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CHAPTER 1
Introduction

The broad goal of this thesis is to study the graph spectrum of various inhomo-
geneous random graph models, in particular, to characterise the eigenvalue dis-
tributions of random matrices associated with these random graphs. The first
three chapters cover the graph adjacency matrix, whereas the fourth chapter is
dedicated to the Laplacian matrix.
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ne §1.1 Background

Throughout the history of mathematics, complex challenges have often driven
the evolution of new areas of research. In the 20th century, there were major
developments in several related disciplines, such as in the natural sciences (phys-
ics, chemistry, and biology), as well as in computer science, the social sciences,
and medicine. Consequently, there was increasing interest in analysing data and
describing phenomena observed through experimental methods, which in turn
pushed the boundaries of mathematics. There was a need for precise mathem-
atical frameworks to capture complex phenomena, giving rise to entirely new
branches that are now fundamental in modern mathematics.

Typically, complex systems such as social networks, biological networks, and
atomic nuclei, are difficult to analyse directly, even in the era of supercomputers
and increasingly efficient algorithms. Mathematical models provide a reason-
able approximation of such systems, and are built up over years of research.
They often begin with deceptively simple “toy models”, and are subsequently
generalised to more “realistic models” where the analysis can be challenging.
Naturally, this also gives rise to several interesting questions in mathematics
itself from a more abstract point of view. Moreover, while these branches of
mathematics originate from distinct problems, as is the case for random matrix
theory and random graphs, they cross paths frequently, yet continue to exist as
independent research topics in their own right.

This chapter will serve as a preface to the material that will follow in the rest
of the thesis. We dive into spectral graph theory, a topic that emerged in the
1950s and serves as the backbone of this thesis. We describe graphs and their
matrices, namely the adjacency matrix and the Laplacian matrix, and give a
brief overview of the relation between graph properties and the spectrum of
their associated matrices.

Transitioning to the world of probability, we move on to random graphs,
which were introduced in the mid 20th century. Over the years, a wide range
of systems have been studied as complex networks, in particular biological and
social networks. The explosive growth of these networks in the digital age
and their increasing complexity underscore the need for robust mathematical
models, which led to further development of the subject in the late 20th and
early 21st century. Random graphs are graph-valued probabilistic objects and
are essential in modelling real-world networks. We will present a brief overview
of a toy model and various graph regimes, before proceeding with more general
models.

We proceed with another kind of probabilistic object: a random matrix,
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which is a matrix with random entries. This thesis focuses primarily on the ei-
genvalue distribution of random matrix models, that are associated with random
graph models. It is important to note that although the main motivation comes
from the study of random graph models, the essential tools of the trade come
from random matrix theory, thereby also making the study of the spectrum
relevant from a random matrix perspective.

The above naturally eases us into a more abstract theory of random vari-
ables. Abstraction is a fundamental aspect of mathematics, giving rise to areas
such as free probability where one abstracts the notion of random variables and
moves away from an underlying sample space. Despite this abstraction, a link
with reality remains. Random matrix theory connects with free probability,
and was born out of applications in statistics, operator algebras, and quantum
physics.

With these notions well established, we proceed with a literature overview
of spectral theory for random graphs, in particular for the Erdős-Rényi random
graph. We conclude with an outline of the thesis and technical results that are
used in later chapters, as well as a short discussion and concluding remarks.

§1.2 Spectral Graph Theory

Spectral graph theory is the study of the relation between geometric properties of
graphs and the eigenvalues and eigenvectors of the associated graph matrices.
Motivated by applications in quantum physics and chemistry, the theory is
now used in various areas of mathematics, such as discrete mathematics and
combinatorics, statistics, and probability, while also playing a crucial role in
statistical physics and computer science. There are various references on the
subject. We refer to Chung [1997] for an introduction, and to Spielman [2012]
for a modern approach to the subject.

§1.2.1 Graphs and matrices
Graphs can be defined set-theoretically as a collection of two sets: a vertex set,
and an edge set that indicates connections between the vertices. A self-loop is
an edge from a vertex to itself. Simple graphs are graphs with no self-loops,
and at most one edge between two vertices. Figure 1.1 illustrates a few special
examples. For instance, a tree is a graph with no cycles: there is exactly one
path from any vertex to any other vertex. On the other hand, a clique has
an edge between every vertex. Figure 1.1 showcases simple undirected graphs,
that is, the edges have no orientation (or direction). This thesis does not cover
graphs that are directed, nor does it consider graphs that can have multiple

7
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34

Figure 1.1: Some graphs on 4 vertices. The first three graphs are a tree, a cycle, a
clique respectively.

A graph can be represented through its adjacency matrix. Let G := (V,E) be
the graph, with V being the vertex set and E the edge set. The adjacency
matrix of G is defined as the matrix A with entries

A(i, j) :=

{
1 , if (i, j) ∈ E,
0 , if (i, j) ̸∈ E,

for all i, j ∈ V . For example, the cyclic graph in Figure 1.1 has the representa-
tion G = ({1, 2, 3, 4}, {(1, 2), (2, 3), (3, 4), (1, 4)}). The corresponding adjacency
matrix is

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .

We notice that A is symmetric. In fact, all undirected graphs have symmetric
adjacency matrices, that is, A(i, j) = A(j, i) for all i, j ∈ V . Moreover, A is
zero on the diagonal, since G has no self-loops.

Another important graph matrix is the graph Laplacian. Let D denote the
diagonal matrix with entries

D(i, j) =

{∑
k ̸=i,k∈V A(i, k) , if i = j,

0 , if i ̸= j.

The combinatorial graph Laplacian L is defined as L := A−D. The normalised
Laplacian is defined as L = I−D−1/2AD−1/2, where D−1/2 is the diagonal
matrix defined as

D−1/2(i, i) :=


1√

D(i,i)
if D(i, i) ̸= 0,

0 if D(i, i) = 0.

8
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This thesis only covers the combinatorial graph Laplacian, which henceforth
will be referred to as the Laplacian matrix. Note that if A is symmetric, then
so are the graph Laplacians.

The Laplacian matrix gets its name from the fact that it can be viewed as
the matrix form of the discrete Laplacian operator, which approximates the con-
tinuous Laplacian operator through a finite difference method (LeVeque [2007]).
This can be illustrated by the discrete heat equation as follows: Let ϕ be a
distribution across a graph G = (V,E), with ϕ(i) being the temperature at a
vertex i ∈ V . If (i, j) ∈ E, then the heat transfer between i and j is proportional
to ϕ(i) − ϕ(j). In particular, one obtains a matrix-vector ordinary differential
equation of the form

dϕ

d t
= kLϕ , (1.1)

where L = A−D is the graph Laplacian matrix and k is the thermal conduct-
ivity. This is analogous to the classical heat equation, hence the name “graph
Laplacian”. The solution to (1.1) and its stability properties are obtained by
analysing the eigenvalues of L.

§1.2.2 Spectral theory
Spectral theory traces its origins back to the works of David Hilbert in the early
20th century. He referred to the theory as spectral analysis. The name proved
prophetic: a key result in the field, known as the spectral theorem, was later
found to be useful in explaining atomic spectra in quantum mechanics.

Finite undirected graphs have adjacency (and Laplacian) matrices that are
symmetric, which are diagonalisable and have real eigenvalues. For a finite graph
G on N vertices, the spectrum of its adjacency matrix A (or its Laplacian matrix
L) is the set of eigenvalues of A (or L, respectively). Linear algebra provides
the necessary framework to study the eigenvalues and eigenvectors of graph
matrices. For example, for a clique on N vertices, the spectrum of A is the
eigenvalue N − 1 with multiplicity 1 and the eigenvalue -1 with multiplicity
N −1. The Laplacian, on the other hand, has eigenvalues 0 (once) and N (with
multiplicity N − 1). Another powerful result, the Perron-Frobenius theorem,
states that ifG is connected, then the following is true (Spielman [2012, Theorem
4.5.1]): For the eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λN of the adjacency matrix of G,
we have

• λ1 > λ2, and λ1 ≥ −λN , and

• λ1 has a strictly positive eigenvector.

9
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infinity, and lean on spectral theory for our analysis. A locally finite graph G =

(V,E), that is, a graph where every vertex has finite degree, can be identified
with a linear operator A on the Hilbert space (ℓ2(V ), ⟨·, ·⟩), where ⟨·, ·⟩ is the
canonical inner product ⟨ϕ, ψ⟩ :=

∑
i∈V ψ(i)ϕ(i), and A acts on the canonical

basis (δi)i∈V as
Aδi =

∑
j:(i,j)∈E

δj .

We call the operator A the adjacency operator, and the Laplacian operator is
defined similarly on ℓ2(V ). Note that in the finite-dimensional setting, we get
back the graph matrices, and so we use the same notation for the matrix and
the operator.

For an infinite graph, the spectrum of the adjacency operator is the set

spec(A) = {λ ∈ C : A− λ I is not invertible} ,

and we define spec(L) in a similar fashion. The spectrum of an operator on a
finite-dimensional space is the set of eigenvalues. However, it consists of more
components in the infinite-dimensional setting, and may have no eigenvalues or
no point spectrum. In some instances, for a locally finite undirected graph, the
operators A and L are self-adjoint, and spec(A) and spec(L) are contained in
R.

If A (and L) are self-adjoint operators defined over the Hilbert space ℓ2(V ),
then the spectral theorem guarantees that these operators are in some sense
“diagonalisable”. For example, consider the adjacency A. If A is a self-adjoint
matrix, then the spectral theorem yields a spectral decomposition for A of the
form

A = UΛU∗ ,

where Λ is the diagonal matrix of eigenvalues of A, which are real, and U is a
unitary matrix with columns as the orthonormal eigenvectors of A. If A is a
self-adjoint operator, then we can still have a spectral decomposition in terms
of a spectral measure (Rudin [1991]). The spectral theorem now gives us a
projection-valued measure Λ on the spectrum spec(A) ⊂ R such that

A =

∫
spec(A)

λdΛ(λ) .

This formulation will later allow us to associate a probability measure to a
certain class of “nice” operators.

Let us go back to a finite simple graph G. The largest eigenvalue λ1 of the
adjacency A is bounded above by the maximal degree of G. Additionally, λ1

10
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plays another crucial role in the study of the spread of epidemics on a graph.
Following the ideas of Pastor-Satorras et al. [2015], we consider the following
illustration.

Consider a community with (finite) vertex set V of size N and edge set E.
Individuals are either infected or susceptible. Once an individual recovers, it
becomes susceptible again. Any susceptible individual x ∈ V gets infected at
a rate β, and any infected individual recovers at a rate δ. If px(t) denotes the
probability that x is infected at time t, then,

px(t+∆t) = px(t)(1− δ∆t) + (1− px(t))β∆t
∑
y∈V

A(x, y)py(t) .

Using this reasoning, one can derive an ODE for the dynamics of the spread as

d px(t)

d t
= −δpx(t) + β

∑
y∈V

A(x, y)(1− px(t))py(t) .

To simplify the ODE, we can perform a linearisation trick by taking 1−px(t) ≈ 1.
This step is justified heuristically when the px(t) is small for any x, that is, the
epidemic spread is in the early stage. Let p(t) = (p1(t), . . . , pN (t))T be the
vector of probabilities. We obtain a system of linearised ODEs given by

d p(t)

d t
= (βA− δ)p(t) .

Spectral analysis of the solution tells us that the equilibrium state is stable if

β

δ
<

1

λ1
,

that is, the infection dies out below this threshold. Heuristically, a large λ1
indicates that nodes with many connections aid the spread of the disease.

The adjacency spectra have further applications. For instance, if the graph
G has dmax as the maximal degree and dav as the average degree, and λ1 is
the largest eigenvalue of the adjacency of G, then, by Spielman [2012, Lemma
4.2.1], we have

dav ≤ λ1 ≤ dmax .

If λ1 and λN are the extremal eigenvalues, and if G is connected, then λ1 = −λN
if and only if G is bipartite (Spielman [2012, Proposition 4.5.3]). Moreover, if
α(G) is the chromatic number of a k−regular graph G on N vertices, then

α(G) ≤ −NλN
k − λN

.

11
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results show that eigenvalues of the adjacency matrix can be used to study
various properties of the graph.

The spectrum of the Laplacian can provide further insight into the graph
structure. When the entries of the matrix are not restricted to 0 or 1, the
matrix is also referred to as the Markov matrix (Bryc et al. [2006], Bordenave
et al. [2014]). The graph Laplacian is essential in diffusion theory and network
flow analysis, as it can be seen as the negative of the infinitesimal generator
of a continuous-time random walk associated with a graph, and its spectral
properties are useful in the analysis of mixing times and relaxation times of the
random walk. It has several other key applications. The Kirchhoff Matrix-Tree
Theorem relates the determinant of the Laplacian to the count of spanning
trees in a graph (Chung [1997]), and the multiplicity of the zero eigenvalue
indicates the number of connected components (Chung [1997]). The second-
smallest eigenvalue, known as the Fiedler value or the algebraic connectivity,
measures the graph’s connectivity; higher values signify stronger connectivity
De Abreu [2007].

In modern machine learning, spectral techniques are pivotal in spectral clus-
tering algorithms, where the techniques use the Laplacian eigenvalues and ei-
genvectors for dimensionality reduction before applying algorithms like k-means
clustering (see Abbe et al. [2020], Abbe [2017]). These algorithms are partic-
ularly effective for detecting clusters that are not linearly separable. Recent
advancements integrate spectral clustering with graph neural networks to en-
hance graph pooling operations (Bianchi et al. [2020]). Spectral algorithms
are also crucial for identifying communities within networks by analysing the
spectral properties of the graph (Chung [1997]).

The normalised graph Laplacian, just like the graph Laplacian, is the neg-
ative of the infinitesimal generator of another continuous-time random walk
associated with the graph. It has applications in studying the so-called Cheeger
constant, as well as the diameter of the graph, but we will not be studying this
matrix in this thesis.

§1.3 Random Graphs

How likely is it that you and another individual have a mutual friend? Will a
disease spread in a community rapidly, or will it be restricted to isolated groups?
How does one model social networks? Where are you likely to be if you walk
randomly on the streets of Amsterdam? How likely are oil particles to percolate
through a rock?

12



§1.3. Random Graphs

C
hapter

O
ne

These questions only begin to scratch the surface of random graph theory. Ran-
dom graphs first appeared in the context of sociology in the early 1900s. They
reappeared in the context of mathematical biology, before the pioneering works
of Paul Erdős and Alfred Rényi in 1959, which laid the foundation of the most
elementary random graph model: The Erdős-Rényi random graph (ERRG).
Thereafter, the interest in the topic grew rapidly, fuelled by the boom of com-
puter science and the increasing interest in modelling complex networks.

§1.3.1 Erdős-Rényi random graphs
There are two models typically referred to as the Erdős-Rényi random graph.
The first, introduced in Erdős and Rényi [1959], is a simple graph chosen uni-
formly at random from the set of all graphs on N vertices and m edges, and is
parametrised by the tuple (N,m). The second model, also called the Gilbert-
Erdős-Rényi model, was introduced in Gilbert [1959] as a percolation model on
the complete graph KN on N vertices, where edges are kept with probability p
and discarded with probability 1−p, for some p ∈ [0, 1], and is parametrised by
the tuple (N, p). The two models are quite close. The latter will be the model
used throughout this thesis and will be denoted as ERN (p) and abbreviated
as ERRG. There are various texts on random graphs, and in particular on the
ERRG. We refer to the monographs van der Hofstad [2017], van der Hofstad
[2024] for an exposition of the topic.

In the setting where p := λ/N , the random graph is usually classified into
three regimes:

• Subcritical regime: When λ < 1, the graph consists of small components
that are tree-like. In particular, the graph is a forest, with the size of
the largest component of the order ON,P(logN) (where ON is the Landau
notation, and the additional subscript P indicates the statement holds
with high probability).

• Critical regime: When λ = 1, the graph exhibits a so-called phase trans-
ition. The largest component in the graph is now ON,P(N

2/3). This re-
gime is the most delicate of the three, and we refer to Janson et al. [1993],
Aldous [1997] for further analysis.

• Supercritical regime: When λ > 1, the graph has a unique giant compon-
ent of size ON (N) with high probability, and other components of size
ON (logN). We have a further sub-regime in this regime:

– Connectivity regime: If p ≫ logN
N , then with high probability the

graph is connected, that is, there is only one component.
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Another classification for random graph models is sparsity. In particular,
for this thesis, we say that the graph is sparse when the average degree of the
graph is bounded. On the other hand, we say that the graph is dense if the
average degree grows with N . For ERN (p), we have the following:

• Dense regime: p := εN such that εN → 0 and NεN → ∞. In the
literature, the dense regime is characterised by εN ≡ constant, but this
regime will not be covered in this thesis, and hence we abuse terminology.

• Sparse regime: p := εN such that εN → 0 and NεN → λ ∈ (0,∞).

(a) λ = 0.7. (b) λ = 1. (c) λ = 1.8.

Figure 1.2: Realisations of ERN (p) for three regimes, with p = λ/N , and N = 200.
Simulated on https://www.networkpages.nl.

Local weak convergence
The theory of local weak convergence builds on Aldous and Lyons [2007], Ben-
jamini and Schramm [2001]. Since random graphs are essentially graph-valued
random variables, this theory describes a framework to analyse the “limits” of
sparse random graphs, by providing a natural topology to understand conver-
gence. Consequently, any graph parameter that is continuous with respect to
the local topology converges to the graph parameter of the limiting object, akin
to how several functionals of random walks converge to functionals of Brownian
motion in the appropriate topology. Local weak convergence is a remarkable
tool, since in many instances the limit is easier to analyse than the prelimit.
Before looking at formal details, we give a heuristic description:

Consider a uniformly chosen vertex of the random graph, say oN , where N
is the number of vertices. If the graph has no underlying geometry, as is the case
for ERN (·), we say that edges have length one. Fix a positive radius r ∈ R+, and
from the vertex oN , observe the graph up to the radius r. So, if r ∈ [0, 1), observe
only oN and nothing more, if r ∈ [1, 2), observe the immediate neighbours of

14
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oN , and so on. The local weak limit is in some sense what the graph “looks like”
up to any finite radius r.

We now state the above formally. A rooted graph (G, o) is a graph G with a
specified root o. Let G∗ denote the set of locally finite connected rooted graphs
up to equivalence ≡, where ≡ denotes graph isomorphism. Given r ∈ N, let
[G, o]r denote the finite rooted subgraph obtained from (G, o) by keeping vertices
that are up to a distance r from o, including edges. We say that a sequence
(GN , oN )N∈N converges locally to (G, o) if for each r ∈ N there exists an nr ∈ N
such that for all N > nr, we have

[GN , oN ]r ≡ [G, o]r .

If we define dLW as

dLW : (G, o), (G′, o′) 7→ 1/ sup{r ∈ N : [G, o]r ≡ [G′, o′]r},

then (G∗, dLW ) becomes a complete separable metric space. We can endow this
space with its Borel σ−algebra, and consider the complete separable metric
space of probability measures P(G∗) on G∗.

Definition 1.3.1 (Local weak convergence).
Let (GN )N≥1 denote a sequence of (possibly disconnected) random graphs. If oN
is a uniformly chosen vertex (restricted to the connected component of GN ), then
we say that (GN , oN ) converges locally weakly to (G, o) having law L ∈ P(G∗)
if, for any bounded and continuous function h : G∗ → R, we have

E[h(GN , oN )] → EL[h(G, o)]

as N → ∞, where E is with respect to the law of the random graph and the root
oN .

As an example, consider the graph ERN (p), with p = λ/N for a fixed λ. This
graph converges locally weakly to a Galton-Watson tree (or a branching process)
with offspring distribution Poi(λ), that is, a process starting with a single vertex,
giving birth to progeny that are distributed as Poi(λ), and repeating this for
each offspring.

Local weak convergence provides a powerful framework for the analysis of
graph properties that are local, that is, continuous with respect to the local
topology (see van der Hofstad [2024], Salez [2011]), as well as dynamics on the
graph (see for example Avena et al. [2024] for interacting particle systems, and
Hupkes et al. [2023] for a discussion on PDEs). Later, we will see how local weak
convergence can be related to the spectrum of random graphs via the Stieltjes
transform.
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Inhomogeneous Erdős-Rényi random graphs
ERRG serve as the basis for many mathematical theories in random graphs.
Real-world networks are highly inhomogeneous and have a far more complex
structure. Various attempts have been made to generalise them to other kinds
of random graph models. One of the successful extensions is the inhomogen-
eous Erdős-Rényi random graph model introduced by Bollobás et al. [2007].
This graph has N vertices labelled by [N ] = 1, ..., N , and edges are present
independently with probability pij given by pij =

f(xi,xj)
N ∧ 1, where f is a sym-

metric kernel on a state space S × S, and xi are certain attributes associated
with vertex i belonging to S. If f is bounded, then the graph is a sparse random
graph. In this thesis, we study a variant of the above inhomogeneous random
graph, namely, the vertex set remains the same, but the connection probabilities
are given by

pij = εNf(wi, wj) ∧ 1 ,

where εN is a tuning parameter, (wi) is a sequence of deterministic weights,
and f is a symmetric bounded function on [0,∞)2. The weights can signify a
property of vertex i. They can also be taken random, but are not considered to
be so in this thesis for this model. Note that whenNεN → ∞, the average degree
is unbounded, and when NεN = O(1), the average degree is bounded. In the
sparse case, the properties of the connected components were studied in Bollobás
et al. [2007], which focused on the properties of the connected components and
their relationship with the branching process. It was shown that the largest
component of the graph has a size of order N if the operator norm of the kernel
operator corresponding to f is strictly greater than 1 (see also [van der Hofstad,
2024, Theorem 3.9]). In the subcritical case, the sizes of the largest connected
components can exhibit different behaviour compared to the ERRG. The study
of the largest connected components in various inhomogeneous random graphs
has attracted a lot of attention (see, for example, Bhamidi et al. [2010], Broutin
et al. [2021], Bet et al. [2023], van der Hofstad [2013], Devroye and Fraiman
[2014]). We abbreviate the inhomogeneous Erdős-Rényi random graph as IER.

§1.3.2 Kernel-based random graphs
In recent years, many random graph models have been proposed in an attempt
to model real-life networks. These models aim to capture three key properties
that real-world networks exhibit: scale-free nature of the degree distribution,
small-world property, and high clustering coefficients [van der Hofstad, 2024].
It is generally difficult to find random graph models that incorporate all three
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features. Classical random graph models typically fail to capture scale-freeness,
small-world behaviour, and high clustering simultaneously. For instance, the
Erdős-Rényi model only exhibits the small-world property, while models like
Chung-Lu, Norros-Reittu, and preferential attachment models are scale-free
(Chung and Lu [2002], Barabási and Albert [1999]) and small-world, but have
clustering coefficients that vanish as the network grows. In contrast, regular
lattices have high clustering but large typical distances. The Watts-Strogatz
model (Watts and Strogatz [1998]) was an early attempt to create a network
with high clustering and small-world features, but it does not produce scale-free
degree distributions.

Scale-free percolation, introduced in Deijfen et al. [2013], blends ideas from
long-range percolation (see e.g. Berger [2002]) with inhomogeneous random
graphs, such as the Norros–Reittu model. In this framework, vertices are po-
sitioned on Zd, and each vertex x is independently assigned a random weight
Wx. These weights follow a power-law distribution:

P(W > w) = w−(τ−1)L(w),

where τ > 1 and L(w) is a slowly varying function at infinity.
Edges between pairs of vertices x and y are added independently, with a

probability that increases with the product of their weights and decreases with
their Euclidean distance. The edge probability is given by

pxy = 1− exp

(
−λ WxWy

∥x− y∥α

)
, (1.2)

where λ, α > 0 are model parameters and ∥·∥ denotes the Euclidean norm. This
model has been proposed as a suitable representation for certain real-world sys-
tems, such as interbank networks, where both spatial structure and heavy-tailed
connectivity distributions are relevant (Deprez et al. [2015]). Various properties
of the model are now well known, and we refer to the articles by Jorritsma et al.
[2024], Cipriani and Salvi [2024], Cipriani et al. [2025], Heydenreich et al. [2017],
Dalmau and Salvi [2021], van der Hofstad et al. [2024] for further references.

In recent times, there has been a lot of interest in models that have con-
nection probabilities similar to (1.2). Kernel-based spatial random graphs en-
compass a wide variety of classical random graph models where vertices are
embedded in some metric space. In their simplest form (see Jorritsma et al.
[2023] for a more complete exposition) they can be defined as follows: Let V
be the vertex set of the graph and, sample a collection of weights (Wi)i∈V that
are independent and identically distributed (i.i.d.), serving as marks on the ver-
tices. Conditionally on the weights, two vertices i and j are connected by an
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P (i↔ j |Wi,Wj) = κ(Wi,Wj)∥i− j∥−α ∧ 1 ,

where κ is a symmetric kernel, ∥i − j∥ denotes the distance between vertices i
and j in the underlying metric space and α > 0 is a constant.

Common choices for κ include:

κtriv(w, v) ≡ 1, κstrong(w, v) = w ∨ v,
κprod(w, v) = w v, κpa(w, v) = (w ∨ v)(w ∧ v)σpa .

In the above, σpa = α(τ − 1)/d − 1, where τ − 1 is the exponent of the tail
distribution of the weights, so that the kernel κpa mimics the form that appears
in preferential attachment models [Jorritsma et al., 2023]. While these models
are well-studied from a random graph perspective, there is minimal literature
on their spectral properties.

§1.4 Random Matrix Theory and Free Probability

§1.4.1 Random Matrices
Random matrices are matrix-valued random variables where each entry of the
matrix is a classical random variable. They are of significant interest, not only
from the point of view of modern probability and statistical physics, but also
because they connect to various areas. First appearing in 1928 in the work
of Wishart (Wishart [1928]) in the context of statistics and multivariate data
analysis, the topic was further researched from a spectral analysis point of view
in the pioneering work of Wigner (Wigner [1955]). There are now several con-
nections with other areas. For instance, a connection with number theory was
established when eigenvalues of certain random matrices were used to model
the distribution of zeroes of the Riemann zeta function (Montgomery [1973]).
There are also connections with dynamical systems, in particular with Pain-
leve’s ordinary differential equations (Tracy and Widom [1994]), as well as with
the Dyson Brownian motion (Dyson [1962]). There are several applications in
numerical linear algebra, computer science, and statistics (see Johnstone [2001],
or the textbook Tropp [2015]).

Quantum mechanics tells us that energy levels of large nuclei correspond
to the eigenvalues of some Hermitian operator. Wigner chose to model this
operator by using Wigner matrix ensembles, wherein he ignored all physical
aspects of the system except symmetry. The reason to do so was the observation
that gaps in energy levels of large nuclei followed similar patterns regardless of
the material chosen. Systems with time-reversal symmetry were modelled by
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using real symmetric random matrices with Gaussian entries, known as the
Gaussian orthogonal ensemble (GOE), and those without were modelled by
using complex Hermitian matrices with complex Gaussian entries, known as
the Gaussian unitary ensemble (GUE).

Spectral analysis of random matrices is a broad subject, with a vast literature
focusing on the distribution of eigenvalues of the matrix, the largest eigenvalue
(or more generally, the k largest eigenvalues for some k ∈ N), and the eigen-
vectors. One of the key statistics that we focus on in this thesis is the empirical
spectral distribution, defined below.

Definition 1.4.1 (Empirical Spectral Distribution).
The empirical measure that assigns mass 1/N to each eigenvalue of random
matrix MN is called the Empirical Spectral Distribution (ESD), and is defined
as

ESD(MN )(·) = 1

N

N∑
i=1

δλi
(·) ,

where λi := λi(MN ) is the i−th eigenvalue of MN and, for any x, δx(·) is the
Dirac delta mass at the value x.

Notice that since the eigenvalues are random, ESD(MN ) is a random measure.
The bulk distribution of eigenvalues refers to the distribution of the non-extremal
eigenvalues of the random matrix. The ESD is a central object of interest in
studying the bulk of the eigenvalue distribution, so it would be heresy not to
ask about its limiting behaviour as N → ∞. The work of Wigner [1958] showed
that for the GOE and GUE models, as well as for a large class of other random
matrix models, under appropriate scaling of the entries the ESD(MN ) converges
weakly almost-surely to a (deterministic) measure µsc, where µsc is the semicircle
law with density

µsc(dx) :=
1

2π

√
4− x21|x|≤2 dx .

For instance, consider the symmetric matrix AN with entries

AN (i, j)
d
=

1√
pN (1− pN )

Ber(εN ) ,

such that NεN → ∞. This is the adjacency matrix of the Erdős-Rényi random
graph ERN (εN ). It is known that, as N → ∞, ESD(AN ) converges to µsc in
probability (see for example Jung and Lee [2018], Tran et al. [2013]). The fact
that different empirical distributions converge to the same limit sparked the idea
of universality, and we will later see how µsc is a universal limit in this area.
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(a) GOE ensemble, with entries distributed
as N(0, 1).

(b) Symmetric and centred Bernoulli matrix,
with entries distributed as Ber(0.5)− 0.5.

(c) Symmetric and centred Poisson matrix,
with entries distributed as Poi(1)− 1.

Figure 1.3: Eigenvalue distributions of some random matrix models.

The above has been generalised beyond the original Wigner matrices. In
particular, some works consider matrix entries that are not i.i.d. and have a
variance profile that is not constant. The study of the bulk blends flavours
from various areas of mathematics. In favourable scenarios, the problem can
be analysed within the framework of universality classes. Typically, in these
cases, the matrix may have entries drawn from any distribution, but one can
implement Gaussianisation, that is, replace them with Gaussian entries with
the same mean and variance profile, without affecting the ESD too much (in
probability). This technique follows ideas of Chatterjee [2005].

Of course, it would be naïve to assume that every random matrix model
can be Gaussianised. There are numerous concrete examples, particularly in
random graph theory, where this step fails. In such cases, one falls back on ex-
plicitly working with the ESD. One approach is through the method of moments
(see Bordenave [2019]), which computes the moments of the ESD and find the
limiting moments. By the spectral theorem, for any random matrix MN ,∫

R
xk ESD(MN )(dx) =

1

N

k∑
i=1

λki =
1

N
Tr(Mk

N ) .

The “standard procedure” is to begin by computing expected moments and see
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if they concentrate, that is, the target is to show that

lim
N→∞

∫
R
xk ESD(MN )(dx) =Mk in P−probability ,

where P is the underlying law of the matrix entries. To guarantee the existence
of a limiting measure, we have to check if the moments satisfy one of Carleman’s
conditions, that is, the moments uniquely determine a limiting measure if∑

k≥0
M
−1/2k
2k = ∞ , or equivalently, lim sup

k→∞
M

1/2k
2k <∞ .

This approach has a strong combinatorial flavour due to computation of the com-
binatorial expression E[tr(Mk

N )], where tr := N−1Tr is the normalised trace.
Naturally, there are examples where the moments do not exist, and this approach
then fails. This brings us to another classical approach, namely, the Stieltjes
transform approach, where one translates the measure-theoretic problem into
an analytic problem on the upper-half complex plane C+ := {z ∈ C : ℑ(z) > 0}
(see Bordenave [2019], Mingo and Speicher [2017], Anderson et al. [2010]).

For any complex number z ∈ C+, we define the resolvent of a random matrix
MN as

RMN
(z) := (MN − z IN )−1 ,

where IN is the N × N identity matrix. For any measure µ and z ∈ C+, its
Stieltjes transform is defined as

Sµ(z) :=

∫
R

1

x− z
µ(dx) .

So, we have that

SESD(MN )(z) =

∫
R

1

x− z
ESD(MN )(dx) =

1

N

N∑
i=1

1

λi − z
= tr(RMN

(z)) ,

where tr := N−1Tr is the normalised trace operator. The Stieltjes transform
allows us to work with analytic tools from complex analysis and functional ana-
lysis to deduce properties of the measure itself. For instance, if the Stieltjes
transform is uniformly bounded (in z), then the measure has an absolutely con-
tinuous component (Sen and Virág [2011]). In some cases, we can also derive the
exact density of the measure from its Stieltjes transform by using an inversion
formula (Bai and Silverstein [2010]). Notable works show that one can bound the
distance between two measures in terms of the distance between their respect-
ive Stieltjes transforms (Bai and Silverstein [2010], Augeri [2025]). In particular
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space P(R) of probability measures on the real line as follows:

dS(µ, ν) := sup{|Sµ(z)− Sν(z)| : ℑ(z) ≥ 2, z ∈ C+}, µ, ν ∈ P(R) .

If dKL(·, ·) denotes the Kolmogorov-Smirnov distance and Wp(·, ·) the Lp-Wasserstein
distance for any p ≥ 1, then

dS(µ, ν) ≤ dKL(µ, ν) ∧Wp(µ, ν), µ, ν ∈ P(R) .

If a measure µ is compactly supported in [−R,R] for some R > 0 with moments
{Mk}k≥1, then the Stieltjes transform can be related to the moments as:

Sµ(z) = −
∑
k≥0

Mk

zk+1
, (1.3)

where the Laurent series on the right-hand size converges when |z| > R.

§1.4.2 An illustration
Let us next see a heuristic for the two methods of analysis. We begin with the
moment method, following ideas from Speicher [2024].

Consider an i.i.d. sequence {Gi,j : N ≥ i > j} of random variables distrib-
uted as N−1/2N(0, 1), where N(0, 1) is the standard Gaussian random variable
with mean 0 and variance 1. Take an N × N Wigner matrix G, with entries
G(i, j) = Gi∧j,i∨j , where Gii = 0. By trace expansion, we have

E[tr(Gk)] =
1

N1+ k
2

N∑
i1,...,ik=1

E[G(i1, i2)G(i2, i3) . . . G(ik, i1)] .

To compute this sum, we use the following well-known result (see for example
Speicher [2024]).

Lemma 1.4.2 (Wick’s formula).
Let (X1, . . . , Xn) be a real Gaussian vector and P2(k) the set of pair partitions
of [k]. Then, for any 1 ≤ k ≤ n,

E[Xi1 · · ·Xik ] =
∑

π∈P2(k)

∏
(r,s)∈π

E[XirXis ] , (1.4)

where (r, s) ∈ π indicates a pair (r, s) that is in the pair partition π.
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This expression already tells us that the odd moments are identically zero, since
one cannot construct pair partitions for a tuple [k] if k is odd. So, we only need
to compute the even moments. Thus, for any k ∈ N, we have

E[tr(G2k)] =
1

Nk+1

N∑
i1,...,i2k=1

∑
π∈P2(2k)

∏
(r,s)∈π

E[G(ir, ir+1)G(is, is+1)]

=
1

Nk+1

N∑
i1,...,i2k=1

∑
π∈P2(2k)

∏
(r,s)∈π

1(ir,ir+1)=(is,is+1) .

While there are two cases where the indicator is in force, namely ir = is or
ir = is+1, it turns out that the latter is the contributing factor in the limit.
In particular, we get ir = iπ(r)+1 = iγπ(r), where γ := (1, 2, . . . , 2k) is the
shift by 1 modulo 2k permutation and, for any partition π, γπ is read as a
composition of two permutations by reading π as a permutation. Thus, we have
that i := {i1, . . . , i2k} is constant on the cycles of γπ. We skip some technical
steps, which involve the interchange of summands, and obtain the expression

E[tr(G2k)] ∼ 1

Nk

∑
π∈P2(2k)

N#γπ ,

where #γπ is the number of blocks in γπ, and ∼ means asymptotic. The
contributing partitions are the non-crossing pair partitions NC2(2k), where we
have that, for any π ∈ NC2(2k), #γπ = k + 1, and, for π ∈ P2(2k) \NC2(2k),
#γπ ≤ k. Figure 1.4 illustrates some partitions of {1, 2, 3, 4}, with π1 and π2 as
non-crossing pair partitions. This combinatorial approach yields that, for any
even moments, we have

lim
N→∞

E[tr(G2k)] = |NC2(2k)| = Ck ,

where Ck is the k−th Catalan number defined as

Ck =
1

k + 1

(
2k

k

)
.

The Catalan numbers are the even moments of the semicircle law µsc, which
also has odd moments identically 0.

Let us proceed with the Stieltjes transform method. We begin by fixing z ∈ C+.
Let µsc be the limiting measure of the ESD of G, which we a priori know is the
semicircular law. To derive a recursive expression for Sµsc(z), one can use the
moment relation (1.3), along with the following relation for Catalan numbers:

Ck+1 =
k∑

i=0

CiCk−i
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1 2 3 4

(a) π1

1 2 3 4

(b) π2

1 2 3 4

(c) π3

Figure 1.4: Pair partitions of {1, 2, 3, 4}.

for any k ∈ N. Manipulating the terms, we get

Sµsc(z) = − 1

z + Sµsc(z)
, (1.5)

which is the unique analytic equation that characterises µsc (Bai and Silverstein
[2010]). It is known that pointwise convergence of Stieltjes transforms (in z)
implies weak convergence of measures (and vice versa). To that end, we analyse
the resolvent matrix.

Let rij := RG(z)(i, j). It is well-known that rij ∈ C+ for all i, j ∈ [N ] (Bai
and Silverstein [2010]). One approach to prove that SESD(G)(z) converges to
Sµsc(z) for each z ∈ C+ would be to use the resolvent identities (see Bordenave
[2019]). However, there is a different approach that is used later on in the thesis.
For any z ∈ C+, the following is a fact from complex analysis:

z = ι̇

∫ ∞
0

e−ι̇tz
−1

d t .

So, we have for any k ∈ [N ]

rkk = ι̇

∫ ∞
0

e−ι̇tr
−1
kk d t .

From Bordenave [2019], we use the Schur complement formula, which gives us

rkk = − 1

z +
∑

i,j ̸=k r̃ijG(i, k)G(j, k)
,

where r̃ij is the (i, j)−th entry of the matrix RG(k)(z) := (G(k) − z I)−1, and
G(k) is the matrix G with the k−th row and column deleted. We will not spell
out details here, but rather give a heuristic of what the computation looks like.
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Namely,

E[rkk] = ι̇E
[∫ ∞

0
eι̇tzeι̇t

∑N
i,j ̸=k r̃ijG(i,k)G(j,k) d t

]
≈ ι̇E

[∫ ∞
0

eι̇tzeι̇t
∑N

j ̸=k r̃jjG(j,k)2 d t

]

≈ ι̇

∫ ∞
0

eι̇tz exp

ι̇tE
 N∑
j ̸=k

rjjG(j, k)
2

d t

≈ ι̇

∫ ∞
0

exp {ι̇t(z + E[tr(RG(z)])} d t = − 1

z + E[tr(RG(z))]
,

where each approximation requires justification, and becomes an equality in the
limit N → ∞. Summing over i on both sides, scaling by N and taking the limit
N → ∞ gives us (1.5) by the relation between the Stieltjes transform and the
matrix resolvent. Using this approach has some advantages, particularly when
dealing with random matrices with heavy-tailed entries (Benaych-Georges et al.
[2014]).

Note that in both approaches, we only illustrate the convergence of the
expected empirical measure. However, there are concentration results in both
approaches that yield convergence in probability or almost surely (Bordenave
[2019], Speicher [2024]).

Both approaches offer new insights into the problem as well as establish
mysterious connections with numerous other areas, making random matrix the-
ory an ideal playground for modern mathematics. The analytic approach has
opened up the area of understanding local weak convergence, and many open
problems were resolved in the last few years (see Erdős and Yau [2017] for more
details).

§1.4.3 Free Probability
Consider two random variables X1 and X2, where X1 takes values −1 or 1 with
probability 1

2 , and X2 takes values 0 or 1 independently with probabilities 1
3 and

2
3 , respectively. Then, the distribution of the random variable Y = X1X2 is the

same as that of Ỹ = X2X1, and we write X1X2
d
= X2X1. Indeed, the probability

that X1X2 takes a value, for example 1, is the same as the probability that X2X1

takes that value, which in our example is 1
2 × 2

3 = 1
3 . We say that X1 and X2

commute. We ask out of curiosity:

Are there instances when X1 and X2 do not commute? For instance, what if
X1 and X2 are not real-valued, but are matrix-valued?
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concept in classical probability is that of independence: The outcome of X1

does not affect X2 and vice-versa. How do we abstract to a non-commutative
setting? Does the concept of independence extend as well?

In the 1980s, the concept of freeness, or free independence, was studied by
Dan Voiculescu in the context of operator algebras (Voiculescu [1985]). The
generalisation of classic random variables to a non-commutative setting was
through this very notion, which is a non-commutative analogue of (classical)
independence. The combinatorial aspects are summarised in the classical text
by Nica and Speicher [2006]. We now begin with some technical definitions.

Definition 1.4.3 (Non-commutative probability space).
A non-commutative probability space (A, φ) consists of a unital (associative)
algebra A over C equipped with a linear functional φ : A → C such that φ(1) = 1.

Let us fix an index set I. Elements of the space (A, φ) are called non-commutative
random variables, and for any a ∈ A, {φ(an)}n∈N are the moments of a. The
joint distribution of a1, . . . , ak ∈ A for any k ∈ N is the collection of mixed
moments φ(ai1 , . . . , aiℓ) for each ℓ ∈ N and i1, . . . , iℓ ∈ [k].

Definition 1.4.4 (Freeness).
Let (Ai)i∈I be the unital subalgebras of A. These are said to be free if, for any
k ∈ N, φ(a1 . . . ak) = 0 whenever:

• For aj ∈ Aij with ij ∈ I, φ(aj) = 0 for all j ∈ [k];

• i1 ̸= i2, i2 ̸= i3, . . . , ik−1 ̸= i1.

Recall that in classical probability theory, one studies random variables over
a (classical) probability space of the form (Ω,F ,P). The generalisation to the
non-commutative setting deviates from the notion of an underlying event space
and law, and is instead developed over the notion of a non-commutative algebra
of random variables and their “expectations”. In fact, the functional φ is the
non-commutative analogue of the classical notion of expectation. Similar to
how classical random variables (Xi)i∈I ∈ (Ω,F ,P) are said to be independent if
the sigma-fields (Fi)i∈I generated by them are independent, we say that random
variables (ai)i∈I ∈ (A, φ) are said to be free if their generated unital subalgebras
(Ai)i∈I are free. This abstraction allows one to study a larger variety of objects,
such as random matrices or random operators, as well as objects in other areas,
notably in quantum mechanics.

Recovering classical probability is fairly straightforward, and we illustrate it
for bounded random variables as follows: Let (Ω,F ,P) be a classical probability
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space. Set A := L∞(Ω,P) as the unital algebra of bounded measurable functions
(“random variables”) X : Ω → C, and set φ to be the unital linear functional on
A as the “expectation” with respect to P, that is,

φ(X) := E[X] , X ∈ A .

Note that φ(1) corresponds to P(Ω) = 1.
Voiculescu, in Voiculescu [1985], studied the notion of freeness in the context

of Von-Neumann algebras (also called W ∗−algebras). In particular, if G is
group, then saying that its subgroups (Gi)i∈I are free is equivalent to saying
that the subalgebras (CGi)i∈I are free in the space (CG,φG) (Speicher [2011,
Proposition 1.3]), where CG is the group algebra of G and φG : CG → C
is a unital functional. Certain ∗−algebras, in particular C∗−algebras, are of
particular interest.
Definition 1.4.5 (C∗−algebras).
A C∗−algebra is a Banach algebra A over C such that it is a ∗−algebra pos-
sessing the involution ∗ : A → A satisfying ∥xx∗∥ = ∥x∥2 for each x ∈ A.

Any C∗−algebra is isomorphic to a C∗−subalgebra of B(H), the space of bounded
linear operators on H, for some Hilbert space H.
Definition 1.4.6 (W ∗−algebras).
A W ∗−algebra, or a von Neumann algebra A ⊆ B(H), is a C∗−algebra that is
closed under the weak operator topology, that is, if any net Aα ∈ A converges to
A ∈ B(H) in the weak operator topology, then A ∈ A.

The respective non-commutative probability spaces are called a C∗−probability
space and a W ∗-probability space.
Definition 1.4.7 (Tracial, state, and faithful functionals).
Let (A, φ) be a C∗−probability space.

• If φ(a∗a) ≥ 0 for all a ∈ A, then φ is a state.

• We say φ is tracial if φ(ab) = φ(ba) for all a, b ∈ A.

• We say φ is faithful if for all a ∈ A, φ(a∗a) = 0 implies a = 0.

Naturally, one would wonder if there are universality results in free probability,
as is the case for classical probability. In particular, a natural question would be
regarding a generalisation of the classical Central Limit Theorem, where sums of
independent and identically distributed (i.i.d.) centred random variables having
a finite variance converge to the standard normal distribution under appropriate
scaling. In free probability, such a result does exist, but the limiting law is
not the normal distribution; rather, it is the non-commutative analogue of the
normal distribution (see Speicher [2011]).
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Theorem 1.4.8 (Free Central Limit Theorem).
Let (A, φ) be a non-commutative probability space and let (ai)i∈I ∈ A be a
family of free random variables such that φ(ai) = 0 and φ(a2i ) = 1 for each
i ∈ I. Further, assume that (ai)i∈I are identically distributed, in the sense that
φ(ari ) = φ(arj) for any r ∈ N and all i, j ∈ I. Then, if Sn =

∑n
i=1 ai, then, for

any k ∈ N,
lim
n→∞

φ(n−k/2Sk
n) = φ(sk) ,

where s is the semicircle variable, or the semicircle element, with

φ(sk) =

{
0, k is odd,
Cm = 1

m+1

(
2m
m

)
, k = 2m for some m ∈ N.

In the literature, the limiting law is called the semicircle law, or the Wigner
semicircle law, named after the theoretical physicist Eugene Wigner, whose
pioneering work in the 1950s on the study of eigenvalue statistics of random
matrices led to the foundation of random matrix theory.

Connections between random matrices and free probability were established
in 1991 in the seminal work of Voiculescu (Voiculescu [1991]), where it was
shown that random matrix models exhibit asymptotic freeness. This allows one
to exploit tools from free probability to analyse various random matrix problems.

For any N ∈ N, a ∗−probability space of random N × N matrices is just
(MN (L∞−(Ω,P)), tr⊗E), where (Ω,P) is a classical probability space, and

L∞−(Ω,P) :=
⋂

1≤p<∞
Lp((Ω,P)) ,

and for any complex algebra A, MN (A) ∼= MN (C) ⊗ A is the space of N ×N

matrices with entries drawn from A. Moreover, E is the expectation with respect
to the law P. Recall that, for any (random) matrix MN , we have

Tr(MN ) :=
N∑
i=1

MN (i, i) =
N∑
i=1

λi(MN ) ,

where (λi(MN ))Ni=1 are the eigenvalues of MN . The following result, which is
an extension of the original work by Voiculescu, shows asymptotic freeness of
Gaussian ensembles and deterministic matrices (see Speicher [2011, Theorem
6.14]).

Theorem 1.4.9 (Asymptotic freeness in matrix ensembles).
For t ∈ N and N ∈ N, let G(1), . . . ,G(t) be t independent N×N Gaussian unitary
ensembles GUE(N). Let XN ∈ MN (C) be a deterministic N ×N matrix such
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that supN ∥XN∥ ≤ C for some C > 0 (where ∥.∥ denotes the Hilbert-Schmidt
norm) and XN

d→ x in the space (A, φ), that is,

lim
N→∞

tr(Xk
N ) = φ(xk)

for each k ∈ N. Then

(G(1), . . . ,G(t), XN )
d→ (s1, . . . , st, x) ,

where s1, . . . , st are semicircle elements in (A, ϕ) and s1, . . . , st, x are free, that
is, for all m ∈ N, q : m→ N0, and p : [m] → [t],

lim
N→∞

E
[
tr
(
G(p(1))X

q(1)
N . . .G(p(m))X

q(m)
N

)]
= φ

(
s
(p(1))
1 xq(1) . . . s

(p(m))
t xq(m)

)
.

The above theorem shows that ({G(i)}1≤i≤t, XN ) are asymptotically free, allow-
ing us to conclude results about sums and products of random matrices.

The remaining technical details are quoted from Anderson et al. [2010],
Hazra and Maulik [2013].

Definition 1.4.10 (Affiliated operators).
A self-adjoint operator X is said to be affiliated to a W ∗−algebra A, if f(X) ∈ A
for an bounded Borel function f on R.

We call self-adjoint operators associated to A random elements of A. For any
affiliated random element X, the algebra generated by X is defined as AX :=

{f(X) : f bounded measurable}. Naturally, X1, X2 ∈ A are free if AX1 ,AX2

are free, as in the following definition.

Definition 1.4.11 (Free operators).
Self-adjoint operators (Xi)i∈I affiliated with a W ∗−algebra A are said to be free
if and only if the algebras generated by {f(Xi) : f bounded measurable}i∈I are
free.

Definition 1.4.12 (Law of an operator).
For a self-adjoint operator (or a random element) X affiliated to a W ∗−algebra
A, and the probability space (A, φ), the law of X is the unique probability meas-
ure µX on R satisfying

φ(f(X)) =

∫
R
f(t)µX(dx)

for every bounded Borel function f on R.
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anteed by the spectral theorem), with ΛA denoting the measure evaluated at a
set A, then

µX(−∞, x] = φ(Λ(−∞,x](X)) .

The following is quoted from Anderson et al. [2010, Proposition 5.3.34].
Proposition 1.4.13.
Let µ1, . . . , µp be probability measures on R. Then there exists a W ∗−probability
space (A, φ) with φ a normal faithful tracial state, and self-adjoint operators
(Xi)1≤i≤p affiliated with A, with laws (µi)1≤i≤p that are free.

From Anderson et al. [2010, Property 5.3.34, Corollary 5.3.35], one can always
construct a Hilbert space H, a tracial state φ, and two free variables X1 and
X2 with laws µ1 and µ2, respectively, affiliated with the space B(H) of bounded
linear operators on H. Then, free additive convolution of µ1 and µ2, denoted as
µ1⊞µ2, is the law of X1+X2. Additionally, if either X1 or X2 is non-negative,
then the free multiplicative convolution µ1⊠µ2 is the law ofX1X2. The extension
of free convolutions to unbounded measures can be done in the context of finite
von Neumann algebras. Assume that A is a finite von Neumann algebra with a
normal faithful tracial state φ, that is, (A, φ) is a tracial W ∗-probability space
and A is acting on a Hilbert space H. A closed, densely defined operator T on
H is affiliated with A if its polar decomposition T = uX has the property that
u ∈ A and X is affiliated with A. Let Ã denote the set of all operators on H
that are affiliated with A. Then, Ã is an algebra, that is, if X,Y ∈ Ã, then
X + Y and XY are densely defined, closable, and their closures are in Ã. See
Bercovici and Voiculescu [1993] for further details.

§1.5 Spectral approach to random graphs

Spectral analysis of random graph models studies the limiting spectral distribu-
tion of the associated random matrices. The analysis follows a similar structure
as in random matrix theory, where we begin with the ESD of the matrix of the
finite graph and study its behaviour asymptotically as the size tends to infinity.

Results on the bulk distribution in random matrix theory and spectral the-
ory of random graphs are CLT-type, that is, they have the same flavour as the
free central limit theorem. In particular, if MN is some Hermitian random
matrix with entries having law P, which could also be an adjacency or a Lapla-
cian matrix, then the main question is as follows: Does there exist a (possibly
random) measure µ0 such that

ESD

(
MN − E[MN ]

cN

)
∗→ µ0 ?
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Here, ∗ denotes that this convergence could be (weakly, in the measure-theoretic
sense) in distribution, in P−probability, or P−almost surely, and cN is a scaling
that is of the order of the variance of the entries, given by

cN = E[Tr(M2
N )] =

N∑
i,j=1

E[MN (i, j)2] .

For random graph models, this scaling also turns out to be the expected degree
of a uniformly chosen vertex.

§1.5.1 Revisiting the Erdős-Rényi random graph
In the case of the homogeneous ERRG(N, εN ), it is known that in the dense case
the empirical distribution converges to the semicircle law after an appropriate
scaling (Jung and Lee [2018], Tran et al. [2013]). The Laplacian spectrum for
the dense case was studied in Ding and Jiang [2010], Jiang [2012].

In the sparse case, the spectra converge to limiting measures that depend
on the parameter λ := limN→∞NεN . The behaviour is much more complicated
in this setting. Various interesting properties for spectra of the adjacency mat-
rix were predicted by Bauer and Golinelli [2001]. The existence of the limiting
distribution was proved by Khorunzhy et al. [2004], who study both the adja-
cency and the Laplacian matrices, and also show some interesting properties of
the moments and the limiting Stieltjes transform. The local geometric beha-
viour of sparse random graphs can be studied using the theory of local weak
convergence (LWC), which builds on the works Aldous and Lyons [2007] and
Benjamini and Schramm [2001]. LWC describes how a graph looks like around
a uniformly chosen vertex in the limit as the size of the graph tends to infin-
ity. For a detailed review of LWC and various other applications, see van der
Hofstad [2024]. In a remarkable work by Bordenave and Lelarge [2010], where
the authors study the adjacency and the Laplacian matrices, it was proved that
if a graph with N vertices converges locally weakly to a Galton-Watson tree,
then the Stieltjes transform of the empirical spectral distribution converges in
L1 to the Stieltjes transform of the spectral measure of the tree, and satisfies
a recursive distributional equation. The example of a homogeneous ERRG was
treated in [Bordenave and Lelarge, 2010, Example 2].

The limiting measure of the adjacency matrix of the sparse ERRG depends
on λ and is still very non-explicit. It was proved by Bordenave et al. [2017],
Arras and Bordenave [2023] that the measure has an absolutely continuous
component if and only if λ > 1. The size of the atom at the origin was computed
by Bordenave et al. [2011], and the nature of the atomic part of the measure
was studied in Salez [2020], where it was shown that the set of atoms is dense
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integers. The study of so-called extended states at the origin was initiated in
Coste and Salez [2021], and it was shown that for λ < e there were no extended
states, while for λ > e, there are extended states.

All these results were conjectured in Bauer and Golinelli [2001]. Most results
on local limits show that properties are generally true for unimodular Galton-
Watson trees. In the simulations of Bauer and Golinelli [2001], it is clear that
when λ is slightly larger than 1, the limiting measure already starts taking the
shape of the semicircle law. It was shown in Jung and Lee [2018] that, indeed,
if λ→ ∞, then the limiting measure converges to the semicircle law. Some key
questions still remain open for the sparse ERRG, such as the following:

• What are the explicit moments of µλ?

• How “close” is the measure µλ to µsc? Is there a way to quantify the
distance between the two measures?

§1.5.2 Local weak convergence
The seminal work of Bordenave and Lelarge [2010] characterises the limiting
spectral distribution for locally tree-like graphs. In particular, consider AN

and ∆N to be the scaled adjacency and Laplacian matrices, respectively, of a
random graph model GN , such that the following hold:

• The sequence of random graphs {GN}N≥1 has a weak limit G.

• For a uniformly chosen root oN ∈ GN , the degree sequence of the rooted
graph (deg(GN , oN ))N≥1 is uniformly integrable.

• Let G∗ denote the set of rooted isomorphism classes of rooted connected
locally finite graphs, and let U2(G) be the distribution on G∗ × G∗ of the
pair of rooted graphs ((G, o1), (G, o2)), where o1, o2 are uniformly chosen
roots of G. Then, U2(GN ) converges weakly to G ⊗ G, that is, to two
independent and identical copies of G.

Under the above conditions, there exists unique probability measures µλ and νλ
on R such that limN→∞ ESD(AN ) = µλ and limN→∞ ESD(∆N ) = νλ weakly
in probability. Furthermore, if GN is the graph ERN (εN ), and AGN

is the
adjacency matrix of the graph, then AN := λ−1/2AGN

, and the measure µλ
represents the expected spectral measure associated with the root of a Galton-
Watson tree with offspring distribution Poi(λ) and weights 1/

√
λ. This result

comes from the theory of local weak convergence (see Benjamini and Schramm
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[2001], van der Hofstad [2024]), which is a powerful tool to study spectral meas-
ures associated with many sparse random graph models.

In particular, consider the adjacency matrix (though a similar result holds
for the Laplacian matrix). Consider the space H of holomorphic functions f :

C+ → C+, equipped with the topology induced by uniform convergence on
compact sets. Then, H is a complete separable metrizable compact space. The
resolvent of the adjacency matrix is given as

RAN
(z) = (AN − zI)−1

for each z ∈ C+. The map z 7→ RAN
(z)(i, i) is in H, and the Stieltjes transform

of ESD(AN ) is given by trRAN
(z), where tr = N−1Tr denotes the norm-

alised trace operator. Let G∗ denote the set of rooted isomorphism classes of
rooted connected locally finite graphs. Assume that the random graph sequence
(GN )N≥1 has the random local limit G ∈ G∗, and assume further that G is a
Galton-Watson Tree with degree distribution F∗, that is, a rooted random tree
obtained from a Galton-Watson process with root having offspring distribution
F∗ and all children having a distribution F (which may or may not be the same
as F∗).

Let SAN
(z) denote the Stieltjes transform of the empirical measure ESD(AN ).

It was shown in [Bordenave and Lelarge, 2010, Theorem 2] that there exists a
unique probability measure Q on H such that, for each z ∈ C+,

Y (z)
d
=

(
z +

P∑
i=1

Yi(z)

)−1

where P has distribution F and Y, {Yi}i≥1 are i.i.d. with law Q and independent
of P . Moreover,

lim
N→∞

SAN
(z) = EX(z) in L1,

where X(z) is such that:

X(z)
d
= −

(
z +

P∗∑
i=1

Yi(z)

)−1
,

where {Yi}i≥1 are i.i.d. copies with law Q, and P∗ is a random variable inde-
pendent of {Yi}i≥1 having distribution F∗.

The analysis and expressions are similar for S∆N
, as illustrated in Bordenave

and Lelarge [2010].
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Adjacency matrix
In recent years, there has been significant research on inhomogeneous Erdős–Rényi
random graphs, which can be equivalently modelled by Wigner matrices with a
variance profile. The limiting spectral distribution of the adjacency matrix of
such graphs has been studied in Chakrabarty et al. [2021b], Zhu [2020], Bose
et al. [2022], while local eigenvalue statistics have been analysed in Dumitriu
and Zhu [2019], Ajanki et al. [2019]. Zhu and Zhu [2024] studies the fluctu-
ations of the linear eigenvalue statistics for a wide range of such inhomogeneous
graphs. Additionally, various properties of the largest eigenvalue have been in-
vestigated in Cheliotis and Louvaris [2024], Husson [2022], Chakrabarty et al.
[2022], Ducatez et al. [2024], Dionigi et al. [2023]. One of the most significant
properties of the limiting spectral measure for random graphs is its absolute
continuity with respect to the Lebesgue measure, which is closely tied to the
concept of mean quantum percolation [Bordenave et al., 2017, Anantharaman
et al., 2021, Arras and Bordenave, 2023]. Quantum percolation investigates
whether the limiting measure has a non-trivial absolutely continuous spectrum.
Recently, it was shown in Arras and Bordenave [2023] that the adjacency oper-
ator of a supercritical Poisson Galton-Watson tree has a non-trivial absolutely
continuous part when the average degree is sufficiently large. Additionally, Bor-
denave et al. [2017] demonstrated that supercritical bond percolation on Zd has
a non-trivial absolutely continuous part for d = 2. These results motivate sim-
ilar questions for kernel-based random graphs and other percolation models. In
Bhamidi et al. [2012] the spectra of the adjacency matrix of random trees are
studied, including the preferential attachment tree. Spectral analysis of weighted
adjacency matrices has also been used in hidden clique problems (see Chatterjee
et al. [2025]).

Laplacian Matrix
Bryc et al. [2006] established that, for large symmetric matrices with i.i.d.
entries, the empirical spectral distribution (ESD) of the corresponding Laplacian
matrix converges to the free convolution of the semicircle law and the standard
Gaussian distribution. In the context of sparse Erdős–Rényi random graphs,
Huang and Landon [2020] studied the local law of the ESD of the Laplacian
matrix. They demonstrated that the Stieltjes transform of the ESD closely ap-
proximates that of the free convolution of the semicircle law and a standard
Gaussian distribution, down to scale N−1. Additionally, they showed that the
gap statistics and averaged correlation functions align with those of the Gaus-
sian Orthogonal Ensemble in the bulk. Ding and Jiang [2010] investigated the
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spectral distributions of adjacency and Laplacian matrices of random graphs,
assuming that the variance of the entries depend only on N . They established
the convergence of the ESD of these matrices under such conditions. The res-
ults for the Erdős-Rényi random graphs were extended to the inhomogeneous
setting by Chakrabarty et al. [2021b]. In a recent work, Chatterjee and Hazra
[2022] derived a combinatorial way to describe the limiting moments for a wide
variety of random matrix models with a variance profile.

§1.6 Outline of the thesis

The three main chapters of this thesis are based on three papers on spectral
properties of inhomogeneous random graph models.

Chapter 2
In Chapter 2, we study the inhomogeneous Erdős-Rényi random graph model
on N vertices in the sparse setting, where vertices have deterministic weights
and edges are added between two vertices independently with a probability
that is proportional to a function of their two weights, scaled by a factor of N .
We take the vertex set [N ], and consider a sequence of deterministic weights
(wi)

N
i=1, such that if oN is a uniform random variable on [N ], then there exists

a limiting random variable W with law µw such that woN
d→W . We add edges

independently with probability

pij := εNf(wi, wj) , i, j ∈ [N ] ,

where εN is a sparsity parameter such that NεN → λ ∈ (0,∞), and f is a
bounded continuous function.

We study the scaled adjacency matrix AN of the random graph, with entries
given by

AN (i, j) = AN (j, i)
d
=

1√
λ
Ber(pij) .

In Theorem 2.3.7, we find that there exists a deterministic non-degenerate lim-
iting measure µλ such that limN→∞ ESD(AN ) = µλ in probability, and the
moments of µλ are given by

∫
xkµλ(dx) =


0, k is odd,
k/2+1∑
l=2

∑
π∈SS(k):
|γπ|=l

λl−1−
k
2 t(Gγπ, f, µw), k is even,

where SS(k) is the set of Simple Symmetric partitions of [k], as in Bose et al.
[2022], Gγπ is a graph associated to a partition π that is described later, and
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graphon theory in Lovász and Szegedy [2006]. We further find that limλ→∞ µλ =

µf , where µf is the measure in the dense regime that appears in Chakrabarty
et al. [2021b], Zhu [2020], which extends the results of Jung and Lee [2018].

In Theorem 2.3.9, under the assumption that f is Lipschitz in one coordinate,
we show that, in an appropriate Banach space B, there exists a functional ϕ∗z ∈ B
that is the unique solution to a fixed-point equation in B, such that

Sµλ
(z) = ι̇

∫ ∞
0

e−λdf (y)
∫ ∞
0

eι̇vzeλϕ
∗
z(y,

v
λ
) d v µw(d y), z ∈ C+,

where df (y) =
∫
f(x, y)µw(dx). This chapter is based on the paper Avena et al.

[2023].
Chapter 3
In Chapter 3, we study a model with spatial geometry. We consider a kernel-
based random graph model on a d−dimensional discrete torus VN , which serves
as the vertex set of the random graph. Each vertex i ∈ VN has a random
weight Wi, where (Wi)i∈VN

are i.i.d. random variables sampled from a Pareto
distribution W (whose law is denoted by P and measure µW ) with parameter
τ − 1, where τ > 1, that is,

P(W > t) = t−(τ−1)1{t≥1} + 1{t<1}.

Conditionally on the weights, edges are added independently with probability

pij := PW (i↔ j) =
κ(Wi,Wj)

∥i− j∥α
∧ 1 ,

where ∥ · ∥ is the torus distance, α ∈ (0, d) is a parameter of choice, and κ is a
kernel that has the form κ(x, y) := (x ∨ y)(x ∧ y)σ for some 0 < σ < τ − 1, as
in Jorritsma et al. [2023].

We consider the scaled adjacency matrix of this graph, which is a symmetric
random matrix with entries

AN (i, j) = AN (j, i)
d
= c
−1/2
N Ber(pij) ,

where cN = N1−α. For τ > 2, Theorems 3.2.1 and 3.2.3 show that there exists
a deterministic non-degenerate limiting measure µσ,τ with finite second moment
such that

lim
N→∞

ESD(AN ) = µσ,τ , in P−probability,

where P = P⊗ PW is the joint law.
Theorem 3.2.4 shows that µσ,τ is absolutely continuous with respect to the

Lebesgue measure on R. Theorem 3.2.5 shows that, when τ > 3 and σ < τ − 2,
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in an appropriate Banach space B there exists a unique analytic solution a∗ ∈ B
to a fixed-equation in B, such that

Sµσ,τ (z) =

∫ ∞
1

a∗(z, x)µW (dx) , z ∈ C+.

When σ = 1, there is an explicit description of the measure. In particular,
Theorem 3.2.2 tells us that µ1,τ = µsc ⊠ µW , with tail asymptotic µ1,τ (x,∞) ∼
Cτx

−2(τ−1) as x→ ∞, for some τ−dependent constant Cτ <∞. Here, ⊠ is the
free multiplicative convolution of measures. This chapter is based on the paper
Cipriani et al. [2025].

Chapter 4
In Chapter 4, we take the model from Chapter 3 with σ = 1 and τ > 3, that
is, weights with finite variance. This model is called the scale-free percolation
model. We begin with the scaled adjacency AN as in Chapter 3, and define the
corresponding Laplacian as ∆N = AN −DN . We study the centred Laplacian
∆◦N := ∆N − E[∆N ]. Theorem 4.2.1 shows that there exists a deterministic
limiting measure ντ such that

lim
N→∞

ESD(∆◦N ) = ντ in P−probability .

Theorem 4.2.5 identifies ντ in terms of the spectral distribution of some non-
commutative operators. Heuristically, ντ has (in an operator sense) the law
given by the spectral law of

W 1/2SW 1/2 +m1W
1/4GW 1/4,

where W is an unbounded operator with spectral law given by the Pareto dis-
tribution, S is a bounded compact operator whose spectral law is the semicircle
law, and G is an unbounded operator whose law is given by the Gaussian dis-
tribution. We will see a more formal description of this later on in Chapter 4.
This chapter is based on the paper Hazra and Malhotra [2025].

Chapter 5
In Chapter 5, we show some further simulations of the above models, and con-
clude with a short discussion on open problems.

§1.7 Concluding remarks

The thesis gives a spectral perspective to some inhomogeneous random graph
problems. The results mainly describe properties of the bulk distribution. There
are many other interesting features, and we hope that this thesis will form a
baseline for future research.
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CHAPTER 2
Limiting spectra of inhomogeneous

random graphs

This chapter is based on:
L. Avena, R.S. Hazra, N. Malhotra. Limiting spectra of inhomogeneous random
graphs. [arxiv:2312.02805 ], 2023.

Abstract

We consider sparse inhomogeneous Erdős-Rényi random graph ensembles where
edges are connected independently with probability pij . We assume that pij =
εNf(wi, wj) where (wi)i≥1 is a sequence of deterministic weights, f is a bounded
function and NεN → λ ∈ (0,∞). We characterise the limiting moments in
terms of graph homomorphisms and also classify the contributing partitions.
We present an analytic way to determine the Stieltjes transform of the limiting
measure. The convergence of the empirical distribution function follows from
the theory of local weak convergence in many examples but we do not rely on
this theory and exploit combinatorial and analytic techniques to derive some
interesting properties of the limit. We extend the methods of Khorunzhy et al.
[2004] and show that a fixed point equation determines the limiting measure.
The limiting measure crucially depends on λ and it is known that in the homo-
geneous case, if λ → ∞, the measure converges weakly to the semicircular law
(Jung and Lee [2018]). We extend this result of interpolating between the sparse
and dense regimes to the inhomogeneous setting and show that as λ→ ∞, the
measure converges weakly to a measure which is known as the operator-valued
semicircular law.

https://arxiv.org/pdf/2312.02805
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§2.1 Introduction

Homogeneous Erdős-Rényi Random Graphs (ERRG) serve as the basis for many
mathematical theories in random graphs. Real-world networks are highly in-
homogeneous and have a far more complex structure. Various attempts have
been made to generalise this to other kinds of random graph models. One of the
successful extensions is the inhomogeneous Erdős-Rényi random graph model
introduced by Bollobás et al. [2007]. This graph has N vertices labelled by
[N ] = 1, ..., N , and edges are present independently with probability pij given
by pij =

f(xi,xj)
N ∧ 1, where f is a nice symmetric kernel on a state space S ×S,

and xi are certain attributes associated with vertex i belonging to S. If f is
bounded, the graph is a sparse random graph. To introduce the non-sparse
regime, in this article, we consider a small variant of the above inhomogeneous
random graph. The vertex set remains the same, but the connection probabil-
ities are given by

pij = εNf(wi, wj) ∧ 1, (2.1)

where εN is a tuning parameter, (wi) is a sequence of deterministic weights,
and f is a symmetric, bounded function on [0,∞)2. The weights can also be
generally random, but we do not consider this case. Note that when NεN → ∞,
the average degree is unbounded, and when NεN = O(1), the average degree
is bounded. We call the former case dense and the latter case sparse. In the
sparse case, the properties of the connected components were studied in Bol-
lobás et al. [2007]. They studied the properties of the connected components
and their relationship with the branching process. It was shown that the largest
component of the graph has a size of order N if the operator norm of the kernel
operator corresponding to f is strictly greater than 1 (see also [van der Hofstad,
2024, Theorem 3.9]). In the subcritical case, the sizes of the largest connec-
ted components can exhibit different behaviour compared to the ERRG. The
study of the largest connected components in various inhomogeneous random
graphs has attracted a lot of attention (see, for example, Bhamidi et al. [2010],
Broutin et al. [2021], Bet et al. [2023], van der Hofstad [2013], Devroye and
Fraiman [2014]). In this chapter, we are interested in the empirical distribution
of the eigenvalues of the adjacency matrix of the graph and how the transition
occurs from the sparse to the dense case in terms of the limiting spectral dis-
tribution. There hasn’t been much literature in this area, even though various
specific graphs have been studied. For example, the largest eigenvalue of the
sparse Chung-Lu random graph was studied in Chung et al. [2003], and this was
extended to an inhomogeneous setting by Benaych-Georges et al. [2020, 2019].
The bulk of the spectrum of sparse graphs is mainly studied through local weak
convergence. Here, we present a unifying approach to understanding both the
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sparse and the dense cases, allowing us to interpolate between the two regimes.
In the case of homogeneous ERRG, it is known that in the dense case, the

empirical distribution converges to the semicircle law after an appropriate scal-
ing (Tran et al. [2013]). In the sparse case, it converges to a measure that
depends on the parameter NεN → λ. The behaviour is much more complic-
ated in the sparse case. Various interesting properties were predicted by Bauer
and Golinelli [2001]. The existence of the limiting distribution was proved by
Khorunzhy et al. [2004], who also showed some interesting properties of the
moments and the limiting Stieltjes transform. The local geometric behaviour
of sparse random graphs can be well studied using the theory of local weak
convergence (LWC), which builds on the works Aldous and Lyons [2007] and
Benjamini and Schramm [2001]. It roughly describes how a graph looks like in
the limit around a uniformly chosen vertex. For a detailed review of LWC and
various other applications, see van der Hofstad [2024]. In a remarkable work
by Bordenave and Lelarge [2010], it was proved that if a graph with N vertices
converges locally weakly to a Galton-Watson tree, then the Stieltjes transform
of the empirical spectral distribution converges in L1 to the Stieltjes transform
of the spectral measure of the tree, and it satisfies a recursive distributional
equation. The example of homogeneous ERRG was treated in [Bordenave and
Lelarge, 2010, Example 2]. The limiting measure of sparse ERRG depends on
λ and is still very non-explicit. It was proved by Bordenave et al. [2017], Arras
and Bordenave [2023] that the measure has an absolutely continuous component
if and only if λ > 1. The size of the atom at the origin was shown by Bordenave
et al. [2011], and the nature of the atomic part of the measure was studied in the
same article. The study of so-called extended states at origin was initiated in
Coste and Salez [2021], and it was shown that for λ < e, there were no extended
states, and for λ > e, it has extended states. All these results were conjectured
in Bauer and Golinelli [2001]. Most of these results on local limits show that
properties are generally true for unimodular Galton-Watson trees.

In the simulations of Bauer and Golinelli [2001], it is clear that when λ

is slightly larger than 1, the limiting measure already starts taking the shape
of the semicircle law. It was shown in Jung and Lee [2018] that indeed, if
λ → ∞, then the limiting measure converges to the semicircle law. In the
general case, the moments of the limiting measure depend on certain kinds of
graph homomorphism counts, which also appeared in the works of Zhu [2020].
Although the theory of local weak convergence is very useful, we do not know if
it can be used to derive the moments of the limiting measure. In Chakrabarty
et al. [2021b], they considered IER to have weights wi = i/N , and NεN → ∞.
This result can be extended to general deterministic weights without significant
effort, and we state this general result in Section 2.2. The limiting measure is
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well-known in the free probability literature and appears as a universal object in
many inhomogeneous systems, referred to as the operator-valued semicircle law
[Speicher, 2011, Theorem 22.7.2]. The Stieltjes transform satisfies a recursive
analytic equation.

Our contribution
As mentioned earlier, although the convergence of the empirical spectral distri-
bution of graphs with a local-weak limit follows from the general result in Bor-
denave and Lelarge [2010], the limiting moments and contributing partitions are
not known in full generality. It is also unclear how closely the limiting measures
align in the sparse and dense regimes. Our main motivation for the work comes
from [Jung and Lee, 2018, Theorem 1], which addresses these issues in the case
of ERRG. We extend the results from ERRG to inhomogeneous models. We
explicitly derive the moments of the limiting measure for the inhomogeneous
setting, extending the works of Khorunzhy et al. [2004], albeit with a different
proof. We also study the Stieltjes transform of the limiting measure, following
the idea of Khorunzhy et al. [2004], and attempt an expansion of it for λ large
enough. This has also gained attention in the physics literature, see references in
Akara-pipattana and Evnin [2023]. We show that when λ≫ 1, the limiting mo-
ments closely resemble those of the IER, as derived in Chakrabarty et al. [2021b]
and also implied by the work of Zhu [2020]. We derive the Stieltjes transform
in the sparse setting using a fixed-point equation. The fixed point is simpler
in the case of homogeneous ERRG, but in the inhomogeneous case, it becomes
more complex. We explicitly characterise this fixed-point equation. We believe
that in the future, this will aid in determining the rate of convergence of the
empirical spectral distribution, which can be precisely quantified in terms of λ
and N . The rates of convergence in the free central limit theorem were recently
explored in Banna and Mai [2023], but these results are not directly applicable
to our setting. We leave this as an open problem. Obtaining an explicit rate
of convergence will provide an exact explanation of why the limiting measure
in the sparse setting is very close to the non-sparse setting for relatively small
λ > 1. We believe that the methods used in this article will be applicable in a
setting even when the local limits of the graphs are not tree-like.

Brief summary of the results
The two main results of this work aim to characterise the limiting spectral meas-
ure of inhomogeneous Erdős-Rényi random graphs. Our first result, Theorem
2.3.7, gives a characterisation of the moments of this measure, where the kth

moment for any k ≥ 0 is described in terms of homomorphism densities of the
inhomogeneity function f and special classes of partitions of the tuple [k]. We
can recover the moments of the dense regime asymptotically (as λ→ ∞) using
this result. The second result, Theorem 2.3.9, provides an analytic character-
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isation of the measure. In particular, we provide an analytic characterisation of
a functional of the resolvent of the adjacency matrix in terms of a fixed-point
equation. As a consequence, in Corollaries 2.3.10 and 2.3.11, we obtain the
Stieltjes transform of the sparse and dense limiting measures. The form of the
limiting Stieltjes transform can be seen as an alternative description of the form
obtained through local weak convergence (whenever it applies).

Outline
We begin Section 2.2 by describing the model and stating the results of the dense
regime. We state the assumptions on the sparse setting more explicitly and pro-
ceed by stating our main results for this setting. We then describe a relationship
with local weak convergence and also give some examples of popular random
graph models. We show that the sparse Chung-Lu type model falls into our set-
ting, and while the Norros-Reittu model and the Generalised Random Graph
model do not directly fall into our setting, we show that asymptotically the three
models have the same spectral distribution, which has a free-multiplicative part
that can be seen from our main results.

In Section 2.4 we prove our first main result, which takes a combinatorial
approach, and we set up all the necessary tools used in proving the result. We
identify the moments of the limiting spectral measure in terms of partitions
of a tuple and graph-homomorphism densities. We provide a characterisation
of the partitions and explicit expressions for the moments that are given by
homomorphism densities defined based on these partitions. We further identify
a leading order of the moments and a polynomial in λ−1, which was also seen
for the homogeneous setting in Jung and Lee [2018].

In Section 2.5 we prove our second main result, which in contrast has an ana-
lytic flavour. We set up the relevant analytic structures, and instead of working
directly with the Stieltjes Transform, we work with a functional of the resolvent
of the adjacency matrix, which was introduced in Khorunzhy et al. [2004]. We
borrow both fundamental and advanced tools from analysis to provide an exact
analytic characterisation of the limiting spectral measure. We conclude with
the Appendix as Section 2.6 where we state the key analytic tools we use in
Section 2.5.

§2.2 Setting

§2.2.1 Model
We consider the inhomogeneous Erdős-Rényi random graph (IER) GN on the
vertex set [N ] = {1, . . . , N} where edges are added independently with prob-
ability pij . As mentioned before, we will assume that pij has a special form

43



2. Limiting spectra of inhomogeneous random graphs

C
ha

pt
er

T
w

o

as
pij = εNf(wi, wj) ∧ 1 ,

where εN is a tuning parameter such that εN → 0, (wi)i≥1 is a sequence of
deterministic non-negative weights and f : [0,∞)2 → [0,∞) is bounded and
continuous. We will use PN to denote the law of this random graph, and we will
drop the subscript N for notational convenience, and E will be the expectation
with respect to the law P. We will always assume that N is large enough and
hence εN is small enough to make pij ≤ 1 since f is bounded.

Let MN denote the adjacency matrix of the graph GN , that is, the (i, j)-th
entry is 1 if i shares an edge with j, and 0 otherwise. So MN is a symmetric
matrix, where any entry MN (i, j) is distributed as Bernoulli random variable
with parameter pij as in (2.1) and {MN (i, j), i ≥ j} is an independent collection.
Instead of studying the adjacency matrix MN we will study the scaled adjacency
matrix. In particular, we do a CLT-type scaling by the variance of the entries,
that is, we study the matrix

1√
NεN (1− εN )

MN . (2.2)

The empirical measure which puts mass 1/N on each eigenvalue of an N × N

random matrix AN is called the Empirical Spectral Distribution of AN , and is
denoted by

ESD(AN ) :=
1

N

N∑
i=1

δλi
. (2.3)

We are interested in studying the following object:

ESD

(
MN√

NεN (1− εN )

)
=

1

N

N∑
i=1

δλi
,

where λ1, . . . , λN are the eigenvalues of (NεN (1− εN ))−1/2MN .
We are interested in the weak convergence (in probability) of the above

measure and the limiting measure is called the Limiting Spectral Distribution
(LSD). The limiting measure depends on the following two geometric regimes
in random graphs and its properties differ in the two cases:

• Dense Regime: εN → 0 and NεN → ∞. The connectivity regime with
NεN ≫ C logN falls in this regime.

• Sparse Regime : εN → 0 and NεN → λ ∈ (0,∞).
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Dense regime
In literature, the dense regime is characterised by εN ≡ constant but we will not
use the features of dense graphs in this article and hence by abuse of terminology,
we say that a graph is dense when it is not sparse. Let us now recall briefly what
happens in the dense regime. The following result was proved in Chakrabarty
et al. [2021b] and can also be obtained from Zhu [2020].

Theorem 2.2.1 (ESD in the dense case).
Consider the IER graph with pij as in (2.1) with εN → 0 and NεN → ∞ .
Suppose the deterministic weights satisfy the following assumption:

Let oN be an uniform random variable on [N ] and let WN = woN . We
assume that there exists a W with law µw such that

WN
d−→W.

Then there exists a measure µf which is compactly supported such that

lim
N→∞

ESD

(
MN√

NεN (1− εN )

)
= µf weakly in probability.

Many interesting properties of this limiting measure are known. To define
the moments we need a quantity which is similar to the homomorphism density
of graphons. Define

t(Hk, f, µw) :=

∫
[0,∞)k

∏
{a,b}∈E(Hk)

f(wa, wb)µ
⊗

k
w (dw) , (2.4)

where Hk is a simple graph on k vertices with the edge set E(Hk), µ
⊗

k
w (·) is

the k-fold product measure of µw(·), and w = (w1, ..., wk). If we restrict the
range of f to [0, 1] and take µw(·) as the Lebesgue measure on [0, 1], then this
quantity is the standard graph homomorphism density (see Lovász and Szegedy
[2006]).

The rooted planar tree is a planar graph with no cycles, with one distin-
guished vertex as a root, and with a choice of ordering at each vertex. The
ordering defines a way to explore the tree starting at the root. One of the al-
gorithms used for traversing the rooted planar trees is depth-first search. An
enumeration of the vertices of a tree is said to have depth-first search order if
it is the output of the depth-first search.

We now recall the definition of a Stieltjes transform of a measure µ on R.
For z ∈ C+, where C+ is the upper half complex plane, the Stieltjes Transform
of a measure µ is given by

Sµ(z) =

∫
R

1

x− z
µ(dx).
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The following proposition gives the properties of the measure µf which appears
in Theorem 2.2.1.
Proposition 2.2.2.
(a) [ Moments] The measure µf is the unique probability measure identified

by the following moments:∫
x2kµf (dx) =

Ck∑
j=1

t(T k+1
j , f, µw),

∫
x2k+1µf (dx) = 0, k ≥ 0, (2.5)

where T k+1
j is the jth rooted planar tree with k + 1 vertices and Ck is the

kth Catalan number.

(b) [Stieltjes transform] There exists an unique analytic function H defined
on C+ × [0,∞) such that

Sµf
(z) =

∫ ∞
0

H(z, x)µw(dx),

and H(z, x) satisfies the integral equation

zH(z, x) = 1 +H(z, x)

∫ ∞
0

H(z, y)f(x, y)µw(d y), x ≥ 0. (2.6)

Example 2.2.3 (Rank 1).
One special case which arises in many examples of random graphs, and will
be discussed later is when f has a multiplicative structure, that is, f(x, y) =

r(x)r(y), where r : [0,∞) → [0,∞) is a bounded continuous function. In this
case, the measure

µf = µs ⊠ µr(W )

where µsc is the standard semicircle law and µr(W ) is the law of r(W ) and ⊠
is the free multiplicative convolution of the two measures. When r is identically
equal to 1 then µf = µs, the standard semicircle law. We refer to [Chakrabarty
et al., 2021b, Theorem 1.3] for details.

Sparse regime
The seminal work of Bordenave and Lelarge [2010] characterises the limiting
spectral distribution for locally tree-like graphs. In particular, if one takes AN

to be the scaled adjacency matrix as given in (2.2) of a random graph GN , they
show that if the following hold:

• The sequence of random graphs {GN}N≥1 have a weak limit G;

• For a uniformly chosen root oN ∈ GN , the degree sequence of the rooted
graph (deg(GN , oN ))N≥1 is uniformly integrable;
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• Let G∗ denote the set of rooted isomorphism classes of rooted connected
locally finite graphs, and let U2(G) be the distribution on G∗ × G∗ of the
pair of rooted graphs ((G, o1), (G, o2)), where o1, o2 are uniformly chosen
roots of G. Then, U2(GN ) converges weakly to G ⊗ G, that is, to two
independent and identical copies of G;

then, there exists a unique probability measure µλ on R such that ESD(AN ) =⇒
µλ weakly in probability as N → ∞. Furthermore, it is shown that when f ≡ 1,
the measure µλ represents the expected spectral measure associated with the
root of a Galton-Watson tree with an offspring distribution of Poi(λ) and weights
1/

√
λ. This result comes from the theory of local weak convergence, also known

as Benjamini-Schramm convergence (see van der Hofstad [2024], Benjamini and
Schramm [2001]), which is a powerful tool to study spectral measures associated
with many sparse random graph models.

In particular, consider the space H of holomorphic functions f : C+ → C+,
equipped with the topology induced by uniform convergence on compact sets.
Then, this is a complete separable metrizable compact space. The resolvent of
the adjacency operator is given as

RAN
(z) = (AN − zI)−1

for each z ∈ C+. The map z 7→ RAN
(z)(i, i) is in H, and the Stieltjes transform

of ESD(AN ) is given by trRAN
(z), where tr = N−1Tr denotes the norm-

alised trace operator. Let G∗ denote the set of rooted isomorphism classes of
rooted connected locally finite graphs. Assume that the random graph sequence
(GN )N≥1 has the random local limit G ∈ G∗, and further that G is a Galton
Watson Tree with degree distribution F∗, that is, a rooted random tree obtained
from a Galton-Watson process with root having offspring distribution F∗ and
all children having a distribution F (which may or may not be the same as F∗).

Let SAN
(z) denote the Stieltjes transform of the empirical measure ESD(AN ).

It was shown in [Bordenave and Lelarge, 2010, Theorem 2] that there exists a
unique probability measure Q on H, such that for each z ∈ C+

Y (z)
d
=

(
z +

P∑
i=1

Yi(z)

)−1

where P has distribution F and Y, {Yi}i≥1 are i.i.d. with law Q and independent
of P . Moreover

lim
N→∞

SAN
(z) = EX(z) in L1 ,
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where X(z) is such that:

X(z)
d
= −

(
z +

P∗∑
i=1

Yi(z)

)−1
, (2.7)

where {Yi}i≥1 are i.i.d. copies with law Q, and P∗ is a random variable inde-
pendent of {Yi}i≥1 having distribution F∗.

In [Bordenave and Lelarge, 2010, Example 2], we see that the sparse Erdős-
Rényi random graph with p = λ

N falls in their setup, and in particular, P is
distributed as Poi(λ). For a general f , [Bordenave and Lelarge, 2010, Theorem
1] still guarantees the existence of µλ, since the graphs we will consider will
have a local weak limit known as the multi-type branching process (see [van der
Hofstad, 2024, Chapter 3] for more details). As f is bounded, we get that the
degree sequence will still remain uniformly integrable. As mentioned before
we will not follow this well-known route of local weak convergence. Instead,
we show the above convergence through albeit classical methods. We now in-
troduce the conditions under which we will work. We will have the following
sparsity assumption on εN and a regularity assumption on the function f and
the weights:

A.1 Connectivity function: Let f : [0,∞)2 → [0,∞) be a bounded, con-
tinuous function, with |f | ≤ Cf ∈ (0,∞),

A.2 Sparsity assumption : NεN → λ ∈ (0,∞),

A.3 Assumption on weights: Let oN be an uniform random variable on [N ]

and let WN = woN . We assume that there exists a W with law µw such
that

WN
d−→W.

We make some preliminary remarks about the assumptions. Since f is
bounded, we can easily see that f is µw−integrable. In the sparse setting,
in most important examples, the graph is locally tree-like and this can be seen
from the theory of local weak convergence.

Note that the limit λ → ∞ recovers the dense regime. By this choice, we
can see that 1−εN ≈ 1 as N becomes very large, and NεN (1−εN ) → λ. Thus,
our matrix of interest is a scaled adjacency matrix now defined as follows:

AN =
1√
λ
MN . (2.8)
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§2.3 Main Results

In this subsection, we state the main results of this article. As mentioned before
in the introduction, we would like to understand first the limiting empirical
distribution of the sparse inhomogeneous Erdős Rényi (IER) random graph and
also study the behaviour of the measure when the sparsity parameter increases.
Recall that the adjacency matrix is defined in (2.8) and the empirical spectral
distribution is denoted by ESD(AN ) (see (2.3)). In what follows, we will see
that

lim
N→∞

ESD(AN ) = µλ weakly in probability (2.9)

and µλ ⇒ µf where µf is as in Theorem 2.2.1. For the homogeneous case,
where f ≡ 1, we get the final limit as the classical Wigner’s semicircle law, that
is, µf = µs. These iterated limits were studied in Jung and Lee [2018]. An
interesting open question is how close µλ is to µf . Although we do not manage
to give an explicit estimate, through the moment method we show that it is
very close and the structure of the moments of µf is hidden inside the structure
of the moments of µλ. This will be our first result. To describe the moments
we need to introduce some notation.

§2.3.1 Method of moments: Combinatorial Approach
We first define the Special Symmetric Partitions which was introduced in Bose
et al. [2022]. Let P(k) denote the set of partitions of k and P2(k) be the set of
pair partitions where each block has size 2. Let NC(k) be the set of non-crossing
partitions of [k] and NC2(k) be the set of non-crossing pair partitions of [k].
Note that |NC2(2k)| = 1

k+1

(
2k
k

)
and these are known as the Catalan numbers

and represent the even moments of the semicircle distribution.

Partition terminology. Let π be a partition of a tuple [k]. Let π consist of
disjoint blocks V1, V2, . . . , Vm, for some 1 ≤ m ≤ k. We arrange the blocks in
the ascending order of their smallest element. For any block Vi, a sub-block is
defined to be a subset of consecutive integers in the block. Two elements j and
k in a block Vi are said to be successive if for all a between j and k, a /∈ Vi.

Definition 2.3.1 (Special Symmetric Partition).
A partition π of a tuple [k] = {1, 2, ..., k} is said to be a Special Symmetric
partition if it satisfies the following:

• All blocks of π are of even size.

49



2. Limiting spectra of inhomogeneous random graphs

C
ha

pt
er

T
w

o

• Let V ∈ π be any arbitrary block, and let a, b ∈ V be two successive
elements in V with b > a. Then, either of the following is true:

1. b = a+ 1, or,

2. between a and b there are sub-blocks of even size.
In other words, there are blocks V1, V2, . . . , Vℓ, such that there ex-
ist elements {ai1 , ai1+1, . . . , ai1+k1} ∈ V1, {ai2 , . . . , ai2+k2} ∈ V2,
. . . , {ail , . . . , aiℓ+kℓ} ∈ Vℓ, with a = ai1 − 1 and b = aiℓ+kℓ + 1,
such that k1, k2, . . . , kℓ are even.

We denote the class of Special Symmetric partitions as SS(k). Note that for
k odd, SS(k) = ∅. For example, take π = {{1, 4, 5, 8}, {2, 3, 6, 7}, {9, 10}} ∈
SS(10). Note here that between 4 and 5 in the first block, there are no elements
from the other blocks, and between 5 and 8, there is the sub-block {6, 7} that
is of even size.

In Bose et al. [2022] a more elaborate definition was given and this is useful
in computations. Later, it was shown by [Pernici, 2021, Section 3] that the
definition in Bose et al. [2022] is equivalent to the above one. In Pernici [2021],
the set SS(2k) is denoted by P (2)

2 (k), a special subclass of k-divisible partitions.
These partitions appeared as “Clickable Partitions” in Ryan [1998], where they
were introduced to describe the limit distribution of dense random matrix mod-
els, and in the same spirit, they were also used for sparse random graphs in the
paper Male [2017].

Remark 2.3.2.
We note down some important properties of SS(k):

1. If k is even, then

{π ∈ SS(k) : |π| = k/2} = {π ∈ NC2(k)}.

2. SS(2k) = NC(2k) for 1 ≤ k ≤ 3. When k ≥ 4, there are partitions
π ∈ SS(2k) that are either crossing or non-paired. For example, for k = 8,
{{1, 2, 5, 6}, {3, 4, 7, 8}} is a Special Symmetric partition. In particular,
crossings start appearing when there are at least two or more blocks in a
partition having 4 or more elements.

3. The set of Special Symmetric partitions are in one-to-one correspondence
with coloured rooted trees (see [Bose et al., 2022, Lemma 5.1]) and these
trees appeared first in the analysis in the works of Bauer and Golinelli
[2001].
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Any partition π ∈ P(k) can be realized as a permutation of [k], that is, a
mapping from [k] → [k]. Let Sk denote the set of permutations on k elements.
Let γ = (1, 2, . . . , k) ∈ Sk be the shift by 1 modulo k. We will be interested in
the compositions of the two permutations γ and π, denoted by γπ, and this will
be seen below as a partition.

Remark 2.3.3.
While π is a partition and γ is a permutation, we do a composition in the
permutation sense. We read the partition π as a permutation, compose it with
the permutation γ, and finally read γπ as a partition. As an example, consider
π = {{1, 2}, {3, 4}} and γ = (1, 2, 3, 4). To compute γπ, we read π as (1, 2)(3, 4),
and compute γπ = (1, 3)(2)(4). We finally read γπ as {{1, 3}, {2}, {4}}.

Definition 2.3.4 (Graph associated to a partition).
For a fixed k ≥ 1, let γ denote the cyclic permutation (1, 2, . . . , k). For a
partition π, we define Gγπ = (Vγπ, Eγπ) as a rooted, labelled graph associated
with any partition π of [k], constructed as follows.

• Initially consider the vertex set Vγπ = [k] and perform a closed walk on
[k] as 1 → 2 → 3 → · · · → k → 1 and with each step of the walk, add an
edge.

• Evaluate γπ, which will be of the form γπ = {V1, V2, . . . , Vm} for some
m ≥ 1 where {Vi}i are disjoint blocks. Then, collapse vertices in Vγπ to
a single vertex if they belong to the same block in γπ, and collapse the
corresponding edges. Thus, Vγπ = {V1, . . . , Vm}.

• Finally root and label the graph as follows.

– Root: We always assume that the first element of the closed walk (in
this case ‘1’) is in V1, and we fix the block V1 as the root.

– Label: Each vertex Vi gets labelled with the elements belonging to the
corresponding block in γπ.

Example 2.3.5.
Consider for example partitions of k = 6 and reading the partitions as permuta-
tions and evaluating their composition with γ gives us:

(a) π1 = {{1, 2, 5, 6}, {3, 4}},

(b) π2 = {{1, 2, 3, 4}, {5, 6}},

(c) π3 = {{1, 6}, {2, 3, 4, 5}}.

(a) γπ1 = {{1, 3, 5}, {2, 6}, {4}},

(b) γπ2 = {{1, 3, 5}, {2, 4}, {6}},

(c) γπ3 = {{1}, {2, 4, 6}, {3, 5}}.

The corresponding graphs Gγπ1 , Gγπ2 and Gγπ3 are as follows:
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2,61,3,5

4

1,3,5 2,4

6

2,4,6 1

3,5

One can see that structurally the three graphs are the same. However, if we root
them on V1, then the first two graphs are different from the third. Further, if we
label the vertices as shown, all three graphs become distinct.

Example 2.3.6.
Here, we illustrate the type of graph structures that can occur for π ∈ SS(k).
Consider k = 8, and the following three partitions.

(a) π1 = {{1, 2, 3, 4}, {5, 6, 7, 8}}.

(b) π2 = {{1, 4, 5, 8}, {2, 3, 6, 7}}.

(c) π3 = {{1, 2, 4, 5}, {3, 6, 7, 8}}.

(a) γπ1 = {{1, 3, 5, 7}, {2, 4}, {6, 8}},

(b) γπ2 = {{(1, 5}, {2, 4, 6, 8}, {3, 7}},

(c) γπ3 = {{1, 3, 7}, {2, 5}, {4, 6, 8}}.

Then, π1, π2 ∈ SS(8) but π3 /∈ SS(8). Moreover, π1 is non-crossing whereas
π2 has 2 crossings. The corresponding graphs are as below.

2,41,3,5,7

6,8

2,4,6,8 1,5

3,7

4,6,8 1,3,7

2,5

The following result is the first main result of the article. This is an extension
of the results obtained recently in Bose et al. [2022] and the homogeneous case
obtained in Jung and Lee [2018].

Theorem 2.3.7 (Identification of moments).
(a) Let AN be the adjacency matrix of the sparse IER random graph as defined
in (2.8) satisfying assumptions A.1–A.3. Then there exists a deterministic
measure µλ such that

lim
N→∞

ESD(AN ) = µλ weakly in probability.
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Moreover, µλ is uniquely determined by its moments, which are given as follows:

mk(µλ) =

∫
xkµλ(dx) =


0, k is odd,
k/2+1∑
l=2

∑
π∈SS(k):
|γπ|=l

λl−1−
k
2 t(Gγπ, f, µw), k is even,

(2.10)
where SS(k) is the set of all Special Symmetric partitions of [k] as defined
in Definition 2.3.1, Gγπ is the graph associated to a partition π as defined in
Definition 2.3.4, and t is the homomorphism density as in (2.4).

(b) As λ→ ∞,
µλ ⇒ µf ,

where µf is the measure described in Theorem 2.2.1.

Remark 2.3.8.
Note that limiting second moment is given by m2 = t(Gγπ, f, µw) where π =

{1, 2} and γπ = {{1}, {2}}. Hence Gγπ is the graph with 2 vertices and 1 edge.
Therefore

m2(µλ) =

∫
(0,∞]2

f(x, y)µw(dx)µw(d y) ,

and hence the measure is non-degenerate.

§2.3.2 Stieltjes transform: Analytic approach
It is well-known that µλ can be characterised by its Stieltjes transform, which,
in turn, can be characterised by a random recursive equation. Local weak
convergence is a powerful tool for studying the Stieltjes transform of spectral
measures associated with sparse random graphs. However, it becomes challen-
ging to provide accurate estimates on the Stieltjes transform to study local laws
and extreme values. Therefore, we present an alternative approach to studying
the Stieltjes transform of the spectral measure of IER graphs. The ideas used
here originate from the works of Khorunzhy et al. [2004].

We denote the upper half complex plane by

C+ = {z ∈ C : z = ζ + ιη, η > 0}.

For an analytic approach to the problem, we analyse the resolvent of this matrix,
defined as

RAN
(z) := (AN − zI)−1, z ∈ C+.
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The Stieltjes transform of the empirical spectral distribution of AN is given by

SAN
(z) =

∫
R

1

x− z
ESD(AN )(dx) = tr(RAN

(z)),

where tr denotes the normalised trace. To get more refined estimates we need
an additional assumption on the connectivity function:

A.4 f : [0,∞)2 → [0,∞) is symmetric and bounded by a constant Cf . Moreover,
f is Lipschitz in one coordinate, that is, for all x1, x2, y ∈ [0,∞),

|f(x1, y)− f(x2, y)| ≤ CL|x1 − x2|

where CL is the Lipschitz constant for f .

To state the result we will need a Banach space of analytic functions. Con-
sider the space B defined by

B =

{
ϕ : [0,∞)× [0,∞) → C analytic

∣∣∣∣∣ sup
x,y≥0

|ϕ(x, y)|√
1 + y

<∞

}
(2.11)

and take the norm
∥ϕ∥B = sup

x,y≥0

|ϕ(x, y)|√
1 + y

.

Then, (B, ∥ · ∥B) is a Banach space. We defer the proof of this in Proposition
2.6 in the appendix.

Consider the function GN : [0,∞)× C+ given by

GN (u, z) :=
1

N

N∑
i=1

eι̇ur
N
ii (z) (2.12)

where rNii (z) = RAN
(z)(i, i), the ith diagonal element of the resolvent of AN . It

turns out that

∂GN (u, z)

∂u

∣∣∣∣
u=0

= SAN
(z)

and hence one can derive a form of the limiting Stieltjes transform.

Theorem 2.3.9 (Analytic functional of the resolvent).
Let AN be the adjacency of the IER random graph as defined in (2.8) and
satisfying assumptions (A.2)–(A.4). Further, consider GN as defined in (2.12).
Define the function df (x) as

df (y) =

∫ ∞
0

f(x, y)µw(dx). (2.13)
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Then, for z ∈ C+ there exists a function ϕ∗(x, u) := ϕ∗z(x, u) ∈ B such that for
each z ∈ C+ and uniformly in u ∈ (0, 1] we have

lim
N→∞

E[GN (u, z)]

= 1−
√
u

∫ ∞
0

e−λdf (y)
∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y,v/λ) d v µw(d y) (2.14)

and
Var[GN (u, z)] → 0.

Here, ϕ∗ := ϕ∗z is a unique analytic solution (in the space B) for the fixed point
equation:

ϕ∗(x, u)

= Fz(ϕ
∗)(x, u)

= df (x)−
∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y, vλ) d v

)
µw(d y),

(2.15)

where J1 is the Bessel function of the first order of the first kind defined as

J1(x) =
x

2

∞∑
k=0

(−1)k(x2/4)k

k!(k + 1)!
. (2.16)

Observe that there is a slight difference in the right-hand sides of (2.14) and
(2.15) but in the case f ≡ 1 both are the same. The next corollary describes
the convergence of the Stieltjes transform.

Corollary 2.3.10 (Identification of the Stieltjes Transform).
Under the assumptions of the above theorem, we have that any z ∈ C+,

SAN
(z) → Sµλ

(z) in probability,

where µλ is as in Theorem 2.3.7. The Sµλ
(·) satisfies the following equation:

Sµλ
(z) = ι̇

∫ ∞
0

e−λdf (y)
∫ ∞
0

eι̇vzeλϕ
∗
z(y,

v
λ
) d v µw(d y), z ∈ C+. (2.17)

To recover the dense regime, we study the asymptotic λ → ∞ as in the next
corollary.
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Corollary 2.3.11 (Stieltjes Transform as λ → ∞).
For λ→ ∞, we have that

lim
λ→∞

Sµλ
(z) = Sµf

(z) (2.18)

for each z ∈ C+, where Sµf
(z) satisfies an integral equation given by

Sµf
(z) :=

∫ ∞
0

H(z, x)µw(dx) , (2.19)

where H(z, x) satisfies the f dependent fixed point equation (2.6).

Remark 2.3.12 (The case f ≡ 1).
In the case when f ≡ 1, we recover the homogeneous setting. We know ϕ∗z
satisfies the fixed point equation (2.15). If we substitute f ≡ 1 in (2.15) we get

ϕ∗(x, u) = 1−
√
u

∫ ∞
0

e−λ
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y, vλ) d v

)
µw(d y) .

We see that the right-hand side has no dependency on the parameter x, and so,
we have a unique analytical functional ϕ̃∗(u) = ϕ∗(x, u) that satisfies the fixed
point equation

ϕ̃∗(u) = 1− e−λ
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ̃
∗(v/λ) d v . (2.20)

This matches the result of Khorunzhy et al. [2004].
From Example 2 of Bordenave and Lelarge [2010], we have that ϕ̃∗z has the

form ϕ̃∗z(u) = E[eι̇uX(z)] for each z ∈ C+, where X(z) has the law Q as described
in (2.7). So, for any z ∈ C+, we have

Sµλ
(z) = ι̇

∫ ∞
0

eι̇vze
−λ+λE

[
eι̇

v
λ
X(z)

]
)
d v = ι̇

∫ ∞
0

eι̇vzφP

(
E
[
eι̇

v
λ
X(z)

])
d v ,

where

φP (z) = E[zP ] = eλ(z−1), , P ∼ Poi(λ) .

§2.3.3 Examples
We now list out a few examples of the model that can be approached by our
methods.
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Example 1: Homogeneous Erdős-Rényi Random Graph. When we
have f ≡ 1, the model reduces to the standard homogeneous Erdős-Rényi graph
with edge probability p = λ/N . As discussed, in this case the moments of µλ
can be computed. In particular, we have t(Gγπ, f, µw) = 1 for all π. Hence we
have

m2k(µλ) =
k∑

l=1

λl−k|{π ∈ SS(2k) : |π| = l}|

= |NC2(2k)|+
k−1∑
l=1

λl−k|{π ∈ SS(2k) : |π| = l}| .

Since the (even) moments of the semicircle law are given by the Catalan num-
bers, it is immediate that

lim
λ→∞

m2k(µλ) = m2k(µs).

Hence Theorem 2.3.7(b) is true in this special case. It is known that µλ has an
absolutely continuous spectrum when λ > 1 (see Bordenave et al. [2017], Arras
and Bordenave [2023]). In this case, the Stieltjes transform is given by

Sµλ
(z) = −ι̇

∫ ∞
0

eι̇vze−λ+λϕ̃∗(v/λ) d v ,

and ϕ̃∗(v/λ) satisfies the equation (2.20). What is interesting and cannot be
immediately derived from our results is the rate of convergence of the measure
µλ to µs as λ becomes large. In the simulation below we consider the λ = 10 and
the simulation already suggests the appearance of semicircle law. We believe
the representation above of the Stieltjes transform as in Corollary 2.3.10 can be
used to prove the rate of convergence as done in the classical Wigner case in
Bai [1999].

Example 2: Chung-Lu Random Graph. Let (di)i∈[n] be a graphical se-
quence and denote by m1 =

∑
i di and m∞ = maxi di, the total and the max-

imum degree, respectively. Let f be defined on [0, 1]2 as

f(x, y) = xy ∧ 1

and

wi =
di
m∞

, εN =
m2
∞

m1
.

We can choose an appropriate degree sequence (di)i≥1 such that m∞ = o(
√
m1)

and NεN → λ. The connection probabilities will be given by

pclij = εN

(
didj
m2
∞

∧ 1

)
=
didj
m1

.
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(a) λ = 5. (b) λ = 10.

Figure 2.1: The homogeneous Erdős-Rényi Random Graph on 10,000 vertices.

Let oN be a uniformly chosen vertex and doN be the degree of this vertex.
We assume that

doN
m∞

d→W

where W has law µw which is compactly supported. Then the conditions of
Theorem 2.3.7 are satisfied. Hence there exists a limiting spectral distribution
which we call µCL,λ and the even moments can identified in the following way.

Let SSℓ(2k) be the set of Special Symmetric partitions with ℓ blocks. Then,∫
R
x2kµCL,λ(dx) =

k∑
ℓ=1

∑
π∈SSℓ(2k)

λℓ−kt(Gγπ, f, µw)

=
2k∑
ℓ=1

∑
π∈SSℓ(2k)

λℓ−k
|γπ|∏
j=1

∫
R
xbj(γπ)µw(dx) ,

where b1(σ), · · · , b#σ(σ) denotes the size of the blocks of a partition σ. For σ ∈
NC2(k), its Kreweras complement K(σ) is the maximal non-crossing partition
σ̄ of {1̄, . . . , k̄}, such that σ ∪ σ̄ is a non-crossing partition of {1̄, 1, . . . , k̄, k}.
For example,

K ({{1, 2}, {3, 4}, {5, 6}}) = {{1}, {2, 4, 6}, {3}, {5}},
K ({({1, 2}, {3, 6}, {4, 5}, {7, 8}}) = {{1, 3, 7}, {4, 6}, {2}, {5}, {8}}.

Note that this slightly differs from the standard notation of Kreweras comple-
ment in Nica and Speicher [2006] but for pairings, the π and π−1 coincide. It
follows easily that when π ∈ NC2(2k), γπ can be replaced by K(π). The benefit
of this representation is the following. It follows from [Nica and Speicher, 2006,
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Page 228] that∫
R
x2k(µw ⊠ µs)(dx) =

∑
π∈NC2(2k)

k+1∏
j=1

∫
R
xbj(K(π))µw(dx),

where µw ⊠ µs is the free multiplicative convolution of the measures µw and
semicircle law µs. Hence the moments of µCL,λ can be written as∫

R
x2kµCL,λ(dx) =

∫
R
x2k(µw ⊠ µs)(dx)

+
k−1∑
ℓ=1

∑
π∈SSℓ(2k)

λℓ−k
|γπ|∏
j=1

∫
R
xbj(γπ)µw(dx) .

This also shows that

lim
λ→∞

∫
R
x2kµCL,λ(dx) =

∫
R
x2k(µw ⊠ µs)(dx),

and consequently, µf is of the form µw ⊠ µs.

Remark 2.3.13.
We want to add a remark about heavy-tailed degrees. Our conditions are not
satisfied when the degree sequence follows a power-law distribution. In that case,
the wi need to be scaled differently, and the limiting W will not have a compact
support. For further discussion on inhomogeneous random graphs with heavy
tails, we refer to [van der Hofstad, 2017, Chapter 6].

Example 3: Generalised random graph. Again, let (di) be as above. Let
f(x, y) = xy

1+xy and wi = d1/
√
m1. Then,

pgrgij =
didj

m1 + didj
.

Although the above example does not directly fall in our set-up (due to lack of
εN ), one can still derive the limiting spectral distribution using the Chung-Lu
model. We will use the following two facts. The first is a fact, which is the
Hoffman-Wielandt inequality from [Bai, 1999, Corollary A.41].

Fact 2.3.14.
If dL denotes the Lévy distance between two probability measures, then for N×N
symmetric matrices A and B,

d3L (ESD(A),ESD(B)) ≤ 1

N
Tr
(
(A−B)2

)
.
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The following is a fact about the coupling of two Bernoulli random variables
with parameters p and q (see [van der Hofstad, 2024, Theorem 2.9])

Fact 2.3.15.
There exits a coupling between X ∼ Ber(p) and Y ∼ Ber(q) such that

P(X ̸= Y ) = |p− q|.

Using the above coupling, we can construct a sequence of independent Bernoulli
random variables (bij) and (cij) with parameters pclij and qgrgij , respectively. Let
Mcl

N and Mgrg
N be the adjacency matrices of Chung-Lu and generalised random

graph models, respectively, with the above coupled Bernoulli random variables.
Suppose the sequence (di)i∈[n] satisfies the assumptions described in Example 2
and let NεN → λ and Acl

N = λ−1/2Mcl
N and Agrg

N = λ−1/2Mgrg
N . Then,

E
[
d3L

(
ESD(Acl

N ),ESD(Agrg
N )
)]

≤ 1

N
E
[
Tr(Acl

N −Agrg
N )2

]
=

1

Nλ
E

 N∑
i,j=1

(bij − cij)
2


=

1

λN
E

 N∑
i,j=1

(bij − cij)
2
1{bij ̸=cij}


≤ 1

λN

N∑
i,j=1

P(bij ̸= cij) ≤
1

λN

N∑
i,j=1

∣∣∣pclij − pgrgij

∣∣∣ ,
since (bij − cij)

2 can be trivially bounded by 1. Using x− x
1+x ≤ x2

1+x ≤ x2 for
any x > 0, we have

pclij − pgrgij =
didj
m1

− didj
m1 + didj

≤
d2i d

2
j

m2
1

≤ m4
∞

m2
1

.

Therefore

E
[
d3L

(
ESD(Acl

N ),ESD(Agrg
N )
)]

≤ C

λN

N∑
i,j=1

m4
∞

m2
1

=
C

λN
N2m

4
∞

m2
1

≤ O

(
Nm4

∞
m2

1

)
.

If we consider m∞ = o(m
1/4
1 ), then the empirical distribution functions

are close. Now using Markov inequality and the fact that ESD(Acl
N ) converges

weakly in probability to µCL,λ it follows that

lim
N→∞

ESD(Agrg
N ) = µCL,λ weakly in probability.
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Example 4: Norros-Reittu. Let (di)i be a given sequence and wi =
di√
m1

.
Take f(x, y) = 1− exp(−xy). Then,

pnrij = 1− exp

(
−didj
m1

)
.

Again, the form of the above connection probability does not fall directly in our
set-up, but we can show that Norros-Reittu model is close to the generalised
random graph models. Let Anr

N = λ−1/2Mnr
N where Mnr

N is the adjacency of the
Norros-Reittu model. Without loss of generality, we assume that we can couple
Bernoulli random variable cij and dij with parameters pgrgij and pnrij using Fact
2.3.15. Just as in the previous example, it follows using Fact 2.3.14 that

E
[
d3L
(
ESD(Agrg

N ),ESD(Anr
N )
)]

≤ 1

λN

N∑
i,j=1

E
[
(cij − dij)

21{cij ̸=dij}

]
.

We bound trivially (cij − dij)
2 by a constant C1 > 0 and hence we get that

E
[
d3L
(
ESD(Agrg

N ),ESD(Anr
N )
)]

≤ C1

λN

N∑
i,j=1

P (cij ̸= dij)

=
C1

λN

∑
i ̸=j

(pnrij − pgrgij ) .

Now, for i ̸= j,

pnrij − pgrgij =

(
1− exp

(
−didj
m1

)
− didj
m1 + didj

)
=

(
d2i d

2
j

m2
1 +m1didj

)
+
λ

N
O

(
d2i d

2
j

m2
1

)

≤ C ′
d2i d

2
j

m2
1

,

for some constant C ′ > 0. Therefore, for some new constant C ′1 > 0,

E
[
d3L
(
ESD(Agrg

N ),ESD(Anr
N )
)]

≤ C ′1
λN

m2
2

m2
1

(2.21)

where m2 =
∑N

i=1 d
2
i . Since W has compact support, we have that m2

Nm∞
→

E[W 2] and m1
Nm∞

→ E[W ]. So m2
2

m2
1

is bounded for large N and hence the right
hand side of (2.21) goes to 0. This shows that

lim
N→∞

ESD(Anr
N ) = µCL,λ weakly in probability.
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Figure 2.2: Spectral distributions for the Chung-Lu random graph, the generalised ran-
dom graph, and the Norros-Reittu random graph on 10,000 vertices with {di}i uniformly
generated integers in [1, 5]

Example 5: Inhomogeneous Random Graphs. Let wi = i
N and f :

[0, 1]2 → [0, 1] be any continuous function. Then,

pij = εNf

(
i

N
,
j

N

)
.

This is a case which falls directly into our set-up if we assume NεN → λ and
the measure µw is the Lebesgue measure. The other examples considered in this
section are mostly of the rank-1 type but through this example, one can achieve
limiting measures which are of a wide variety.

(a) λ = 5. (b) λ = 10.

Figure 2.3: The Inhomogeneous Random Graph on 10,000 vertices, with the inhomo-
geneity function f(x, y) = r1(x)r1(y) + r2(x)r2(y), where r1(x) = x

1+x and r2(x) = x.

We note that in van der Hofstad [2024], inhomogeneous random graphs are
introduced in a much more abstract setting, following the works of Bollobás et al.
[2007]. The connectivity function f is generally continuous and also satisfies
reducibility properties. The above examples also fall under the setup described
there.
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§2.4 Existence, uniqueness, and moments

In this section we will prove the main result Theorem 2.3.7 using the method of
moments.

We begin with a small observation. Recall from Assumption A.3 that if oN
is an uniformly chosen vertex and WN = woN and we assume WN

d−→ W . This
means that WN has a distribution function FN (x) given by

FN (x) =
1

N

N∑
i=1

1{wi≤x}

and if we denote by F the distribution of W then for any continuity point x of
F we have

FN (x) → F (x).

Also for any bounded continuous function g, we have E[g(WN )] → E[g(W )].
Let o1, . . . , ok be i.i.d. Uniform random variables on [N ]. Let WN,i = woi for
i = 1, . . . , k. Then

(WN,1, ...,WN,k)
d−→ (W1,W2, ...,Wk)

where W1, . . . ,Wk are k independent copies of the limiting variable W . Hence
for any bounded continuous g in k-variables we have

E [g(WN,1, . . . ,WN,k)] → E [g(W1, . . . ,Wk)] . (2.22)

In our model, we can allow self-loops as we are not imposing that f(x, x) = 0

but the presence of self-loops does not affect the ESD. The following lemma
shows that we can remove the self-loops.

Lemma 2.4.1 (Diagonal contribution).
Let ÃN be the matrix AN with zero on the diagonal, and let dL denote the Lévy
distance. Then,

dL

(
ESD(ÃN ),ESD(AN )

)
P−→ 0 .

In particular, if ESD(AN ) converges weakly in probability to µλ, then so will
ESD(ÃN ) and visa-versa.

Proof. Let DN denote the diagonal of AN . Then, DN = AN − ÃN . Using Fact
2.3.14 we have

d3L

(
ESD(ÃN ),ESD(AN )

)
≤ 1

N
Tr(D2

N ) =
1

Nλ

∑
1≤i≤N

a2ii .
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Hence we have

E
[
d3L

(
ESD(ÃN ),ESD(AN )

)]
≤

√
λ

N2

∑
1≤i≤N

f (wi, wi)

≤ Cf

√
λ

N
,

for some constant Cf , which comes from the fact that f is bounded. The result
follows using Markov’s inequality.

We are now ready to begin with the proofs of the main results.

§2.4.1 Expected Moments
We split up the proof into three parts. To ease the notation we abbreviate the
empirical spectral distribution and its expectation as

µN,λ(·) = ESD(AN )(·) and µ̄N,λ(·) = E[ESD[AN ]](·) = 1

N

N∑
i=1

P(λi ∈ ·) .

(2.23)
Note that µ̄N,λ is now a deterministic measure, for which we compute the mo-
ments as∫

xkµ̄N,λ(dx) =
1

N

N∑
i=1

∫
R
xkP(λi ∈ dx) =

1

N

N∑
i=1

E[λki ] = E[tr(Ak
N )] ,

where tr denotes the normalised trace. Using the trace formula it follows that

E[tr(Ak
N )] =

1

N
E[Tr(Ak

N )] =
1

Nλk/2

∑
1≤i1,i2,...,ik≤N

E[ai1i2ai2i3 ...aiki1 ] , (2.24)

where aij are entries of the adjacency matrix M. We compute the expected mo-
ments and demonstrate that they are finite. Subsequently, we establish a con-
centration result to show that the moments of the empirical measure converge
to mk in probability. Next, we prove that the sequence mk satisfies Carleman’s
condition, thereby uniquely determining the limiting measure.

Let SS(k) be the set of Special Symmetric partitions, and γ = (1, 2, . . . , k)

be the cyclic permutation. For the following computations, one has to read the
partition π as a permutation, with elements of a block in the partition set in an
ascending manner in the permutation. That is, if π = {{1, 2, 5, 6}, {3, 4}}, then
the corresponding permutation is (1, 2, 5, 6)(3, 4).
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Lemma 2.4.2 (Expected moments).
Let µN,λ be the ESD of AN and µ̄N,λ = EµN,λ. Let γπ be decomposed into
blocks of the form

γπ = {V1, V2, . . . , Vm}.

where m = |γπ| be the number of blocks. Define Fγπ as

Fγπ := {i ∈ Nk | ij = ij′ if and only if there exists l ∈ [m] s.t. j, j′ ∈ Vl}.
(2.25)

Then,∫
xkµ̄N,λ(dx) = (2.26)O(λk/2N−1), k odd∑
π∈SS(k)

λ|γπ|−1−k/2
∑

i∈Fγπ

1
N |γπ|

∏
(a,b)∈Eγπ

f (wia , wib) + O(λk/2N−1), k even .

(2.27)

Example 2.4.3.
For k = 4, take π = {{1, 2}, {3, 4}}. Then, γπ = {{1, 3}, {2}, {4}}. We see that
tuples of the form (1, 2, 1, 3) and (2, 3, 2, 4) belong in Fγπ.

Proof of Lemma 2.4.2. Recall from (2.24) that

1

Nλk/2
E[Tr(Ak

N )] =
1

Nλk/2

∑
i∈Nk

E[ai1i2ai2i3 ...aiki1 ],

where i = (i1, . . . , ik). The term ai1i2ai2i3 ...aiki1 is associated with the closed
walk i1i2 . . . iki1. Let the set of distinct vertices and edges along a closed walk
correspond to a k-tuple i be denoted by V (i) and E(i), respectively. An edge
that connects vertices ij and ij+1, will be denoted by e = (ij , ij+1). Without
loss of generality, we assume that in V (i) we assign the positions where the first
of distinct indices appear in i.

For example, for the 4-tuple i = (1, 2, 1, 3), we have V (i) = {1, 2, 4}. So,
E(i) = {(1, 2), (1, 4)}. Since

ai1i2ai2i3 ...aiki1 = 1 if and only alal+1 = 1 for all (l, l + 1) ∈ E(i)

we can rewrite (2.24) as

1

Nλk/2
E[Tr(Ak

N )] =
1

Nλk/2

∑
1≤ij≤N :j∈V (i)

(
λ

N

)|E(i)| ∏
(a,b)∈E(i)

f(wia , wib) .

(2.28)
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Let π be a partition of [k] := {1, 2, . . . , k} and γπ = {V1, V2, . . . , Vm}, where
m = |γπ|. Recall the definition of Fγπ as in (2.25) and also the graph Gγπ

corresponding to γπ as in Definition 2.3.4. Note that for a fixed i ∈ Fγπ,
V (i) = Vγπ and E(i) = Eγπ. Moreover, if i, i′ ∈ Fγπ, then V (i) = V (i′) and
E(i) = E(i′). Using this formulation, we can rewrite our summation in (2.28)
once again as

1

Nλk/2
E[Tr(Ak

N )] =
1

Nλk/2

∑
π∈P(k)

∑
i∈Fγπ

(
λ

N

)|Eγπ | ∏
(a,b)∈Eγπ

f (wia , wib) .

Since |γπ| = |V (i)|, we can multiply and divide by N |γπ| to get

1

Nλk/2
E[Tr(Ak

N )]

=
∑

π∈P(k)

1

N |γπ|

∑
i∈Fγπ

λ|Eγπ |−k/2N |γπ|−|Eγπ |−1
∏

(a,b)∈Eγπ

f (wia , wib) .

Note that since f is bounded, then the product is bounded. For a fixed k and
a partition π of [k], |Eγπ| ≤ k. One can also see that |Fγπ| ∼ N |γπ|. We thus
focus only on λ|Eγπ |−k/2N |γπ|−|Eγπ |−1. For this to contribute, a tuple i must
yield a tree structure in Gγπ, this will give us |V (i)| = |E(i)|+ 1, which would
imply |γπ| = |Eγπ| + 1. In particular, all tuples i ∈ Fγπ such that Gγπ is a
coloured rooted tree as defined in Definition 2.3.4 contribute to the summation.

For other graphs with |V (i)| < |E(i)|+ 1, the leading error would be of the
order O(N−1). The leading order error is given when Gγπ is a k-cycle and hence
the error is of the order of λk/2N−1. Thus, our sum reduces to

1

Nλk/2
E[Tr(Ak

N )]

=
∑

π∈P(k):
Gγπ is a

rooted labelled tree

∑
i∈Fγπ

λ|Eγπ |−k/2 1

N |γπ|

∏
(a,b)∈Eγπ

f (wia , wib) + O(λk/2N−1).

Thus rewriting the expression with |Eγπ| = |γπ|+ 1 we get,

1

Nλk/2
E[Tr(Ak

N )] (2.29)

=
∑

π∈P(k):
Gγπ is a

rooted labelled tree

λ|γπ|+1−k/2
∑

i∈Fγπ

1

N |γπ|

∏
(a,b)∈Eγπ

f (wia , wib) + O(λk/2N−1).

(2.30)
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Remark 2.4.4.
We would like to remark here that if there exists an edge e, such that it is
traversed only once in the closed walk, then the graph cannot be a tree. Consider,
without loss of generality, that this edge e is (1, 2), with 1 ∈ V1 and 2 ∈ V2, as
in figure 2.4, where V1, V2 ∈ γπ. Here C1 and C2 are the remaining components
of the graph Gγπ.

V2V1C1 C2

Figure 2.4: Graph associated to γπ having blocks V1 and V2 with the edge between them
traversed only once.

Thus, since the closed walk 1 → 2, 2 → 3, . . . k → 1 has to return back to V1,
it has to do so via C1 since the edge e cannot be traversed again. Clearly, this
will form a cycle in the graph. Thus, every edge must be traversed at least twice.

It is well-known (see Nica and Speicher [2006]) that for π ∈ NC2(k) if and only
if |γπ| = 1+k/2, but in the above setting we shall see that other partitions will
also contribute as |Fγπ| ∼ N |γπ|. In particular, we need to sum over only those
π that give rise to a tree structure. We show in a series of characterizations that
the resulting partitions are SS(k).

Characterising partitions
Recall from Definition 2.3.4 that to construct a graph Gγπ associated with
a partition π of [k], we need to evaluate γπ to construct the vertex set and
then perform a closed walk. We prove a property that will play a key role in
characterising partitions in the proof of Theorem 2.3.7.

Property 1: Block characterisation. For π ∈ P(k) with γπ = {V1, . . . , Vl},
if Gγπ has a tree structure, then all elements of a block Vj , ∀ 1 ≤ j ≤ l, have
either all odd elements or all even elements.

Proof of Property 1. For simplicity, we show that the first block has this prop-
erty. Assume that V1 has all odd elements except one special element a ∈ [k].
We assume that element ‘1’ belongs to V1.

Recall from the definition of Gγπ that we first perform a closed walk on [k]

as 1 → 2 → 3 → . . . → k → 1, and then collapse elements of the same block of
γπ into a single vertex. Thus, if a − 1 (or a + 1) belongs to V1, then we get a
self-loop since a− 1 and a collapse to the same vertex and the edge a− 1 → a

(or a→ a+ 1) forms a loop, which does not give a tree structure. Hence a− 1

(respectively a+ 1) is not in V1.
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Now, suppose a − 1 ∈ Vj for some j ̸= 1. Then, there exists a path from
V1 to Vj of length t > 1, since if t = 1, the closed walk 1 → 2 → . . . would
imply that a−2 ∈ V1, which contradicts our claim. Now, if t > 1, the next edge
{a − 1 → a} from the closed walk will be from Vj to V1, leading to a cycle in
the graph. Thus, violating property 1 yields a graph that is not a tree.

Property 2: Initial characterisation of π. If π ∈ P(k) then in any block
of π, no two consecutive elements can either be both odd or both even.

Proof of Property 2. Suppose a1 and a2 belong in the same block of π with no
elements between them, and a1 < a2, either both even or both odd. Then in
γπ, a1 and a2 + 1 belong in the same block, which contradicts Property 1.

Property 3: Diagonal terms. If π is a contributing partition, then for any
i = (i1, . . . , ik) in Fγπ, each element of i must be pairwise distinct, that is,
i1 ̸= i2, i2 ̸= i3, . . . , ik−1 ̸= ik.

Proof of Property 3. Suppose not, and assume ia = ia+1 for some 1 ≤ a ≤ k−1.
Then, in γπ, ‘a’ and ‘a+1’ belong to the same block. This contradicts Property
1.

We now use the above properties for further characterisation of the partitions.

Lemma 2.4.5.
Every block in π must be of even size.

Proof of Lemma 2.4.5. We prove this by contradiction. Consider an odd-sized
block V = {l1, . . . , lr} ∈ π with l1 < l2 < · · · < lr. Assume that l1 is odd. By
Property 2, l2 must be even, and by continuing the argument, we have that at
every even position, the element is even, and at odd positions, it is odd. Since
r is odd, and lr is in the rth position, which is an odd position, lr must be odd.
Then, in γπ, the element lr will map to the element l1 +1 which is even, which
contradicts Property 1. A similar argument holds when l1 is taken to be even.
This proves the result.

Corollary 2.4.6 (Vanishing odd moments).
The odd moments vanish as N → ∞.

Proof of Corollary 2.4.6. Recall that partitions whose graphs do not yield a tree
structure contribute to the error term with leading order O(N−1). For k odd,
every π ∈ SS(k) must have at least one block of odd size. Therefore, Lemma
2.4.5 is violated, and consequently, the odd moments vanish asymptotically.
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Proposition 2.4.7.
Let π ∈ P(k) such that Gγπ is a rooted labelled tree. Then π must satisfy the
following properties.

• All blocks of the partition must be of even size.

• Between any two successive elements of a block, there are sub-blocks of
even sizes.

Proof of Proposition 2.4.7. The first condition is already proved using Lemma
2.4.5. For the second condition, begin by considering a block B that is of the
form

B = {. . . , a1, a1 + 1, . . . , a1 + e, a2, . . .}

with a1−1 /∈ B, and there doesn’t exist any element a′ such that a1+e < a′ < a2
and a′ ∈ B. The sub-block here of interest is {a1, a1 + 1, . . . , a1 + e}. We claim
that this sub-block has an odd number of elements, or equivalently, e is an
even number. We can also assume, without loss of generality, that a1 is an odd
number. As a consequence of Property 2, a2 must be even. If we now evaluate
γπ using the above information, we have that γπ contains the following three
(and possibly more) blocks.

V1 = {. . . , a1, a1 + 2, . . . , a1 + e, a2 + 1, . . .},
V2 = {. . . , a1 + 1, a1 + 3, . . . , a1 + e− 1, a1 + e+ 1, . . .},
V3 = {. . . , a2, . . .}.

Thus, the graph associated with γπ will be as shown in Figure 2.5, where C1,
C2, and C3 are the remaining components of the graph.

V2V1

V3

C1 C2

C3

Figure 2.5: Graph associated to γπ having blocks V1, V2 and V3.

We now focus on the closed walk that occurs on the tuple [k]. Since this
is a closed walk, it does not matter if instead of beginning at 1, we begin at
an arbitrary element k1 ∈ [k] and perform {k1 → k1 + 1, . . . , k → 1, 1 →
2, . . . , k1 − 1 → k1}. So, we pick a1 as the starting point and consequently,
without loss of generality, we assume the walk begins at V1.
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The walk will immediately proceed to move back and forth between V1 and
V2 due to the path {a1 → a1 +1, a1 +1 → a1 +2, . . . , a1 + e→ a1 + e+1}, and
will eventually end at V2.

Now, the walk will jump from V2 into the component C2. On the other
hand, when the walk eventually enters V3, it will move at least once to V1, due
to the path {a2 → a2 + 1}. So, to preserve the tree structure, the walk must
first come back to V2 and then proceed to V3 via V1. Thus, there is an element
a′ such that a′ ∈ V2 and a′ + 1 ∈ V1, where a′ > a1 + e and a′ < a2. Therefore,
in γπ, a1+ e maps to a′+1. This implies that a1+ e and a′ belong to the same
block in π, and thus, a′ ∈ B. This contradicts our construction, and therefore,
the walk must form a cycle from V2 or C2 to either C1, C3 or V3.

Recall the definition of Special Symmetric Partitions as provided in Definition
2.3.1, where the two properties outlined in Proposition 2.4.7 are the main charac-
teristics. As a result, we have demonstrated (2.26), leading us to the conclusion
of the proof of Lemma 2.4.2.

We would now like to take limits in (2.26) and finally get the expression for
the moments. The following lemma is an easy consequence of Lemma 2.22 and
the fact that |Fγπ| ∼ N |γπ|.

Lemma 2.4.8.
Let π ∈ SS(k) and Fγπ be as in Lemma 2.4.2. Also, Gγπ = (Vγπ, Eγπ) be the
graph as in Definition 2.3.4.

lim
N→∞

∑
i∈Fγπ

1

N |γπ|

∏
(a,b)∈Eγπ

f (wia , wib)

=

∫
[0,∞)|γπ|

∏
(a,b)∈Eγπ

f(wa, wb)µ
⊗
|γπ|

w (dw). (2.31)

Now, going back to equation (2.29) and taking limits gives us

lim
N→∞

E[tr(Ak
N )] =

0, k odd∑
π∈SS(k)

λ|γπ|−1−k/2t(Gγπ, f, µw), k even . (2.32)

Now, the sum over SS(k) can be further split up as the sum over NC2(k) and
the remaining partitions. Moreover, for π ∈ SS(k), we have |Vγπ| = |γπ| ∈
{2, 3, . . . , k/2 + 1}. In particular, for π ∈ NC2(k), |γπ| = k/2 + 1, and when π
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is the full partition {{1, 2, . . . , k}}, |γπ| = 2. So, we can write

lim
N→∞

E[tr(Ak
N )] =

0, k odd∑
π∈NC2(k)

t(Gγπ, f, µw) +
k/2∑
l=2

∑
π∈SS(k)\NC2(k):

|γπ|=l

λl−1−k/2t(Gγπ, f, µw), k even .

(2.33)

§2.4.2 Concentration and uniqueness
We now show a concentration result to obtain convergence in probability.

Lemma 2.4.9 (Concentration of trace).
For all k ≥ 0, we have that

Var
[
tr(Ak

N )
]
= ON ((λN)−1) .

Proof. We shall proceed to compute the variance

Var
[
tr(Ak

N )
]
.

Let i and i′ denote the tuples

i = {i1, . . . , ik}, i′ = {ik+1, . . . , i2k}

and denote by P (i) the expectation

P (i) = E[ai1i2ai2i3 . . . aiki1 ] .

Similarly, we have

P (i′) = E[aik+1ik+2
aik+2ik+3

. . . ai2kik+1
] .

For the tuple i, we can define a closed walk as in the proof of Lemma 2.4.2 to
get a graph G(i) := (V (i), E(i)). In the same spirit, one can define G(i, i′) =
(V (i, i′), E(i, i′)), with the closed walk now performed as

1 → 2 → . . . k → 1, k + 1 → k + 2 → . . . 2k → k + 1 ,

where the jump from 1 to k + 1 is without an edge. Then, we can define

P (i, i′) = E[ai1i2ai2i3 . . . aiki1aik+1ik+2
. . . ai2kik+1

] .
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With this notation set up, one can see that

Var
[
tr(Ak

N )
]
=

1

N2

[
E[(Tr(Ak

N )2]− (E[Tr(Ak
N )])2

]
=

1

N2λk

N∑
i1,i2,...,ik,ik+1,...,i2k=1

P (i, i′)− P (i)P (i′) .
(2.34)

We remark here that the construction of the graph G(i, i′) is similar to how we
did in Lemma 2.4.2, with the essential difference being the closed walk structure
over two separate k−tuples.

Suppose that E(i) ∩ E(i′) = ϕ. Then by independence, (2.34) becomes 0.
Thus, we must have E(i)∩E(i′) ̸= ϕ. Moreover, due to remark 2.4.4, each term
must appear at least twice in P (i, i′), that is, each edge in E(i, i′) is traversed
at least twice. This implies that the maximum number of edges our graph can
have is k.

Next, note that the only way the graph G(i, i′) will be disconnected is when
the closed walk over the two k− tuples yields two disjoint graphs, and thus we
once again obtain P (i, i′) = P (i)P (i′).

Thus, our computation boils down to the case where G(i, i′) is a connected
graph, with each edge appearing at least twice, and E(i) ∩ E(i′) ̸= ϕ. Note
that one can have G(i, i′) to be connected and still have E(i) ∩ E(i′) = ϕ, for
example when i1 and ik+1 are collapsed into the same vertex. This gives us that
|V (i, i′)| ≤ |E(i, i′)|+ 1 ≤ k + 1. Using |f | ≤ Cf gives us that

Var
[
tr(Ak

N )
]
≤ Cf

1

N2λk
N |V |

(
λ

N

)|E|
= Cfλ

|E|−kN |V |−|E|−2 = ON (N−1) .

This completes the proof.

An immediate consequence from Chebychev’s inequality is that the moments
concentrate around their mean as N → ∞. In other words, for all k ≥ 1,

lim
N→∞

tr(Ak
N ) = mk(µλ) in probability,

where mk(µλ) are as in (2.10). To conclude Theorem 2.3.7, we now further
analyse the sequence {mk}k≥0, and show that it is unique for the measure µλ.
A measure µ is said to be uniquely determined by its moment sequence {mk}k≥0
if the following holds (Carleman’s condition):∑

k≥0
m
−1/2k
2k = ∞. (2.35)
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Lemma 2.4.10 (Uniqueness of moments).
For λ bounded away from 0, that is, λ > 0, the moments uniquely determine the
limiting spectral measure.

Proof. Let mk denote the kth moment. Since f is bounded, we have

m2k =
∑

π∈SS(2k)

λ|γπ|−1−k
∫
[0,1]|γπ|

∏
(ab)∈Eγπ

f(xa, xb)

|γπ|∏
i=1

µw(dxi)

≤
∑

π∈SS(2k)

C
|γπ|
f λ|γπ|−1−k

=
k+1∑
l=2

∑
π∈SS(2k):|γπ|=l

C l
fλ

l−1−k,

Let Ak be defined as

Ak =

{
1, if λ ≥ 1,

λ−k, if 1 > λ > 0.

Then,

m2k ≤ Ck+1
f Ak

k+1∑
l=2

|{π ∈ SS(2k) : |γπ| = l}|

≤ AkC
k+1
f |{SS(2k)}|

≤ AkC
k+1
f (2k)2k,

where the last inequality follows since SS(2k) ⊂ P (2k) and |P (2k)| is bounded
by 2k2k. Thus,

m
−1/2k
2k ≥ 1

2k
√
Cf

.
1

(AkCf )
1
2k

So, we have the series
∑

k≥1m
−1/2k
2k to be lower bounded by

∑
k≥1 ak, where

ak =
1

2k
√
Cf

.
1

(AkCf )
1
2k

=
1

C1ke
1
2k

log(AkCf )
.

Thus,

ak =

{
e−C2/2k

C1k
, for λ ≥ 1 ,

√
λe−C2/2k

C1k
, for λ < 1 .

Since e−x > 1− x, we see that the series
∑

k≥1 ak diverges, and consequently,∑
k≥0

m
−1/2k
2k = ∞.
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§2.5 Stieltjes Transform and analytic description

§2.5.1 Resolvent and Stieltjes Transform
We fix a z ∈ C+ throughout this argument, with ℑ(z) = η > 0. Recall that the
resolvent is given by

RAN
(z) := (AN − zI)−1, z ∈ C+.

The Stieltjes transform of the empirical spectral distribution of AN is given by

SAN
(z) =

∫
R

1

x− z
ESD(AN )(dx) = tr(RAN

(z)), (2.36)

where tr denotes the normalised trace.

Lemma 2.5.1 (Resolvent Properties).
For any z ∈ C+, 1 ≤ i, j ≤ N , the following properties are well-known for the
resolvent RA of an N ×N matrix A.

(i) Analytic: z 7→ RA(z)(i, j) is an analytic function on C+ → C+.

(ii) Bounded : ∥RA(z)∥op ≤ ℑ(z)−1, where ∥·∥op denotes the operator norm.

(iii) Normal : RA(z)RA(z)∗ = RA(z)
∗RA(z).

(iv) Diagonals are bounded: |RA(z)(i, j)| ≤ ℑ(z)−1.

(v) Trace bounded: | tr(RA(z))| ≤ ℑ(z)−1. In particular,∣∣tr(Rp
A(z))

∣∣ ≤ ℑ(z)−p, for any p ≥ 1.

For the first three properties see [Bordenave, 2019, Chapter 3]. Note that
the property (iv) follows from (iii) by the following argument:

|RA(z)(i, j)| ≤ |⟨δi, RA(z)δj⟩| ≤ sup
v:∥v∥=1

|⟨δi,RA(z)δj⟩| = ∥RA(z)∥op.

The last property (v) follows from (iv). We now state the Ward’s identity, for
which we refer the reader to [Erdős and Yau, 2017, Lemma 8.3].

Lemma 2.5.2 (Ward’s identity).
Let A be a Hermitian matrix and RA be the resolvent. Let z ∈ C+. Then for
any fixed k, we have ∑

l ̸=k

|RA(l, k)|2 = 1

η
ℑ(RA(k, k)).
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Since we have already shown in the previous section limn→∞ ESD(AN ) = µλ
weakly in probability and hence it follows that for any z ∈ C+

lim
N→∞

SAN
(z) → Sµλ

(z).

Due to the involved structure of the moments, it is not immediately evident
what the limiting Stieltjes transform looks like.

Recall the notation of expected empirical spectral distribution of AN from
(2.23). Let S̄AN

(z) denote the Stieltjes transform of µ̄N,λ. Notice that S̄AN
(z) =

E[SAN
(z)]. It is known that if a measure µN converges weakly in probability to a

measure µ, then the corresponding Stieltjes transforms converge. In particular,
we have the following lemma.

Lemma 2.5.3.
Anderson et al. [2010, Theorem 2.4.4] A sequence of measures µN converge
weakly in probability to a measure µ if and only if SµN (z) converges in probability
to Sµ(z) for each z ∈ C+.

Thus, we compute an expression for the expected Stieltjes transform SĀN
, and

using convergence in probability from Theorem 2.3.7, we can claim that the
Stieltjes transform SAN

(z) converges in probability to the same expression. For
ease of notation we shall denote by rNkk(z) := RAN

(z)(k, k) for 1 ≤ k ≤ N .
The following identity can be found in Abramowitz and Stegun [1964]. For

any complex number z ∈ C+, we have for all u ≥ 0,

eι̇uz = 1−
√
u

∫ ∞
0

J1(2
√
uv)√
v

e−ι̇vz
−1

d v, (2.37)

where J1(x) is the first-order Bessel function of the first kind given by (2.16).
Note that for all x ≥ 0, | J1(x)| ≤ 1 (see [Abramowitz and Stegun, 1964, Chapter
9]). We know that the resolvent maps the upper half complex plane to the upper
half complex plane. Thus, we begin by fixing rNjj(z), the jth diagonal entry of
the N ×N resolvent matrix, as our complex variable in C+. So we can get

eι̇ur
N
jj(z) = 1−

√
u

∫ ∞
0

J1(2
√
uv)√
v

e−ι̇v(r
N
jj)

−1

d v . (2.38)

If we look at
∑N

j=1 e
ι̇urNjj(z) then the relation between the Stieltjes transform

and the above equation becomes apparent. It turns out that

SAN
(z) =

∂

∂u

1

N

N∑
j=1

eι̇ur
N
jj(z)

∣∣∣∣∣∣
u=0

. (2.39)
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To understand the Stieltjes transform we will first try to understand the
behaviour of (2.38). We will adapt the approach of Khorunzhy et al. [2004].
For ease of notation, for what follows, ∥ · ∥ will denote the norm ∥ · ∥B as defined
in (2.11), unless stated otherwise.

Proposition 2.5.4.
Let rNjj := rNjj(z) denote the jth diagonal entry of the resolvent RAN

(z). Let

dj =
1

N

N∑
k=1

f(wj , wk) (2.40)

and for any b > 0 define the function gN : (0,∞)× (0,∞)×C+ → C as follows

gN (x, b, z) :=
1

N

N∑
k=1

f(x,wk)e
ι̇brNkk(z) . (2.41)

Then, for any z ∈ C+,

E[er
N
jj ] = 1−e−λdj

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v+qN,λ(u, z) , (2.42)

where qN,λ(u, z) = O
(

λ
√
u

η5/2
√
N

)
.

We begin by stating two results we use in this proof. Note that we conveniently
drop the dependence on z for rNjj(z), since we fix z ∈ C+ throughout and hence
just use the notation rNjj .

Fact 2.5.5 (Exponential Inequalities).
The following holds for any real numbers a, b ∈ R and complex numbers z1, z2 ∈
C+.

|eaι̇z1 − eaι̇z2 | ≤ |a∥z1 − z2| (2.43)

|ea − eb| ≤ |a− b|e|a|+|b| (2.44)

Proof of Proposition 2.5.4. For the resolvent of a matrix with zero diagonal, we
have the relation

rNjj = −

z + ∑
k,l ̸=j

r̃N−1kl akjalj

−1 ,
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for any diagonal element rNjj of the resolvent RAN
(z), where r̃N−1kl := r̃N−1kl (z)

are the entries of the resolvent of A
(j)
N−1 in z ∈ C+, which is the adjacency

matrix with deleted jth row and column. Plugging into (2.37) yields

eι̇ur
N
jj = 1−

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vz exp

ι̇v ∑
k,l ̸=j

r̃N−1kl akjalj

 d v . (2.45)

Adding and subtracting the appropriate exponential to (2.45) yields

eι̇ur
N
jj = 1−

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vz exp

ι̇v∑
k ̸=j

r̃N−1kk a2kj

d v + E1 , (2.46)

where E1 is an error term given by

E1 =

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vz

exp

ι̇v ∑
k,l ̸=j

r̃N−1kl akjalj

− exp

ι̇v∑
k ̸=j

r̃N−1kk a2kj

 d v .

It is easy to see that for z ∈ C+ with ℜ(z) = ζ ∈ R and ℑ(z) = η > 0, we have
|eι̇vz| = |eι̇ζve−ηv| ≤ e−ηv. Thus,

|E1| =∣∣∣∣∣∣√u
∫ ∞
0

J1(2
√
uv)√
v

eι̇vz

exp

ι̇v ∑
k,l ̸=j

r̃N−1kl akjalj

− exp

ι̇v∑
k ̸=j

r̃N−1kk a2kj

d v

∣∣∣∣∣∣
≤

√
u

∫ ∞
0

ve−ηv√
v

∑
k≤N

∑
l ̸=k

|r̃N−1kl |akjalj d v

=

(√
u

∫ ∞
0

√
ve−ηv d v

)∑
k≤N

∑
l ̸=k

|r̃N−1kl |akjalj

(2.47)

where in the last step, we use inequality (2.43) and the bound | J1(x)| ≤ 1 for
x ≥ 0. Note that in the last sum in (2.47), the entries akj and alj are independent
of one another, and of r̃N−1kl . Thus, since f is bounded by a constant Cf , taking
expectation on the summation gives us

E

∑
l ̸=k

|r̃N−1kl |akjalj

 ≤
λC2

f

N2

∑
l ̸=k

|r̃N−1kl | (2.48)
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since aij are distributed as Bernoulli random variables with parameter pij , and
are scaled by a factor λ−1/2. Using (2.48) and taking expectation in (2.47) gives
us

E [|E1|] ≤ C2
f

√
u

∫ ∞
0

√
ve−ηvλ

N2

∑
k≤N

∑
l ̸=k

E[|r̃N−1kl |] d v

≤ C2
f

√
u

∫ ∞
0

√
ve−ηvλ

N
√
N

E

∑
k≤N

∑
l ̸=k

|r̃N−1kl |2
 1

2

d v (Cauchy-Schwarz)

≤ C2
f

√
u

∫ ∞
0

√
ve−ηvλ

N
√
Nη

E

∑
k≤N

(ℑ(r̃N−1kk ))
1
2

d v (using Lemma 2.5.2)

≤ C2
f

√
u

∫ ∞
0

√
ve−ηvλ√
Nη

d v (using property (iv) from Lemma 2.5.1)

= C2
f

√
uλ

η5/2
√
N

∫ ∞
0

√
ηve−ηv d (ηv) = O

(
λ
√
u

η5/2
√
N

)
,

where in the last step we do a change of variable ηv = v′ to show the integral is
finite. So, if we now take an expectation in (2.46), we get

E[eι̇ur
N
jj ] = 1−

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj

d v+qN,λ(u, z),

(2.49)
where qN,λ(u, z) = O

(
λ
√
u

η5/2
√
N

)
. Note that the expectation could be pulled in-

side the integral in (2.46) using Fubini’s Theorem since the integral is bounded
above by a constant. To evaluate the expectation inside (2.49), we use a condi-
tioning argument as follows. We have

E

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj

 = E

E
exp

 ι̇v∑
k ̸=j

r̃N−1kk a2kj

∣∣∣∣∣∣A(j)
N−1

 .
Evaluating the conditional expectation yields
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E

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj


= E

[
N∏
k=1

(
1− λ

N
f(wk, wj) +

λ

N
f(wk, wj)e

ι̇vr̃N−1
kk /λ

)]

= E

[
N∏
k=1

(
1 +

λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

))]

= E

[
N∏
k=1

(
exp

(
λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

))
+ q′k(N,λ)

)]
, (2.50)

where q′k(N,λ) is an error given by

q′k(N,λ)

= 1 +
λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

)
− exp

(
λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

))
.

Since |eι̇vr̃
N−1
kk /λ − 1| ≤ 2, doing a Taylor expansion for the exponential term in

q′k(N,λ) gives us

|q′k(N,λ)| ≤
4C2

fλ
2

N2
= O

(
λ2

N2

)
. (2.51)

We can write

E

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj


= E

[
N∏
k=1

(
exp

(
λ

N
f(wk, wj)

(
eι̇vr̃

N−1
kk /λ − 1

)))]
+ E[E2] , (2.52)

where E2 is an expression involving all the other terms of the product in (2.50).
To get the order of E2, we take a supremum over k in (2.50) and compute
the binomial expansion of the form (a + b)N modulo the leading term aN . In
particular, since |eι̇vr̃

N−1
kk /λ − 1| ≤ 2, and again using (2.51), we have

|E2| ≤
N∑
j=1

(
N

j

)(
e

2λCf
N

)N−j
(
4C2

fλ
2

N2

)j

,
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which for some constant Ca > 0 and N large enough further simplifies to

|E2| ≤ Ca

N∑
j=1

(2Cfλ)
2jN je−

2jλCf
N N−2j

= Ca

N∑
j=1

(2Cfλ)
2jN−je−

2jλCf
N = Ca

4Cfλ
2N−1e−

2λCf
N

1− 4Cfλ2N−1e
−

2λCf
N

,

where the last equality is due to the sum being a geometric series. Thus,

|E2| = O

(
λ2

N

)
, (2.53)

which is a faster error than qN,λ(u, z) so we can later absorb it into the existing
error of (2.49). Thus, using (2.53), we can rewrite (2.52) as

E

exp
ι̇v∑

k ̸=j

r̃N−1kk a2kj

 = E
[
e−λdj exp

(
λg̃N−1

(
wj ,

v

λ
, z
))]

+O

(
λ2

N

)
(2.54)

where

dj =
1

N

N∑
k=1

f(wj , wk) and g̃N−1(wj , b, z) =
N∑
k=1

f(wj , wk)e
ι̇br̃N−1

kk . (2.55)

Note that g̃N is a bounded function and is bounded above by Cf . To get the
error down from the exponent, we again use inequality (2.44).

To conclude the proof of the proposition, we need to return to an expression
involving terms of the form rNkk of the original resolvent. To do so, we do an
interpolation argument. Let 0 ≤ t ≤ 1 and define At

N = (1 − t)AN + tA
(j)
N−1

with the resolvent RAt
N
(z), whose entries we denote by rNkl(t) := rNkl(z, t), that

also implicitly depends on z but we drop that for convenience of notation. Also,
define

gt
N (wj , b, z) =

1

N

N∑
i=1

f(wi, wj)e
ι̇brNkk(t) .

We remark using property (i) from Lemma 2.5.1 that gt
N is also bounded above

by Cf for all values of t, since the complex exponential eι̇brNkk(t) is bounded by 1
for any b ≥ 0 and 1 ≤ k ≤ N . In particular, we have that |gN (x, b, z)| ≤ Cf for
all x, b ≥ 0.
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Our target function is gN (wj , b, z) = 1
N

N∑
i=1

f(wi, wj)e
ι̇brNkk . By the funda-

mental theorem of calculus,

|gN (wj , b, z)− g̃N−1(wj , b, z)| =
∣∣g0

N (wj , b, z)− g1
N (wj , b, z)

∣∣
=

∣∣∣∣∫ 1

0

∂

∂t
gt
N d t

∣∣∣∣ =
∣∣∣∣∣
∫ 1

0

b

N

N∑
k=1

eι̇br
N
kk(t)

∂

∂t
rNkk(t)

∣∣∣∣∣ .
Now, RAt

N
(z) = (At

N − zI)−1 and thus, d
d t RAt

N
(z) = −RAt

N
(z)

dAt
N

d t RAt
N
(z).

Note that dAt
N

d t = −JN , where JN is given by

JN (k, l) =

{
0, if k, l ̸= j

akl, if k = j or l = j .

Thus,

|gN (wj , b, z)− g̃N−1(wj , b, z)|

=

∣∣∣∣∣∣
∫ 1

0

b

N

N∑
k=1

eι̇br
N
kk(t)

N∑
m,n=1

rNkm(t)
∂atmn

∂t
rNnk(t)

∣∣∣∣∣∣
=

∣∣∣∣∣
∫ 1

0

b

N

N∑
k=1

eι̇br
N
kk(t)

N∑
m=1

rNkm(t)amjr
N
jk(t) d t

∣∣∣∣∣
≤
∫ 1

0

b

N

N∑
k=1

N∑
m=1

|rNkm(t)amjr
N
jk(t)|d t (2.56)

since the complex exponential eι̇brNkk(t) is trivially bounded by 1 as rNkk(t) ∈ C+.
Then, using Cauchy-Schwarz and Lemma 2.5.2 in (2.56), we have

|gN (wj , b, z)− g̃N−1(wj , b, z)|

≤
∫ 1

0

b

N

N∑
k=1

|rNjk(t)|
(
ℑ(rNkk(t))

η

)1/2
(

N∑
m=1

a2mj

)1/2

d t .

Bounding ℑ(rNkk(t)) by 1/η (Property (iv) of Lemma 2.5.1) and taking expect-
ation, we get

E[|gN (wj , b, z)− g̃N−1(wj , b, z)|] ≤
∫ 1

0

b

Nη
E

 N∑
k=1

|rNjk(t)|

(
N∑

m=1

a2mj

)1/2
d t .

(2.57)
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Now, again using Cauchy-Schwarz and Lemma 2.5.2, we have for some constant
C ′ that

N∑
k=1

|rNjk(t)| ≤
√
N

(
N∑
k=1

|rNjk(t)|2
)1/2

≤ C ′
√
N

√
η
. (2.58)

Thus, using (2.58) and Jensen’s inequality on the function
√
X in (2.57), we get

E[|gN (wj , b, z)− g̃N−1(wj , b, z)|] ≤
∫ 1

0

b

Nη
E

C ′√N√
η

(
N∑

m=1

a2mj

)1/2
d t

≤ C ′
∫ 1

0

b√
Nη3/2

(
E

[
N∑

m=1

a2mj

])1/2

d t .

Since f is bounded, we have for some new constant C ′f that

E[|gN (wj , b, z)− g̃N−1(wj , b, z)|] ≤
C ′fb

√
λ

η3/2
√
N
.

Using the fact that gt
N is bounded by Cf for all t, we get

E[|eλg̃N−1 − eλgN |] ≤ E[|g̃N−1 − gN |]e2Cfλ = O

( √
λ

η3/2
√
N

)
.

Since this is an error of the same order as qN,λ(u, z), we can absorb it into the
existing error qN,λ. Finally, using (2.54) and the interpolation argument allows
us to write (2.49) as

E[eι̇ur
N
jj ] = 1− e−λdj

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v + qN,λ(u, z) ,

which proves the proposition.

Now, consider the expression (2.42) from the Proposition 2.5.4. If we multiply
throughout by f(x,wj) and then sum over j, and finally scale by N , we get

E[gN (x, u, z)] =
1

N

N∑
j=1

f(x,wj)

− 1

N

N∑
j=1

f(x,wj)e
−λdj√u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v

(2.59)

+ qN,λ(u, z) .
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Consider the space of Lipschitz functions Lip(R) defined as

Lip(R) =

{
h ∈ Cb(R) : sup

x
|h(x)| ≤ 1, sup

x̸=y

|h(x)− h(y)|
|x− y|

≤ CL, 0 < CL <∞

}
.

Now, under the bounded Lipshitz metric dBL(·, ·) given by

dBL(µ, ν) = sup
h∈Lip(R)

{∣∣∣∣∫ hdµ−
∫
hd ν

∣∣∣∣} ,

we have
µWN

=⇒ µw if and only if dBL(µWN
, µw) → 0,

where WN = woN for a uniformly chosen vertex oN . So, taking f to be Lipschitz
in one coordinate (and since we already have that f is bounded), the first term
in the RHS of (2.59) becomes

1

N

N∑
j=1

f(x,wj) =

∫
f(x, y)µWN

(d y) ≤ df (x) + EN , (2.60)

where EN = dBL(µWN
, µw).

Recall from (2.13) that we have

df (wj) :=

∫
f(x,wj)µw(dx).

Then, one simply gets

|e−λdj − e−λdf (wj)| ≤ λENe2λ. (2.61)

Thus, using (2.60) and (2.61) in (2.42) gives us

E[gN (x, u, z)]

= df (x)−
1

N

N∑
j=1

f(x,wj)e
−λdf (wj)

(√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v

)
(2.62)

+ q̃N,λ(u, z) ,

where
q̃N,λ(u, z) = qN,λ(u, z) + O(EN ).

Finally, for a fixed x ∈ [0,∞), define

Ig(y) = f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)
.

Then, we have the following lemma.
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Lemma 2.5.6.
Ig(y) is Lipschitz.

Proof. Consider Ig(y) as defined. Then,

|∂yIg(y)|

≤
∣∣∣∣∂yf(x, y)e−λdf (y)(√u∫ ∞

0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)∣∣∣∣
+

∣∣∣∣f(x, y)e−λdf (y)∂ydf (y)(√u∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)∣∣∣∣
+

∣∣∣∣f(x, y)e−λdf (y)(√u∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
∂ygN (y, v/λ, z) d v

)∣∣∣∣ .
(2.63)

Recall that a function is Lipschitz if and only if it has a bounded derivative.
Thus, if f is Lipschitz in y, the first term in (2.63) is uniformly bounded in y.
Moreover, this makes the second term in (2.63) bounded as well since

|∂ydf (y)| ≤
∫ ∞
0

|∂yf(x, y)|µw(dx) (2.64)

is bounded. To justify interchanging the derivative and the integral in (2.64),
we have to utilise Theorem 2.6.2 for which we need to verify the following
conditions.

• f(x, y) is µw−integrable for each y and the map y 7→ f(x, y) is continuous
for each x.

• For each x, the derivative ∂yf(x, y) exists.

• For each y, there is a µw−integrable function Ψy(x) and a neighbourhood
Uy containing y, such that for all y′ ∈ Uy, |∂y′f(x, y′)| ≤ Ψy(x).

The first and second are trivial to check, and by Lipschitz property, since
∂yf(x, y) ≡ const., we have Ψy(x) ≡ const, which is integrable on [0,∞) since
µw is a probability measure.

Finally, for notational convenience, let h(y, v) be denote

h(y, v) =
J1(2

√
uv)√
v

eι̇vzE
[
eλgN (y,v,z)

]
.

Once again, we need to verify the three conditions as above to apply Theorem
2.6.2. Note that h(y, v) is integrable with respect to v. Moreover,

∂yh(y, v) = h(y, v)∂ygN (y, v, z)
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where one can compute

∂ygN (y, v, z) =
1

N

N∑
k=1

∂yf(wk, y)e
ι̇vrkk ,

which again is bounded. Thus, ∂yh(y, v) exists, and is bounded above by
C0v

− 1
2 e−ηv, which is integrable with respect to v. This verifies the three con-

ditions and allows us to pull the derivative inside the third term in (2.63), and
also makes that term bounded. Thus, Ig(y) is Lipschitz.

Since Ig(y) is Lipschitz, we can exploit the weak convergence of µw under the
Lipschitz metric dBL in (2.62) to give us

E[gN (x, u, z)]

= df (x)

−
∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)
µw(d y)

(2.65)

+ q̃N,λ(u, z) .

Recall the Banach space as defined in (2.11), and consider ϕ ∈ (B, ∥ · ∥). In this
space, consider the map

Fz(ϕ)(x, u)

= df (x)−
√
u

∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ(y,
v
λ
,z) d v

)
µw(d y).

(2.66)

Note that ϕ also implicitly depends on z but we drop that for notational purposes
since we fix z throughout.

Take ϕ1, ϕ2 ∈ (B, ∥ · ∥) such that ∥ϕ1∥, ∥ϕ2∥ ≤ Cf . Then, using the norm we
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defined in (2.11) and inequality 2.44, from (2.66) we get

∥Fz(ϕ1)− Fz(ϕ2)∥

≤ sup
x,u≥0

√
1

1 + u

∣∣∣∣∫ ∞
0

f(x, y)e−λdf (y)

×
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vz
(
eλϕ1(y, vλ) − eλϕ2(y, vλ)

)
d v

)
µw(d y)

∣∣∣∣
≤ sup

u≥0

√
1

1 + u

∫ ∞
0

∫ ∞
0

λ√
v
e−ηv

∣∣∣ϕ1 (y, v
λ

)
− ϕ2

(
y,
v

λ

)∣∣∣
× eλ|ϕ1(y, vλ)|+λ|ϕ2(y, vλ)| d v µw(d y)

≤ λ∥ϕ1 − ϕ2∥
∫ ∞
0

∫ ∞
0

λ√
v
e−ηv sup

y,v≥0

√
1 + v/λ√
1 + v/λ

eλ|ϕ1(y, vλ)|+λ|ϕ2(y, vλ)| d v µw(d y)

≤ λ∥ϕ1 − ϕ2∥
∫ ∞
0

∫ ∞
0

√
1 + v/λ√

v
e−ηv exp

(
λ
√
1 + v/λ(∥ϕ1∥+ ∥ϕ2∥)

)
d v µw(d y)

≤ ∥ϕ1 − ϕ2∥
∫ ∞
0

(
e−ηv√
v

+
e−ηv√
λ

)
e2Cf

√
λv d v ≤ C1

η5/2
∥ϕ1 − ϕ2∥ ,

where C1 is the constant upper bound to the integral of the form∫ ∞
0

c1e
−c2x+c3

√
x dx

for some c3 > 0, and is finite. Taking η > 0 sufficiently large, we get that Fz

is a contraction in an open ball B ⊂ B of radius Cf < ∞, and thus, by the
Banach Fixed Point Theorem, there exists a unique ϕ∗ such that ϕ∗ = Fz(ϕ

∗)

for Fz : B → B.

We are now ready to prove a concentration result. Recall the function GN (u)

defined in (2.12) as

GN (u) =
1

N

N∑
i=1

eι̇ur
N
ii .

If we now define a new function G̃N (x, u) that acts identically on the first
coordinate as

G̃N (x, u) := GN (u),

then one can see that supx,u
1√
1+u

G̃N (x, u) < ∞, and so G̃N (x, u) ∈ B, and

consequently, a concentration result for G̃N would imply concentration for GN .
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Proposition 2.5.7 (Concentration and convergence).
For any z ∈ C+ and x ∈ [0,∞), and uniformly over u in [0, 1], we have

E[gN (x, u, z)]
N→∞−−−−→ ϕ∗(x, u). Further, we have

E
[
∥gN − E[gN ]∥2

]
= o(1), and

E
[∥∥∥G̃N − E[G̃N ]

∥∥∥2] = o(1) .

Proof of Proposition 2.5.7. Let δN (x, u, z) denote the error

δN (x, u, z) := eλgN (x,u,z) − eλE[gN (x,u,z)].

Let 1 ≤ k ̸= l ≤ N and consider the covariance

Ak,l := E[eι̇ur
N
kkeι̇ur

N
ll ]− E[eι̇ur

N
kk ]E[eι̇ur

N
kk ]. (2.67)

Using (2.46) for the first term and Proposition 2.5.4 for the second term, we get

Ak,l =

− E[Tj ]− E[Tk]

+ u

∫ ∫
J1(2

√
uv1)√
v1

J1(2
√
uv2)√
v2

eι̇(v1+v2)zE

[
e
ι̇v1

∑
l̸=j

r̃N−1
ll a2jl+ι̇v2

∑
l ̸=k

r̃N−1
ll a2kl

]
d v1 d v2

+ E[T̃j ] + E[T̃k]

− u

∫ ∫
J1(2

√
uv1)√
v1

J1(2
√
uv2)√
v2

eι̇(v1+v2)zE
[
eλgN (wj ,

v1
λ
,z)+λgN (wk,

v2
λ
,z)
]
d v1 d v2 ,

(2.68)

where Ti and T̃i are the RHS of equations (2.46) and (2.42) respectively, and
differ by the error qN,λ(u, z) in expectation. In the first double integral of
(2.68), one can do the interpolation argument term-wise, and obtain the error
CIq

2
N,λ(u, z)+ q

2
N,λ(u, z) by making a difference with the second double integral

in (2.68), where CI is the constant upper bound to T̃k for any k. Thus, we have
that

|Ak,l| ≤ C ′IqN,λ(u, z) + q2N,λ(u, z). (2.69)

Using inequality 2.44 on δN (x, u, z) gives us

E[|δN (x, u, z)|2]

= E
[∣∣∣eλgN (x,u,z) − eλE[gN (x,u,z)]

∣∣∣2] ≤ C1E
[
|gN (x, u, z)− E[gN (x, u, z)]|2

]
.

87



2. Limiting spectra of inhomogeneous random graphs

C
ha

pt
er

T
w

o

since |gN (x, v, z)| ≤ Cf and C1 = e2λCf . We can now bound this by using the
definition of gN to get

E[|δN (x, u, z)|2]

≤ C1

N2

∣∣∣∣∣∣
N∑

k,l=1

E[f(x,wk)e
ι̇urNkkf(x,wl)e

ι̇urNll ]− E[f(x,wk)e
ι̇urNkk ]E[f(x,wl)e

ι̇urNll ]

∣∣∣∣∣∣ .
(2.70)

Since f is deterministic, we can pull it out of the expectation and take it com-
mon, giving us

E[|δN (x, u, z)|2] ≤ C1

N2

∣∣∣∣∣∣
N∑

k,l=1

f(x,wk)f(x,wl)Ak,l

∣∣∣∣∣∣ ,
where Ak,l is as in (2.67). We can conclude using the triangle inequality that

E[|δN (x, u, z)|2] ≤ C1C
2
f sup

k,l
|Ak,l| = O

(
λ
√
u

η5/2
√
N

)
. (2.71)

For η > 0 sufficiently large, taking the norm, we get

E
[∥∥∥eλgN − eλE[gN ]

∥∥∥2] = o(1) . (2.72)

However, δN is a bounded analytic function in [0,∞)2×C+. Using the identity
theorem from complex analysis, which states that if two holomorphic functions
agree in an open set of the domain then they must agree everywhere on the
domain, we have that since δN → 0 on an open set of the upper-half complex
plane, it must approach 0 everywhere on the upper-half plane. Since the error
in (2.71) can be absorbed in q̃N,λ(u, z), using 2.44 gives us

E[gN (x, u, z)]

= df (x)−
∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλE[gN(y,
v
λ
,z)] d v

)
µw(d y)

+ q̃N,λ(u, z) ,

(2.73)

where the error vanishes in the norm as

∥q̃N,λ∥ = ∥qN,λ(u, z) + O(EN )∥ ≤ sup
x,u≥0

∣∣∣∣C λ
√
u

η5/2
√
N

∣∣∣∣+ EN = o(1) .
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Now, consider the function G̃N (x, u) and the error

∆N (u) := G̃N (x, u)− E[G̃N (x, u)].

By definition of G̃N , one can see that expanding ∆N (u) will yield an expression
similar to (2.70) modulo f , and so, using (2.69) again, we get that

E[|∆N |2] ≤ C1C
2
f sup

k,l
|Ak,l| = O

(
λ
√
u

η5/2
√
N

)
.

By taking the norm and again using the identity theorem, we get that ∆N

vanishes in [0,∞)2 × C+ and thus

E
[∥∥∥G̃N − E[G̃N ]

∥∥∥2] = o(1) . (2.74)

A quick inspection of (2.70) shows that in fact we also have the concentration
for gN , since the RHS is precisely the upper bound on

E[|gN (x, u, z)− E[gN (x, u, z)]|2],

and so,
E
[
∥gN − E[gN ]∥2

]
= o(1). (2.75)

Finally, comparing (2.73) with the contraction mapping (2.66), we have the
following:

E[gN (x, u, z)] = Fz(E[gN (x, u, z)]) + q̃N,λ(u, z) ,

ϕ∗(x, u) = Fz(ϕ
∗(x, u)).

So, with η > 0 large enough and Fz being a contraction on B ⊂ B of radius Cf ,
we have

∥E[gN ]− ϕ∗∥ ≤ ∥Fz(E[gN ])− Fz(ϕ
∗)∥+ ∥q̃N∥ ,

and consequently,

1

2
∥E[gN ]− ϕ∗∥ ≤ ∥q̃N∥.

Thus, since ∥EgN∥ ≤ Cf ,

∥E[gN ]− ϕ∗∥ N→∞−−−−→ 0.

As a quick remark, notice that

∥ϕ∗∥ ≤ Cf , (2.76)

89



2. Limiting spectra of inhomogeneous random graphs

C
ha

pt
er

T
w

o

since gN is bounded.
Now, since E[gN (x, u, z)] is an analytic function on [0,∞)2 × C+, we have

limN→∞ E[gN (x, u, z)] is an analytic function. Again from the identity theorem
of complex analysis, since limN→∞ E[gN ] and ϕ∗ are analytic and agree on an
open set of [0,∞)2×C+, they agree everywhere in the complex domain [0,∞)2×
C+, and thus the convergence holds for any z ∈ C+. Note that for a fixed
z ∈ C+, although both the functionals E[gN ] and ϕ∗ live in (B, ∥ · ∥B), the
domain of ϕ∗ is [0,∞)2×C+ since E[gN ] has the domain [0,∞)2×C+. Now, for
each z ∈ C+, fixing u in the compact set [0, 1] gives us that for each x ∈ [0,∞)

and uniformly over u ∈ [0, 1],

E[gN (x, u, z)]
N→∞−−−−→ ϕ∗(x, u) (2.77)

We can now prove Theorem 2.3.9.

Proof of Theorem 2.3.9. Equation (2.74) proves the concentration statement of
Theorem 2.3.9. Recall that we had shown that

E
[
eι̇ur

N
jj

]
= 1− e−λdj

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v + qN,λ(u, z) ,

and so,

E[GN (u, z)] =
1

N

N∑
j=1

E[eι̇ur
N
jj ]

= 1− 1

N

N∑
j=1

e−λdj
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v + qN,λ(u, z) .

(2.78)

Next, we see that the function

Ĩg(y) = e−λdf (y)
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y,v/λ) d v

is Lipschitz by using an argument similar to Lemma 2.5.6. Thus, we get

E[GN (u, z)] =

1−
∫ ∞
0

e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(y,

v
λ
,z)
]
d v

)
µw(d y) + q̃N,λ(u, z) .

Since from Proposition 2.5.7 we have concentration for gN , using inequality
(2.44) we have that

E[GN (u, z)] =

1−
∫ ∞
0

e−λdf (y)
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλE[gN(y,
v
λ
,z)] d v µw(d y) + q̃N,λ(u, z) .
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Finally, taking the limit N → ∞ gives us

lim
N→∞

E[GN (u, z)] =

1−
∫ ∞
0

e−λdf (y)
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y,v/λ) d v µw(d y) , (2.79)

completing the proof of Theorem 2.3.9.

§2.5.2 Deriving the expression for the Stieltjes Trans-
form

Since we took u to be in [0, 1], we can take a derivative with respect to u and
evaluate it at u = 0. Recall from equation (2.78) that we have

E[GN (u, z)] =
1

N
E

N∑
j=1

eι̇ur
N
jj

= 1− 1

N

N∑
j=1

e−λdj
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzE
[
eλgN(wj ,

v
λ
,z)
]
d v + qN,λ(u, z) .

Note that by definition, GN (u, z) is a bounded function, and thus by DCT,
limit operations can be interchanged with expectation. We would like to take
a derivative with respect to u and evaluate at u = 0 to extract out tr(RAN

(z))

from the LHS of (2.78). On the other hand, we would first like to take N → ∞
for the RHS to remove the error term. To interchange these operations, we have
the following result.
Proposition 2.5.8.
Both the limits limN→∞

∂
∂uE[GN (u, z)]

∣∣
u=0

and ∂
∂u limN→∞ E[GN (u, z)]

∣∣
u=0

ex-
ist and are equal.

Proof. We fix a z ∈ C+. Now, limN→∞ E[GN (u, z)] exists due to the RHS of
(2.78), which we denote by G(u, z). If we define HN (u, z) and H(u, z) as

HN (u, z) =
E[GN (u, z)]− E[GN (0, z)]

u
,

H(u, z) =
G(u, z)−G(0, z)

u
.

Then,

lim
u→0

HN (u, z) =
∂

∂u
E[GN (u, z)]

∣∣∣∣
u=0

,

lim
u→0

H(u, z) =
∂

∂u
G(u, z)

∣∣∣∣
u=0

.
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We would like to claim

lim
N→∞

∂

∂u
E[GN (u, z)]

∣∣∣∣
u=0

=
∂

∂u
G(u, z)

∣∣∣∣
u=0

.

Thus, we want to interchange the order of limits. Note that

lim
N→∞

HN (u, z) = H(u, z)

uniformly in u ∈ (0, 1], and

lim
u→0

HN (u, z) =
∂

∂u
E[GN (u, z)]

∣∣∣∣
u=0

= E[tr(RAN
(z))]

for each N , where the limit can be taken inside the expectation using dominated
convergence. Thus, using [Rudin, 1976, Theorem 7.11], we have that the limits
limu→0H(u, z) and limN→∞ E[tr(RAN

(z))] exist and are equal.

We are now ready to prove Corollary 2.3.10.

Proof of Corollary 2.3.10. We now do precisely as we stated before Proposition
2.5.8. We evaluate the derivative at u = 0 and then take N → ∞ on the
LHS of (2.78), and we do the reverse for the RHS of (2.78). Note that since
limN→∞ µN,λ = µλ in probability, SAN

(z) → Sµλ
(z) and also S̄AN

(z) → Sµλ
(z)

as N → ∞ for all z ∈ C+. Thus, we then obtain using Proposition 2.5.8

ι̇Sµλ
(z)

= ι̇ lim
N→∞

S̄AN
(z)

(2.36)
= ι̇ lim

N→∞
E tr(RAN

(z))
(2.39)
= lim

N→∞

∂

∂u
E[GN (u, z)]

∣∣∣∣
u=0

=
∂

∂u
lim

N→∞
E[GN (u, z)]

∣∣∣∣
u=0

(2.79)
= − ∂

∂u

∫ ∞
0

e−λdf (y)
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗
z(y, vλ) d v µw(d y)

∣∣∣∣
u=0

= −
∫ ∞
0

e−λdf (y)
∂

∂u

√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗
z(y, vλ) d v µw(d y)

∣∣∣∣
u=0

. (2.80)

We now wish to evaluate the derivative on the RHS of (2.80). Let K(u) denote

K(u) :=
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗
z(y, vλ) d v. (2.81)

Observe that∑
k≥0

∫ ∞
0

vk

k!(k + 1)!
e−ηv d v =

∑
k≥0

Γ(k + 1)

k!(k + 1)!ηk
≤ e1/η (2.82)
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for η > 0 by a change of variables. If we expand the Bessel function as defined
in (2.16) in equation (2.81) and take the absolute value, we observe using (2.82)
and using |ϕ∗(x, u)| ≤ Cf (from (2.76)), that we can use Fubini’s Theorem to
interchange the integral with the summand. Thus, we have

K(u) =
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗
z(y, vλ) d v

=
√
u

∫ ∞
0

1√
v

∞∑
k=0

(−1)k(
√
uv)2k+1

k!(k + 1)!
eι̇vzeλϕ

∗
z(y, vλ) d v

=
∞∑
k=0

(−1)kuk+1

k!(k + 1)!

∫ ∞
0

vkeι̇vzeλϕ
∗
z(y, vλ) d v .

Denote by Ik(y) the integral

Ik(y) :=

∫
vkeι̇vzeλϕ

∗
z(y, vλ) d v .

Therefore,

K(u)

u
=

∞∑
k=0

(−1)kuk

k!(k + 1)!
Ik(y) = I0(y) +

∑
k≥1

(−1)kuk

k!(k + 1)!
Ik(y) =: I0(y) +

∞∑
k=1

ak(u) ,

(2.83)
where ak(u) denotes

ak(u) :=
(−1)kukIk(y)

k!(k + 1)!
.

Note that for any k, we have that Ik(y) is finite since

|Ik(y)| ≤
∫ ∞
0

vke−ηveCfλ d v =
eCfλ

ηk+1
Γ(k + 1) .

Since K(0) = 0 and by (2.83) it follows that

∂

∂u
K(u)

∣∣∣∣
u=0

= lim
u→0

K(u)

u
= I0(y) + lim

u→0

∑
k≥1

ak(u), (2.84)

Therefore we would like to evaluate limu→0
∑

k≥1 ak(u). Note that

|ak(u)| ≤
eCfλΓ(k + 1)

ηk+1k!(k + 1)!

, as u is bounded by 1. Note that the series

∑
k≥1

Γ(k + 1)eCfλ

k!(k + 1)!ηk+1
=

eCfλ

η2

∑
k≥0

1

ηk(k + 2)!
≤ eCfλe

1
η

η2
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converges, and consequently by the dominated convergence theorem, we have

lim
u→0

∑
k≥1

ak(u) =
∑
k≥1

lim
u→0

ak(u) = 0.

Thus by (2.84) we have

lim
u→0

K(u)

u
= I0(y).

Therefore we get

ι̇Sµλ
(z) = −

∫ ∞
0

e−λdf (y)I0(y)µw(d y)−
∫ ∞
0

e−λdf (y)
∫ ∞
0

eι̇vzeλϕ
∗
z(y,

v
λ
) d v µw(d y).

To conclude the argument, we use Lemma 2.5.3 with Theorem 2.3.7 to state
that SAN

(z) converges in probability to Sµλ
(z) for each z ∈ C+.

We conclude with the proof of Corollary 2.3.11

Proof of Corollary 2.3.11. From Corollary 2.3.10, we have

Sµλ
(z) = ι̇

∫ ∞
0

∫ ∞
0

eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v µw(d y).

Recall that

ϕ∗(x, u)

= df (x)−
∫ ∞
0

f(x, y)e−λdf (y)
(√

u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vzeλϕ
∗(y, vλ) d v

)
µw(d y)

(2.85)

is the unique analytical solution of the fixed point equation as in (2.66). Ex-
panding the Bessel function J1(x) in (2.85) using (2.16) gives

ϕ∗(x, u)

= df (x)−
∫ ∞
0

f(x, y)e−λdf (y)

∫ ∞
0

∑
k≥0

(−1)kuk+1vk

k!(k + 1)!
eι̇vzeλϕ

∗(y, vλ) d v

µw(d y).

(2.86)

We would like to interchange the summand and integral with respect to v in
(2.86). Using the z = ζ + ι̇η for some ζ ∈ R and η > 0, we have that∑

k≥0

∫ ∞
0

∣∣∣∣(−1)kuk+1vk

k!(k + 1)!
eι̇vze−λdf (y)+λϕ∗(y,v/λ)

∣∣∣∣ d v
≤ eCfλ−λdf (y)

∑
k≥0

uk+1Γ(k + 1)

k!(k + 1)!ηk+1
≤ u

η
eCfλ−λdf (y)eu/η.
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Thus, by Fubini’s Theorem, we can interchange the summand with the integral
with respect to v, giving us

ϕ∗(x, u) =

df (x)−
∫ ∞
0

f(x, y)e−λdf (y)

∑
k≥0

(−1)kuk+1

k!(k + 1)!

∫ ∞
0

vkeι̇vzeλϕ
∗(y, vλ) d v

µw(d y).

(2.87)

Now, denote by Hλ(z, y) the function

Hλ(z, y) := ι̇

∫ ∞
0

eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v. (2.88)

Then, by Corollary 2.3.10, we can see that Sµλ
(z) =

∫∞
0 Hλ(z, y)µw(d y). From

(2.87) we get that

ϕ∗(x, u) = df (x)− u

∫ ∞
0

f(x, y)

∫ ∞
0

eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v µw(d y)

−
∫ ∞
0

f(x, y)
∑
k≥1

∫ ∞
0

(−1)kuk+1vk

k!(k + 1)!
eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v µw(d y),

and so, we can write

ϕ∗(x, u) = df (x) + ι̇u

∫ ∞
0

f(x, y)Hλ(z, y)µw(d y) + T (x, u, λ, z) (2.89)

where

T (x, u, λ, z)

:= −
∫ ∞
0

f(x, y)
∑
k≥1

∫ ∞
0

(−1)kuk+1vk

k!(k + 1)!
eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v µw(d y).

(2.90)

Substituting u = v/λ for v ∈ R+ in (2.89) and multiplying throughout by λ, we
have

−λdf (x) + λϕ∗(x, v/λ) = ι̇v

∫ ∞
0

f(x, y)Hλ(z, y)µw(d y) + λT (x, v/λ, λ, z).

We begin by claiming the following:

Claim 2.5.9.
For any x, u ≥ 0, we have

|e−λdf (x)+λϕ∗(x,u)| ≤ 1. (2.91)
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Then, one can see that

|T (x, v/λ, λ, z)| ≤
∫ ∞
0

f(x, y)
v

λη

∑
k≥1

vkΓ(k + 1)

ηkλkk!(k + 1)!

µw(d y)

≤ v2

λ2η2
e

v
ηλdf (x),

and so for each v ∈ (0,∞)

lim
λ→∞

λ|T (x, v/λ, λ, z)| → 0.

Thus, from (2.89), for any v we have

lim
λ→∞

(−λdf (x) + λϕ∗(x, v/λ)) = ι̇v lim
λ→∞

∫ ∞
0

f(x, y)Hλ(z, y)µw(d y). (2.92)

What remains now is to justify Claim 2.5.9, and taking the limit λ→ ∞ inside
the integral in (2.92).

First we consider the homogeneous case when f ≡ 1. Recall from Remark
2.3.12, that due to the lack of dependency of one coordinate, we denote ϕ̃∗(u) =
ϕ∗(x, v/λ) Then,

ϕ̃∗(u) = 1−
√
u

∫ ∞
0

J1(2
√
uv)√
v

eι̇vze−λ+λϕ̃∗(v/λ) d v,

and from (2.92) we have limλ→∞(−λ+ λϕ̃∗(v/λ)) = ι̇v Sµf
(z). Moreover, from

Corollary 2.3.10, we have

Sµλ
(z) = ι̇

∫ ∞
0

eι̇vze−λ+λϕ̃∗(v/λ) d v.

Since f ≡ 1, from (2.76) we have that Cf = 1 and |ϕ̃∗| ≤ 1. Then, |e−λ+λϕ̃∗ | ≤ 1,
justifying Claim 2.5.9. Thus, the expression inside the integral is uniformly
bounded by e−ηv. Using dominated convergence, we can pull the limit λ → ∞
inside the integral to obtain

Sµf
(z) = ι̇

∫ ∞
0

eι̇vzeι̇v Sµf (z) d v = − 1

z + Sµf
(z)

,

which is precisely the Stieltjes transform of the semicircle law.
In the case of general f , recall from (2.77) that for any x and u,

ϕ∗(x, u) = lim
N→∞

1

N
E

[
N∑
i=1

f(x,wi)e
ι̇urNii

]
.
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Now, for any N , by trivially bounding the complex exponential eι̇urNii by 1 for
any i, we have that∣∣∣∣∣ 1N E

N∑
i=1

f(x,wi)e
ι̇urNii

∣∣∣∣∣ ≤ 1

N

N∑
i=1

|f(x,wi)| =
1

N

N∑
i=1

f(x,wi).

Thus, by triangle inequality, we have that

|ϕ∗(x, u)| ≤ |ϕ∗(x, u)− E[gN (x, u, z)]|+ 1

N

N∑
i=1

f(x,wi).

Thus, we have that

− λ

N

N∑
i=1

f(x,wi) + λ|ϕ∗(x, u)| ≤ λ
√
1 + u

1√
1 + u

|ϕ∗(x, u)− E[gN (x, u, z)]|

≤ λ
√
1 + u ∥ϕ∗ − EgN∥B. (2.93)

Taking N → ∞ on both sides in (2.93) yields that

−λdf (x) + λ|ϕ∗(x, u)| ≤ 0.

Using this, we conclude that∣∣∣e−λdf (x)+λϕ∗(x,u)
∣∣∣ ≤ e−λdf (x)eλ|ϕ

∗(x,u)| ≤ 1 (2.94)

for any x and u, proving Claim 2.5.9. Now, to evaluate limλ→∞ Sµλ
(z), we take

the limit inside the integral in the RHS of (2.17) using DCT, which we can use
from (2.94). This gives us

Sµf
(z) = lim

λ→∞
Sµλ

(z) = ι̇

∫ ∞
0

∫ ∞
0

eι̇vz lim
λ→∞

(
e−λdf (y)+λϕ∗(y,v/λ)

)
d v µw(d y).

and so, using (2.92), we get

Sµf
(z) = ι̇

∫ ∞
0

∫ ∞
0

eι̇vz lim
λ→∞

eι̇v
∫∞
0 f(x,y)Hλ(z,x)µw(dx) d v µw(d y). (2.95)

Recall from (2.88) that

Hλ(z, y) = ι̇

∫ ∞
0

eι̇vze−λdf (y)+λϕ∗(y,v/λ) d v.

Again using (2.94), we have that the integral is bounded in absolute value, and
so, using DCT allows us to define

H(z, y) := lim
λ→∞

Hλ(z, y)
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where
∫∞
0 H(z, y)µw(d y) = Sµf

(z). Moreover, since |Hλ(z, y)| is bounded by a
constant, and µw is a probability measure, we use DCT once again to take the
limit λ→ ∞ inside

∫∞
0 f(x, y)Hλ(z, x)µw(dx). Thus, we obtain

Sµf
(z) = ι̇

∫ ∞
0

∫ ∞
0

eι̇vzeι̇v
∫∞
0 f(x,y)H(z,x)µw(dx) d v µw(d y)

= −
∫ ∞
0

µw(d y)

z +
∫∞
0 f(x, y)H(z, x)µw(dx)

.

The proof follows by observing that H(z, x) satisfies the analytic equation
defined in (2.6).

§2.6 Appendix

Proposition 2.6.1 (Banach Space).
Let X = [0,∞)2 and consider the space B defined by

B =

{
ϕ : X → C analytic

∣∣∣∣∣ sup
x,y≥0

|ϕ(x, y)|√
1 + y

<∞

}

and consider the norm
∥ϕ∥B = sup

x,y≥0

|ϕ(x, y)|√
1 + y

.

Then, (B, ∥ · ∥B) is a Banach space.

Proof of Proposition 2.6. For ease of notation, throughout this argument, ∥·∥ :=

∥ · ∥B. Clearly ∥ · ∥ is a norm, and thus, (B, ∥ · ∥B) is a normed vector space.
Let {ϕn}n be a Cauchy sequence in (B, ∥ · ∥B). Thus, for all ϵ > 0, there is

an Nε ∈ N such that for all m,n > Nε,

∥ϕm − ϕn∥ < ε.

Let µ be the Lebesgue measure on X. Define

Emn = {(x, y) ∈ X : |ϕn(x, y)− ϕm(x, y)| > ∥ϕn − ϕm∥
√

1 + y}.

Then, µ(Emn) = 0. Let E =
⋃
m,n

Emn and F = Ec. Then, µ(E) = 0, and

F = {(x, y) ∈ X : |ϕn(x, y)− ϕm(x, y)| ≤ ∥ϕn − ϕm∥
√

1 + y}.
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So, for all ε > 0, we have an Nε such that for all (x, y) ∈ F and m,n > Nε,

|ϕn(x, y)− ϕm(x, y)| < ε
√
1 + y.

Let ψm(x, y) := ϕm(x,y)√
1+y

. Then, we have for all (x, y) ∈ F and m,n > Nε

|ψn(x, y)− ψm(x, y)| < ε.

In other words, for all (x, y) ∈ F , denoting an = ψn(x, y) gives us that {an}n is a
Cauchy sequence in the metric space (C, |·|). Since C is a complete metric space,
for all (x, y) ∈ F , there exists a limit a := limn an, that is, for all (x, y) ∈ F ,
there exists a ψ such that

ψ(x, y) := lim
n→∞

ψn(x, y).

For (x, y) ∈ E with µ(E) = 0, ψ(x, y) = 0. This is a well-defined limit. Note
that since ϕn lives in (B, ∥·∥B), ψn lives in (L∞(X), ∥·∥∞), and we thus conclude
that

∥ψn − ψm∥∞ < ε.

Passing the limit through m, we have

∥ψn − ψ∥∞ < ε.

For all (x, y) ∈ X, define

ϕ(x, y) = ψ(x, y)
√
1 + y.

One can see that ∥ϕn − ϕ∥ = ∥ψn − ψ∥∞. Use triangle inequality to conclude
ϕ ∈ (B, ∥ · ∥B)

For the next theorem, we refer the reader to [Billingsley, 2012, Theorem 16.8].

Theorem 2.6.2 (Interchanging derivative and integral).
Consider the measure space (Ω,F , µ) and an open set A ⊂ R. Let f : A×Ω → C
be such that for each x ∈ A, ω 7→ f(x, ω) is µ−integrable, and moreover for
µ−a.e. ω, x 7→ f(x, ω) is continuous. Consider the function g : A→ C defined
by

g(x) =

∫
Ω
f(x, ω)µ(dω).

Suppose that for each ω the partial derivative ∂xf(x, ω) of f with respect to
x exists. Then, if for every x, there is a non-negative µ−integrable function
hx : Ω → C and a neighbourhood Ux containing x such that for all x′ ∈ Ux,
|∂x′f(x′, ω)| ≤ hx(ω), then, g(x) is continuously differentiable and

∂xg(x) =

∫
Ω
∂xf(x, ω)µ(dω).
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CHAPTER 3
Adjacency spectra of kernel-based

random graphs

This chapter is based on:
A. Cipriani, R.S. Hazra, N. Malhotra, M. Salvi. Spectrum of dense kernel-based
random graphs. [arxiv:2502:09415 ], 2025.

Abstract

Kernel-based random graphs (KBRGs) are a broad class of random graph mod-
els that account for inhomogeneity among vertices. We consider KBRGs on a
discrete d−dimensional torus VN of size Nd. Conditionally on an i.i.d. sequence
of Pareto weights (Wi)i∈VN

with tail exponent τ − 1 > 0, we connect any two
points i and j on the torus with probability

pij =
κσ(Wi,Wj)

∥i− j∥α
∧ 1

for some parameter α > 0 and κσ(u, v) = (u ∨ v)(u ∧ v)σ for some σ ∈ (0, τ −
1). We focus on the adjacency operator of this random graph and study its
empirical spectral distribution. For α < d and τ > 2, we show that a non-trivial
limiting distribution exists as N → ∞ and that the corresponding measure µσ,τ
is absolutely continuous with respect to the Lebesgue measure. µσ,τ is given by
an operator-valued semicircle law, whose Stieltjes transform is characterised by
a fixed point equation in an appropriate Banach space. We analyse the moments
of µσ,τ and prove that the second moment is finite even when the weights have
infinite variance. In the case σ = 1, corresponding to the so-called scale-free
percolation random graph, we can explicitly describe the limiting measure and
study its tail.

https://arxiv.org/pdf/2502.09415
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§3.1 Introduction

Kernel-based spatial random graphs encompass a wide variety of classical ran-
dom graph models where vertices are embedded in some metric space. In their
simplest form (see Jorritsma et al. [2023] for a more complete exposition) they
can be defined as follows. Let V be the vertex set of the graph and sample
a collection of weights (Wi)i∈V , which are independent and identically distrib-
uted (i.i.d.), serving as marks on the vertices. Conditionally on the weights, two
vertices i and j are connected by an undirected edge with probability

P (i↔ j |Wi,Wj) = κ(Wi,Wj)∥i− j∥−α ∧ 1 , (3.1)

where κ is a symmetric kernel, ∥i − j∥ denotes the distance between the two
vertices in the underlying metric space and α > 0 is a constant parameter.
Common choices for κ include:

κtriv(w, v) ≡ 1, κstrong(w, v) = w ∨ v,
κprod(w, v) = w v, κpa(w, v) = (w ∨ v)(w ∧ v)σpa .

In the above σpa = α(τ − 1)/d− 1, where τ − 1 is the exponent of the tail dis-
tribution of the weights, such that the kernel κpa mimics the form that appears
in preferential attachment models [Jorritsma et al., 2023], while the trivial ker-
nel κtriv corresponds to the classical long-range percolation model [Schulman,
1983, Newman and Schulman, 1986]. The kernel κprod yields a model which
is substantially equivalent to scale-free percolation, introduced in Deijfen et al.
[2013], which has connection probabilities of the form

1− exp
(
−WiWj∥i− j∥−α

)
.

Various percolation properties for kernel-based spatial random graphs are known
on Zd and beyond (Deprez et al. [2015], Hao and Heydenreich [2023], van der
Hofstad and Komjáthy [2017], Gracar et al. [2021], Jorritsma et al. [2024], see
also Deprez and Wüthrich [2019], Dalmau and Salvi [2021] for a version of the
same in the continuum) as well as the behaviour of interacting particle systems
on them [Berger, 2002, Heydenreich et al., 2017, Komjáthy and Lodewijks, 2020,
Cipriani and Salvi, 2024, Gracar and Grauer, 2024, Bansaye and Salvi, 2024,
Komjáthy et al., 2023]. In contrast, their spectral properties, to the best of the
authors’ knowledge, have received less attention.

As a branch of random matrix theory, the study of the spectrum of random
graphs has wide applications ranging from the study of random Schrödinger
operators [Carmona and Lacroix, 2012, Geisinger, 2015] and quantum chaos
in physics, to the analysis of community structures [Bordenave et al., 2015]
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and diffusion processes in network science, to the problems of spectral clus-
tering [Champion et al., 2020] and graph embeddings [Gallagher et al., 2024]
in data science. Many challenges remain unsolved in this area, even for the
simplest models. As a prominent example, for bond percolation on Z2 it is
known that the expected spectral measure has a continuous component if and
only if p > pc, but this result has not yet been established in higher dimen-
sions [Bordenave et al., 2017]. In this chapter, we begin the study of spectral
properties of spatial inhomogeneous random graphs, which in turn have been
proposed as models for several real-world networks (see e.g. Dalmau and Salvi
[2021]).

We will work with KBRGs in the typical setting where the weights (Wi)

have support in [1,∞) and the kernel κ is an increasing function of the weights.
Let us recall that in this case the vertices of KBRG random graphs on Zd have
almost surely infinite degree as soon as α < d. Thus, as it happens in many
percolation problems, the regime α > d would be the most appealing (and the
toughest to tackle). In the present work we will focus instead on the dense
case α < d. We consider the discrete torus with Nd vertices equipped with
the torus distance ∥ · ∥. The weights are sampled independently from a Pareto
distribution with parameter τ − 1 with τ > 2. Conditionally on the weights,
vertices i and j are connected independently from other pairs with probability
given by (3.1) with a kernel of the form κσ(w, v) := (w∨ v)(w∧ v)σ. It is worth
noting a difference between our connection probability and that studied recently
in Jorritsma et al. [2023], van der Hofstad et al. [2023], where the connection
probabilities are given by

P (i↔ j |Wi,Wj) =
(
κσ(Wi,Wj)∥i− j∥−d ∧ 1

)α
.

The two forms can be made equivalent through a simple modification of the
weights and an appropriate choice of α.

We call GN the random graph obtained with this procedure and study the
empirical spectral distribution of its adjacency matrix, appropriately scaled.
Note that when α = 0 we recover the (inhomogeneous) Erdős–Rényi random
graph (modulo a tweak inserting a suitable tuning parameter εN ) . In recent
years, there has been significant research on inhomogeneous Erdős–Rényi ran-
dom graphs, which can be equivalently modelled by Wigner matrices with a
variance profile. The limiting spectral distribution of the adjacency matrix of
such graphs has been studied in Chakrabarty et al. [2021b], Zhu [2020], Bose
et al. [2022], while local eigenvalue statistics have been analysed in Dumitriu
and Zhu [2019], Ajanki et al. [2019]. Zhu and Zhu [2024] studies the fluctu-
ations of the linear eigenvalue statistics for a wide range of such inhomogeneous
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graphs. Additionally, various properties of the largest eigenvalue have been in-
vestigated in Cheliotis and Louvaris [2024], Husson [2022], Chakrabarty et al.
[2022], Ducatez et al. [2024]. One of the most significant properties of the lim-
iting spectral measure for random graphs is its absolute continuity with respect
to the Lebesgue measure, which is closely tied to the concept of mean quantum
percolation [Bordenave et al., 2017, Anantharaman et al., 2021, Arras and Bor-
denave, 2023]. Quantum percolation investigates whether the limiting measure
has a non-trivial absolutely continuous spectrum. Recently, it was shown in
Arras and Bordenave [2023] that the adjacency operator of a supercritical Pois-
son Galton-Watson tree has a non-trivial absolutely continuous part when the
average degree is sufficiently large. Additionally, Bordenave et al. [2017] demon-
strated that supercritical bond percolation on Zd has a non-trivial absolutely
continuous part for d = 2. These results motivate similar questions for KBRGs.

Our contributions: Results and proofs
Here below we showcase our main results and the novelties of our proofs Recall
that we work in the regime α < d and τ > 2. We also restrict to values of σ in
(0, τ − 1).

(a) In Theorem 3.2.1 we show that, after scaling the adjacency matrix of GN by
c0N

(d−α)/2, the empirical spectral distribution converges weakly in prob-
ability to a deterministic measure µσ,τ . The classical approach to proving
the convergence of the empirical distribution is generally through either
the method of moments or the Stieltjes transform. However, the limiting
measure is expected to be heavy-tailed (see Figure 3.3) and so it is not de-
termined by its moments. As a consequence, we cannot directly apply the
method of moments. To overcome this issue, we pass through a truncation
argument where we impose a maximal value to the weights, reducing the
problem to well-behaved measures. To simplify the method of moments, we
further reduce the model by substituting the adjacency matrix of GN with
a Gaussian matrix whose entries are centred and have roughly the same
variance as before. This is made possible by a classical result of Chatterjee
[2005]. Once we have shifted our attention to this simpler Gaussianised
matrix with bounded weights, we can use the classical method of moments
using finding its moments is made possible by a combinatorial argument
on partitions and their graphical representation. Finally we remove the
truncation effect.

(b) In Theorem 3.2.2 we investigate the graph corresponding to κprod, that is,
when σ = 1. In this case we can explicitly identify µ1,τ as the free multiplic-
ative convolution of the semicircle law and the measure of the weight distri-
bution. In the σ = 1 case the moment expression derived in Theorem 3.2.1
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simplifies, so the challenge is to recover the limiting measure from those
moments. This is made possible thanks to the extension of the free mul-
tiplicative convolution to measures with unbounded support by Arizmendi
and Pérez-Abreu [2009]. Furthermore, we show that µ1,τ has power-law
tails with exponent 2(τ − 1). This is based on a Breiman-type argument
for free multiplicative convolutions [Kołodziejek and Szpojankowski, 2022].

(c) In Theorem 3.2.3 we explicitly derive the second moment of µσ,τ and prove
that it is finite and non-degenerate. The proof is based on the ideas
of Chakrabarty et al. [2016, Theorem 2.2]. This result is noteworthy be-
cause our weight distribution may exhibit infinite variance in the chosen
range of parameters. To show that the second moment is finite, we need to
establish the uniform integrability of a sequence of measures converging to
the limiting measure. This is achieved through an extension of Skorohod’s
representation theorem for measures that converge weakly in probability.

(d) In Theorem 3.2.4 we prove that µσ,τ is absolutely continuous. What makes
the result possible is that we are able to split the original matrix as a
free sum of a standard Wigner matrix and another Wigner matrix with a
carefully chosen variance profile (yielding, as a by-product, another char-
acterisation of the limit measure µσ,τ ). Once this is established, the result
is a consequence of Biane [1997].

(e) In Theorem 3.2.5 we provide an analytical description of µσ,τ when τ > 3

and σ < τ − 2. Removing the truncation in the method of moments proof
of Theorem 3.2.1 does not yield an explicit characterisation of the limiting
measure. On the other hand, certain moment recursions for the truncated
Gaussian matrix that appear in the proof can be used to derive properties
of µσ,τ through the Stieltjes transform. When the weights are bounded,
the limiting measure corresponds to the operator-valued semicircle law
(Speicher [2011]). Its transform can be expressed in terms of functions
solving an analytic recursive equation (see Avena et al. [2023], Zhu [2020]
for similar results in other random graph ensembles). In our case, when the
weights are heavy-tailed, this is no longer possible. We achieve instead the
convergence of the analytic recursive equation by constructing a suitable
Banach space and demonstrating that it forms a contractive mapping.

Outline of the article.
In Section 3.2 we will define the model and state precisely the main results. In
Section 3.3 we will give some auxiliary results which will be used to prove the
main theorems in the rest of the article. More precisely, in Section 3.4 we will
prove the existence of the limiting ESD, and in Section 3.5 we will give estimates
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on its tail behaviour. In Section 3.6 we will prove the non-degeneracy of the
limiting measure and in Section 3.7 we will show its absolute continuity. Finally,
Section 3.8 is devoted to describing the Stieltjes transform of the limiting ESD.

§3.2 Set-up and main results

§3.2.1 Random graph models
To introduce our models, we use a∧b to denote the minimum of two real numbers
a and b, and a ∨ b to denote their maximum.

(a) Vertex set: the vertex set is VN := {1, 2, . . . , N}d. The vertex set is
equipped with torus the distance ∥i− j∥, where

∥i− j∥ =
d∑

ℓ=1

|iℓ − jℓ| ∧ (N − |iℓ − jℓ|).

(b) Weights: the weights (Wi)i∈VN
are i.i.d. random variables sampled from a

Pareto distribution W (whose law we denote by P) with parameter τ − 1,
where τ > 1. That is,

P(W > t) = t−(τ−1)1{t≥1} + 1{t<1}. (3.2)

(c) Kernel: the kernel function κσ : [0,∞) × [0,∞) → [0,∞) determines how
the weights interact. In this article, we focus on kernel functions of the form

κσ(w, v) := (w ∨ v)(w ∧ v)σ, (3.3)

where σ ≥ 0.

(d) Long-range parameter: α > 0 tunes the influence of the distance between
vertices on their connection probability.

(e) Connectivity function: conditional on the weights, each pair of distinct
vertices i and j is connected independently with probability PW (i↔ j) given
by

PW (i↔ j) := P(i↔ j |Wi,Wj) =
κσ(Wi,Wj)

∥i− j∥α
∧ 1. (3.4)

We will be using the short-hand notation pij := P(i ↔ j | Wi,Wj) for con-
venience. Note that the graph does not have self-loops (see Remark 3.4.1).

The associated graph is connected, as nearest neighbours with respect to
the torus distance are always linked.
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§3.2.2 Spectrum of a random graph
Let us denote the random graph generated by our choice of edge probabilities
by GN . Let AGN

denote the adjacency matrix (operator) associated with this
random graph, defined as

AGN
(i, j) =

{
1 if i↔ j,

0 otherwise.

Since the graph is finite, the adjacency matrix is always self-adjoint and has
real eigenvalues. For α < d, the eigenvalues require a scaling, which turns out
to be independent of the kernel in our setup. Here we assume σ ∈ (0, τ −1) and
τ > 2, ensuring that the vertex weights (Wi)i∈VN

have finite mean. We define
the scaling factor as

cN =
1

Nd

∑
i ̸=j∈VN

1

∥i− j∥α
∼ c0N

d−α, (3.5)

where c0 is a constant depending on α and d, and for two functions f(·) and
g(·) we use f(t) ∼ g(t) to indicate that their quotient f(t)/g(t) tends to one as
t tends to infinity. The scaled adjacency matrix is then defined as

AN :=
AGN√
cN
. (3.6)

The empirical measure that assigns a mass of 1/Nd to each eigenvalue of
the Nd ×Nd random matrix AN is called the Empirical Spectral Distribution
(ESD) of AN , denoted as

ESD (AN ) :=
1

Nd

Nd∑
i=1

δλi
,

where λ1 ≤ λ2 ≤ . . . ≤ λNd are the eigenvalues of AN .

§3.2.3 Main results
We are now ready to state the main result of this article. Let µW denote the law
of W . Here onwards, let P = P⊗PW represent the joint law of the weights and
the edge variables. Note that P depends on N , but we omit this dependence
for simplicity. Let E,E, and EW denote the expectation with respect to P,P,
and PW respectively. Furthermore, if (µN )N≥0 is a sequence of probability
measures, we write limN→∞ µN = µ0 to denote that µ0 is the weak limit of the
measures µN . Since the empirical spectral distribution is a random probability
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measure, we require the notion of convergence in probability in the context of
weak convergence.

The Lévy-Prokhorov distance dL : P(R)2 → [0,+∞) between two probabil-
ity measures µ and ν on R is defined as

dL(µ, ν) := inf
{
ε > 0 | µ(A) ≤ ν (Aε)+ε and ν(A) ≤ µ (Aε)+ε ∀A ∈ B(R)

}
,

where B(R) denotes the Borel σ-algebra on R, and Aε is the ε-neighbourhood
of A. For a sequence of random probability measures (µN )N≥0, we say that

lim
N→∞

µN = µ0 in P-probability

if, for every ε > 0,
lim

N→∞
P(dL(µN , µ0) > ε) = 0.

The first result states the existence of the limiting spectral distribution of
the scaled adjacency matrix.

Theorem 3.2.1 (Limiting spectral distribution).
Consider the random graph GN on VN with connection probabilities given by
(3.4) with parameters τ > 2, 0 < α < d and σ ∈ (0, τ − 1). Let ESD(AN ) be
the empirical spectral distribution of AN defined in (3.6). Then there exists a
deterministic measure µσ,τ on R such that

lim
N→∞

ESD(AN ) = µσ,τ in P–probability .

The remaining results focus of the properties of the limiting measure. First
we note that when we set σ = 1 we can explicitly identify the limiting measure
in terms of free multiplicative convolution. We refer the reader to Anderson
et al. [2010, Section 5.2.3] for an exposition on free multiplicative and additive
convolutions.

For two probability measures µ and ν the free multiplicative convolution
µ ⊠ ν of the two measures is defined as the law of the product ab of free,
random, non-commutative operators a and b, with laws µ and ν respectively.
The free multiplicative convolution for two non-negatively supported measures
was introduced in Bercovici and Voiculescu [1993]. Note that the semicircle
law is not non-negatively supported and hence we use the extended definition
of Arizmendi and Pérez-Abreu [2009] for the multiplicative convolution.

Theorem 3.2.2 (Limiting ESD for σ = 1).
Consider the KBRG for σ = 1, while α, τ are as in the assumptions of The-
orem 3.2.1. The the limiting spectral distribution µ1,τ is given by

µ1,τ = µsc ⊠ µW ,
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where µsc is the semicircle law

µsc(dx) =
1

2π

√
4− x21|x|≤2 dx

and ⊠ is the free multiplicative convolution of the two measures. Moreover, the
limiting measure µ1,τ has a power-law tail, that is,

µ1,τ (x,∞) ∼ 1

2

(
m1(µW )

)τ−1
x−2(τ−1) as x→ ∞,

where m1(ν) denotes the first moment of the probability measure ν.

In the general case, it is hard to explicitly identify the limiting measure, so
we present some characterisations of it. Since we do not impose that τ > 3 and
consequently the weights can have infinite variance, it is not immediate if the
second moment of the limiting measure is non-degenerate and finite. We prove
this in the following result.
Theorem 3.2.3 (Non-degeneracy of the limiting measure).
Under the assumptions of Theorem 3.2.1, the second moment of the limiting
measure µσ,τ is given by∫

R
x2µσ,τ (dx) = (τ − 1)2

∫ ∞
1

∫ ∞
1

1

(x ∧ y)τ−σ(x ∨ y)τ−1
dx d y ∈ (0,∞).

Moreover, for p ∈ N and p < (τ − 1)/(σ ∨ 1), we have
∫
R |x|2p µσ,τ (d x) <∞.

We state the following result as an independent theorem as the absolute
continuity of the KBRG model deserves to be treated separately.
Theorem 3.2.4 (Absolute continuity).
Let τ > 2 and σ ∈ (0, τ − 1), then µσ,τ is symmetric and absolutely continuous
with respect to the Lebesgue measure on R.

We conclude the main results by providing an analytic description of the
limiting measure in terms of its Stieltjes transform when we slightly restrict our
parameters. Recall that, for z ∈ C+, where C+ denotes the upper half-plane of
the complex plane, the Stieltjes transform of a measure µ on R is given by

Sµ(z) =

∫
R

1

x− z
µ(dx) . (3.7)

Theorem 3.2.5 (Stieltjes transform).
Let 0 < α < d, τ > 3 and σ < τ − 2. Then there exists a unique analytic
function a∗ on C+ × [1,∞) such that

Sµσ,τ (z) =

∫ ∞
1

a∗(z, x)µW (dx),

where we recall that µW is the law of the random variable W .
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The function a∗ in the above theorem turns out to be a fixed point of a
contraction mapping on an appropriate Banach space. The equation above
shares similarities with the quadratic vector equations introduced and studied
in Ajanki et al. [2019], although in our setting the measures have unbounded
support. The properties and the proof of Theorem 3.2.5 are discussed in Section
3.8.

Remark 3.2.6 (Higher dimensions).
While we have presented our results for 0 < α < d, our proofs are worked out in
the d = 1 setup. This is in order to avoid notational complications that would
especially affect the clarity of Theorem 3.2.1. The limiting spectral distribution
and its properties remain unchanged for d > 1.

§3.2.4 Examples, simulations and discussion
Firstly, in Figure 3.1 we plot the eigenvalue distribution of the adjacency matrix
of two realisations of kernel-based graphs with different parameters, indicated at
the top of the image. Secondly, in Figure 3.2 we sample 10 realisations of scale-

Figure 3.1: Eigenvalue distribution a KBRG realisation.

free percolation adjacency matrices of size 4000×4000 with σ = 1 and plot their
eigenvalues (in green). We superpose on them the eigenvalues of the product
PNGNPN of a GUE matrix GN with a diagonal matrix PN with i.i.d. entries
distributed as

√
Pareto(τ) (in blue). Note that by Nica and Speicher [2006,

Remark 14.2], Chakrabarty et al. [2021a, Remark 4.3], the a.s. limiting ESD of
PNGNPN is µsc ⊠ µW . All matrices are centred and rescaled by the sample
second moment. Thirdly, to elucidate the tail behaviour of the limiting ESD
when σ = 1 (Theorem 3.2.2) we draw in Figure 3.3 the empirical survival
function of the eigenvalues of a matrix of size 7000× 7000 in x ≥ 1.5.

110



§3.2. Set-up and main results

C
hapter

T
hree

Figure 3.2: KBRG eigenvalue distribution and PNGNPN distribution.

Finally, we provide in Figure 3.4 a simulation of the eigenvalues of the Gaus-
sian matrix ÃN,m,g (see (3.24)) when α = 0 and N = 6000. We compare this
picture with the right-hand side of Figure 3.1, which has a small α. We con-
jecture that the atom appearing in the latter is due to high connectivity of the
kernel-based realisation (if α = 0, for all i, j we have that pij is identically one
in (3.4)), whilst in the Gaussian setup this trivialization does not arise.

Figure 3.3: Negative of the log-empirical survival function and tails of Theorem 3.2.2
for x ≥ 1.5.

Remark 3.2.7 (Sparse case).
We expect the case α > d to be very different due to the sparse nature of the
graph. There has been a significant development in the area of spectral prop-
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erties of sparse random graphs using the techniques of local weak convergence
[Bordenave and Lelarge, 2010, Bordenave et al., 2017, 2011]. However, it is not
immediately clear whether these techniques can be employed in our framework
in order to determine the properties of the limiting measure: the underlying ran-
dom graph generated in our model will not be tree-like to begin with. We plan to
address this case in a future work.

§3.3 Notation and preliminary lemmas

In this section, we fix some notation and collect some technical lemmas that
will be used in the proofs of our main results.

§3.3.1 Notation
We will use the Landau notation oN , ON indicating in the subscript the vari-
able under which we take the asymptotic (typically this variable will grow
to infinity unless otherwise specified). Universal positive constants are de-
noted as c, c1, . . . , and their value may change with each occurrence. For
an N × N matrix A = (aij)

N
i, j=1 we use Tr(A) :=

∑N
i=1 aii for the trace

and tr(A) := N−1Tr(A) for the normalised trace. When n ∈ N we write
[n] := {1, 2, . . . , n}. We denote the cardinality of a set A as #A, and, with a
slight abuse of notation, #σ also denotes the number of cycles in a permutation
σ.
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§3.3.2 Technical lemmas
The following proposition, known as the Hoffman-Wielandt inequality, follows
from Bai and Silverstein [2010, Corollary A.41].

Proposition 3.3.1 (Hoffman-Wielandt inequality).
Let A and B be two N ×N normal matrices and let ESD(A) and ESD(B) be
their ESDs, respectively. Then,

dL (ESD(A),ESD(B))3 ≤ 1

N
Tr [(A−B)(A−B)∗] . (3.8)

Here A∗ denotes the conjugate transpose of A. Moreover, if A and B are two
Hermitian matrices of size N ×N , then

N∑
i=1

(λi(A)− λi(B))2 ≤ Tr[(A−B)2]. (3.9)

The next two straightforward lemmas control the tail of the product of two
Pareto random variables and the expectation of a truncated Pareto.
Lemma 3.3.2.
Let X and Y be two independent Pareto r.v.’s with parameters β1 and β2
respectively, with β1 ≤ β2. There exist constants c1 = c1(β1, β2) > 0 and
c2 = c2(β1) > 0 such that

P(XY > t) =

{
c1t
−β1 if β1 < β2

c2t
−β1 log t if β1 = β2.

Lemma 3.3.3.
Let X be a Pareto random variable with law P and parameter β > 1. For any
m > 0 it holds

E [X1X≥m] =
β

(β − 1)
m1−β.

We state one final auxiliary lemma related to the approximation of sums by
integrals.
Lemma 3.3.4.
Let β ∈ (0, 1]. Then there exists a constant c1 = c1(β) > 0 such that

1

N

∑
i ̸=j∈VN

1

∥i− j∥β
∼ c1max{N1−β, logN}. (3.10)

If instead β > 1, there exists a constant c2 > 0 such that

1

N

∑
i ̸=j∈VN

1

∥i− j∥β
∼ c2 .
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We end this section by quoting, for the reader’s convenience, the following
lemma from Chakrabarty et al. [2016, Fact 4.3].

Lemma 3.3.5.
Let (Σ, d) be a complete metric space, and let (Ω,A, P ) be a probability space.
Suppose that

(
Xmn : (m,n) ∈ {1, 2, . . . ,∞}2\{∞,∞}

)
is a family of random

elements in Σ, that is, measurable maps from Ω to Σ, the latter being equipped
with the Borel σ-field induced by d. Assume that

(1) for all fixed 1 ≤ m <∞

lim
n→∞

d (Xmn, Xm∞) = 0 in P -probability.

(2) For all ε > 0,

lim
m→∞

lim sup
n→∞

P (d (Xmn, X∞n) > ε) = 0.

Then, there exists a random element X∞∞ of Σ such that

lim
m→∞

d (Xm∞, X∞∞) = 0 in P -probability (3.11)

and
lim
n→∞

d (X∞n, X∞∞) = 0 in P -probability.

Furthermore, if Xm∞ is deterministic for all m, then so is X∞∞, and (3.11)
simplifies to

lim
m→∞

d (Xm∞, X∞∞) = 0. (3.12)

§3.4 Existence and Uniqueness

The proof of Theorem 3.2.1 is split into several parts and we will now briefly
sketch them.

(1) Truncation: The first part of the proof is a truncation argument on the
unbounded weights (Wi)i∈VN

. We construct a new sequence (Wm
i )i∈VN

that is obtained by truncating the original weights at a value m > 1. We
construct another scaled adjacency matrix AN,m, with entries AN,m(i, j)

distributed as Bernoulli random variables with parameter pmij given by
(3.4) with the weights substituted by the truncated ones. We then show
(see Lemma 3.4.2) that the empirical measure ESD(AN ) is well approxim-
ated by ESD(AN,m), that is, their Lévy distance vanishes in probability
in the limit m→ ∞.
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(2) Gaussianisation: In the second part, we aim to Gaussianise AN,m us-
ing the ideas of Chatterjee [2005]. We begin with the construction of a
centred matrix AN,m, that is obtained by subtracting out the expectation
from each entry of AN,m. We then Gaussianise AN,m, that is, we pass to
another matrix AN,g with each entry AN,g(i, j) being a normal random
variable with mean 0 and the same variance pmij (1 − pmij ) as the corres-
ponding entry of AN,m. Lastly, we tweak the variances of AN,g to obtain
a Gaussian random matrix ÃN,m,g with entries ÃN,m,g(i, j) having mean
0 and variance equal to rmij , the “unbounded version” of pmij (see (3.13)).
Thanks to (3.8), we can show (Lemma 3.4.3, Lemma 3.4.4 and Lemma
3.4.6) that in this whole process we did not lose too much: the Lévy
distance between the empirical measures ESD(AN,m) and ESD(ÃN,m,g)

is small in probability. We remark here that the order of the errors in
Lemmas 3.4.3 and 3.4.6 is N−α, and these steps fail for α = 0.

(3) Identification of the limit: We then proceed to analyse the limit of the
measure ESD(ÃN,m,g) as N goes to infinity. We use Wick’s formula to
compute its expected moments and use a concentration argument to show
the existence of a unique limiting measure

µσ,τ,m := lim
N→∞

ESD(ÃN,m,g)

using Proposition 3.4.9. We conclude the proof of Theorem 3.2.1 by letting
the truncation m go to infinity: using Lemma 3.3.5 we can show that there
is a unique limiting measure µσ,τ such that µσ,τ := limm→∞ µσ,τ,m. In the
case σ = 1 calculations become explicit.

Remark 3.4.1 (Self-loops).
We can use Proposition 3.3.1 to show that having self-loops in the model will not
affect the limiting spectral distribution. Let AN be the scaled adjacency matrix
of the model as defined in (3.6). Now, consider

DN = c
−1/2
N Diag(1, . . . , 1)

to be the N ×N diagonal matrix with all diagonal entries “1”, scaled by a factor
of

√
cN , and AN,SL = AN +DN . If we extend the definition of pij for the case

i = j as pii = 1, then AN,SL will be the scaled adjacency of the random graph
with self-loops. Using (3.8), we get

d3L(µAN
, µAN,SL

) ≤ 1

N
Tr[(AN −AN,SL)

2] =
1

N
Tr[D2

N ] =
N

NcN
= O(c−1N ).
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§3.4.1 Truncation
Now we show that for our analysis the weights can be truncated. More precisely,
let m > 1 be a truncation threshold and define Wm

i = Wi1Wi≤m for any i ∈
VN . For all N ∈ N, we define a new random graph with vertex set VN and
connection probability as follows: conditional on the weights (Wm

i )i∈VN
we

connect i, j ∈ VN with probability

pmij = rmij ∧ 1 with rmij =
(Wm

i ∨Wm
j )(Wm

i ∧Wm
j )σ

∥i− j∥α
i ̸= j ∈ VN .

(3.13)
Let AN,m be the corresponding adjacency matrix scaled by

√
cN and let its ESD

be denotes by ESD(AN,m).
It will be useful later to have the two following easy bounds (following from

Lemma 3.3.4):∑
i ̸=j∈VN

rmij ≤ m1+σNcN ,
∑

i ̸=j∈VN

(rmij )
t ≤ cm2+2σ max{N1−tα, logN} ,

(3.14)

for some constant c > 0 and t > 1 a real number. The second bound is not
optimal, since for some t > 1 such that tα > 1, the upper bound will just be
a constant depending on t and α. However, for our computations, this bound
suffices.
Lemma 3.4.2 (Truncation).
For every δ > 0 one has

lim sup
m→∞

lim
N→∞

P (dL(ESD(AN ),ESD(AN,m)) > δ) = 0 .

Proof. By (3.8) we have that

E
[
d3L (ESD(AN ), ESD(AN,m))

]
≤ 1

NcN
E
[
Tr
(
(AN −AN,m)2

)]
=

1

NcN

∑
i ̸=j∈VN

E
[
(AN (i, j)−AN,m(i, j))21AN (i,j)̸=AN,m(i,j)

]
≤ 1

NcN

∑
i ̸=j∈VN

P (AN (i, j) ̸= AN,m(i, j)) . (3.15)

For fixed i, j we will analyse P (AN (i, j) ̸= AN,m(i, j)) as follows. We notice
that AN (i, j) ̸= AN,m(i, j) can occur only if one between Wi and Wj exceeds
m. Calling

A = {Wi ≥ m > Wj} and B = {Wi ≥Wj ≥ m} (3.16)
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we have, by symmetry of Wi and Wj , that P (AN (i, j) ̸= AN,m(i, j)) equals

2P ({AN (i, j) ̸= AN,m(i, j)} ∩A) + 2P ({AN (i, j) ̸= AN,m(i, j)} ∩B) .

Notice that on the events A and B the variable AN,m(i, j) is always 0. So we
can bound

P ({AN (i, j) ̸= AN,m(i, j)} ∩A)
= P ({AN (i, j) = 1} ∩A)

≤ E
[κσ(Wi,Wj)

∥i− j∥α
1A

]
≤

E[Wi1Wi≥m]E[W σ
j ]

∥i− j∥α
≤ c

m2−τ

∥i− j∥α

for some constant c > 0, where we have used Lemma 3.3.3 and the fact that
E[W σ

j ] <∞. Analogously we can bound the second summand by

P ({AN (i, j) ̸= AN,m(i, j)} ∩B)

≤ E

[
WiW

σ
j

∥i− j∥α
1B

]
≤

E[Wi1Wi≥m]E[W σ
j ]

∥i− j∥α

≤ c
m2−τ

∥i− j∥α
.

Plugging these estimates back into (3.15) we obtain

E
[
d3L (ESD(AN ), ESD(AN,m))

]
≤ 4c

NcN

∑
i ̸=j∈VN

m2−τ

∥i− j∥α
= 4cm2−τ .

We can then conclude by applying Markov’s inequality:

lim sup
m→∞

lim
N→∞

P (dL (ESD(AN ), ESD(AN,m)) > δ)

≤ lim sup
m→∞

lim
N→∞

E
[
d3L (ESD(AN ), ESD(AN,m))

]
δ3

= 0

since τ > 2.

§3.4.2 Centring

Let 1 < m ≤ ∞ and AN,m be the centred and rescaled truncated adjacency
matrix, i.e. the matrix defined as

AN,m(i, j) = AN,m(i, j)− EW [AN,m(i, j)], i ̸= j ∈ VN . (3.17)

Note that here m = ∞ corresponds to the matrix with non-truncated weights.
The following lemma says that the centring does not affect the limiting spectral
distribution.
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Lemma 3.4.3 (Centring).
For any m ∈ (1,∞], under the conditions in Theorem 3.2.1, we have, for all
δ > 0,

lim
N→∞

P
(
dL
(
ESD(AN,m), ESD(AN,m)

)
> δ
)
= 0 ,

where ESD(AN,m) is the empirical spectral distribution of AN,m.

Proof. By (3.8) we have

E
[
d3L
(
ESD(AN,m), ESD(AN,m)

)]
≤ 1

N
E
[
Tr(EW [AN,m]2)

]
=

1

NcN

∑
i ̸=j∈VN

E[pmij ]
2

≤ 1

NcN

∑
i ̸=j∈VN

E [(Wi ∨Wj)(Wi ∧Wj)
σ]2

∥i− j∥2α

≤ c

NcN
max{N1−2α, logN}. (3.18)

Here c is some constant as for τ > 2 and σ < τ − 1 we have

E [(Wi ∨Wj)(Wi ∧Wj)
σ] = 2E

[
WiW

σ
j 1Wi>Wj

]
≤ 2E[Wi]E[W σ

j ] <∞.

In the last inequality we used Lemma 3.3.4. The result follows by applying
Markov’s inequality.

§3.4.3 Gaussianisation
Let {Gi,j , 1 ≤ i ≤ j} be a family of i.i.d. standard Gaussian random variables,
independent of the weights and the graph. Define a symmetric N ×N matrix
AN,m,g by

AN,m,g(i, j) =


√

pmij (1−pmij )√
cN

Gi∧j,i∨j for 1 ≤ i ̸= j ≤ N

0 for i = j.
(3.19)

Notice that the entries of AN,m,g have the same mean and variance of the cor-
responding entries of AN,m. Consider a three-times continuously differentiable
function h : R → R such that

max
0≤k≤3

sup
x∈R

∣∣∣h(k)(x)∣∣∣ <∞

where h(k) denotes the k-th derivative. For an N × N real symmetric matrix
MN define the resolvent of MN as

RMN
(z) = (MN − z IN )−1 , z ∈ C+,
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where IN is the N ×N identity matrix. In particular, if µ := µMN
is the ESD

of MN , the relation between the Stieltjes transform SMN
of µMN

and resolvent
can be expressed as

H(MN ) := SMN
(z) = tr(RMN

(z)), z ∈ C+ (3.20)

[Bai and Silverstein, 2010, Section 1.3.2]. The next result shows that the real
and imaginary parts of the Stieltjes transform of µAN,m

are close to those of
µAN,m,g

. Since one knows that the convergence of the ESD is equivalent to
showing the convergence of the corresponding Stieltjes transform, one can shift
the problem to the Gaussianised setup and work with the matrix AN,m,g.

Lemma 3.4.4 (Gaussianisation).
Consider the matrix AN,m defined in Subsection 3.4.1 and the matrix AN,m,g

defined in (3.19). For any three-times continuously differentiable function h :

R → R such that
max
0≤k≤3

sup
x∈R

∣∣∣h(k)(x)∣∣∣ <∞

we have

lim
N→∞

∣∣∣E [h (ℜH (AN,m,g))]− E
[
h
(
ℜH

(
AN,m

))] ∣∣∣ = 0,

lim
N→∞

∣∣∣E [h (ℑH (AN,m,g))]− E
[
h
(
ℑH

(
AN,m

))] ∣∣∣ = 0 ,

where ℜ and ℑ denote the real and imaginary parts respectively and h(k) denotes
the k-th derivative of h.

To prove the above lemma, we will need the following result from Chatterjee
[2005].

Theorem 3.4.5 (Chatterjee [2005, Theorem 1.1]).
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) be two vectors of independent ran-
dom variables with finite second moments, taking values in some open interval
I and satisfying, for each i,EXi = EYi and EX2

i = EY 2
i . Let f : In → R be

three-times differentiable in each argument. If we set U = f(X) and V = f(Y),
then for any thrice differentiable h : R → R and any K > 0,

|Eh(U)− Eh(V )| ≤ C1(h)λ2(f)

n∑
i=1

[
E
[
X2

i 1|Xi|>K

]
+ E

[
Y 2
i 1|Yi|>K

]]
+ C2(h)λ3(f)

n∑
i=1

[
E
[
|Xi|3 1|Xi|≤K

]
+ E

[
|Yi|3 1|Yi|≤K

]]
where C1(h) = ∥h′∥∞+ ∥h′′∥∞ , C2(h) =

1
6 ∥h

′∥∞+ 1
2 ∥h

′′∥∞+ 1
6 ∥h

′′′∥∞ and
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λs(f) := sup
{
|∂qi f(x)|

s
q : 1 ≤ i ≤ n, 1 ≤ q ≤ s, x ∈ In

}
,

where ∂qi denotes q-fold differentiation with respect to the i-th coordinate.

Proof of Lemma 3.4.4. We prove this for the real part of the Stieltjes transform.
The bounds for the imaginary part remain the same. We fix a complex number
z ∈ C+, given by z = ℜ(z) + ι̇η with η > 0.

Let n = N(N − 1)/2 and x = (xij)1≤i<j≤N ∈ Rn. Define R(x) to be the
matrix-valued differentiable function given by

R(x) := (MN (x)− z IN )−1,

where MN (·) is the matrix-valued differentiable function that maps a vector in
Rn to the space of N ×N Hermitian matrices, given by

MN (x)ij =


c
−1/2
N xij if i < j,

c
−1/2
N xji if i > j,

0 if i = j.

Since MN is symmetric, it has all real eigenvalues. The function H(MN (x))

admits partial derivatives of all orders. In particular, we denote for any u ∈
{(i, j)}1≤j<i≤n the partial derivative as ∂H/∂xu. For any u ∈ {(i, j)}1≤j<i≤n,
using the identity (MN (x)− z I)R(x) = IN we have

∂R(x)

∂xu
= −R(x)(∂uMN )R(x).

By iterative application of derivatives, three identities were derived in Chatterjee
[2005]:

∂H

∂xu
= − 1

N
Tr

(
∂MN (x)

∂xu
R(x)2

)
,

∂2H

∂x2u
=

2

N
Tr

(
∂MN (x)

∂xu
R(x)

∂MN (x)

∂xu
R(x)2

)
,

∂3H

∂x3u
= − 6

N
Tr

(
∂MN (x)

∂xu
R(x)

∂MN (x)

∂xu
R(x)

∂MN (x)

∂xu
R(x)2

)
.

Note that ∂ijMN (x) is a matrix with c−1/2N at the (i, j)th and (j, i)th entry,
and 0 everywhere else. Using the bounds on Hilbert-Schmidt norms and follow-
ing the exact argument regarding the bounds in equations (4), (5) and (6) in
Chatterjee [2005] we get that∥∥∥∥ ∂H∂xu

∥∥∥∥
∞

≤ 2

ηN
√
cN
,

∥∥∥∥∂2H∂x2u
∥∥∥∥
∞

≤ 4

η3NcN
,

∥∥∥∥∂3H∂x3u
∥∥∥∥
∞

≤ 12

η4Nc
3/2
N

.
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Hence
λ2(H) ≤ 4max

{
1

η4
,
1

η3

}
1

NcN

and
λ3(H) ≤ 12max

{
1

η6
,

1

η9/2
,
1

η4

}
1

Nc
3/2
N

.

Conditional on the weights (Wi)i≥1, consider the following sequence of in-
dependent random variables. Let Xb = (Xb

ij)1≤i<j≤N be a vector with Xb
ij ∼

Ber(pmij ) − pmij . Similarly, take another vector Xg = (Xg
ij)1≤i<j≤N with Xg

ij ∼
N
(
0, pmij (1− pmij )

)
. Then,

AN,m = MN (Xb) and AN,g = MN (Xg)

in law. We have that∣∣E [h (ℜHz (AN,m,g))− h
(
ℜHz

(
AN,m

))] ∣∣
=
∣∣E [EW

[
h (ℜHz (AN,m,g))− h

(
ℜHz

(
AN,m

))]] ∣∣ .
Conditionally on the weights, the sequences Xg and Xb form two vectors of
independent random variables, with EW [Xb

ij ] = EW [Xg
ij ] and EW [(Xb

ij)
2] =

EW [(Xg
ij)

2]. Then, using Theorem 3.4.5 on the conditional expectation

EW [h (ℜHz (AN,m,g))− h
(
ℜHz

(
AN,m

))
] ,

we have that∣∣E [EW [h (ℜHz (AN,m,g))− h
(
ℜHz

(
AN,m

))
]
] ∣∣

≤ C1(h)λ2(H)
∑

1≤i<j≤N
E[(Xb

ij)
21|Xb

ij |>KN
] + E[(Xg

ij)
21|Xg

ij |>KN
] (3.21)

+ C2(h)λ3(H)
∑

1≤i<j≤N
E[(Xb

ij)
31|Xb

ij |≤KN
] + E[(Xg

ij)
31|Xg

ij |≤KN
] , (3.22)

where KN is a (possibly) N−dependent truncation and where we have used
that |∂puℜH| = |ℜ∂ρuH| ≤ |∂puH|. Now using the fact that r/p > 0 we have
|∂puℜH|

r
p ≤ |∂puH|

r
p , and therefore

λr(ℜH) ≤ λr(H).

We begin by evaluating (3.21). To compute the Bernoulli term, notice that
Xb

ij are uniformly bounded by 1, so, for any KN > 1, we automatically have
that ∑

1≤i<j≤N
E[(Xb

ij)
21|Xb

ij |>KN
] = 0 .
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For the Gaussian term, we apply the Cauchy-Schwarz inequality (with respect
to E). Using also the trivial bound pmij ≤ rmij and Markov’s inequality, we obtain∑
1≤i<j≤N

E[(Xg
ij)

21|Xg
ij |>KN

] ≤
∑

1≤i<j≤N
E[(Xg

ij)
4]1/2P(|Xg

ij | > KN )1/2

≤ 3
∑

1≤i<j≤N
E[(rmij )

2]1/2
E[(Xg

ij)
2]1/2

KN
≤ 3

∑
1≤i<j≤N

E[(rmij )
2]1/2

E[rmij ]
1/2

KN

(3.14)
= ON (N ·K−1N max{N1−3α/2, logN}).

We thus conclude that (3.21) is of order

(3.21) = ON (c−1N K−1N max{N1−3α/2, logN}).

For (3.22), we use that for any random variable X we have the bound

E[|X|31|X|≤K ] ≤ KE[X2] .

Hence we can bound∑
1≤i<j≤N

E[(Xb
ij)

31|Xb
ij |≤KN

+ (Xg
ij)

31|Xg
ij |≤KN

]

≤ KN

∑
1≤i<j≤N

E[(Xb
ij)

2 + (Xg
ij)

2]

≤ 2KN

∑
1≤i<j≤N

E[rmij ]
(3.14)
= ON (KNNcN ) .

This yields that (3.22) is of order ON (KNc
−1/2
N ). Choosing KN = ON1 gives us

that ∣∣E [h (ℜH (AN,m,g))]− E
[
h
(
ℜH

(
AN,m

))]∣∣ = oN (1) . (3.23)

A similar argument holds for the imaginary part ℑ(H) and this completes the
proof.

Simplification of the variance structure

To conclude Gaussianisation, we would like to construct a final matrix ÃN,m,g

with a simpler variance structure than that of AN,m,g. We let its entries be

ÃN,m,g(i, j) =

√
rmij√
cN

Gi∧j,i∨j 1 ≤ i, j ≤ N (3.24)

where rmij is as in (3.13) and the {Gi,j : i ≥ j} are the i.i.d. collection of Gaussian
variables used in (3.19). We need to prove that the ESD of this matrix gives
asymptotically a good approximation of the ESD of AN,m,g.
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Lemma 3.4.6 (Simplification of variance).
For any δ > 0

lim
N→∞

P
(
dL(ESD(AN,m,g),ESD(ÃN,m,g)) > δ

)
= 0 .

Proof. Construct a matrix LN,g with entries

LN,g(i, j) =


√

pmij√
cN
Gi∧j,i∨j 1 ≤ i ̸= j ≤ N

0 1 ≤ i = j ≤ N

where pmij = rmij ∧ 1. By (3.8), we have that

E[d3L(ESD(AN,m,g),ESD(LN,g))] ≤
1

NcN

∑
i ̸=j∈VN

E
[
G2

i,jp
m
ij

(√
1− pmij − 1

)2]
≤ 1

NcN

∑
i ̸=j∈VN

E[pmij |(1− pmij )− 1|]

≤ 1

NcN

∑
i ̸=j∈VN

E[(rmij )
2]

(3.14)
= oN (1).

For i ̸= j ∈ VN define the events Aij = {rmij ≤ 1}. Construct yet another
matrix L̃N,g as

L̃N,g(i, j) = LN,g(i, j)1Aij +
Xij√
cN

1Ac
ij

where, conditional on the weights, Xij ∼ N
(
0, rmij

)
are mutually independent

and independent of the {Gi,j}i>j . It is easy to see that L̃N,g = ÃN,m,g in
distribution. So, comparing LN,g with L̃N,g, using (3.8) we get

E[d3L(ESD(L̃N,g),ESD(LN,g))] ≤
1

N

∑
i ̸=j∈VN

E[(LN,g(i, j)− L̃N,g(i, j))
2]

=
1

N

N∑
i ̸=j∈VN

E[(LN,g(i, j)− L̃N,g(i, j))
21Ac

ij
]

=
1

N

N∑
i ̸=j∈VN

E

(√pmij√
cN

Gi∧j,i∨j −
Xij√
cN

)2

1Ac
ij

 .
Using that the Gi, j are centred and independent of the weights, and the Cauchy-
Schwarz inequality, we can develop the square to obtain a further upper bound
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of the form

1

NcN

N∑
i ̸=j∈VN

E[G2
i∧j,i∨j1Ac

ij
] +E[X2

ij1Ac
ij
]

≤ 1

NcN

N∑
i ̸=j∈VN

P(Ac
ij) +E[X4

ij ]
1/2P(Ac

ij)
1/2

≤ 1

NcN

N∑
i ̸=j∈VN

P(Ac
ij) +

3E[(Wm
i ∨Wm

j )2(Wm
i ∧Wm

j )2σ]1/2

∥i− j∥α
P(Ac

ij)
1/2

= oN (1)

since
P(Ac

ij) ≤ P
(
WiW

σ
j ≥ ∥i− j∥α

)
≤ c

∥i− j∥α((τ−1)∧
τ−1
σ )

.

Using the triangle inequality, we get

E[d3L(ESD(AN,m,g),ESD(ÃN,m,g))] = oN (1) .

We conclude the proof using Markov’s inequality.

§3.4.4 Moment method

Preliminary results: combinatorial setup

We will recall here the combinatorics features of partitions we need in the
chapter, and refer the reader for a detailed exposition to Nica and Speicher
[2006, Chapter 9].

For k ≥ 1, denote by P(2k) the set of partitions of [2k], and by NC(2k) :=
NC([2k]) the set of non-crossing partitions of {1, 2, . . . , 2k}. When we write a
partition, we order its blocks in such a way that the first block always contains
1, and the (i+1)th block contains the smallest element not belonging to any of
the previous i blocks.

In what follows, we shall use Wick’s formula. Let (X1, . . . , Xn) be a real
Gaussian vector, then

E[Xi1 · · ·Xik ] =
∑

π∈P2(2k)

∏
(r,s)∈π

E[XirXis ], (3.25)

where P2(2k) denotes the pair partitions of [2k].
Any partition π ∈ P(k) can be realised as a permutation of [k], that is,

a bijective mapping [k] → [k]. Let Sk denote the set of permutations on k
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elements. Let γ = (1, 2, . . . , k) ∈ Sk be the shift by 1 modulo k. We will be
interested in the composition of two permutations γ and π, denoted by γπ,
which will be seen below as a partition.

As an example, consider π = {{1, 2}, {3, 4}} and γ = (1, 2, 3, 4). To compute
γπ, we read π as (1, 2)(3, 4), and compute γπ = (1, 3)(2)(4). We finally read γπ
as {{1, 3}, {2}, {4}}. We now define a graph associated to a partition, borrowing
the definition from Avena et al. [2023, Definition 2.3].
Definition 3.4.7 (Graph associated to a partition).
For a fixed k ≥ 1, let γ denote the cyclic permutation (1, 2, . . . , k). For a
partition π, we define Gγπ = (Vγπ, Eγπ) as a rooted, labelled directed graph
associated with any partition π of [k], constructed as follows.

• Initially consider the vertex set Vγπ = [k] and perform a closed walk on
[k] as 1 → 2 → 3 → · · · → k → 1 and with each step of the walk, add an
edge.

• Evaluate γπ, which will be of the form γπ = {V1, V2, . . . , Vm} for some
m ≥ 1 where {Vi}1≤i≤m are disjoint blocks. Then, collapse vertices in
Vγπ to a single vertex if they belong to the same block in γπ, and collapse
the corresponding edges. Thus, Vγπ = {V1, . . . , Vm}.

• Finally root and label the graph as follows.

– Root: we always assume that the first element of the closed walk (in
this case ‘1’) is in V1, and we fix the block V1 as the root.

– Label: each vertex Vi gets labelled with the elements belonging to the
corresponding block in γπ.

For the partitions π = {{1, 2}, {3, 4}}, γπ = {{1, 3}, {2}, {4}}, Figure 3.5
illustrates this procedure.

The following lemma is an exercise in Nica and Speicher [2006, Exercise
22.15] and explains also why non-crossing pair partitions will have the dominant
role in the computations that follow. We will denote as NC2(2k) the set of non-
crossing pair partitions of [2k]. For a partition π we let #π the number of its
blocks.
Lemma 3.4.8.
Given π ∈ P2(2k), one has #γπ ≤ k + 1 and the equality holds if and only
π ∈ NC2(2k). If π ∈ NC2(2k), the graph Gγπ is a rooted tree.

Finally, given π ∈ NC2(2k), we define the map T = Tπ : [2k] → [k +

1] as follows. By Lemma 3.4.8, we know that #γπ = k + 1 and let γπ =

{V1, V2, . . . , Vk+1}. Define

Tπ(i) = j if i ∈ Vj . (3.26)
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Figure 3.5: Left: closed walk on [4]. Right: graph associated to γπ = {{1, 3}, {2}, {4}}.
The root is in red.

Moment characterisation

We are now ready to give the proofs on Gaussianisation leading to the main
result of this subsection, the proof of Theorem 3.2.1.

Proposition 3.4.9.
Let ÃN,m,g be defined as in (3.24). Let ESD(ÃN,m,g) be its empirical spectral
distribution. Then, for k ∈ N, one has

lim
N→∞

E
[∫

R
x2k ESD(ÃN,m,g)(dx)

]
=M2k (3.27)

and odd moments are zero. Moreover,

lim
N→∞

Var

(∫
R
x2k ESD(ÃN,m,g)(dx)

)
= 0, (3.28)

where

M2k =
∑

π∈NC2(2k)

E

 ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

 <∞, (3.29)

where κσ is as in (3.3) and E(Gγπ) is the edge set of the tree Gγπ. Moreover,
there exists a unique compactly supported symmetric and deterministic measure
µσ,τ,m characterised by the moment sequence {M2k}k∈N such that

lim
N→∞

ESD(ÃN,m,g) = µσ,τ,m in P-probability. (3.30)
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Proof. Let {Gi,j : 1 ≤ i < j ≤ N} be a sequence of standard independent
centred Gaussian random variables as in (3.24) which is also independent of
(Wi)i∈[N ]. Let G be the matrix

G(i, j) =

{
∥i− j∥−α/2Gi∧j,i∨j i ̸= j

0 i = j
(3.31)

Observe that
ÃN,m,g

d
= Υσ,m ◦ G,

where Υσ,m is the matrix with elements

Υσ,m(i, j) =

√
κσ(Wm

i ,W
m
j )

cN

and ◦ denotes the Hadamard product. Using Wick’s formula (3.25) we have

E
[
tr
(
Ã2k

N,m,g

)]
=

1

NckN

∑′

1≤i1,...,i2k≤N
E

[
2k∏
ℓ=1

Υσ,m(iℓ, iℓ+1)

2k∏
ℓ=1

G(iℓ, iℓ+1)

]

=
1

NckN

∑′

1≤i1,...,i2k≤N
E

[
2k∏
ℓ=1

κ1/2σ (Wm
iℓ
,Wm

iℓ+1
)

]
×

∑
π∈P2(2k)

∏
(r,s)∈π

E [G(ir, ir+1)G(is, is+1)]

=
1

NckN

∑′

1≤i1,...,i2k≤N
E

[
2k∏
ℓ=1

κ1/2σ (Wm
iℓ
,Wm

iℓ+1
)

]

×
∑

π∈P2(2k)

∏
(r,s)∈π

1

∥ir − ir+1∥α
1{ir,ir+1}={is,is+1}, (3.32)

where we set i2k+1 = i1 to ease notation, and (r, s) ∈ π means π(r) = s and
π(s) = r. Here the

∑′ indicates the sum over all the indices (i1, . . . , i2k) such
that iℓ ̸= iℓ+1 for ℓ ∈ [2k]. The condition {ir, ir+1} = {is, is+1} is satisfied in
two cases:

C1) ir = is+1 and is = ir+1, that is, ir = iγπ(r) and is = iγπ(s), or

C2) ir = is and ir+1 = is+1, that is, ir = iπ(r) and ir+1 = iπ(r)+1.

As we are going to show, the limit of (3.32) will be supported on permutations
π ∈ NC2(2k) and such that Case 1) is true for all (r, s) ∈ π. To prove this, let
us define

Catπ,k = {i = (i1, . . . , i2k) ∈ [N ]2k : ir ̸= ir+1, ir = iγπ(r) ∀ r ∈ [2k]}.
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When the condition ir = iγπ(r) holds for all r, we see that i is constant on the
blocks of γπ. We construct a graph G(i) associated to i ∈ Catπ,k by performing
a closed walk i1 → i2 → . . . i2k → i1, and then collapsing elements ir, is into the
same vertex if r, s belong to the same block in γπ. We then collapse multiple
edges. After this, we see that G(i) = Gγπ. Thus, when we sum over i ∈ Catπ,k,
the count is over #γπ many indices.

We split the summation in (3.32) into two parts: a first sum over the non-
crossing pairings and i ∈ Catπ,k, and a second part with all the other terms,
that we call R1. Since we take i ∈ Catπ,k, i is constant on the blocks of γπ.
Using this property, we obtain

E
[
tr
(
Ã2k

N,m,g

)]
=

∑
π∈NC2(2k)

1

NckN

∑
i∈Catπ,k

E

 2k∏
j=1

κ1/2σ (Wm
ij ,W

m
ij+1

)

 ∏
(r,s)∈π

1

∥ir − ir+1∥α
+R1

=
∑

π∈NC2(2k)

1

NckN

∑
i∈Catπ,k

E

 ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

 ∏
(r,s)∈π

1

∥ir − ir+1∥α
+R1

where in the last line we have used that i is constant on the blocks of γπ. Since
the inner expectation no longer depends on i, we get that

E
[
tr
(
Ã2k

N,m,g

)]
=

∑
π∈NC2(2k)

E

 ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

 1

NckN

∑
i∈Catπ,k

∏
(r,s)∈π

1

∥ir − ir+1∥α

+R1.

Now we make the following two claims which will finish the proof.

Claim 3.4.10.
The following hold.

a) For any π ∈ NC2(2k),

lim
N→∞

1

NckN

∑
i∈Catπ,k

∏
(r,s)∈π

1

∥ir − ir+1∥α
= 1.

b) We have that limN→∞R1 = 0.
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With the above claim, whose proof is deferred to page 131, we have that
(3.27) holds. Moreover, the odd moments are identically 0, since there are no
non-crossing pair partitions for tuples of the form {1, 2, . . . , 2k + 1}, k ∈ N. We
now need to now show that (3.28) holds.

We introduce some new notation to prove (3.28). Let j = (j1, . . . , j2k). Let
P (i) denote the expectation

P (i)
(3.31)
:= E

[
2k∏
ℓ=1

κ1/2σ (Wm
iℓ
,Wm

iℓ+1
)G(iℓ, iℓ+1)

]
,

and P (i, j) be

P (i, j) := E

 2k∏
ℓ=1

κ1/2σ (Wm
iℓ
,Wm

iℓ+1
)G(iℓ, iℓ+1)

2k∏
p=1

κ1/2σ (Wm
ip ,W

m
ip+1

)G(ip, ip+1)


(with the usual cyclic convention that 2k + 1 equals 1 for subscripts of indices).
We can then see that

Var

(∫
R
x2k ESD(ÃN,m,g)(dx)

)
=

1

N2c2kN

∑
i,j:[2k]→[N ]

[P (i, j)− P (i)P (j)] .

(3.33)
Note that if the terms involving i and j are completely different, that is, if the
product of the terms G(i1, i2) · · · G(i2k, i1) is independent of G(j1, j2) · · · G(j2k, j1),
then P (i, j) = P (i)P (j), and (3.33) becomes identically 0. Hence, we have

Var

(∫
R
x2kµÃN,m,g

(dx)

)
=

1

N2c2kN

∑(≥1)

i,j:[2k]→[N ]

P (i, j), (3.34)

where
∑(≥1) is over i, j such that there is at least one matching of the form

ÃN,m,g(ir, ir+1) = ÃN,m,g(js, js+1) for some 1 ≤ r, s ≤ 2k − 1. If there is only
one entry of i, say i1, equal to only one entry of j, say j1, then we still have

EW

[
2k∏
ℓ=1

G(iℓ, iℓ+1)G(jℓ, jℓ+1)

]
= 0

since all entries G(iℓ, iℓ+1) are independent (even if i1 = j1) and centred. All the
more, P (i, j) = 0, so let us pass to having two equal indices, that is, a matching.

Let us consider the case when there is exactly one matching. Since both
indices in i and j can be reordered without affecting the variance,without loss of
generality we can assume that the matching is (i1, i2) = (j1, j2), and the rest of
the indices of i are different from the ones in j. One now has i′ = (i3, . . . , i2k)
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and j′ = (j3, . . . , j2k) with 2k−2 indices each, and so we can construct partitions
π, π′ for each of them independently.

For the ease of notation, let

ai,j := κ1/2σ (Wm
i , W

m
j )G(i, j)

and let
∑(1) be the sum over i, j such that there is exactly one matching between

i and j. Using Wick’s formula in the second equality, we have

1

N2c2kN

∑(1)

i,j:[2k]→[N ]

P (i, j)

=
1

N2c2kN

∑(1)

i,j:[2k]→[N ]

E

[
EW

[
2k∏
ℓ=1

aiℓ, iℓ+1
ajℓ, jℓ+1

]]

=
1

N2c2kN

∑
i,j:[2k]→[N ]

E

EW [a2i1,i2 ]
∑

π,π′∈P2({3, ..., 2k})

∏
(r,s)∈π

EW [air, ir+1ais, is+1 ]

×
∏

(r′,s′)∈π′

EW [ajr′ , jr′+1
ajs′ , js′+1

]

 . (3.35)

Following the idea of the proof for (3.27), we assume Claim 3.4.10 to be true to
obtain the optimal order. We will consider i′, j′ ∈ Catπ,k−1, and notice that

EW [a2ℓ,ℓ′ ] ≤
m1+σ

∥ℓ− ℓ′∥α
. (3.36)

Interchanging summands, we obtain

(3.35) =
1

N2c2kN
E

 ∑
π,π′∈P2({3, ..., 2k})

∑
i′,j′∈Catπ,k−1,

i1 ̸=i2∈[N ]

EW
[
a2i1,i2

] ∏
(r,s)∈π

EW
[
a2iriγπ(r)

]

×
∏

(r′,s′)∈π′

EW
[
a2jr′jγπ(r′)

]+R′1

(3.36)
≤ 1

N2c2kN

∑
π,π′∈P2({3, ..., 2k})

∑
i′,j′∈Catπ,k−1,

i1 ̸=i2∈[N ]

m1+σ

∥i1 − i2∥α
∏

(r,s)∈π

m1+σ

∥ir − iγπ(r)∥α

×
∏

(r′,s′)∈π′

m1+σ

∥jr′ − jγπ(r′)∥α
+R′1, (3.37)
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where R′1 is an error term such that limN→∞R′1 = 0, which follows from Claim
3.4.10. The contributing terms of the right-hand side of (3.37) can be upper-
bounded by

1

N2c2kN

∑
π,π′∈P2({3, ..., 2k})

∑
i:i′∈Catπ,k−1,

i1 ̸=i2

m1+σ

∥i1 − i2∥α
∏

(r,s)∈π

m1+σ

∥ir − iγπ(r)∥α

×
∑

j′∈Catπ′,k−1

∏
(r′,s′)∈π′

m1+σ

∥jr′ − jγπ(r′)∥α

=
1

N2c2kN

∑
π,π′∈P2({3, ..., 2k})

∑
i:i′∈Catπ,k−1,

i1 ̸=i2

m1+σ

∥i1 − i2∥α
∏

(r,s)∈π

m1+σ

∥ir − iγπ(r)∥α
ON (Nck−1k ).

Analogously, the sum over i conditioned on i′ ∈ Catπ,k−1 will be at most of
order NckN . Since the sum over partitions is finite and independent of N , we
obtain

1

N2c2kN

∑(1)

i,j:[2k]→[N ]

P (i, j) = ON (c−1N ).

More generally, if one has t pairings of the form (i1, i2) = (j1, j2), . . . , (it−1, it) =

(jt−1, jt), one can use the same argument and instead obtain a faster error of the
order of c−t+1

N , simply due to the set (jt+1, j2, . . . , j2k) now having only 2k − t

independent indices from i. Thus, we conclude

Var

(∫
R
x2kµÃN,m,g

(dx)

)
= ON (c−1N ). (3.38)

This proves (3.28).
To conclude, one can see that

M2k ≤ (m1+σ)kCk, (3.39)

where Ck is the kth Catalan number. Since
∑

k≥1C
−1/2k
k = ∞, so Carle-

man’s condition implies that {M2k}k≥1 uniquely determine the limiting meas-
ure. Therefore we can find C, R > 0 such that for all k ≥ 1 we have M2k ≤
CR2k. In turn, it is a straightforward exercise to show that this implies that
µτ, σ,m is compactly supported, and since it has odd moments equal to zero it is
symmetric. To conclude the proof of Proposition 3.4.9 we use for example Tao
[2012, pg. 134].

Proof of Claim 3.4.10. We first show a). Fix π ∈ NC2(2k). Recall that i ∈
Catπ,k is constant on the blocks of γπ. Therefore the number of free indices
over which we can construct i is #γπ = k + 1 (Lemma 3.4.8).
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For any π ∈ NC2(2k), there exists at least one block of the form (r, r+1) ∈ π,
where 1 ≤ r ≤ 2k, and 2k + 1 is identified with “1”. Then, {r + 1} ∈ γπ

is a singleton, and consequently, ir+1 is a free index under γπ, that is, under
the summation over indices i1, . . . , i2k, ir+1 runs from 1 to N independent of
other indices. Moreover, as i ∈ Catπ,k, we have ir = ir+2. If we remove the
block (r, r + 1) from π, we obtain π′ ∈ NC2(2k − 2) as a new partition on
{1, 2, . . . , r − 1, r + 2, . . . 2k}. Let i′ be the tuple (i1, i2, . . . , ir−1, ir+2, . . . , i2k).
We then have i′ ∈ Catπ′,k−1. So, we can write

1

NckN

∑
i∈Catπ,k

∏
(r,s)∈π

1

∥ir − is∥α

=
1

NckN

∑
i′∈Catπ′,k−1

 ∏
(r,s)∈π′

1

∥ir − is∥α

 N∑
ir+1=1

1

∥ir+1 − ir+2∥α

 . (3.40)

We now proceed inductively. For k = 1 the result is given by (3.5). Assume
now that we have shown, for some k − 1 ≥ 0 and any π′ ∈ NC2(2(k − 1)), that

lim
N→∞

1

Nck−1N

∑
i′∈Catπ′,k−1

∏
(r,s)∈π′

1

∥ir − is∥α
= 1. (3.41)

We need to show the same statement holds for k, which is precisely Claim
3.4.10a). Now, we have that

(3.40) =
1

Nck−1N

∑
i′∈Catπ′,k−1

 ∏
(r,s)∈π′

1

∥ir − is∥α

 1

cN

N∑
ir+1=1

1

∥ir+2 − ir+1∥α

 .

(3.42)

Taking the limit N → ∞, we have that the second factor in brackets above by
(3.5), and then the remaining expression equals 1 by the induction hypothesis
(3.41). This proves a).

To show b), we now analyse R1 explicitly. We have to deal with two cases:

b.1) π ∈ P2(2k) and i /∈ Catπ,k.

b.2) π ∈ P2(2k) \NC2(k) and i ∈ Catπ,k.

Note that for both cases the following factor involving the weights will not
play any role:

E

 2k∏
j=1

κ1/2σ (Wm
ij ,W

m
ij+1

)

 ≤ mk(1+σ).
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We first deal with Case b.2). From Lemma 3.4.8 we have #γπ ≤ k and
hence

∑
π∈P2(2k)\NC2(2k)

1

NckN

∑
i∈Catπ,k

E

 2k∏
j=1

κ1/2σ (Wm
ij ,W

m
ij+1

)

 ∏
(r,s)∈π

1

∥ir − ir+1∥α

≤ mk(1+σ)
∑

π∈P2(2k)\NC2(2k)

1

NckN

∑
i1∈[N ]

∑
i2,...,ik∈[N ]

1

∥i2∥α . . . ∥ik∥α
,

(3.43)

where (3.43) follows from i being constant on the cycles of γπ. Thus, we get
that the terms involved in Case b.2) give a contribution of the order

(3.43) ≤ cmk(1+σ)
∑

π∈P2(2k)\NC2(2k)

1

N1+k(1−α)N
1+(k−1)(1−α) = ON

1

N1−α = oN (1) .

(3.44)

We now show that the contribution from b.1) is also negligible. Begin by
fixing a partition π. For any tuple i, we construct a corresponding graph G(i)

(recall that when i ∈ Catπ,k we ended up with G(i) = Gγπ). For i ̸∈ Catπ,k,
G(i) is constructed by a closed walk i1 → i2 → . . . i2k → i1, thereby adding
the edges (ip, ip+1)

2k
p=1 with i2k+1 = i1. We then collapse indices ir, is into the

same vertex when {ir, ir+1} = {is, is+1}, which can be justified by (3.32). We
then proceed by collapsing the multiple edges and looking at the skeleton graph
G(i), with vertex set V (i). Hence, we see that

∑
π∈P2(2k)

1

NckN

∑′

i:[2k]→[N ]

E

 2k∏
j=1

κ1/2σ (Wm
ij ,W

m
ij+1

)

 ∏
(r,s)∈π

1

∥ir − ir+1∥α

≤ mk(1+σ)
∑

π∈P2(2k)

1

NckN
N1+(#V (i)−1)(1−α)

≤ ON (#V (i)−k−1)(1−α). (3.45)

since m > 1 is fixed and the sum over the set P2(2k) is finite. We see that the
only non-trivial contribution comes when #V (i) = k + 1, which signifies that
G(i) is a tree. Now we claim that for any π ∈ P2(2k) and i /∈ Catπ,k we have
#V (i) < k + 1.

When i /∈ Catπ,k, it implies that there exists at least one (r, s) ∈ π, such
that ir = is and ir+1 = is+1. Let us begin by assuming that there exists exactly
one such pair. Observe that due to the restrictions in

∑′, no pair-wise indices
are same, hence s can neither be r + 1, nor r − 1. Now consider the reduced
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partition π′ = π \ (r, s). Observe that π′ ∈ P2(2k)({1, . . . , r − 1, r + 1, . . . , s −
1, s + 1, . . . , 2k}). Note that now i′ ∈ Catπ′, k−1, so its contribution to (3.37)
is of the order of N1+(k−1)(1−α), which comes from the tree G(i′) on k vertices,
and where i′ are the (2k−2) indices which are obtained by removal of (ir, ir+1).
So, all we are left to show is that due to Case 2), ir and is will not give rise to
a new vertex in G(i).

Now, there exists an r < e < s− 1 such that (e, s− 1) ∈ π. Due to Case 2),
we have that ir = is contribute to the same vertex in G(i). Also ie = is and
ie+1 = is−1 due to Case 1). This implies that ir = is = ie, where ie is already
a contributing index in G(i′). This implies that G(i) is a tree on at most k
vertices, and hence #V (i) ≤ k. This shows that the contribution in (3.45) goes
to 0.

The case for which there is more than one pair breaking the constraint in
Catπ, k leads to an even smaller order. When none of the pairs satisfy the
constraint then ir = iπ(r) for all r and hence i is constant on the blocks of π.
So #V (i) ≤ k and again the contribution in (3.45) goes to 0, thus proving the
claim.

We wish to highlight that Proposition 3.4.9 is in fact more general, and works
beyond the kernels κσ defined in (3.3).

Remark 3.4.11.
The statement of Proposition 3.4.9 holds when we replace the entries of ÃN,m,g

in (3.24) by √
κ(Wi, Wj)

cN ∥i− j∥α
Gi∧j,i∨j 1 ≤ i, j ≤ N

for any function κ : [1, ∞)2 → [0,∞) which is symmetric and such that, for all
k ∈ N,

E

 2k∏
j=1

√
κ(Xj , Xj+1)

 <∞ (3.46)

where X1, . . . , X2k are i.i.d. random variables in [1,∞).

In our case the kernels κ(x, y) := κσ(x, y)1x,y≤m satisfy (3.46).

Proof of Theorem 3.2.1. To prove the final result, we shall use Lemma 3.3.5 with
the complete metric space Σ = P(R) and metric dL. Recall also the definition
of ÃN,m,g resp. AN,m of (3.24) resp. (3.17). In Proposition 3.4.9 we have shown
that there exists a (deterministic) measure µσ,τ,m such that, for every m > 0,

lim
N→∞

ESD(ÃN,m,g) = µσ,τ,m in P–probability.
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Hence for any h satisfying the assumptions of Lemma 3.4.4 and H as in (3.20)
it follows that

lim
N→∞

E
[
h
(
ℜH

(
ÃN,m,g

))]
= h

(
ℜ Sµσ,τ,m(z)

)
.

and thus, by means of Lemma 3.4.4 and Lemma 3.4.6,

lim
N→∞

E
[
h
(
ℜH

(
AN,m

))]
= h

(
ℜ Sµσ,τ,m(z)

)
.

Since the above holds true for any h satisfying the assumptions of Lemma 3.4.4
and µσ,τ,m is deterministic, it follows that

lim
N→∞

ℜH
(
AN,m

)
= ℜ Sµσ,τ,m(z) in P–probability.

A similar argument for the imaginary part shows that

lim
N→∞

ℑH
(
AN,m

)
= ℑ Sµσ,τ,m(z) in P–probability.

Combining the real and imaginary parts, we have, for any z ∈ C+,

lim
N→∞

SESD(AN,m)(z) = Sµσ,τ,m(z) in P–probability.

Since the convergence of the Stieltjes transform characterises weak convergence,
we have

lim
N→∞

ESD(AN,m) = µσ,τ,m in P–probability.

From Lemma 3.4.6 and Lemma 3.4.3, it also follows that, for every δ > 0 and
m > 0,

lim sup
N→∞

P(dL(µAN,m
, µσ,τ,m) > δ) = 0.

This shows condition (1) of Lemma 3.3.5. Condition (2) follows from Lemma
3.4.2 where we have proved that

lim sup
m→∞

lim
N→∞

P
(
dL(µAN,m

, µAN
) > δ

)
= 0.

Thus, it follows from Lemma 3.3.5 that there exists a deterministic measure
µσ,τ such that

lim
m→∞

dL(µσ,τ,m, µσ,τ ) = 0, (3.47)

and hence using the triangle inequality the result follows.
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§3.5 Scale-Free Percolation: A special case

Proof of Theorem 3.2.2. Step 1: identification. We are now dealing with the
special case of σ = 1. We go back to the moments of µσ,τ,m. Let γπ =

(V1, . . . , Vk+1) and let ℓi = #Vi (with a slight abuse of notation, we are viewing
here Vi as a set rather than a cycle). Since σ = 1, κσ(Wm

u ,W
m
v ) =Wm

u W
m
v . It

follows that

M2k =
∑

π∈NC2(2k)

E

 ∏
(u,v)∈E(Gγπ)

Wm
u W

m
v


=

∑
π∈NC2(2k)

k+1∏
i=1

E[(Wm
1 )ℓi ]

=

∫
R
x2kµsc ⊠ µW,m(dx).

The last equality follows from the combinatorial expression of the moments
of the free multiplicative convolution of the semicircle element with an element
whose law is given by µW,m (see Nica and Speicher [2006, Theorem 14.4]).
Consider the map x 7→ x2 from R → [0,∞) and let µ2 be the push-forward of
a probability measure µ under this mapping, so that µsc is pushed forward to
µ2sc. Then by Bercovici and Voiculescu [1993, Corollary 6.7] it follows that

lim
m→∞

µW,m ⊠ µ2sc ⊠ µW,m = µW ⊠ µ2sc ⊠ µW .

A consequence of Arizmendi and Pérez-Abreu [2009, Lemma 8] is that

µW,m ⊠ µ2sc ⊠ µW,m = (µsc ⊠ µW,m)2

and
µW ⊠ µ2sc ⊠ µW = (µsc ⊠ µW )2. (3.48)

Thus
lim

m→∞
(µsc ⊠ µW,m)2 = (µsc ⊠ µW )2.

Observe that µsc ⊠ µW,m and µsc ⊠ µW are symmetric around the origin [Ariz-
mendi and Pérez-Abreu, 2009, Theorem 7], hence we have that

lim
m→∞

dL(µsc ⊠ µW , µsc ⊠ µW,m) = lim
m→∞

dL(µsc ⊠ µW , µ1,τ,m, ) = 0.

Theorem 3.2.1 then implies that the ESD(AN ) converges to µsc ⊠ µW weakly
in probability.
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Step 2: tail asymptotics. In the following we use the recent results of
Kołodziejek and Szpojankowski [2022, Lemma 7.2] from which we also borrow
the notation. The free probability analogue of the classical Breiman’s lemma is
as follows: let µ, ν be probability measures and

µ(x,∞) ∼ x−βL(x) (3.49)

with L(·) a slowly varying function [Kołodziejek and Szpojankowski, 2022,
Definition 1.1]. Assume furthermore that the ⌊β + 1⌋-th moment of ν exists:

m⌊β+1⌋(ν) <∞.

Then
µ⊠ ν(x,∞) ∼ mβ

1 (ν)µ(x,∞)

with m1(ν) the first moment of ν.
Since µW ⊠ µsc is a symmetric measure we have, using Kołodziejek and

Szpojankowski [2022, equation (7.3)] and (3.48),

µW ⊠ µsc(x,∞) =
1

2
(µW ⊠ µsc)

2(x2,∞) =
1

2
µW ⊠ µ2sc ⊠ µW (x2,∞). (3.50)

By the commutativity and associativity of the free multiplicative convolution [Nica
and Speicher, 2006, Remark 14.2] we have µW ⊠ µ2sc ⊠ µW = µ2sc ⊠ µW ⊠ µW .
Let νW := µW ⊠ µW . Then a consequence of Kołodziejek and Szpojankowski
[2022, Theorem 1.3(iv)] is that

νW (x,∞) ∼ (m1(µW ))τ−1 µW (x,∞). (3.51)

Therefore νW satisfies (3.49) with β := τ −1, and clearly m⌊τ⌋(µ2sc) <∞. Thus,
applying Kołodziejek and Szpojankowski [2022, Lemma 7.2],

(µsc ⊠ νW ) (x,∞)
(3.50)
=

1

2
µW ⊠ µ2sc ⊠ µW (x2,∞)

∼ 1

2

(
m1(µ

2
sc)
)τ−1

νW (x2,∞)

(3.51)∼ 1

2

(
m1(µ

2
sc)
)τ−1

(m1(µW ))τ−1 µW (x2,∞)

∼ 1

2

(
m1(µ

2
sc)
)τ−1

(m1(µW ))τ−1 x−2(τ−1).

We can conclude noting that m1(µW ) is finite since τ > 2 and m1(µ
2
sc) =

m2(µsc) = 1 [Arizmendi and Pérez-Abreu, 2009, Proposition 5 a)].
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§3.6 Non-degeneracy of the limiting measure

The proof of Theorem 3.2.3 follows the arguments in Chakrabarty et al. [2016,
Theorem 2.2]. A key observation is that the limiting measure µσ,τ does not
depend on the parameter α. This will allow us to deal with an easier model,
formally corresponding to the case α = 0, that does not feel the influence of
the torus’ geometry. The lack of geometry also allows us to work on a unique
probability space. More precisely, let (Gi,j)i,j≥1 be an i.i.d. sequence of N (0, 1)

random variables, and let (Wi)i≥1 be an i.i.d. sequence of Pareto-distributed
random variables with parameter τ − 1. Assume they are defined on the same
probability space (Ω,F ,P). Define the N ×N matrix

BN,m = N−1/2
√
κσ(Wm

i ,W
m
j )Gi∧j,i∨j .

Let BN,∞ denote the matrix with non-truncated weights. The following result
can be proven exactly as in Proposition 3.4.9.

Proposition 3.6.1.
Let ESD(BN,m) be the empirical spectral distribution of BN,m. Then for all
m ≥ 1,

lim
N→∞

ESD(BN,m) = µσ,τ,m in P-probability.

Moreover,
lim

N→∞
ESD(BN,∞) = µσ,τ in P-probability.

We use this result to prove Theorem 3.2.3. Recall that, for a distribution
function F , the generalised inverse is given by

F←(y) := inf{x ∈ R : F (x) ≥ y}, 0 < y < 1.

Proof of Theorem 3.2.3. From Proposition 3.6.1, it follows that there exists a
subsequence (Nk)k≥1 such that µNk,m converges weakly almost surely to µσ,τ,m;
that is,

lim
k→∞

dL(ESD(BNk,m), µσ,τ,m) = 0 P-almost surely. (3.52)

For a n × n matrix A, let us denote by λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A) its
eigenvalues. For fixed integers 1 ≤ k < ∞, 1 < m < ∞, define the following
random variables on the probability space (Ω×(0, 1),F⊗B(0, 1),P = P×Leb):

Zk,m(ω, x) = λ⌈Nkx⌉
(
BNk,m(ω)

)
, ω ∈ Ω, x ∈ (0, 1),
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and
Zk,∞(ω, x) := λ⌈Nkx⌉

(
BNk,∞(ω)

)
, ω ∈ Ω, x ∈ (0, 1).

Let Fm be the distribution function of µσ, τ,m (we suppress the dependence on
σ and τ in Fm for ease of notation), and define

Z∞,m(ω, x) := F←m (x), ω ∈ Ω, x ∈ (0, 1).

Now consider L2(Ω× (0, 1)) with the P measure. This is a complete metric
space, with d(X,Y ) = E[(X − Y )2]. Our aim is to use Lemma 3.3.5 applied
to the sequence of random variables Zk,m. We proceed therefore to check as-
sumptions (1) and (2) of the lemma. These will directly follow if we prove
that

lim
k→∞

E
[
(Zk,m − Z∞,m)2

]
= 0 (3.53)

and
lim

m→∞
lim
k→∞

E
[
(Zk,m − Zk,∞)2

]
= 0. (3.54)

We start by (3.53). First of all we show that

lim
k→∞

Zk,m = Z∞,m P-almost surely. (3.55)

Define

A := A′ × (0, 1)

:=

{
ω ∈ Ω : lim

k→∞
dL(ESD(BNk,m), µσ,τ,m) = 0, ∀m > 1

}
× (0, 1) .

Observe that P(A) = 1 due to (3.52) and Leb(0, 1) = 1. To prove (3.55), it
suffices to show that, for all ω ∈ A′,

lim
k→∞

Zk,m(ω, x) = Z∞,m(ω, x), x ∈ (0, 1). (3.56)

Let Fk,m(ω, ·) be the distribution function of ESD(BNk,m(ω)). On A, we
have Fk,m(ω, x) → Fm(x) for all x at which Fm is continuous. Note that

Zk,m(ω, x) = F←k,m(ω, x).

It then follows from Resnick [2008, Proposition 0.1] that for all x ∈ (0, 1)

lim
k→∞

F←k,m(x) = F←m (x).

Thus, we have proved (3.55).
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Next, we show that for all m ≥ 1,

{Z2
k,m : 1 ≤ k <∞} is uniformly integrable. (3.57)

It suffices to show that supk≥1 E[Z4
k,m] <∞. Since ⌈Nkx⌉ is constant on intervals

of length 1/Nk, it easily follows that

lim
k→∞

E[Z4
k,m] = lim

k→∞

1

Nk
E

[
Nk∑
i=1

λi(BNk,m)4

]

= lim
k→∞

1

Nk
ETr(B4

Nk,m
) =

∫
R
x4 µσ,τ,m(dx) <∞

using (3.27) and (3.29), hence (3.57) is proven. Using this and (3.55), we obtain
(3.53).

We move to (3.54). To prove this note that

E
[
(Zk,m − Zk,∞)2

]
=

1

Nk
E

 Nk∑
j=1

(
λj(BNk,m)− λj(BNk,∞)

)2
(3.9)
≤ 1

Nk
E
[
Tr
(
(BNk,m −BNk,∞)2

)]
=

1

Nk
E

 Nk∑
i,j=1

(
BNk,m(i, j)−BNk,∞(i, j)

)2 .
Reasoning as in the proof of Lemma 3.4.2, it follows that

1

Nk
E

 Nk∑
i,j=1

(BNk,m(i, j)−BNk,∞(i, j))2


=

1

N2
k

Nk∑
i,j=1

E

[(√
κσ(Wm

i ,W
m
j )−

√
κσ(Wi,Wj)

)2
]

≤ 2

N2
k

Nk∑
i,j=1

E
[
κσ(Wi,Wj)1Wj<m<Wi

]
+

2

N2
k

Nk∑
i,j=1

E
[
κσ(Wi,Wj)1Wi≥Wj>m

]
.

We can use similar bounds as for Lemma 3.4.2, which yield that both summands
have order at most m2−τ . Hence (3.54) follows, since τ > 2.
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Since we have now checked assumptions (1) and (2) of Lemma 3.3.5, it
follows that there exists Z∞ ∈ L2(Ω× (0, 1)) such that

lim
m→∞

E
[
(Z∞,m − Z∞)2

]
= 0.

Let U be a uniform random variable on (0, 1). Then F←m (U) has the same
distribution as µσ,τ,m. Since µσ,τ,m converges weakly to µσ,τ by (3.47), Z∞ has
law µσ,τ . Hence

lim
m→∞

E[Z2
∞,m] = lim

m→∞

∫
R
x2 µσ,τ,m(dx) =

∫
R
x2 µσ,τ (dx),

and

lim
m→∞

∫
R
x2 µσ,τ,m(dx) = (τ − 1)2

∫ ∞
1

∫ ∞
1

1

(x ∧ y)τ−σ(x ∨ y)τ−1
dx d y

which can be easily obtained from (3.29) with k = 1. This completes the proof
of the first part.

Since limm→∞ µσ,τ,m = µσ,τ weakly, we apply Fatou’s lemma to obtain∫
x2p µσ,τ (dx) ≤ lim inf

m→∞

∫
x2p µσ,τ,m(dx) = lim

m→∞
M2p,

where, recalling (3.29),

M2p =
∑

π∈NC2(2p)

E

 ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

 .
For σ > 0, we observe that (x ∧ y)σ(x ∨ y) ≤ (xy)σ∨1. Thus,

M2p ≤
∑

π∈NC2(2p)

p+1∏
i=1

E
[
(Wm

i )(σ∨1)#Vi

]
, (3.58)

where {V1, . . . , Vp+1} are the blocks of γπ. Due to Lemma 3.4.8, it follows that
max1≤i≤p+1#Vi ≤ p, typically achieved by partitions π such that

γπ = {(1, 3, . . . , 2p− 1), (2), (4), . . . , (2p)}.

This shows that the maximum moment bound required for the right-hand side
of (3.58) to remain finite is E[(Wi)

p(σ∨1)]. Since Wi has a tail index of τ − 1, if
p(σ∨1) < τ −1, then E[(Wi)

p(σ∨1)] <∞. Therefore, M2p is uniformly bounded
in m, completing the proof of the theorem.
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§3.7 Absolute continuity and symmetry

We begin by showing absolute continuity. We shall use the following fact from
Chakrabarty and Hazra [2016, Fact 2.1], which follows from Nica and Speicher
[2006, Proposition 22.32].

Lemma 3.7.1.
Assume that, for each N,AN is a N × N Gaussian Wigner matrix scaled by√
N , that is, (AN (i, j) : 1 ≤ i ≤ j ≤ N) are i.i.d. normal random variables with

mean zero and variance 1/N , and AN (j, i) = AN (i, j). Suppose that BN is a
N ×N random matrix, such that for all k ≥ 1

lim
N→∞

1

N
Tr
(
Bk

N

)
=

∫
R
xkµ(dx)

in probability, for some compactly supported (deterministic) probability measure
µ. Furthermore, let the families (AN : N ≥ 1) and (BN : N ≥ 1) be independ-
ent. Then for all k ≥ 1

lim
N→∞

1

N
EF Tr

[
(AN +BN )k

]
=

∫
R
xkµ⊞ µsc(dx)

in probability, where F := σ (BN : N ≥ 1) and EF denotes the conditional ex-
pectation with respect to F .

Proof of Theorem 3.2.4. We consider the truncated weights (Wm
i )i≥1. Let Γm

be an N ×N matrix with entries given by

Γm(i, j) =
√
κσ(Wm

i ,W
m
j ).

Given δ ∈ (0, 1), define the function gδ,m such that

gδ,m(Wm
i ,W

m
j )2 =

(√
κσ(Wm

i ,W
m
j )− δ

)2
+ 2δ

(√
κσ(Wm

i ,W
m
j )− δ

)
.

As a consequence

gδ,m(Wm
i ,W

m
j )2 + δ2 = κσ(W

m
i ,W

m
j ) . (3.59)

Define the matrix Γgδ,m(i, j) = gδ,m(Wm
i ,W

m
j ). Let {Gi,j}1≤i,j≤N be i.i.d. stand-

ard Gaussian random variables, independent of the sequence (Wi)i≥1. Denote
by GN the matrix with entries

GN (i, j) =
1√
N
Gi∧j,i∨j .
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Define
B

(1)
N,m = Γm ◦GN .

Similarly, define
B

(2)
N,m = Γgδ,m ◦GN .

Lastly, consider a sequence of i.i.d. standard Gaussian random variables (G′i,j)1≤i,j≤N ,
independent of the sigma field F generated by (Wi)i≥1, (Gi,j)i,j≥1. Define a
matrix B

(3)
N,m with entries

B
(3)
N,m(i, j) =

1√
N
G′i∧j,i∨j .

We claim that, conditionally on (Wi)i∈[N ],

B
(1)
N,m

d
= B

(2)
N,m + δB

(3)
N,m. (3.60)

Indeed, conditionally on (Wi)i∈[N ], the entries of B(1)
N,m, B(2)

N,m, and B
(3)
N,m are

normally distributed. Thus, it is sufficient to compare the mean and variance
of the entries. All the variables in question have mean zero and the variances
match, too, due to (3.59). Following Proposition 3.6.1, there exists a measure
µgδ,m such that

lim
N→∞

1

N
Tr
(
(B

(2)
N,m)k

)
=

∫
R
xk µgδ,m(dx)

in probability. In particular, we recall the expression for the even moments of
µgδ,m given in (3.29):

M2k =
∑

π∈NC2(2k)

E

 ∏
(u,v)∈E(Gγπ)

g2δ,m(Wm
u ,W

m
v )

 .
Since g2δ,m(Wm

u ,W
m
v ) ≤ κσ(W

m
u ,W

m
v ), it follows that µgδ,m is uniquely determ-

ined by its moments, and is also compactly supported (Corollary 3.4.11). This
verifies the first condition of Lemma 3.7.1. Since B

(3)
N,m is a standard Wigner

matrix, it follows from Lemma 3.7.1 that

lim
N→∞

1

N
EF
[
Tr
(
(B

(2)
N,m + δB

(3)
N,m)k

)]
=

∫
R
xk (µgδ,m ⊞ µsc,δ)(dx),

where µsc,δ is the semicircular law with variance δ2 and density

µsc,δ(dx) =
1

2πδ

√
4−

(x
δ

)2
1|x|≤2δ dx, x ∈ R.
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Since both µgδ,m and µsc,δ are compactly supported, so is µgδ,m ⊞µsc,δ, and thus
the measure is completely determined by its moments.

From Proposition 3.4.9 we have

lim
N→∞

E
[
1

N
EF [Tr(B

(1)
N,m)k]

]
=

∫
R
xk µσ,τ,m(dx)

and

lim
N→∞

Var

(
1

N
EF [Tr((B

(1)
N,m)k)]

)
≤ lim

N→∞
Var

(
1

N
Tr((B

(1)
N,m)k)

)
= 0.

Thus,

lim
N→∞

1

N
EF
[
Tr(B

(1)
N,m)k

]
=

∫
R
xk µσ,τ,m(dx)

in probability. Since the measures are uniquely determined by their moments,
this shows that

µσ,τ,m = µgδ,m ⊞ µsc,δ. (3.61)

We show that there exists µgδ such that

lim
m→∞

dL(µgδ,m , µgδ) = 0. (3.62)

If we can prove this, using Bercovici and Voiculescu [1993, Proposition 4.13] it
will follow that

lim
m→∞

dL(µgδ,m ⊞ µsc,δ, µgδ ⊞ µsc,δ) ≤ lim
m→∞

dL(µgδ,m , µgδ) = 0. (3.63)

To show (3.62), we employ Lemma 3.3.5. Note that, from Remark 3.4.11, we
get that for any fixed m ≥ 1 one has

lim
N→∞

dL
(
µ
B

(2)
N,m

, µgδ,m
)
= 0 in P-probability

where µ
B

(2)
N,m

is the empirical spectral distribution of B(2)
N,m.

This establishes condition (1) of Lemma 3.3.5. To complete the proof, we
need to verify condition (2), namely,

lim
m→∞

lim sup
N→∞

P
(
dL(ESD(B

(2)
N,m),ESD(B

(2)
N )) > ε

)
= 0. (3.64)

Here B
(2)
N is defined as B

(2)
N,∞ with m = ∞. From Proposition 3.3.1 we see that

dL

(
ESD(B

(2)
N,m),ESD(B

(2)
N )
)3

≤ 1

N
Tr
((

B
(2)
N,m −BN

)2)
=

1

N2

N∑
i,j=1

(
Γgδ,m(i, j)− Γgδ,∞(i, j)

)2
G2

i∧j,i∨j .
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Hence we have

E
[
dL
(
ESD(B

(2)
N,m),ESD(B

(2)
N )
)3] ≤ 1

N2

N∑
i ̸=j=1

E[
(
Γgδ,m(i, j)− Γgδ,∞(i, j)

)2
]

≤ 2

N2

N∑
i ̸=j=1

E
[
gδ,∞(Wi, Wj)

2
(
1Wj<m<Wi + 1Wi>Wj>m

)]
≤ 2

N2

N∑
i ̸=j=1

E
[
κσ(Wi,Wj)

(
1Wj<m<Wi + 1Wi>Wj>m

)]
.

Just as in the proof of (3.54), it follows that the last term is bounded by Cm2−τ .
Thus, using Markov’s inequality, condition (2) of Lemma 3.3.5 holds, too. In
conclusion, we can show that there exists µgδ such that

lim
m→∞

dL(µgδ,m ⊞ µsc,δ, µσ,τ )
(3.61)
= lim

m→∞
dL(µσ,τ,m, µσ,τ )

(3.47)
= 0

(3.63)
= lim

m→∞
dL(µgδ,m ⊞ µsc,δ, µgδ ⊞ µsc,δ).

Therefore it must be that µσ,τ = µgδ ⊞ µsc,δ. The right-hand side is absolutely
continuous, as shown by Biane [1997, Corollary 2].

Finally, to show symmetry, we see that µσ,τ does not give weight to singletons
by absolute continuity. Therefore, in light of the weak convergence stated
in (3.47),

µσ, τ (−∞, −x) = lim
m→∞

µσ, τ,m(−∞, −x)

= lim
m→∞

µσ, τ,m(x, +∞) = µσ, τ (x, +∞)

for all x ≥ 0. This completes the proof.

§3.8 Stieltjes transform of the limiting measure

To prove Theorem 3.2.5, we first identify the Stieltjes transform for the measure
µσ,τ,m. We then proceed to take the limit m → ∞, which requires a functional
analytic approach. Throughout this section, we fix z ∈ C+, given as z = ξ + ι̇η

with η > 0. If µ is a probability measure having all its moments {mk}k≥1, it
follows from the definition of Stieltjes transform (3.7) that, for any z ∈ C+,

Sµ(z) = −
∑
k≥0

mk

zk+1
, (3.65)

where the Laurent series on the right-hand side of (3.65) converges for |z| >
R > 0, with supp(µ) = [−R,R].
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§3.8.1 Stieltjes transform for truncated weights
To derive a characterisation of the limiting measure µσ,τ , we need to first study
the truncated version µσ,τ,m. We borrow ideas from the proof of Chakrabarty
et al. [2015, Theorem 4.1]. The main result of this subsection will be Proposi-
tion 3.8.1, which requires a few technical lemmas to prove. The results in this
subsection hold for the regime τ > 2 and σ < τ − 1, as before.

We have that the (even) moments for the measure µσ,τ,m are given by (3.29).
Using these, we derive a representation of Sµσ,τ,m(z).

Proposition 3.8.1.
For τ > 2 and σ ∈ (0, τ − 1) there exists a function a(z, x) = am(z, x) defined
on C+ × [1,∞) such that

Sµσ,τ,m(z) =

∫ ∞
1

a(z, x)µW,m(dx) ,

where µW,m is the law of the truncated weights (Wm
i ). Moreover, a(z, x) satisfies

the following recursive equation:

a(z, x)

(
z +

∫ ∞
1

a(z, y)κσ(x, y)µW,m(d y)

)
= −1 . (3.66)

Before tackling the proof of the proposition, we lay the ground with two
auxiliary results. For any k ≥ 1 and π ∈ NC2(2k), recall the map Tπ of (3.26),
where γπ = {V1, . . . , Vk+1}. Consider the mapping Lπ : [1,∞)k+1 → R defined
as

Lπ(x) = κ1/2σ (xTπ(1), xTπ(2))κ
1/2
σ (xTπ(2), xTπ(3)) . . . κ

1/2
σ (xTπ(2k), xTπ(1)) (3.67)

and the function Hπ : R → R+ given as

Hπ(y) =

∫
[1,∞)k

Lπ(y, x2, . . . , xk+1)µ
⊗k
W,m(dx′) , (3.68)

where we are integrating over x′ = (x2, . . . , xk+1) ∈ [1,∞)k.

Lemma 3.8.2.
Let {M2k}k≥1 be as in (3.29). Then

M2k =
∑

π∈NC2(2k)

∫ ∞
1

Hπ(y)µW,m(d y).
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Proof of Lemma 3.8.2. We begin by evaluating the integral on the right-hand
side. We have∫ ∞

1
Hπ(y)µW,m(d y)

=

∫ ∞
1

∫
[1,∞)k

Lπ(y, x2, . . . , xk+1)µ
⊗k
W,m(dx′)µW,m(d y)

=

∫
[1,∞)k+1

κ1/2σ (xTπ(1), xTπ(2)) · · ·κ
1/2
σ (xTπ(2k), xTπ(1))µ

⊗k+1
W,m (dx).

We know that, for π ∈ NC2(2k), #γπ = k + 1 and so the graph Gγπ has k + 1

vertices. Furthermore, when we perform a closed walk of the form 1 → 2 →
. . . → 2k → 1 on the (unoriented) graph Gγπ, we traverse each edge exactly
twice. In particular, the product κ1/2σ (xTπ(1), xTπ(2)) · · ·κ

1/2
σ (xTπ(2k), xTπ(1)) has

2k terms with k matchings, and so

κ1/2σ (xTπ(1), xTπ(2)) · · ·κ
1/2
σ (xTπ(2k), xTπ(1)) =

∏
(u,v)∈E(Gγπ)

κσ(xu, xv) .

We then have that∫ ∞
1

Hπ(y)µW,m(d y) =

∫
[1,∞)k+1

∏
(u,v)∈E(Gγπ)

κσ(xu, xv)µ
⊗k+1
W,m (dx)

= E

[ ∏
(u,v)∈E(Gγπ)

κσ(W
m
u ,W

m
v )

]
,

which concludes the proof.

We show now some properties of Hπ that will help us in the upcoming compu-
tations.

Lemma 3.8.3.
Let k ≥ 1 and let Hπ be as defined in (3.68). Let π ∈ NC2(2k). Then,

(1) If π = (1, 2k)∪π1, where π1 is a non-crossing pair partition of {2, . . . , 2k−
1}, then,

Hπ(y) =

∫ ∞
1

Hπ1(x)κσ(x, y)µW,m(dx). (3.69)

(2) If π = π1 ∪ π2, then Hπ(·) = Hπ1(·)Hπ2(·).
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Proof of Lemma 3.8.3. We first prove property (1). Let π = (1, 2k)∪π1. Then,
γπ = {(1), V2, . . . , Vk+1}. We know that 2 ∈ V2 and then γπ(2k) = 2 ∈ V2.
Now, fix x1 = y. Then

Hπ(y)

=

∫
[1,∞)k

Lπ(y, x2, . . . , xk+1)µ
⊗k
W,m(dx′)

=

∫
[1,∞)k

κ1/2σ (y, x2)κ
1/2
σ (x2, xTπ(3)) . . . κ

1/2
σ (xTπ(2k−1), x2)κ

1/2
σ (x2, y)µ

⊗k
W,m(dx′)

=

∫ ∞
1

κσ(y, x2)

×
∫

[1,∞)k−1

κ1/2σ (x2, xTπ(3)) . . . κ
1/2
σ (xTπ(2k−1), x2)µ

⊗k−1
W,m (dx′′)µW,m(dx2)

=

∫ ∞
1

κσ(y, x2)Hπ1(x2)µW,m(dx2),

which is what we desired.
For property (2), let π = π1 ∪ π2, with π1 ∈ NC2({1, 2, . . . , 2r}) and π2 ∈

NC2({2r + 1, . . . , 2k}) and let us consider the function Hπ(y) with y = x1 =

xTπ(1). Then,

Hπ(y) =∫
[1,∞)k

κ1/2σ (y, xTπ(2)) . . . κ
1/2
σ (xTπ(2r), xTπ(2r+1)) . . . κ

1/2
σ (xTπ(2k), y)µ

⊗k
W,m(dx′).

We now claim that this integral can be split up into two integrals. First, consider
the element xTπ(1). Since we assume that ‘1’ maps to V1 ∈ γπ, all elements of
V1 are mapped to y. To understand where other elements are mapped, we will
state a claim and see its consequences to this proof, and then prove it on 149.

Claim 3.8.4.
Under γπ, the elements {2, . . . , 2r} are mapped to the blocks

V1 ∪ {V2, . . . , Vr′} ⊂ γπ ,

and the elements {2r + 1, . . . , 2k} are mapped to the blocks

V1 ∪ {Vr′+1, . . . , Vk+1} ⊂ γπ ,

where r′ < k + 1 is some index. In particular γπ(2r + 1) ∈ V1.
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From this claim we have that

Hπ(y)

=

∫
[1,∞)k

κ1/2σ (y, xTπ(2)) . . . κ
1/2
σ (xTπ(2r), xTπ(2r+1)) . . . κ

1/2
σ (xTπ(2k), y)µ

⊗k
W,m(dx′)

=

∫
[1,∞)k

κ1/2σ (y, xTπ(2)) . . . κ
1/2
σ (xTπ(2r), y) . . . κ

1/2
σ (xTπ(2k), y)µ

⊗k
W,m(dx′)

=

∫
[1,∞)r′

κ1/2σ (y, xTπ(2)) . . . κ
1/2
σ (xTπ(2r), y)µ

⊗r′
W,m(dx(r′))

×
∫
[1,∞)k−r′

κ1/2σ (y, xTπ(2r+2)) . . . κ
1/2
σ (xTπ(2k), y)µ

⊗(k−r′)
W,m (dx(k−r′))

= Hπ1(y)Hπ2(y).

This concludes the proof.

Proof of Claim 3.8.4. Let γ1 resp. γ2 be the shift by one on [2r] resp. {2r +
1, . . . , 2k}. To prove this claim, it suffices to analyse the special indices {1, 2r, 2r+
1, 2k}, since γ1 and γ2 are cyclic permutations on [2r] and {2r + 1, . . . , 2k},
respectively. We will be using the fact that all elements in a block of γπ must be
either all odd or all even [Avena et al., 2023, Property 1], and that any pairing
in π must have one element odd and the other even [Avena et al., 2023, Property
2].

(a) We already have 1 ∈ V1. Now, let (o1, 2k) ∈ π2, for some o1 such that
o1 ≥ 2r + 1. Then, o1 must be odd. Now, o1 + 1 is even, and cannot
belong to V1. Thus γπ(2k) = o1 + 1 ∈ {Vr′+1, . . . , V2k}. This takes care
of the index 2k.

(b) Let us continue with (o2, 2r) ∈ π1 for some o2. We know that o2 must be
odd. Thus, γπ(2r) = o2 + 1 ∈ {V2, . . . , Vr′} =: γ1π1 \ V1. This resolves
the case of 2r.

(c) Lastly, by construction, γπ(o2) = 2r+1, which brings us to the last special
element. Since o2 and 2r+1 belong to the same block in γπ, it suffices to
show that this block is V1, that is, the block to which element 1 belongs.
Now, if (1, o2 − 1) ∈ π1, we are done, since γπ(1) = o2. Suppose not,
and let (1, e1) ∈ π1 for some even integer e1. Similarly as before, if now
(e1 + 1, o2 − 1) ∈ π1, we are done. Since π1 and π2 act on the first 2r

elements and the remaining 2k − 2r elements respectively, then, by the
non-crossing nature, there is a sequence of even integers {ei}ti=1 such that
(1, e1), (e1 + 1, e2), . . . , (et + 1, o2 − 1) ∈ π1. Computing γπ recursively
gives us that γπ(1) = o2, and so γπ(2r + 1) ∈ V1.
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This proves the claim.

We are now ready to prove Proposition 3.8.1.

Proof of Proposition 3.8.1. We now derive the Stieltjes transform of the meas-
ure µσ,τ,m. Using (3.65) and Proposition 3.4.9, we have that

Sµσ,τ,m(z) = −
∑
k≥0

M2k

z2k+1
.

Using Lemma 3.8.2 we substitute the expression for M2k. We have

Sµσ,τ,m(z) = −
∑
k≥0

1

z2k+1

∫ ∞
1

∑
π∈NC2(2k)

Hπ(x)µW,m(dx)

= −
∫ ∞
1

∑
k≥0

∑
π∈NC2(2k)

Hπ(x)

z2k+1
µW,m(dx), (3.70)

where we could interchange the integral and the sum by Fubini’s theorem. Now,
we define the function a(z, x) as

a(z, x) := −
∑
k≥0

∑
π∈NC2(2k)

Hπ(x)

z2k+1
. (3.71)

Then using (3.70) we have

Sµσ,τ,m(z) =

∫ ∞
1

a(z, x)µW,m(dx).

We now state some properties of the function a(z, x). Firstly, for any z ∈ C+

the map x 7→ a(z, x) is in L∞([1,∞), µW,m) as Hπ is bounded . Secondly, for
any x ∈ [1,∞), the map z 7→ a(z, x) is analytic in C, which follows from the
Laurent series expansion. Finally we see that a(z, x) lies in C+, for any z ∈ C+

and x > 1. Indeed, for any ℑ(z) > 0, the expansion on the right-hand side
of (3.71) will always have a non-trivial imaginary part. Thus, since a(·, ·) is
analytic, it will either lie completely in C− or C+, since it can never take values
in R. However, SµW,m(z) ∈ C+, and thus, a(z, x) ∈ C+ for any z ∈ C+ and
x > 1.

To write down a functional recursion for a(·, ·) it is convenient to use the
notion of words. Any partition π can be associated to a word w, with any
elements in i, j ∈ [2k] being associated with the same letter in w if i, j are in the
same block of π. For example, π = {{1, 2}, {3, 4}} can be written as w = aabb.
In particular, any partition π ∈ NC2(2k) can be associated to a word w of the
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form w = aw1aw2, where w1, w2 are words that can be empty. For any word
w associated to a partition π, let Hπ = Hw. Furthermore, for w ∈ NC2(2k)

we mean a word w whose associated partition π is in NC2(2k). Then we have,
using Lemma 3.8.3 in the third equality,

a(z, x) = −
∑
k≥0

∑
w∈NC2(2k)

Hw(x)

z2k+1

= −1

z
−
∑
k≥1

∑
w∈NC2(2k)
w=aw1aw2

Haw1aw2(x)

z2k+1

= −1

z
−
∑
k≥1

∑
w∈NC2(2k)
w=aw1aw2

Haw1a(x)Hw2(x)

z2k+1

= −1

z
− 1

z

∑
k≥1

k∑
ℓ=1

∑
w1∈NC2(2ℓ−2)

Haw1a(x)

z2ℓ−2+1

∑
w2∈NC2(2k−2ℓ)

Hw2(x)

z2k−2ℓ+1
.

(3.72)

One can see that the word aw1a has as corresponding partition (1, 2ℓ)∪π1, with
π1 ∈ NC2(2ℓ− 2). Using (3.69) from Lemma 3.8.3, we have

a(z, x)

= −1

z
− 1

z

∑
k≥1

k∑
ℓ=1

∑
w1∈NC2(2ℓ−2)

1

z2ℓ−1

∫ ∞
1

Hw1(y)κσ(x, y)µW,m(d y)

×
∑

w2∈NC2(2k−2ℓ)

Hw2(x)

z2k−2ℓ+1

= −1

z
− 1

z

∑
k≥1

k∑
ℓ=1

∑
π2∈NC2(2k−2ℓ)

Hπ2(x)

z2k−2ℓ+1

×
∑

π1∈NC2(2ℓ−2)

1

z2ℓ−1

∫ ∞
1

Hπ1(y)κσ(x, y)µW,m(d y)

= −1

z
− a(z, x)

z

∫ ∞
1

a(z, y)κσ(x, y)µW,m(d y).

Thus, we have (3.66), which completes the proof of Proposition 3.8.1.

Remark 3.8.5.
Equation (3.66) gives an analytic description of a in terms of the recursive
equation. Now, for any z ∈ C+, we have that

z = ι̇

∫ ∞
0

e−ι̇tz
−1

d t. (3.73)
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Since a(z, x) ∈ C+ for any fixed x ∈ [1,∞), applying (3.73) to a(z, x) and using
(3.66) gives us that

a(z, x) = ι̇

∫ ∞
0

eι̇tz exp

{
ι̇t

∫ ∞
1

a(z, y)κσ(x, y)µW,m(d y)

}
d t. (3.74)

An immediate consequence of (3.74) is that a(z, x) is uniformly bounded in x

and m. Indeed, if we take z = ξ + ι̇η with η > 0, we have that

|a(z, x)| ≤
∫ ∞
0

e−ηt
∣∣∣∣exp{ι̇t∫ ∞

1
a(z, y)κσ(x, y)µW,m(d y)

}∣∣∣∣d t
≤
∫ ∞
0

e−ηt d t =
1

η
. (3.75)

The bound in the second line holds since a(z, x) ∈ C+, and so∫ ∞
1

a(z, y)κσ(x, y)µW,m(d y) ∈ C+

as κσ ≥ 1.

§3.8.2 Limiting Stieltjes transform
We now set up the framework required to prove Theorem 3.2.5. For the re-
mainder of this section, denote az(x) := a(z, x), which implicitly depends on m.
We wish to extend Proposition 3.8.1 to the measure µσ,τ by passing to the limit
m → ∞. We have a natural candidate for the function a∗ in Theorem 3.2.5,
which should be the limit of a(·, ·) as m tends to infinity. We now formalise this
idea through a series of lemmas.

Since our goal now is to show Theorem 3.2.5 we are going to work for the
remainder of this section with the following parameters:

(a) τ > 3,

(b) σ < τ − 2, and

(c) a parameter β such that 2 ∨ 1 + σ < β < τ − 1.

Let C+
= C+ ∪ R be the closure of C+, and let ν be the measure defined as

ν(dx) = x−β dx. (3.76)

Consider the space L1([1,∞), ν) of all functions f : [1,∞) → C+ that are
L1−integrable with respect to ν.
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Definition 3.8.6.
Let B denote the Banach space B := (L1([1,∞), ν), ∥·∥1), where the norm ∥·∥1 is
the L1 norm with respect to ν as in (3.76), which is defined for f ∈ L1([1,∞), ν)

as
∥f∥1 :=

∫ ∞
1

|f(x)|x−β dx. (3.77)

Recall that µW,m denotes the law of the truncated weights (Wm
x )x, given as

µW,m(·) = c−1m µw(·)1{·≤m},

where cm = 1 −m−(τ−1) is a normalizing constant converging to 1 as m tends
to infinity, and µW is the Pareto law defined in (3.2). For z ∈ C+, let Tz denote
the map

Tzf(·) = ι̇

∫ ∞
0

eι̇tz exp

{
ι̇t

∫ ∞
1

f(y)κσ(·, y)µW (d y)

}
d t. (3.78)

Then, we have the following result.
Lemma 3.8.7.
There exists a constant c̃ = c̃(τ, σ, β) such that, for all z ∈ C+ with ℑ(z)2 =

η2 > c̃ Tz : B → B is a contraction mapping, with a contraction constant c̃η−2.

Proof of Lemma 3.8.7. We first need to show that, for any f ∈ B, one has
Tzf ∈ B. Indeed, for x ≥ 1 it holds that∣∣Tzf(x)∣∣ ≤ ∫ ∞

0
e−ηt

∣∣∣∣exp{ι̇t∫ ∞
1

f(y)κσ(x, y)µW (d y)

}∣∣∣∣d t ≤ 1

η
,

where the last inequality holds as f(y) ∈ C+ for any y ≥ 1, and thus the second
complex exponential is bounded by 1. Since |Tzf(·)| is uniformly bounded, it is
L1−integrable with respect to ν, and so Tz(B) ⊆ B.

Now, we wish to show Tz is a contraction. Let us take f1, f2 ∈ B. Recall
that for any z1, z2 ∈ C+ and t > 0, we have

|eι̇tz1 − eι̇tz2 | ≤ t|z1 − z2|. (3.79)

Then, for any x ∈ [1,∞) we have that

|Tzf1(x)− Tzf2(x)|

=

∣∣∣∣ι̇ ∫ ∞
0

eι̇tz
(
eι̇t

∫∞
1 f1(y)κσ(x,y)µW (d y) − eι̇t

∫∞
1 f2(y)κσ(x,y)µW (d y)

)
d t

∣∣∣∣
≤
∫ ∞
0

e−ηt
∣∣∣eι̇t ∫∞

1 f1(y)κσ(x,y)µW (d y) − eι̇t
∫∞
1 f2(y)κσ(x,y)µW (d y)

∣∣∣ d t
≤
∫ ∞
0

e−ηtt

∣∣∣∣∫ ∞
1

(f1(y)− f2(y))κσ(x, y)µW (d y)

∣∣∣∣d t, (3.80)

153



3. Adjacency spectra of kernel-based random graphs

C
ha

pt
er

T
hr

ee

where in (3.80) we use (3.79). Now, evaluating the integral over t in (3.80), we
obtain

|Tzf1(x)− Tzf2(x)|

≤ (τ − 1)

η2

∫ ∞
1

|f1(y)− f2(y)|κσ(x, y)y−τ d y, (3.81)

where we explicitly write down the Pareto law µW (d y) := (τ−1)y−τ d y. Recall
that κσ(x, y) = (x ∧ y)(x ∨ y)σ. Thus, (3.81) becomes

|Tzf1(x)− Tzf2(x)|

≤ τ − 1

η2

(∫ x

1
|f1(y)− f2(y)|xyσ−τ d y +

∫ ∞
x

|f1(y)− f2(y)|xσy1−τ d y
)
.

Integrating with respect to ν gives us

∥Tzf1 − Tzf2∥1

≤ τ − 1

η2

∫ ∞
1

(
x

∫ x

1
|f1(y)− f2(y)|yσ−τ d y

)
x−β dx

+
τ − 1

η2

∫ ∞
1

(
xσ
∫ ∞
x

|f1(y)− f2(y)|y1−τ d y
)
x−β dx

=
τ − 1

η2

(∫ ∞
1

|f1(y)− f2(y)|yσ−τ
∫ ∞
y

x1−β dx d y

+

∫ ∞
1

|f1(y)− f2(y)|y1−τ
∫ y

1
xσ−β dx d y

)
. (3.82)

Using β > 2, the first integral in (3.82) can be bounded by∫ ∞
1

|f1(y)− f2(y)|yσ−τ
∫ ∞
y

x1−β dx d y

= c1

∫ ∞
1

|f1(y)− f2(y)|y−βy2+σ−τ d y ≤ c1∥f1 − f2∥1 , (3.83)

since y2+σ−τ ≤ 1 and c1 = 1/(β − 2). Similarly, the second integral in (3.82)
gives us∫ ∞

1
|f1(y)− f2(y)|y1−τ

∫ y

1
xσ−β dx d y ≤ c2

∫ ∞
1

|f1(y)− f2(y)|y1−τ d y

≤ c2∥f1 − f2∥1, (3.84)

with c2 = 1/(β − 1 − σ), where for the last line we have used 1 − τ < −β.
Combining (3.83) and (3.84) in (3.82) gives us that

∥Tzf1 − Tzf2∥1 ≤
c̃

η2
∥f1 − f2∥1 , (3.85)
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where c̃ is a constant depending on τ, σ and β. Thus, taking η > 0 to be
sufficiently large such that η >

√
c̃ gives us that Tz is a contraction mapping on

B, hence proving the result.

The following corollary is immediate from the Banach fixed-point theorem for
contraction mappings.

Corollary 3.8.8.
Let Tz : B → B be the contraction map given in (3.78). Then, there exists a
unique analytic function a∗z ∈ B such that Tz(a∗z) = a∗z.

We know from (3.74) that

az(x) = ι̇

∫ ∞
0

eι̇tz exp

{
ι̇t

∫ ∞
1

c−1m az(y)κσ(x, y)1{y≤m}µW (d y)

}
d t . (3.86)

Define ãz as

ãz(x) = ι̇

∫ ∞
0

eι̇tz exp

{
ι̇t

∫ ∞
1

c−1m az(y)κσ(x, y)µW (d y)

}
d t . (3.87)

Then, ãz = Tz(c
−1
m az). We now have the following lemma.

Lemma 3.8.9.
Let az and ãz be as in (3.86) and (3.87), respectively. Then,

∥az − ãz∥1 ≤
C(m)

η3
,

where C(m) is a constant depending on m such that limm→∞C(m) = 0.

Proof of Lemma 3.8.9. Since az ∈ B, we again use (3.79) to get

|az(x)− ãz(x)| ≤
∫ ∞
0

e−ηtt

∣∣∣∣∫ ∞
m

c−1m az(y)κσ(x, y)µW (d y)

∣∣∣∣ d t
≤ τ − 1

cmη2

∫ ∞
m

|az(y)|κσ(x, y)y−τ d y , (3.88)

where we evaluate the integral over t to get the factor of η−2 in (3.88). Recall
that cm = 1−m−(τ−1). Using (3.75), we have that

|az(x)− ãz(x)| ≤
τ − 1

cmη3

∫ ∞
m

κσ(x, y)y
−τ d y. (3.89)

Since κσ(x, y) ≤ (xy)1∨σ, we have

|az(x)− ãz(x)| ≤
τ − 1

cmη3
x1∨σ

∫ ∞
m

y(1∨σ)−τ d y =
(τ − 1)m(1∨σ)−(τ−1)

cm((τ − 1)− (1 ∨ σ))η3
x1∨σ,

(3.90)
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where we use the fact that τ > max(2, 1 + σ), and so the integral evaluated in
(3.90) is finite. Define

c(m) :=
(τ − 1)c−1m m(1∨σ)−(τ−1)

(τ − 1)− (1 ∨ σ)
.

Since cm tends to one, and m(1∨σ)−(τ−1) tends to zero we have c(m) = om(1).
Now, integrating both sides of (3.90) against x−β dx gives us

∥az − ãz∥1 ≤
c(m)

η3

∫ ∞
1

x1∨σ−β dx =
C(m)

η3
, (3.91)

since β > 2 ∨ 1 + σ, and where C(m) = om(1), completing the proof.

We are now at the penultimate step, where we have the necessary tools to
show the convergence of az to a∗z in the space B.

Lemma 3.8.10.
Let a∗z be the unique fixed point of the contraction map Tz defined in (3.78).
Then, we have that

lim
m→∞

∥az − a∗z∥1 = 0 . (3.92)

Proof of Lemma 3.8.10. We have, using Lemma 3.8.9 and the fact that Tz is a
contraction, that

∥az − a∗z∥1 ≤ ∥az − ãz∥1 + ∥ãz − a∗z∥1
≤ C(m)η−3 + ∥Tz(c−1m az)− Tz(a

∗
z)∥1

≤ C(m)η−3 + c̃η−2∥c−1m az − a∗z∥1
≤ C(m)η−3 + c̃η−2c−1m ∥az − a∗z∥1 + c̃η−2∥a∗z∥1|c−1m − 1| .

Thus, choosing η > 0 such that 0 < 1− c̃c−1m η−2 < 1, we have that

∥az − a∗z∥1 ≤
1

1− Cτ c
−1
m η−2

(
C(m)η−3 + Cτη

−2∥a∗z∥1|c−1m − 1|
)
. (3.93)

Now, as m → ∞, we have that C(m) → 0, and cm → 1. Since ∥a∗z∥ < ∞, we
have that the right-hand side of (3.93) goes to 0 as m→ ∞. Thus, ∥az−a∗z∥1 →
0 as m→ ∞ for z in an appropriate domain Dη ⊂ C+. However, in the complex
variable z, the domains of az and a∗z are C+. Since the convergence holds for
an open set of this domain (that is, in Dη ⊂ C+), by the identity theorem of
complex analysis, the convergence holds everywhere in C+, that is, for each
z ∈ C+.

156



§3.8. Stieltjes transform of the limiting measure

C
hapter

T
hree

We now proceed towards a proof of Theorem 3.2.5, and to achieve this we
wish to take the limit m → ∞ to characterise Sµσ,τ . We know that since
limm→∞ µσ,τ,m = µσ,τ , then for each z ∈ C+, limm→∞ Sµσ,τ,m(z) = Sµσ,τ (z).

Proof of Theorem 3.2.5. Let a∗z be the unique fixed point of the contraction
mapping Tz as in Corollary 3.8.8, and let Sµσ,τ (z) be the Stieltjes transform of
µσ,τ for any z ∈ C+. We wish to show that

Sµσ,τ (z) =

∫ ∞
1

a∗z(x)µW (dx).

We have that ∣∣∣∣∫ ∞
1

az(x)µW,m(dx)−
∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣
≤
∣∣∣∣∫ ∞

1
az(x)µW,m(dx)−

∫ ∞
1

a∗z(x)µW,m(dx)

∣∣∣∣
+

∣∣∣∣∫ ∞
1

a∗z(x)µW,m(dx)−
∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣ . (3.94)

The first term in (3.94) can be evaluated as∣∣∣∣∫ ∞
1

az(x)µW,m(dx)−
∫ ∞
1

a∗z(x)µW,m(dx)

∣∣∣∣
≤ (τ − 1)c−1m

∫ m

1
|az(x)− a∗z(x)|x−τ dx

≤ (τ − 1)c−1m

∫ ∞
1

|az(x)− a∗z(x)|x−βxβ−τ dx

≤ (τ − 1)c−1m ∥az − a∗z∥1 = om(1), (3.95)

as xβ−τ ≤ 1, and ∥az − a∗z∥1 = om(1) from Lemma 3.8.10. The second term of
(3.94) can be evaluated as∣∣∣∣∫ ∞

1
a∗z(x)µW,m(dx)−

∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣
≤ c−1m

∣∣∣∣∫ m

1
a∗z(x)µW (dx)−

∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣+ ∣∣∣∣∫ ∞
1

a∗z(x)µW (dx)

∣∣∣∣ |c−1m − 1|

≤ (τ − 1)

cmη

∫ ∞
m

x−τ dx+
|c−1m − 1|

η
=

(τ − 1)m1−τ

cmη
+

|c−1m − 1|
η

= om(1),

(3.96)

since |a∗z| ≤ η−1. Combining (3.95) and (3.96) completes the proof of the the-
orem.
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CHAPTER 4
Scale-free percolation: The graph

Laplacian

This chapter is based on:
R.S. Hazra, N. Malhotra. Spectral properties of the Laplacian of scale-free per-
colation models. [arxiv:2504.17552 ], 2025.

Abstract

We consider scale free percolation on a discrete torus VN of size N . Condi-
tionally on an i.i.d. sequence of Pareto weights (Wi)i∈VN

with tail exponent
τ − 1 > 0, we connect any two points i and j on the torus with probability

pij =
WiWj

∥i− j∥α
∧ 1

for some parameter α > 0. We focus on the (centered) Laplacian operator of
this random graph and study its empirical spectral distribution. We explicitly
identify the limiting distribution when α < 1 and τ > 3, in terms of the spectral
distribution of some non-commutative unbounded operators.

https://arxiv.org/pdf/2504.17552
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§4.1 Introduction

In recent years, many random graph models have been proposed to model real-
life networks. These models aim to capture three key properties that real-world
networks exhibit: scale-free nature of the degree distribution, small-world prop-
erty, and high clustering coefficients [van der Hofstad, 2024]. It is generally diffi-
cult to find random graph models which incorporate all three features. Classical
random graph models typically fail to capture scale-freeness, small-world beha-
viour, and high clustering simultaneously. For instance, the Erdős-Rényi model
only exhibits the small-world property, while models like Chung-Lu, Norros-
Reittu, and preferential attachment models are scale-free (Chung and Lu [2002],
Barabási and Albert [1999] and small-world but have clustering coefficients that
vanish as the network grows. In contrast, regular lattices have high clustering
but large typical distances. The Watts-Strogatz model (Watts and Strogatz
[1998]) was an early attempt to create a network with high clustering and small-
world features, but it does not produce scale-free degree distributions.

Scale-free percolation, introduced in Deijfen et al. [2013], blends ideas from
long-range percolation (see e.g. Berger [2002]) with inhomogeneous random
graphs such as the Norros–Reittu model. In this framework, vertices are posi-
tioned on the Zd lattice, and each vertex x is independently assigned a random
weight Wx. These weights follow a power-law distribution:

P(W > w) = w−(τ−1)L(w),

where τ > 1 and L(w) is a slowly varying function at infinity.
Edges between pairs of vertices x and y are added independently, with a

probability that increases with the product of their weights and decreases with
their Euclidean distance. The edge probability is given by

pxy = 1− exp

(
−λ WxWy

∥x− y∥α

)
, (4.1)

where λ, α > 0 are model parameters and ∥·∥ denotes the Euclidean norm. This
model has been proposed as a suitable representation for certain real-world sys-
tems, such as interbank networks, where both spatial structure and heavy-tailed
connectivity distributions are relevant (Deprez et al. [2015]). Various properties
of the model are now well known and we refer to the articles by Jorritsma et al.
[2024], Cipriani and Salvi [2024], Cipriani et al. [2025], Heydenreich et al. [2017],
Dalmau and Salvi [2021] for further references.

In recent times, there has been a lot of interest in the models which have
connection probabilities similar to (4.1). Kernel-based spatial random graphs
encompass a wide variety of classical random graph models where vertices are
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embedded in some metric space. In their simplest form (see Jorritsma et al.
[2023] for a more complete exposition) they can be defined as follows. Let V be
the vertex set of the graph and sample a collection of weights (Wi)i∈V , which
are independent and identically distributed (i.i.d.), serving as marks on the
vertices. Conditionally on the weights, two vertices i and j are connected by an
undirected edge with probability

P (i↔ j |Wi,Wj) = κ(Wi,Wj)∥i− j∥−α ∧ 1 , (4.2)

where κ is a symmetric kernel, ∥i − j∥ denotes the distance between the two
vertices in the underlying metric space and α > 0 is a constant parameter. In a
recent article, the present authors with A. Cipriani and M. Salvi (Cipriani et al.
[2025]) proved the spectral properties of the adjacency matrix when α < d and
the weights have a finite mean. In the above setting, the model was considered
on a torus of side length N so that the adjacency operator as a matrix was
easier to describe. In this article, we aim to extend this study to the case of a
Laplacian matrix. Although our approach would extend to general kernel-based
models, we shall stick to the product form kernel, that is, κ(x, y) = xy, so that
the ideas can be clearly presented. It is one of the few cases where the limiting
distribution can be explicitly described.

The Laplacian of a graph with N vertices is defined as AN − DN where
AN is the adjacency matrix and DN is the diagonal matrix where the i-th di-
agonal entry corresponds to the i-th degree. When the entries of the matrix
are not restricted to 0 or 1, the matrix is also referred to as the Markov matrix
(Bryc et al. [2006], Bordenave et al. [2014]). The graph Laplacian serves as
the discrete analogue of the continuous Laplacian, essential in diffusion theory
and network flow analysis. The Laplacian matrix has several key applications:
The Kirchhoff Matrix-Tree Theorem relates the determinant of the Laplacian
to the count of spanning trees in a graph (Chung [1997]), the multiplicity of the
zero eigenvalue indicates the number of connected components (Chung [1997]),
the second-smallest eigenvalue, known as the Fiedler value or the algebraic con-
nectivity, measures the graph’s connectivity; higher values signify stronger con-
nectivity De Abreu [2007]. For a comprehensive overview of spectral methods
in graph theory, refer to Chung’s monograph Chung [1997] and Spielman’s book
Spielman [2012]. In modern machine learning, spectral techniques are pivotal
in spectral clustering algorithms, where the techniques use the Laplacian eigen-
values and eigenvectors for dimensionality reduction before applying clustering
algorithms like k-means (Abbe et al. [2020], Abbe [2017]). It is particularly
effective for detecting clusters that are not linearly separable. Recent advance-
ments integrate spectral clustering with graph neural networks to enhance graph
pooling operations (Bianchi et al. [2020]). Spectral algorithms are also crucial
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for identifying communities within networks by analysing the spectral properties
of the graph (Chung [1997]).

Bryc et al. [2006] established that for large symmetric matrices with inde-
pendent and identically distributed entries, the empirical spectral distribution
(ESD) of the corresponding Laplacian matrix converges to the free convolution
of the semicircle law and the standard Gaussian distribution. In the context
of sparse Erdős–Rényi graphs, Huang and Landon [2020] studied the local law
of the ESD of the Laplacian matrix. They demonstrated that the Stieltjes
transform of the ESD closely approximates that of the free convolution of the
semicircle law and a standard Gaussian distribution down to the scale N−1.
Additionally, they showed that the gap statistics and averaged correlation func-
tions align with those of the Gaussian Orthogonal Ensemble in the bulk. Ding
and Jiang [2010] investigated the spectral distributions of adjacency and Lapla-
cian matrices of random graphs, assuming that the variance of the entries of
an N × N adjacency matrix depends only on N . They established the con-
vergence of the ESD of these matrices under such conditions. These results of
the Erdős-Rényi random graphs were extended to the inhomogeneous setting
by Chakrabarty et al. [2021b]. In a recent work, Chatterjee and Hazra [2022]
derived a combinatorial way to describe the limiting moments for a wide variety
of random matrix models with a variance profile.
Our contribution
The empirical spectral distribution of the (centred) Laplacian of a graph that
incorporates spatial distance has not been studied before. For example, we are
not aware of a result that describes the spectral properties of the Laplacian for
the long-range percolation model. Our main contribution is that we establish
this result for the scale-free percolation model on the torus. We restrict ourselves
to the dense regime, that is, α < 1. We show that under mild assumptions on
the weights (having finite variance), we establish the existence of the limiting
distribution. It turns out to be a distribution that involves the Gaussian, the
semicircle, and the Pareto distribution. In a symbolic (and rather informal)
way, it is given by the spectral law of

W 1/2SW 1/2 +m1W
1/4GW 1/4,

where W is an unbounded operator with spectral law given by the Pareto dis-
tribution, S is a bounded compact operator whose spectral law is the semicircle
law, and G is an unbounded operator whose law is given by the Gaussian dis-
tribution. Finally, m1 is the first moment of W . The interaction between these
operators comes from the fact that in the non-commutative space, {W,G} is a
commutative algebra, freely independent of S. Similar results have been estab-
lished when the weights are bounded and degenerate, and no spatial distances

162



§4.2. Setup and main results

C
hapter

Four

are involved (Chatterjee and Hazra [2022] and Chakrabarty et al. [2021b]). The
present work extends the results to settings that involve random heavy-tailed
weights and spatial distances.
Outline of the article
In section 4.2 we explicitly describe the setup of the model and state our main
results. In Theorem 4.2.1 we show the existence of the limiting spectral dis-
tribution, and in Theorem 4.2.5, we identify the measure and state some of
its properties. In Section 4.3 we first introduce a Gaussianised version of the
matrix, and this helps us to simplify the variance profile. We then truncate
the weights and decouple the diagonal, which allows us to apply the moment
method. In Section 4.4 we identify the limiting moments of the decoupled Lapla-
cian and show that it does not depend on the spatial parameter α > 0, which
is crucial in the identification of the limiting measure of the original Laplacian.
Finally, in Section 4.5 we identify the limiting measure using results from free
probability. In Appendix 4.6 we provide references to some of the results we use
in our proofs, which are collections of results from other articles and are stated
here for completeness.

§4.2 Setup and main results

In this section we describe the setup of the model and also state the main results.

§4.2.1 Setup
(a) Vertex set: the vertex set is VN := {1, 2, . . . , N}. The vertex set is equipped

with torus the distance ∥i− j∥, where

∥i− j∥ = |i− j| ∧ (N − |i− j|).

(b) Weights: the weights (Wi)i∈VN
are i.i.d. random variables sampled from a

Pareto distribution W (whose law we denote by P) with parameter τ − 1,
where τ > 1. That is,

P(W > t) = t−(τ−1)1{t≥1} + 1{t<1}. (4.3)

(c) Long-range parameter: α > 0 is a parameter which controls the influence
of the distance between vertices on their connection probability.

(d) Connectivity function: conditional on the weights, each pair of distinct
vertices i and j is connected independently with probability PW (i↔ j) given
by

PW (i↔ j) := P(i↔ j |Wi,Wj) =
WiWj

∥i− j∥α
∧ 1. (4.4)
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We will be using the short-hand notation pij := P(i ↔ j | Wi,Wj) for con-
venience. Note that the graph does not have self-loops.

In what follows, we denote by P = P⊗PW the joint law of the weights and
the edge variables. Note that P depends on N , but we will omit this dependence
for simplicity. Let E,E, and EW denote the expectation with respect to P,P,
and PW respectively.

The associated graph is connected, as nearest neighbours with respect to the
torus distance are always linked. Let us denote the random graph generated by
our choice of edge probabilities by GN . Let AGN

denote the adjacency matrix
(operator) associated with this random graph, defined as

AGN
(i, j) =

{
1 if i↔ j,

0 otherwise.

Since the graph is finite and undirected, the adjacency matrix is always self-
adjoint and has real eigenvalues. Let

DGN
= Diag(d1, · · · , dN )

where di denotes the degree of the vertex i and in this case given by

di =
∑
j ̸=i

AGN
(i, j).

We will consider the Laplacian of the matrix, which is denoted as follows:

∆GN
= AGN

− DGN
.

In general, when α < 1, the eigenvalue distribution requires scaling in order to
observe meaningful limiting behaviour. In Cipriani et al. [2025], it was shown
that an appropriate scaling of the adjacency matrix, under which the conver-
gence of the bulk eigenvalue distribution can be studied, is given by

cN =
1

N

∑
i ̸=j∈VN

1

∥i− j∥α
∼ c0N

1−α, (4.5)

where c0 is a positive constant. The scaled adjacency matrix is then defined as

AN :=
AGN√
cN
. (4.6)

We define the corresponding (scaled) Laplacian as

∆N = AN −DN ,
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where DN is given by DN = Diag(d1, · · · ,dN ) with

di =
∑
k ̸=i

AN (i, k).

The empirical measure that assigns a mass of 1/N to each eigenvalue of the
N ×N random matrix MN is called the Empirical Spectral Distribution (ESD)
of MN , denoted as

ESD (MN ) :=
1

N

N∑
i=1

δλi
,

where λ1 ≤ λ2 ≤ . . . ≤ λN are the eigenvalues of MN . We are interested in the
centred Laplacian matrix for the bulk distribution. So define

∆◦N = ∆N − E[∆N ] (4.7)

where E[∆N ](i, j) = E[∆N (i, j)]. If we define A◦N = AN − E[AN ] and D◦N
is the diagonal matrix Diag(d◦1, . . . ,d

◦
N ) where d◦i =

∑
k ̸=iA

◦
N (i, k), then it is

easy to see that
∆◦N = A◦N −D◦N .

In this article we will be interested in understanding the behaviour of ESD(∆◦N )

as N → ∞.

§4.2.2 Main Results

The Lévy-Prokhorov distance dL : P(R)2 → [0,+∞) between two probability
measures µ and ν on R is defined as

dL(µ, ν) := inf
{
ε > 0 | µ(A) ≤ ν (Aε)+ε and ν(A) ≤ µ (Aε)+ε ∀A ∈ B(R)

}
,

where B(R) denotes the Borel σ-algebra on R, and Aε is the ε-neighbourhood
of A. For a sequence of random probability measures (µN )N≥0, we say that

lim
N→∞

µN = µ0 in P-probability

if, for every ε > 0,
lim

N→∞
P(dL(µN , µ0) > ε) = 0.

Our first main result is existential and is as follows.
Theorem 4.2.1.
Consider the random graph GN on VN with connection probabilities given by
(4.4) with parameters τ > 3 and 0 < α < 1. Let ESD(∆◦N ) be the empirical
spectral distribution of ∆◦N defined in (4.7). Then there exists a deterministic
measure ντ on R such that

lim
N→∞

ESD(∆o
N ) = ντ in P–probability .
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The characterisation of ντ is achieved by results from the theory of free
probability. For convenience, we state some technical definitions. We refer the
readers to [Anderson et al., 2010, Chapter 5] for further details.

For the following definitions, we refer the reader to Mingo and Speicher
[2017], and recall from Chapter 1 that a W ∗−algebra is a C∗-algebra of bounded
operators on a Hilbert space closed in the weak operator topology.

Definition 4.2.2.
Let (A, φ) be a W ∗-probability space, where A is a W ∗-algebra, and φ is a
faithful, tracial state. A densely defined operator T is said to be affiliated with
A if for every bounded measurable function h, we have h(T ) ∈ A. The law
(or distribution) L(T ) of such an affiliated operator T is the unique probability
measure on R satisfying

φ(h(T )) =

∫
R
h(x) dL(T )(x).

For a collection of self-adjoint operators T1, . . . , Tn, their joint distribution
is described by specifying

φ(h1(Ti1) . . . hk(Tik)),

for all k ≥ 1, all index sequences i1, . . . , ik ∈ {1, . . . , n}, and all bounded meas-
urable functions h1, . . . , hk : R → R.

Definition 4.2.3.
Let (A, φ) be a W ∗-probability space, and suppose a1, a2 ∈ A. Then a1 and a2
are said to be freely independent if

φ(p1(ai1) . . . pn(ain)) = 0,

for every n ≥ 1, every sequence i1, . . . , in ∈ {1, 2} with ij ̸= ij+1 for all j =

1, . . . , n− 1, and all polynomials p1, . . . , pn in one variable satisfying

φ(pj(aij )) = 0, for all j = 1, . . . , n.

Definition 4.2.4.
Let a1, . . . , ak and b1, . . . , bm be operators affiliated with A. The families (a1, . . . , ak)
and (b1, . . . , bm) are freely independent if and only if

p(h1(a1) . . . hk(ak)) and q(g1(b1) . . . gm(bm))

are freely independent for all bounded measurable functions h1, . . . , hk and g1, . . . , gm,
and for all polynomials p and q in k and m non-commutative variables, respect-
ively.
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We are now ready to state our second main result.

Theorem 4.2.5.
Under the assumptions of Theorem 4.2.1, the limiting measure ντ can be iden-
tified as

ντ = L
(
T
1/2
W TsT

1/2
W +E[W ]T

1/4
W TgT

1/4
W

)
.

Here, Tg and TW are commuting self-adjoint operators affiliated with a W ∗-
probability space (A, φ) such that, for bounded measurable functions h1, h2 from
R to itself,

φ (h1 (Tg)h2 (TW )) =

(∫ ∞
−∞

h1(x)ϕ(x)dx

)(∫ ∞
1

h2(u)(τ − 1)u−τdu

)
with ϕ the standard normal density. Furthermore, Ts has a standard semi-

circle law and is freely independent of (Tg, TW ).
In particular, when W is degenerate, say W ≡ 1, then ντ is given by the free

additive convolution of semicircle and Gaussian law.

§4.2.3 Discussion and simulations
(a) We now briefly describe the main steps of the proof.

1. Gaussianisation: In the first step, we show that replacing the Bernoulli
entries with Gaussian entries having the same mean and variance res-
ults in empirical spectral distributions that are close.

2. Simplification of the variance profile: In this step, we show that
the variance profile can be simplified to WiWj/∥i − j∥α, effectively
removing the truncation at 1.

3. Truncation: Here, we show that in the Gaussian matrix, the weights
Wi can be replaced by the truncated weights Wm

i =Wi1Wi≤m.

4. Decoupling the diagonal: In this step, we show that the Laplacian
can be viewed as the sum of two independent random matrices (con-
ditionally on the weights). Thus, we replace the diagonal matrix DN

with an independent copy YN , which has the same variance profile.

5. Moment method: With truncated weights and decoupled matrices,
we apply the moment method to show convergence of the empirical
spectral distribution and identify the limiting moments. A key obser-
vation is that the limiting measure and the method are independent
of α, so the results remain valid even when α = 0.
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6. Identification of the limiting measure: Finally, we first identify the
limiting measure in the case of truncated weights. These are typically
associated with bounded operators (except in the Gaussian case). We
then use techniques from Bercovici and Voiculescu [1993] to remove
the truncation and identify the limiting measure in the general case.

(b) We now present some simulations that illustrate how the proof outline
aligns with a specific value of α. In Figure 4.1, we plot the eigenvalue
distribution of the centred Laplacian matrix, with the parameter range
N = 6000, α = 0.5 and τ = 4.1. A crucial step in the proof of Theorem
4.2.1 requires us to replace the Bernoulli entries with Gaussian entries
with the same variance profile. Also in the Gaussian case, we can simplify
the variance to the following form:

WiWj

∥i− j∥α

for any (i, j)th entry. We compare the two spectra in Figure 4.2. We also
consider the Gaussianised Laplacian matrix with a decoupled diagonal,
and in Section 4.5, we apply an idea used in Cipriani et al. [2025], where
we take α = 0. We also compare the spectrum of this matrix to the
original centred Laplacian in Figure 4.2. We see that the spectra are quite
similar.

Figure 4.1: Spectrum of the centred Laplacian matrix .

(c) We remark that our results can be extended in two directions. Although
we state and prove them for the case d = 1 and α < 1, they naturally
generalise to any dimension d ≥ 1 and α < d. In that case, the scaling
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Figure 4.2: Comparing the spectrum of the centred Laplacian with the Gaussianised
and the decoupled case.

constant requires an adjustment, with cN ∼ c0(d)N
d−α. For ease of

presentation, we restrict ourselves to d = 1 in this work.

Another possible extension of our first result involves modifying the con-
nection probabilities between vertices i and j to

pij =
κσ(Wi,Wj)

∥i− j∥α
∧ 1,

where κσ(x, y) = (x ∨ y)(x ∧ y)σ. In this setting, we additionally assume
0 < σ < (τ − 1). Such extensions have been studied in the context of
adjacency matrices in Cipriani et al. [2025]. We strongly believe that
in this case the limiting spectral distribution will exist, but it would be
challenging to identify the limiting measure.

§4.2.4 Notation
We will use the Landau notation oN , ON indicating in the subscript the vari-
able under which we take the asymptotic (typically this variable will grow
to infinity unless otherwise specified). Universal positive constants are de-
noted as c, c1, . . . , and their value may change with each occurrence. For
an N × N matrix A = (aij)

N
i, j=1 we use Tr(A) :=

∑N
i=1 aii for the trace

and tr(A) := N−1Tr(A) for the normalised trace. When n ∈ N we write
[n] := {1, 2, . . . , n}. We denote the cardinality of a set A as #A, and, with a
slight abuse of notation, #σ also denotes the number of cycles in a permutation
σ.

§4.3 Gaussianisation and setup for main proofs

To prove Theorem 4.2.1, we construct a Laplacian matrix with truncated weights
and a simplified variance profile, with the diagonal decoupled from the adjacency
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matrix. We follow the ideas of Cipriani et al. [2025], albeit with a slightly
modified approach, as follows:

(a) We begin by Gaussianising the matrix ∆o
N to obtain a matrix ∆̄N , using

the ideas of Chatterjee [2005]. Since we have τ > 3, the proof proceeds
without the need to truncate the weight sequence {Wi}i∈VN

.

(b) We then tweak the entries of ∆̄N further through a series of lemmas to
obtain the Laplacian matrix ∆̂N,g, whose corresponding adjacency has
mean-zero Gaussian entries and a simplified variance profile.

(c) Next, we truncate the weights {Wi}i∈VN
at m ≥ 1, and construct the

corresponding matrix ∆N,g,m. We show that, in P-probability, the Lévy
distance vanishes in the iterated limit m→ ∞ and N → ∞.

(d) We conclude by decoupling the diagonal of the matrix ∆N,g,m from the
off-diagonal terms. This follows from classical results used in studying the
spectrum of Laplacian matrices.

§4.3.1 Gaussianisation
Suppose (Gi,j)i>j is a sequence of i.i.d. N(0, 1) random variables and independ-
ent of the sequence (Wi)i∈VN

. Define

ĀN =


√

pij(1−pij)√
cN

Gi∧j,i∨j +
µij√
cN

i ̸= j

0 i = j,

where µij = pij −E[pij ]. Let ∆̄N be the corresponding Laplacian of the matrix
ĀN . Let h be a 3 times differentiable function on R such that

max
0≤k≤3

sup
x∈R

|h(k)(x)| <∞ ,

where h(k) is the k-th derivative of h. Define the resolvent of the N ×N matrix
MN as

RMN
(z) = (MN − z IN )−1 , z ∈ C+,

where IN is the N ×N identity matrix and C+ is the upper-half complex plane.
Further, define Hz(MN ) = SMN

(z) = tr(RMN
(z)) for z ∈ C+.

Lemma 4.3.1 (Gaussianisation of ∆N).
Consider ∆̄N and ∆o

N defined as above. Then for any h as above,

lim
N→∞

∣∣E[h(ℜHz(∆̄N ))]− E[h(ℜHz(∆
o
N ))]

∣∣ = 0 ,

and
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lim
N→∞

∣∣E[h(ℑHz(∆̄N ))]− E[h(ℑHz(∆
o
N ))]

∣∣ = 0 .

The proof is very similar to the one presented in Chatterjee and Hazra
[2022] and is modified along the lines of Cipriani et al. [2025]. It uses the
classical result of Chatterjee [2005], and we only give a brief sketch by showing
the estimates of the error probabilities in this setting. In Cipriani et al. [2025],
the Gaussianisation was done with truncated weights, but here we will not need
that.

Proof. Following the proof of Cipriani et al. [2025] for the Laplacian, we define,
conditional on the weights (Wi)i∈VN

, a sequence of independent random vari-
ables. Let Xb = (Xb

ij)1≤i<j≤N be a vector with Xb
ij ∼ Ber(pij)− E[pij ]. Simil-

arly, take another vector Xg = (Xg
ij)1≤i<j≤N with Xg

ij ∼ N(µij , pij(1− pij)).
Let n = N(N − 1)/2 and x = (xij)1≤i<j≤N ∈ Rn. Define R(x) to be the

matrix-valued differentiable function given by

R(x) := (MN (x)− z IN )−1,

where MN (·) is the matrix-valued differentiable function that maps a vector in
Rn to the space of N ×N Hermitian matrices, given by

MN (x)ij =


c
−1/2
N xij if i < j,

c
−1/2
N xji if i > j,

−c−1/2N

∑
k ̸=i xik if i = j.

Then, we see that ∆o
N = MN (Xb) and ∆̄N = MN (Xg). Note that

EW [Xb
ij ] = EW [Xg

ij ] = µij ,

and
EW [(Xb

ij)
2] = EW [(Xg

ij)
2] = pij + E[pij ]2 − 2pijE[pij ].

Consequently, using [Chatterjee, 2005, Theorem 1.1] we have that∣∣E[h(ℜHz(∆̄N ))]− E[h(ℜHz(∆
o
N ))]

∣∣
=
∣∣E [EW [h(ℜHz(∆̄N ))− h(ℜHz(∆

o
N ))]

]∣∣
≤ C1(h)λ2(H)

∑
1≤i<j≤N

E[(Xb
ij)

21|Xb
ij |>KN

] + E[(Xg
ij)

21|Xg
ij |>KN

] (4.8)

+ C2(h)λ3(H)
∑

1≤i<j≤N
E[(Xb

ij)
31|Xb

ij |≤KN
] + E[(Xg

ij)
31|Xg

ij |≤KN
] (4.9)
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where λ2(H) ≤ C2(ℑz) 1
NcN

and λ3(H) ≤ C3(ℑz) 1

Nc
3/2
N

.

We first deal with the terms in (4.8). Note that since pij ≤ 1, we have
|Xb

ij | ≤ 1, and as a consequence, for any KN ≥ 2, the first term in (4.8) is zero.
For the Gaussian term, applying the Cauchy-Schwarz inequality followed by the
second-moment Markov inequality yields

E[(Xg
ij)

21|Xg
ij |>KN

] ≤ E[(Xg
ij)

4]1/2P(Xg
ij > KN )1/2 ≤ K−1N E[(Xg

ij)
4]1/2E[(Xg

ij)
2]1/2.

Since E[(Xg
ij)

2] = E[pij+E[pij ]2−2pijE[pij ]] ≤ E[pij ], and similarly, E[(Xg
ij)

4] ≤
E[p2ij ], we have

λ2(H)
∑

1≤i<j≤N
E[(Xg

ij)
21|Xg

ij |>KN
]

≤ λ2(H)

KN

∑
1≤i<j≤N

E[W 2
i ]

1/2E[W 2
j ]

1/2

∥i− j∥α
E[Wi]

1/2E[Wj ]
1/2

∥i− j∥α/2

≤ λ2(H)

KN
E[W1]E[W 2

1 ]N
2− 3α

2

≤ c̃2E[W1]E[W 2
1 ]N

2− 3α
2

KNN2−α = ON (N−α/2K−1N ),

where the last equality follows as τ > 3 and c̃2 is a constant depending on ℑ(z)
only. For the term containing the third moments, we see that

λ3(H)
∑

1≤i<j≤N
E[(Xb

ij)
31|Xb

ij |≤KN
] + E[(Xg

ij)
31|Xg

ij |≤KN
]

≤ λ3(H)KN

∑
1≤i≤j≤N

E[(Xb
ij)

2] + E[(Xg
ij)

2]

≤ λ3(H)KN2E[W1]
2

∑
1≤i≤j≤N

1

∥i− j∥α

≤ c3(ℑz)
Nc

3/2
N

KNE[W1]
2NcN ≤ c̃3KNc

−1/2
N .

Here c̃3 is a constant depending on ℑ(z). Choosing any 2 ≤ KN ≪ c
1/2
N , both

terms go to zero. This completes the proof of the Gaussianisation.

§4.3.2 Simplification of the variance profile
We now proceed with a series of lemmas to simplify the variance profile of our
Gaussianised matrix. First, we construct a new matrix ∆N,g as the Laplacian
corresponding to the matrix AN,g, defined as follows:
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Suppose (Gi,j)i>j is a sequence of i.i.d. N(0, 1) random variables as before,
and independent of the sequence (Wi)i∈VN

. Define

AN,g =


√

pij(1−pij)√
cN

Gi∧j,i∨j i ̸= j

0 i = j.

We now have the following result.
Lemma 4.3.2.
Let ∆̄N and ∆N,g be as defined above. Then,

lim
N→∞

P(dL(ESD(∆̄N ),ESD(∆N,g)) > ε) = 0.

Proof. The proof follows using Proposition 4.6.1. Taking expectation on the dL
distance, we have

E
[
d3L(ESD(∆N,g,ESD(∆̄N )

]
≤ 1

N
ETr

(
(∆N,g − ∆̄N )2

)
=

1

N
E

 ∑
1≤i,j≤N

(
∆N,g(i, j)− ∆̄N (i, j)

)2
=

1

N

∑
1≤i ̸=j≤N

E
[
(AN,g(i, j)− ĀN (i, j))2

]

+
1

N

N∑
i=1

E

∑
k ̸=i

AN,g(i, k)− ĀN (i, k)

2 .
We deal with the last two terms separately. The first term is bounded above by

1

NcN

∑
i ̸=j

E[µ2ij ] ≤
1

NcN

∑
i ̸=j

E[W 2
1 ]

2

∥i− j∥2α
≈ N2−2α

N2−α = N−α → 0.

Next, we have that∑
k ̸=i

AN,g(i, k)− ĀN (i, k) ≤ 1
√
cN

∑
k ̸=i

pik = c
−1/2
N .

This makes the second term of the order oN (cN ). We conclude the proof using
Markov’s inequality.

Define for i ̸= j

ÃN,g(i, j) =

√
pij√
cN
Gi∧j,i∨j

and put zero on the diagonal. Here (Gi,j)i≥j are the i.i.d. N(0, 1) random
variables used in the previous result. Let ∆̃N,g be analogously defined. The
next lemma shows that ∆N,g and ∆̃N,g have asymptotically the same spectrum.
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Lemma 4.3.3.

lim
N→∞

P
(
dL(ESD(∆̃N,g),ESD(∆N,g)) > ε

)
= 0.

Proof. Again using Proposition 4.6.1, we have that

E
[
d3L(ESD(∆̃N,g),ESD(∆N,g))

]
≤ 1

N
ETr

(
(∆N,g − ∆̃N,g)

2
)

=
1

N
E

 ∑
1≤i,j≤N

(
∆N,g(i, j)− ∆̃N,g(i, j)

)2
=

1

N

∑
1≤i ̸=j≤N

E
[
(AN,g(i, j)− ÃN,g)

2
]

+
1

N

N∑
i=1

E

∑
k ̸=i

AN,g(i, k)− ÃN,g(i, k)

2
Dealing with the last two terms separately as before, we proceed by bounding

the first term by

1

NcN

∑
i ̸=j

E[W 2
1 ]

2

∥i− j∥2α
≈ N2−2α

N2−α = N−α → 0.

Expanding the square in the second term, we have

1

N

N∑
i=1

E

∑
k ̸=i

AN,g(i, k)− ÃN,g(i, k)

2
=

1

N

N∑
i=1

∑
k ̸=i

E
[(

AN,g(i, k)− ÃN,g(i, k)
)2]

+
1

N

N∑
i=1

∑
k ̸=i

∑
ℓ̸=i,k

E
[(

AN,g(i, k)− ÃN,g(i, k)
)(

AN,g(i, ℓ)− ÃN,g(i, ℓ)
)]
.

Again, the first term in above sum is of the order N−α and the expectation
in the second term is zero. Indeed, using the independence between (Wi)i∈VN

and Gi,j we have for k ̸= ℓ,

E
[(

AN,g(i, k)− ÃN,g(i, k)
)(

AN,g(i, ℓ)− ÃN,g(i, ℓ)
)]

= E
[
(
√
pik(1− pik)−

√
pik)(

√
piℓ(1− piℓ)−

√
piℓ)
]
E[Gi,kGi,ℓ] = 0.

This completes the proof of the lemma.
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We conclude this subsection with one final simplification. For any i ̸= j, let

rij =
WiWj

∥i− j∥α
,

and let rii = 0. Define the matrix ÂN,g as follows: for i ̸= j,

ÂN,g(i, j) =

√
ri∧j,i∨j√
cN

Gi∧j,i∨j

and put 0 on the diagonal. Define Laplacian matrix ∆̂N,g accordingly with
ÂN,g.

Lemma 4.3.4.

lim
N→∞

P
(
dL(ESD(∆̃N,g),ESD(∆̂N,g)) > ε

)
= 0.

Proof. For any 1 ≤ i ̸= j ≤ N , define the set Cij = {rij < 1}. Let (Xi,j)i≥j be
defined as follows

Xij =

√
rij√
cN
G′ij ,

where (G′ij)i≥j be a sequence of independent N(0, 1) random variables, inde-
pendent of the previously defined (Gij) and (Wi)i∈VN

. Define a symmetric
matrix LN,g as follows: for 1 ≤ i < j ≤ N ,

LN,g(i, j) = ÃN,g(i, j)1Cij +Xij1Ccij .

We put zero on the diagonal and consider the ∆L as the Laplacian matrix
corresponding to LN,g. Note that LN,g has the same distribution as ÂN,g and
hence the ∆L has the same distribution as ∆̂N,g.

By Proposition 4.6.1, we again have

E
[
d3
(
ESD(∆L),ESD(∆̃N,g)

)]
≤ 1

N
E

 ∑
1≤i,j≤N

(
∆L(i, j)− ∆̃N,g(i, j)

)2
=

1

N

∑
1≤i ̸=j≤N

E
[
(LN,g(i, j)− ÃN,g(i, j))

2
]

+
1

N

N∑
i=1

E

∑
k ̸=i

LN,g(i, k)− ÃN,g(i, k)

2 .
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Expanding terms on the right-hand side, we obtain

E
[
d3
(
ESD(∆L),ESD(∆̃N,g)

)]
≤ 4

N

∑
1≤i ̸=j≤N

E
[
(LN,g(i, j)− ÃN,g(i, j))

2
]

≤ +
1

N

N∑
i=1

∑
k ̸=i

∑
ℓ ̸=i,k

E
[(
LN,g(i, k)− ÃN,g(i, k)

)(
LN,g(i, ℓ)− ÃN,g(i, ℓ)

)]
Again, we deal with the two sums separately. The first sum can be bounded

above as follows:
4

N

∑
1≤i ̸=j≤N

E
[
(LN,g(i, j)− ÃN,g(i, j))

2
]

≤ 4

N

∑
1≤i ̸=j≤N

E
[
(ÃN,g(i, j)−Xij)

21Cij
]

≤ 8

N

∑
1≤i ̸=j≤N

E
[
ÃN,g(i, j)

21Cij
]
+ E

[
X2

ij1Cij
]

≤ 1

NcN

N∑
i ̸=j∈VN

E[G2
i∧j,i∨j1Ccij ] +E[X2

ij1Ccij ]

≤ 1

NcN

N∑
i ̸=j∈VN

P(Cc
ij) +E[X4

ij ]
1/2P(Cc

ij)
1/2

≤ 1

NcN

N∑
i ̸=j∈VN

P(Cc
ij) +

3E[W 2
i W

2
j ]

1/2

∥i− j∥α
P(Cc

ij)
1/2

≤ C(N−α(τ−2) +N−
α
2
(τ−1)) = oN (1),

where we have used in the last line the following estimate:

P(Cc
ij) ≤ P (WiWj ≥ ∥i− j∥α) ≤ c

∥i− j∥α(τ−1)

which follows from Lemma 4.6.2. For the second term note that

E
[(
LN,g(i, k)− ÃN,g(i, k)

)(
LN,g(i, ℓ)− ÃN,g(i, ℓ)

)]
=

1

cN
E[

√
pik

√
piℓ1Ccij1Cciℓ ]E[GikGiℓ]

− 1

cN
E[

√
pik

√
riℓ1Ccij1Cciℓ ]E[GikG

′
iℓ]−

1

cN
E[

√
rik

√
piℓ1Cc

ij
1Cc

iℓ
]E[G′ikGiℓ]

+
1

cN
E[

√
rik

√
riℓ1Cc

ij
1Cc

iℓ
]E[G′ikG′iℓ],
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and since k ̸= ℓ, all the above terms are zero. Thus the proof follows.

§4.3.3 Truncation
Let m > 1 be a truncation threshold and define Wm

i = Wi1Wi≤m for any
i ∈ VN . For all N ∈ N, we define a new random matrix as follows: Let

rmij =
Wm

i W
m
j

∥i− j∥α
i ̸= j ∈ VN ,

and let AN,g,m be defined for i ̸= j as

AN,g,m(i, j) =

√
rmij√
cN

Gi∧j,i∨j ,

and put 0 on the diagonal. Analogously define ∆N,g,m.

Lemma 4.3.5 (Truncation).
For every δ > 0 one has

lim sup
m→∞

lim
N→∞

P
(
dL(ESD(∆N,g,m),ESD(∆̃N,g)) > δ

)
= 0 .

Proof. The proof follows the same idea as the previous lemmas. Recall that

ÂN,g(i, j) =

√
rij√
cN
Gi∧j,i∨j

for all i ̸= j, with 0 on the diagonal, and ∆̂N,g is the corresponding Laplacian.
Once again, we have

E
[
d3
(
ESD(∆N,g,m),ESD(∆̂N,g)

)]
≤ 1

N
E

 ∑
1≤i,j≤N

(
∆N,g,m(i, j)− ∆̂N,g(i, j)

)2
=

1

N

∑
1≤i ̸=j≤N

E
[
(AN,g,m(i, j)− ÂN,g(i, j))

2
]

+
1

N

N∑
i=1

E

∑
k ̸=i

AN,g,m(i, k)− ÂN,g(i, k)

2
≤ 4

N

∑
1≤i ̸=j≤N

E
[
(AN,g,m(i, j)− ÂN,g(i, j))

2
]

+
1

N

N∑
i=1

∑
k ̸=i

∑
ℓ̸=i,k

E
[(

AN,g,m(i, k)− ÂN,g(i, k)
)(

AN,g,m(i, ℓ)− ÂN,g(i, ℓ)
)]
.
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The proof of Lemma 4.3.4 aids us by taking care of the second factor in the last
line, which turns out to be equal to 0 by the independence of Gaussian terms.
For the first term, the common Gaussian factor pulls out by independence,
yielding the upper bound

4

NcN

∑
1≤i ̸=j≤N

E

[(√
WiWj −

√
Wm

i W
m
j

)2]
∥i− j∥α

≤ 4

NcN

∑
1≤i ̸=j≤N

E[WiWj −Wm
i W

m
j ]

∥i− j∥α
,

where the inequality follows by using the identity (a − b)2 ≤ |a2 − b2| for any
a, b ≥ 1. Adding and subtracting the term WiW

m
j inside the expectation gives

us that

4

N

∑
1≤i ̸=j≤N

E
[
(AN,g,m(i, j)− ÂN,g(i, j))

2
]

≤ 4

NcN

∑
1≤i ̸=j≤N

E[Wi]E[Wj1{Wj>m}] +E[Wm
j ]E[Wi1{Wi>m}]

∥i− j∥α

≤ Cτ

NcN

∑
1≤i ̸=j≤N

m2−τ

∥i− j∥α
= Om(m2−τ ),

where the last inequality follows from Lemma 4.6.3, with Cτ a τ−dependent
constant. Markov inequality concludes the proof.

§4.3.4 Decoupling
Since we now have bounded weights, the decoupling result follows from the argu-
ments from [Bryc et al., 2006, Lemma 4.12]. See also the proof of [Chakrabarty
et al., 2021b, Lemma 4.2] for the inhomogeneous extension.

Lemma 4.3.6.
Let (Zi : i ≥ 1) be a family of i.i.d. standard normal random variables, inde-
pendent of (Gi,j : 1 ≤ i ≤ j). Define a diagonal matrix YN of order N by

YN (i, i) = Zi

√∑
k ̸=i r

m
ik

cN
, 1 ≤ i ≤ N.

and let
∆N,g,c = AN,g,m + YN . (4.10)
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Then for every m > 1, and for any k ∈ N,

lim
N→∞

1

N
E
(
Tr
[
(∆N,g,c)

2k − (∆N,g,m)2k
])

= 0.

and
lim

N→∞

1

N2
E
(
Tr2

[
(∆N,g,c)

k
]
− Tr2

[
(∆N,g,m)k

])
= 0.

§4.4 Moment method: Existence and uniqueness of
the limit

We begin by stating a key proposition that describes the limit of the empirical
spectral distribution of ∆N,g,c. The majority of this section will be devoted to
the proof of this proposition, and so, we defer the proof of the proposition to
page 180.

Proposition 4.4.1.
Let ESD(∆N,g,c) be the empirical spectral distribution of ∆N,g,c defined in (4.10).
Then there exists a deterministic measure ντ on R such that

lim
N→∞

ESD(∆N,g,c) = ντ,m in P–probability .

We now use Proposition 4.4.1 and tools from Appendix 4.6 and Section 4.3
to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Combining Proposition 4.4.1 with Lemma 4.3.6 gives
us that

lim
N→∞

ESD(∆N,g,m) = ντ,m in P–probability . (4.11)

To show the existence of the limit ντ := limm→∞ ντ,m, we wish to apply Lemma
4.6.5. Equation (4.11) satisfies Condition (1) of Lemma 4.6.5. Moreover, Con-
dition (2) can be easily verified by Lemma 4.3.5. Thus, there exists a unique
limit ντ such that

lim
N→∞

ESD(∆̃N,g) = ντ in P–probability . (4.12)

Combining equation (4.12) with Lemma 4.3.4, and subsequently with Lemma
4.3.3 and Lemma 4.3.2 yields

lim
N→∞

ESD(∆̄N ) = ντ in P–probability . (4.13)

We now wish to show that the limiting empirical spectral distribution for ∆◦N
is ντ in P–probability. To this end, note that for any h satisfying conditions of
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Lemma 4.3.1, and Hz as in subsection 4.3.1, we have by the means of Lemma
4.3.1 that

lim
N→∞

h (ℜ(Hz(∆
◦
N ))) = h (ℜSντ (z)) .

The above characterises convergence in law. However, since ντ is a deterministic
measure, the above convergence holds in P–probability, and analogously for
ℑ(Hz(∆

◦
N )). This gives us that

lim
N→∞

SESD(∆◦
N )(z) = Sντ (z) in P–probability .

Since convergence of Stieltjes transforms characterises weak convergence, we
obtain

lim
N→∞

ESD(∆◦N ) = ντ in P–probability ,

completing the proof.

We now provide the proof of Proposition 4.4.1. We borrow the main ideas of
Chatterjee and Hazra [2022, Section 5.2.1, 5.2.2], and adapt them to our setting
using the results of Cipriani et al. [2025, Section 4.4].

Proof of Proposition 4.4.1. The proof of the moment method is valid when the
weights are bounded, and so for notational convenience, in this proof we will
drop the dependence on m from {rmij }i,j∈VN

. Thus, for the remainder of the
proof, we have that

rij =
Wm

i W
m
j

∥i− j∥α
.

We apply the method of moments to show the convergence to the law ντ,m. The
proof is split up into three parts as follows:

(a) For any k ≥ 1, we compute the expected moment

E
∫ ∞
1

xk ESD(∆N,g,c)(dx),

and show that as N → ∞, the above quantity converges to a value 0 <

Mk <∞ for k even, and 0 otherwise.

(b) We then show concentration by proving (under the law P) that

Var

(∫ ∞
1

xk ESD(∆N,g,c)(dx)

)
→ 0 as N → ∞.

(c) Lastly, we show that the sequence {Mk}k≥1 uniquely determines a limiting
measure.
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Step 1. We begin by considering that k is even. By using the expansion for
(a+ b)k, it is easy to see that

E
∫ ∞
1

xk ESD(∆N,g,c)(dx) =
1

N
E
[
Tr
(
∆k

N,g,c

)]
=

1

N

∑
m1,...,mk,
n1,...,nk

E
[
Tr
(
Am1

N,g,mY
n1
N . . .Amk

N,g,mY
nk
N

)]
,

where AN,g,m and YN are as in Lemma 4.3.6, and {mi, ni}1≤i≤k are such that∑k
i=1mi + ni = k.

Let M(p) and N(p) be defined as

M(p) =

p∑
i=1

mi, N(p) =

p∑
i=1

ni

for any 1 ≤ p ≤ k. To expand the trace term, we sum over all i = (i1, . . . , iM(k)+N(k)+1) ∈
[N ]M(k)+N(k)+1, where [p] := {1, 2, . . . , p}, and we identify iM(k)+N(k)+1 ≡ i1.
Then, from Chatterjee and Hazra [2022, Eq. 5.2.2], we have

1

N
Tr
(
Am1

N,g,mY
n1
N . . .Amk

N,g,mY
nk
N

)
=

1

N

N∑
i1,...,iM(k)=1

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1

M(k)∏
j=1

√
rijij+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2 k∏

j=1

Z
nj

i1+M(j)
,

(4.14)

where also in (4.14) we identify iM(k)+1 ≡ i1. Taking expectation in (4.14), we
have that

E
[
tr
(
Am1

N,g,mY
n1
N . . .Amk

N,g,mY
nk
N

)]
=

1

N

∑
i1,...,iM(k)

E

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1


× E

M(k)∏
j=1

√
rijij+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2

E

 k∏
j=1

Z
nj

i1+M(j)

 .
(4.15)

It is well known that the expectation over a product of independent Gaussian
random variables is simplified using the Wick’s formula (see Lemma 4.6.7). In
particular, if one were to partition the tuple {1, . . . ,K} for some non-negative
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integer K, the contributing partitions are typically non-crossing pair partitions
(Nica and Speicher [2006]).

We now introduce some notation from Cipriani et al. [2025]. For any fixed
non-negative even integer K, let P2(K) and NC2(K) be the set of all pair
partitions and the set of all non-crossing pair partitions of [K], respectively.
Let γ = (1, . . . ,K) ∈ SK be the right-shift permutation (modulo K), and for
any π which is a pair-partition, we identify it as a permutation of [K], and read
γπ as a composition of permutations. Further, for any π ∈ P2(K), let Catπ
denote the set

Catπ := Catπ(K,N) = {i ∈ [N ]K : ir = iγπ(r) for all r ∈ [K]}.

Let C(K,N) = Catcπ, the complement of Catπ, wherein we have ir = iπ(r) for
any r. By Wick’s formula for the Gaussian terms {Gi,j}, since the the sum over
tuples i would be reduced to the sum over pair partitions π ∈ P2(K) and the
associated tuples i ∈ Catπ ∪ C(K,N), we can write∑

i∈[K]N

=
∑

π∈P2(K)

∑
i∈C(K,N)

+
∑

π∈NC2(K)

∑
i∈Catπ

+
∑

π∈P2(K)\NC2(K)

∑
i∈Catπ

. (4.16)

To analyse further, we use a key tool in the proof which is the following fact
(Cipriani et al. [2025, Claim 4.10]).
Fact 4.4.2.
Let K be an even non-negative integer. Then, we have the following to be true:

(a) For any π ∈ NC2(K), we have

lim
N→∞

1

Nc
K/2
N

∑
i∈Catπ

∏
(r,s)∈π

1

∥ir − ir+1∥α
= 1 .

(b) For any pair partition π, if i ∈ C(K,N), then,

lim
N→∞

1

Nc
K/2
N

∑
i∈C(K,N)

∏
(r,s)∈π

1

∥ir − ir+1∥α
= 0 .

(c) For a partition π ∈ P2(K) \NC2(K), we have

lim
N→∞

1

Nc
K/2
N

∑
i∈Catπ∪C(K,N)

∏
(r,s)∈π

1

∥ir − ir+1∥α
= 0 .

Let π̃ := γπ for any choice of π. From Chatterjee [2005, Eq. 5.2.5], we have
that

E(π̃) := E

 k∏
j=1

Z
nj

i1+M(j)

 =
∏
u∈π̃

E

 ∏
j∈[k]:

1+M(j)∈u

Z
nj

ℓu

 <∞, (4.17)
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where u is a block in π̃ and ℓu its representative element. Note that this does
not depend on the choice of i, and to obtain a non-zero contribution, we must
have that for all u ∈ π̃, ∑

j∈[k]:1+M(j)∈u

nj ≡ 0 (mod 2). (4.18)

Observe that E
[∏M(k)

j=1 Gij∧ij+1,ij∨ij+1

]
depends only on π̃ and not the choice

of i, and as a consequence, we can define

Φ(π̃) := E

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1

 <∞ . (4.19)

Next, note that the sum

1

cN

N∑
t=1

ri1+M(j)t = ON (1) (4.20)

by definition of cN (and the weights are uniformly bounded). Finally, if we look
at the terms

E


M(k)∏

j=1

rijij+1

cN

1/2
 , (4.21)

we can again bound the weights above by m. Recall that Wick’s formula on
the Gaussian terms imposes the restriction on choices of i. Using these facts, in
combination with (4.17), (4.19), and (4.20), we have that (4.15) gets bounded
by

(4.15) ≤ C

NcN

∑
π∈P2(M(k))

∑
i∈Catπ∪C(M(k),N)

Φ(π̃)E(π̃)
∏

(r,s)∈π

m2

∥ir − ir+1∥α
.

(4.22)

If we split (4.22) as (4.16), then using Fact 4.4.2, we see that in the cases when
π ∈ P2(M(k)) and i ∈ C(M(k), N), and when π ∈ P2(M(k)) \NC2(M(k)) for
all i, the contribution in the limit N → ∞ is 0.

We are now in the setting where we take π ∈ NC2(M(k)) and π̃ := γπ,
and i ∈ Catπ. First, note that π̃ is a partition of [M(k)]. We remark that if
M(k) ≡ 1 (mod 2) then NC2(M(k)) = ∅, and so, M(k) must be even.

Next, we focus on analysing the product
∏M(k)

j=1

√
rmijij+1

appearing in (4.15).
We wish to show that this depends only on π, and not on the choice of i. We
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follow the idea of Cipriani et al. [2025], wherein one constructs a graph associated
to a chosen partition π, and any tuple i ∈ Catπ is equivalent to a tuple ĩ with as
many distinct indices as the number of vertices in the constructed graph. First,
note that the coordinates are pairwise distinct (we take rii = 0 for all i). Next,
we construct a preliminary graph from the closed walk i1 → i2 → . . . iM(k) → i1.
Lastly, we collapse vertices and edges that are matched in Catπ, and we denote
the resulting graph as Gπ̃, since it does not depend on the choice of i but rather
the choice of π itself. The resulting graph Gπ̃ is the graph associated to the
partition π, and we refer the reader to Definition 4.6.8 for a formal description.
For clarity, consider the following example:

Let M(k) = 4, and let π = {{1, 2}, {3, 4}}. Then, π̃ = {{1, 3}, {2}, {4}}.
For any i ∈ Catπ, we see that i1 = i3, and i2, i4 are independent indices. Now,
Gπ̃ is a graph on 3 vertices, which are labelled as {{1, 3}}, {2} and {4}, and so
its corresponding tuple ĩ is exactly the same as i.

We then have, from Chatterjee and Hazra [2022, Eq. 5.2.12], that

M(k)∏
j=1

√
rmijij+1

=
∏
e∈Eπ̃

rte/2e , (4.23)

where Eπ̃ is the edge set of Gπ̃ and te is the number of times an edge e is
traversed in the closed walk on Gπ̃. Also observe

Φ(π̃) = E

 ∏
e∈Eπ̃

Gte
e

 .
Consequently, we must have that te to be even for all e, since the Gaussian terms
are independent and mean 0. We claim that te = 2 for all e ∈ Eπ̃. Indeed, if for
all e, te ≥ 2 with at least one e′ such that te′ > 2, then,

∑
e∈Eπ̃

te > 2|Eπ̃|. Since
Gπ̃ is connected, |Eπ̃| ≥ |Vπ̃| − 1 = M(k)/2, where Vπ̃ is the vertex set. Thus,∑

e∈Eπ̃
te > M(k). But,

∑
e te = M(k), gives a contradiction. We conclude

that te = 2 for all e ∈ Eπ̃.
A similar contradiction arises when we assume that there exists a self-loop in
Gπ̃. Thus Gπ̃ is a tree on M(k)

2 +1 vertices with each edge traversed twice in the
closed walk. As a consequence, every Gaussian term in Φ(π̃) appears exactly
twice, and so, Φ(π̃) = 1.

Let bs be the sth block of π̃ and let ℓs its representative element. Define

γs := # {1 ≤ j ≤ k : 1 +M(j) ∈ bs} ,

and
{s1, s2, . . . , sγs} = {1 ≤ j ≤ k : 1 +M(j) ∈ bs} .
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We then have

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2

=

M(k)
2

+1∏
s=1

(
1

cN

N∑
t=1

rℓst

)∑γs
j=1 nsj /2

. (4.24)

Note that
γs∑
j=1

nsj =
∑

j∈[k]:1+M(j)∈bs

nj .

Let us define ñs :=
∑γs

j=1 nsj/2. Then,

∑
s:bs∈π̃

ñs =
N(k)

2
. (4.25)

Using Chatterjee and Hazra [2022, Eq. 5.2.16], we obtain

1

Nc
M(k)

2
N

∑
i∈Catπ

M(k)∏
j=1

√
rijij+1

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2

=
1

Nc
M(k)+N(k)

2
N

∑
ℓ1 ̸=... ̸=ℓM(k)/2+1,

p(s,1),...,p(s,ñs):s∈
[
M(k)

2
+1

]
∏

(u,v)∈Eπ̃

rℓuℓv

M(k)
2

+1∏
s=1

ñs∏
t=1

rℓsp(s,t) , (4.26)

where for any two blocks bs1 and bs2 , {p(s1, 1), p(s1, 2), . . .} and {p(s2, 1), p(s2, 2), . . .}
are non-intersecting sets of indices {p1, p2, . . . , pñs1

} and {p′1, p′2, . . . , p′ñs2
}. Note

that for (u, v) ∈ Eπ̃, rℓuℓv = ruv as before, but we rewrite in terms of repres-
entative elements to indicate common factors with the terms rℓsp(s,t) . Taking
expectation in (4.26) gives us

E[(4.26)]

=
1

Nc
M(k)+N(k)

2
N

∑
ℓ1 ̸=... ̸=ℓM(k)

2 +1

E

 ∏
(u,v)∈Eπ̃

Wm
ℓu
Wm

ℓv

∥ℓu − ℓv∥α

×
∑

p(s,1),...,p(s,ñs):

s∈
[
M(k)

2
+1

]
M(k)

2
+1∏

s=1

ñs∏
t=1

Wm
ℓs
Wm

p(s,t)

∥ℓs − p(s,t)∥α

 . (4.27)
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The vertex set Vπ̃ of the graph Gπ̃ yields M(k)/2 + 1 distinct indices, due to
the tree structure. Using Fact 4.4.2, we see that the factor of∑

ℓ1,...,ℓM(k)
2 +1

∏
(u,v)∈Eπ̃

1

∥ℓu − ℓv∥α

is of the order of ON

(
c
M(k)

2
N

)
since the weights are uniformly bounded in the

range [1,m]. For the second summand in (4.27), the index ℓs already appears
in the graph Gπ̃, and for any s, we have ñs many distinct indices from the
sequence {ps,t}, and summing over all s yields N(k)/2 many distinct indices

due to (4.25). The second summation is therefore of the order of ON

(
c
N(k)

2
N

)
.

We claim that as N → ∞, (4.27) converges to the limit

E

 ∏
(u,v)∈Eπ̃

Wm
ℓuW

m
ℓv

M(k)
2

+1∏
s=1

ñs∏
t=1

Wm
ℓs Wp(s,t)

 .
First, note that the weights are bounded, and so, (4.27) is bounded above and
below. Next, we note that with the scaling of NcM(k)/2

N , we have

lim
N→∞

1

Nc
M(k)/2
N

∑
ℓ1 ̸=... ̸=ℓM(k)

2 +1

E

 ∏
(u,v)∈Eπ̃

Wm
ℓu
Wm

ℓv

∥ℓu − ℓv∥α

 = E

 ∏
(u,v)∈Eπ̃

Wm
ℓuW

m
ℓv

 ,
which is the moments of the adjacency matrix of the model as in Cipriani et al.
[2025]. Thus, combinatorially, the first summand in (4.27) corresponds with
the graph Gπ̃, as defined in Definition 4.5. Now, consider a modification of
the graph as follows: For each vertex s in Gπ̃, attach ñs many independent
leaves, and call the new graph G̃π̃. We refer to Chatterjee and Hazra [2022] for
a detailed description, and Figure 4.3 for a visual representation.

The second summand over the sequence {ps,t} for each s corresponds to
the added leaves, since the only common index with the original graph is the
index ℓs for each s. Keeping the index ℓs fixed (since it is summed out in the
first summand involving the indices ℓ1 ̸= . . . ̸= ℓM(k)

2
+1

) , we see that with the
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s1Gπ̃

(s1, 1)

(s1, 2)

(s1, 3)

s2

(s2, 1)(s2, 2)

(s2, 3) (s2, 4)

Figure 4.3: Modifying the graph Gπ̃ to construct G̃π̃. Here, we pick two vertices s1, s2 ∈
Vπ̃, with ñs1 = 3, ñs2 = 4.

scaling cN(k)/2
N we have

lim
N→∞

1

c
N(k)/2
N

E

 ∑
p(s,1),...,p(s,ñs )

M(k)
2

+1∏
s=1

ñs∏
t=1

Wm
ℓs
Wm

p(s,t)

∥ℓs − p(s,t)∥α

∣∣∣∣∣∣∣Wm
ℓs


= E


M(k)

2
+1∏

s=1

ñs∏
t=1

Wm
ℓs W

m
p(s,t)

∣∣∣∣∣∣∣Wm
ℓs

 .
Due to the compact support of the weights, it is now easy to conclude that

lim
N→∞

(4.27) = E

 ∏
(u,v)∈Eπ̃

Wm
ℓuW

m
ℓv

M(k)
2

+1∏
s=1

ñs∏
t=1

Wm
ℓs Wp(s,t)

 =: t(G̃π̃,W
m)

(4.28)

where Wm = (Wm
1 ,W

m
2 , . . .) and G̃π̃ is the modified graph as described above

and illustrated in Figure 4.3.
We can therefore conclude that for all even k,

lim
N→∞

1

N
E
[
tr(∆k

N,g,c)
]
=

∑
m1,...,mk,
n1,...,nk

∑
π∈NC2(M(k))

E(π̃)t(G̃π̃,W
m) . (4.29)

Now, consider the case when k is odd. Due to (4.18), we have that M(k)

must be odd. Thus, π cannot be a pair partition, and in particular, π ̸∈
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NC2(M(k)). Consider the term Φ(π̃) in (4.19), and notice that by Wick’s
formula, this term is identically 0 if M(k) is odd. Since the other expecta-
tions in (4.15) are of order ON (1), we conclude that the odd moments are 0 in
expectation.

Step 2. We now wish to show the concentration of the moments. Define

P (i)

:= E

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1

M(k)∏
j=1

√
rijij+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2 k∏

j=1

Z
nj

i1+M(j)

 ,
and

P (i, i′)

:= E

M(k)∏
j=1

Gij∧ij+1,ij∨ij+1

M(k)∏
j=1

√
rijij+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri1+M(j)t

)nj
2 k∏

j=1

Z
nj

i1+M(j)

×
M(k)∏
j=1

Gi′j∧i′j+1,i
′
j∨i′j+1

M(k)∏
j=1

√
ri′ji′j+1√
cN

k∏
j=1

(
1

cN

N∑
t=1

ri′
1+M(j)

t

)nj
2 k∏

j=1

Z
nj

i′
1+M(j)

 .
Then,

Var

(∫
R
xk ESD(∆N,g,c)(dx)

)
=

1

N2

∑
m1,...,mk,
n1,...,nk

∑
i,i′:[M(k)]→[N ]

[
P (i, i′)− P (i)P (i′)

]
, (4.30)

and we would like to show (4.30) → 0. If i and i′ have no common indices, then
P (i, i′) = P (i)P (i′) by independence. If there is exactly one common index,
say i1 = i′1, then by independence of Gaussian terms, the factors E[Gi1,i2 ] and
E[Gi1,i′2

] would pull out, causing (4.30) to be identically 0. Thus, we have at
least one matching of the form (i1, i2) = (i′1, i

′
2).

Let us begin by taking k to be even. Consider exactly one matching, which
we take to be (i1, i2) = (i′1, i

′
2) without loss of generality. Let π, π′ be partitions

of {1, 2, . . . ,M(k)}, {1′, 2′, . . . ,M(k)′} respectively. Let
∑(1) denote the sum

over index sets i, i′ with exactly one matching. Then, we have by an extension
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of the previous argument

1

N2

∑(1)

i,i′:[M(k)]→[N ]

P (i, i′)

≤ 1

N2c
M(k)
N

∑
π,π′

Φ(π̃)E(π̃)Φ(π̃′)E(π̃′)
∑
i,i′

E

ri1i2 M(k)∏
j=2

√
rijij+1

M(k)∏
j=2

√
ri′ji′j+1

 .
(4.31)

Expanding the expression for rij and using the fact that Wm
i ≤ m gives us that

(4.31) is bounded above by

m2M(k)

N2c
M(k)
N

∑
π

Φ(π̃)E(π̃)Φ(π̃′)E(π̃′)
∑
i,i′

1

∥i1 − i2∥α

M(k)∏
j=1

1

∥ij − ij+1∥α/2
1

∥i′j − i′j+1∥α/2
.

(4.32)

We are now precisely in the setting of Cipriani et al. [2025], and in particular,
following the ideas from Cipriani et al. [2025, p24] and using Fact 4.4.2, we
obtain that the right-hand side of (4.32) is of order ON (c−1N ). For t matchings
in i, i′, the order is O(c−tN ), giving us that (4.26) is of order O(c−1N ) when k is
even.

The argument for the case where k is odd is similar. Since the optimal
order is achieved when we take i \ {i1, i2} ∈ Catπ and i′ \ {i′1, i′2} ∈ Catπ′ , with
π, π′ ∈ NC2(M(k)), one cannot construct these partitions with k being odd with
the restriction from (4.18) imposing that M(k) must be odd. Consequently, we
have convergence in P–probability of the moments of ESD(∆N,g,c). Thus, we
conclude that

lim
N→∞

tr(∆k
N,g,c) =Mk in P–probability ,

where

Mk =

{∑
M(k)

∑
π∈NC2(M(k)) t(G̃π̃,W

m)E(π̃) , k even,
0 , k odd ,

(4.33)

where M(k) is the multiset of all numbers (m1, . . . ,mk, n1, . . . , nk) that appear
in the expansion (a+ b)k for two non-commutative variables a and b.

Step 3. We are now left to show that these moments uniquely determine a
limiting measure. This follows from Chatterjee and Hazra [2022, Section 5.2.2],
but we show the bounds for the sake of completeness.
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First, from Chatterjee and Hazra [2022, Section 5.2.2], we have that E(π̃) ≤
2kk!. Next, observe from (4.28) that |t(G̃π̃,W

m)| ≤ (m2)
k
2 = m2, since Wi ≤ m

for all i and G̃π̃ is a graph on k
2 +1 vertices with k

2 edges. Lastly, |NC2(M(k)| ≤
|NC2(k)| = Ck, where Ck is the kth Catalan number, and moreover, |M(k)| ≤
2k. Combining these, we have

βk := |Mk| ≤ 2k.Ck.m
k.2kk! = (4m)kCkk! .

Using Sterling’s approximation, we have

1

k
β

1
k
k ≤ 4m

(k + 1)
1
k

.
4e−(1+

1
k )

π
1
k

,

where π here is now the usual constant, and subsequently, we have

lim sup
k→∞

1

2k
β

1
2k
2k <∞ . (4.34)

Equation (4.34) is a well-known criteria to show that the moments uniquely
determine the limiting measure (see Lin [2017, Theorem 1]). This completes
the argument.

§4.5 Identification of the limit

§4.5.1 Removing geometry
In Section 4.4, we show the existence of a unique limiting measure ντ such that

lim
N→∞

ESD(∆◦N ) = ντ in P–probability .

We have also shown that ντ is the limiting measure for the ESD of the Laplacian
matrix ∆̂N,g. In particular, through the proof of Proposition 4.4.1, we show
that the limit ντ,m is independent of the choice of α, and consequently, ντ is
α–independent. We then use the idea of substituting α = 0 from Cipriani et al.
[2025, Section 6] in the matrix ∆̂N,g, to obtain the Laplacian matrix ∆◦N,g,
which corresponds to the adjacency matrix A◦N,g with entries given by

A◦N,g(i, j) =


√

WiWj√
N

Gi∧j,i∨j , i ̸= j

0, i = j.

Then, limN→∞ ESD(∆◦N,g) = ντ in P–probability. Recall that for all 1 ≤ i ≤ N ,
Wm

i :=Wi1Wi≤m for any m ≥ 1. We can now apply Lemmas 4.3.5 and 4.3.6 to
contruct a matrix ∆◦N,g,c = A◦N,g,m + Y ◦N such that

lim sup
m→∞

lim
N→∞

P
(
dL(ESD(∆◦N,g),ESD(∆◦N,g,c)) > δ

)
= 0 ,

190



§4.5. Identification of the limit

C
hapter

Four

where

A◦N,g,m(i, j) =


√

Wm
i Wm

j√
N

Gi∧j,i∨j , i ̸= j

0, i = j,

and Y ◦N is a diagonal matrix with entries

Y ◦N (i, i) = Zi

√∑
k ̸=iW

m
i W

m
k

N
.

By Proposition 4.4.1, we have that limN→∞ ESD(∆◦N,g,c) = ντ,m in P–probability.
Thus, we begin by identifying ντ,m. To that end, consider the matrix ∆̂◦N,g,c :=

AN,g,c + Ŷ ◦N , with AN,g,c as before, and Ŷ ◦N a diagonal matrix with entries

Ŷ ◦N (i, i) = Zi

√
Wm

1

√
E[Wm

1 ] .

We now have the following lemma.
Lemma 4.5.1.
Let ∆◦N,g,c and ∆̂◦N,g,c be as defined above. Then,

lim
N→∞

P
(
dL(ESD(∆◦N,g,c),ESD(∆̂◦N,g,c)) > δ

)
= 0 .

Proof. We apply Proposition 4.6.1 to obtain

E
[
dL(ESD(∆◦N,g,c),ESD(∆̂◦N,g,c))

3
]

≤ 1

N
E

N∑
i=1

(
Y ◦N (i, i)− Ŷ ◦N (i, i)

)2

≤ 1

N
E[Z2

1 ]E[Wm
1 ]

N∑
i=1

E



√∑

k ̸=iW
m
k

√
N

−
√
E[Wm

1 ]

2


≤ m

N

N∑
i=1

E

[∣∣∣∣∣
∑N

k=1W
m
k

N
−E[Wm

1 ]

∣∣∣∣∣
]
. (4.35)

We have that (Wm
i )i∈VN

is a bounded sequence of i.i.d. random variables, and
in particular have finite variance. By the strong law of large numbers, we have
that

lim
N→∞

∑N
k=1W

m
k

N
= E[Wm

1 ] P–almost surely .

However, by the boundedness of the weights, we have that N−1
∑N

i=1W
m
i

is uniformly bounded by m, which is integrable (with respect to E). By the
dominated convergence theorem, we have convergence in L1, and consequently,
(4.35) goes to 0 as N → ∞. We conclude with Markov’s inequality.
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We can now conclude that ντ,m is the limiting measure of the ESD of the
matrix ∆̂◦N,g,c.

§4.5.2 Identification of the truncated measure
We have that

lim
N→∞

ESD(∆̂◦N,g,c) = ντ,m in P–probability .

Notice that ∆̂◦N,g,c can be written as

∆̂◦N,g,c = A◦N,g,m + Ŷ ◦N

= W1/2
m

(
1√
N

G

)
W1/2

m +
√
E[Wm

1 ]W1/4
m ZW1/4

m ,

where Wm = Diag(Wm
1 , . . . ,W

m
N ), G is a standard Wigner matrix with i. i. d

N(0, 1) entries above the diagonal and 0 on the diagonal, and Z is a diagonal
matrix with i.i.d. N(0, 1) entries.

First, we need to show that

lim
N→∞

ESD

(
W1/2

m

(
1√
N

G

)
W1/2

m +
√

E[Wm
1 ]W1/4

m

(
1√
N

Z

)
W1/4

m

)
= L

(
T
1/2
Wm

TsT
1/2
Wm

+
√
E[Wm]T

1/4
Wm

TgT
1/4
Wm

)
weakly in probability .

This easily follows by retracing the arguments in the proof of [Chakrabarty
et al., 2021b, Theorem 1.3] and using the Lemma 4.6.6 presented in the ap-
pendix. This shows that

ντ,m = L
(
T
1/2
Wm

TsT
1/2
Wm

+
√

E[Wm]T
1/4
Wm

TgT
1/4
Wm

)
.

§4.5.3 Identification of the limiting measure
We now conclude with the proof of Theorem 4.2.5.

Proof of Theorem 4.2.5. Consider the measure µWm and µW which are laws of
Wm =W1W≤m and W respectively. Also consider µg and µs to be the laws of
the standard Gaussian and semicircle law, respectively. We have for all t ∈ R,

|FµWm (t)− FµW (t)| ≤ ε (4.36)

for m large enough. Hence from [Bercovici and Voiculescu, 1993, Theorem 3.9]
there exists aW ∗ probability space (A,φ) and self-adjoint operators TWm , TW , Tg
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and Ts affiliated to (A,φ) and projection p ∈ A such that pTWmp = pTW p and
φ(p) ≥ 1−ε. Also the spectral laws of TWm , TW , Tg and Ts are given respectively
by µWm , µW , µg and µs respectively.

We can consider the commutative subalgebra generated by {TWm , Tg}. Then
using [Bercovici and Voiculescu, 1993, Proposition 4.1], it is possible to generate
random variable from {TWm , Tg} that is free from Ts. Analogously, one can do
the same for {TW , Tg}.

Consider a self-adjoint polynomial Qm of {TWm , Tg, Ts} and let the law
of this polynomial be given by νm. Similarly, let Q be the same self-adjoint
polynomial of {TW , Tg, Ts} and ν be its law. Then using pTWmp = pTW p and
(4.36) and [Bercovici and Voiculescu, 1993, Corollary 4.5 and Theorem 3.9] we
have that d∞(νm, ν) ≤ ε for all m large enough. Here d∞ is the Kolmogorov
distance. Picking Q(x, y, z) = x1/2yx1/2 + cx1/4zx1/4 for some constant c =√
E[W ], completes the proof.

§4.6 Appendix

In this section we collect some technical lemmas that are used in the proofs of
our main results.

§4.6.1 Technical lemmas
For bounding the dL distance between the ESDs of two matrices, we will need
the following inequality, due to Hoffman and Wielandt (see Bai and Silverstein
[2010, Corollary A.41]).

Proposition 4.6.1 (Hoffman-Wielandt inequality).
Let A and B be two N ×N normal matrices and let ESD(A) and ESD(B) be
their ESDs, respectively. Then,

dL (ESD(A),ESD(B))3 ≤ 1

N
Tr [(A−B)(A−B)∗] . (4.37)

Here A∗ denotes the conjugate transpose of A. Moreover, if A and B are two
Hermitian matrices of size N ×N , then

N∑
i=1

(λi(A)− λi(B))2 ≤ Tr[(A−B)2]. (4.38)

The next two straightforward lemmas control the tail of the product of two
Pareto random variables and the expectation of a truncated Pareto.
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Lemma 4.6.2.
Let X and Y be two independent Pareto r.v.’s with parameters β1 and β2
respectively, with β1 ≤ β2. There exist constants c1 = c1(β1, β2) > 0 and
c2 = c2(β1) > 0 such that

P(XY > t) =

{
c1t
−β1 if β1 < β2

c2t
−β1 log t if β1 = β2.

Lemma 4.6.3.
Let X be a Pareto random variable with law P and parameter β > 1. For any
m > 0 it holds

E [X1X≥m] =
β

(β − 1)
m1−β.

We state one final auxiliary lemma related to the approximation of sums by
integrals.

Lemma 4.6.4.
Let β ∈ (0, 1]. Then there exists a constant c1 = c1(β) > 0 such that

1

N

∑
i ̸=j∈VN

1

∥i− j∥β
∼ c1max{N1−β, logN}. (4.39)

If instead β > 1, there exists a constant c2 > 0 such that

1

N

∑
i ̸=j∈VN

1

∥i− j∥β
∼ c2 .

We end this section by quoting, for the reader’s convenience, the following
lemma from Chakrabarty et al. [2016, Fact 4.3].

Lemma 4.6.5.
Let (Σ, d) be a complete metric space, and let (Ω,A, P ) be a probability space.
Suppose that

(
Xmn : (m,n) ∈ {1, 2, . . . ,∞}2\{∞,∞}

)
is a family of random

elements in Σ, that is, measurable maps from Ω to Σ, the latter being equipped
with the Borel σ-field induced by d. Assume that

(1) for all fixed 1 ≤ m <∞

lim
n→∞

d (Xmn, Xm∞) = 0 in P -probability.

(2) For all ε > 0,

lim
m→∞

lim sup
n→∞

P (d (Xmn, X∞n) > ε) = 0.
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Then, there exists a random element X∞∞ of Σ such that

lim
m→∞

d (Xm∞, X∞∞) = 0 in P -probability (4.40)

and
lim
n→∞

d (X∞n, X∞∞) = 0 in P -probability.

Furthermore, if Xm∞ is deterministic for all m, then so is X∞∞, and (4.40)
simplifies to

lim
m→∞

d (Xm∞, X∞∞) = 0. (4.41)

Lemma 4.6.6 (Fact A.4 Chakrabarty et al. [2021b]).
Suppose that WN is an N × N scaled standard Gaussian Wigner matrix, i.e.,
a symmetric matrix whose upper triangular entries are i.i.d. normal with mean
zero and variance 1/N . Let D1

N and D2
N be (possibly random) N×N symmetric

matrices such that there exists a deterministic C satisfying

sup
N≥1,i=1,2

∥∥Di
N

∥∥ ≤ C <∞

where ∥ · ∥ denotes the usual matrix norm (which is same as the largest
singular value for a symmetric matrix). Furthermore, assume that there is a
W ∗-probability space (A, φ) in which there are self-adjoint elements d1 and d2
such that, for any polynomial p in two variables, it

lim
N→∞

1

N
Tr
(
p
(
D1

N , D
2
N

))
= φ (p (d1, d2)) a.s.

Finally, suppose that
(
D1

N , D
2
N

)
is independent of WN . Then there exists

a self-adjoint element s in A (possibly after expansion) that has the standard
semicircle distribution and is freely independent of (d1, d2), and is such that

lim
N→∞

1

N
Tr
(
p
(
WN , D

1
N , D

2
N

))
= φ (p (s, d1, d2)) a.s.

for any polynomial p in three variables.

Lemma 4.6.7 (Wick’s formula).
Let (X1, X2, . . . , Xn) be a real Gaussian vector, then, and P2(k) the set of pair
partitions of [k]. Then, for any 1 ≤ k ≤ n,

E[Xi1 · · ·Xik ] =
∑

π∈P2(k)

∏
(r,s)∈π

E[XirXis ] . (4.42)

We borrow the following definition from Avena et al. [2023, Definition 2.3].
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Definition 4.6.8 (Graph associated to a partition).
For a fixed k ≥ 1, let γ denote the cyclic permutation (1, 2, . . . , k). For a
partition π, we define Gγπ = (Vγπ, Eγπ) as a rooted, labelled directed graph
associated with any partition π of [k], constructed as follows.

• Initially consider the vertex set Vγπ = [k] and perform a closed walk on
[k] as 1 → 2 → 3 → · · · → k → 1 and with each step of the walk, add an
edge.

• Evaluate γπ, which will be of the form γπ = {V1, V2, . . . , Vm} for some
m ≥ 1 where {Vi}1≤i≤m are disjoint blocks. Then, collapse vertices in
Vγπ to a single vertex if they belong to the same block in γπ, and collapse
the corresponding edges. Thus, Vγπ = {V1, . . . , Vm}.

• Finally root and label the graph as follows.

– Root: we always assume that the first element of the closed walk (in
this case ‘1’) is in V1, and we fix the block V1 as the root.

– Label: each vertex Vi gets labelled with the elements belonging to the
corresponding block in γπ.
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CHAPTER 5
Discussion and future directions

In this short chapter, we show some simulations of spectral distributions of
random graph models discussed in the previous chapters. We focus on the
cases not covered by our main results and compare them with the previous
simulations. This leaves us with many open directions for the future.
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§5.1 Introduction

This thesis establishes new results in the study of spectral analysis of inhomogen-
eous random graph models, providing further insight into the area and opening
the door to multiple directions for further research. We discuss some of the
open directions in this chapter.

Chapter 2 extends results of the homogeneous Erdős-Rényi random graph to
the inhomogeneous setting, providing a characterisation of the limiting spectral
measure of the adjacency matrix. While the limit is not explicitly known, we
provide a combinatorial expression for the moments and an analytic description
of the Stieltjes transform, which complements the random graph description
that one can obtain from Bordenave and Lelarge [2010], since the model has
a local weak limit that is a multi-type branching process (see van der Hofstad
[2024]). However, the results are restricted to the setting where vertex weights
(wi) are deterministic, and a natural extension would be to consider random
weights with f an almost surely continuous connectivity function. As seen in
Remark 2.3.13, our proof techniques require that W (which is the random vari-
able such that woN

d→W ) is compactly supported. What also remains unknown
is the rate of convergence of the measure µλ to µf , even in the homogeneous
setting where µf = µsc. These questions naturally arise due to the works of Bai
and Silverstein [2010], Augeri [2025], Jung and Lee [2018], Tran et al. [2013],
however, we believe that the fixed-point equation as in Theorem 2.3.9 needs
further analysis to describe the rate of convergence of Stieltjes transforms. Fur-
thermore, the extension of results from Bordenave et al. [2011], Coste and Salez
[2021], Salez [2020] remains an open question in the inhomogeneous setting.

Spectral properties of kernel-based random graphs (as introduced in Jor-
ritsma et al. [2023]), and in particular of the scale-free percolation model, are a
relatively untouched topic. Chapters 3 and 4 now provide a foundation for this
topic. We consider random Pareto weights on the vertices, with tail exponent
τ − 1, τ > 1. The spectral properties of the adjacency matrix are described in
Chapter 3 for kernel-based random graphs with the kernel structure

κ(x, y) = (x ∨ y)(x ∧ y)σ

where σ < τ − 2. One extension would be to consider a far more general
kernel. The above multiplicative structure simplifies calculations significantly.
We also restrict ourselves to τ > 2, where the weights have finite mean. This
is crucial in the truncation step, since for a truncation at m > 1, the error
rate is m2−τ . We believe that this is a technical assumption. Analogously,
we do not consider σ ≥ τ − 1. Due to the rank one nature of the kernel when
σ = 1, we can characterise the limiting measure using tools from free probability.
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Consequently, we observe an interesting tail asymptotic, where the measure has
a power-law tail with exponent 2(τ − 1). When σ ̸= 1, this becomes more
challenging, and we believe that the tail may not have a power-law decay but
rather a more complicated behaviour. A more interesting direction is the case
when α > 1, with τ > 2. This yields a sparse random graph, for which the
existence of a limiting measure is guaranteed by Bordenave and Lelarge [2010].
However, since the local weak limit of the random graph is not locally tree-like,
there is no description of the measure. This will require a novel approach, and
the spectrum of the centred and non-centred adjacency matrices will differ.

The Laplacian matrix of the scale-free percolation model is analysed in
Chapter 4. The existence of the limiting measure is achieved by computing
the moments, which is far more challenging than computing the moments of
the adjacency matrix. We believe that this will be the primary challenge when
attempting to extend the results to the kernel as described in Chapter 3. We
also restrict ourselves to τ > 3, and an extension to τ > 2 will require better
bounds in the Gaussianisation step, as well as ensuring that the decoupling of
the diagonal holds. Decoupling is an essential step for the moment method,
without which the approach becomes highly complicated.

Outline of the chapter
The first part of the chapter is devoted to the homogeneous Erdős-Rényi random
graph ERN (p) with p = λ/N . We simulate the spectrum of the adjacency matrix
for increasing λ to illustrate that, for a λ such that 1 < λ < logN , µλ starts
taking the shape of µsc (with possible atoms). We then simulate the spectrum
of the Laplacian matrix, moving from the sparse to the dense case, and show
why centring becomes essential as the graph becomes more dense.

The second part of the chapter showcases simulations for the scale-free per-
colation model. We simulate the spectra of the adjacency matrix for a combin-
ation of α and τ , to analyse the cases where α(τ − 1) > 1 and α(τ − 1) < 1. We
also simulate the spectrum of the long-range percolation model with increasing
α, to illustrate the sparse setting. We compare the resolvent matrices of the
long-range percolation model, GOE model, and ERN (λ/N) with λ > 1. We
conclude with the centred Laplacian matrix of the scale-free percolation model
for varying τ , namely the infinite mean regime, the infinite variance regime, and
the finite variance regime.

§5.2 Erdős-Rényi Random graph

Consider the homogeneous Erdős-Rényi random graph ERN (p) on N vertices,
with p = λ/N for some λ ∈ (0,∞). If AGN

is the adjacency matrix of this
graph, then define AN = λ−1/2AGN

as the scaled adjacency matrix. This
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falls under the setting of Chapter 2 as a special case. In particular, Theorem
2.3.7 (and also results from Jung and Lee [2018], Bordenave and Lelarge [2010],
Tran et al. [2013]) tells us that there exists a unique limiting measure µλ such
that limN→∞ ESD(AN ) = µλ in probability, and µλ =⇒ µsc as λ → ∞.
Further, from Bordenave and Lelarge [2010], if ∆N is the scaled Laplacian
matrix of this graph, then there exists a unique limiting measure νλ such that
limN→∞ ESD(∆N ) = νλ in probability. It follows from Khorunzhy et al. [2004]
that νλ =⇒ µsc ⊞ µg, where µg is the Gaussian law.

§5.2.1 Adjacency matrix
Consider the scaled adjacency matrix AN of this graph. In Chapter 2, we see
that in the limit N → ∞, the ESD of AN and that of the centred matrix
AN − E[AN ] are close in probability, and so we can study the non-centred
matrix directly.

(a) λ = 0.9. (b) λ = 1.9.

(c) λ = 3.5. (d) λ = 9.

Figure 5.1: Eigenvalue distributions of the adjacency of ERN (λ/N) with N = 2000.

In Figure 5.1, we see the eigenvalue distributions of this matrix with N =

2000 for varying values of λ. For λ < 1, we observe “spikes”, indicating that
the measure has many atoms (in line with Salez [2020]). For λ > 1, we observe
a continuous part, indicating the presence of a density (in line with Arras and
Bordenave [2023]). When λ > logN (λ = 9), we observe a distribution that
resembles the semicircle law, with an outlier that is the largest eigenvalue, which
is of the order

√
λ (see Erdős et al. [2013]).
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The interesting case is when λ is “large”, but smaller than logN . We observe
at λ = 3.5 for N = 2000 that there is a spike at the eigenvalue 0, indicating the
presence of an atom. However, the remaining distribution begins to take the
shape of a semicircle distribution. This indicates that the rate of convergence
in λ is relatively fast. While we were not able to prove this, we believe that the
metric defined by Stieltjes transforms as in Augeri [2025] can aid in determining
this rate of convergence. Through moments, we heuristically see a possible
candidate for the convergence rate. The 2k−th moment of µλ is∫

R
x2kµλ(dx) = Ck + Err(λ−1) =

∫
R
x2kµsc(dx) + Err(λ−1) ,

where Err(λ−1) is an error term with leading order λ−1 and Ck is the k−th
Catalan number. We leave the optimal rate of convergence as an open problem.

(a) Degrees di ∼ Unif[1, 10]. (b) Degrees di ∼ Pareto(τ − 1), with τ = 3.5.

Figure 5.2: Spectral distributions of adjacency matrices of IER models, with edge prob-
ability pij =

didj

m1+didj
∧ 1, where (di)

N
i=1 is a given degree sequence and m1 =

∑N
i=1 di.

N = 3000.

§5.2.2 Laplacian matrix
From Bordenave and Lelarge [2010], we have the existence of νλ for the ESD of
the graph Laplacian when the graph is sparse. We see in Figure 5.3 that the
spectra of the centred and non-centred Laplacian differ significantly, in particu-
lar when the sparsity parameter increases. For dense graphs with a fixed p, the
spectrum of the Laplacian is a Dirac mass at p (see Bryc et al. [2006]), which is
what we observe in Figure 5.3c. It is only meaningful to study the spectrum of
the centred Laplacian in the dense setting. Understanding the ESD and identi-
fying the limiting measure in the general inhomogeneous setting is still an open
problem. Also, it is unclear whether for any λ > 0, the limiting measure always
has an absolutely continuous spectrum. It would be interesting to derive the
behaviour of the atoms for λ < 1.

203



5. Discussion and future directions

C
ha

pt
er

F
iv

e

(a) p = λ/N, λ = 1.5. (b) p = λ/N, λ = 9.

(c) p = 0.5, with the non-centred Laplacian
scaled by N instead of

√
Np(1− p).

Figure 5.3: Spectral distributions of the Laplacian matrices of ERRG, with N = 3000.

§5.3 Scale-Free percolation

Let us consider the model from Chapter 4, which is a special case of the model
from Chapter 3. We take the discrete torus on N vertices and an i.i.d. se-
quence of Pareto weights (Wi)

N
i=1. Conditionally on the weights, we add edges

independently with probability

pij =
WiWj

∥i− j∥α
∧ 1 ,

where α > 0 is a parameter of choice and ∥ ·∥ is the torus distance. In the dense
case, we scale the adjacency and Laplacian matrices with the scaling factor
cN ∼ N1−α for α < 1. In the sparse case, when α > 1, we scale by a constant
scaling ζ(α), which is the Riemann-Zeta function evaluated at α.

§5.3.1 Adjacency matrix
The degrees of vertices in the model are heavy-tailed with parameter γ :=

α(τ − 1) (see Deijfen et al. [2013], Cipriani and Salvi [2024]). We simulate the
eigenvalue distribution of the scaled adjacency matrix AN for the regimes γ < 1

and γ > 1. For γ > 1, we have two sub-regimes, namely when α < 1 and α > 1,
and similarly for γ < 1, giving us a total of 4 regimes, as in Figure 5.4. While we
have theoretical results for Figure 5.4a, wherein we also see that the centred and
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non-centred adjacency matrices are spectrally close, we believe extension to the
setting simulated in Figure 5.4b should be possible with some modifications to
deal with infinite-mean weights, though the spectrum may differ in the centred
and non-centred cases. The eigenvalue distributions in Figures 5.4a and 5.4c
look similar, where the parameter γ > 1. Similarly, the eigenvalue distribution
in Figures 5.4b and 5.4d have a similar shape, where γ < 1. This indicates that
γ possibly plays a role in the limiting spectrum, though we do not see this in
Chapters 3 and 4. We believe that the limiting measures exist in all regimes
after appropriate scaling and may be random in certain cases.

(a) α = 0.7, τ = 3.5. (b) α = 0.7, τ = 2.2.

(c) α = 1.2, τ = 2.5. (d) α = 1.2, τ = 1.5.

Figure 5.4: Spectral distributions of the centred adjacency matrices of scale-free percol-
ation, with N = 5000.

(a) Centred adjacency. (b) Non-centred adjacency.

Figure 5.5: Spectral distributions of the centred and non-centred adjacency matrices of
scale-free percolation, with N = 5000, α = 0.7, τ = 3.5.
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For the long-range percolation model (that is, for Wi ≡ 1) in Figure 5.6, we
observe the semicircle law when α < 1. At α = 1, the shape is still semicircle-
like, though we observe some concentration towards the centre. For α ∈ (1, 2),
we still observe the presence of a density, with possible atoms at 0, and α = 2,
this density begins to break down. For α > 2, where the model behaves similarly
to bond percolation, the spectrum starts to break down. Such transitions in
forms of percolative behaviour in different regimes have already been observed
in long-range percolation theory (Berger [2002]). It would be interesting to see
this behaviour in the spectrum also.

(a) α = 0.5. (b) α = 1.

(c) α = 1.5. (d) α = 2.

Figure 5.6: Spectral distributions of the centred adjacency matrices of long-range per-
colation, with N = 3000.

(e) α = 2.5. (f) α = 3.5.

Figure 5.6: (continued)
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§5.3.2 Resolvent Matrix
Recall that for a random matrix AN , one can define the resolvent as RAN

(z) =

(AN − z I)−1. For some models, there is a concentration on the diagonal of the
resolvent matrix, which makes computation easier. For example, let AN be the
GOE, with AN (i, j) = AN (j, i)

d
= N−1/2N(0, 1). With the following heuristic,

we can see how concentration on the diagonal of the resolvent occurs:
With Schur’s complement formula from Bordenave [2019], we have

rii = − 1

z +
∑

j,k ̸=i r̃jkAN (i, j)AN (i, k)
,

where r̃ij := R
A

(i)
N

(z) = (A
(i)
N − z I)−1, and A

(i)
N is AN with the i−th row

and column deleted. We briefly recall the heuristics from Chapter 2.1. Taking
expectation, we get

E[rii] = −E

[
1

z +
∑

j,k ̸=i r̃jkAN (i, j)AN (i, k)

]
≈ − 1

z + E
[∑

j,k ̸=i r̃jkAN (i, j)AN (i, k)
]

≈ − 1

z + E
[∑

j ̸=i rjjAN (i, j)2
] = − 1

z + tr(RAN
(z))

,

and so for N large, the diagonal terms are in some sense “replaced” by the
Stieltjes transform of µsc, with the off-diagonal terms vanishing as N → ∞.

This concentration may not happen in other models. Notably, in the sparse
case of the long-range percolation model, we see that there seems to be signific-
ant mass at the off-diagonal terms.

This suggests that understanding the local convergence for these models
is a significant challenge, as most methods require a critical understanding of
the resolvent matrix, which roughly concentrates around the diagonal for the
classical Gaussian models (Anderson et al. [2010], Bordenave [2019]).

§5.3.3 Laplacian matrix
For the scaled Laplacian matrix of the scale-free percolation model, we have
theoretical results for the existence of a limiting distribution when the weights
have finite variance, as in Figure 5.8a. We observe that as τ decreases, that is,
the weights become more heavy-tailed, the mass at 0 for the measure increases
as well, and when we have infinite mean weights, as in Figure 5.8c, there is an
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(a) GOE.

(b) LRP, with α = 0.5. (c) ERN (2.5/N).

Figure 5.7: Logarithmic resolvent heat maps for centred adjacencies of LRP, GOE,
and ERRG models, with N = 1000. We take z = 1 + 2ι̇, evaluate the resolvent, and
compute the absolute values of the entries. We add N−2 to each entry and compute
the logarithm of the value and plot a heat map.

indication of an atom present at 0. We expect the results to be true under the
assumption of finite mean for the weights. We remark that the Gaussianisation
and decoupling steps may fail when we have infinite variance for the weights,
and so, a new approach has to be taken to tackle the problem. We leave the
case of finite mean and infinite variance open.

In Figure 5.9, we simulate the eigenvalue distributions of the centred Lapla-
cian matrix of the LRP and SFP models, when α > 1. We observe that for
the LRP, the spectrum breaks down when α > 2, as in Figure 5.9b, whereas
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(d) LRP, with α = 1.5.

Figure 5.7: (continued)

we observe a density-like shape in Figure 5.9a. For the SFP models, we keep
α = 1.5 fixed, and observe that the distribution skews less when the weights
become more heavy-tailed and the graph becomes denser, as in Figure 5.9d.
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(a) τ = 3.1. (b) τ = 2.1.

(c) τ = 1.1.

Figure 5.8: Spectral distributions of the centred Laplacian matrix of scale-free percola-
tion, with N = 2000, α = 0.5.

(a) LRP, α = 1.5. (b) LRP, α = 2.5.

(c) SFP, α = 1.5, τ = 3.5. (d) SFP, α = 1.5, τ = 2.5.

Figure 5.9: Spectral distributions of the centred Laplacian matrix of long-range and
scale-free percolation, with N = 2000.
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Summary

Summary

This thesis comprises five chapters, three of which contain the core mathematical
content. We study the limiting spectral distributions of random graph models
with vertex inhomogeneity. In particular, we focus on the adjacency matrix of
the inhomogeneous Erdős–Rényi random graph in the sparse regime, as well as
the adjacency and Laplacian matrices for random graph models that incorporate
spatial structure.

Random graph models provide a mathematical framework for understanding
complex networks observed in fields such as physics, biology, computer science,
and the social sciences. The classical Erdős–Rényi model, in which edges are
added independently with equal probability, serves as a foundational model
that continues to yield deep insights. Spectral graph theory plays a key role in
this context, connecting the eigenvalues and eigenvectors of the adjacency and
Laplacian matrices of graphs to structural and geometric properties of graphs.
For instance, the Perron–Frobenius theorem ensures a unique largest eigenvalue
for the adjacency matrix of a connected graph, with a corresponding posit-
ive eigenvector. More broadly, the spectrum gives information about the graph
connectivity, subgraph counts, the chromatic number, and other topological fea-
tures. Laplacian eigenvalues are central in the study of diffusion, mixing times
of random walks, and spectral clustering algorithms. Notably, the Kirchhoff
Matrix–Tree Theorem relates the determinant of the combinatorial Laplacian
to the count of the spanning trees of the graph. These connections make spec-
tral analysis a powerful tool for studying the geometry of complex networks.
Chapter 1 provides a detailed introduction to spectral graph theory, random
graphs, and random matrices.

The spectra of the adjacency and Laplacian matrices are well understood in the
dense Erdős-Rényi random graph model. In the sparse case, three main ana-
lytical techniques are used: (i) characterising the limiting spectrum via local
weak limits such as Galton–Watson trees; (ii) using combinatorial methods and
special symmetric partitions to compute the moments of the limiting spectral
measure; (iii) deriving the Stieltjes transform of the limiting measure using a
fixed-point equation in an appropriate Banach space. In Chapter 2, we extend
the Erdős–Rényi random graph model by incorporating deterministic vertex
weights to introduce inhomogeneity, where now edges are added independently
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with a probability proportional to a function of the vertex weights. We study
this model in the sparse setting, where the connectivity function is bounded.
We analyse the empirical spectral distribution of the adjacency matrix using the
moment method and the Stieltjes transform, and describe the limiting distribu-
tion through homomorphism densities, symmetric partitions, and a fixed-point
equation.

Real-world networks often exhibit spatial structure in addition to vertex in-
homogeneity. In Chapter 3, we consider a kernel-based random graph model
on a discrete torus, where the vertices are equipped with random weights that
follow a power-law distribution, and connection probabilities between two ver-
tices depend directly on a function of the two weights and that is inversely
proportional to the torus distance between the two vertices. Using the method
of moments, we study the adjacency matrix of this model and show the ex-
istence and uniqueness of a limiting spectral measure. We further analyse the
measure through its prelimit to show that it is absolutely continuous and non-
degenerate. We characterise the Stieltjes transform of this measure through a
fixed-point equation. When the kernel is rank-one, that is, it has a product
structure, we identify the limiting measure explicitly as a free multiplicative
convolution between the semicircle law and the Pareto law using tools from free
probability.

In Chapter 4, we focus on the centred Laplacian matrix of the rank-one model,
which is known as the Scale-Free percolation model. Using the method of
moments, we show the existence of a unique limiting spectral measure. We
further identify the measure in terms of the spectral distribution of some non-
commutative unbounded operators, again using techniques from free probability
theory.

In Chapter 5, we present simulations and provide a brief discussion of examples
that fall outside the restrictions assumed in the previous chapters.
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Samenvatting

Dit proefschrift bestaat uit vijf hoofdstukken, waarvan er drie de kern van de
wiskundige inhoud bevatten. We bestuderen limieten van spectrale verdelin-
gen van toevallige graafmodellen met puntinhomogeniteiten. In het bijzonder
richten we ons op de nabuur-matrix van de inhomogene Erdős–Rényi graaf in
het ijle regime, en op de nabuur- en Laplace-matrices voor modellen die een
ruimtelijke structuur bevatten.

Toevallige graafmodellen bieden een wiskundig kader voor het begrijpen van
complexe netwerken in vakgebieden zoals natuurkunde, biologie, informatica en
sociale wetenschappen. Het klassieke Erdős–Rényi-model, waarin lijnen onaf-
hankelijk met gelijke waarschijnlijkheid worden toegevoegd, dient als een fun-
damenteel model dat diepgaande inzichten blijft opleveren. Spectrale grafen-
theorie speelt een sleutelrol in deze context, door de eigenwaarden en eigenvec-
toren van de nabuur- en Laplace-matrices van graafmodellen te verbinden met
structurele en geometrische eigenschappen van graafmodellen. De stelling van
Perron-Frobenius garandeert bijvoorbeeld een unieke grootste eigenwaarde voor
de nabuur-matrix van een verbonden graaf, met een bijbehorende positieve ei-
genvector. Breder gezien geeft het spectrum informatie over de connectiviteit
van de graaf, het aantal subgrafen van een bepaald type, het chromatische getal
en andere topologische kenmerken. Laplace-eigenwaarden spelen een centrale
rol in de studie van diffusie, mengtijden van toevallige wandelingen en spec-
trale clusteringalgoritmen. Met name de matrix-boomstelling van Kirchhoff
relateert de determinant van de combinatorische Laplace-matrix aan het aantal
opspannende bomen van de graaf. Deze verbindingen maken spectrale analyse
een krachtig hulpmiddel voor het bestuderen van de geometrie van complexe
netwerken. Hoofdstuk 1 biedt een gedetailleerde inleiding tot spectrale grafen-
theorie, toevallige grafen en toevallige matrices.

De spectra van de nabuur- en Laplace-matrices worden goed begrepen in het
Erdős-Rényi-model in het dichte regime. In het ijle regime worden drie belang-
rijke analytische technieken gebruikt: (i) karakterisering van het limietspectrum
via lokale zwakke limieten zoals Galton-Watson-bomen; (ii) het gebruik van
combinatorische methoden en speciale symmetrische partities om de momenten
van de limietspectraalmaat te berekenen; (iii) het afleiden van de Stieltjestrans-
formatie van de limietmaat met behulp van een vaste-puntvergelijking in een
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geschikte Banach-ruimte. In hoofdstuk 2 breiden we het Erdős-Rényi-model
uit door deterministische puntgewichten te integreren om inhomogeniteit te in-
troduceren, waarbij lijnen nu onafhankelijk worden toegevoegd met een waar-
schijnlijkheid evenredig met een functie van de puntgewichten. We bestuderen
dit model in het ijle regime, waar de connectiviteitsfunctie begrensd is. We ana-
lyseren de empirische spectrale verdeling van de nabuur-matrix met behulp van
de momentenmethode en de Stieltjestransformatie, en beschrijven de limietver-
deling met behulp van homomorfismedichtheden, symmetrische partities en een
vaste-puntvergelijking.

Netwerken vertonen vaak een ruimtelijke structuur naast puntinhomogeniteit.
In hoofdstuk 3 beschouwen we een kernelgebaseerd toevallig graafmodel op een
discrete torus, waarbij de punten zijn voorzien van toevallige gewichten die een
machtswetverdeling volgen, en de verbindingskansen tussen twee punten afhan-
gen van een functie van de twee gewichten die omgekeerd evenredig is met de
torusafstand tussen de twee punten. Met behulp van de momentenmethode be-
studeren we de nabuur-matrix van dit model en tonen we het bestaan en de
uniciteit van een spectrale limietmaat aan. We analyseren de maat via zijn pre-
limiet om aan te tonen dat deze absoluut-continu en niet-ontaard is. We karak-
teriseren de Stieltjestransformatie van deze maat via een vaste-puntvergelijking.
Wanneer de kernel rang-1 is, dat wil zeggen, een productstructuur heeft, identi-
ficeren we de limietmaat expliciet als een vrije multiplicatieve convolutie tussen
de halvecirkelwet en de Paretowet, met behulp van hulpmiddelen uit de vrije
kansrekening.

In hoofdstuk 4 richten we ons op de gecentreerde Laplace-matrix van het rang-
1-model, ook wel bekend als het schaalvrije percolatiemodel. Met behulp van de
momentenmethode tonen we het bestaan van een unieke spectrale limietmaat
aan. We identificeren de maat verder aan de hand van de spectrale verdeling
van enkele niet-commutatieve onbegrensde operatoren, wederom met behulp van
technieken uit de vrije kansrekening.

In hoofdstuk 5 presenteren we simulaties en geven we een korte bespreking
van voorbeelden die buiten de veronderstelde beperkingen van de voorgaande
hoofdstukken vallen.
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