.9, provides an analytic character-
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§2.2. Setting

isation of the measure. In particular, we provide an analytic characterisation of
a functional of the resolvent of the adjacency matrix in terms of a fixed-point
equation. As a consequence, in Corollaries 2.3.10 and 2.3.11, we obtain the
Stieltjes transform of the sparse and dense limiting measures. The form of the
limiting Stieltjes transform can be seen as an alternative description of the form
obtained through local weak convergence (whenever it applies).

Outline

We begin Section 2.2 by describing the model and stating the results of the dense
regime. We state the assumptions on the sparse setting more explicitly and pro-
ceed by stating our main results for this setting. We then describe a relationship
with local weak convergence and also give some examples of popular random
graph models. We show that the sparse Chung-Lu type model falls into our set-
ting, and while the Norros-Reittu model and the Generalised Random Graph
model do not directly fall into our setting, we show that asymptotically the three
models have the same spectral distribution, which has a free-multiplicative part
that can be seen from our main results.

In Section 2.4 we prove our first main result, which takes a combinatorial
approach, and we set up all the necessary tools used in proving the result. We
identify the moments of the limiting spectral measure in terms of partitions
of a tuple and graph-homomorphism densities. We provide a characterisation
of the partitions and explicit expressions for the moments that are given by
homomorphism densities defined based on these partitions. We further identify
a leading order of the moments and a polynomial in A\~!, which was also seen
for the homogeneous setting in Jung and Lee [2018].

In Section 2.5 we prove our second main result, which in contrast has an ana-
lytic flavour. We set up the relevant analytic structures, and instead of working
directly with the Stieltjes Transform, we work with a functional of the resolvent
of the adjacency matrix, which was introduced in Khorunzhy et al. [2004]. We
borrow both fundamental and advanced tools from analysis to provide an exact
analytic characterisation of the limiting spectral measure. We conclude with
the Appendix as Section 2.6 where we state the key analytic tools we use in
Section 2.5.

§2.2 Setting
§2.2.1 Model

We consider the inhomogeneous Erdés-Rényi random graph (IER) Gy on the
vertex set [N] = {1,..., N} where edges are added independently with prob-
ability p;;. As mentioned before, we will assume that p;; has a special form
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2. Limiting spectra of inhomogeneous random graphs

as
Dij = 6Nf(w17/w]) A 15

where ey is a tuning parameter such that ey — 0, (w;)i>1 is a sequence of
deterministic non-negative weights and f : [0,00)? — [0,00) is bounded and
continuous. We will use Py to denote the law of this random graph, and we will
drop the subscript IV for notational convenience, and £ will be the expectation
with respect to the law P. We will always assume that N is large enough and
hence ey is small enough to make p;; <1 since f is bounded.

Let My denote the adjacency matrix of the graph Gy, that is, the (4, j)-th
entry is 1 if ¢ shares an edge with j, and 0 otherwise. So My is a symmetric
matrix, where any entry My (7, ) is distributed as Bernoulli random variable
with parameter p;; as in (2.1) and {Mp (¢, j),? > j} is an independent collection.
Instead of studying the adjacency matrix My we will study the scaled adjacency
matrix. In particular, we do a CLT-type scaling by the variance of the entries,
that is, we study the matrix

1
N&N(l —EN)

My. (2.2)

The empirical measure which puts mass 1/N on each eigenvalue of an N x N
random matrix A is called the Empirical Spectral Distribution of Ay, and is

denoted by
N

ESD(Ay) = % 3 oy (2.3)
i=1

We are interested in studying the following object:

N
M 1
ESD N == o,
NSN(l—EN) Ni:l

where A1, ..., Ay are the eigenvalues of (Neyn (1 —ey))~/2My.
We are interested in the weak convergence (in probability) of the above

measure and the limiting measure is called the Limiting Spectral Distribution
(LSD). The limiting measure depends on the following two geometric regimes
in random graphs and its properties differ in the two cases:

e Dense Regime: ¢y — 0 and Ney — oco. The connectivity regime with
Nen > Clog N falls in this regime.

e Sparse Regime : ey — 0 and Ney — A € (0,00).
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§2.2. Setting

Dense regime

In literature, the dense regime is characterised by ey = constant but we will not
use the features of dense graphs in this article and hence by abuse of terminology,
we say that a graph is dense when it is not sparse. Let us now recall briefly what
happens in the dense regime. The following result was proved in Chakrabarty
et al. [2021b] and can also be obtained from Zhu [2020)].

Theorem 2.2.1 (ESD in the dense case).
Consider the IER graph with p;; as in (2.1) with ey — 0 and Ney — oo .
Suppose the deterministic weights satisfy the following assumption:

Let on be an uniform random variable on [N]| and let Wy = wy,. We
assume that there exists a W with law p,, such that

Wy 5 Ww.
Then there exists a measure iy which is compactly supported such that

My
NEN(l —EN)

N—oo

lim ESD < ) = py weakly in probability.

Many interesting properties of this limiting measure are known. To define
the moments we need a quantity which is similar to the homomorphism density
of graphons. Define

(H foai) = | [ Ffwwws®i@w), @4

(0,000 (4 bYeE(Hy)

where Hy is a simple graph on k vertices with the edge set E(Hjy), ,ui,@k() is

the k-fold product measure of p,(-), and w = (wy, ..., wg). If we restrict the
range of f to [0,1] and take p,(-) as the Lebesgue measure on [0, 1], then this
quantity is the standard graph homomorphism density (see Lovész and Szegedy
[2006]).

The rooted planar tree is a planar graph with no cycles, with one distin-
guished vertex as a root, and with a choice of ordering at each vertex. The
ordering defines a way to explore the tree starting at the root. One of the al-
gorithms used for traversing the rooted planar trees is depth-first search. An
enumeration of the vertices of a tree is said to have depth-first search order if
it is the output of the depth-first search.

We now recall the definition of a Stieltjes transform of a measure p on R.
For z € C*, where C* is the upper half complex plane, the Stieltjes Transform
of a measure p is given by

Su(2) = | ——n(da).

r—z
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2. Limiting spectra of inhomogeneous random graphs

The following proposition gives the properties of the measure py which appears
in Theorem 2.2.1.
Proposition 2.2.2.
(a) | Moments| The measure py is the unique probability measure identified
by the following moments:

Ci

/x%,uf(da:) = Zt(TfH,f, Haw)s /x%ﬂ,uf(dx) =0, k>0, (2.5)

j=1

where Tf“ is the j" rooted planar tree with k + 1 vertices and Cy, is the

k" Catalan number.

(b) [Stieltjes transform| There exists an unique analytic function H defined
on Ct x [0,00) such that

Su,(5) = | e o)

and H(z,x) satisfies the integral equation
Her) =14 o) [ M) @ ialdy), 020 (20)
0

Example 2.2.3 (Rank 1).
One special case which arises in many examples of random graphs, and will
be discussed later is when f has a multiplicative structure, that is, f(x,y) =
r(z)r(y), where r : [0,00) — [0,00) is a bounded continuous function. In this
case, the measure

p = ps X ()
where pse is the standard semicircle law and i,y is the law of r(W) and X
1s the free multiplicative convolution of the two measures. When r is identically
equal to 1 then py = p, the standard semicircle law. We refer to [Chakrabarty
et al., 2021b, Theorem 1.3/ for details.

Sparse regime

The seminal work of Bordenave and Lelarge [2010] characterises the limiting
spectral distribution for locally tree-like graphs. In particular, if one takes Ay
to be the scaled adjacency matrix as given in (2.2) of a random graph Gy, they
show that if the following hold:

e The sequence of random graphs {Gy}ny>1 have a weak limit G;

e For a uniformly chosen root oy € Gy, the degree sequence of the rooted
graph (deg(Gy,on))n>1 is uniformly integrable;
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e Let G* denote the set of rooted isomorphism classes of rooted connected
locally finite graphs, and let Us(G) be the distribution on G* x G* of the
pair of rooted graphs ((G, 01), (G, 02)), where 01, 09 are uniformly chosen
roots of G. Then, Us(Gy) converges weakly to G ® G, that is, to two
independent and identical copies of G;

then, there exists a unique probability measure u) on R such that ESD(Ay) =
) weakly in probability as N — oo. Furthermore, it is shown that when f =1,
the measure u) represents the expected spectral measure associated with the
root of a Galton-Watson tree with an offspring distribution of Poi(\) and weights
1/ V/A. This result comes from the theory of local weak convergence, also known
as Benjamini-Schramm convergence (see van der Hofstad [2024], Benjamini and
Schramm [2001]), which is a powerful tool to study spectral measures associated
with many sparse random graph models.

In particular, consider the space H of holomorphic functions f : C* — CT,
equipped with the topology induced by uniform convergence on compact sets.
Then, this is a complete separable metrizable compact space. The resolvent of
the adjacency operator is given as

Ra,(2) = (Ay —2I)7!

for each z € C*. The map z — Ra (2)(i,4) is in H, and the Stieltjes transform
of ESD(Ay) is given by trRa,(2), where tr = N~!Tr denotes the norm-
alised trace operator. Let G* denote the set of rooted isomorphism classes of
rooted connected locally finite graphs. Assume that the random graph sequence
(GN)nN>1 has the random local limit G € G*, and further that G is a Galton
Watson Tree with degree distribution Fj, that is, a rooted random tree obtained
from a Galton-Watson process with root having offspring distribution Fi and
all children having a distribution F' (which may or may not be the same as F}).

Let Sa  (2) denote the Stieltjes transform of the empirical measure ESD(A ).

It was shown in [Bordenave and Lelarge, 2010, Theorem 2] that there exists a
unique probability measure @ on H, such that for each z € C*

P -1
Y(z) 2 (z +3 m(z)>
=1

where P has distribution F' and Y, {Y;};>1 are i.i.d. with law @) and independent
of P. Moreover

lim Sa,(z) =EX(z) in L',

N—oo

47

Q
—
=)
V)
e
=
©)
=
3
3




Q
t
=
~
)
L
o}
(av]
=
)

2. Limiting spectra of inhomogeneous random graphs

where X (z) is such that:

P, s
X(z) 2 - <z+ Zn(@) , (2.7)

where {Y;};>1 are i.i.d. copies with law @, and P, is a random variable inde-
pendent of {Y;};>1 having distribution F.

In [Bordenave and Lelarge, 2010, Example 2|, we see that the sparse Erdgs-
Rényi random graph with p = % falls in their setup, and in particular, P is
distributed as Poi(A). For a general f, [Bordenave and Lelarge, 2010, Theorem
1] still guarantees the existence of ), since the graphs we will consider will
have a local weak limit known as the multi-type branching process (see |[van der
Hofstad, 2024, Chapter 3| for more details). As f is bounded, we get that the
degree sequence will still remain uniformly integrable. As mentioned before
we will not follow this well-known route of local weak convergence. Instead,
we show the above convergence through albeit classical methods. We now in-
troduce the conditions under which we will work. We will have the following
sparsity assumption on ey and a regularity assumption on the function f and
the weights:

A.1 Connectivity function: Let f : [0,00)? — [0,00) be a bounded, con-
tinuous function, with |f| < Cf € (0, 00),

A.2 Sparsity assumption : Ney — A € (0,00),

A.3 Assumption on weights: Let oy be an uniform random variable on [N]
and let Wy = w,,. We assume that there exists a W with law p,, such
that

Wy 5 W,

We make some preliminary remarks about the assumptions. Since f is
bounded, we can easily see that f is p,—integrable. In the sparse setting,
in most important examples, the graph is locally tree-like and this can be seen
from the theory of local weak convergence.

Note that the limit A — oo recovers the dense regime. By this choice, we
can see that 1 —ey =~ 1 as N becomes very large, and Ney(1—en) — . Thus,
our matrix of interest is a scaled adjacency matrix now defined as follows:

Ay = ——My. (2.8)

-

48



§2.3. Main Results

§2.3 Main Results

In this subsection, we state the main results of this article. As mentioned before
in the introduction, we would like to understand first the limiting empirical
distribution of the sparse inhomogeneous Erdés Rényi (IER) random graph and
also study the behaviour of the measure when the sparsity parameter increases.
Recall that the adjacency matrix is defined in (2.8) and the empirical spectral
distribution is denoted by ESD(Ay) (see (2.3)). In what follows, we will see
that

lim ESD(A ) = p) weakly in probability (2.9)

N—00
and py = py where puy is as in Theorem 2.2.1. For the homogeneous case,
where f = 1, we get the final limit as the classical Wigner’s semicircle law, that
is, puy = ps. These iterated limits were studied in Jung and Lee [2018]. An
interesting open question is how close py is to piy. Although we do not manage
to give an explicit estimate, through the moment method we show that it is
very close and the structure of the moments of yf is hidden inside the structure
of the moments of puy. This will be our first result. To describe the moments
we need to introduce some notation.

§2.3.1 Method of moments: Combinatorial Approach

We first define the Special Symmetric Partitions which was introduced in Bose
et al. [2022]. Let P (k) denote the set of partitions of k and Pa(k) be the set of
pair partitions where each block has size 2. Let NC(k) be the set of non-crossing
partitions of [k] and NC3(k) be the set of non-crossing pair partitions of [k].
Note that |[NCa(2k)| = k—il(%f) and these are known as the Catalan numbers
and represent the even moments of the semicircle distribution.

Partition terminology. Let 7 be a partition of a tuple [k]. Let 7 consist of
disjoint blocks Vi, Vs, ..., Vp,, for some 1 < m < k. We arrange the blocks in
the ascending order of their smallest element. For any block V;, a sub-block is
defined to be a subset of consecutive integers in the block. Two elements j and
k in a block V; are said to be successive if for all a between j and k, a ¢ V;.

Definition 2.3.1 (Special Symmetric Partition).
A partition m of a tuple [k] = {1,2,...,k} is said to be a Special Symmetric
partition if it satisfies the following:

o All blocks of ™ are of even size.
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2. Limiting spectra of inhomogeneous random graphs

e Let V € 7w be any arbitrary block, and let a,b € V be two successive
elements in V with b > a. Then, either of the following is true:
1.b=a+1, or

2. between a and b there are sub-blocks of even size.
In other words, there are blocks Vi, Va,...,Vy, such that there ex-

ist elements {ai,, @iy 41, Qij+k } € V1, {Qiy, -, Qigrky ) € Va,
oo {aiys o Giqk, € Vo, with a = a;, — 1 and b = aj4k, + 1,
such that ki, ko, ..., kp are even.

We denote the class of Special Symmetric partitions as SS(k). Note that for
k odd, SS(k) = 0. For example, take m = {{1,4,5,8},{2,3,6,7},{9,10}} €
S5(10). Note here that between 4 and 5 in the first block, there are no elements
from the other blocks, and between 5 and 8, there is the sub-block {6, 7} that
is of even size.

In Bose et al. [2022] a more elaborate definition was given and this is useful
in computations. Later, it was shown by [Pernici, 2021, Section 3| that the
definition in Bose et al. [2022] is equivalent to the above one. In Pernici [2021],
the set SS(2k) is denoted by P2(2) (k), a special subclass of k-divisible partitions.
These partitions appeared as “Clickable Partitions” in Ryan [1998|, where they
were introduced to describe the limit distribution of dense random matrix mod-
els, and in the same spirit, they were also used for sparse random graphs in the
paper Male [2017].

Remark 2.3.2.
We note down some important properties of SS(k):

1. If k is even, then

{m e SS(k):|r| =k/2} ={m e NCy(k)}.

2. SS(2k) = NC(2k) for 1 < k < 3. When k > 4, there are partitions
m € SS(2k) that are either crossing or non-paired. For example, for k =8,
{{1,2,5,6},{3,4,7,8}} is a Special Symmetric partition. In particular,
crossings start appearing when there are at least two or more blocks in a
partition having 4 or more elements.

8. The set of Special Symmetric partitions are in one-to-one correspondence
with coloured rooted trees (see [Bose et al., 2022, Lemma 5.1]) and these
trees appeared first in the analysis in the works of Bauer and Golinelli

[2001].
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Any partition 7 € P(k) can be realized as a permutation of [k], that is, a
mapping from [k] — [k]. Let Si denote the set of permutations on k elements.
Let v = (1,2,...,k) € Sk be the shift by 1 modulo k. We will be interested in
the compositions of the two permutations « and 7, denoted by 7, and this will
be seen below as a partition.

Remark 2.3.3.

While m s a partition and v 4s a permutation, we do a composition in the
permutation sense. We read the partition m as a permutation, compose it with
the permutation v, and finally read ym as a partition. As an example, consider
m={{1,2},{3,4}} andy = (1,2,3,4). To compute ymw, we read 7 as (1,2)(3,4),
and compute ym = (1,3)(2)(4). We finally read ym as {{1,3},{2},{4}}.

Definition 2.3.4 (Graph associated to a partition).

For a fixed k > 1, let v denote the cyclic permutation (1,2,...,k). For a
partition m, we define Gy = (Vyr, Eyr) as a rooted, labelled graph associated
with any partition m of [k], constructed as follows.

o Initially consider the vertex set Vo = [k] and perform a closed walk on
k] as1 =2 —=3 — --- = k — 1 and with each step of the walk, add an
edge.

o FEvaluate ym, which will be of the form vym = {Vi,Va,...,Vy,} for some
m > 1 where {V;}; are disjoint blocks. Then, collapse vertices in Vyr to
a single vertex if they belong to the same block in vym, and collapse the
corresponding edges. Thus, Vyr = {V1,..., Vi }.

e Finally root and label the graph as follows.

— Root: We always assume that the first element of the closed walk (in
this case ‘1°) is in Vi, and we fix the block Vi as the root.

— Label: Fach vertex V; gets labelled with the elements belonging to the
corresponding block in ym.

Example 2.3.5.
Consider for example partitions of k = 6 and reading the partitions as permuta-
tions and evaluating their composition with v gives us:

(a> T = {{1>27576}7 {374}}a (a) YT = {{13335}7 {2a6}7 {4}}7
(b> T2 = {{1’2’374}a {576}}a (b) Y2 = {{13335}’ {2a4}7 {6}}7
(C> 3 = {{1’6}a {2337475}}' (C) Y3 = {{1}7 {274a 6}3 {3’5}}'

The corresponding graphs Gz, , Gy, and Gyr, are as follows:
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2. Limiting spectra of inhomogeneous random graphs

One can see that structurally the three graphs are the same. However, if we root
them on V1, then the first two graphs are different from the third. Further, if we
label the vertices as shown, all three graphs become distinct.
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Example 2.3.6.
Here, we illustrate the type of graph structures that can occur for m € SS(k).
Consider k = 8, and the following three partitions.

(a) m = {{1,2,3,4},{5,6,7,8}}. (a) ym = {{1,3,5,7},{2,4},{6,8}},
(b) ™ = {{174a 5a8}a {2737677}}' (b) Y2 = {{(175}7 {274> 678}a {33 7}}7
(c) m3 ={{1,2,4,5},{3,6,7,8}}. (c) ym3 = {{1,3,7},{2,5},{4,6,8}}.

Then, 71,79 € SS(8) but w3 ¢ SS(8). Moreover, 71 is non-crossing whereas
o has 2 crossings. The corresponding graphs are as below.

The following result is the first main result of the article. This is an extension
of the results obtained recently in Bose et al. [2022] and the homogeneous case
obtained in Jung and Lee [2018].

Theorem 2.3.7 (Identification of moments).

(a) Let Ay be the adjacency matriz of the sparse IER random graph as defined
in (2.8) satisfying assumptions A.1-A.3. Then there exists a deterministic
measure [y such that

lim ESD(AN) = py weakly in probability.

N—oo
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Moreover, uy is uniquely determined by its moments, which are given as follows:

0, k is odd,
k/2+1
my(pr) = /wkm\(dx) =3\ X > A5 Gy, [ lw), kK is even,
=2 7eSS(k):
[y|=l
(2.10)

where SS(k) is the set of all Special Symmetric partitions of [k] as defined
in Definition 2.3.1, G 1is the graph associated to a partition m as defined in
Definition 2.3.4, and t is the homomorphism density as in (2.4).
(b) As A — oo,
Hx = [bf,

where py is the measure described in Theorem 2.2.1.

Remark 2.3.8.

Note that limiting second moment is given by mo = t(Gyx, f, pw) where m =
{1,2} and vm = {{1},{2}}. Hence G is the graph with 2 vertices and 1 edge.
Therefore

mam) = [ F o).

and hence the measure s non-degenerate.

§2.3.2 Stieltjes transform: Analytic approach

It is well-known that py can be characterised by its Stieltjes transform, which,
in turn, can be characterised by a random recursive equation. Local weak
convergence is a powerful tool for studying the Stieltjes transform of spectral
measures associated with sparse random graphs. However, it becomes challen-
ging to provide accurate estimates on the Stieltjes transform to study local laws
and extreme values. Therefore, we present an alternative approach to studying
the Stieltjes transform of the spectral measure of IER graphs. The ideas used
here originate from the works of Khorunzhy et al. [2004].
We denote the upper half complex plane by

Ct={2€C:z=C(+w,n>0}

For an analytic approach to the problem, we analyse the resolvent of this matrix,
defined as
Ra,(2):=(Ay —2I)"!, z e C".
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2. Limiting spectra of inhomogeneous random graphs

The Stieltjes transform of the empirical spectral distribution of Ay is given by

San(2) = / L ESD(AN)(d2) = tr(Ra (2)).

T —z
where tr denotes the normalised trace. To get more refined estimates we need
an additional assumption on the connectivity function:

A.4 f:]0,00)% — [0, 00) is symmetric and bounded by a constant C'y. Moreover,
f is Lipschitz in one coordinate, that is, for all z1,x2,y € [0, 00),

‘f(xhy) - f(any)‘ < CL|$1 - x2’

where C7, is the Lipschitz constant for f.

To state the result we will need a Banach space of analytic functions. Con-
sider the space B defined by

. [9(, )
B = :10,00) x [0,00) = C analytic | sup —= < 2.11
{<z>[>[> ytie | sup (00 (211)
and take the norm
[p(, y)|

[¢]ls = sup

z,y>0 \/1"‘?/‘

Then, (B,|| - ||B) is a Banach space. We defer the proof of this in Proposition
2.6 in the appendix.
Consider the function Gy : [0,00) x C* given by

N
1 )
Gn(u,z) = N eturii(2) (2.12)

=1

where 7Y (z) = Ra, (2)(i, 1), the i*h diagonal element of the resolvent of A . It
turns out that

OGN (u, z)

o = SAN (z)

u=0

and hence one can derive a form of the limiting Stieltjes transform.

Theorem 2.3.9 (Analytic functional of the resolvent).

Let AN be the adjacency of the IER random graph as defined in (2.8) and
satisfying assumptions (A.2)—(A.4). Further, consider G as defined in (2.12).
Define the function dy(x) as

dy(y) = /0 " f@ ype(d ). (2.13)
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Then, for z € C* there exists a function ¢*(z,u) := ¢*(x,u) € B such that for
each z € Ct and uniformly in u € (0,1] we have

Jim E[G(u,2)]

_1_\/17/ e—)\df(y)/ Meivzekw(y?”/*)dvuw(dy) (2.14)
0 0 \/{}

and

Var[Gn (u, z)] — 0.

Here, ¢* := ¢% is a unique analytic solution (in the space B) for the fized point
equation:

Q
i
=)
V)
o]
=
[©)
=
3
d

¢*(x, u)
= F.(¢")(z,u)

gl — > R O OOJ1(2\/%)evae)\¢*(y,§) .
@)~ [ 1) ”(fA et d>wiﬁ)

where J1 s the Bessel function of the first order of the first kind defined as

T o= (=1)k(22/4)k
Ji(z) = 2ZM (2.16)

Observe that there is a slight difference in the right-hand sides of (2.14) and
(2.15) but in the case f = 1 both are the same. The next corollary describes
the convergence of the Stieltjes transform.

Corollary 2.3.10 (Identification of the Stieltjes Transform).
Under the assumptions of the above theorem, we have that any z € CT,

SAy (2) = S, (2) in probability,
where py is as in Theorem 2.3.7. The S, (-) satisfies the following equation:

Suy (2) = L/ e)‘df(y)/ 2 W X) du py(dy), 2 € CT. (2.17)
0 0

To recover the dense regime, we study the asymptotic A — oo as in the next
corollary.
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2. Limiting spectra of inhomogeneous random graphs

Corollary 2.3.11 (Stieltjes Transform as A — o0).
For A\ = 0o, we have that

lim S, (2) = Sy, (2) (2.18)

A—00

for each z € C*, where Sy (2) satisfies an integral equation given by

Sus(2) = /OOOH(z,x)uw(d:E), (2.19)

where H(z, x) satisfies the f dependent fixed point equation (2.6).

Remark 2.3.12 (The case f = 1).
In the case when f = 1, we recover the homogeneous setting. We know ¢%
satisfies the fized point equation (2.15). If we substitute f =1 in (2.15) we get

o (z,u) =1 — \/a/ooo e (ﬁ/ooo ‘W\/‘gﬁ)emew(%i) dv) fw(dy) .

We see that the right-hand side has no dependency on the parameter x, and so,
we have a unique analytical functional ¢*(u) = ¢*(x,u) that satisfies the fized
point equation

gﬁv*(u) =1- e_’\\/ﬂ/ooo Jl(%m) 02 (0/N) 4 4 (2.20)

This matches the result of Khorunzhy et al. [2004).

From Example 2 of Bordenave and Lelarge [2010], we have that a’; has the
form gfi)g(u) = E[e?X(2)] for each z € C, where X (2) has the law Q as described
in (2.7). So, for any z € CT, we have

S#A (Z) _ L/oo eivze—)\ﬁ-)\E[ei%X(Z)]) do — L/OO eiUZQDP (E |:6L§X(z):|> dU,
0 0

where

op(z) = E[zF] =D P~ Poi()).

§2.3.3 Examples

We now list out a few examples of the model that can be approached by our
methods.
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Example 1: Homogeneous Erdés-Rényi Random Graph. When we
have f = 1, the model reduces to the standard homogeneous Erd&s-Rényi graph
with edge probability p = A/N. As discussed, in this case the moments of
can be computed. In particular, we have t(Gyx, f, pw) = 1 for all 7. Hence we
have

k
msk() = SN € SS(2) < || =1}
=1
k—1
= INCo(2k)| + > N 7F|{m € SS(2k) : x| =1}
=1
Since the (even) moments of the semicircle law are given by the Catalan num-
bers, it is immediate that

lim mgp(px) = mak(ps)-
A—00

Hence Theorem 2.3.7(b) is true in this special case. It is known that ) has an
absolutely continuous spectrum when A > 1 (see Bordenave et al. [2017], Arras
and Bordenave [2023]). In this case, the Stieltjes transform is given by

SMA(Z) _ —L/ eivzef)\+)\$;(v/)\) dv,
0

and ¢*(v/)\) satisfies the equation (2.20). What is interesting and cannot be
immediately derived from our results is the rate of convergence of the measure
1 to s as A becomes large. In the simulation below we consider the A = 10 and
the simulation already suggests the appearance of semicircle law. We believe
the representation above of the Stieltjes transform as in Corollary 2.3.10 can be
used to prove the rate of convergence as done in the classical Wigner case in
Bai [1999].

Example 2: Chung-Lu Random Graph. Let (d;)ic[, be a graphical se-
quence and denote by mi = ), d; and m = max; d;, the total and the max-
imum degree, respectively. Let f be defined on [0, 1]? as

flz,y) =2y Al

and

w; = , EN = —2.
Moo mi

We can choose an appropriate degree sequence (d;);>1 such that me = o(y/m1)
and Neny — A. The connection probabilities will be given by

dyd; did;
) =en (m; /\1) = =2

oo my

o7
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2. Limiting spectra of inhomogeneous random graphs

05
—— Density fit 05 —— Density fit
Eigenvalue density Eigenvalue density
04
04

03
03

0z
0z

01 01

0.0 T T T T T 0.0 T T T T T
=3 -2 -1 o 1 2 3 =3 -2 -1 o 1 2 3

(a) A= 5. (b) A = 10.

Figure 2.1: The homogeneous Erdds-Rényi Random Graph on 10,000 vertices.

Let oy be a uniformly chosen vertex and d,, be the degree of this vertex.
We assume that
oy 4,y
Moo
where W has law p,, which is compactly supported. Then the conditions of
Theorem 2.3.7 are satisfied. Hence there exists a limiting spectral distribution
which we call ey, » and the even moments can identified in the following way.

Let SS¢(2k) be the set of Special Symmetric partitions with ¢ blocks. Then,

k

/R$2kHCL,)\(d l‘) = Z Z )‘Z_kt(G'ym fa /Lw)

(=1 7SS, (2k)

[y7]

2k
S DIPTSR
) =l

(=1 1€SS,(2k

where b1(0), -+ ,bys(0) denotes the size of the blocks of a partition o. For o €
NCs(k), its Kreweras complement K (o) is the maximal non-crossing partition
o of {1,...,k}, such that ¢ U & is a non-crossing partition of {1,1,...,k,k}.
For example,

K ({{1,2},{3,4},{5,6}}) {{1},{2,4,6}, {3}, {5}},
K({({1,2},{3,6},{4,5},{7.8}}) = {{1,3,7},{4,6},{2}, {5}, {8}}.

Note that this slightly differs from the standard notation of Kreweras comple-

ment in Nica and Speicher [2006] but for pairings, the m and 7! coincide. It
follows easily that when m € NC2(2k), ym can be replaced by K (7). The benefit
of this representation is the following. It follows from [Nica and Speicher, 2006,

o8
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Page 228] that

k+1

H / K@), (d z),

FENC (2k) =1

/ 22" 1y B 1) (d ) =
R

where p,, X us is the free multiplicative convolution of the measures p,, and
semicircle law ;. Hence the moments of picr, ) can be written as

[ a*ucra(da) = / 2 (1 8 1) (d 2)
R R

[y7]

+Z Z - kH/ b0 1, (d z) .

£=1 1€55,(2k)

This also shows that

lim | 2*ucpa(dz) = / 22 (1 B ) (d z),
R

A—00 R
and consequently, s is of the form pu,, X pus.

Remark 2.3.13.

We want to add a remark about heavy-tailed degrees. QOur conditions are not
satisfied when the degree sequence follows a power-law distribution. In that case,
the w; need to be scaled differently, and the limiting W will not have a compact
support. For further discussion on inhomogeneous random graphs with heavy

tails, we refer to [van der Hofstad, 2017, Chapter 6.

Example 3 Generalised random graph. Again, let (d;) be as above. Let
flz,y) = ny and w; = di/\/m1. Then,

Y mi + dld] '

Although the above example does not directly fall in our set-up (due to lack of
en), one can still derive the limiting spectral distribution using the Chung-Lu
model. We will use the following two facts. The first is a fact, which is the
Hoffman-Wielandt inequality from [Bai, 1999, Corollary A.41].

Fact 2.3.14.
If d;, denotes the Lévy distance between two probability measures, then for N x N
symmetric matrices A and B,

i3 (ESD(A), ESD(B)) < % Tr (A - B)?) .
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2. Limiting spectra of inhomogeneous random graphs

The following is a fact about the coupling of two Bernoulli random variables
with parameters p and ¢ (see [van der Hofstad, 2024, Theorem 2.9])

Fact 2.3.15.
There exits a coupling between X ~ Ber(p) and Y ~ Ber(q) such that

PX#Y)=|p—ql

Using the above coupling, we can construct a sequence of independent Bernoulli
random variables (b;;) and (c;;) with parameters pfjl and qigjrg, respectively. Let
M‘j\lf and M%g be the adjacency matrices of Chung-Lu and generalised random
graph models, respectively, with the above coupled Bernoulli random variables.
Suppose the sequence (di)ie[n] satisfies the assumptions described in Example 2
and let Ney — A and AG = A71/2M¢ and A%® = A~Y/2M5®. Then,

Q
t
=
~
)
L
o}
(av]
=
)

E [} (ESD(AS), ESD(AF®))] < %E Tr(AS - AFE?]

) [N
= B | 2 by —ew)?
| 4J=1
) [~
= )TNE Z (bij — Cij)2ﬂ{biﬁ50ij}
[ij=1
1 I 1«
< 2 Pl # ) < 5 D -
i,j=1 b,j=1

since (b;; — ¢;;)? can be trivially bounded by 1. Using = — T < 1% < x? for

any x > 0, we have

2 12
pSl — pEE — didj  didj  _ didj _me
v v mq m1+didj - m% - m%
Therefore
C N m
E [d?i (ESD(A?&,),ESD(Agrg))} P
N AN Z m%

-

.
I
—

If we consider my = o(mi/ 4), then the empirical distribution functions
are close. Now using Markov inequality and the fact that ESD(A%) converges
weakly in probability to ucr, y it follows that

A}im ESD(AR®) = pcr,» weakly in probability.
— 00
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Example 4: Norros-Reittu. Let (d;); be a given sequence and w; = \/d—%fl.
Take f(z,y) =1 — exp(—zy). Then,

d;d;
pij =1 —exp (—”) .
m1

Again, the form of the above connection probability does not fall directly in our
set-up, but we can show that Norros-Reittu model is close to the generalised
random graph models. Let A}y = AV QMI}\]; where MYy is the adjacency of the
Norros-Reittu model. Without loss of generality, we assume that we can couple
Bernoulli random variable c;; and d;; with parameters pfjg and p?f using Fact
2.3.15. Just as in the previous example, it follows using Fact 2.3.14 that

Q
—
=)
V)
e
=
©)
=
3
3

T nr 1
E [d, (BSD(A§®), ESD(AR))] < 1 Z (et = di5)* 1o, 24,3
We bound trivially (¢;; — d;;)? by a constant C; > 0 and hence we get that

N
. o C
E [d3 (ESD(A%®), ESD(AY))] < vi[ S P (e # diy)
ij=1
C T
= /\7;/' (pl_] - ngjg) .

i#]
Now, for i # j,

d;d; d;d;
s _ @idy ) iy
oy =05 = (1o (-2 mﬁdidj)

d?d? A d?d?
= % + 50 - 2J
my + mldidj N my

2 12
C"dl dj
ml

for some constant C’ > 0. Therefore, for some new constant C| > 0,

! 2
C'1 m2

B [} (ESD(AR), ESD(AR))] < 1375

(2.21)

where my = ZZ 1 df Since W has compact support, we have that NmTio —

E[W?] and 72— — E[W]. So Z—% is bounded for large N and hence the right
R 1

hand side of (2.21) goes to 0. This shows that

lim ESD(AY) = pcr,» weakly in probability.
N—o00
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05

Eigenvalue density

0.4

03

02

01

0o

-6 -4 -2 0 2 4 6

Figure 2.2: Spectral distributions for the Chung-Lu random graph, the generalised ran-
dom graph, and the Norros-Reittu random graph on 10,000 vertices with {d;}; uniformly
generated integers in [1, 5]

Example 5: Inhomogeneous Random Graphs. Let w; = ﬁ and f :
[0,1]2 — [0,1] be any continuous function. Then,

iJ
pij = enf <Na N> .

This is a case which falls directly into our set-up if we assume Ney — A and
the measure p,, is the Lebesgue measure. The other examples considered in this
section are mostly of the rank-1 type but through this example, one can achieve
limiting measures which are of a wide variety.

10 10
Eigenvalue density Eigenvalue density
08 08
06 06
0.4 0.4
02 02
00 T T T T T 00
-3 -2 -1 o 1 2 3 -3 -2 -1 o 1 2 3
(a) A=5. (b) A = 10.

Figure 2.3: The Inhomogeneous Random Graph on 10,000 vertices, with the inhomo-
geneity function f(z,y) = ri(z)ri(y) + r2(x)r2(y), where ri(z) = 7 and ra(z) = z.

We note that in van der Hofstad [2024], inhomogeneous random graphs are
introduced in a much more abstract setting, following the works of Bollobés et al.
[2007]. The connectivity function f is generally continuous and also satisfies
reducibility properties. The above examples also fall under the setup described
there.
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§2.4 Existence, uniqueness, and moments

In this section we will prove the main result Theorem 2.3.7 using the method of
moments.

We begin with a small observation. Recall from Assumption A.3 that if on
is an uniformly chosen vertex and Wy = w,, and we assume Wy i> W . This
means that Wy has a distribution function Fy(x) given by

1 N
FN(x) = N Z 1{wi§:c}
=1

and if we denote by F' the distribution of W then for any continuity point x of

F we have
Fy(x) — F(x).

Also for any bounded continuous function g, we have E[g(Wx)] — E[g(W)].
Let o1,...,0% be i.i.d. Uniform random variables on [N]. Let Wy ; = w,, for
t=1,...,k. Then

Wity oo W) S (W1, W, .., W)

where Wy, ..., W}, are k independent copies of the limiting variable W. Hence
for any bounded continuous g in k-variables we have

E[Q(WNJ,... 7WN,k)] — E[Q(Wl,...,wk)] . (2.22)

In our model, we can allow self-loops as we are not imposing that f(z,x) =0
but the presence of self-loops does not affect the ESD. The following lemma
shows that we can remove the self-loops.

Lemma 2.4.1 (Diagonal contribution).
Let AN be the matriz A with zero on the diagonal, and let dy, denote the Lévy
distance. Then,

dy (ESD(AN),ESD(AN)) 0.

In particular, if ESD(AN) converges weakly in probability to uy, then so will
ESD(AyN) and visa-versa.

Proof. Let Dy denote the diagonal of Ax. Then, Dy = Ay — AN. Using Fact
2.3.14 we have

@} (ESD(Ax), ESD(Aw) ) < %Tr(D]QV) -y e
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2. Limiting spectra of inhomogeneous random graphs

Hence we have

E [d% (ESD(KN),ESD(AN)H <

<C
S Gy
for some constant C'y, which comes from the fact that f is bounded. The result
follows using Markov’s inequality. O

We are now ready to begin with the proofs of the main results.

§2.4.1 Expected Moments

We split up the proof into three parts. To ease the notation we abbreviate the
empirical spectral distribution and its expectation as

N
pwa() = ESD(AN)() and  fina() = EESDIAN]I() = 1 D PO € ).
i=1
(2.23)

Note that jix \ is now a deterministic measure, for which we compute the mo-
ments as

N
/xuNA(dx NZ/ 2*P(\; € d2) NEZZ E[tr(A%)],

where tr denotes the normalised trace. Using the trace formula it follows that

Elw(AY) = vEMAR = Y Bl (224)
1<i1 g, yifp <N

where a;; are entries of the adjacency matrix M. We compute the expected mo-

ments and demonstrate that they are finite. Subsequently, we establish a con-

centration result to show that the moments of the empirical measure converge

to my in probability. Next, we prove that the sequence my satisfies Carleman’s

condition, thereby uniquely determining the limiting measure.

Let SS(k) be the set of Special Symmetric partitions, and v = (1,2,...,k)
be the cyclic permutation. For the following computations, one has to read the
partition 7 as a permutation, with elements of a block in the partition set in an
ascending manner in the permutation. That is, if 7 = {{1,2,5,6},{3,4}}, then
the corresponding permutation is (1,2,5,6)(3,4).
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Lemma 2.4.2 (Expected moments).
Let pn y be the ESD of Ay and finyx = Eun . Let ym be decomposed into
blocks of the form

vy =A{V1,Va, ..., Vin }.

where m = |ym| be the number of blocks. Define Fr as

Fom i= {1 € N¥ | ij = i if and only if there exists | € [m] s.t. j,j' € Vi}.
(2.25)
Then,

/l’kﬂN,A(dw) = (2.26)

ONF/2ZN—1), k odd
ST Abrl=i=k2 5 W 1 f(wi,,wi,)+ON?ZN"Y), k even-
r€SS(k) iE€F (a,b)€Ex
(2.27)

Example 2.4.3.
For k =4, take m = {{1,2},{3,4}}. Then, ym = {{1,3},{2},{4}}. We see that
tuples of the form (1,2,1,3) and (2,3,2,4) belong in Fyr.

Proof of Lemma 2.4.2. Recall from (2.24) that

1 1

7N)\k/2E[TI‘(AI]€V)] = 7]\7)\19/2 Z E[ailizai2i3...aikil],
icNk
where i = (i1,...,4;). The term a;,,@iyis...ai,4, is associated with the closed

walk 4142 ...17x71. Let the set of distinct vertices and edges along a closed walk
correspond to a k-tuple i be denoted by V(i) and E(i), respectively. An edge
that connects vertices i; and ij41, will be denoted by e = (i,4;41). Without
loss of generality, we assume that in V(i) we assign the positions where the first
of distinct indices appear in i.

For example, for the 4-tuple i = (1,2,1,3), we have V(i) = {1,2,4}. So,
E(i) ={(1,2),(1,4)}. Since

QiyigQigis---Qiyiy, = 1 if and only aja;41 =1 for all (1,1 + 1) € E(i)

we can rewrite (2.24) as

1 . 1 A\ )]
WE[TF(AN)] - W Z <N) H f(wia,wib) .
1<i;<N:jeV (i) (a,b)€E()

(2.28)
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2. Limiting spectra of inhomogeneous random graphs

Let 7 be a partition of [k] := {1,2,...,k} and ym = {V1,V4,...,V;,,}, where
m = |ym|. Recall the definition of F,; as in (2.25) and also the graph G,
corresponding to y7 as in Definition 2.3.4. Note that for a fixed i € F,r,
V(i) = Vyr and E(i) = E,r. Moreover, if i,i’ € F,r, then V(i) = V(') and
E(i) = E(i’). Using this formulation, we can rewrite our summation in (2.28)
once again as

1 ) 2
WE[Tr(A NW > Z( ) I f i, ws) .

7€P(k) i€Fyr (a,b)EEyn

Q
t
=
~
)
L
o}
(av]
=
)

Since |yr| = |V (i)], we can multiply and divide by N7 to get

1
WE[TT(A%)]
1 B ol B
=) T S ABw k2Bt T f (i, w)
weP(k) i€Fyn (a,b)EEr

Note that since f is bounded, then the product is bounded. For a fixed k and
a partition 7 of [k], |E,| < k. One can also see that |Fy| ~ N7 We thus
focus only on N Eym|=k/2 Nlyal=Eyx|=1 " For this to contribute, a tuple i must
yield a tree structure in G, this will give us [V (i)| = |E(i)| + 1, which would
imply |ym| = |Eyz| + 1. In particular, all tuples i € F, such that G is a
coloured rooted tree as defined in Definition 2.3.4 contribute to the summation.

For other graphs with |V (i)| < |E(i)| + 1, the leading error would be of the
order O(N~1). The leading order error is given when G r is a k-cycle and hence
the error is of the order of A*/2N~1. Thus, our sum reduces to

1

WE[TF(A?V)]
_ 1 -
- > > A k/QW I fwi.w,) +ON?2NT).
gEP(k): ieFyr (a,b)EFyn
e is a

rooted labelled tree
Thus rewriting the expression with |E;| = |y7| + 1 we get,
1

_ 1 .
= > AR o I flews) + OGN,
gEP(k) ie]'—wﬂ' (a7b)EE’YTr
r is a

rooted labelled tree

(2.30)
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§2.4. Existence, uniqueness, and moments

Remark 2.4.4.

We would like to remark here that if there exists an edge e, such that it is
traversed only once in the closed walk, then the graph cannot be a tree. Consider,
without loss of generality, that this edge e is (1,2), with 1 € Vi and 2 € Va, as
n figure 2.4, where Vi, Vo € yw. Here Cy and Cy are the remaining components
of the graph G.

Figure 2.4: Graph associated to vy having blocks Vi and Vo with the edge between them
traversed only once.

Thus, since the closed walk 1 — 2,2 — 3,...k — 1 has to return back to Vi,
it has to do so via C since the edge e cannot be traversed again. Clearly, this
will form a cycle in the graph. Thus, every edge must be traversed at least twice.

It is well-known (see Nica and Speicher [2006]) that for m € NCy(k) if and only
if [ym| = 14 k/2, but in the above setting we shall see that other partitions will
also contribute as |Fy| ~ N7l In particular, we need to sum over only those
7 that give rise to a tree structure. We show in a series of characterizations that
the resulting partitions are SS(k).

Characterising partitions

Recall from Definition 2.3.4 that to construct a graph G, associated with
a partition m of [k], we need to evaluate ym to construct the vertex set and
then perform a closed walk. We prove a property that will play a key role in
characterising partitions in the proof of Theorem 2.3.7.

Property 1: Block characterisation. Forn € P(k) withyr = {V1,...,V;},
if G.» has a tree structure, then all elements of a block V;, V1 < j <[, have
either all odd elements or all even elements.

Proof of Property 1. For simplicity, we show that the first block has this prop-
erty. Assume that V7 has all odd elements except one special element a € [k].
We assume that element ‘1’ belongs to V.

Recall from the definition of G, that we first perform a closed walk on []
asl—2—->3— ... =k — 1, and then collapse elements of the same block of
~m into a single vertex. Thus, if a — 1 (or a + 1) belongs to Vj, then we get a
self-loop since a — 1 and a collapse to the same vertex and the edge a — 1 — a
(or a — a + 1) forms a loop, which does not give a tree structure. Hence a — 1
(respectively a + 1) is not in Vj.
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2. Limiting spectra of inhomogeneous random graphs

Now, suppose a — 1 € Vj; for some j # 1. Then, there exists a path from
Vi to V; of length ¢t > 1, since if t = 1, the closed walk 1 — 2 — ... would
imply that a —2 € V1, which contradicts our claim. Now, if ¢ > 1, the next edge
{a —1 — a} from the closed walk will be from Vj} to Vi, leading to a cycle in
the graph. Thus, violating property 1 yields a graph that is not a tree.

Property 2: Initial characterisation of . If 7 € P(k) then in any block
of 7, no two consecutive elements can either be both odd or both even.

Proof of Property 2. Suppose a1 and ag belong in the same block of © with no
elements between them, and a; < ag, either both even or both odd. Then in
v, a1 and ag + 1 belong in the same block, which contradicts Property 1. [J

Property 3: Diagonal terms. If 7 is a contributing partition, then for any
i = (i1,...,9) in Fyr, each element of i must be pairwise distinct, that is,

i1 7 12,12 F 13y, U1 F k-

Proof of Property 3. Suppose not, and assume i, = 4441 for some 1 <a < k—1.
Then, in v, ‘a’ and ‘a+ 1’ belong to the same block. This contradicts Property
1. O

We now use the above properties for further characterisation of the partitions.

Lemma 2.4.5.
Every block in m must be of even size.

Proof of Lemma 2.4.5. We prove this by contradiction. Consider an odd-sized
block V.= {l1,...,l;} € m with l; <ls < --- < l,. Assume that [; is odd. By
Property 2, lo must be even, and by continuing the argument, we have that at
every even position, the element is even, and at odd positions, it is odd. Since
r is odd, and I, is in the r*® position, which is an odd position, I, must be odd.
Then, in vy, the element [, will map to the element {; + 1 which is even, which
contradicts Property 1. A similar argument holds when [y is taken to be even.
This proves the result. O

Corollary 2.4.6 (Vanishing odd moments).
The odd moments vanish as N — 0.

Proof of Corollary 2.4.6. Recall that partitions whose graphs do not yield a tree
structure contribute to the error term with leading order O(N~1). For k odd,
every m € SS(k) must have at least one block of odd size. Therefore, Lemma
2.4.5 is violated, and consequently, the odd moments vanish asymptotically. [J
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Proposition 2.4.7.
Let m € P(k) such that Gy is a rooted labelled tree. Then m must satisfy the
following properties.

o All blocks of the partition must be of even size.

e Between any two successive elements of a block, there are sub-blocks of
even sizes.

Proof of Proposition 2.4.7. The first condition is already proved using Lemma
2.4.5. For the second condition, begin by considering a block B that is of the
form

B={...,ai,a1+1,...,a1 + e a9,...}

with a;—1 ¢ B, and there doesn’t exist any element a’ such that a1 +e < a’ < as
and a’ € B. The sub-block here of interest is {aj,a; +1,...,a; +e}. We claim
that this sub-block has an odd number of elements, or equivalently, e is an
even number. We can also assume, without loss of generality, that a; is an odd
number. As a consequence of Property 2, as must be even. If we now evaluate
7 using the above information, we have that ym contains the following three
(and possibly more) blocks.

Vi={...,a,a1+2,...,a1 +e,a2+1,...},
Vo={...,a1+1,a1+3,....,a1+e—1,a1 +e+1,...},
V?,:{...,ag,...}.

Thus, the graph associated with vy will be as shown in Figure 2.5, where C1,
Cs, and C3 are the remaining components of the graph.

Figure 2.5: Graph associated to ym having blocks V1, Vo and V.

We now focus on the closed walk that occurs on the tuple [k]. Since this
is a closed walk, it does not matter if instead of beginning at 1, we begin at
an arbitrary element k; € [k] and perform {k; — k1 +1,....k — 1,1 —
2,...,k1 —1 — k1}. So, we pick a; as the starting point and consequently,
without loss of generality, we assume the walk begins at V7.
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2. Limiting spectra of inhomogeneous random graphs

The walk will immediately proceed to move back and forth between V; and
Vo due to the path {a1 - a1 +1,a1+1 —a1+2,...,a1+e = a; +e+1}, and
will eventually end at V5.

Now, the walk will jump from V5 into the component C3. On the other
hand, when the walk eventually enters V3, it will move at least once to Vi, due
to the path {as — a2 + 1}. So, to preserve the tree structure, the walk must
first come back to V5 and then proceed to V3 via V4. Thus, there is an element
a’ such that @’ € V5 and @’ +1 € V4, where a’ > a1 + e and @’ < as. Therefore,
in ym, a; + e maps to a’ + 1. This implies that a; + e and a’ belong to the same
block in 7, and thus, a’ € B. This contradicts our construction, and therefore,
the walk must form a cycle from Vs or Cy to either Cq, Cs or V3. O

Recall the definition of Special Symmetric Partitions as provided in Definition
2.3.1, where the two properties outlined in Proposition 2.4.7 are the main charac-
teristics. As a result, we have demonstrated (2.26), leading us to the conclusion
of the proof of Lemma 2.4.2. ]

We would now like to take limits in (2.26) and finally get the expression for
the moments. The following lemma is an easy consequence of Lemma 2.22 and
the fact that |F.| ~ NP7l

Lemma 2.4.8.
Let m € SS(k) and Fyr be as in Lemma 2.4.2. Also, Gyr = (Vyr, Eyx) be the
graph as in Definition 2.3.4.

. 1
A}E)noo ‘ Nl H f (wig s wiy)
i€ Fyn (a,b)EE

- /[0 o T st @) (2.31)

(a,b)€Eyx
Now, going back to equation (2.29) and taking limits gives us
i 0, k odd
lim E[t[’(AN)] = Z /\‘V’T'*l*k/zt(GW,f, /-Lw)a k even ' (232)

N—oo
eSS (k)

Now, the sum over SS(k) can be further split up as the sum over NCy(k) and
the remaining partitions. Moreover, for 7 € SS(k), we have |Vir| = |y7| €
{2,3,...,k/2+4 1}. In particular, for m € NCs(k), |yn| = k/2+ 1, and when 7
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§2.4. Existence, uniqueness, and moments

is the full partition {{1,2,...,k}}, |yw| = 2. So, we can write

lim E[tr(A%)] =

N—o00
0, k odd
k)2
> t(G’ym fobtw) + 3 > Al_l_kﬂt(G’ym frtw), K even -
7ENCa(k) =2 7€ SS () \NCa(k):

[ym|=t

(2.33)
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§2.4.2 Concentration and uniqueness

We now show a concentration result to obtain convergence in probability.

Lemma 2.4.9 (Concentration of trace).
For all k > 0, we have that

Var [tr(A’fV)] = On((AN)7).
Proof. We shall proceed to compute the variance
Var [tr(AfV)} .
Let i and i’ denote the tuples
i={i1,...,ir}, V= {igs1,... 02k}
and denote by P(i) the expectation
P(i) = Elai, iy Qigiy - - - iy -
Similarly, we have

P(i/) = E[aik+1ik+2 Qg oipts - - - a’iQkik-H} .

For the tuple i, we can define a closed walk as in the proof of Lemma 2.4.2 to
get a graph G(i) := (V(i), E(i)). In the same spirit, one can define G(i,i') =
(V(i,i), E(i,i")), with the closed walk now performed as

12—, k=>1Lk4+1—=>k+2—...2k—k+1,

where the jump from 1 to k£ + 1 is without an edge. Then, we can define

o of
P(lv 1 ) = E[ailizai2i3 s Qi Qg qiggo - 'aizkik+1] .
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2. Limiting spectra of inhomogeneous random graphs

With this notation set up, one can see that

Var (k)] = v [BITH(AK ) - (BlTx(A%)?
1 N (2.34)
= o > P(i,i') — PG)P({).

11,82, 0y0h Tk 15002k =1

We remark here that the construction of the graph G(i,i’) is similar to how we
did in Lemma 2.4.2, with the essential difference being the closed walk structure
over two separate k—tuples.

Suppose that E(i) N E(i") = ¢. Then by independence, (2.34) becomes 0.
Thus, we must have E(i)N E(i') # ¢. Moreover, due to remark 2.4.4, each term
must appear at least twice in P(i,1'), that is, each edge in E(i,i’) is traversed
at least twice. This implies that the maximum number of edges our graph can
have is k.

Next, note that the only way the graph G(i, i) will be disconnected is when
the closed walk over the two k— tuples yields two disjoint graphs, and thus we
once again obtain P(i,i') = P(i)P(1).

Thus, our computation boils down to the case where G(i,1') is a connected
graph, with each edge appearing at least twice, and E(i) N E(i") # ¢. Note
that one can have G(i,i’) to be connected and still have E(i) N E(i") = ¢, for
example when ¢; and ;41 are collapsed into the same vertex. This gives us that
V(i,i")| < |EG,)|+1 < k+1. Using |f| < C} gives us that

. IE]
var [ix(A})] < Oy e N1V <Jif> — OpERNIVISIE2 Z o (N

This completes the proof. O

An immediate consequence from Chebychev’s inequality is that the moments
concentrate around their mean as N — oo. In other words, for all £ > 1,

lim tr(A%) = my(uy) in probability,

N—o0

where my(uy) are as in (2.10). To conclude Theorem 2.3.7, we now further
analyse the sequence {my},>0, and show that it is unique for the measure .
A measure 4 is said to be uniquely determined by its moment sequence {mg }x>0
if the following holds (Carleman’s condition):

Z m;kl/% = 00. (2.35)

k>0
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§2.4. Existence, uniqueness, and moments

Lemma 2.4.10 (Uniqueness of moments).
For X bounded away from 0, that is, A > 0, the moments uniquely determine the
limiting spectral measure.

Proof. Let my, denote the k** moment. Since f is bounded, we have

[yl
=Y b k/ [T s [Lrutany
reSS(2k) 0. )R, . 9
< Z Cj|c’77f|)\\77r|—1—k %
€SS (2k) =
k+1 3

S DD SENCICE

=2 7€SS(2k):|yn|=l
Let A; be defined as

1, if A > 1,
Av=3",
AF TS A > 0.

Then,
k+1
mop < C];HAkZ {m € SS(2k) : |yn| =1}
=2
< AR CFH{SS(2k)

< 4,0 R,

where the last inequality follows since SS(2k) C P(2k) and |P(2k)| is bounded

by 2k%*. Thus,
—1/2k <, 1 1

m > .

-1

So, we have the series » ;- my, /2% t0 be lower bounded by > k>1 @k, Where

1 1 1
2k/Cr (ACy)3 )3 Cykeds oa(AiCy)

ap =

Thus,

Vel oy

—Cy/2k
w {eCkv for A>1,
Chk )

Since e”* > 1 — x, we see that the series ) k>1 Qk diverges, and consequently,

—1/2k
Z Mo =0

k>0
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2. Limiting spectra of inhomogeneous random graphs

§2.5 Stieltjes Transform and analytic description

§2.5.1 Resolvent and Stieltjes Transform

We fix a 2 € CT throughout this argument, with $(z) =7 > 0. Recall that the
resolvent is given by

Ra,(2) = (Ay —2I)7!, z e CT.

The Stieltjes transform of the empirical spectral distribution of Ay is given by

r—z

Sa,(2) = /R L ESD(AN)(d2) = tr(Ra, (2)), (2.36)

where tr denotes the normalised trace.

Lemma 2.5.1 (Resolvent Properties).
For any z € CT,1 < i,57 < N, the following properties are well-known for the
resolvent Rao of an N x N matrix A.

(i) Analytic: z — Ra(2)(i,7) is an analytic function on C* — C*.
(ii) Bounded : || Ra(2)|op < S(2)7L, where ||-||op denotes the operator norm.
(11i)) Normal : Ra(z) Ra(2)* = Ra(z)* Ra(z).
(iv) Diagonals are bounded: |Ra(2)(i,7)| < 3(2)~ L
(v) Trace bounded: |tr(Ra(z))| < S(2)~t. In particular,
|tr(RY (2))| < S(2) 7P, for anyp> 1.

For the first three properties see [Bordenave, 2019, Chapter 3]. Note that
the property (iv) follows from (iii) by the following argument:

[Ra(2) (@, 5) < (0, Ra(2)d;)] < sup [, Ra(2)3;)| = [ Ra(2)]lop-

viloll=1

The last property (v) follows from (iv). We now state the Ward’s identity, for
which we refer the reader to [Erdds and Yau, 2017, Lemma 8.3].

Lemma 2.5.2 (Ward’s identity).
Let A be a Hermitian matriz and Ra be the resolvent. Let z € Ct. Then for
any fized k, we have

S IRA(L )2 =

12k

S(Ra(k, k).

S|
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§2.5. Stieltjes Transform and analytic description

Since we have already shown in the previous section lim,,_,oc ESD(AN) = py
weakly in probability and hence it follows that for any z € C*

Jim S (2) = S, ().
Due to the involved structure of the moments, it is not immediately evident
what the limiting Stieltjes transform looks like.

Recall the notation of expected empirical spectral distribution of Ay from
(2.23). Let Sa (2) denote the Stieltjes transform of fin x. Notice that Sa , (2) =
E[Sa, (2)]. It is known that if a measure p converges weakly in probability to a
measure 4, then the corresponding Stieltjes transforms converge. In particular,
we have the following lemma.

Lemma 2.5.3.
Anderson et al. [2010, Theorem 2.4.4] A sequence of measures puy converge

weakly in probability to a measure p if and only if S, (2) converges in probability
to Su(z) for each z € C*.

Thus, we compute an expression for the expected Stieltjes transform Sy, and
using convergence in probability from Theorem 2.3.7, we can claim that the
Stieltjes transform S , (2) converges in probability to the same expression. For
ease of notation we shall denote by riy (z) := Ra (2)(k, k) for 1 <k < N.
The following identity can be found in Abramowitz and Stegun [1964]. For
any complex number z € C*, we have for all u > 0,
e =1— \/a/oo Me_“’f1 do, (2.37)
0 Vv
where Ji(x) is the first-order Bessel function of the first kind given by (2.16).
Note that for all z > 0, | J1(z)| < 1 (see [Abramowitz and Stegun, 1964, Chapter
9]). We know that the resolvent maps the upper half complex plane to the upper
half complex plane. Thus, we begin by fixing r%- (2), the j' diagonal entry of
the N x N resolvent matrix, as our complex variable in C*. So we can get

eiur;\]j(z) —1_ \/a/ J1(2\/U"U) e—iv(r%)fl do. (238)
o Vv

If we look at Z;Vzl e*"55*) then the relation between the Stieltjes transform
and the above equation becomes apparent. It turns out that

8 1 fursy. (z
San(2) = aifzeb RO (2.39)

u N
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2. Limiting spectra of inhomogeneous random graphs

To understand the Stieltjes transform we will first try to understand the
behaviour of (2.38). We will adapt the approach of Khorunzhy et al. [2004].
For ease of notation, for what follows, || -|| will denote the norm || - ||z as defined
n (2.11), unless stated otherwise.

Proposition 2.5.4.

Let 7“ : ]]( z) denote the j" diagonal entry of the resolvent Ra, (2). Let
1 N
dj =+ > fwg,wy) (2.40)
k=1

and for any b > 0 define the function gy : (0,00) X (0,00) x Ct — C as follows

gy (z,b,2) == — Zf (z,wg)e Lbrkk 28 (2.41)

Then, for any z € CT,

00 2/ . .
E[e’"%] = 1—e_)‘dj\/ﬂ/ Jl(\ﬁuv)esz [eAgN(wj’X’z)} dvt+gna(u, 2), (2.42)
0

_ A
where gy a(u, z) = O <775/2\/N)'
We begin by stating two results we use in this proof. Note that we conveniently
drop the dependence on z for T N(z), since we fix z € C* throughout and hence

just use the notation rj\]f

Fact 2.5.5 (Exponential Inequalities).
The following holds for any real numbers a,b € R and complex numbers z1, 2z €

Ct.

le®#1 — 22| < al|z; — 2] (2.43)

le® — e| < |a — el T (2.44)

Proof of Proposition 2.5.4. For the resolvent of a matrix with zero diagonal, we

have the relation .

_ “N—-1_
ri;=—|% + E T QkjOlj ,
k,l#j
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§2.5. Stieltjes Transform and analytic description

r of the resolvent Ra , (2), where f,]c\lf_l = f,i\lf_l(z)

Jj
are the entries of the resolvent of AS\][)_I in z € CT, which is the adjacency
matrix with deleted j* row and column. Plugging into (2.37) yields

for any diagonal element

. © I (2 /un)
ey =1 — \/E/ ﬂ\fzw)ewz exp [ iv Z i tagay | dv. (2.45)
0 v

ki

Adding and subtracting the appropriate exponential to (2.45) yields

A © J.(2./ .
Uy =1 — \/ﬂ/ Me”’z exp | iv Z f,]xgla%j dv+E;, (2.46)

Q
—
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e
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3
3

where Ej is an error term given by

B =

 J1(2¢/ ,

1 uv . ~N— . ~N—

\/a/ (\/a)e“’z exp | iv E TZ lakjalj — exp wg r,i\; la%j dv.
0 kol ki

It is easy to see that for z € CT with R(z) = ¢ € R and S(z) =1 > 0, we have
|efv?| = |efVe™| < e, Thus,
|Er| =

o J.(2 .
\/’[j/ 1(\}/1]@6“)2 exp | iv Z fﬁflakjalj —exp | v Z f’]q\lgflaij dv
0 ki "7

< \/E/OO ve Z Z 7y aja dv
— 0 \/5 kl 7

k<N £k

_ <\/a/ooo \/Ee_”“dv) Do I akjay

k<N £k

(2.47)

where in the last step, we use inequality (2.43) and the bound | J;(z)| < 1 for
x > 0. Note that in the last sum in (2.47), the entries ay; and a;; are independent
of one another, and of fﬁfl. Thus, since f is bounded by a constant C'y, taking
expectation on the summation gives us

\C?
E DIy Magay | < 5 > 17y (2.48)
£k £k
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2. Limiting spectra of inhomogeneous random graphs

since a;; are distributed as Bernoulli random variables with parameter p;;, and
are scaled by a factor A\=1/2. Using (2.48) and taking expectation in (2.47) gives
us

E[|E:|] <Cff/ \fe ZZE PN
k<N £k

nv
< C? f fe >\ =12 dv (Cauchy-Schwarz
f ki

E<N \ I#£k

N[

nv
<Cf\f/ fe >\ Z(%(f&‘l))% dv (using Lemma 2.5.2)

UCHY
< Cff/ fe dv (using property (iv) from Lemma 2.5.1)

gl s -0 25

where in the last step we do a change of variable nv = v’ to show the integral is
finite. So, if we now take an expectation in (2.46), we get

24/
E[e“‘r] 1— f/ il ﬁuv) e | exp erkk 1ak] dv+gna(u, 2),
k#j
(2.49)

where gy (u,2) = O (n;/‘;/jﬁ) Note that the expectation could be pulled in-

side the integral in (2.46) using Fubini’s Theorem since the integral is bounded
above by a constant. To evaluate the expectation inside (2.49), we use a condi-
tioning argument as follows. We have

E |exp Lerkk ak] =E |E |exp erkk aﬁj A%)_l
k#j k#j

Evaluating the conditional expectation yields
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§2.5. Stieltjes Transform and analytic description

exp (w Z i akj

k#j
B A A wr /x
=E H 1_Nf(wkij)+Nf(wkan) k- )
;] A L N—1
=E H (1 + Nf(wk,wj) (e““”klc /A 1))]

—E ﬁ <exp (Jiff(wk,wj) (eivﬁ]f{l/A - 1)) + g3 (N, A))] . (2.50)

where ¢, (N, \) is an error given by

0(N, A)
A N/ A N /A
:1+Nf(wk,wj) (e kk —1) — exp Nf(wk,wj) (e Kk —1) .

Since |e5”7:£;71/ A — 1] < 2, doing a Taylor expansion for the exponential term in
¢, (N, A) gives us

) 4012»\2 A2
G <=0 (5s) (251)
We can write
E |exp inf&_laij
k#j

N A L N—1
=E H <exp (Nf(wk, w;) (e“””kk . 1))) + E[Es], (2.52)

k=1

where FE» is an expression involving all the other terms of the product in (2.50).
To get the order of Es, we take a supremum over k in (2.50) and compute
the binomial expansion of the form (a + b)Y modulo the leading term a”. In
particular, since ]ewfl]cvkil/ A — 1| €2, and again using (2.51), we have

|| < Z( ) ( mf>N_j (%)J :
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2. Limiting spectra of inhomogeneous random graphs

which for some constant C, > 0 and N large enough further simplifies to

N
|Ea| < Ca ) (2C M) Nie™ L N2

7=1

N 2jAC 4O NEN—Tem 5
Caz QCf)\ 2‘7]\[ je N ' = Ca ! 23C;

j=1 1 —4C¢N2N-lem v

where the last equality is due to the sum being a geometric series. Thus,

|E>| = O C\i) : (2.53)

which is a faster error than gy x(u, z) so we can later absorb it into the existing
error of (2.49). Thus, using (2.53), we can rewrite (2.52) as

E |exp LvZf,ﬁ_lazj =FE [e*/\dj exp <)\§N—1 (wj, % ))} +0 (?\j)
k#j
(2.54)

where

N N
1 _
E flwj,wg) and gn—1(wj,b,2) E f(wj, wy)e Lbrljc\;v " (2.55)
k:l k=1

Note that gy is a bounded function and is bounded above by Cf. To get the
error down from the exponent, we again use inequality (2.44).

To conclude the proof of the proposition, we need to return to an expression
involving terms of the form r,i\,z of the original resolvent. To do so, we do an
interpolation argument. Let 0 < ¢ < 1 and define A%, = (1 —t)Ayx + tA%ll
with the resolvent Rar (2), whose entries we denote by i (¢) := riv(z,t), that

also implicitly depends on z but we drop that for convenience of notation. Also,
define

g?v(wg,b Z Zf wzawj Lbrkk )
We remark using property (i) from Lemma 2.5.1 that gl is also bounded above
by C for all values of ¢, since the complex exponential ek (® is bounded by 1

for any b > 0 and 1 < k < N. In particular, we have that |gn(z,b,2)| < Cy for
all z,b > 0.
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§2.5. Stieltjes Transform and analytic description

1

Our target function is gn(wj,b,2) = & f(w,;,wj)eib”ljc\;c. By the funda-

M=

=1

mental theorem of calculus,

‘gN(U)J,b, Z) _gN—l(wj7b7 Z)| = ‘gg)\f(wjvbv Z) - g}V(wJ)b7 Z)’
1 1 N
_ 9 4 _ b ibrl (t) 0 N
dA

Now, RA?V(Z) = (tA§V — zI)~! and thus, %RA?](Z) = *RA’EV( 2) M Rat (2 (2).
Note that % = —Jpy, where Jy is given by

In(ksl) = 0, ifk,l#j
N ap,, ifk=jorl=jy.

Q
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Thus,

\gN(w], b,Z) - ngl(wja b) Z)’

= /0 Nge Ik m§1rkm(t)8trnk(t)
1 N
= / Z ibric(®) Zrkm (t)am;r ]k()dt
0 k 1 m=1
1 N N
<[ 3 2 2 I a0 4z (2.56)
=1m=1

since the complex exponential ek (®) i trivially bounded by 1 as rkk( )eCT.
Then, using Cauchy-Schwarz and Lemma 2.5.2 in (2.56), we have

‘gN(wjvbﬂ z) - gN—l(wjvbvz)’
) 1/2(N )1/2
|Tg kk a?n- dt.
/ Z g ( 7 ) mzzjl 7

Bounding S(riv.(t)) by 1/n (Property (iv) of Lemma 2.5.1) and taking expect-
ation, we get

1y, N N 1/2
Bllow(uy.b.2) —va(wp.b 2] < [ 58 erﬁ<t>|(2a;j) at.
k=1

m=1
(2.57)
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2. Limiting spectra of inhomogeneous random graphs

Now, again using Cauchy-Schwarz and Lemma 2.5.2, we have for some constant
C’ that

(2.58)

35

N N 1/2
EJ%@%¢N@]¢@@ e
k=1 k=1

Thus, using (2.58) and Jensen’s inequality on the function v/X in (2.57), we get

1/2
i Ly |ovN (&L,
Bll ;. .2) — aaluy b2 € [ B | S5 (S ad, )|

m=1

) 1/2
SC'//O \/7773/2< [Zam]]> dt.

Since f is bounded, we have for some new constant C’} that

CbV/A
Ellga(wy,b,2) = gv-(w, 0 2)]) €

Using the fact that gf; is bounded by Cy for all ¢, we get
)\g 1 )\g ~ _ 20N __ \/X
Efle®N1 — N[ <E[|gn—1 — gn[le™ " = O (773/2\/ﬁ) '

Since this is an error of the same order as gy x(u, z), we can absorb it into the
existing error gy x. Finally, using (2.54) and the interpolation argument allows

us to write (2.49) as
[e.9]
E[eiur%] —1_ e—xdj\/a/ Jl(i}/uv)esz [e,\gN(wj,g,z)} dv + qya(u,2),
0 v ’

O]

which proves the proposition.

Now, consider the expression (2.42) from the Proposition 2.5.4. If we multiply
throughout by f(z,w;) and then sum over j, and finally scale by N, we get

1 N
E[gN(xvu7Z)] - N Zf(x’wj)
j=1
LIS ey [ IOV e Toon (s 3.2
Nj;f(x7w])e \/ﬁ/o \/17 ($ E[eg :|d'U
(2.59)
"‘QN,)\(U’ Z) .
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§2.5. Stieltjes Transform and analytic description

Consider the space of Lipschitz functions Lip(R) defined as
h(z) —h
Lip(R) = ¢ h € Cp(R) : sup |h(z)| < 1,supM <CL,0<CL <00, .
T TH#Y ’.CC - y|
Now, under the bounded Lipshitz metric dpr,(-,-) given by
dpr(p,v) = sup H/hdu—/hdv } :
heLip(R)

Hwy = Hw if and Only if dBL(:u’WNa ,Ll,w) — 0,

we have

Q
—
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V)
e
=
©)
=
3
3

where Wy = w,,, for a uniformly chosen vertex oy. So, taking f to be Lipschitz
in one coordinate (and since we already have that f is bounded), the first term
in the RHS of (2.59) becomes

1 N
N L w) = [ fe ) <@ + By, (260)
j=1

where Ex = dpr (1w fhw)-
Recall from (2.13) that we have

dj(wp) = [ fw)pn(do)
Then, one simply gets
|e—)\d]' o e—)\df(w]')‘ < )\ENQQA. (26]‘)

Thus, using (2.60) and (2.61) in (2.42) gives us

Elgn(z,u, z)]
a o uv) v
=dy¢(z) — %Zf(x,wj)e—)\df(wj) (ﬁ/ﬁ ‘m\/\éi)esz [eAgN(wj,X,z)] dv>
j=1
(2.62)
+ CjN,)\(ua Z) )
where

ana(u, z) = qna(u, z) + O(EN).
Finally, for a fixed € [0, 00), define

I(y) = f(z,y)e W) <x/ﬁ /0 h Weisz [em(%%z)} dv> :

Then, we have the following lemma.
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2. Limiting spectra of inhomogeneous random graphs

Lemma 2.5.6.
I,(y) is Lipschitz.

Proof. Consider I,(y) as defined. Then,

|8ng(y) |
oo 0 (v [ BT g [oos39] )

+ }f<x,y>e”f<y>aydf<y> (ﬁ /0 h WPE [ho(ote)] du> ‘
J1(2

+ ‘f(;r,y)emf(y) <\/ﬁ/000 \/\gmesz [e’\gN(y&’Z)} Oygn (y, v/, 2) dv)‘ :
(2:63)

<

Recall that a function is Lipschitz if and only if it has a bounded derivative.
Thus, if f is Lipschitz in y, the first term in (2.63) is uniformly bounded in y.
Moreover, this makes the second term in (2.63) bounded as well since

1Byds ()] < /0 10, () lw(d ) (2.64)

is bounded. To justify interchanging the derivative and the integral in (2.64),
we have to utilise Theorem 2.6.2 for which we need to verify the following

conditions.

o f(z,y) is py,—integrable for each y and the map y — f(x,y) is continuous
for each z.

e For each z, the derivative 0, f(x,y) exists.

e For each y, there is a ji,,—integrable function ¥, () and a neighbourhood
Uy containing y, such that for all y' € Uy, |0y f(z,y)| < ¥y(z).

The first and second are trivial to check, and by Lipschitz property, since
Oy f(z,y) = const., we have W, (z) = const, which is integrable on [0, co) since
[y 18 a probability measure.

Finally, for notational convenience, let h(y,v) be denote

h(y,v) = ‘w\/\gmeisz [e)‘gN(y’”»z)} .

Once again, we need to verify the three conditions as above to apply Theorem
2.6.2. Note that h(y,v) is integrable with respect to v. Moreover,

8yh(y7 U) = h(y7 /U)aygN(y7 v, Z)
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§2.5. Stieltjes Transform and analytic description

where one can compute

N
1 .
8y9N(y7 v, Z) = N Z 8yf(wk7 y)ewrkk 5
k=1

which again is bounded. Thus, 9,h(y,v) exists, and is bounded above by
Cov_%e*”“, which is integrable with respect to v. This verifies the three con-
ditions and allows us to pull the derivative inside the third term in (2.63), and
also makes that term bounded. Thus, I,(y) is Lipschitz. O

Since I4(y) is Lipschitz, we can exploit the weak convergence of j,, under the
Lipschitz metric dgy, in (2.62) to give us

Elgn(x, u, 2)]
= dy(x)
_ /OOO flx,y)e W) (ﬁ/ooo Jl(Z\/\gmemE [eAgN(y’%Z)] dv) tu(dy)
(2.65)
+ana(u, 2) .

Recall the Banach space as defined in (2.11), and consider ¢ € (B, || - ||). In this
space, consider the map

F.(0)(a,u)
—dya) =i [ e (m | REL el dv) ().
(2.66)

Note that ¢ also implicitly depends on z but we drop that for notational purposes

since we fix z throughout.
Take ¢1, ¢ € (B, || -|) such that ||¢1]], ||¢2|| < Cf. Then, using the norm we

85

Q
—
=)
V)
e
=
©)
=
3
3



2. Limiting spectra of inhomogeneous random graphs

defined in (2.11) and inequality 2.44, from (2.66) we get
1= (f1) — Fz (o)

< sup 4/ 1 /OO fla,y)e W)
z,u>0 1+U

et ) i

<y / e 3) e (o)

x e)\|¢1(%x)|+)“¢2(y’§)‘ dov Mw(dy)

< A||p1 — ¢2||/ / ie*”” sup 7'1—|_W\e)"¢1(97§)’+’\‘¢2(%§>‘ dv g, (dy)
o Jo Vv yw>0 /1 +v/A

<Al —al [~ [T e ey (\TE Ol + el dv ()

e 77v n ¥
<lo—enl [~ (Sm 4 S0 )@ Rao < S - aall

where (' is the constant upper bound to the integral of the form

)
/ Cle—CQm+03\/de
0

Q
t
=
~
)
L
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=
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for some c¢3 > 0, and is finite. Taking n > 0 sufficiently large, we get that F,
is a contraction in an open ball B C B of radius Cy < oo, and thus, by the
Banach Fixed Point Theorem, there exists a unique ¢* such that ¢* = F,(¢*)
for I, : B — B.

We are now ready to prove a concentration result. Recall the function Gy (u)
defined in (2.12) as

1 N N
E ur
N ¢
i=1

If we now define a new function Gy (x,u) that acts identically on the first
coordinate as

Gn(z,u) :== Gy(u),

then one can see that sup, , mGN(«T u) < oo, and so Gy(z,u) € B, and

consequently, a concentration result for Gy would imply concentration for G .
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§2.5. Stieltjes Transform and analytic description

Proposition 2.5.7 (Concentration and convergence).

For any z € C" and = € [0,00), and uniformly over u in [0,1], we have

Elgn(z,u, z)] Ao, ¢*(x,u). Further, we have

E [HQN — E[QN]HQ} =o0(1), and

s[5 ] =ot.

Proof of Proposition 2.5.7. Let dn(x,u, z) denote the error

Q
—
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e
=
©)
=
3
3

5N<377 u, Z) — e)\gN(x,u,z) o e/\IE[gN(x,u,z)].

Let 1 <k # 1 < N and consider the covariance

Apy = Blei kel | — E[e/ ik |E[e/ 1], (2.67)
Using (2.46) for the first term and Proposition 2.5.4 for the second term, we get
Ay =
~E[T)] - E[T)

J1(2y/avr) J1 (2 /uvz) Jirva): [ v l;j iy a2 +ivo l;ﬁ FN-142

+u o NG e dvidug
+E[T}) + E[T})]

—u//Jl 2/uvr) J1(2\/uv2) i(v1+v2)z )\gN(’u}j,UTl,Z)-‘r)\gN(’wkx,sz,Z)] dvy dovs,
VRN :

(2.68)

where T; and T; are the RHS of equations (2.46) and (2.42) respectively, and
differ by the error gy x(u,z) in expectation. In the first double integral of
(2.68), one can do the interpolation argument term-wise, and obtain the error
CIqJQV, \u, 2) + qJQ\,’ 1(u, 2) by making a difference with the second double integral
n (2.68), where C7 is the constant upper bound to T}, for any k. Thus, we have
that

Akl < Crana(u, 2) + aiyx(u, 2). (2.69)
Using inequality 2.44 on on(x,u, z) gives us

E[|on (2, u, 2)%]

= |:‘e/\gN(:1:,u,z) - e/\IE[gN(:v,u,z)]

2
]saEmm%ma—mM@mamﬂ.

87



Q
t
=
~
)
L
o}
(av]
=
)

2. Limiting spectra of inhomogeneous random graphs

since |gn(z,v,2)| < Cy and Oy = e*A¢s

definition of gy to get

. We can now bound this by using the

= % Z E[f((l?, wk>e£uri\;€f(x7 U)l)e[:url]ﬁ — E[f([]}, wk>eiurllc\;c]E[f(x’ wl)eiurﬁ’]
(2.70)

Since f is deterministic, we can pull it out of the expectation and take it com-
mon, giving us

N

ElJon (o, u,2) ] < S | D2 FCwe) o, w) A
k=1

where Ay is as in (2.67). We can conclude using the triangle inequality that

M
E[[6x (2, u, 2)|?] < CLC%sup |A :o()- 2.71
I3 (. 2)") < C1CFsup | A N 2

For n > 0 sufficiently large, taking the norm, we get
2
E [Hem _ e*E[gN}H } — o(1). (2.72)

However, dy is a bounded analytic function in [0, 00)? x C*. Using the identity
theorem from complex analysis, which states that if two holomorphic functions
agree in an open set of the domain then they must agree everywhere on the
domain, we have that since 5y — 0 on an open set of the upper-half complex
plane, it must approach 0 everywhere on the upper-half plane. Since the error
in (2.71) can be absorbed in ¢y x(u, 2), using 2.44 gives us

Elgn(z, u, 2)]
= dy(z /Ooof z,y)e AW <\f/ J1 2\/%) ez ’\E[QN(%MZ)]dv) fw(dy)

+ QN )\(uv Z) )
(2.73)

where the error vanishes in the norm as

| = llgna(u, 2) + O(EN)| < sup
x,uZO
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§2.5. Stieltjes Transform and analytic description

Now, consider the function Gy (z,u) and the error
An(u) := Gy (z,u) — B[GN(z,u)].

By definition of G, one can see that expanding A ~(u) will yield an expression
similar to (2.70) modulo f, and so, using (2.69) again, we get that

By taking the norm and again using the identity theorem, we get that Ay
vanishes in [0,00)? x CT and thus

E[|An[?] < 010]% Sllqllp | Ak = O (

E [HGN—E[(;N]HT —o(1). (2.74)

A quick inspection of (2.70) shows that in fact we also have the concentration
for gn, since the RHS is precisely the upper bound on

EHgN(:Ea u, Z) - E[QN(xa u, Z)]|2],

and so,
E[llgy — ElgnI?] = o(1). (2.75)

Finally, comparing (2.73) with the contraction mapping (2.66), we have the
following;:

E[QN(x’ u, Z)] = FZ(E[QN($’U7 Z)]) + qN)\(u’ Z) )
qS*(:c,u) = FZ(¢*($,U))

So, with n > 0 large enough and F. being a contraction on B C B of radius CY,
we have

[Elgn] — ¢*[| < [|F=(Elgn]) — Fz (") + llanl,
and consequently,
1 -
5 IElgn] = "l < llaw|l.
Thus, since |Egn| < Cf,
[Elgn] - 67l 2= 0.
As a quick remark, notice that

l¢*ll < Cy, (2.76)
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2. Limiting spectra of inhomogeneous random graphs

since gy is bounded.

Now, since E[gy (7, u, 2)] is an analytic function on [0,00)? x CT, we have
limy_ o0 Elgn (2, u, 2)] is an analytic function. Again from the identity theorem
of complex analysis, since limy_, E[gn] and ¢* are analytic and agree on an
open set of [0,00)2x C*, they agree everywhere in the complex domain [0, 00)? x
C™*, and thus the convergence holds for any z € CT. Note that for a fized
z € CT, although both the functionals E[gy] and ¢* live in (B, || - ||5), the
domain of ¢* is [0, 00)? x C* since E[gx] has the domain [0, 00)% x CT. Now, for
each z € C™, fixing v in the compact set [0, 1] gives us that for each z € [0, 00)
and uniformly over u € [0, 1],

Elgn (2, u, 2)] 222 ¢* (2, u) (2.77)

We can now prove Theorem 2.3.9.

Proof of Theorem 2.3.9. Equation (2.74) proves the concentration statement of
Theorem 2.3.9. Recall that we had shown that

E {eiur%] -1_ e)\dj\/&\/ Jl(2\/} Vuv)eisz |:e)\gN(wj’§’Z):| dov + qu)\(u,z),
0 v

and so,

N
[GN u, Z ;Z Lur

N
1 —Ad; > ‘]1(2\/7““)) vz A w;, 2,z
—NZe 7\/6/0 Te E[e an (wj:X )]dv—l—qN,)\(u,z).

(2.78)

Next, we see that the function

i) = e—)\df(y)\/a/oo J12VU) oz po ol
o Vv

is Lipschitz by using an argument similar to Lemma 2.5.6. Thus, we get
ElGN(u, )] =
[e.e] o0 J 2 A v
1 _/ o~ Ads(y) (\/ﬁ/ 1(\f Vm’)esz [eAQN(va,Z)] dv) pw(dy) + gyalu, 2).
0 0 v

Since from Proposition 2.5.7 we have concentration for gy, using inequality
(2.44) we have that

E[Gn(u, 2)] =
1= [Ty [T REE oSl 05 do () + dvae2),

90



§2.5. Stieltjes Transform and analytic description

Finally, taking the limit N — oo gives us

1 / M) /g / TRVUO) oz p6 w0/ 4y p(dy),  (279)
0 0 \/E

completing the proof of Theorem 2.3.9. O

§2.5.2 Deriving the expression for the Stieltjes Trans-
form

Since we took u to be in [0, 1], we can take a derivative with respect to u and
evaluate it at u = 0. Recall from equation (2.78) that we have

E[Gn(u, 2)] —EZ bur

1 o 24/ : v
=l-% ;e’\df\/ﬁ/o Jl(ﬁuv)esz [e’\gN(“’J”X’Z)} dv+gna(u, 2).

Note that by definition, Gn(u, z) is a bounded function, and thus by DCT,
limit operations can be interchanged with expectation. We would like to take
a derivative with respect to u and evaluate at u = 0 to extract out tr(Ra (%))
from the LHS of (2.78). On the other hand, we would first like to take N — oo
for the RHS to remove the error term. To interchange these operations, we have
the following result.

Proposition 2.5.8.

Both the limits limy _,oo 2 SE[Gn(u, 2)]| upo and a% limy o0 E[GN(u, z)Hu:O ex-
ist and are equal.

Proof. We fix a z € C*. Now, limy_,o E[Gn(u, 2)] exists due to the RHS of
(2.78), which we denote by G(u, z). If we define Hy(u, z) and H (u, z) as

ElGn(u, 2)] — E[GN(0, 2)]

HN(uv Z) = U )
H(u,z) _ G(“v Z) B G<07z)
U
Then,
lim Hy(u,2) = —-E[Gy (u, 2)
ull)r%] N, 2 au A =0 ’

0
ili% H(u,z) = %G(u, z)
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2. Limiting spectra of inhomogeneous random graphs

We would like to claim

d 0
A}gnoo %E[GN(U z)] . %G(u z) .

Thus, we want to interchange the order of limits. Note that

lim Hpy(u,z) = H(u,z2)

N—oo

uniformly in u € (0, 1], and

0
1113% Hy(u,2z) = %E[GN@L, 2)] . =E[tr(Ra, (2))]
for each NV, where the limit can be taken inside the expectation using dominated
convergence. Thus, using [Rudin, 1976, Theorem 7.11|, we have that the limits
limy, 0 H (u, 2) and limy_,oc E[tr(Ra (2))] exist and are equal. O

We are now ready to prove Corollary 2.3.10.

Proof of Corollary 2.5.10. We now do precisely as we stated before Proposition
2.5.8. We evaluate the derivative at v = 0 and then take N — oo on the
LHS of (2.78), and we do the reverse for the RHS of (2.78). Note that since
limp 00 AN, x = f in probability, Sa (2) = S, (2) and also Sa () = S, (2)
as N — oo for all z € C*. Thus, we then obtain using Proposition 2.5.8

iSp,(2)
(2.36) (2.39) 0
=i Sa(2) ST lim ErRay () TS0 im RGN ()|
d
= 5 lgnooE[GN(u z)] L
S RSN N / > Memew:(%%)dv 1 (d y)
ou 0 u=0
__/ o= (y \f/ J1( 2\/uv) 7M1 (1:%) d v f(d y) (2.80)
0 u=0

We now wish to evaluate the derivative on the RHS of (2.80). Let K (u) denote
o0 2\/ : * v
= \/ﬂ/ Me“’ze)“ﬁz@’i) dw. (2.81)
o Vv
Observe that

e~ ( 1/n
Z/ k'k;+1 Zkz'kJrl se (2.82)

k>0 k>0
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for n > 0 by a change of variables. If we expand the Bessel function as defined
in (2.16) in equation (2.81) and take the absolute value, we observe using (2.82)
and using |¢*(z,u)| < Cf (from (2.76)), that we can use Fubini’s Theorem to
interchange the integral with the summand. Thus, we have

B 0 e \/7 2+l vz )\¢§(va)
f/\fz KMk+1r © © s

2, (—1)kykH ks 0 (0,)
Z k: 1! / vPel z dv.
Denote by I (y) the integral

Ii(y) :== /vkewze)“z’;(y’i)dv.

Therefore,
)k k o
Zk, ) = o) + X g ) = Do) + 3 (),
k>1 k=1
(2.83)

where ax(u) denotes
P TRk )
Note that for any k, we have that I;(y) is finite since

oo CrX
Ik (y)| < vhe MeCiA dy = ’ MNk+1).
~Jo nk—i—l

Since K (0) = 0 and by (2.83) it follows that

0
ou

5K (u)

u—0 U

K
= gim B )+ lim 3 ax(u), (2.84)
u=0 1

Therefore we would like to evaluate lim,_q ZkZI ax(u). Note that

eCrAT(k 4 1)
< - “\T T
k(] < T )

, as u is bounded by 1. Note that the series

Cirpnr

C’f)\ e en

Zkl k+1: 72 Z k+2 2

k>1 k>0
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2. Limiting spectra of inhomogeneous random graphs

converges, and consequently by the dominated convergence theorem, we have
lim E ag(u g lim ay(u
u—0 u—>0
E>1

Thus by (2.84) we have

Therefore we get

o0 o0 oo
i Sy, (2) =/ e‘kdf(y)lo(y)ﬂw(dy)/ e‘”f(y)/ 7MW Ay iy (dy).

0 0 0

To conclude the argument, we use Lemma 2.5.3 with Theorem 2.3.7 to state
that Sa () converges in probability to S, (z) for each z € CT. O

We conclude with the proof of Corollary 2.3.11
Proof of Corollary 2.3.11. From Corollary 2.3.10, we have

S, (2) = i / / eV MV ON dy e (dy).
Recall that

¢" (2, u)

(2.85)

is the unique analytical solution of the fixed point equation as in (2.66). Ex-
panding the Bessel function J;(z) in (2.85) using (2.16) gives

¢"(, u)

—\d * (_1)kuk+lvk iz Ao*(y,2
=dy(x / fla,y)e Ml /0 Zme M) do | pu(dy).
£>0
(2.86)
We would like to interchange the summand and integral with respect to v in
(2.86). Using the z = ( + in for some ¢ € R and 1 > 0, we have that

k WF 1k .
Z/ evae—)\df(y)+>\¢ (y,v/N) dov
k' k +1)!
k>0
ukH
< eCrA=rds(y Z M < Eecfk—kdf(y)eu/".
= El(k+1)Ipk+1 = g
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§2.5. Stieltjes Transform and analytic description

Thus, by Fubini’s Theorem, we can interchange the summand with the integral
with respect to v, giving us

¢ (z,u) =
> _ (—1)Fukt! keivz o™ (%)
7 fger i [ STEN T ket (68) d o | g (d ).
/0 l;) El(k+1)! Jo
(2.87)
Now, denote by H*(z,y) the function
HMNz,y) == L'/OO eW2e A (W) FAST(Wv/A) q g, (2.88)
0

Then, by Corollary 2.3.10, we can see that S, (2 fo H2,y) ptw(d y). From

(2.87) we get that
¢"(z,u) = dy(z) —U/ f(x,y)/ o2 MWW q g gy, (dy)

k k+1 k v oy N
[ e [ s a0 o,
k>1

and so, we can write
¢ (z,u) = dg(x) +L'U/ fla, ) H (2, 9)po(dy) + T(x,u, 2, 2)  (2.89)
0

where

T(x,u, A, 2)
k k+1 k .
/ f €T y E / e“)ze_Adf(y)"')‘(ﬁ (y,’l}/>\) d'U ,U/’Ll)(d y)

k>1
(2.90)

Substituting u = v/ for v € Ry in (2.89) and multiplying throughout by A, we
have

—Adg(x) + Ao*(x,v/\) = iv /OOO f(x, y)’r’-[/\(z, Y (dy) + AT (z, 0/, A\ 2).

We begin by claiming the following;:

Claim 2.5.9.
For any x,u > 0, we have

e A (@) FA (@) < (2.91)
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2. Limiting spectra of inhomogeneous random graphs

Then, one can see that

o0 v ’Ukr(k"i‘l)
T(z,0/M A\, 2)| < svll D avanrrmneerll RIC
’U2 s
= Aznze"*df(f)v

and so for each v € (0, 00)

lim AT (z,v/\ N, 2)| — 0.
A—00
Thus, from (2.89), for any v we have

oo
lim (—Ad;(2) + Ad* (2, v/A)) = iv lim / Flo ) H o) p(d ). (2.92)
A—00 A—o0 Jo
What remains now is to justify Claim 2.5.9, and taking the limit A — oo inside
the integral in (2.92).

First we consider the homogeneous case when f = 1. Recall from Remark
2.3.12, that due to the lack of dependency of one coordinate, we denote a;(u) =
¢*(z,v/\) Then,

?6;(”) —1_ \/ﬁ/ J1 (2\/ UU) eivzef)\Jr)\a)\;(v/)\) dw,
0

VU
and from (2.92) we have limy_,oo (=X + )\245;(11//\)) = ivS,,(2). Moreover, from
Corollary 2.3.10, we have

Sy (2) = L/ S U CTRV P
0

Since f = 1, from (2.76) we have that Cy = 1 and |¢*| < 1. Then, e A" < 1,
justifying Claim 2.5.9. Thus, the expression inside the integral is uniformly
bounded by e~"". Using dominated convergence, we can pull the limit A — oo
inside the integral to obtain
. o vz WSy, (z) 1
SM(Z)_L/O e'Te s dv——m,

which is precisely the Stieltjes transform of the semicircle law.
In the case of general f, recall from (2.77) that for any x and wu,
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§2.5. Stieltjes Transform and analytic description

Now, for any N, by trivially bounding the complex exponential efuryl by 1 for
any ¢, we have that

N
EZf (x,w;)e elurii | < ]t;]f(m,wl)] = ]i[Zf(x,wl)

Thus, by triangle inequality, we have that

N
6 ()| < 16, w) — Elgw (2w, 2)]| + 1 3 f o w0).
i=1

Q
—
=)
V)
e
=
©)
=
3
3

Thus, we have that

fo wi) + A|¢*(z, u) <>\v1+U\/—!¢( u) = Elgn (z, u, 2)]|

< MW1+u¢* —Egnlls. (2.93)
Taking N — oo on both sides in (2.93) yields that
—df(z) + N¢™(z,u)] <0.
Using this, we conclude that

‘e—Adf<z>+A¢*(z,u> < e M@ A" (@) < q (2.94)

for any « and u, proving Claim 2.5.9. Now, to evaluate limy_,o S, (2), we take
the limit inside the integral in the RHS of (2.17) using DCT, which we can use
from (2.94). This gives us

Su;(2) = lim Sy, (2) = L/ / elv? hm )\df(y)JrAaﬁ*(y,v/)\)) dv pe(dy).

A—00

and so, using (2.92), we get

/Jf — L/ / LUZ lim eiu fooo f(a:,y)HX(z7m)uw(d$) dv ,Uw(d y) (295)

A—00

Recall from (2.88) that
H)\(Z, y) — L/OO e[vze_)\df(y)+)\¢*(y’v/>\) d,U.
0

Again using (2.94), we have that the integral is bounded in absolute value, and
so, using DCT allows us to define

H(z,y) = lim H (2, y)
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2. Limiting spectra of inhomogeneous random graphs

where [ H(z,y)pw(dy) = Sy, (2). Moreover, since [H*(z,y)| is bounded by a
constant, and p,, is a probability measure, we use DCT once again to take the
limit A — oo inside [;* f(z,y)H (2, 2)pw(d ). Thus, we obtain

[ee] (e} A A 00
Sus(2) = L'/ / ezt 57 f@y)H(z2)pw(dT) g4 Lo (d )
o Jo

= — /OO o (dy) _
0 Z+fooo f(xay)H(zvx)Mw(dx)

The proof follows by observing that H(z,z) satisfies the analytic equation
defined in (2.6). O

§2.6 Appendix

Proposition 2.6.1 (Banach Space).
Let X = [0,00)2 and consider the space B defined by

sup oyl _
z,y>0 \/1+y

B= {¢ : X — C analytic

and consider the norm

_ [p(, y)|
H¢||s—£;1§0 iy

Then, (B, || - ||8) s a Banach space.

Proof of Proposition 2.6. For ease of notation, throughout this argument, [|-|| :=
| - ||g. Clearly || - || is a norm, and thus, (B, || - ||5) is a normed vector space.

Let {¢n}n be a Cauchy sequence in (B, || - ||g). Thus, for all € > 0, there is
an N € N such that for all m,n > Ng,

H¢m - ¢n” <e.

Let u be the Lebesgue measure on X. Define

Emn = {(z,9) € X+ |¢n(2,y) = dm(2,9)| > [|6n — dmlV/1 +y}-

Then, u(Ep,) =0. Let E = |J Empn and F = E€. Then, u(E) =0, and

m,n

F={(z,y) € X :|pn(x,y) — dm(z,y)| < |60 — dmllv/1+ y}.
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So, for all € > 0, we have an N; such that for all (z,y) € F and m,n > N,

’¢n(x7y)_¢m<$7y)| <évy 1 Y.

Let ¢ (z,y) = %\/% Then, we have for all (z,y) € F and m,n > N.

|¢n($7y) - 1/Jm(90, y)| < €.

In other words, for all (z,y) € F, denoting a,, = 1, (x, y) gives us that {a,}, is a
Cauchy sequence in the metric space (C, |-|). Since C is a complete metric space,
for all (z,y) € F, there exists a limit a := lim,, a,, that is, for all (z,y) € F,
there exists a 1) such that

Q
—
=)
V)
e
=
©)
=
3
3

P(x,y) = lim iy (z,y).

For (z,y) € E with u(F) = 0, ¢(x,y) = 0. This is a well-defined limit. Note
that since ¢y, lives in (B, ||-||B), ¥n lives in (L*°(X), ||*||s), and we thus conclude
that

[¥n — ¥mlleo <e.

Passing the limit through m, we have

[9n = bl <e.
For all (z,y) € X, define

o, y) = v(w,y)v/1+y.
One can see that ||¢, — ¢|| = ||[Yn — ¥|leo- Use triangle inequality to conclude
¢ B ls) O
For the next theorem, we refer the reader to [Billingsley, 2012, Theorem 16.8|.

Theorem 2.6.2 (Interchanging derivative and integral).

Consider the measure space (Q, F, i) and an open set A C R. Let f: AxQ — C
be such that for each x € A, w — f(x,w) is p—integrable, and moreover for
p—a.e. w, r+— f(x,w) is continuous. Consider the function g : A — C defined

by
o(z) = /Q f (@ w)p(dw).

Suppose that for each w the partial derivative Oy f(z,w) of f with respect to
x exists. Then, if for every x, there is a non-negative pu—integrable function
hy : & — C and a neighbourhood U, containing x such that for all ¥’ € Uy,
|0 f (2, w)| < hyp(w), then, g(x) is continuously differentiable and

Org(x) = /Q 0y f (2, w)u(d ).
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