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CHAPTER 1

Introduction

The broad goal of this thesis is to study the graph spectrum of various inhomo-
geneous random graph models, in particular, to characterise the eigenvalue dis-
tributions of random matrices associated with these random graphs. The first
three chapters cover the graph adjacency matriz, whereas the fourth chapter is
dedicated to the Laplacian matrix.
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1. Introduction

§1.1 Background

Throughout the history of mathematics, complex challenges have often driven
the evolution of new areas of research. In the 20" century, there were major
developments in several related disciplines, such as in the natural sciences (phys-
ics, chemistry, and biology), as well as in computer science, the social sciences,
and medicine. Consequently, there was increasing interest in analysing data and
describing phenomena observed through experimental methods, which in turn
pushed the boundaries of mathematics. There was a need for precise mathem-
atical frameworks to capture complex phenomena, giving rise to entirely new
branches that are now fundamental in modern mathematics.

Typically, complex systems such as social networks, biological networks, and
atomic nuclei, are difficult to analyse directly, even in the era of supercomputers
and increasingly efficient algorithms. Mathematical models provide a reason-
able approximation of such systems, and are built up over years of research.
They often begin with deceptively simple “toy models”, and are subsequently
generalised to more ‘realistic models” where the analysis can be challenging.
Naturally, this also gives rise to several interesting questions in mathematics
itself from a more abstract point of view. Moreover, while these branches of
mathematics originate from distinct problems, as is the case for random matriz
theory and random graphs, they cross paths frequently, yet continue to exist as
independent research topics in their own right.

This chapter will serve as a preface to the material that will follow in the rest
of the thesis. We dive into spectral graph theory, a topic that emerged in the
1950s and serves as the backbone of this thesis. We describe graphs and their
matrices, namely the adjacency matrix and the Laplacian matrix, and give a
brief overview of the relation between graph properties and the spectrum of
their associated matrices.

Transitioning to the world of probability, we move on to random graphs,
which were introduced in the mid 20" century. Over the years, a wide range
of systems have been studied as complex networks, in particular biological and
social networks. The explosive growth of these networks in the digital age
and their increasing complexity underscore the need for robust mathematical
models, which led to further development of the subject in the late 20" and
early 21°¢ century. Random graphs are graph-valued probabilistic objects and
are essential in modelling real-world networks. We will present a brief overview
of a toy model and various graph regimes, before proceeding with more general
models.

We proceed with another kind of probabilistic object: a random matriz,



§1.2. Spectral Graph Theory

which is a matrix with random entries. This thesis focuses primarily on the ei-
genvalue distribution of random matrix models, that are associated with random
graph models. It is important to note that although the main motivation comes
from the study of random graph models, the essential tools of the trade come
from random matrix theory, thereby also making the study of the spectrum
relevant from a random matrix perspective.

The above naturally eases us into a more abstract theory of random vari-
ables. Abstraction is a fundamental aspect of mathematics, giving rise to areas
such as free probability where one abstracts the notion of random variables and
moves away from an underlying sample space. Despite this abstraction, a link
with reality remains. Random matrix theory connects with free probability,
and was born out of applications in statistics, operator algebras, and quantum
physics.

With these notions well established, we proceed with a literature overview
of spectral theory for random graphs, in particular for the Erdds-Rényi random
graph. We conclude with an outline of the thesis and technical results that are
used in later chapters, as well as a short discussion and concluding remarks.

§1.2 Spectral Graph Theory

Spectral graph theory is the study of the relation between geometric properties of
graphs and the eigenvalues and eigenvectors of the associated graph matrices.
Motivated by applications in quantum physics and chemistry, the theory is
now used in various areas of mathematics, such as discrete mathematics and
combinatorics, statistics, and probability, while also playing a crucial role in
statistical physics and computer science. There are various references on the
subject. We refer to Chung [1997] for an introduction, and to Spielman [2012]
for a modern approach to the subject.

§1.2.1 Graphs and matrices

Graphs can be defined set-theoretically as a collection of two sets: a vertex set,
and an edge set that indicates connections between the vertices. A self-loop is
an edge from a vertex to itself. Simple graphs are graphs with no self-loops,
and at most one edge between two vertices. Figure 1.1 illustrates a few special
examples. For instance, a tree is a graph with no cycles: there is exactly one
path from any vertex to any other vertex. On the other hand, a clique has
an edge between every vertex. Figure 1.1 showcases simple undirected graphs,
that is, the edges have no orientation (or direction). This thesis does not cover
graphs that are directed, nor does it consider graphs that can have multiple
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1. Introduction

edges between two vertices.

Figure 1.1: Some graphs on 4 vertices. The first three graphs are a tree, a cycle, a
clique respectively.

A graph can be represented through its adjacency matriz. Let G := (V, E) be
the graph, with V' being the vertex set and E the edge set. The adjacency
matrix of G is defined as the matrix A with entries

1, if(i,j) €E,
Al g) = {0, if (i,)) ¢ B,

for all 4,5 € V. For example, the cyclic graph in Figure 1.1 has the representa-
tion G = ({1,2,3,4},{(1,2),(2,3),(3,4), (1,4)}). The corresponding adjacency
matrix is

0101
1 010
A_Ol()l
1 010

We notice that A is symmetric. In fact, all undirected graphs have symmetric
adjacency matrices, that is, A(i,j) = A(j,4) for all i,7 € V. Moreover, A is
zero on the diagonal, since GG has no self-loops.

Another important graph matrix is the graph Laplacian. Let D denote the
diagonal matrix with entries

’ 0, if i # j.
The combinatorial graph Laplacian L is defined as L := A — D. The normalised

Laplacian is defined as £ = I—D"Y2AD~Y2 where D~1/2 is the diagonal
matrix defined as

1 . ..
D_I/Q(i,i) _ T if D(i,1) #0,
0 if D(i,i) = 0.
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This thesis only covers the combinatorial graph Laplacian, which henceforth
will be referred to as the Laplacian matrix. Note that if A is symmetric, then
so are the graph Laplacians.

The Laplacian matrix gets its name from the fact that it can be viewed as
the matrix form of the discrete Laplacian operator, which approximates the con-
tinuous Laplacian operator through a finite difference method (LeVeque [2007]).
This can be illustrated by the discrete heat equation as follows: Let ¢ be a
distribution across a graph G = (V, E), with ¢(i) being the temperature at a
vertex i € V. If (i,j) € E, then the heat transfer between i and j is proportional
to ¢(i) — ¢(j). In particular, one obtains a matrix-vector ordinary differential
equation of the form

d¢

1= kLo, (1.1)
where L = A — D is the graph Laplacian matrix and k is the thermal conduct-
ivity. This is analogous to the classical heat equation, hence the name “graph
Laplacian”. The solution to (1.1) and its stability properties are obtained by
analysing the eigenvalues of L.

§1.2.2 Spectral theory

Spectral theory traces its origins back to the works of David Hilbert in the early
20" century. He referred to the theory as spectral analysis. The name proved
prophetic: a key result in the field, known as the spectral theorem, was later
found to be useful in explaining atomic spectra in quantum mechanics.

Finite undirected graphs have adjacency (and Laplacian) matrices that are
symmetric, which are diagonalisable and have real eigenvalues. For a finite graph
G on N vertices, the spectrum of its adjacency matrix A (or its Laplacian matrix
L) is the set of eigenvalues of A (or L, respectively). Linear algebra provides
the necessary framework to study the eigenvalues and eigenvectors of graph
matrices. For example, for a clique on N vertices, the spectrum of A is the
eigenvalue N — 1 with multiplicity 1 and the eigenvalue -1 with multiplicity
N —1. The Laplacian, on the other hand, has eigenvalues 0 (once) and N (with
multiplicity N — 1). Another powerful result, the Perron-Frobenius theorem,
states that if G is connected, then the following is true (Spielman [2012, Theorem
4.5.1]): For the eigenvalues A\; > Ao > ... > Ay of the adjacency matrix of G,
we have

o )\ > )\2, and \; > —)\N, and

e )\ has a strictly positive eigenvector.
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1. Introduction

Although linear algebra provides a solid foundation, we outgrow it as N grows to
infinity, and lean on spectral theory for our analysis. A locally finite graph G =
(V, E), that is, a graph where every vertex has finite degree, can be identified
with a linear operator A on the Hilbert space (¢2(V),(-,-)), where (-,-) is the
canonical inner product (¢,) := >, 1 (i)¢(i), and A acts on the canonical

basis (0;)icy as
Asi= > 45
j:(i,5)eE

We call the operator A the adjacency operator, and the Laplacian operator is
defined similarly on ¢?(V). Note that in the finite-dimensional setting, we get
back the graph matrices, and so we use the same notation for the matrix and
the operator.

For an infinite graph, the spectrum of the adjacency operator is the set

spec(A) = {A € C: A — Al is not invertible},

and we define spec(L) in a similar fashion. The spectrum of an operator on a
finite-dimensional space is the set of eigenvalues. However, it consists of more
components in the infinite-dimensional setting, and may have no eigenvalues or
no point spectrum. In some instances, for a locally finite undirected graph, the
operators A and L are self-adjoint, and spec(A) and spec(L) are contained in
R.

If A (and L) are self-adjoint operators defined over the Hilbert space ¢2(V),
then the spectral theorem guarantees that these operators are in some sense
“diagonalisable”. For example, consider the adjacency A. If A is a self-adjoint
matrix, then the spectral theorem yields a spectral decomposition for A of the
form

A=UAU",

where A is the diagonal matrix of eigenvalues of A, which are real, and U is a
unitary matrix with columns as the orthonormal eigenvectors of A. If A is a
self-adjoint operator, then we can still have a spectral decomposition in terms
of a spectral measure (Rudin [1991]). The spectral theorem now gives us a
projection-valued measure A on the spectrum spec(A) C R such that

A= / NAAQ) .
spec(A)

This formulation will later allow us to associate a probability measure to a
certain class of “nice” operators.

Let us go back to a finite simple graph G. The largest eigenvalue A; of the
adjacency A is bounded above by the maximal degree of G. Additionally, Aq

10
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plays another crucial role in the study of the spread of epidemics on a graph.
Following the ideas of Pastor-Satorras et al. [2015], we consider the following
illustration.

Consider a community with (finite) vertex set V of size N and edge set E.
Individuals are either infected or susceptible. Once an individual recovers, it
becomes susceptible again. Any susceptible individual z € V gets infected at
a rate 3, and any infected individual recovers at a rate 0. If p,(t) denotes the
probability that x is infected at time ¢, then,

Palt + At) = po(t)(1 — 5At) + (1 — po(£)BAL Y Az, y)py(t) .
yev

Using this reasoning, one can derive an ODE for the dynamics of the spread as

dpa(t)
dt

= —0pa(t) + B Alx,y)(1 — p(t))py(t).

yev

To simplify the ODE, we can perform a linearisation trick by taking 1—p,(t) ~ 1.
This step is justified heuristically when the p,(t) is small for any =, that is, the
epidemic spread is in the early stage. Let p(t) = (pi(t),...,pn(t))T be the
vector of probabilities. We obtain a system of linearised ODEs given by

dp(t)

TR (BA—=0)p(t).

Spectral analysis of the solution tells us that the equilibrium state is stable if

B 1

5N
that is, the infection dies out below this threshold. Heuristically, a large Ay
indicates that nodes with many connections aid the spread of the disease.

The adjacency spectra have further applications. For instance, if the graph
G has dpq. as the maximal degree and dg, as the average degree, and A; is
the largest eigenvalue of the adjacency of G, then, by Spielman [2012, Lemma
4.2.1], we have
dav < )\1 < dmax .

If A\ and Ay are the extremal eigenvalues, and if G is connected, then Ay = —An

if and only if G is bipartite (Spielman [2012, Proposition 4.5.3]). Moreover, if

(@) is the chromatic number of a k—regular graph G on N vertices, then
—NAn

< .
S v

11
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1. Introduction

The above inequality is known as the Hoffman bound (Haemers [2021]). These
results show that eigenvalues of the adjacency matrix can be used to study
various properties of the graph.

The spectrum of the Laplacian can provide further insight into the graph
structure. When the entries of the matrix are not restricted to 0 or 1, the
matrix is also referred to as the Markov matriz (Bryc et al. [2006], Bordenave
et al. [2014]). The graph Laplacian is essential in diffusion theory and network
flow analysis, as it can be seen as the negative of the infinitesimal generator
of a continuous-time random walk associated with a graph, and its spectral
properties are useful in the analysis of mixing times and relaxation times of the
random walk. It has several other key applications. The Kirchhoff Matrix-Tree
Theorem relates the determinant of the Laplacian to the count of spanning
trees in a graph (Chung [1997]), and the multiplicity of the zero eigenvalue
indicates the number of connected components (Chung [1997]). The second-
smallest eigenvalue, known as the Fiedler value or the algebraic connectivity,
measures the graph’s connectivity; higher values signify stronger connectivity
De Abreu [2007].

In modern machine learning, spectral techniques are pivotal in spectral clus-
tering algorithms, where the techniques use the Laplacian eigenvalues and ei-
genvectors for dimensionality reduction before applying algorithms like k-means
clustering (see Abbe et al. [2020], Abbe [2017]). These algorithms are partic-
ularly effective for detecting clusters that are not linearly separable. Recent
advancements integrate spectral clustering with graph neural networks to en-
hance graph pooling operations (Bianchi et al. [2020]). Spectral algorithms
are also crucial for identifying communities within networks by analysing the
spectral properties of the graph (Chung [1997]).

The normalised graph Laplacian, just like the graph Laplacian, is the neg-
ative of the infinitesimal generator of another continuous-time random walk
associated with the graph. It has applications in studying the so-called Cheeger
constant, as well as the diameter of the graph, but we will not be studying this
matrix in this thesis.

§1.3 Random Graphs

How likely is it that you and another individual have a mutual friend? Will a
disease spread in a community rapidly, or will it be restricted to isolated groups?
How does one model social networks? Where are you likely to be if you walk
randomly on the streets of Amsterdam? How likely are oil particles to percolate
through a rock?

12



§1.3. Random Graphs

These questions only begin to scratch the surface of random graph theory. Ran-
dom graphs first appeared in the context of sociology in the early 1900s. They
reappeared in the context of mathematical biology, before the pioneering works
of Paul Erdds and Alfred Rényi in 1959, which laid the foundation of the most
elementary random graph model: The Erdds-Rényi random graph (ERRG).
Thereafter, the interest in the topic grew rapidly, fuelled by the boom of com-
puter science and the increasing interest in modelling complex networks.

§1.3.1 Erdés-Rényi random graphs

There are two models typically referred to as the Erdds-Rényi random graph.
The first, introduced in Erdds and Rényi [1959], is a simple graph chosen uni-
formly at random from the set of all graphs on N vertices and m edges, and is
parametrised by the tuple (N, m). The second model, also called the Gilbert-
Erdds-Rényi model, was introduced in Gilbert [1959] as a percolation model on
the complete graph K on N vertices, where edges are kept with probability p
and discarded with probability 1 — p, for some p € [0, 1], and is parametrised by
the tuple (N, p). The two models are quite close. The latter will be the model
used throughout this thesis and will be denoted as ERy(p) and abbreviated
as ERRG. There are various texts on random graphs, and in particular on the
ERRG. We refer to the monographs van der Hofstad [2017|, van der Hofstad
[2024] for an exposition of the topic.

In the setting where p := A/N, the random graph is usually classified into
three regimes:

e Subcritical regime: When A < 1, the graph consists of small components
that are tree-like. In particular, the graph is a forest, with the size of
the largest component of the order Oy p(log N) (where Oy is the Landau
notation, and the additional subscript P indicates the statement holds
with high probability).

e Critical regime: When A = 1, the graph exhibits a so-called phase trans-
ition. The largest component in the graph is now Oy p(NN 2/ 3). This re-
gime is the most delicate of the three, and we refer to Janson et al. [1993],
Aldous [1997] for further analysis.

o Supercritical regime: When X > 1, the graph has a unique giant compon-
ent of size On(N) with high probability, and other components of size
On(log N). We have a further sub-regime in this regime:

— Connectivity regime: If p > IO]gVN, then with high probability the

graph is connected, that is, there is only one component.

13
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1. Introduction

In Figure 1.2, we see graph realisations for the three regimes.

Another classification for random graph models is sparsity. In particular,
for this thesis, we say that the graph is sparse when the average degree of the
graph is bounded. On the other hand, we say that the graph is dense if the
average degree grows with V. For ERx(p), we have the following:

o Dense regime: p := ey such that ey — 0 and Ney — oo. In the
literature, the dense regime is characterised by €y = constant, but this
regime will not be covered in this thesis, and hence we abuse terminology.

e Sparse regime: p := ex such that exy — 0 and Ney — A € (0, 00).

(a) A= 0.7. (b) X =1. (c) A =18.

Figure 1.2: Realisations of ERn(p) for three regimes, with p = A\/N, and N = 200.
Simulated on hitps://www.networkpages.nl.

Local weak convergence
The theory of local weak convergence builds on Aldous and Lyons [2007], Ben-
jamini and Schramm [2001]. Since random graphs are essentially graph-valued
random variables, this theory describes a framework to analyse the “limits” of
sparse random graphs, by providing a natural topology to understand conver-
gence. Consequently, any graph parameter that is continuous with respect to
the local topology converges to the graph parameter of the limiting object, akin
to how several functionals of random walks converge to functionals of Brownian
motion in the appropriate topology. Local weak convergence is a remarkable
tool, since in many instances the limit is easier to analyse than the prelimit.
Before looking at formal details, we give a heuristic description:

Consider a uniformly chosen vertex of the random graph, say on, where N
18 the number of vertices. If the graph has no underlying geometry, as is the case
for ERN(+), we say that edges have length one. Fix a positive radius r € Ry, and
from the vertex oy, observe the graph up to the radius r. So, ifr € [0,1), observe
only on and nothing more, if v € [1,2), observe the immediate neighbours of

14
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§1.3. Random Graphs

on, and so on. The local weak limit is in some sense what the graph “looks like”
up to any finite radius r.

We now state the above formally. A rooted graph (G, o) is a graph G with a
specified root 0. Let G* denote the set of locally finite connected rooted graphs
up to equivalence =, where = denotes graph isomorphism. Given r € N, let
[G, 0], denote the finite rooted subgraph obtained from (G, 0) by keeping vertices
that are up to a distance r from o, including edges. We say that a sequence
(Gn,on) Nen converges locally to (G, o) if for each r € N there exists an n, € N

such that for all N > n,., we have
[Gn,on]r =[G, 0]y .
If we define dryy as
drw : (G,0),(G',0) — 1/sup{r e N: [G, 0], =[G, 0]},

then (G*, drw) becomes a complete separable metric space. We can endow this
space with its Borel o—algebra, and consider the complete separable metric
space of probability measures P(G*) on G*.

Definition 1.3.1 (Local weak convergence).

Let (Gn)n>1 denote a sequence of (possibly disconnected) random graphs. If on
is a uniformly chosen vertex (restricted to the connected component of Gy ), then
we say that (Gn,on) converges locally weakly to (G, o) having law L € P(G*)
if, for any bounded and continuous function h : G* — R, we have

E[n(Gn,on)] = Ec[h(G, 0)]

as N — oo, where E is with respect to the law of the random graph and the root
ON.

As an example, consider the graph ERy(p), with p = A/N for a fixed A. This
graph converges locally weakly to a Galton- Watson tree (or a branching process)
with offspring distribution Poi()), that is, a process starting with a single vertex,
giving birth to progeny that are distributed as Poi()), and repeating this for
each offspring.

Local weak convergence provides a powerful framework for the analysis of
graph properties that are local, that is, continuous with respect to the local
topology (see van der Hofstad [2024], Salez [2011]), as well as dynamics on the
graph (see for example Avena et al. [2024] for interacting particle systems, and
Hupkes et al. [2023] for a discussion on PDEs). Later, we will see how local weak
convergence can be related to the spectrum of random graphs via the Stieltjes
transform.

15
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1. Introduction

Inhomogeneous Erdds-Rényi random graphs

ERRG serve as the basis for many mathematical theories in random graphs.
Real-world networks are highly inhomogeneous and have a far more complex
structure. Various attempts have been made to generalise them to other kinds
of random graph models. One of the successful extensions is the inhomogen-
eous Erdés-Rényi random graph model introduced by Bollobas et al. [2007].
This graph has N vertices labelled by [N] = 1,..., N, and edges are present
independently with probability p;; given by p;; = % A1, where f is a sym-
metric kernel on a state space S x S, and z; are certain attributes associated
with vertex i belonging to S. If f is bounded, then the graph is a sparse random
graph. In this thesis, we study a variant of the above inhomogeneous random
graph, namely, the vertex set remains the same, but the connection probabilities

are given by
pij = enf(wi,w;) A1,

where £y is a tuning parameter, (w;) is a sequence of deterministic weights,
and f is a symmetric bounded function on [0,00)2. The weights can signify a
property of vertex i. They can also be taken random, but are not considered to
be so in this thesis for this model. Note that when Ney — 0o, the average degree
is unbounded, and when Ney = O(1), the average degree is bounded. In the
sparse case, the properties of the connected components were studied in Bollobas
et al. [2007|, which focused on the properties of the connected components and
their relationship with the branching process. It was shown that the largest
component of the graph has a size of order N if the operator norm of the kernel
operator corresponding to f is strictly greater than 1 (see also [van der Hofstad,
2024, Theorem 3.9]). In the subcritical case, the sizes of the largest connected
components can exhibit different behaviour compared to the ERRG. The study
of the largest connected components in various inhomogeneous random graphs
has attracted a lot of attention (see, for example, Bhamidi et al. [2010], Broutin
et al. [2021], Bet et al. [2023], van der Hofstad [2013], Devroye and Fraiman
[2014]). We abbreviate the inhomogeneous Erdés-Rényi random graph as IER.

§1.3.2 Kernel-based random graphs

In recent years, many random graph models have been proposed in an attempt
to model real-life networks. These models aim to capture three key properties
that real-world networks exhibit: scale-free nature of the degree distribution,
small-world property, and high clustering coefficients [van der Hofstad, 2024].
It is generally difficult to find random graph models that incorporate all three

16



§1.3. Random Graphs

features. Classical random graph models typically fail to capture scale-freeness,
small-world behaviour, and high clustering simultaneously. For instance, the
Erdés-Rényi model only exhibits the small-world property, while models like
Chung-Lu, Norros-Reittu, and preferential attachment models are scale-free
(Chung and Lu [2002], Barabasi and Albert [1999]) and small-world, but have
clustering coefficients that vanish as the network grows. In contrast, regular
lattices have high clustering but large typical distances. The Watts-Strogatz
model (Watts and Strogatz [1998]) was an early attempt to create a network
with high clustering and small-world features, but it does not produce scale-free
degree distributions.

Scale-free percolation, introduced in Deijfen et al. [2013], blends ideas from
long-range percolation (see e.g. Berger [2002]) with inhomogeneous random
graphs, such as the Norros—Reittu model. In this framework, vertices are po-
sitioned on Z%, and each vertex z is independently assigned a random weight
Wy. These weights follow a power-law distribution:

P(W > w) = w "V L(w),

where 7 > 1 and L(w) is a slowly varying function at infinity.

Edges between pairs of vertices x and y are added independently, with a
probability that increases with the product of their weights and decreases with
their Fuclidean distance. The edge probability is given by

WoW, )
=1—exp|-A—"L |, 1.2
pe (R .
where A\, & > 0 are model parameters and || - || denotes the Euclidean norm. This

model has been proposed as a suitable representation for certain real-world sys-
tems, such as interbank networks, where both spatial structure and heavy-tailed
connectivity distributions are relevant (Deprez et al. [2015]). Various properties
of the model are now well known, and we refer to the articles by Jorritsma et al.
[2024], Cipriani and Salvi [2024], Cipriani et al. [2025], Heydenreich et al. [2017],
Dalmau and Salvi [2021], van der Hofstad et al. [2024] for further references.
In recent times, there has been a lot of interest in models that have con-
nection probabilities similar to (1.2). Kernel-based spatial random graphs en-
compass a wide variety of classical random graph models where vertices are
embedded in some metric space. In their simplest form (see Jorritsma et al.
[2023] for a more complete exposition) they can be defined as follows: Let V'
be the vertex set of the graph and, sample a collection of weights (W;);cy that
are independent and identically distributed (i.i.d.), serving as marks on the ver-
tices. Conditionally on the weights, two vertices ¢ and j are connected by an
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1. Introduction

undirected edge with probability
P (i< j | Wi, Wj) = s(Ws, Wj)lli — 5|7 A L,

where k is a symmetric kernel, ||i — j|| denotes the distance between vertices i
and j in the underlying metric space and « > 0 is a constant.
Common choices for « include:

Ktriv(wu U) =1, ’istrong(wu 1)) =wVu,

Hprod(w7 'U) =wv, "fpa(u% 'U) = (w v 'U)('UJ A ,U)O'pa_

In the above, ops = a(r —1)/d — 1, where 7 — 1 is the exponent of the tail
distribution of the weights, so that the kernel xp, mimics the form that appears
in preferential attachment models [Jorritsma et al., 2023]. While these models
are well-studied from a random graph perspective, there is minimal literature
on their spectral properties.

§1.4 Random Matrix Theory and Free Probability

§1.4.1 Random Matrices

Random matrices are matrix-valued random variables where each entry of the
matrix is a classical random variable. They are of significant interest, not only
from the point of view of modern probability and statistical physics, but also
because they connect to various areas. First appearing in 1928 in the work
of Wishart (Wishart [1928]) in the context of statistics and multivariate data
analysis, the topic was further researched from a spectral analysis point of view
in the pioneering work of Wigner (Wigner [1955]). There are now several con-
nections with other areas. For instance, a connection with number theory was
established when eigenvalues of certain random matrices were used to model
the distribution of zeroes of the Riemann zeta function (Montgomery [1973]).
There are also connections with dynamical systems, in particular with Pain-
leve’s ordinary differential equations (Tracy and Widom [1994]), as well as with
the Dyson Brownian motion (Dyson [1962]). There are several applications in
numerical linear algebra, computer science, and statistics (see Johnstone [2001],
or the textbook Tropp [2015]).

Quantum mechanics tells us that energy levels of large nuclei correspond
to the eigenvalues of some Hermitian operator. Wigner chose to model this
operator by using Wigner matriz ensembles, wherein he ignored all physical
aspects of the system except symmetry. The reason to do so was the observation
that gaps in energy levels of large nuclei followed similar patterns regardless of
the material chosen. Systems with time-reversal symmetry were modelled by
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§1.4. Random Matrix Theory and Free Probability

using real symmetric random matrices with Gaussian entries, known as the
Gaussian orthogonal ensemble (GOE), and those without were modelled by
using complex Hermitian matrices with complex Gaussian entries, known as
the Gaussian unitary ensemble (GUE).

Spectral analysis of random matrices is a broad subject, with a vast literature
focusing on the distribution of eigenvalues of the matrix, the largest eigenvalue
(or more generally, the k largest eigenvalues for some k € N), and the eigen-
vectors. One of the key statistics that we focus on in this thesis is the empirical
spectral distribution, defined below.

Definition 1.4.1 (Empirical Spectral Distribution).

The empirical measure that assigns mass 1/N to each eigenvalue of random
matriz My is called the Empirical Spectral Distribution (ESD), and is defined
as

ESD(My)(- Z Ox, (-

where \j :== X\;(My) is the i—th eigenvalue of My and, for any x, §,(-) is the
Dirac delta mass at the value x.

Notice that since the eigenvalues are random, ESD(My) is a random measure.
The bulk distribution of eigenvalues refers to the distribution of the non-extremal
eigenvalues of the random matrix. The ESD is a central object of interest in
studying the bulk of the eigenvalue distribution, so it would be heresy not to
ask about its limiting behaviour as N — co. The work of Wigner [1958] showed
that for the GOE and GUE models, as well as for a large class of other random
matrix models, under appropriate scaling of the entries the ESD(M ) converges
weakly almost-surely to a (deterministic) measure pig., where pg. is the semicircle

usc dQZ \/ - 1|x|<2dx

For instance, consider the symmetrlc matrix Ay with entries

law with density

An(ij) L — 1 Ber(ew),
~N(1—pnN)
such that Neny — oo. This is the adjacency matrix of the Erdés-Rényi random
graph ERy(en). It is known that, as N — oo, ESD(Ay) converges to pg. in
probability (see for example Jung and Lee [2018], Tran et al. [2013]). The fact
that different empirical distributions converge to the same limit sparked the idea
of universality, and we will later see how g is a universal limit in this area.
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Size=2000 size=2000

(a) GOE ensemble, with entries distributed  (b) Symmetric and centred Bernoulli matriz,
as N(0,1). with entries distributed as Ber(0.5) — 0.5.

ize=2000

A f=
o Lo e .
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(c) Symmetric and centred Poisson matriz,
with entries distributed as Poi(1) — 1.

Figure 1.3: Figenvalue distributions of some random matriz models.

The above has been generalised beyond the original Wigner matrices. In
particular, some works consider matrix entries that are not i.i.d. and have a
variance profile that is not constant. The study of the bulk blends flavours
from various areas of mathematics. In favourable scenarios, the problem can
be analysed within the framework of universality classes. Typically, in these
cases, the matrix may have entries drawn from any distribution, but one can
implement Gaussianisation, that is, replace them with Gaussian entries with
the same mean and variance profile, without affecting the ESD too much (in
probability). This technique follows ideas of Chatterjee [2005].

Of course, it would be naive to assume that every random matrix model
can be Gaussianised. There are numerous concrete examples, particularly in
random graph theory, where this step fails. In such cases, one falls back on ex-
plicitly working with the ESD. One approach is through the method of moments
(see Bordenave [2019]), which computes the moments of the ESD and find the
limiting moments. By the spectral theorem, for any random matrix My,

/g; ESD(My)(d Z)\k —T (M%)
R

The “standard procedure” is to begin by computing expected moments and see
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§1.4. Random Matrix Theory and Free Probability

if they concentrate, that is, the target is to show that

lim [ z"ESD(My)(dz) = M, in P—probability,
N—oco JRp
where PP is the underlying law of the matrix entries. To guarantee the existence
of a limiting measure, we have to check if the moments satisfy one of Carleman’s
conditions, that is, the moments uniquely determine a limiting measure if

Z Mz—kl/Zk =00, or equivalently, limsup Mgllé% < 00.
k>0 k—oo

This approach has a strong combinatorial flavour due to computation of the com-
binatorial expression E[tr(MX;)], where tr := N~ Tr is the normalised trace.
Naturally, there are examples where the moments do not exist, and this approach
then fails. This brings us to another classical approach, namely, the Stieltjes
transform approach, where one translates the measure-theoretic problem into
an analytic problem on the upper-half complex plane C* := {z € C: §(z) > 0}
(see Bordenave [2019], Mingo and Speicher [2017], Anderson et al. [2010]).

For any complex number z € CT, we define the resolvent of a random matrix
My as

Ry (2) = (My — z1y) 7",

where Iy is the N x N identity matrix. For any measure p and z € CT, its
Stieltjes transform is defined as

S, (2) ::/R L da).

So, we have that

N
Sespny) (2) = [ 2~ BSD(My)(da) = 5 3 7 = tr(Ruey (2).

where tr := N~!Tr is the normalised trace operator. The Stieltjes transform
allows us to work with analytic tools from complex analysis and functional ana-
lysis to deduce properties of the measure itself. For instance, if the Stieltjes
transform is uniformly bounded (in z), then the measure has an absolutely con-
tinuous component (Sen and Virag [2011]). In some cases, we can also derive the
exact density of the measure from its Stieltjes transform by using an inversion
formula (Bai and Silverstein [2010]). Notable works show that one can bound the
distance between two measures in terms of the distance between their respect-
ive Stieltjes transforms (Bai and Silverstein [2010], Augeri [2025]). In particular
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Augeri [2025] defines a distance dg compatible with the weak topology on the
space P(R) of probability measures on the real line as follows:

ds(p,v) == sup{|Su(z) = Su(2)| : §(2) > 2,2 € CT}, p,vePR).

5}
~
S
~
)
~
(@)
Py
4]
==
()

If dir,(+,-) denotes the Kolmogorov-Smirnov distance and WP(-, -) the LP-Wasserstein
distance for any p > 1, then

ds(p,v) < dr(p,v) A\WP(p,v),  pov € P(R).

If a measure p is compactly supported in [—R, R] for some R > 0 with moments
{Mj}r>1, then the Stieltjes transform can be related to the moments as:
My,

S,U«(Z) = - k1 (13)
k>0

where the Laurent series on the right-hand size converges when |z| > R.

§1.4.2 An illustration

Let us next see a heuristic for the two methods of analysis. We begin with the
moment method, following ideas from Speicher [2024].

Consider an i.i.d. sequence {G;; : N >4 > j} of random variables distrib-
uted as N~1/2N(0,1), where N(0,1) is the standard Gaussian random variable
with mean 0 and variance 1. Take an N x N Wigner matrix G, with entries
G(7,7) = Gipj,ivj, where G;; = 0. By trace expansion, we have

N
]E[tr(Gk)]:NllJrk N E[G(ir,i2)Giz, i3) . .. Glix, 1))
2 iy eip=1

To compute this sum, we use the following well-known result (see for example
Speicher [2024]).

Lemma 1.4.2 (Wick’s formula).
Let (X1,...,X,) be a real Gaussian vector and Pa(k) the set of pair partitions
of [k]. Then, for any 1 <k <mn,

ElX;, - Xy )= Y]] EX:,X.], (1.4)

n€P2(k) (r,s)eT

where (r,s) € 7 indicates a pair (r,s) that is in the pair partition 7.

22



§1.4. Random Matrix Theory and Free Probability

This expression already tells us that the odd moments are identically zero, since
one cannot construct pair partitions for a tuple [k] if k£ is odd. So, we only need
to compute the even moments. Thus, for any k£ € N, we have

N
Er(G)] = e > >0 1] ElGGnire)Glis, isi)]

11,0yl =1 TEP2(2k) (r,5)ET

1
= N Z Z H (irsir1)=(issis+1) *

i1,yi2k=1 TE€P2(2k) (r,s)E™

While there are two cases where the indicator is in force, namely i, = i5 or
i = is11, it turns out that the latter is the contributing factor in the limit.
yr(r), Where v = (1,2,...,2k) is the
shift by 1 modulo 2k permutation and, for any partition w, 7 is read as a

In particular, we get iy = ir)q1 = @

composition of two permutations by reading 7 as a permutation. Thus, we have
that i := {i1,...,%2,} is constant on the cycles of ymw. We skip some technical
steps, which involve the interchange of summands, and obtain the expression

[tr(GQk Z N#™
7r€772(2k)

where #~y7m is the number of blocks in vm, and ~ means asymptotic. The
contributing partitions are the non-crossing pair partitions NCo(2k), where we
have that, for any m € NC2(2k), #ym = k + 1, and, for m € P2(2k) \ NC2(2k),
#vym < k. Figure 1.4 illustrates some partitions of {1, 2, 3,4}, with m; and 75 as
non-crossing pair partitions. This combinatorial approach yields that, for any
even moments, we have

lim E[tr(G%*)] = |[NCy(2k)| = Cy,
N—oo
where C}, is the k—th Catalan number defined as
1 2k
Cr = < k ) '

The Catalan numbers are the even moments of the semicircle law g, which
also has odd moments identically 0.

Let us proceed with the Stieltjes transform method. We begin by fixing z € C*.
Let pse be the limiting measure of the ESD of G, which we a priori know is the

semicircular law. To derive a recursive expression for S, (z), one can use the
moment relation (1.3), along with the following relation for Catalan numbers:

k
Cr1 = Z CiCr—;
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C
.
5

(a) m (b) T2 (c) s
Figure 1.4: Pair partitions of {1,2,3,4}.

for any k € N. Manipulating the terms, we get

1

EEmel )

Suee(2) =
which is the unique analytic equation that characterises us. (Bai and Silverstein
[2010]). It is known that pointwise convergence of Stieltjes transforms (in z)
implies weak convergence of measures (and vice versa). To that end, we analyse
the resolvent matrix.

Let ri; := Rg(2)(i, ). It is well-known that r;; € C* for all ¢, j € [N] (Bai
and Silverstein [2010]). One approach to prove that Sggp(g)(2) converges to
Sy (2) for each z € C* would be to use the resolvent identities (see Bordenave
[2019]). However, there is a different approach that is used later on in the thesis.
For any z € C*, the following is a fact from complex analysis:

o
z:é/ e " dt.
0
So, we have for any k € [N]
o0 ey —1
Tkl = i/ e ke dt.
0

From Bordenave [2019], we use the Schur complement formula, which gives us

1
r - — = B B 3

where 7;; is the (4, j)—th entry of the matrix Rgw (2) := (G®) — 21)~1, and
G®) is the matrix G with the k—th row and column deleted. We will not spell
out details here, but rather give a heuristic of what the computation looks like.
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§1.4. Random Matrix Theory and Free Probability

Namely,
E[rgi] = (E [/OO Qit7 it X joer Tis G R) G k) dt}
0

o | [ itz it SN, Gk
%LE/ eFe!t 2k TIITRT q ¢
0

N

- L/"O e exp { GtE | Y r Gl k)| 8 dt
0 j#k
. o ; = — 1
~ /0 exp{it(z + Eltr(Ra(2))} dt = = ——prrm o

where each approximation requires justification, and becomes an equality in the
limit N — co. Summing over ¢ on both sides, scaling by N and taking the limit
N — oo gives us (1.5) by the relation between the Stieltjes transform and the
matrix resolvent. Using this approach has some advantages, particularly when
dealing with random matrices with heavy-tailed entries (Benaych-Georges et al.
[2014]).

Note that in both approaches, we only illustrate the convergence of the
expected empirical measure. However, there are concentration results in both
approaches that yield convergence in probability or almost surely (Bordenave
[2019], Speicher [2024]).

Both approaches offer new insights into the problem as well as establish
mysterious connections with numerous other areas, making random matrix the-
ory an ideal playground for modern mathematics. The analytic approach has
opened up the area of understanding local weak convergence, and many open
problems were resolved in the last few years (see Erdds and Yau [2017] for more
details).

§1.4.3 Free Probability

Consider two random variables X1 and Xo, where X1 takes values —1 or 1 with
probability %, and Xo takes values 0 or 1 independently with probabilities % and
%, respectively. Then, the distribution of the random variable Y = X1 X5 is the

same as that off/ = Xo X1, and we write X1 Xo 4 X9 X1. Indeed, the probability
that X1 X9 takes a value, for example 1, is the same as the probability that Xo X1
1.2 1

takes that value, which in our example is 5 X § = 5. We say that X1 and X»

commute. We ask out of curiosity:

Are there instances when X1 and Xo do not commute? For instance, what if
X1 and X5 are not real-valued, but are matriz-valued?
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1. Introduction

Classical probability studies random variables that commute, and a crucial
concept in classical probability is that of independence: The outcome of X
does not affect X9 and vice-versa. How do we abstract to a non-commutative
setting? Does the concept of independence extend as well?

In the 1980s, the concept of freeness, or free independence, was studied by
Dan Voiculescu in the context of operator algebras (Voiculescu [1985]). The
generalisation of classic random variables to a non-commutative setting was
through this very notion, which is a non-commutative analogue of (classical)
independence. The combinatorial aspects are summarised in the classical text
by Nica and Speicher [2006]. We now begin with some technical definitions.

Definition 1.4.3 (Non-commutative probability space).
A non-commutative probability space (A, y) consists of a unital (associative)
algebra A over C equipped with a linear functional ¢ : A — C such that (1) = 1.

Let us fix an index set I. Elements of the space (A, ) are called non-commutative
random variables, and for any a € A, {¢(a")}nen are the moments of a. The
joint distribution of aq,...,ar € A for any k € N is the collection of mixed
moments p(a;,, ..., a;,) for each ¢ € N and 41, ...,is € [k].

Definition 1.4.4 (Freeness).
Let (Aj)ier be the unital subalgebras of A. These are said to be free if, for any
keN, ¢(ay...ar) =0 whenever:

e Foraj € A;; withij € I, p(a;) =0 for all j € [k];
® iy F g, iy F 13, .., 051 F 11

Recall that in classical probability theory, one studies random variables over
a (classical) probability space of the form (€2, F,P). The generalisation to the
non-commutative setting deviates from the notion of an underlying event space
and law, and is instead developed over the notion of a non-commutative algebra
of random variables and their “expectations”. In fact, the functional ¢ is the
non-commutative analogue of the classical notion of expectation. Similar to
how classical random variables (X;);er € (2, F,P) are said to be independent if
the sigma-fields (F;);cs generated by them are independent, we say that random
variables (a;);cr € (A, ¢) are said to be free if their generated unital subalgebras
(A;)ier are free. This abstraction allows one to study a larger variety of objects,
such as random matrices or random operators, as well as objects in other areas,
notably in quantum mechanics.

Recovering classical probability is fairly straightforward, and we illustrate it
for bounded random variables as follows: Let (€2, F,P) be a classical probability
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§1.4. Random Matrix Theory and Free Probability

space. Set A := L>°(Q,P) as the unital algebra of bounded measurable functions
(“random variables”) X : Q@ — C, and set ¢ to be the unital linear functional on
A as the “expectation” with respect to P, that is,

o(X):=E[X], XeA.

Note that (1) corresponds to P(2) = 1.

Voiculescu, in Voiculescu [1985], studied the notion of freeness in the context
of Von-Neumann algebras (also called W*—algebras). In particular, if G is
group, then saying that its subgroups (G;)ics are free is equivalent to saying
that the subalgebras (CG;);es are free in the space (CG, ¢g) (Speicher [2011,
Proposition 1.3|), where CG is the group algebra of G and ¢g : CG — C
is a unital functional. Certain x—algebras, in particular C*—algebras, are of
particular interest.

Definition 1.4.5 (C*—algebras).

A C*—algebra is a Banach algebra A over C such that it is a *—algebra pos-
sessing the involution * : A — A satisfying ||vx*|| = ||x||* for each x € A.

Any C*—algebra is isomorphic to a C*—subalgebra of B(H), the space of bounded
linear operators on H, for some Hilbert space H.

Definition 1.4.6 (W*—algebras).

A W*—algebra, or a von Neumann algebra A C B(H), is a C*—algebra that is
closed under the weak operator topology, that is, if any net A, € A converges to
A € B(H) in the weak operator topology, then A € A.

The respective non-commutative probability spaces are called a C*—probability
space and a W*-probability space.

Definition 1.4.7 (Tracial, state, and faithful functionals).

Let (A, ) be a C*—probability space.

o Ifp(a*a) >0 for all a € A, then ¢ is a state.
o We say ¢ is tracial if p(ab) = @(ba) for all a,b € A.
o We say ¢ is faithful if for all a € A, p(a*a) =0 implies a = 0.

Naturally, one would wonder if there are universality results in free probability,
as is the case for classical probability. In particular, a natural question would be
regarding a generalisation of the classical Central Limit Theorem, where sums of
independent and identically distributed (i.i.d.) centred random variables having
a finite variance converge to the standard normal distribution under appropriate
scaling. In free probability, such a result does exist, but the limiting law is
not the normal distribution; rather, it is the non-commutative analogue of the
normal distribution (see Speicher [2011]).
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1. Introduction

Theorem 1.4.8 (Free Central Limit Theorem).
Let (A, p) be a non-commutative probability space and let (a;)icr € A be a
family of free random variables such that ¢(a;) = 0 and ¢(a?) = 1 for each
i € I. Further, assume that (a;);cy are identically distributed, in the sense that
p(aj) = ¢(aj) for any r € N and all i,j € I. Then, if S, = o ai, then, for
any k € N,

lim p(n~H/25%) = (s").

n—oo

where s is the semicircle variable, or the semicircle element, with

0, k is odd,
p(sh) = {

Cp = — (Zm), k = 2m for some m € N.

m+1\m

In the literature, the limiting law is called the semicircle law, or the Wigner
semicircle law, named after the theoretical physicist Eugene Wigner, whose
pioneering work in the 1950s on the study of eigenvalue statistics of random
matrices led to the foundation of random matrix theory.

Connections between random matrices and free probability were established
in 1991 in the seminal work of Voiculescu (Voiculescu [1991]), where it was
shown that random matrix models exhibit asymptotic freeness. This allows one
to exploit tools from free probability to analyse various random matrix problems.

For any N € N, a *—probability space of random N x N matrices is just
(M (L~ (,P)), tr QE), where (2,P) is a classical probability space, and

L (Q,P):= (] L(QP),

1<p<oo

and for any complex algebra A, My(A) = My(C) ® A is the space of N x N
matrices with entries drawn from 4. Moreover, E is the expectation with respect
to the law P. Recall that, for any (random) matrix My, we have

N N
TI‘(MN) = ZMN(i,i) = Z)\Z(MN) y
i=1 i=1

where (\i(My))Y, are the eigenvalues of My. The following result, which is
an extension of the original work by Voiculescu, shows asymptotic freeness of
Gaussian ensembles and deterministic matrices (see Speicher {2011, Theorem
6.14]).

Theorem 1.4.9 (Asymptotic freeness in matrix ensembles).
Fort e Nand N € N, let GV, ..., G® be t independent Nx N Gaussian unitary
ensembles GUE(N). Let Xy € Mn(C) be a deterministic N x N matriz such
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that supy || Xn|| < C for some C > 0 (where ||.|| denotes the Hilbert-Schmidt
norm) and Xy 2 in the space (A, p), that is,

lim tr(X%) = o(z)

N—o0

for each k € N. Then
(GO GO XN D (51, ),

where s1,...,8: are semicircle elements in (A, @) and s1,..., S, x are free, that
is, for allm € N, ¢ : m — Ny, and p : [m] — [t],

lim E [tr (G(p(l))X?\;I) .. G(p(m))X]qV(m)ﬂ = (sgp(l))xqu) .. sip(m))xq(m)) )

N—o0

The above theorem shows that ({G®}1<;<;, Xx) are asymptotically free, allow-
ing us to conclude results about sums and products of random matrices.

The remaining technical details are quoted from Anderson et al. [2010],
Hazra and Maulik [2013].

Definition 1.4.10 (Affiliated operators).
A self-adjoint operator X is said to be affiliated to a W*—algebra A, if f(X) € A
for an bounded Borel function f on R.

We call self-adjoint operators associated to A random elements of A. For any
affiliated random element X, the algebra generated by X is defined as Ay :=
{f(X) : f bounded measurable}. Naturally, X;, Xo € A are free if Ax,, Ax,
are free, as in the following definition.

Definition 1.4.11 (Free operators).

Self-adjoint operators (X;)icr affiliated with a W*—algebra A are said to be free
if and only if the algebras generated by {f(X;) : f bounded measurable};cr are
free.

Definition 1.4.12 (Law of an operator).

For a self-adjoint operator (or a random element) X affiliated to a W*—algebra
A, and the probability space (A, @), the law of X is the unique probability meas-
ure ux on R satisfying

o(F(X)) = /R F(Oux(da)

for every bounded Borel function f on R.
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If A is the projection-valued spectral measure associated with X (which is guar-
anteed by the spectral theorem), with A4 denoting the measure evaluated at a
set A, then

,LL)((—OO, .@] = 90(‘/\(—00,;10} (X)) :
The following is quoted from Anderson et al. [2010, Proposition 5.3.34].

Proposition 1.4.13.

Let pu1, ..., pup be probability measures on R. Then there exists a W*—probability
space (A, @) with ¢ a normal faithful tracial state, and self-adjoint operators
(Xi)i<i<p affiliated with A, with laws (11;)1<i<p that are free.

From Anderson et al. [2010, Property 5.3.34, Corollary 5.3.35], one can always
construct a Hilbert space H, a tracial state ¢, and two free variables X; and
X, with laws p; and pug, respectively, affiliated with the space B(H) of bounded
linear operators on H. Then, free additive convolution of uy and ps, denoted as
w1 B g, is the law of X1 + Xo. Additionally, if either X; or X5 is non-negative,
then the free multiplicative convolution p1Xus is the law of X1 X5. The extension
of free convolutions to unbounded measures can be done in the context of finite
von Neumann algebras. Assume that A is a finite von Neumann algebra with a
normal faithful tracial state ¢, that is, (A, ¢) is a tracial W*-probability space
and A is acting on a Hilbert space H. A closed, densely defined operator T on
H is affiliated with A if its polar decomposition T'= uX has the property that
u € A and X is affiliated with A. Let A denote the set of all operators on H
that are affiliated with A. Then, A is an algebra, that is, if X,Y € A, then
X 4+Y and XY are densely defined, closable, and their closures are in A. See
Bercovici and Voiculescu [1993] for further details.

§1.5 Spectral approach to random graphs

Spectral analysis of random graph models studies the limiting spectral distribu-
tion of the associated random matrices. The analysis follows a similar structure
as in random matrix theory, where we begin with the ESD of the matrix of the
finite graph and study its behaviour asymptotically as the size tends to infinity.

Results on the bulk distribution in random matrix theory and spectral the-
ory of random graphs are CLT-type, that is, they have the same flavour as the
free central limit theorem. In particular, if My is some Hermitian random
matrix with entries having law P, which could also be an adjacency or a Lapla-
cian matrix, then the main question is as follows: Does there exist a (possibly
random) measure o such that

ESD (NIN—E[NIN]> X 1 ?

CN
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Here, x denotes that this convergence could be (weakly, in the measure-theoretic
sense) in distribution, in P—probability, or P—almost surely, and ¢y is a scaling
that is of the order of the variance of the entries, given by

N
ey = E[Tr(M)] = Y E[Mn(i, 5)*].
i,j=1

For random graph models, this scaling also turns out to be the expected degree
of a uniformly chosen vertex.

§1.5.1 Revisiting the Erdds-Rényi random graph

In the case of the homogeneous ERRG(V, ), it is known that in the dense case
the empirical distribution converges to the semicircle law after an appropriate
scaling (Jung and Lee [2018], Tran et al. [2013]). The Laplacian spectrum for
the dense case was studied in Ding and Jiang [2010], Jiang [2012].

In the sparse case, the spectra converge to limiting measures that depend
on the parameter A := limy_, o, Ney. The behaviour is much more complicated
in this setting. Various interesting properties for spectra of the adjacency mat-
rix were predicted by Bauer and Golinelli [2001]. The existence of the limiting
distribution was proved by Khorunzhy et al. [2004], who study both the adja-
cency and the Laplacian matrices, and also show some interesting properties of
the moments and the limiting Stieltjes transform. The local geometric beha-
viour of sparse random graphs can be studied using the theory of local weak
convergence (LWC), which builds on the works Aldous and Lyons [2007] and
Benjamini and Schramm [2001]. LWC describes how a graph looks like around
a uniformly chosen vertex in the limit as the size of the graph tends to infin-
ity. For a detailed review of LWC and various other applications, see van der
Hofstad [2024]. In a remarkable work by Bordenave and Lelarge [2010], where
the authors study the adjacency and the Laplacian matrices, it was proved that
if a graph with N vertices converges locally weakly to a Galton-Watson tree,
then the Stieltjes transform of the empirical spectral distribution converges in
L' to the Stieltjes transform of the spectral measure of the tree, and satisfies
a recursive distributional equation. The example of a homogeneous ERRG was
treated in [Bordenave and Lelarge, 2010, Example 2].

The limiting measure of the adjacency matrix of the sparse ERRG depends
on A and is still very non-explicit. It was proved by Bordenave et al. [2017],
Arras and Bordenave [2023| that the measure has an absolutely continuous
component if and only if A > 1. The size of the atom at the origin was computed
by Bordenave et al. [2011], and the nature of the atomic part of the measure
was studied in Salez [2020], where it was shown that the set of atoms is dense
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when A < 1, and is linked with a countable dense ring A of totally real algebraic
integers. The study of so-called extended states at the origin was initiated in
Coste and Salez [2021], and it was shown that for A < e there were no extended
states, while for A > e, there are extended states.

All these results were conjectured in Bauer and Golinelli [2001]. Most results
on local limits show that properties are generally true for unimodular Galton-
Watson trees. In the simulations of Bauer and Golinelli [2001], it is clear that
when A is slightly larger than 1, the limiting measure already starts taking the
shape of the semicircle law. It was shown in Jung and Lee [2018] that, indeed,
if A — oo, then the limiting measure converges to the semicircle law. Some key
questions still remain open for the sparse ERRG, such as the following:

e What are the explicit moments of p)?

e How “close” is the measure u) to ps.? Is there a way to quantify the
distance between the two measures?

§1.5.2 Local weak convergence

The seminal work of Bordenave and Lelarge [2010] characterises the limiting
spectral distribution for locally tree-like graphs. In particular, consider A
and Ay to be the scaled adjacency and Laplacian matrices, respectively, of a
random graph model Gy, such that the following hold:

e The sequence of random graphs {Gy}y>;1 has a weak limit G.

e For a uniformly chosen root oy € Gy, the degree sequence of the rooted
graph (deg(Gy,on))n>1 is uniformly integrable.

e Let G* denote the set of rooted isomorphism classes of rooted connected
locally finite graphs, and let Us(G) be the distribution on G* x G* of the
pair of rooted graphs ((G, 01), (G, 02)), where 01, 02 are uniformly chosen
roots of G. Then, Us(Gy) converges weakly to G ® G, that is, to two
independent and identical copies of G.

Under the above conditions, there exists unique probability measures ) and vy
on R such that limy_,o ESD(AN) = py and limy oo ESD(Ay) = vy weakly
in probability. Furthermore, if Gy is the graph ERy(en), and Ag, is the
adjacency matrix of the graph, then Ay := /\*1/2AGN, and the measure )
represents the expected spectral measure associated with the root of a Galton-
Watson tree with offspring distribution Poi()\) and weights 1/v/X. This result
comes from the theory of local weak convergence (see Benjamini and Schramm
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[2001], van der Hofstad [2024]), which is a powerful tool to study spectral meas-
ures associated with many sparse random graph models.

In particular, consider the adjacency matrix (though a similar result holds
for the Laplacian matrix). Consider the space H of holomorphic functions f :
C* — CT, equipped with the topology induced by uniform convergence on
compact sets. Then, H is a complete separable metrizable compact space. The
resolvent of the adjacency matrix is given as

Ray(2) = (Ay — 2I)"!

for each z € C*. The map z — Ra (2)(i,4) is in H, and the Stieltjes transform
of ESD(Ay) is given by trRa,(2), where tr = N~!Tr denotes the norm-
alised trace operator. Let G* denote the set of rooted isomorphism classes of
rooted connected locally finite graphs. Assume that the random graph sequence
(GN)n>1 has the random local limit G € G*, and assume further that G is a
Galton-Watson Tree with degree distribution F}, that is, a rooted random tree
obtained from a Galton-Watson process with root having offspring distribution
F, and all children having a distribution F' (which may or may not be the same
as F).

Let Sa  (2) denote the Stieltjes transform of the empirical measure ESD(A ).

It was shown in [Bordenave and Lelarge, 2010, Theorem 2| that there exists a
unique probability measure Q on H such that, for each z € CT,

p -1
Y(z) < (z +3° n(z)>
=1

where P has distribution F' and Y, {Y;};>1 are i.i.d. with law @) and independent
of P. Moreover,

lim Sa,(z) =EX(z)in L',

N—o0

where X (z) is such that:

where {Y;};>1 are i.i.d. copies with law @, and P, is a random variable inde-
pendent of {Y;};>1 having distribution F.

The analysis and expressions are similar for Sa  , as illustrated in Bordenave
and Lelarge [2010].

33

Q
=
>
T
-
@
=
S
@




5}
~
S
~
)
+~
(@)
Py
4]
==
()

1. Introduction

§1.5.3 Further literature

Adjacency matrix

In recent years, there has been significant research on inhomogeneous Erdgs—Rényi
random graphs, which can be equivalently modelled by Wigner matrices with a
variance profile. The limiting spectral distribution of the adjacency matrix of
such graphs has been studied in Chakrabarty et al. [2021b]|, Zhu [2020], Bose
et al. [2022], while local eigenvalue statistics have been analysed in Dumitriu
and Zhu [2019], Ajanki et al. [2019]. Zhu and Zhu [2024] studies the fluctu-
ations of the linear eigenvalue statistics for a wide range of such inhomogeneous
graphs. Additionally, various properties of the largest eigenvalue have been in-
vestigated in Cheliotis and Louvaris [2024], Husson [2022], Chakrabarty et al.
[2022], Ducatez et al. [2024], Dionigi et al. [2023]. One of the most significant
properties of the limiting spectral measure for random graphs is its absolute
continuity with respect to the Lebesgue measure, which is closely tied to the
concept of mean quantum percolation [Bordenave et al., 2017, Anantharaman
et al., 2021, Arras and Bordenave, 2023]. Quantum percolation investigates
whether the limiting measure has a non-trivial absolutely continuous spectrum.
Recently, it was shown in Arras and Bordenave [2023] that the adjacency oper-
ator of a supercritical Poisson Galton-Watson tree has a non-trivial absolutely
continuous part when the average degree is sufficiently large. Additionally, Bor-
denave et al. [2017] demonstrated that supercritical bond percolation on Z¢ has
a non-trivial absolutely continuous part for d = 2. These results motivate sim-
ilar questions for kernel-based random graphs and other percolation models. In
Bhamidi et al. [2012] the spectra of the adjacency matrix of random trees are
studied, including the preferential attachment tree. Spectral analysis of weighted
adjacency matrices has also been used in hidden clique problems (see Chatterjee
et al. [2025]).

Laplacian Matrix

Bryc et al. [2006] established that, for large symmetric matrices with i.i.d.
entries, the empirical spectral distribution (ESD) of the corresponding Laplacian
matrix converges to the free convolution of the semicircle law and the standard
Gaussian distribution. In the context of sparse Erdés—Rényi random graphs,
Huang and Landon [2020] studied the local law of the ESD of the Laplacian
matrix. They demonstrated that the Stieltjes transform of the ESD closely ap-
proximates that of the free convolution of the semicircle law and a standard
Gaussian distribution, down to scale N~!. Additionally, they showed that the
gap statistics and averaged correlation functions align with those of the Gaus-
sian Orthogonal Ensemble in the bulk. Ding and Jiang [2010] investigated the
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spectral distributions of adjacency and Laplacian matrices of random graphs,
assuming that the variance of the entries depend only on N. They established
the convergence of the ESD of these matrices under such conditions. The res-
ults for the Erdés-Rényi random graphs were extended to the inhomogeneous
setting by Chakrabarty et al. [2021b]. In a recent work, Chatterjee and Hazra
[2022] derived a combinatorial way to describe the limiting moments for a wide
variety of random matrix models with a variance profile.

§1.6 Outline of the thesis

The three main chapters of this thesis are based on three papers on spectral
properties of inhomogeneous random graph models.

Chapter 2

In Chapter 2, we study the inhomogeneous Erdgs-Rényi random graph model
on NN vertices in the sparse setting, where vertices have deterministic weights
and edges are added between two vertices independently with a probability
that is proportional to a function of their two weights, scaled by a factor of N.
We take the vertex set [N], and consider a sequence of deterministic weights
(w;)¥.,, such that if oy is a uniform random variable on [N], then there exists

a limiting random variable W with law i, such that w,, LW, We add edges
independently with probability

Dij = ENf(w’Mw]) 7i7j € [N]a

where ey is a sparsity parameter such that Ney — A € (0,00), and f is a
bounded continuous function.

We study the scaled adjacency matrix Ay of the random graph, with entries
given by

An.3) = Ax(ii) £ = Ber(py).

In Theorem 2.3.7, we find that there exists a deterministic non-degenerate lim-
iting measure py such that limy_,oo ESD(AN) = p) in probability, and the
moments of uy are given by

0, k is odd,
& k/2+1
/w pa(dz) = > A3 Gy, [, w), K is even,
=2 7eSS(k):
lym|=t

where SS(k) is the set of Simple Symmetric partitions of [k], as in Bose et al.
[2022], G is a graph associated to a partition 7 that is described later, and
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t(-,-,-) is a generalisation of the graph homomorphism density that appears in
graphon theory in Lovész and Szegedy [2006]. We further find that limy_, .o ) =
pf, where iy is the measure in the dense regime that appears in Chakrabarty
et al. [2021b], Zhu [2020], which extends the results of Jung and Lee [2018].

In Theorem 2.3.9, under the assumption that f is Lipschitz in one coordinate,
we show that, in an appropriate Banach space B, there exists a functional ¢} € B
that is the unique solution to a fixed-point equation in B, such that

o o0

Spa(2) =1 [ e M0 [T 0 au pfay), = e,
0 0

where ds(y) = [ f(z,y)pw(dx). This chapter is based on the paper Avena et al.

[2023].

Chapter 3

In Chapter 3, we study a model with spatial geometry. We consider a kernel-

based random graph model on a d—dimensional discrete torus V y, which serves

as the vertex set of the random graph. Each vertex ¢ € V has a random

weight W;, where (W;)icv, are i.i.d. random variables sampled from a Pareto

distribution W (whose law is denoted by P and measure uyy) with parameter

7 — 1, where 7 > 1, that is,

P(W > t) = t_(T_l)l{tZH, + 1{t<1}-

Conditionally on the weights, edges are added independently with probability

. . k(W;, W,
Pij iZPW(“—U)Zg(- -~ ;) A
lli =4l
where || - || is the torus distance, a € (0, d) is a parameter of choice, and & is a

kernel that has the form x(z,y) := (z Vy)(x A y)? for some 0 < 0 < 7 —1, as
in Jorritsma et al. [2023].

We consider the scaled adjacency matrix of this graph, which is a symmetric
random matrix with entries

An(irj) = An(G, i) £ ey Ber(pyj) ,

where ¢y = N'=®. For 7 > 2, Theorems 3.2.1 and 3.2.3 show that there exists
a deterministic non-degenerate limiting measure fi, » with finite second moment
such that
lim ESD(AN) = fto,7, in P—probability,
N—o00

where P = P ® PV is the joint law.
Theorem 3.2.4 shows that p, , is absolutely continuous with respect to the
Lebesgue measure on R. Theorem 3.2.5 shows that, when 7 > 3 and 0 < 7 — 2,
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in an appropriate Banach space B there exists a unique analytic solution a* € B
to a fixed-equation in B, such that

S, = [ @' awda), zech,
1

When o = 1, there is an explicit description of the measure. In particular,
Theorem 3.2.2 tells us that pq » = psc X pyy, with tail asymptotic pg (2, 00) ~
Cr2z727=1) ag z — oo, for some 7—dependent constant C; < co. Here, X is the
free multiplicative convolution of measures. This chapter is based on the paper
Cipriani et al. [2025].

Chapter 4

In Chapter 4, we take the model from Chapter 3 with ¢ = 1 and 7 > 3, that
is, weights with finite variance. This model is called the scale-free percolation
model. We begin with the scaled adjacency A as in Chapter 3, and define the
corresponding Laplacian as Ay = Ay — Dy. We study the centred Laplacian
A% = Ay — E[Ay]. Theorem 4.2.1 shows that there exists a deterministic
limiting measure v, such that

lim ESD(A%) =v; in P—probability .
N—o00

Theorem 4.2.5 identifies v, in terms of the spectral distribution of some non-
commutative operators. Heuristically, v, has (in an operator sense) the law
given by the spectral law of

W2SW2 4 myWAGW A,

where W is an unbounded operator with spectral law given by the Pareto dis-
tribution, S is a bounded compact operator whose spectral law is the semicircle
law, and G is an unbounded operator whose law is given by the Gaussian dis-
tribution. We will see a more formal description of this later on in Chapter 4.
This chapter is based on the paper Hazra and Malhotra [2025].

Chapter 5
In Chapter 5, we show some further simulations of the above models, and con-
clude with a short discussion on open problems.

§1.7 Concluding remarks

The thesis gives a spectral perspective to some inhomogeneous random graph
problems. The results mainly describe properties of the bulk distribution. There
are many other interesting features, and we hope that this thesis will form a
baseline for future research.
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