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CHAPTER 1

Introduction

The broad goal of this thesis is to study the graph spectrum of various inhomo-
geneous random graph models, in particular, to characterise the eigenvalue dis-
tributions of random matrices associated with these random graphs. The first
three chapters cover the graph adjacency matriz, whereas the fourth chapter is
dedicated to the Laplacian matrix.
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1. Introduction

§1.1 Background

Throughout the history of mathematics, complex challenges have often driven
the evolution of new areas of research. In the 20" century, there were major
developments in several related disciplines, such as in the natural sciences (phys-
ics, chemistry, and biology), as well as in computer science, the social sciences,
and medicine. Consequently, there was increasing interest in analysing data and
describing phenomena observed through experimental methods, which in turn
pushed the boundaries of mathematics. There was a need for precise mathem-
atical frameworks to capture complex phenomena, giving rise to entirely new
branches that are now fundamental in modern mathematics.

Typically, complex systems such as social networks, biological networks, and
atomic nuclei, are difficult to analyse directly, even in the era of supercomputers
and increasingly efficient algorithms. Mathematical models provide a reason-
able approximation of such systems, and are built up over years of research.
They often begin with deceptively simple “toy models”, and are subsequently
generalised to more ‘realistic models” where the analysis can be challenging.
Naturally, this also gives rise to several interesting questions in mathematics
itself from a more abstract point of view. Moreover, while these branches of
mathematics originate from distinct problems, as is the case for random matriz
theory and random graphs, they cross paths frequently, yet continue to exist as
independent research topics in their own right.

This chapter will serve as a preface to the material that will follow in the rest
of the thesis. We dive into spectral graph theory, a topic that emerged in the
1950s and serves as the backbone of this thesis. We describe graphs and their
matrices, namely the adjacency matrix and the Laplacian matrix, and give a
brief overview of the relation between graph properties and the spectrum of
their associated matrices.

Transitioning to the world of probability, we move on to random graphs,
which were introduced in the mid 20" century. Over the years, a wide range
of systems have been studied as complex networks, in particular biological and
social networks. The explosive growth of these networks in the digital age
and their increasing complexity underscore the need for robust mathematical
models, which led to further development of the subject in the late 20" and
early 21°¢ century. Random graphs are graph-valued probabilistic objects and
are essential in modelling real-world networks. We will present a brief overview
of a toy model and various graph regimes, before proceeding with more general
models.

We proceed with another kind of probabilistic object: a random matriz,
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which is a matrix with random entries. This thesis focuses primarily on the ei-
genvalue distribution of random matrix models, that are associated with random
graph models. It is important to note that although the main motivation comes
from the study of random graph models, the essential tools of the trade come
from random matrix theory, thereby also making the study of the spectrum
relevant from a random matrix perspective.

The above naturally eases us into a more abstract theory of random vari-
ables. Abstraction is a fundamental aspect of mathematics, giving rise to areas
such as free probability where one abstracts the notion of random variables and
moves away from an underlying sample space. Despite this abstraction, a link
with reality remains. Random matrix theory connects with free probability,
and was born out of applications in statistics, operator algebras, and quantum
physics.

With these notions well established, we proceed with a literature overview
of spectral theory for random graphs, in particular for the Erdds-Rényi random
graph. We conclude with an outline of the thesis and technical results that are
used in later chapters, as well as a short discussion and concluding remarks.

§1.2 Spectral Graph Theory

Spectral graph theory is the study of the relation between geometric properties of
graphs and the eigenvalues and eigenvectors of the associated graph matrices.
Motivated by applications in quantum physics and chemistry, the theory is
now used in various areas of mathematics, such as discrete mathematics and
combinatorics, statistics, and probability, while also playing a crucial role in
statistical physics and computer science. There are various references on the
subject. We refer to Chung [1997] for an introduction, and to Spielman [2012]
for a modern approach to the subject.

§1.2.1 Graphs and matrices

Graphs can be defined set-theoretically as a collection of two sets: a vertex set,
and an edge set that indicates connections between the vertices. A self-loop is
an edge from a vertex to itself. Simple graphs are graphs with no self-loops,
and at most one edge between two vertices. Figure 1.1 illustrates a few special
examples. For instance, a tree is a graph with no cycles: there is exactly one
path from any vertex to any other vertex. On the other hand, a clique has
an edge between every vertex. Figure 1.1 showcases simple undirected graphs,
that is, the edges have no orientation (or direction). This thesis does not cover
graphs that are directed, nor does it consider graphs that can have multiple
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1. Introduction

edges between two vertices.

Figure 1.1: Some graphs on 4 vertices. The first three graphs are a tree, a cycle, a
clique respectively.

A graph can be represented through its adjacency matriz. Let G := (V, E) be
the graph, with V' being the vertex set and E the edge set. The adjacency
matrix of G is defined as the matrix A with entries

1, if(i,j) €E,
Al g) = {0, if (i,)) ¢ B,

for all 4,5 € V. For example, the cyclic graph in Figure 1.1 has the representa-
tion G = ({1,2,3,4},{(1,2),(2,3),(3,4), (1,4)}). The corresponding adjacency
matrix is

0101
1 010
A_Ol()l
1 010

We notice that A is symmetric. In fact, all undirected graphs have symmetric
adjacency matrices, that is, A(i,j) = A(j,4) for all i,7 € V. Moreover, A is
zero on the diagonal, since GG has no self-loops.

Another important graph matrix is the graph Laplacian. Let D denote the
diagonal matrix with entries

’ 0, if i # j.
The combinatorial graph Laplacian L is defined as L := A — D. The normalised

Laplacian is defined as £ = I—D"Y2AD~Y2 where D~1/2 is the diagonal
matrix defined as

1 . ..
D_I/Q(i,i) _ T if D(i,1) #0,
0 if D(i,i) = 0.
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This thesis only covers the combinatorial graph Laplacian, which henceforth
will be referred to as the Laplacian matrix. Note that if A is symmetric, then
so are the graph Laplacians.

The Laplacian matrix gets its name from the fact that it can be viewed as
the matrix form of the discrete Laplacian operator, which approximates the con-
tinuous Laplacian operator through a finite difference method (LeVeque [2007]).
This can be illustrated by the discrete heat equation as follows: Let ¢ be a
distribution across a graph G = (V, E), with ¢(i) being the temperature at a
vertex i € V. If (i,j) € E, then the heat transfer between i and j is proportional
to ¢(i) — ¢(j). In particular, one obtains a matrix-vector ordinary differential
equation of the form

d¢

1= kLo, (1.1)
where L = A — D is the graph Laplacian matrix and k is the thermal conduct-
ivity. This is analogous to the classical heat equation, hence the name “graph
Laplacian”. The solution to (1.1) and its stability properties are obtained by
analysing the eigenvalues of L.

§1.2.2 Spectral theory

Spectral theory traces its origins back to the works of David Hilbert in the early
20" century. He referred to the theory as spectral analysis. The name proved
prophetic: a key result in the field, known as the spectral theorem, was later
found to be useful in explaining atomic spectra in quantum mechanics.

Finite undirected graphs have adjacency (and Laplacian) matrices that are
symmetric, which are diagonalisable and have real eigenvalues. For a finite graph
G on N vertices, the spectrum of its adjacency matrix A (or its Laplacian matrix
L) is the set of eigenvalues of A (or L, respectively). Linear algebra provides
the necessary framework to study the eigenvalues and eigenvectors of graph
matrices. For example, for a clique on N vertices, the spectrum of A is the
eigenvalue N — 1 with multiplicity 1 and the eigenvalue -1 with multiplicity
N —1. The Laplacian, on the other hand, has eigenvalues 0 (once) and N (with
multiplicity N — 1). Another powerful result, the Perron-Frobenius theorem,
states that if G is connected, then the following is true (Spielman [2012, Theorem
4.5.1]): For the eigenvalues A\; > Ao > ... > Ay of the adjacency matrix of G,
we have

o )\ > )\2, and \; > —)\N, and

e )\ has a strictly positive eigenvector.
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1. Introduction

Although linear algebra provides a solid foundation, we outgrow it as N grows to
infinity, and lean on spectral theory for our analysis. A locally finite graph G =
(V, E), that is, a graph where every vertex has finite degree, can be identified
with a linear operator A on the Hilbert space (¢2(V),(-,-)), where (-,-) is the
canonical inner product (¢,) := >, 1 (i)¢(i), and A acts on the canonical

basis (0;)icy as
Asi= > 45
j:(i,5)eE

We call the operator A the adjacency operator, and the Laplacian operator is
defined similarly on ¢?(V). Note that in the finite-dimensional setting, we get
back the graph matrices, and so we use the same notation for the matrix and
the operator.

For an infinite graph, the spectrum of the adjacency operator is the set

spec(A) = {A € C: A — Al is not invertible},

and we define spec(L) in a similar fashion. The spectrum of an operator on a
finite-dimensional space is the set of eigenvalues. However, it consists of more
components in the infinite-dimensional setting, and may have no eigenvalues or
no point spectrum. In some instances, for a locally finite undirected graph, the
operators A and L are self-adjoint, and spec(A) and spec(L) are contained in
R.

If A (and L) are self-adjoint operators defined over the Hilbert space ¢2(V),
then the spectral theorem guarantees that these operators are in some sense
“diagonalisable”. For example, consider the adjacency A. If A is a self-adjoint
matrix, then the spectral theorem yields a spectral decomposition for A of the
form

A=UAU",

where A is the diagonal matrix of eigenvalues of A, which are real, and U is a
unitary matrix with columns as the orthonormal eigenvectors of A. If A is a
self-adjoint operator, then we can still have a spectral decomposition in terms
of a spectral measure (Rudin [1991]). The spectral theorem now gives us a
projection-valued measure A on the spectrum spec(A) C R such that

A= / NAAQ) .
spec(A)

This formulation will later allow us to associate a probability measure to a
certain class of “nice” operators.

Let us go back to a finite simple graph G. The largest eigenvalue A; of the
adjacency A is bounded above by the maximal degree of G. Additionally, Aq

10
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plays another crucial role in the study of the spread of epidemics on a graph.
Following the ideas of Pastor-Satorras et al. [2015], we consider the following
illustration.

Consider a community with (finite) vertex set V of size N and edge set E.
Individuals are either infected or susceptible. Once an individual recovers, it
becomes susceptible again. Any susceptible individual z € V gets infected at
a rate 3, and any infected individual recovers at a rate 0. If p,(t) denotes the
probability that x is infected at time ¢, then,

Palt + At) = po(t)(1 — 5At) + (1 — po(£)BAL Y Az, y)py(t) .
yev

Using this reasoning, one can derive an ODE for the dynamics of the spread as

dpa(t)
dt

= —0pa(t) + B Alx,y)(1 — p(t))py(t).

yev

To simplify the ODE, we can perform a linearisation trick by taking 1—p,(t) ~ 1.
This step is justified heuristically when the p,(t) is small for any =, that is, the
epidemic spread is in the early stage. Let p(t) = (pi(t),...,pn(t))T be the
vector of probabilities. We obtain a system of linearised ODEs given by

dp(t)

TR (BA—=0)p(t).

Spectral analysis of the solution tells us that the equilibrium state is stable if

B 1

5N
that is, the infection dies out below this threshold. Heuristically, a large Ay
indicates that nodes with many connections aid the spread of the disease.

The adjacency spectra have further applications. For instance, if the graph
G has dpq. as the maximal degree and dg, as the average degree, and A; is
the largest eigenvalue of the adjacency of G, then, by Spielman [2012, Lemma
4.2.1], we have
dav < )\1 < dmax .

If A\ and Ay are the extremal eigenvalues, and if G is connected, then Ay = —An

if and only if G is bipartite (Spielman [2012, Proposition 4.5.3]). Moreover, if

(@) is the chromatic number of a k—regular graph G on N vertices, then
—NAn

< .
S v

11
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1. Introduction

The above inequality is known as the Hoffman bound (Haemers [2021]). These
results show that eigenvalues of the adjacency matrix can be used to study
various properties of the graph.

The spectrum of the Laplacian can provide further insight into the graph
structure. When the entries of the matrix are not restricted to 0 or 1, the
matrix is also referred to as the Markov matriz (Bryc et al. [2006], Bordenave
et al. [2014]). The graph Laplacian is essential in diffusion theory and network
flow analysis, as it can be seen as the negative of the infinitesimal generator
of a continuous-time random walk associated with a graph, and its spectral
properties are useful in the analysis of mixing times and relaxation times of the
random walk. It has several other key applications. The Kirchhoff Matrix-Tree
Theorem relates the determinant of the Laplacian to the count of spanning
trees in a graph (Chung [1997]), and the multiplicity of the zero eigenvalue
indicates the number of connected components (Chung [1997]). The second-
smallest eigenvalue, known as the Fiedler value or the algebraic connectivity,
measures the graph’s connectivity; higher values signify stronger connectivity
De Abreu [2007].

In modern machine learning, spectral techniques are pivotal in spectral clus-
tering algorithms, where the techniques use the Laplacian eigenvalues and ei-
genvectors for dimensionality reduction before applying algorithms like k-means
clustering (see Abbe et al. [2020], Abbe [2017]). These algorithms are partic-
ularly effective for detecting clusters that are not linearly separable. Recent
advancements integrate spectral clustering with graph neural networks to en-
hance graph pooling operations (Bianchi et al. [2020]). Spectral algorithms
are also crucial for identifying communities within networks by analysing the
spectral properties of the graph (Chung [1997]).

The normalised graph Laplacian, just like the graph Laplacian, is the neg-
ative of the infinitesimal generator of another continuous-time random walk
associated with the graph. It has applications in studying the so-called Cheeger
constant, as well as the diameter of the graph, but we will not be studying this
matrix in this thesis.

§1.3 Random Graphs

How likely is it that you and another individual have a mutual friend? Will a
disease spread in a community rapidly, or will it be restricted to isolated groups?
How does one model social networks? Where are you likely to be if you walk
randomly on the streets of Amsterdam? How likely are oil particles to percolate
through a rock?

12
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These questions only begin to scratch the surface of random graph theory. Ran-
dom graphs first appeared in the context of sociology in the early 1900s. They
reappeared in the context of mathematical biology, before the pioneering works
of Paul Erdds and Alfred Rényi in 1959, which laid the foundation of the most
elementary random graph model: The Erdds-Rényi random graph (ERRG).
Thereafter, the interest in the topic grew rapidly, fuelled by the boom of com-
puter science and the increasing interest in modelling complex networks.

§1.3.1 Erdés-Rényi random graphs

There are two models typically referred to as the Erdds-Rényi random graph.
The first, introduced in Erdds and Rényi [1959], is a simple graph chosen uni-
formly at random from the set of all graphs on N vertices and m edges, and is
parametrised by the tuple (N, m). The second model, also called the Gilbert-
Erdds-Rényi model, was introduced in Gilbert [1959] as a percolation model on
the complete graph K on N vertices, where edges are kept with probability p
and discarded with probability 1 — p, for some p € [0, 1], and is parametrised by
the tuple (N, p). The two models are quite close. The latter will be the model
used throughout this thesis and will be denoted as ERy(p) and abbreviated
as ERRG. There are various texts on random graphs, and in particular on the
ERRG. We refer to the monographs van der Hofstad [2017|, van der Hofstad
[2024] for an exposition of the topic.

In the setting where p := A/N, the random graph is usually classified into
three regimes:

e Subcritical regime: When A < 1, the graph consists of small components
that are tree-like. In particular, the graph is a forest, with the size of
the largest component of the order Oy p(log N) (where Oy is the Landau
notation, and the additional subscript P indicates the statement holds
with high probability).

e Critical regime: When A = 1, the graph exhibits a so-called phase trans-
ition. The largest component in the graph is now Oy p(NN 2/ 3). This re-
gime is the most delicate of the three, and we refer to Janson et al. [1993],
Aldous [1997] for further analysis.

o Supercritical regime: When X > 1, the graph has a unique giant compon-
ent of size On(N) with high probability, and other components of size
On(log N). We have a further sub-regime in this regime:

— Connectivity regime: If p > IO]gVN, then with high probability the

graph is connected, that is, there is only one component.

13
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1. Introduction

In Figure 1.2, we see graph realisations for the three regimes.

Another classification for random graph models is sparsity. In particular,
for this thesis, we say that the graph is sparse when the average degree of the
graph is bounded. On the other hand, we say that the graph is dense if the
average degree grows with V. For ERx(p), we have the following:

o Dense regime: p := ey such that ey — 0 and Ney — oo. In the
literature, the dense regime is characterised by €y = constant, but this
regime will not be covered in this thesis, and hence we abuse terminology.

e Sparse regime: p := ex such that exy — 0 and Ney — A € (0, 00).

(a) A= 0.7. (b) X =1. (c) A =18.

Figure 1.2: Realisations of ERn(p) for three regimes, with p = A\/N, and N = 200.
Simulated on hitps://www.networkpages.nl.

Local weak convergence
The theory of local weak convergence builds on Aldous and Lyons [2007], Ben-
jamini and Schramm [2001]. Since random graphs are essentially graph-valued
random variables, this theory describes a framework to analyse the “limits” of
sparse random graphs, by providing a natural topology to understand conver-
gence. Consequently, any graph parameter that is continuous with respect to
the local topology converges to the graph parameter of the limiting object, akin
to how several functionals of random walks converge to functionals of Brownian
motion in the appropriate topology. Local weak convergence is a remarkable
tool, since in many instances the limit is easier to analyse than the prelimit.
Before looking at formal details, we give a heuristic description:

Consider a uniformly chosen vertex of the random graph, say on, where N
18 the number of vertices. If the graph has no underlying geometry, as is the case
for ERN(+), we say that edges have length one. Fix a positive radius r € Ry, and
from the vertex oy, observe the graph up to the radius r. So, ifr € [0,1), observe
only on and nothing more, if v € [1,2), observe the immediate neighbours of

14
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on, and so on. The local weak limit is in some sense what the graph “looks like”
up to any finite radius r.

We now state the above formally. A rooted graph (G, o) is a graph G with a
specified root 0. Let G* denote the set of locally finite connected rooted graphs
up to equivalence =, where = denotes graph isomorphism. Given r € N, let
[G, 0], denote the finite rooted subgraph obtained from (G, 0) by keeping vertices
that are up to a distance r from o, including edges. We say that a sequence
(Gn,on) Nen converges locally to (G, o) if for each r € N there exists an n, € N

such that for all N > n,., we have
[Gn,on]r =[G, 0]y .
If we define dryy as
drw : (G,0),(G',0) — 1/sup{r e N: [G, 0], =[G, 0]},

then (G*, drw) becomes a complete separable metric space. We can endow this
space with its Borel o—algebra, and consider the complete separable metric
space of probability measures P(G*) on G*.

Definition 1.3.1 (Local weak convergence).

Let (Gn)n>1 denote a sequence of (possibly disconnected) random graphs. If on
is a uniformly chosen vertex (restricted to the connected component of Gy ), then
we say that (Gn,on) converges locally weakly to (G, o) having law L € P(G*)
if, for any bounded and continuous function h : G* — R, we have

E[n(Gn,on)] = Ec[h(G, 0)]

as N — oo, where E is with respect to the law of the random graph and the root
ON.

As an example, consider the graph ERy(p), with p = A/N for a fixed A. This
graph converges locally weakly to a Galton- Watson tree (or a branching process)
with offspring distribution Poi()), that is, a process starting with a single vertex,
giving birth to progeny that are distributed as Poi()), and repeating this for
each offspring.

Local weak convergence provides a powerful framework for the analysis of
graph properties that are local, that is, continuous with respect to the local
topology (see van der Hofstad [2024], Salez [2011]), as well as dynamics on the
graph (see for example Avena et al. [2024] for interacting particle systems, and
Hupkes et al. [2023] for a discussion on PDEs). Later, we will see how local weak
convergence can be related to the spectrum of random graphs via the Stieltjes
transform.
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1. Introduction

Inhomogeneous Erdds-Rényi random graphs

ERRG serve as the basis for many mathematical theories in random graphs.
Real-world networks are highly inhomogeneous and have a far more complex
structure. Various attempts have been made to generalise them to other kinds
of random graph models. One of the successful extensions is the inhomogen-
eous Erdés-Rényi random graph model introduced by Bollobas et al. [2007].
This graph has N vertices labelled by [N] = 1,..., N, and edges are present
independently with probability p;; given by p;; = % A1, where f is a sym-
metric kernel on a state space S x S, and z; are certain attributes associated
with vertex i belonging to S. If f is bounded, then the graph is a sparse random
graph. In this thesis, we study a variant of the above inhomogeneous random
graph, namely, the vertex set remains the same, but the connection probabilities

are given by
pij = enf(wi,w;) A1,

where £y is a tuning parameter, (w;) is a sequence of deterministic weights,
and f is a symmetric bounded function on [0,00)2. The weights can signify a
property of vertex i. They can also be taken random, but are not considered to
be so in this thesis for this model. Note that when Ney — 0o, the average degree
is unbounded, and when Ney = O(1), the average degree is bounded. In the
sparse case, the properties of the connected components were studied in Bollobas
et al. [2007|, which focused on the properties of the connected components and
their relationship with the branching process. It was shown that the largest
component of the graph has a size of order N if the operator norm of the kernel
operator corresponding to f is strictly greater than 1 (see also [van der Hofstad,
2024, Theorem 3.9]). In the subcritical case, the sizes of the largest connected
components can exhibit different behaviour compared to the ERRG. The study
of the largest connected components in various inhomogeneous random graphs
has attracted a lot of attention (see, for example, Bhamidi et al. [2010], Broutin
et al. [2021], Bet et al. [2023], van der Hofstad [2013], Devroye and Fraiman
[2014]). We abbreviate the inhomogeneous Erdés-Rényi random graph as IER.

§1.3.2 Kernel-based random graphs

In recent years, many random graph models have been proposed in an attempt
to model real-life networks. These models aim to capture three key properties
that real-world networks exhibit: scale-free nature of the degree distribution,
small-world property, and high clustering coefficients [van der Hofstad, 2024].
It is generally difficult to find random graph models that incorporate all three
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features. Classical random graph models typically fail to capture scale-freeness,
small-world behaviour, and high clustering simultaneously. For instance, the
Erdés-Rényi model only exhibits the small-world property, while models like
Chung-Lu, Norros-Reittu, and preferential attachment models are scale-free
(Chung and Lu [2002], Barabasi and Albert [1999]) and small-world, but have
clustering coefficients that vanish as the network grows. In contrast, regular
lattices have high clustering but large typical distances. The Watts-Strogatz
model (Watts and Strogatz [1998]) was an early attempt to create a network
with high clustering and small-world features, but it does not produce scale-free
degree distributions.

Scale-free percolation, introduced in Deijfen et al. [2013], blends ideas from
long-range percolation (see e.g. Berger [2002]) with inhomogeneous random
graphs, such as the Norros—Reittu model. In this framework, vertices are po-
sitioned on Z%, and each vertex z is independently assigned a random weight
Wy. These weights follow a power-law distribution:

P(W > w) = w "V L(w),

where 7 > 1 and L(w) is a slowly varying function at infinity.

Edges between pairs of vertices x and y are added independently, with a
probability that increases with the product of their weights and decreases with
their Fuclidean distance. The edge probability is given by

WoW, )
=1—exp|-A—"L |, 1.2
pe (R .
where A\, & > 0 are model parameters and || - || denotes the Euclidean norm. This

model has been proposed as a suitable representation for certain real-world sys-
tems, such as interbank networks, where both spatial structure and heavy-tailed
connectivity distributions are relevant (Deprez et al. [2015]). Various properties
of the model are now well known, and we refer to the articles by Jorritsma et al.
[2024], Cipriani and Salvi [2024], Cipriani et al. [2025], Heydenreich et al. [2017],
Dalmau and Salvi [2021], van der Hofstad et al. [2024] for further references.
In recent times, there has been a lot of interest in models that have con-
nection probabilities similar to (1.2). Kernel-based spatial random graphs en-
compass a wide variety of classical random graph models where vertices are
embedded in some metric space. In their simplest form (see Jorritsma et al.
[2023] for a more complete exposition) they can be defined as follows: Let V'
be the vertex set of the graph and, sample a collection of weights (W;);cy that
are independent and identically distributed (i.i.d.), serving as marks on the ver-
tices. Conditionally on the weights, two vertices ¢ and j are connected by an
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1. Introduction

undirected edge with probability
P (i< j | Wi, Wj) = s(Ws, Wj)lli — 5|7 A L,

where k is a symmetric kernel, ||i — j|| denotes the distance between vertices i
and j in the underlying metric space and « > 0 is a constant.
Common choices for « include:

Ktriv(wu U) =1, ’istrong(wu 1)) =wVu,

Hprod(w7 'U) =wv, "fpa(u% 'U) = (w v 'U)('UJ A ,U)O'pa_

In the above, ops = a(r —1)/d — 1, where 7 — 1 is the exponent of the tail
distribution of the weights, so that the kernel xp, mimics the form that appears
in preferential attachment models [Jorritsma et al., 2023]. While these models
are well-studied from a random graph perspective, there is minimal literature
on their spectral properties.

§1.4 Random Matrix Theory and Free Probability

§1.4.1 Random Matrices

Random matrices are matrix-valued random variables where each entry of the
matrix is a classical random variable. They are of significant interest, not only
from the point of view of modern probability and statistical physics, but also
because they connect to various areas. First appearing in 1928 in the work
of Wishart (Wishart [1928]) in the context of statistics and multivariate data
analysis, the topic was further researched from a spectral analysis point of view
in the pioneering work of Wigner (Wigner [1955]). There are now several con-
nections with other areas. For instance, a connection with number theory was
established when eigenvalues of certain random matrices were used to model
the distribution of zeroes of the Riemann zeta function (Montgomery [1973]).
There are also connections with dynamical systems, in particular with Pain-
leve’s ordinary differential equations (Tracy and Widom [1994]), as well as with
the Dyson Brownian motion (Dyson [1962]). There are several applications in
numerical linear algebra, computer science, and statistics (see Johnstone [2001],
or the textbook Tropp [2015]).

Quantum mechanics tells us that energy levels of large nuclei correspond
to the eigenvalues of some Hermitian operator. Wigner chose to model this
operator by using Wigner matriz ensembles, wherein he ignored all physical
aspects of the system except symmetry. The reason to do so was the observation
that gaps in energy levels of large nuclei followed similar patterns regardless of
the material chosen. Systems with time-reversal symmetry were modelled by
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using real symmetric random matrices with Gaussian entries, known as the
Gaussian orthogonal ensemble (GOE), and those without were modelled by
using complex Hermitian matrices with complex Gaussian entries, known as
the Gaussian unitary ensemble (GUE).

Spectral analysis of random matrices is a broad subject, with a vast literature
focusing on the distribution of eigenvalues of the matrix, the largest eigenvalue
(or more generally, the k largest eigenvalues for some k € N), and the eigen-
vectors. One of the key statistics that we focus on in this thesis is the empirical
spectral distribution, defined below.

Definition 1.4.1 (Empirical Spectral Distribution).

The empirical measure that assigns mass 1/N to each eigenvalue of random
matriz My is called the Empirical Spectral Distribution (ESD), and is defined
as

ESD(My)(- Z Ox, (-

where \j :== X\;(My) is the i—th eigenvalue of My and, for any x, §,(-) is the
Dirac delta mass at the value x.

Notice that since the eigenvalues are random, ESD(My) is a random measure.
The bulk distribution of eigenvalues refers to the distribution of the non-extremal
eigenvalues of the random matrix. The ESD is a central object of interest in
studying the bulk of the eigenvalue distribution, so it would be heresy not to
ask about its limiting behaviour as N — co. The work of Wigner [1958] showed
that for the GOE and GUE models, as well as for a large class of other random
matrix models, under appropriate scaling of the entries the ESD(M ) converges
weakly almost-surely to a (deterministic) measure pig., where pg. is the semicircle

usc dQZ \/ - 1|x|<2dx

For instance, consider the symmetrlc matrix Ay with entries

law with density

An(ij) L — 1 Ber(ew),
~N(1—pnN)
such that Neny — oo. This is the adjacency matrix of the Erdés-Rényi random
graph ERy(en). It is known that, as N — oo, ESD(Ay) converges to pg. in
probability (see for example Jung and Lee [2018], Tran et al. [2013]). The fact
that different empirical distributions converge to the same limit sparked the idea
of universality, and we will later see how g is a universal limit in this area.
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Size=2000 size=2000

(a) GOE ensemble, with entries distributed  (b) Symmetric and centred Bernoulli matriz,
as N(0,1). with entries distributed as Ber(0.5) — 0.5.

ize=2000

A f=
o Lo e .

T [
A It

(c) Symmetric and centred Poisson matriz,
with entries distributed as Poi(1) — 1.

Figure 1.3: Figenvalue distributions of some random matriz models.

The above has been generalised beyond the original Wigner matrices. In
particular, some works consider matrix entries that are not i.i.d. and have a
variance profile that is not constant. The study of the bulk blends flavours
from various areas of mathematics. In favourable scenarios, the problem can
be analysed within the framework of universality classes. Typically, in these
cases, the matrix may have entries drawn from any distribution, but one can
implement Gaussianisation, that is, replace them with Gaussian entries with
the same mean and variance profile, without affecting the ESD too much (in
probability). This technique follows ideas of Chatterjee [2005].

Of course, it would be naive to assume that every random matrix model
can be Gaussianised. There are numerous concrete examples, particularly in
random graph theory, where this step fails. In such cases, one falls back on ex-
plicitly working with the ESD. One approach is through the method of moments
(see Bordenave [2019]), which computes the moments of the ESD and find the
limiting moments. By the spectral theorem, for any random matrix My,

/g; ESD(My)(d Z)\k —T (M%)
R

The “standard procedure” is to begin by computing expected moments and see
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if they concentrate, that is, the target is to show that

lim [ z"ESD(My)(dz) = M, in P—probability,
N—oco JRp
where PP is the underlying law of the matrix entries. To guarantee the existence
of a limiting measure, we have to check if the moments satisfy one of Carleman’s
conditions, that is, the moments uniquely determine a limiting measure if

Z Mz—kl/Zk =00, or equivalently, limsup Mgllé% < 00.
k>0 k—oo

This approach has a strong combinatorial flavour due to computation of the com-
binatorial expression E[tr(MX;)], where tr := N~ Tr is the normalised trace.
Naturally, there are examples where the moments do not exist, and this approach
then fails. This brings us to another classical approach, namely, the Stieltjes
transform approach, where one translates the measure-theoretic problem into
an analytic problem on the upper-half complex plane C* := {z € C: §(z) > 0}
(see Bordenave [2019], Mingo and Speicher [2017], Anderson et al. [2010]).

For any complex number z € CT, we define the resolvent of a random matrix
My as

Ry (2) = (My — z1y) 7",

where Iy is the N x N identity matrix. For any measure p and z € CT, its
Stieltjes transform is defined as

S, (2) ::/R L da).

So, we have that

N
Sespny) (2) = [ 2~ BSD(My)(da) = 5 3 7 = tr(Ruey (2).

where tr := N~!Tr is the normalised trace operator. The Stieltjes transform
allows us to work with analytic tools from complex analysis and functional ana-
lysis to deduce properties of the measure itself. For instance, if the Stieltjes
transform is uniformly bounded (in z), then the measure has an absolutely con-
tinuous component (Sen and Virag [2011]). In some cases, we can also derive the
exact density of the measure from its Stieltjes transform by using an inversion
formula (Bai and Silverstein [2010]). Notable works show that one can bound the
distance between two measures in terms of the distance between their respect-
ive Stieltjes transforms (Bai and Silverstein [2010], Augeri [2025]). In particular
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Augeri [2025] defines a distance dg compatible with the weak topology on the
space P(R) of probability measures on the real line as follows:

ds(p,v) == sup{|Su(z) = Su(2)| : §(2) > 2,2 € CT}, p,vePR).
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If dir,(+,-) denotes the Kolmogorov-Smirnov distance and WP(-, -) the LP-Wasserstein
distance for any p > 1, then

ds(p,v) < dr(p,v) A\WP(p,v),  pov € P(R).

If a measure p is compactly supported in [—R, R] for some R > 0 with moments
{Mj}r>1, then the Stieltjes transform can be related to the moments as:
My,

S,U«(Z) = - k1 (13)
k>0

where the Laurent series on the right-hand size converges when |z| > R.

§1.4.2 An illustration

Let us next see a heuristic for the two methods of analysis. We begin with the
moment method, following ideas from Speicher [2024].

Consider an i.i.d. sequence {G;; : N >4 > j} of random variables distrib-
uted as N~1/2N(0,1), where N(0,1) is the standard Gaussian random variable
with mean 0 and variance 1. Take an N x N Wigner matrix G, with entries
G(7,7) = Gipj,ivj, where G;; = 0. By trace expansion, we have

N
]E[tr(Gk)]:NllJrk N E[G(ir,i2)Giz, i3) . .. Glix, 1))
2 iy eip=1

To compute this sum, we use the following well-known result (see for example
Speicher [2024]).

Lemma 1.4.2 (Wick’s formula).
Let (X1,...,X,) be a real Gaussian vector and Pa(k) the set of pair partitions
of [k]. Then, for any 1 <k <mn,

ElX;, - Xy )= Y]] EX:,X.], (1.4)

n€P2(k) (r,s)eT

where (r,s) € 7 indicates a pair (r,s) that is in the pair partition 7.
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This expression already tells us that the odd moments are identically zero, since
one cannot construct pair partitions for a tuple [k] if k£ is odd. So, we only need
to compute the even moments. Thus, for any k£ € N, we have

N
Er(G)] = e > >0 1] ElGGnire)Glis, isi)]

11,0yl =1 TEP2(2k) (r,5)ET

1
= N Z Z H (irsir1)=(issis+1) *

i1,yi2k=1 TE€P2(2k) (r,s)E™

While there are two cases where the indicator is in force, namely i, = i5 or
i = is11, it turns out that the latter is the contributing factor in the limit.
yr(r), Where v = (1,2,...,2k) is the
shift by 1 modulo 2k permutation and, for any partition w, 7 is read as a

In particular, we get iy = ir)q1 = @

composition of two permutations by reading 7 as a permutation. Thus, we have
that i := {i1,...,%2,} is constant on the cycles of ymw. We skip some technical
steps, which involve the interchange of summands, and obtain the expression

[tr(GQk Z N#™
7r€772(2k)

where #~y7m is the number of blocks in vm, and ~ means asymptotic. The
contributing partitions are the non-crossing pair partitions NCo(2k), where we
have that, for any m € NC2(2k), #ym = k + 1, and, for m € P2(2k) \ NC2(2k),
#vym < k. Figure 1.4 illustrates some partitions of {1, 2, 3,4}, with m; and 75 as
non-crossing pair partitions. This combinatorial approach yields that, for any
even moments, we have

lim E[tr(G%*)] = |[NCy(2k)| = Cy,
N—oo
where C}, is the k—th Catalan number defined as
1 2k
Cr = < k ) '

The Catalan numbers are the even moments of the semicircle law g, which
also has odd moments identically 0.

Let us proceed with the Stieltjes transform method. We begin by fixing z € C*.
Let pse be the limiting measure of the ESD of G, which we a priori know is the

semicircular law. To derive a recursive expression for S, (z), one can use the
moment relation (1.3), along with the following relation for Catalan numbers:

k
Cr1 = Z CiCr—;
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C
.
5

(a) m (b) T2 (c) s
Figure 1.4: Pair partitions of {1,2,3,4}.

for any k € N. Manipulating the terms, we get

1

EEmel )

Suee(2) =
which is the unique analytic equation that characterises us. (Bai and Silverstein
[2010]). It is known that pointwise convergence of Stieltjes transforms (in z)
implies weak convergence of measures (and vice versa). To that end, we analyse
the resolvent matrix.

Let ri; := Rg(2)(i, ). It is well-known that r;; € C* for all ¢, j € [N] (Bai
and Silverstein [2010]). One approach to prove that Sggp(g)(2) converges to
Sy (2) for each z € C* would be to use the resolvent identities (see Bordenave
[2019]). However, there is a different approach that is used later on in the thesis.
For any z € C*, the following is a fact from complex analysis:

o
z:é/ e " dt.
0
So, we have for any k € [N]
o0 ey —1
Tkl = i/ e ke dt.
0

From Bordenave [2019], we use the Schur complement formula, which gives us

1
r - — = B B 3

where 7;; is the (4, j)—th entry of the matrix Rgw (2) := (G®) — 21)~1, and
G®) is the matrix G with the k—th row and column deleted. We will not spell
out details here, but rather give a heuristic of what the computation looks like.
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Namely,
E[rgi] = (E [/OO Qit7 it X joer Tis G R) G k) dt}
0

o | [ itz it SN, Gk
%LE/ eFe!t 2k TIITRT q ¢
0

N

- L/"O e exp { GtE | Y r Gl k)| 8 dt
0 j#k
. o ; = — 1
~ /0 exp{it(z + Eltr(Ra(2))} dt = = ——prrm o

where each approximation requires justification, and becomes an equality in the
limit N — co. Summing over ¢ on both sides, scaling by N and taking the limit
N — oo gives us (1.5) by the relation between the Stieltjes transform and the
matrix resolvent. Using this approach has some advantages, particularly when
dealing with random matrices with heavy-tailed entries (Benaych-Georges et al.
[2014]).

Note that in both approaches, we only illustrate the convergence of the
expected empirical measure. However, there are concentration results in both
approaches that yield convergence in probability or almost surely (Bordenave
[2019], Speicher [2024]).

Both approaches offer new insights into the problem as well as establish
mysterious connections with numerous other areas, making random matrix the-
ory an ideal playground for modern mathematics. The analytic approach has
opened up the area of understanding local weak convergence, and many open
problems were resolved in the last few years (see Erdds and Yau [2017] for more
details).

§1.4.3 Free Probability

Consider two random variables X1 and Xo, where X1 takes values —1 or 1 with
probability %, and Xo takes values 0 or 1 independently with probabilities % and
%, respectively. Then, the distribution of the random variable Y = X1 X5 is the

same as that off/ = Xo X1, and we write X1 Xo 4 X9 X1. Indeed, the probability
that X1 X9 takes a value, for example 1, is the same as the probability that Xo X1
1.2 1

takes that value, which in our example is 5 X § = 5. We say that X1 and X»

commute. We ask out of curiosity:

Are there instances when X1 and Xo do not commute? For instance, what if
X1 and X5 are not real-valued, but are matriz-valued?
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1. Introduction

Classical probability studies random variables that commute, and a crucial
concept in classical probability is that of independence: The outcome of X
does not affect X9 and vice-versa. How do we abstract to a non-commutative
setting? Does the concept of independence extend as well?

In the 1980s, the concept of freeness, or free independence, was studied by
Dan Voiculescu in the context of operator algebras (Voiculescu [1985]). The
generalisation of classic random variables to a non-commutative setting was
through this very notion, which is a non-commutative analogue of (classical)
independence. The combinatorial aspects are summarised in the classical text
by Nica and Speicher [2006]. We now begin with some technical definitions.

Definition 1.4.3 (Non-commutative probability space).
A non-commutative probability space (A, y) consists of a unital (associative)
algebra A over C equipped with a linear functional ¢ : A — C such that (1) = 1.

Let us fix an index set I. Elements of the space (A, ) are called non-commutative
random variables, and for any a € A, {¢(a")}nen are the moments of a. The
joint distribution of aq,...,ar € A for any k € N is the collection of mixed
moments p(a;,, ..., a;,) for each ¢ € N and 41, ...,is € [k].

Definition 1.4.4 (Freeness).
Let (Aj)ier be the unital subalgebras of A. These are said to be free if, for any
keN, ¢(ay...ar) =0 whenever:

e Foraj € A;; withij € I, p(a;) =0 for all j € [k];
® iy F g, iy F 13, .., 051 F 11

Recall that in classical probability theory, one studies random variables over
a (classical) probability space of the form (€2, F,P). The generalisation to the
non-commutative setting deviates from the notion of an underlying event space
and law, and is instead developed over the notion of a non-commutative algebra
of random variables and their “expectations”. In fact, the functional ¢ is the
non-commutative analogue of the classical notion of expectation. Similar to
how classical random variables (X;);er € (2, F,P) are said to be independent if
the sigma-fields (F;);cs generated by them are independent, we say that random
variables (a;);cr € (A, ¢) are said to be free if their generated unital subalgebras
(A;)ier are free. This abstraction allows one to study a larger variety of objects,
such as random matrices or random operators, as well as objects in other areas,
notably in quantum mechanics.

Recovering classical probability is fairly straightforward, and we illustrate it
for bounded random variables as follows: Let (€2, F,P) be a classical probability
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§1.4. Random Matrix Theory and Free Probability

space. Set A := L>°(Q,P) as the unital algebra of bounded measurable functions
(“random variables”) X : Q@ — C, and set ¢ to be the unital linear functional on
A as the “expectation” with respect to P, that is,

o(X):=E[X], XeA.

Note that (1) corresponds to P(2) = 1.

Voiculescu, in Voiculescu [1985], studied the notion of freeness in the context
of Von-Neumann algebras (also called W*—algebras). In particular, if G is
group, then saying that its subgroups (G;)ics are free is equivalent to saying
that the subalgebras (CG;);es are free in the space (CG, ¢g) (Speicher [2011,
Proposition 1.3|), where CG is the group algebra of G and ¢g : CG — C
is a unital functional. Certain x—algebras, in particular C*—algebras, are of
particular interest.

Definition 1.4.5 (C*—algebras).

A C*—algebra is a Banach algebra A over C such that it is a *—algebra pos-
sessing the involution * : A — A satisfying ||vx*|| = ||x||* for each x € A.

Any C*—algebra is isomorphic to a C*—subalgebra of B(H), the space of bounded
linear operators on H, for some Hilbert space H.

Definition 1.4.6 (W*—algebras).

A W*—algebra, or a von Neumann algebra A C B(H), is a C*—algebra that is
closed under the weak operator topology, that is, if any net A, € A converges to
A € B(H) in the weak operator topology, then A € A.

The respective non-commutative probability spaces are called a C*—probability
space and a W*-probability space.

Definition 1.4.7 (Tracial, state, and faithful functionals).

Let (A, ) be a C*—probability space.

o Ifp(a*a) >0 for all a € A, then ¢ is a state.
o We say ¢ is tracial if p(ab) = @(ba) for all a,b € A.
o We say ¢ is faithful if for all a € A, p(a*a) =0 implies a = 0.

Naturally, one would wonder if there are universality results in free probability,
as is the case for classical probability. In particular, a natural question would be
regarding a generalisation of the classical Central Limit Theorem, where sums of
independent and identically distributed (i.i.d.) centred random variables having
a finite variance converge to the standard normal distribution under appropriate
scaling. In free probability, such a result does exist, but the limiting law is
not the normal distribution; rather, it is the non-commutative analogue of the
normal distribution (see Speicher [2011]).
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1. Introduction

Theorem 1.4.8 (Free Central Limit Theorem).
Let (A, p) be a non-commutative probability space and let (a;)icr € A be a
family of free random variables such that ¢(a;) = 0 and ¢(a?) = 1 for each
i € I. Further, assume that (a;);cy are identically distributed, in the sense that
p(aj) = ¢(aj) for any r € N and all i,j € I. Then, if S, = o ai, then, for
any k € N,

lim p(n~H/25%) = (s").

n—oo

where s is the semicircle variable, or the semicircle element, with

0, k is odd,
p(sh) = {

Cp = — (Zm), k = 2m for some m € N.

m+1\m

In the literature, the limiting law is called the semicircle law, or the Wigner
semicircle law, named after the theoretical physicist Eugene Wigner, whose
pioneering work in the 1950s on the study of eigenvalue statistics of random
matrices led to the foundation of random matrix theory.

Connections between random matrices and free probability were established
in 1991 in the seminal work of Voiculescu (Voiculescu [1991]), where it was
shown that random matrix models exhibit asymptotic freeness. This allows one
to exploit tools from free probability to analyse various random matrix problems.

For any N € N, a *—probability space of random N x N matrices is just
(M (L~ (,P)), tr QE), where (2,P) is a classical probability space, and

L (Q,P):= (] L(QP),

1<p<oo

and for any complex algebra A, My(A) = My(C) ® A is the space of N x N
matrices with entries drawn from 4. Moreover, E is the expectation with respect
to the law P. Recall that, for any (random) matrix My, we have

N N
TI‘(MN) = ZMN(i,i) = Z)\Z(MN) y
i=1 i=1

where (\i(My))Y, are the eigenvalues of My. The following result, which is
an extension of the original work by Voiculescu, shows asymptotic freeness of
Gaussian ensembles and deterministic matrices (see Speicher {2011, Theorem
6.14]).

Theorem 1.4.9 (Asymptotic freeness in matrix ensembles).
Fort e Nand N € N, let GV, ..., G® be t independent Nx N Gaussian unitary
ensembles GUE(N). Let Xy € Mn(C) be a deterministic N x N matriz such
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§1.4. Random Matrix Theory and Free Probability

that supy || Xn|| < C for some C > 0 (where ||.|| denotes the Hilbert-Schmidt
norm) and Xy 2 in the space (A, p), that is,

lim tr(X%) = o(z)

N—o0

for each k € N. Then
(GO GO XN D (51, ),

where s1,...,8: are semicircle elements in (A, @) and s1,..., S, x are free, that
is, for allm € N, ¢ : m — Ny, and p : [m] — [t],

lim E [tr (G(p(l))X?\;I) .. G(p(m))X]qV(m)ﬂ = (sgp(l))xqu) .. sip(m))xq(m)) )

N—o0

The above theorem shows that ({G®}1<;<;, Xx) are asymptotically free, allow-
ing us to conclude results about sums and products of random matrices.

The remaining technical details are quoted from Anderson et al. [2010],
Hazra and Maulik [2013].

Definition 1.4.10 (Affiliated operators).
A self-adjoint operator X is said to be affiliated to a W*—algebra A, if f(X) € A
for an bounded Borel function f on R.

We call self-adjoint operators associated to A random elements of A. For any
affiliated random element X, the algebra generated by X is defined as Ay :=
{f(X) : f bounded measurable}. Naturally, X;, Xo € A are free if Ax,, Ax,
are free, as in the following definition.

Definition 1.4.11 (Free operators).

Self-adjoint operators (X;)icr affiliated with a W*—algebra A are said to be free
if and only if the algebras generated by {f(X;) : f bounded measurable};cr are
free.

Definition 1.4.12 (Law of an operator).

For a self-adjoint operator (or a random element) X affiliated to a W*—algebra
A, and the probability space (A, @), the law of X is the unique probability meas-
ure ux on R satisfying

o(F(X)) = /R F(Oux(da)

for every bounded Borel function f on R.
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1. Introduction

If A is the projection-valued spectral measure associated with X (which is guar-
anteed by the spectral theorem), with A4 denoting the measure evaluated at a
set A, then

,LL)((—OO, .@] = 90(‘/\(—00,;10} (X)) :
The following is quoted from Anderson et al. [2010, Proposition 5.3.34].

Proposition 1.4.13.

Let pu1, ..., pup be probability measures on R. Then there exists a W*—probability
space (A, @) with ¢ a normal faithful tracial state, and self-adjoint operators
(Xi)i<i<p affiliated with A, with laws (11;)1<i<p that are free.

From Anderson et al. [2010, Property 5.3.34, Corollary 5.3.35], one can always
construct a Hilbert space H, a tracial state ¢, and two free variables X; and
X, with laws p; and pug, respectively, affiliated with the space B(H) of bounded
linear operators on H. Then, free additive convolution of uy and ps, denoted as
w1 B g, is the law of X1 + Xo. Additionally, if either X; or X5 is non-negative,
then the free multiplicative convolution p1Xus is the law of X1 X5. The extension
of free convolutions to unbounded measures can be done in the context of finite
von Neumann algebras. Assume that A is a finite von Neumann algebra with a
normal faithful tracial state ¢, that is, (A, ¢) is a tracial W*-probability space
and A is acting on a Hilbert space H. A closed, densely defined operator T on
H is affiliated with A if its polar decomposition T'= uX has the property that
u € A and X is affiliated with A. Let A denote the set of all operators on H
that are affiliated with A. Then, A is an algebra, that is, if X,Y € A, then
X 4+Y and XY are densely defined, closable, and their closures are in A. See
Bercovici and Voiculescu [1993] for further details.

§1.5 Spectral approach to random graphs

Spectral analysis of random graph models studies the limiting spectral distribu-
tion of the associated random matrices. The analysis follows a similar structure
as in random matrix theory, where we begin with the ESD of the matrix of the
finite graph and study its behaviour asymptotically as the size tends to infinity.

Results on the bulk distribution in random matrix theory and spectral the-
ory of random graphs are CLT-type, that is, they have the same flavour as the
free central limit theorem. In particular, if My is some Hermitian random
matrix with entries having law P, which could also be an adjacency or a Lapla-
cian matrix, then the main question is as follows: Does there exist a (possibly
random) measure o such that

ESD (NIN—E[NIN]> X 1 ?

CN
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§1.5. Spectral approach to random graphs

Here, x denotes that this convergence could be (weakly, in the measure-theoretic
sense) in distribution, in P—probability, or P—almost surely, and ¢y is a scaling
that is of the order of the variance of the entries, given by

N
ey = E[Tr(M)] = Y E[Mn(i, 5)*].
i,j=1

For random graph models, this scaling also turns out to be the expected degree
of a uniformly chosen vertex.

§1.5.1 Revisiting the Erdds-Rényi random graph

In the case of the homogeneous ERRG(V, ), it is known that in the dense case
the empirical distribution converges to the semicircle law after an appropriate
scaling (Jung and Lee [2018], Tran et al. [2013]). The Laplacian spectrum for
the dense case was studied in Ding and Jiang [2010], Jiang [2012].

In the sparse case, the spectra converge to limiting measures that depend
on the parameter A := limy_, o, Ney. The behaviour is much more complicated
in this setting. Various interesting properties for spectra of the adjacency mat-
rix were predicted by Bauer and Golinelli [2001]. The existence of the limiting
distribution was proved by Khorunzhy et al. [2004], who study both the adja-
cency and the Laplacian matrices, and also show some interesting properties of
the moments and the limiting Stieltjes transform. The local geometric beha-
viour of sparse random graphs can be studied using the theory of local weak
convergence (LWC), which builds on the works Aldous and Lyons [2007] and
Benjamini and Schramm [2001]. LWC describes how a graph looks like around
a uniformly chosen vertex in the limit as the size of the graph tends to infin-
ity. For a detailed review of LWC and various other applications, see van der
Hofstad [2024]. In a remarkable work by Bordenave and Lelarge [2010], where
the authors study the adjacency and the Laplacian matrices, it was proved that
if a graph with N vertices converges locally weakly to a Galton-Watson tree,
then the Stieltjes transform of the empirical spectral distribution converges in
L' to the Stieltjes transform of the spectral measure of the tree, and satisfies
a recursive distributional equation. The example of a homogeneous ERRG was
treated in [Bordenave and Lelarge, 2010, Example 2].

The limiting measure of the adjacency matrix of the sparse ERRG depends
on A and is still very non-explicit. It was proved by Bordenave et al. [2017],
Arras and Bordenave [2023| that the measure has an absolutely continuous
component if and only if A > 1. The size of the atom at the origin was computed
by Bordenave et al. [2011], and the nature of the atomic part of the measure
was studied in Salez [2020], where it was shown that the set of atoms is dense
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1. Introduction

when A < 1, and is linked with a countable dense ring A of totally real algebraic
integers. The study of so-called extended states at the origin was initiated in
Coste and Salez [2021], and it was shown that for A < e there were no extended
states, while for A > e, there are extended states.

All these results were conjectured in Bauer and Golinelli [2001]. Most results
on local limits show that properties are generally true for unimodular Galton-
Watson trees. In the simulations of Bauer and Golinelli [2001], it is clear that
when A is slightly larger than 1, the limiting measure already starts taking the
shape of the semicircle law. It was shown in Jung and Lee [2018] that, indeed,
if A — oo, then the limiting measure converges to the semicircle law. Some key
questions still remain open for the sparse ERRG, such as the following:

e What are the explicit moments of p)?

e How “close” is the measure u) to ps.? Is there a way to quantify the
distance between the two measures?

§1.5.2 Local weak convergence

The seminal work of Bordenave and Lelarge [2010] characterises the limiting
spectral distribution for locally tree-like graphs. In particular, consider A
and Ay to be the scaled adjacency and Laplacian matrices, respectively, of a
random graph model Gy, such that the following hold:

e The sequence of random graphs {Gy}y>;1 has a weak limit G.

e For a uniformly chosen root oy € Gy, the degree sequence of the rooted
graph (deg(Gy,on))n>1 is uniformly integrable.

e Let G* denote the set of rooted isomorphism classes of rooted connected
locally finite graphs, and let Us(G) be the distribution on G* x G* of the
pair of rooted graphs ((G, 01), (G, 02)), where 01, 02 are uniformly chosen
roots of G. Then, Us(Gy) converges weakly to G ® G, that is, to two
independent and identical copies of G.

Under the above conditions, there exists unique probability measures ) and vy
on R such that limy_,o ESD(AN) = py and limy oo ESD(Ay) = vy weakly
in probability. Furthermore, if Gy is the graph ERy(en), and Ag, is the
adjacency matrix of the graph, then Ay := /\*1/2AGN, and the measure )
represents the expected spectral measure associated with the root of a Galton-
Watson tree with offspring distribution Poi()\) and weights 1/v/X. This result
comes from the theory of local weak convergence (see Benjamini and Schramm
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§1.5. Spectral approach to random graphs

[2001], van der Hofstad [2024]), which is a powerful tool to study spectral meas-
ures associated with many sparse random graph models.

In particular, consider the adjacency matrix (though a similar result holds
for the Laplacian matrix). Consider the space H of holomorphic functions f :
C* — CT, equipped with the topology induced by uniform convergence on
compact sets. Then, H is a complete separable metrizable compact space. The
resolvent of the adjacency matrix is given as

Ray(2) = (Ay — 2I)"!

for each z € C*. The map z — Ra (2)(i,4) is in H, and the Stieltjes transform
of ESD(Ay) is given by trRa,(2), where tr = N~!Tr denotes the norm-
alised trace operator. Let G* denote the set of rooted isomorphism classes of
rooted connected locally finite graphs. Assume that the random graph sequence
(GN)n>1 has the random local limit G € G*, and assume further that G is a
Galton-Watson Tree with degree distribution F}, that is, a rooted random tree
obtained from a Galton-Watson process with root having offspring distribution
F, and all children having a distribution F' (which may or may not be the same
as F).

Let Sa  (2) denote the Stieltjes transform of the empirical measure ESD(A ).

It was shown in [Bordenave and Lelarge, 2010, Theorem 2| that there exists a
unique probability measure Q on H such that, for each z € CT,

p -1
Y(z) < (z +3° n(z)>
=1

where P has distribution F' and Y, {Y;};>1 are i.i.d. with law @) and independent
of P. Moreover,

lim Sa,(z) =EX(z)in L',

N—o0

where X (z) is such that:

where {Y;};>1 are i.i.d. copies with law @, and P, is a random variable inde-
pendent of {Y;};>1 having distribution F.

The analysis and expressions are similar for Sa  , as illustrated in Bordenave
and Lelarge [2010].
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§1.5.3 Further literature

Adjacency matrix

In recent years, there has been significant research on inhomogeneous Erdgs—Rényi
random graphs, which can be equivalently modelled by Wigner matrices with a
variance profile. The limiting spectral distribution of the adjacency matrix of
such graphs has been studied in Chakrabarty et al. [2021b]|, Zhu [2020], Bose
et al. [2022], while local eigenvalue statistics have been analysed in Dumitriu
and Zhu [2019], Ajanki et al. [2019]. Zhu and Zhu [2024] studies the fluctu-
ations of the linear eigenvalue statistics for a wide range of such inhomogeneous
graphs. Additionally, various properties of the largest eigenvalue have been in-
vestigated in Cheliotis and Louvaris [2024], Husson [2022], Chakrabarty et al.
[2022], Ducatez et al. [2024], Dionigi et al. [2023]. One of the most significant
properties of the limiting spectral measure for random graphs is its absolute
continuity with respect to the Lebesgue measure, which is closely tied to the
concept of mean quantum percolation [Bordenave et al., 2017, Anantharaman
et al., 2021, Arras and Bordenave, 2023]. Quantum percolation investigates
whether the limiting measure has a non-trivial absolutely continuous spectrum.
Recently, it was shown in Arras and Bordenave [2023] that the adjacency oper-
ator of a supercritical Poisson Galton-Watson tree has a non-trivial absolutely
continuous part when the average degree is sufficiently large. Additionally, Bor-
denave et al. [2017] demonstrated that supercritical bond percolation on Z¢ has
a non-trivial absolutely continuous part for d = 2. These results motivate sim-
ilar questions for kernel-based random graphs and other percolation models. In
Bhamidi et al. [2012] the spectra of the adjacency matrix of random trees are
studied, including the preferential attachment tree. Spectral analysis of weighted
adjacency matrices has also been used in hidden clique problems (see Chatterjee
et al. [2025]).

Laplacian Matrix

Bryc et al. [2006] established that, for large symmetric matrices with i.i.d.
entries, the empirical spectral distribution (ESD) of the corresponding Laplacian
matrix converges to the free convolution of the semicircle law and the standard
Gaussian distribution. In the context of sparse Erdés—Rényi random graphs,
Huang and Landon [2020] studied the local law of the ESD of the Laplacian
matrix. They demonstrated that the Stieltjes transform of the ESD closely ap-
proximates that of the free convolution of the semicircle law and a standard
Gaussian distribution, down to scale N~!. Additionally, they showed that the
gap statistics and averaged correlation functions align with those of the Gaus-
sian Orthogonal Ensemble in the bulk. Ding and Jiang [2010] investigated the
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spectral distributions of adjacency and Laplacian matrices of random graphs,
assuming that the variance of the entries depend only on N. They established
the convergence of the ESD of these matrices under such conditions. The res-
ults for the Erdés-Rényi random graphs were extended to the inhomogeneous
setting by Chakrabarty et al. [2021b]. In a recent work, Chatterjee and Hazra
[2022] derived a combinatorial way to describe the limiting moments for a wide
variety of random matrix models with a variance profile.

§1.6 Outline of the thesis

The three main chapters of this thesis are based on three papers on spectral
properties of inhomogeneous random graph models.

Chapter 2

In Chapter 2, we study the inhomogeneous Erdgs-Rényi random graph model
on NN vertices in the sparse setting, where vertices have deterministic weights
and edges are added between two vertices independently with a probability
that is proportional to a function of their two weights, scaled by a factor of N.
We take the vertex set [N], and consider a sequence of deterministic weights
(w;)¥.,, such that if oy is a uniform random variable on [N], then there exists

a limiting random variable W with law i, such that w,, LW, We add edges
independently with probability

Dij = ENf(w’Mw]) 7i7j € [N]a

where ey is a sparsity parameter such that Ney — A € (0,00), and f is a
bounded continuous function.

We study the scaled adjacency matrix Ay of the random graph, with entries
given by

An.3) = Ax(ii) £ = Ber(py).

In Theorem 2.3.7, we find that there exists a deterministic non-degenerate lim-
iting measure py such that limy_,oo ESD(AN) = p) in probability, and the
moments of uy are given by

0, k is odd,
& k/2+1
/w pa(dz) = > A3 Gy, [, w), K is even,
=2 7eSS(k):
lym|=t

where SS(k) is the set of Simple Symmetric partitions of [k], as in Bose et al.
[2022], G is a graph associated to a partition 7 that is described later, and
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t(-,-,-) is a generalisation of the graph homomorphism density that appears in
graphon theory in Lovész and Szegedy [2006]. We further find that limy_, .o ) =
pf, where iy is the measure in the dense regime that appears in Chakrabarty
et al. [2021b], Zhu [2020], which extends the results of Jung and Lee [2018].

In Theorem 2.3.9, under the assumption that f is Lipschitz in one coordinate,
we show that, in an appropriate Banach space B, there exists a functional ¢} € B
that is the unique solution to a fixed-point equation in B, such that

o o0

Spa(2) =1 [ e M0 [T 0 au pfay), = e,
0 0

where ds(y) = [ f(z,y)pw(dx). This chapter is based on the paper Avena et al.

[2023].

Chapter 3

In Chapter 3, we study a model with spatial geometry. We consider a kernel-

based random graph model on a d—dimensional discrete torus V y, which serves

as the vertex set of the random graph. Each vertex ¢ € V has a random

weight W;, where (W;)icv, are i.i.d. random variables sampled from a Pareto

distribution W (whose law is denoted by P and measure uyy) with parameter

7 — 1, where 7 > 1, that is,

P(W > t) = t_(T_l)l{tZH, + 1{t<1}-

Conditionally on the weights, edges are added independently with probability

. . k(W;, W,
Pij iZPW(“—U)Zg(- -~ ;) A
lli =4l
where || - || is the torus distance, a € (0, d) is a parameter of choice, and & is a

kernel that has the form x(z,y) := (z Vy)(x A y)? for some 0 < 0 < 7 —1, as
in Jorritsma et al. [2023].

We consider the scaled adjacency matrix of this graph, which is a symmetric
random matrix with entries

An(irj) = An(G, i) £ ey Ber(pyj) ,

where ¢y = N'=®. For 7 > 2, Theorems 3.2.1 and 3.2.3 show that there exists
a deterministic non-degenerate limiting measure fi, » with finite second moment
such that
lim ESD(AN) = fto,7, in P—probability,
N—o00

where P = P ® PV is the joint law.
Theorem 3.2.4 shows that p, , is absolutely continuous with respect to the
Lebesgue measure on R. Theorem 3.2.5 shows that, when 7 > 3 and 0 < 7 — 2,
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in an appropriate Banach space B there exists a unique analytic solution a* € B
to a fixed-equation in B, such that

S, = [ @' awda), zech,
1

When o = 1, there is an explicit description of the measure. In particular,
Theorem 3.2.2 tells us that pq » = psc X pyy, with tail asymptotic pg (2, 00) ~
Cr2z727=1) ag z — oo, for some 7—dependent constant C; < co. Here, X is the
free multiplicative convolution of measures. This chapter is based on the paper
Cipriani et al. [2025].

Chapter 4

In Chapter 4, we take the model from Chapter 3 with ¢ = 1 and 7 > 3, that
is, weights with finite variance. This model is called the scale-free percolation
model. We begin with the scaled adjacency A as in Chapter 3, and define the
corresponding Laplacian as Ay = Ay — Dy. We study the centred Laplacian
A% = Ay — E[Ay]. Theorem 4.2.1 shows that there exists a deterministic
limiting measure v, such that

lim ESD(A%) =v; in P—probability .
N—o00

Theorem 4.2.5 identifies v, in terms of the spectral distribution of some non-
commutative operators. Heuristically, v, has (in an operator sense) the law
given by the spectral law of

W2SW2 4 myWAGW A,

where W is an unbounded operator with spectral law given by the Pareto dis-
tribution, S is a bounded compact operator whose spectral law is the semicircle
law, and G is an unbounded operator whose law is given by the Gaussian dis-
tribution. We will see a more formal description of this later on in Chapter 4.
This chapter is based on the paper Hazra and Malhotra [2025].

Chapter 5
In Chapter 5, we show some further simulations of the above models, and con-
clude with a short discussion on open problems.

§1.7 Concluding remarks

The thesis gives a spectral perspective to some inhomogeneous random graph
problems. The results mainly describe properties of the bulk distribution. There
are many other interesting features, and we hope that this thesis will form a
baseline for future research.
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CHAPTER 2

Limiting spectra of inhomogeneous
random graphs

This chapter is based on:
L. Avena, R.S. Hazra, N. Malhotra. Limiting spectra of inhomogeneous random
graphs. |arziv:2312.02805], 2023.

Abstract

We consider sparse inhomogeneous Erdgs-Rényi random graph ensembles where
edges are connected independently with probability p;;. We assume that p;; =
en f(w;, w;) where (w;);>1 is a sequence of deterministic weights, f is a bounded
function and Ney — A € (0,00). We characterise the limiting moments in
terms of graph homomorphisms and also classify the contributing partitions.
We present an analytic way to determine the Stieltjes transform of the limiting
measure. The convergence of the empirical distribution function follows from
the theory of local weak convergence in many examples but we do not rely on
this theory and exploit combinatorial and analytic techniques to derive some
interesting properties of the limit. We extend the methods of Khorunzhy et al.
[2004] and show that a fixed point equation determines the limiting measure.
The limiting measure crucially depends on A and it is known that in the homo-
geneous case, if A — oo, the measure converges weakly to the semicircular law
(Jung and Lee [2018]). We extend this result of interpolating between the sparse
and dense regimes to the inhomogeneous setting and show that as A — oo, the
measure converges weakly to a measure which is known as the operator-valued
semicircular law.


https://arxiv.org/pdf/2312.02805
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2. Limiting spectra of inhomogeneous random graphs

§2.1 Introduction

Homogeneous Erdés-Rényi Random Graphs (ERRG) serve as the basis for many
mathematical theories in random graphs. Real-world networks are highly in-
homogeneous and have a far more complex structure. Various attempts have
been made to generalise this to other kinds of random graph models. One of the
successful extensions is the inhomogeneous Erdgs-Rényi random graph model
introduced by Bollobas et al. [2007]. This graph has N vertices labelled by
[N] =1,...,N, and edges are present independently with probability p;; given
by pij = w A1, where f is a nice symmetric kernel on a state space S x .5,
and x; are certain attributes associated with vertex ¢ belonging to S. If f is
bounded, the graph is a sparse random graph. To introduce the non-sparse
regime, in this article, we consider a small variant of the above inhomogeneous
random graph. The vertex set remains the same, but the connection probabil-
ities are given by

Pij = st(wi,wj) A1, (2.1)

where €y is a tuning parameter, (w;) is a sequence of deterministic weights,
and f is a symmetric, bounded function on [0,00)2. The weights can also be
generally random, but we do not consider this case. Note that when Ney — oo,
the average degree is unbounded, and when Ney = O(1), the average degree
is bounded. We call the former case dense and the latter case sparse. In the
sparse case, the properties of the connected components were studied in Bol-
lobas et al. [2007]. They studied the properties of the connected components
and their relationship with the branching process. It was shown that the largest
component of the graph has a size of order NN if the operator norm of the kernel
operator corresponding to f is strictly greater than 1 (see also |[van der Hofstad,
2024, Theorem 3.9]). In the subcritical case, the sizes of the largest connec-
ted components can exhibit different behaviour compared to the ERRG. The
study of the largest connected components in various inhomogeneous random
graphs has attracted a lot of attention (see, for example, Bhamidi et al. [2010],
Broutin et al. [2021], Bet et al. [2023], van der Hofstad [2013], Devroye and
Fraiman [2014]). In this chapter, we are interested in the empirical distribution
of the eigenvalues of the adjacency matrix of the graph and how the transition
occurs from the sparse to the dense case in terms of the limiting spectral dis-
tribution. There hasn’t been much literature in this area, even though various
specific graphs have been studied. For example, the largest eigenvalue of the
sparse Chung-Lu random graph was studied in Chung et al. [2003|, and this was
extended to an inhomogeneous setting by Benaych-Georges et al. [2020, 2019].
The bulk of the spectrum of sparse graphs is mainly studied through local weak
convergence. Here, we present a unifying approach to understanding both the
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sparse and the dense cases, allowing us to interpolate between the two regimes.

In the case of homogeneous ERRG, it is known that in the dense case, the
empirical distribution converges to the semicircle law after an appropriate scal-
ing (Tran et al. [2013]). In the sparse case, it converges to a measure that
depends on the parameter Ney — A. The behaviour is much more complic-
ated in the sparse case. Various interesting properties were predicted by Bauer
and Golinelli [2001]. The existence of the limiting distribution was proved by
Khorunzhy et al. [2004], who also showed some interesting properties of the
moments and the limiting Stieltjes transform. The local geometric behaviour
of sparse random graphs can be well studied using the theory of local weak
convergence (LWC), which builds on the works Aldous and Lyons [2007] and
Benjamini and Schramm [2001]. It roughly describes how a graph looks like in
the limit around a uniformly chosen vertex. For a detailed review of LWC and
various other applications, see van der Hofstad [2024]. In a remarkable work
by Bordenave and Lelarge [2010], it was proved that if a graph with N vertices
converges locally weakly to a Galton-Watson tree, then the Stieltjes transform
of the empirical spectral distribution converges in L' to the Stieltjes transform
of the spectral measure of the tree, and it satisfies a recursive distributional
equation. The example of homogeneous ERRG was treated in [Bordenave and
Lelarge, 2010, Example 2|. The limiting measure of sparse ERRG depends on
A and is still very non-explicit. It was proved by Bordenave et al. [2017], Arras
and Bordenave [2023| that the measure has an absolutely continuous component
if and only if A > 1. The size of the atom at the origin was shown by Bordenave
et al. [2011], and the nature of the atomic part of the measure was studied in the
same article. The study of so-called extended states at origin was initiated in
Coste and Salez [2021], and it was shown that for A < e, there were no extended
states, and for A > e, it has extended states. All these results were conjectured
in Bauer and Golinelli [2001]. Most of these results on local limits show that
properties are generally true for unimodular Galton-Watson trees.

In the simulations of Bauer and Golinelli [2001], it is clear that when A
is slightly larger than 1, the limiting measure already starts taking the shape
of the semicircle law. It was shown in Jung and Lee [2018| that indeed, if
A — 00, then the limiting measure converges to the semicircle law. In the
general case, the moments of the limiting measure depend on certain kinds of
graph homomorphism counts, which also appeared in the works of Zhu [2020)].
Although the theory of local weak convergence is very useful, we do not know if
it can be used to derive the moments of the limiting measure. In Chakrabarty
et al. [2021b], they considered IER to have weights w; = i/N, and Ney — oo.
This result can be extended to general deterministic weights without significant
effort, and we state this general result in Section 2.2. The limiting measure is
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2. Limiting spectra of inhomogeneous random graphs

well-known in the free probability literature and appears as a universal object in
many inhomogeneous systems, referred to as the operator-valued semicircle law
[Speicher, 2011, Theorem 22.7.2]. The Stieltjes transform satisfies a recursive
analytic equation.

Our contribution

As mentioned earlier, although the convergence of the empirical spectral distri-
bution of graphs with a local-weak limit follows from the general result in Bor-
denave and Lelarge [2010], the limiting moments and contributing partitions are
not known in full generality. It is also unclear how closely the limiting measures
align in the sparse and dense regimes. Our main motivation for the work comes
from |Jung and Lee, 2018, Theorem 1|, which addresses these issues in the case
of ERRG. We extend the results from ERRG to inhomogeneous models. We
explicitly derive the moments of the limiting measure for the inhomogeneous
setting, extending the works of Khorunzhy et al. [2004], albeit with a different
proof. We also study the Stieltjes transform of the limiting measure, following
the idea of Khorunzhy et al. [2004], and attempt an expansion of it for A large
enough. This has also gained attention in the physics literature, see references in
Akara-pipattana and Evnin [2023]. We show that when A > 1, the limiting mo-
ments closely resemble those of the IER, as derived in Chakrabarty et al. [2021b]
and also implied by the work of Zhu [2020]. We derive the Stieltjes transform
in the sparse setting using a fixed-point equation. The fixed point is simpler
in the case of homogeneous ERRG, but in the inhomogeneous case, it becomes
more complex. We explicitly characterise this fixed-point equation. We believe
that in the future, this will aid in determining the rate of convergence of the
empirical spectral distribution, which can be precisely quantified in terms of A
and . The rates of convergence in the free central limit theorem were recently
explored in Banna and Mai [2023], but these results are not directly applicable
to our setting. We leave this as an open problem. Obtaining an explicit rate
of convergence will provide an exact explanation of why the limiting measure
in the sparse setting is very close to the non-sparse setting for relatively small
A > 1. We believe that the methods used in this article will be applicable in a
setting even when the local limits of the graphs are not tree-like.

Brief summary of the results

The two main results of this work aim to characterise the limiting spectral meas-
ure of inhomogeneous Erdés-Rényi random graphs. Our first result, Theorem
2.3.7, gives a characterisation of the moments of this measure, where the k"
moment for any k > 0 is described in terms of homomorphism densities of the
inhomogeneity function f and special classes of partitions of the tuple [k]. We
can recover the moments of the dense regime asymptotically (as A — 00) using
this result. The second result, Theorem 2.3.9, provides an analytic character-
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isation of the measure. In particular, we provide an analytic characterisation of
a functional of the resolvent of the adjacency matrix in terms of a fixed-point
equation. As a consequence, in Corollaries 2.3.10 and 2.3.11, we obtain the
Stieltjes transform of the sparse and dense limiting measures. The form of the
limiting Stieltjes transform can be seen as an alternative description of the form
obtained through local weak convergence (whenever it applies).

Outline

We begin Section 2.2 by describing the model and stating the results of the dense
regime. We state the assumptions on the sparse setting more explicitly and pro-
ceed by stating our main results for this setting. We then describe a relationship
with local weak convergence and also give some examples of popular random
graph models. We show that the sparse Chung-Lu type model falls into our set-
ting, and while the Norros-Reittu model and the Generalised Random Graph
model do not directly fall into our setting, we show that asymptotically the three
models have the same spectral distribution, which has a free-multiplicative part
that can be seen from our main results.

In Section 2.4 we prove our first main result, which takes a combinatorial
approach, and we set up all the necessary tools used in proving the result. We
identify the moments of the limiting spectral measure in terms of partitions
of a tuple and graph-homomorphism densities. We provide a characterisation
of the partitions and explicit expressions for the moments that are given by
homomorphism densities defined based on these partitions. We further identify
a leading order of the moments and a polynomial in A\~!, which was also seen
for the homogeneous setting in Jung and Lee [2018].

In Section 2.5 we prove our second main result, which in contrast has an ana-
lytic flavour. We set up the relevant analytic structures, and instead of working
directly with the Stieltjes Transform, we work with a functional of the resolvent
of the adjacency matrix, which was introduced in Khorunzhy et al. [2004]. We
borrow both fundamental and advanced tools from analysis to provide an exact
analytic characterisation of the limiting spectral measure. We conclude with
the Appendix as Section 2.6 where we state the key analytic tools we use in
Section 2.5.

§2.2 Setting
§2.2.1 Model

We consider the inhomogeneous Erdés-Rényi random graph (IER) Gy on the
vertex set [N] = {1,..., N} where edges are added independently with prob-
ability p;;. As mentioned before, we will assume that p;; has a special form
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2. Limiting spectra of inhomogeneous random graphs

as
Dij = 6Nf(w17/w]) A 15

where ey is a tuning parameter such that ey — 0, (w;)i>1 is a sequence of
deterministic non-negative weights and f : [0,00)? — [0,00) is bounded and
continuous. We will use Py to denote the law of this random graph, and we will
drop the subscript IV for notational convenience, and £ will be the expectation
with respect to the law P. We will always assume that N is large enough and
hence ey is small enough to make p;; <1 since f is bounded.

Let My denote the adjacency matrix of the graph Gy, that is, the (4, j)-th
entry is 1 if ¢ shares an edge with j, and 0 otherwise. So My is a symmetric
matrix, where any entry My (7, ) is distributed as Bernoulli random variable
with parameter p;; as in (2.1) and {Mp (¢, j),? > j} is an independent collection.
Instead of studying the adjacency matrix My we will study the scaled adjacency
matrix. In particular, we do a CLT-type scaling by the variance of the entries,
that is, we study the matrix

1
N&N(l —EN)

My. (2.2)

The empirical measure which puts mass 1/N on each eigenvalue of an N x N
random matrix A is called the Empirical Spectral Distribution of Ay, and is

denoted by
N

ESD(Ay) = % 3 oy (2.3)
i=1

We are interested in studying the following object:

N
M 1
ESD N == o,
NSN(l—EN) Ni:l

where A1, ..., Ay are the eigenvalues of (Neyn (1 —ey))~/2My.
We are interested in the weak convergence (in probability) of the above

measure and the limiting measure is called the Limiting Spectral Distribution
(LSD). The limiting measure depends on the following two geometric regimes
in random graphs and its properties differ in the two cases:

e Dense Regime: ¢y — 0 and Ney — oco. The connectivity regime with
Nen > Clog N falls in this regime.

e Sparse Regime : ey — 0 and Ney — A € (0,00).
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Dense regime

In literature, the dense regime is characterised by ey = constant but we will not
use the features of dense graphs in this article and hence by abuse of terminology,
we say that a graph is dense when it is not sparse. Let us now recall briefly what
happens in the dense regime. The following result was proved in Chakrabarty
et al. [2021b] and can also be obtained from Zhu [2020)].

Theorem 2.2.1 (ESD in the dense case).
Consider the IER graph with p;; as in (2.1) with ey — 0 and Ney — oo .
Suppose the deterministic weights satisfy the following assumption:

Let on be an uniform random variable on [N]| and let Wy = wy,. We
assume that there exists a W with law p,, such that

Wy 5 Ww.
Then there exists a measure iy which is compactly supported such that

My
NEN(l —EN)

N—oo

lim ESD < ) = py weakly in probability.

Many interesting properties of this limiting measure are known. To define
the moments we need a quantity which is similar to the homomorphism density
of graphons. Define

(H foai) = | [ Ffwwws®i@w), @4

(0,000 (4 bYeE(Hy)

where Hy is a simple graph on k vertices with the edge set E(Hjy), ,ui,@k() is

the k-fold product measure of p,(-), and w = (wy, ..., wg). If we restrict the
range of f to [0,1] and take p,(-) as the Lebesgue measure on [0, 1], then this
quantity is the standard graph homomorphism density (see Lovész and Szegedy
[2006]).

The rooted planar tree is a planar graph with no cycles, with one distin-
guished vertex as a root, and with a choice of ordering at each vertex. The
ordering defines a way to explore the tree starting at the root. One of the al-
gorithms used for traversing the rooted planar trees is depth-first search. An
enumeration of the vertices of a tree is said to have depth-first search order if
it is the output of the depth-first search.

We now recall the definition of a Stieltjes transform of a measure p on R.
For z € C*, where C* is the upper half complex plane, the Stieltjes Transform
of a measure p is given by

Su(2) = | ——n(da).

r—z
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2. Limiting spectra of inhomogeneous random graphs

The following proposition gives the properties of the measure py which appears
in Theorem 2.2.1.
Proposition 2.2.2.
(a) | Moments| The measure py is the unique probability measure identified
by the following moments:

Ci

/x%,uf(da:) = Zt(TfH,f, Haw)s /x%ﬂ,uf(dx) =0, k>0, (2.5)

j=1

where Tf“ is the j" rooted planar tree with k + 1 vertices and Cy, is the

k" Catalan number.

(b) [Stieltjes transform| There exists an unique analytic function H defined
on Ct x [0,00) such that

Su,(5) = | e o)

and H(z,x) satisfies the integral equation
Her) =14 o) [ M) @ ialdy), 020 (20)
0

Example 2.2.3 (Rank 1).
One special case which arises in many examples of random graphs, and will
be discussed later is when f has a multiplicative structure, that is, f(x,y) =
r(z)r(y), where r : [0,00) — [0,00) is a bounded continuous function. In this
case, the measure

p = ps X ()
where pse is the standard semicircle law and i,y is the law of r(W) and X
1s the free multiplicative convolution of the two measures. When r is identically
equal to 1 then py = p, the standard semicircle law. We refer to [Chakrabarty
et al., 2021b, Theorem 1.3/ for details.

Sparse regime

The seminal work of Bordenave and Lelarge [2010] characterises the limiting
spectral distribution for locally tree-like graphs. In particular, if one takes Ay
to be the scaled adjacency matrix as given in (2.2) of a random graph Gy, they
show that if the following hold:

e The sequence of random graphs {Gy}ny>1 have a weak limit G;

e For a uniformly chosen root oy € Gy, the degree sequence of the rooted
graph (deg(Gy,on))n>1 is uniformly integrable;
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e Let G* denote the set of rooted isomorphism classes of rooted connected
locally finite graphs, and let Us(G) be the distribution on G* x G* of the
pair of rooted graphs ((G, 01), (G, 02)), where 01, 09 are uniformly chosen
roots of G. Then, Us(Gy) converges weakly to G ® G, that is, to two
independent and identical copies of G;

then, there exists a unique probability measure u) on R such that ESD(Ay) =
) weakly in probability as N — oo. Furthermore, it is shown that when f =1,
the measure u) represents the expected spectral measure associated with the
root of a Galton-Watson tree with an offspring distribution of Poi(\) and weights
1/ V/A. This result comes from the theory of local weak convergence, also known
as Benjamini-Schramm convergence (see van der Hofstad [2024], Benjamini and
Schramm [2001]), which is a powerful tool to study spectral measures associated
with many sparse random graph models.

In particular, consider the space H of holomorphic functions f : C* — CT,
equipped with the topology induced by uniform convergence on compact sets.
Then, this is a complete separable metrizable compact space. The resolvent of
the adjacency operator is given as

Ra,(2) = (Ay —2I)7!

for each z € C*. The map z — Ra (2)(i,4) is in H, and the Stieltjes transform
of ESD(Ay) is given by trRa,(2), where tr = N~!Tr denotes the norm-
alised trace operator. Let G* denote the set of rooted isomorphism classes of
rooted connected locally finite graphs. Assume that the random graph sequence
(GN)nN>1 has the random local limit G € G*, and further that G is a Galton
Watson Tree with degree distribution Fj, that is, a rooted random tree obtained
from a Galton-Watson process with root having offspring distribution Fi and
all children having a distribution F' (which may or may not be the same as F}).

Let Sa  (2) denote the Stieltjes transform of the empirical measure ESD(A ).

It was shown in [Bordenave and Lelarge, 2010, Theorem 2] that there exists a
unique probability measure @ on H, such that for each z € C*

P -1
Y(z) 2 (z +3 m(z)>
=1

where P has distribution F' and Y, {Y;};>1 are i.i.d. with law @) and independent
of P. Moreover

lim Sa,(z) =EX(z) in L',

N—oo
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2. Limiting spectra of inhomogeneous random graphs

where X (z) is such that:

P, s
X(z) 2 - <z+ Zn(@) , (2.7)

where {Y;};>1 are i.i.d. copies with law @, and P, is a random variable inde-
pendent of {Y;};>1 having distribution F.

In [Bordenave and Lelarge, 2010, Example 2|, we see that the sparse Erdgs-
Rényi random graph with p = % falls in their setup, and in particular, P is
distributed as Poi(A). For a general f, [Bordenave and Lelarge, 2010, Theorem
1] still guarantees the existence of ), since the graphs we will consider will
have a local weak limit known as the multi-type branching process (see |[van der
Hofstad, 2024, Chapter 3| for more details). As f is bounded, we get that the
degree sequence will still remain uniformly integrable. As mentioned before
we will not follow this well-known route of local weak convergence. Instead,
we show the above convergence through albeit classical methods. We now in-
troduce the conditions under which we will work. We will have the following
sparsity assumption on ey and a regularity assumption on the function f and
the weights:

A.1 Connectivity function: Let f : [0,00)? — [0,00) be a bounded, con-
tinuous function, with |f| < Cf € (0, 00),

A.2 Sparsity assumption : Ney — A € (0,00),

A.3 Assumption on weights: Let oy be an uniform random variable on [N]
and let Wy = w,,. We assume that there exists a W with law p,, such
that

Wy 5 W,

We make some preliminary remarks about the assumptions. Since f is
bounded, we can easily see that f is p,—integrable. In the sparse setting,
in most important examples, the graph is locally tree-like and this can be seen
from the theory of local weak convergence.

Note that the limit A — oo recovers the dense regime. By this choice, we
can see that 1 —ey =~ 1 as N becomes very large, and Ney(1—en) — . Thus,
our matrix of interest is a scaled adjacency matrix now defined as follows:

Ay = ——My. (2.8)

-
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§2.3 Main Results

In this subsection, we state the main results of this article. As mentioned before
in the introduction, we would like to understand first the limiting empirical
distribution of the sparse inhomogeneous Erdés Rényi (IER) random graph and
also study the behaviour of the measure when the sparsity parameter increases.
Recall that the adjacency matrix is defined in (2.8) and the empirical spectral
distribution is denoted by ESD(Ay) (see (2.3)). In what follows, we will see
that

lim ESD(A ) = p) weakly in probability (2.9)

N—00
and py = py where puy is as in Theorem 2.2.1. For the homogeneous case,
where f = 1, we get the final limit as the classical Wigner’s semicircle law, that
is, puy = ps. These iterated limits were studied in Jung and Lee [2018]. An
interesting open question is how close py is to piy. Although we do not manage
to give an explicit estimate, through the moment method we show that it is
very close and the structure of the moments of yf is hidden inside the structure
of the moments of puy. This will be our first result. To describe the moments
we need to introduce some notation.

§2.3.1 Method of moments: Combinatorial Approach

We first define the Special Symmetric Partitions which was introduced in Bose
et al. [2022]. Let P (k) denote the set of partitions of k and Pa(k) be the set of
pair partitions where each block has size 2. Let NC(k) be the set of non-crossing
partitions of [k] and NC3(k) be the set of non-crossing pair partitions of [k].
Note that |[NCa(2k)| = k—il(%f) and these are known as the Catalan numbers
and represent the even moments of the semicircle distribution.

Partition terminology. Let 7 be a partition of a tuple [k]. Let 7 consist of
disjoint blocks Vi, Vs, ..., Vp,, for some 1 < m < k. We arrange the blocks in
the ascending order of their smallest element. For any block V;, a sub-block is
defined to be a subset of consecutive integers in the block. Two elements j and
k in a block V; are said to be successive if for all a between j and k, a ¢ V;.

Definition 2.3.1 (Special Symmetric Partition).
A partition m of a tuple [k] = {1,2,...,k} is said to be a Special Symmetric
partition if it satisfies the following:

o All blocks of ™ are of even size.
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2. Limiting spectra of inhomogeneous random graphs

e Let V € 7w be any arbitrary block, and let a,b € V be two successive
elements in V with b > a. Then, either of the following is true:
1.b=a+1, or

2. between a and b there are sub-blocks of even size.
In other words, there are blocks Vi, Va,...,Vy, such that there ex-

ist elements {ai,, @iy 41, Qij+k } € V1, {Qiy, -, Qigrky ) € Va,
oo {aiys o Giqk, € Vo, with a = a;, — 1 and b = aj4k, + 1,
such that ki, ko, ..., kp are even.

We denote the class of Special Symmetric partitions as SS(k). Note that for
k odd, SS(k) = 0. For example, take m = {{1,4,5,8},{2,3,6,7},{9,10}} €
S5(10). Note here that between 4 and 5 in the first block, there are no elements
from the other blocks, and between 5 and 8, there is the sub-block {6, 7} that
is of even size.

In Bose et al. [2022] a more elaborate definition was given and this is useful
in computations. Later, it was shown by [Pernici, 2021, Section 3| that the
definition in Bose et al. [2022] is equivalent to the above one. In Pernici [2021],
the set SS(2k) is denoted by P2(2) (k), a special subclass of k-divisible partitions.
These partitions appeared as “Clickable Partitions” in Ryan [1998|, where they
were introduced to describe the limit distribution of dense random matrix mod-
els, and in the same spirit, they were also used for sparse random graphs in the
paper Male [2017].

Remark 2.3.2.
We note down some important properties of SS(k):

1. If k is even, then

{m e SS(k):|r| =k/2} ={m e NCy(k)}.

2. SS(2k) = NC(2k) for 1 < k < 3. When k > 4, there are partitions
m € SS(2k) that are either crossing or non-paired. For example, for k =8,
{{1,2,5,6},{3,4,7,8}} is a Special Symmetric partition. In particular,
crossings start appearing when there are at least two or more blocks in a
partition having 4 or more elements.

8. The set of Special Symmetric partitions are in one-to-one correspondence
with coloured rooted trees (see [Bose et al., 2022, Lemma 5.1]) and these
trees appeared first in the analysis in the works of Bauer and Golinelli

[2001].
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Any partition 7 € P(k) can be realized as a permutation of [k], that is, a
mapping from [k] — [k]. Let Si denote the set of permutations on k elements.
Let v = (1,2,...,k) € Sk be the shift by 1 modulo k. We will be interested in
the compositions of the two permutations « and 7, denoted by 7, and this will
be seen below as a partition.

Remark 2.3.3.

While m s a partition and v 4s a permutation, we do a composition in the
permutation sense. We read the partition m as a permutation, compose it with
the permutation v, and finally read ym as a partition. As an example, consider
m={{1,2},{3,4}} andy = (1,2,3,4). To compute ymw, we read 7 as (1,2)(3,4),
and compute ym = (1,3)(2)(4). We finally read ym as {{1,3},{2},{4}}.

Definition 2.3.4 (Graph associated to a partition).

For a fixed k > 1, let v denote the cyclic permutation (1,2,...,k). For a
partition m, we define Gy = (Vyr, Eyr) as a rooted, labelled graph associated
with any partition m of [k], constructed as follows.

o Initially consider the vertex set Vo = [k] and perform a closed walk on
k] as1 =2 —=3 — --- = k — 1 and with each step of the walk, add an
edge.

o FEvaluate ym, which will be of the form vym = {Vi,Va,...,Vy,} for some
m > 1 where {V;}; are disjoint blocks. Then, collapse vertices in Vyr to
a single vertex if they belong to the same block in vym, and collapse the
corresponding edges. Thus, Vyr = {V1,..., Vi }.

e Finally root and label the graph as follows.

— Root: We always assume that the first element of the closed walk (in
this case ‘1°) is in Vi, and we fix the block Vi as the root.

— Label: Fach vertex V; gets labelled with the elements belonging to the
corresponding block in ym.

Example 2.3.5.
Consider for example partitions of k = 6 and reading the partitions as permuta-
tions and evaluating their composition with v gives us:

(a> T = {{1>27576}7 {374}}a (a) YT = {{13335}7 {2a6}7 {4}}7
(b> T2 = {{1’2’374}a {576}}a (b) Y2 = {{13335}’ {2a4}7 {6}}7
(C> 3 = {{1’6}a {2337475}}' (C) Y3 = {{1}7 {274a 6}3 {3’5}}'

The corresponding graphs Gz, , Gy, and Gyr, are as follows:
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One can see that structurally the three graphs are the same. However, if we root
them on V1, then the first two graphs are different from the third. Further, if we
label the vertices as shown, all three graphs become distinct.
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Example 2.3.6.
Here, we illustrate the type of graph structures that can occur for m € SS(k).
Consider k = 8, and the following three partitions.

(a) m = {{1,2,3,4},{5,6,7,8}}. (a) ym = {{1,3,5,7},{2,4},{6,8}},
(b) ™ = {{174a 5a8}a {2737677}}' (b) Y2 = {{(175}7 {274> 678}a {33 7}}7
(c) m3 ={{1,2,4,5},{3,6,7,8}}. (c) ym3 = {{1,3,7},{2,5},{4,6,8}}.

Then, 71,79 € SS(8) but w3 ¢ SS(8). Moreover, 71 is non-crossing whereas
o has 2 crossings. The corresponding graphs are as below.

The following result is the first main result of the article. This is an extension
of the results obtained recently in Bose et al. [2022] and the homogeneous case
obtained in Jung and Lee [2018].

Theorem 2.3.7 (Identification of moments).

(a) Let Ay be the adjacency matriz of the sparse IER random graph as defined
in (2.8) satisfying assumptions A.1-A.3. Then there exists a deterministic
measure [y such that

lim ESD(AN) = py weakly in probability.

N—oo

52



§2.3. Main Results

Moreover, uy is uniquely determined by its moments, which are given as follows:

0, k is odd,
k/2+1
my(pr) = /wkm\(dx) =3\ X > A5 Gy, [ lw), kK is even,
=2 7eSS(k):
[y|=l
(2.10)

where SS(k) is the set of all Special Symmetric partitions of [k] as defined
in Definition 2.3.1, G 1is the graph associated to a partition m as defined in
Definition 2.3.4, and t is the homomorphism density as in (2.4).
(b) As A — oo,
Hx = [bf,

where py is the measure described in Theorem 2.2.1.

Remark 2.3.8.

Note that limiting second moment is given by mo = t(Gyx, f, pw) where m =
{1,2} and vm = {{1},{2}}. Hence G is the graph with 2 vertices and 1 edge.
Therefore

mam) = [ F o).

and hence the measure s non-degenerate.

§2.3.2 Stieltjes transform: Analytic approach

It is well-known that py can be characterised by its Stieltjes transform, which,
in turn, can be characterised by a random recursive equation. Local weak
convergence is a powerful tool for studying the Stieltjes transform of spectral
measures associated with sparse random graphs. However, it becomes challen-
ging to provide accurate estimates on the Stieltjes transform to study local laws
and extreme values. Therefore, we present an alternative approach to studying
the Stieltjes transform of the spectral measure of IER graphs. The ideas used
here originate from the works of Khorunzhy et al. [2004].
We denote the upper half complex plane by

Ct={2€C:z=C(+w,n>0}

For an analytic approach to the problem, we analyse the resolvent of this matrix,
defined as
Ra,(2):=(Ay —2I)"!, z e C".
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2. Limiting spectra of inhomogeneous random graphs

The Stieltjes transform of the empirical spectral distribution of Ay is given by

San(2) = / L ESD(AN)(d2) = tr(Ra (2)).

T —z
where tr denotes the normalised trace. To get more refined estimates we need
an additional assumption on the connectivity function:

A.4 f:]0,00)% — [0, 00) is symmetric and bounded by a constant C'y. Moreover,
f is Lipschitz in one coordinate, that is, for all z1,x2,y € [0, 00),

‘f(xhy) - f(any)‘ < CL|$1 - x2’

where C7, is the Lipschitz constant for f.

To state the result we will need a Banach space of analytic functions. Con-
sider the space B defined by

. [9(, )
B = :10,00) x [0,00) = C analytic | sup —= < 2.11
{<z>[>[> ytie | sup (00 (211)
and take the norm
[p(, y)|

[¢]ls = sup

z,y>0 \/1"‘?/‘

Then, (B,|| - ||B) is a Banach space. We defer the proof of this in Proposition
2.6 in the appendix.
Consider the function Gy : [0,00) x C* given by

N
1 )
Gn(u,z) = N eturii(2) (2.12)

=1

where 7Y (z) = Ra, (2)(i, 1), the i*h diagonal element of the resolvent of A . It
turns out that

OGN (u, z)

o = SAN (z)

u=0

and hence one can derive a form of the limiting Stieltjes transform.

Theorem 2.3.9 (Analytic functional of the resolvent).

Let AN be the adjacency of the IER random graph as defined in (2.8) and
satisfying assumptions (A.2)—(A.4). Further, consider G as defined in (2.12).
Define the function dy(x) as

dy(y) = /0 " f@ ype(d ). (2.13)
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Then, for z € C* there exists a function ¢*(z,u) := ¢*(x,u) € B such that for
each z € Ct and uniformly in u € (0,1] we have

Jim E[G(u,2)]

_1_\/17/ e—)\df(y)/ Meivzekw(y?”/*)dvuw(dy) (2.14)
0 0 \/{}

and

Var[Gn (u, z)] — 0.

Here, ¢* := ¢% is a unique analytic solution (in the space B) for the fized point
equation:

Q
i
=)
V)
o]
=
[©)
=
3
d

¢*(x, u)
= F.(¢")(z,u)

gl — > R O OOJ1(2\/%)evae)\¢*(y,§) .
@)~ [ 1) ”(fA et d>wiﬁ)

where J1 s the Bessel function of the first order of the first kind defined as

T o= (=1)k(22/4)k
Ji(z) = 2ZM (2.16)

Observe that there is a slight difference in the right-hand sides of (2.14) and
(2.15) but in the case f = 1 both are the same. The next corollary describes
the convergence of the Stieltjes transform.

Corollary 2.3.10 (Identification of the Stieltjes Transform).
Under the assumptions of the above theorem, we have that any z € CT,

SAy (2) = S, (2) in probability,
where py is as in Theorem 2.3.7. The S, (-) satisfies the following equation:

Suy (2) = L/ e)‘df(y)/ 2 W X) du py(dy), 2 € CT. (2.17)
0 0

To recover the dense regime, we study the asymptotic A — oo as in the next
corollary.
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2. Limiting spectra of inhomogeneous random graphs

Corollary 2.3.11 (Stieltjes Transform as A — o0).
For A\ = 0o, we have that

lim S, (2) = Sy, (2) (2.18)

A—00

for each z € C*, where Sy (2) satisfies an integral equation given by

Sus(2) = /OOOH(z,x)uw(d:E), (2.19)

where H(z, x) satisfies the f dependent fixed point equation (2.6).

Remark 2.3.12 (The case f = 1).
In the case when f = 1, we recover the homogeneous setting. We know ¢%
satisfies the fized point equation (2.15). If we substitute f =1 in (2.15) we get

o (z,u) =1 — \/a/ooo e (ﬁ/ooo ‘W\/‘gﬁ)emew(%i) dv) fw(dy) .

We see that the right-hand side has no dependency on the parameter x, and so,
we have a unique analytical functional ¢*(u) = ¢*(x,u) that satisfies the fized
point equation

gﬁv*(u) =1- e_’\\/ﬂ/ooo Jl(%m) 02 (0/N) 4 4 (2.20)

This matches the result of Khorunzhy et al. [2004).

From Example 2 of Bordenave and Lelarge [2010], we have that a’; has the
form gfi)g(u) = E[e?X(2)] for each z € C, where X (2) has the law Q as described
in (2.7). So, for any z € CT, we have

S#A (Z) _ L/oo eivze—)\ﬁ-)\E[ei%X(Z)]) do — L/OO eiUZQDP (E |:6L§X(z):|> dU,
0 0

where

op(z) = E[zF] =D P~ Poi()).

§2.3.3 Examples

We now list out a few examples of the model that can be approached by our
methods.
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Example 1: Homogeneous Erdés-Rényi Random Graph. When we
have f = 1, the model reduces to the standard homogeneous Erd&s-Rényi graph
with edge probability p = A/N. As discussed, in this case the moments of
can be computed. In particular, we have t(Gyx, f, pw) = 1 for all 7. Hence we
have

k
msk() = SN € SS(2) < || =1}
=1
k—1
= INCo(2k)| + > N 7F|{m € SS(2k) : x| =1}
=1
Since the (even) moments of the semicircle law are given by the Catalan num-
bers, it is immediate that

lim mgp(px) = mak(ps)-
A—00

Hence Theorem 2.3.7(b) is true in this special case. It is known that ) has an
absolutely continuous spectrum when A > 1 (see Bordenave et al. [2017], Arras
and Bordenave [2023]). In this case, the Stieltjes transform is given by

SMA(Z) _ —L/ eivzef)\+)\$;(v/)\) dv,
0

and ¢*(v/)\) satisfies the equation (2.20). What is interesting and cannot be
immediately derived from our results is the rate of convergence of the measure
1 to s as A becomes large. In the simulation below we consider the A = 10 and
the simulation already suggests the appearance of semicircle law. We believe
the representation above of the Stieltjes transform as in Corollary 2.3.10 can be
used to prove the rate of convergence as done in the classical Wigner case in
Bai [1999].

Example 2: Chung-Lu Random Graph. Let (d;)ic[, be a graphical se-
quence and denote by mi = ), d; and m = max; d;, the total and the max-
imum degree, respectively. Let f be defined on [0, 1]? as

flz,y) =2y Al

and

w; = , EN = —2.
Moo mi

We can choose an appropriate degree sequence (d;);>1 such that me = o(y/m1)
and Neny — A. The connection probabilities will be given by

dyd; did;
) =en (m; /\1) = =2

oo my

o7
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2. Limiting spectra of inhomogeneous random graphs

05
—— Density fit 05 —— Density fit
Eigenvalue density Eigenvalue density
04
04

03
03

0z
0z

01 01

0.0 T T T T T 0.0 T T T T T
=3 -2 -1 o 1 2 3 =3 -2 -1 o 1 2 3

(a) A= 5. (b) A = 10.

Figure 2.1: The homogeneous Erdds-Rényi Random Graph on 10,000 vertices.

Let oy be a uniformly chosen vertex and d,, be the degree of this vertex.
We assume that
oy 4,y
Moo
where W has law p,, which is compactly supported. Then the conditions of
Theorem 2.3.7 are satisfied. Hence there exists a limiting spectral distribution
which we call ey, » and the even moments can identified in the following way.

Let SS¢(2k) be the set of Special Symmetric partitions with ¢ blocks. Then,

k

/R$2kHCL,)\(d l‘) = Z Z )‘Z_kt(G'ym fa /Lw)

(=1 7SS, (2k)

[y7]

2k
S DIPTSR
) =l

(=1 1€SS,(2k

where b1(0), -+ ,bys(0) denotes the size of the blocks of a partition o. For o €
NCs(k), its Kreweras complement K (o) is the maximal non-crossing partition
o of {1,...,k}, such that ¢ U & is a non-crossing partition of {1,1,...,k,k}.
For example,

K ({{1,2},{3,4},{5,6}}) {{1},{2,4,6}, {3}, {5}},
K({({1,2},{3,6},{4,5},{7.8}}) = {{1,3,7},{4,6},{2}, {5}, {8}}.

Note that this slightly differs from the standard notation of Kreweras comple-

ment in Nica and Speicher [2006] but for pairings, the m and 7! coincide. It
follows easily that when m € NC2(2k), ym can be replaced by K (7). The benefit
of this representation is the following. It follows from [Nica and Speicher, 2006,

o8
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Page 228] that

k+1

H / K@), (d z),

FENC (2k) =1

/ 22" 1y B 1) (d ) =
R

where p,, X us is the free multiplicative convolution of the measures p,, and
semicircle law ;. Hence the moments of picr, ) can be written as

[ a*ucra(da) = / 2 (1 8 1) (d 2)
R R

[y7]

+Z Z - kH/ b0 1, (d z) .

£=1 1€55,(2k)

This also shows that

lim | 2*ucpa(dz) = / 22 (1 B ) (d z),
R

A—00 R
and consequently, s is of the form pu,, X pus.

Remark 2.3.13.

We want to add a remark about heavy-tailed degrees. QOur conditions are not
satisfied when the degree sequence follows a power-law distribution. In that case,
the w; need to be scaled differently, and the limiting W will not have a compact
support. For further discussion on inhomogeneous random graphs with heavy

tails, we refer to [van der Hofstad, 2017, Chapter 6.

Example 3 Generalised random graph. Again, let (d;) be as above. Let
flz,y) = ny and w; = di/\/m1. Then,

Y mi + dld] '

Although the above example does not directly fall in our set-up (due to lack of
en), one can still derive the limiting spectral distribution using the Chung-Lu
model. We will use the following two facts. The first is a fact, which is the
Hoffman-Wielandt inequality from [Bai, 1999, Corollary A.41].

Fact 2.3.14.
If d;, denotes the Lévy distance between two probability measures, then for N x N
symmetric matrices A and B,

i3 (ESD(A), ESD(B)) < % Tr (A - B)?) .
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2. Limiting spectra of inhomogeneous random graphs

The following is a fact about the coupling of two Bernoulli random variables
with parameters p and ¢ (see [van der Hofstad, 2024, Theorem 2.9])

Fact 2.3.15.
There exits a coupling between X ~ Ber(p) and Y ~ Ber(q) such that

PX#Y)=|p—ql

Using the above coupling, we can construct a sequence of independent Bernoulli
random variables (b;;) and (c;;) with parameters pfjl and qigjrg, respectively. Let
M‘j\lf and M%g be the adjacency matrices of Chung-Lu and generalised random
graph models, respectively, with the above coupled Bernoulli random variables.
Suppose the sequence (di)ie[n] satisfies the assumptions described in Example 2
and let Ney — A and AG = A71/2M¢ and A%® = A~Y/2M5®. Then,

Q
t
=
~
)
L
o}
(av]
=
)

E [} (ESD(AS), ESD(AF®))] < %E Tr(AS - AFE?]

) [N
= B | 2 by —ew)?
| 4J=1
) [~
= )TNE Z (bij — Cij)2ﬂ{biﬁ50ij}
[ij=1
1 I 1«
< 2 Pl # ) < 5 D -
i,j=1 b,j=1

since (b;; — ¢;;)? can be trivially bounded by 1. Using = — T < 1% < x? for

any x > 0, we have

2 12
pSl — pEE — didj  didj  _ didj _me
v v mq m1+didj - m% - m%
Therefore
C N m
E [d?i (ESD(A?&,),ESD(Agrg))} P
N AN Z m%

-

.
I
—

If we consider my = o(mi/ 4), then the empirical distribution functions
are close. Now using Markov inequality and the fact that ESD(A%) converges
weakly in probability to ucr, y it follows that

A}im ESD(AR®) = pcr,» weakly in probability.
— 00
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Example 4: Norros-Reittu. Let (d;); be a given sequence and w; = \/d—%fl.
Take f(z,y) =1 — exp(—zy). Then,

d;d;
pij =1 —exp (—”) .
m1

Again, the form of the above connection probability does not fall directly in our
set-up, but we can show that Norros-Reittu model is close to the generalised
random graph models. Let A}y = AV QMI}\]; where MYy is the adjacency of the
Norros-Reittu model. Without loss of generality, we assume that we can couple
Bernoulli random variable c;; and d;; with parameters pfjg and p?f using Fact
2.3.15. Just as in the previous example, it follows using Fact 2.3.14 that

Q
—
=)
V)
e
=
©)
=
3
3

T nr 1
E [d, (BSD(A§®), ESD(AR))] < 1 Z (et = di5)* 1o, 24,3
We bound trivially (¢;; — d;;)? by a constant C; > 0 and hence we get that

N
. o C
E [d3 (ESD(A%®), ESD(AY))] < vi[ S P (e # diy)
ij=1
C T
= /\7;/' (pl_] - ngjg) .

i#]
Now, for i # j,

d;d; d;d;
s _ @idy ) iy
oy =05 = (1o (-2 mﬁdidj)

d?d? A d?d?
= % + 50 - 2J
my + mldidj N my

2 12
C"dl dj
ml

for some constant C’ > 0. Therefore, for some new constant C| > 0,

! 2
C'1 m2

B [} (ESD(AR), ESD(AR))] < 1375

(2.21)

where my = ZZ 1 df Since W has compact support, we have that NmTio —

E[W?] and 72— — E[W]. So Z—% is bounded for large N and hence the right
R 1

hand side of (2.21) goes to 0. This shows that

lim ESD(AY) = pcr,» weakly in probability.
N—o00
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05

Eigenvalue density

0.4

03

02

01

0o

-6 -4 -2 0 2 4 6

Figure 2.2: Spectral distributions for the Chung-Lu random graph, the generalised ran-
dom graph, and the Norros-Reittu random graph on 10,000 vertices with {d;}; uniformly
generated integers in [1, 5]

Example 5: Inhomogeneous Random Graphs. Let w; = ﬁ and f :
[0,1]2 — [0,1] be any continuous function. Then,

iJ
pij = enf <Na N> .

This is a case which falls directly into our set-up if we assume Ney — A and
the measure p,, is the Lebesgue measure. The other examples considered in this
section are mostly of the rank-1 type but through this example, one can achieve
limiting measures which are of a wide variety.

10 10
Eigenvalue density Eigenvalue density
08 08
06 06
0.4 0.4
02 02
00 T T T T T 00
-3 -2 -1 o 1 2 3 -3 -2 -1 o 1 2 3
(a) A=5. (b) A = 10.

Figure 2.3: The Inhomogeneous Random Graph on 10,000 vertices, with the inhomo-
geneity function f(z,y) = ri(z)ri(y) + r2(x)r2(y), where ri(z) = 7 and ra(z) = z.

We note that in van der Hofstad [2024], inhomogeneous random graphs are
introduced in a much more abstract setting, following the works of Bollobés et al.
[2007]. The connectivity function f is generally continuous and also satisfies
reducibility properties. The above examples also fall under the setup described
there.
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§2.4 Existence, uniqueness, and moments

In this section we will prove the main result Theorem 2.3.7 using the method of
moments.

We begin with a small observation. Recall from Assumption A.3 that if on
is an uniformly chosen vertex and Wy = w,, and we assume Wy i> W . This
means that Wy has a distribution function Fy(x) given by

1 N
FN(x) = N Z 1{wi§:c}
=1

and if we denote by F' the distribution of W then for any continuity point x of

F we have
Fy(x) — F(x).

Also for any bounded continuous function g, we have E[g(Wx)] — E[g(W)].
Let o1,...,0% be i.i.d. Uniform random variables on [N]. Let Wy ; = w,, for
t=1,...,k. Then

Wity oo W) S (W1, W, .., W)

where Wy, ..., W}, are k independent copies of the limiting variable W. Hence
for any bounded continuous g in k-variables we have

E[Q(WNJ,... 7WN,k)] — E[Q(Wl,...,wk)] . (2.22)

In our model, we can allow self-loops as we are not imposing that f(z,x) =0
but the presence of self-loops does not affect the ESD. The following lemma
shows that we can remove the self-loops.

Lemma 2.4.1 (Diagonal contribution).
Let AN be the matriz A with zero on the diagonal, and let dy, denote the Lévy
distance. Then,

dy (ESD(AN),ESD(AN)) 0.

In particular, if ESD(AN) converges weakly in probability to uy, then so will
ESD(AyN) and visa-versa.

Proof. Let Dy denote the diagonal of Ax. Then, Dy = Ay — AN. Using Fact
2.3.14 we have

@} (ESD(Ax), ESD(Aw) ) < %Tr(D]QV) -y e
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2. Limiting spectra of inhomogeneous random graphs

Hence we have

E [d% (ESD(KN),ESD(AN)H <

<C
S Gy
for some constant C'y, which comes from the fact that f is bounded. The result
follows using Markov’s inequality. O

We are now ready to begin with the proofs of the main results.

§2.4.1 Expected Moments

We split up the proof into three parts. To ease the notation we abbreviate the
empirical spectral distribution and its expectation as

N
pwa() = ESD(AN)() and  fina() = EESDIAN]I() = 1 D PO € ).
i=1
(2.23)

Note that jix \ is now a deterministic measure, for which we compute the mo-
ments as

N
/xuNA(dx NZ/ 2*P(\; € d2) NEZZ E[tr(A%)],

where tr denotes the normalised trace. Using the trace formula it follows that

Elw(AY) = vEMAR = Y Bl (224)
1<i1 g, yifp <N

where a;; are entries of the adjacency matrix M. We compute the expected mo-

ments and demonstrate that they are finite. Subsequently, we establish a con-

centration result to show that the moments of the empirical measure converge

to my in probability. Next, we prove that the sequence my satisfies Carleman’s

condition, thereby uniquely determining the limiting measure.

Let SS(k) be the set of Special Symmetric partitions, and v = (1,2,...,k)
be the cyclic permutation. For the following computations, one has to read the
partition 7 as a permutation, with elements of a block in the partition set in an
ascending manner in the permutation. That is, if 7 = {{1,2,5,6},{3,4}}, then
the corresponding permutation is (1,2,5,6)(3,4).
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Lemma 2.4.2 (Expected moments).
Let pn y be the ESD of Ay and finyx = Eun . Let ym be decomposed into
blocks of the form

vy =A{V1,Va, ..., Vin }.

where m = |ym| be the number of blocks. Define Fr as

Fom i= {1 € N¥ | ij = i if and only if there exists | € [m] s.t. j,j' € Vi}.
(2.25)
Then,

/l’kﬂN,A(dw) = (2.26)

ONF/2ZN—1), k odd
ST Abrl=i=k2 5 W 1 f(wi,,wi,)+ON?ZN"Y), k even-
r€SS(k) iE€F (a,b)€Ex
(2.27)

Example 2.4.3.
For k =4, take m = {{1,2},{3,4}}. Then, ym = {{1,3},{2},{4}}. We see that
tuples of the form (1,2,1,3) and (2,3,2,4) belong in Fyr.

Proof of Lemma 2.4.2. Recall from (2.24) that

1 1

7N)\k/2E[TI‘(AI]€V)] = 7]\7)\19/2 Z E[ailizai2i3...aikil],
icNk
where i = (i1,...,4;). The term a;,,@iyis...ai,4, is associated with the closed

walk 4142 ...17x71. Let the set of distinct vertices and edges along a closed walk
correspond to a k-tuple i be denoted by V(i) and E(i), respectively. An edge
that connects vertices i; and ij41, will be denoted by e = (i,4;41). Without
loss of generality, we assume that in V(i) we assign the positions where the first
of distinct indices appear in i.

For example, for the 4-tuple i = (1,2,1,3), we have V(i) = {1,2,4}. So,
E(i) ={(1,2),(1,4)}. Since

QiyigQigis---Qiyiy, = 1 if and only aja;41 =1 for all (1,1 + 1) € E(i)

we can rewrite (2.24) as

1 . 1 A\ )]
WE[TF(AN)] - W Z <N) H f(wia,wib) .
1<i;<N:jeV (i) (a,b)€E()

(2.28)
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2. Limiting spectra of inhomogeneous random graphs

Let 7 be a partition of [k] := {1,2,...,k} and ym = {V1,V4,...,V;,,}, where
m = |ym|. Recall the definition of F,; as in (2.25) and also the graph G,
corresponding to y7 as in Definition 2.3.4. Note that for a fixed i € F,r,
V(i) = Vyr and E(i) = E,r. Moreover, if i,i’ € F,r, then V(i) = V(') and
E(i) = E(i’). Using this formulation, we can rewrite our summation in (2.28)
once again as

1 ) 2
WE[Tr(A NW > Z( ) I f i, ws) .

7€P(k) i€Fyr (a,b)EEyn

Q
t
=
~
)
L
o}
(av]
=
)

Since |yr| = |V (i)], we can multiply and divide by N7 to get

1
WE[TT(A%)]
1 B ol B
=) T S ABw k2Bt T f (i, w)
weP(k) i€Fyn (a,b)EEr

Note that since f is bounded, then the product is bounded. For a fixed k and
a partition 7 of [k], |E,| < k. One can also see that |Fy| ~ N7 We thus
focus only on N Eym|=k/2 Nlyal=Eyx|=1 " For this to contribute, a tuple i must
yield a tree structure in G, this will give us [V (i)| = |E(i)| + 1, which would
imply |ym| = |Eyz| + 1. In particular, all tuples i € F, such that G is a
coloured rooted tree as defined in Definition 2.3.4 contribute to the summation.

For other graphs with |V (i)| < |E(i)| + 1, the leading error would be of the
order O(N~1). The leading order error is given when G r is a k-cycle and hence
the error is of the order of A*/2N~1. Thus, our sum reduces to

1

WE[TF(A?V)]
_ 1 -
- > > A k/QW I fwi.w,) +ON?2NT).
gEP(k): ieFyr (a,b)EFyn
e is a

rooted labelled tree
Thus rewriting the expression with |E;| = |y7| + 1 we get,
1

_ 1 .
= > AR o I flews) + OGN,
gEP(k) ie]'—wﬂ' (a7b)EE’YTr
r is a

rooted labelled tree

(2.30)
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Remark 2.4.4.

We would like to remark here that if there exists an edge e, such that it is
traversed only once in the closed walk, then the graph cannot be a tree. Consider,
without loss of generality, that this edge e is (1,2), with 1 € Vi and 2 € Va, as
n figure 2.4, where Vi, Vo € yw. Here Cy and Cy are the remaining components
of the graph G.

Figure 2.4: Graph associated to vy having blocks Vi and Vo with the edge between them
traversed only once.

Thus, since the closed walk 1 — 2,2 — 3,...k — 1 has to return back to Vi,
it has to do so via C since the edge e cannot be traversed again. Clearly, this
will form a cycle in the graph. Thus, every edge must be traversed at least twice.

It is well-known (see Nica and Speicher [2006]) that for m € NCy(k) if and only
if [ym| = 14 k/2, but in the above setting we shall see that other partitions will
also contribute as |Fy| ~ N7l In particular, we need to sum over only those
7 that give rise to a tree structure. We show in a series of characterizations that
the resulting partitions are SS(k).

Characterising partitions

Recall from Definition 2.3.4 that to construct a graph G, associated with
a partition m of [k], we need to evaluate ym to construct the vertex set and
then perform a closed walk. We prove a property that will play a key role in
characterising partitions in the proof of Theorem 2.3.7.

Property 1: Block characterisation. Forn € P(k) withyr = {V1,...,V;},
if G.» has a tree structure, then all elements of a block V;, V1 < j <[, have
either all odd elements or all even elements.

Proof of Property 1. For simplicity, we show that the first block has this prop-
erty. Assume that V7 has all odd elements except one special element a € [k].
We assume that element ‘1’ belongs to V.

Recall from the definition of G, that we first perform a closed walk on []
asl—2—->3— ... =k — 1, and then collapse elements of the same block of
~m into a single vertex. Thus, if a — 1 (or a + 1) belongs to Vj, then we get a
self-loop since a — 1 and a collapse to the same vertex and the edge a — 1 — a
(or a — a + 1) forms a loop, which does not give a tree structure. Hence a — 1
(respectively a + 1) is not in Vj.
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2. Limiting spectra of inhomogeneous random graphs

Now, suppose a — 1 € Vj; for some j # 1. Then, there exists a path from
Vi to V; of length ¢t > 1, since if t = 1, the closed walk 1 — 2 — ... would
imply that a —2 € V1, which contradicts our claim. Now, if ¢ > 1, the next edge
{a —1 — a} from the closed walk will be from Vj} to Vi, leading to a cycle in
the graph. Thus, violating property 1 yields a graph that is not a tree.

Property 2: Initial characterisation of . If 7 € P(k) then in any block
of 7, no two consecutive elements can either be both odd or both even.

Proof of Property 2. Suppose a1 and ag belong in the same block of © with no
elements between them, and a; < ag, either both even or both odd. Then in
v, a1 and ag + 1 belong in the same block, which contradicts Property 1. [J

Property 3: Diagonal terms. If 7 is a contributing partition, then for any
i = (i1,...,9) in Fyr, each element of i must be pairwise distinct, that is,

i1 7 12,12 F 13y, U1 F k-

Proof of Property 3. Suppose not, and assume i, = 4441 for some 1 <a < k—1.
Then, in v, ‘a’ and ‘a+ 1’ belong to the same block. This contradicts Property
1. O

We now use the above properties for further characterisation of the partitions.

Lemma 2.4.5.
Every block in m must be of even size.

Proof of Lemma 2.4.5. We prove this by contradiction. Consider an odd-sized
block V.= {l1,...,l;} € m with l; <ls < --- < l,. Assume that [; is odd. By
Property 2, lo must be even, and by continuing the argument, we have that at
every even position, the element is even, and at odd positions, it is odd. Since
r is odd, and I, is in the r*® position, which is an odd position, I, must be odd.
Then, in vy, the element [, will map to the element {; + 1 which is even, which
contradicts Property 1. A similar argument holds when [y is taken to be even.
This proves the result. O

Corollary 2.4.6 (Vanishing odd moments).
The odd moments vanish as N — 0.

Proof of Corollary 2.4.6. Recall that partitions whose graphs do not yield a tree
structure contribute to the error term with leading order O(N~1). For k odd,
every m € SS(k) must have at least one block of odd size. Therefore, Lemma
2.4.5 is violated, and consequently, the odd moments vanish asymptotically. [J
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Proposition 2.4.7.
Let m € P(k) such that Gy is a rooted labelled tree. Then m must satisfy the
following properties.

o All blocks of the partition must be of even size.

e Between any two successive elements of a block, there are sub-blocks of
even sizes.

Proof of Proposition 2.4.7. The first condition is already proved using Lemma
2.4.5. For the second condition, begin by considering a block B that is of the
form

B={...,ai,a1+1,...,a1 + e a9,...}

with a;—1 ¢ B, and there doesn’t exist any element a’ such that a1 +e < a’ < as
and a’ € B. The sub-block here of interest is {aj,a; +1,...,a; +e}. We claim
that this sub-block has an odd number of elements, or equivalently, e is an
even number. We can also assume, without loss of generality, that a; is an odd
number. As a consequence of Property 2, as must be even. If we now evaluate
7 using the above information, we have that ym contains the following three
(and possibly more) blocks.

Vi={...,a,a1+2,...,a1 +e,a2+1,...},
Vo={...,a1+1,a1+3,....,a1+e—1,a1 +e+1,...},
V?,:{...,ag,...}.

Thus, the graph associated with vy will be as shown in Figure 2.5, where C1,
Cs, and C3 are the remaining components of the graph.

Figure 2.5: Graph associated to ym having blocks V1, Vo and V.

We now focus on the closed walk that occurs on the tuple [k]. Since this
is a closed walk, it does not matter if instead of beginning at 1, we begin at
an arbitrary element k; € [k] and perform {k; — k1 +1,....k — 1,1 —
2,...,k1 —1 — k1}. So, we pick a; as the starting point and consequently,
without loss of generality, we assume the walk begins at V7.
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2. Limiting spectra of inhomogeneous random graphs

The walk will immediately proceed to move back and forth between V; and
Vo due to the path {a1 - a1 +1,a1+1 —a1+2,...,a1+e = a; +e+1}, and
will eventually end at V5.

Now, the walk will jump from V5 into the component C3. On the other
hand, when the walk eventually enters V3, it will move at least once to Vi, due
to the path {as — a2 + 1}. So, to preserve the tree structure, the walk must
first come back to V5 and then proceed to V3 via V4. Thus, there is an element
a’ such that @’ € V5 and @’ +1 € V4, where a’ > a1 + e and @’ < as. Therefore,
in ym, a; + e maps to a’ + 1. This implies that a; + e and a’ belong to the same
block in 7, and thus, a’ € B. This contradicts our construction, and therefore,
the walk must form a cycle from Vs or Cy to either Cq, Cs or V3. O

Recall the definition of Special Symmetric Partitions as provided in Definition
2.3.1, where the two properties outlined in Proposition 2.4.7 are the main charac-
teristics. As a result, we have demonstrated (2.26), leading us to the conclusion
of the proof of Lemma 2.4.2. ]

We would now like to take limits in (2.26) and finally get the expression for
the moments. The following lemma is an easy consequence of Lemma 2.22 and
the fact that |F.| ~ NP7l

Lemma 2.4.8.
Let m € SS(k) and Fyr be as in Lemma 2.4.2. Also, Gyr = (Vyr, Eyx) be the
graph as in Definition 2.3.4.

. 1
A}E)noo ‘ Nl H f (wig s wiy)
i€ Fyn (a,b)EE

- /[0 o T st @) (2.31)

(a,b)€Eyx
Now, going back to equation (2.29) and taking limits gives us
i 0, k odd
lim E[t[’(AN)] = Z /\‘V’T'*l*k/zt(GW,f, /-Lw)a k even ' (232)

N—oo
eSS (k)

Now, the sum over SS(k) can be further split up as the sum over NCy(k) and
the remaining partitions. Moreover, for 7 € SS(k), we have |Vir| = |y7| €
{2,3,...,k/2+4 1}. In particular, for m € NCs(k), |yn| = k/2+ 1, and when 7
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is the full partition {{1,2,...,k}}, |yw| = 2. So, we can write

lim E[tr(A%)] =

N—o00
0, k odd
k)2
> t(G’ym fobtw) + 3 > Al_l_kﬂt(G’ym frtw), K even -
7ENCa(k) =2 7€ SS () \NCa(k):

[ym|=t

(2.33)
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§2.4.2 Concentration and uniqueness

We now show a concentration result to obtain convergence in probability.

Lemma 2.4.9 (Concentration of trace).
For all k > 0, we have that

Var [tr(A’fV)] = On((AN)7).
Proof. We shall proceed to compute the variance
Var [tr(AfV)} .
Let i and i’ denote the tuples
i={i1,...,ir}, V= {igs1,... 02k}
and denote by P(i) the expectation
P(i) = Elai, iy Qigiy - - - iy -
Similarly, we have

P(i/) = E[aik+1ik+2 Qg oipts - - - a’iQkik-H} .

For the tuple i, we can define a closed walk as in the proof of Lemma 2.4.2 to
get a graph G(i) := (V(i), E(i)). In the same spirit, one can define G(i,i') =
(V(i,i), E(i,i")), with the closed walk now performed as

12—, k=>1Lk4+1—=>k+2—...2k—k+1,

where the jump from 1 to k£ + 1 is without an edge. Then, we can define

o of
P(lv 1 ) = E[ailizai2i3 s Qi Qg qiggo - 'aizkik+1] .
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2. Limiting spectra of inhomogeneous random graphs

With this notation set up, one can see that

Var (k)] = v [BITH(AK ) - (BlTx(A%)?
1 N (2.34)
= o > P(i,i') — PG)P({).

11,82, 0y0h Tk 15002k =1

We remark here that the construction of the graph G(i,i’) is similar to how we
did in Lemma 2.4.2, with the essential difference being the closed walk structure
over two separate k—tuples.

Suppose that E(i) N E(i") = ¢. Then by independence, (2.34) becomes 0.
Thus, we must have E(i)N E(i') # ¢. Moreover, due to remark 2.4.4, each term
must appear at least twice in P(i,1'), that is, each edge in E(i,i’) is traversed
at least twice. This implies that the maximum number of edges our graph can
have is k.

Next, note that the only way the graph G(i, i) will be disconnected is when
the closed walk over the two k— tuples yields two disjoint graphs, and thus we
once again obtain P(i,i') = P(i)P(1).

Thus, our computation boils down to the case where G(i,1') is a connected
graph, with each edge appearing at least twice, and E(i) N E(i") # ¢. Note
that one can have G(i,i’) to be connected and still have E(i) N E(i") = ¢, for
example when ¢; and ;41 are collapsed into the same vertex. This gives us that
V(i,i")| < |EG,)|+1 < k+1. Using |f| < C} gives us that

. IE]
var [ix(A})] < Oy e N1V <Jif> — OpERNIVISIE2 Z o (N

This completes the proof. O

An immediate consequence from Chebychev’s inequality is that the moments
concentrate around their mean as N — oo. In other words, for all £ > 1,

lim tr(A%) = my(uy) in probability,

N—o0

where my(uy) are as in (2.10). To conclude Theorem 2.3.7, we now further
analyse the sequence {my},>0, and show that it is unique for the measure .
A measure 4 is said to be uniquely determined by its moment sequence {mg }x>0
if the following holds (Carleman’s condition):

Z m;kl/% = 00. (2.35)

k>0
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Lemma 2.4.10 (Uniqueness of moments).
For X bounded away from 0, that is, A > 0, the moments uniquely determine the
limiting spectral measure.

Proof. Let my, denote the k** moment. Since f is bounded, we have

[yl
=Y b k/ [T s [Lrutany
reSS(2k) 0. )R, . 9
< Z Cj|c’77f|)\\77r|—1—k %
€SS (2k) =
k+1 3

S DD SENCICE

=2 7€SS(2k):|yn|=l
Let A; be defined as

1, if A > 1,
Av=3",
AF TS A > 0.

Then,
k+1
mop < C];HAkZ {m € SS(2k) : |yn| =1}
=2
< AR CFH{SS(2k)

< 4,0 R,

where the last inequality follows since SS(2k) C P(2k) and |P(2k)| is bounded

by 2k%*. Thus,
—1/2k <, 1 1

m > .

-1

So, we have the series » ;- my, /2% t0 be lower bounded by > k>1 @k, Where

1 1 1
2k/Cr (ACy)3 )3 Cykeds oa(AiCy)

ap =

Thus,

Vel oy

—Cy/2k
w {eCkv for A>1,
Chk )

Since e”* > 1 — x, we see that the series ) k>1 Qk diverges, and consequently,

—1/2k
Z Mo =0

k>0

73



Q
ﬁ
=
~
5}
S
o,
(av]
=
O

2. Limiting spectra of inhomogeneous random graphs

§2.5 Stieltjes Transform and analytic description

§2.5.1 Resolvent and Stieltjes Transform

We fix a 2 € CT throughout this argument, with $(z) =7 > 0. Recall that the
resolvent is given by

Ra,(2) = (Ay —2I)7!, z e CT.

The Stieltjes transform of the empirical spectral distribution of Ay is given by

r—z

Sa,(2) = /R L ESD(AN)(d2) = tr(Ra, (2)), (2.36)

where tr denotes the normalised trace.

Lemma 2.5.1 (Resolvent Properties).
For any z € CT,1 < i,57 < N, the following properties are well-known for the
resolvent Rao of an N x N matrix A.

(i) Analytic: z — Ra(2)(i,7) is an analytic function on C* — C*.
(ii) Bounded : || Ra(2)|op < S(2)7L, where ||-||op denotes the operator norm.
(11i)) Normal : Ra(z) Ra(2)* = Ra(z)* Ra(z).
(iv) Diagonals are bounded: |Ra(2)(i,7)| < 3(2)~ L
(v) Trace bounded: |tr(Ra(z))| < S(2)~t. In particular,
|tr(RY (2))| < S(2) 7P, for anyp> 1.

For the first three properties see [Bordenave, 2019, Chapter 3]. Note that
the property (iv) follows from (iii) by the following argument:

[Ra(2) (@, 5) < (0, Ra(2)d;)] < sup [, Ra(2)3;)| = [ Ra(2)]lop-

viloll=1

The last property (v) follows from (iv). We now state the Ward’s identity, for
which we refer the reader to [Erdds and Yau, 2017, Lemma 8.3].

Lemma 2.5.2 (Ward’s identity).
Let A be a Hermitian matriz and Ra be the resolvent. Let z € Ct. Then for
any fized k, we have

S IRA(L )2 =

12k

S(Ra(k, k).

S|
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§2.5. Stieltjes Transform and analytic description

Since we have already shown in the previous section lim,,_,oc ESD(AN) = py
weakly in probability and hence it follows that for any z € C*

Jim S (2) = S, ().
Due to the involved structure of the moments, it is not immediately evident
what the limiting Stieltjes transform looks like.

Recall the notation of expected empirical spectral distribution of Ay from
(2.23). Let Sa (2) denote the Stieltjes transform of fin x. Notice that Sa , (2) =
E[Sa, (2)]. It is known that if a measure p converges weakly in probability to a
measure 4, then the corresponding Stieltjes transforms converge. In particular,
we have the following lemma.

Lemma 2.5.3.
Anderson et al. [2010, Theorem 2.4.4] A sequence of measures puy converge

weakly in probability to a measure p if and only if S, (2) converges in probability
to Su(z) for each z € C*.

Thus, we compute an expression for the expected Stieltjes transform Sy, and
using convergence in probability from Theorem 2.3.7, we can claim that the
Stieltjes transform S , (2) converges in probability to the same expression. For
ease of notation we shall denote by riy (z) := Ra (2)(k, k) for 1 <k < N.
The following identity can be found in Abramowitz and Stegun [1964]. For
any complex number z € C*, we have for all u > 0,
e =1— \/a/oo Me_“’f1 do, (2.37)
0 Vv
where Ji(x) is the first-order Bessel function of the first kind given by (2.16).
Note that for all z > 0, | J1(z)| < 1 (see [Abramowitz and Stegun, 1964, Chapter
9]). We know that the resolvent maps the upper half complex plane to the upper
half complex plane. Thus, we begin by fixing r%- (2), the j' diagonal entry of
the N x N resolvent matrix, as our complex variable in C*. So we can get

eiur;\]j(z) —1_ \/a/ J1(2\/U"U) e—iv(r%)fl do. (238)
o Vv

If we look at Z;Vzl e*"55*) then the relation between the Stieltjes transform
and the above equation becomes apparent. It turns out that

8 1 fursy. (z
San(2) = aifzeb RO (2.39)

u N
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2. Limiting spectra of inhomogeneous random graphs

To understand the Stieltjes transform we will first try to understand the
behaviour of (2.38). We will adapt the approach of Khorunzhy et al. [2004].
For ease of notation, for what follows, || -|| will denote the norm || - ||z as defined
n (2.11), unless stated otherwise.

Proposition 2.5.4.

Let 7“ : ]]( z) denote the j" diagonal entry of the resolvent Ra, (2). Let
1 N
dj =+ > fwg,wy) (2.40)
k=1

and for any b > 0 define the function gy : (0,00) X (0,00) x Ct — C as follows

gy (z,b,2) == — Zf (z,wg)e Lbrkk 28 (2.41)

Then, for any z € CT,

00 2/ . .
E[e’"%] = 1—e_)‘dj\/ﬂ/ Jl(\ﬁuv)esz [eAgN(wj’X’z)} dvt+gna(u, 2), (2.42)
0

_ A
where gy a(u, z) = O <775/2\/N)'
We begin by stating two results we use in this proof. Note that we conveniently
drop the dependence on z for T N(z), since we fix z € C* throughout and hence

just use the notation rj\]f

Fact 2.5.5 (Exponential Inequalities).
The following holds for any real numbers a,b € R and complex numbers z1, 2z €

Ct.

le®#1 — 22| < al|z; — 2] (2.43)

le® — e| < |a — el T (2.44)

Proof of Proposition 2.5.4. For the resolvent of a matrix with zero diagonal, we

have the relation .

_ “N—-1_
ri;=—|% + E T QkjOlj ,
k,l#j
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§2.5. Stieltjes Transform and analytic description

r of the resolvent Ra , (2), where f,]c\lf_l = f,i\lf_l(z)

Jj
are the entries of the resolvent of AS\][)_I in z € CT, which is the adjacency
matrix with deleted j* row and column. Plugging into (2.37) yields

for any diagonal element

. © I (2 /un)
ey =1 — \/E/ ﬂ\fzw)ewz exp [ iv Z i tagay | dv. (2.45)
0 v

ki

Adding and subtracting the appropriate exponential to (2.45) yields

A © J.(2./ .
Uy =1 — \/ﬂ/ Me”’z exp | iv Z f,]xgla%j dv+E;, (2.46)

Q
—
=)
V)
e
=
©)
=
3
3

where Ej is an error term given by

B =

 J1(2¢/ ,

1 uv . ~N— . ~N—

\/a/ (\/a)e“’z exp | iv E TZ lakjalj — exp wg r,i\; la%j dv.
0 kol ki

It is easy to see that for z € CT with R(z) = ¢ € R and S(z) =1 > 0, we have
|efv?| = |efVe™| < e, Thus,
|Er| =

o J.(2 .
\/’[j/ 1(\}/1]@6“)2 exp | iv Z fﬁflakjalj —exp | v Z f’]q\lgflaij dv
0 ki "7

< \/E/OO ve Z Z 7y aja dv
— 0 \/5 kl 7

k<N £k

_ <\/a/ooo \/Ee_”“dv) Do I akjay

k<N £k

(2.47)

where in the last step, we use inequality (2.43) and the bound | J;(z)| < 1 for
x > 0. Note that in the last sum in (2.47), the entries ay; and a;; are independent
of one another, and of fﬁfl. Thus, since f is bounded by a constant C'y, taking
expectation on the summation gives us

\C?
E DIy Magay | < 5 > 17y (2.48)
£k £k
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2. Limiting spectra of inhomogeneous random graphs

since a;; are distributed as Bernoulli random variables with parameter p;;, and
are scaled by a factor A\=1/2. Using (2.48) and taking expectation in (2.47) gives
us

E[|E:|] <Cff/ \fe ZZE PN
k<N £k

nv
< C? f fe >\ =12 dv (Cauchy-Schwarz
f ki

E<N \ I#£k

N[

nv
<Cf\f/ fe >\ Z(%(f&‘l))% dv (using Lemma 2.5.2)

UCHY
< Cff/ fe dv (using property (iv) from Lemma 2.5.1)

gl s -0 25

where in the last step we do a change of variable nv = v’ to show the integral is
finite. So, if we now take an expectation in (2.46), we get

24/
E[e“‘r] 1— f/ il ﬁuv) e | exp erkk 1ak] dv+gna(u, 2),
k#j
(2.49)

where gy (u,2) = O (n;/‘;/jﬁ) Note that the expectation could be pulled in-

side the integral in (2.46) using Fubini’s Theorem since the integral is bounded
above by a constant. To evaluate the expectation inside (2.49), we use a condi-
tioning argument as follows. We have

E |exp Lerkk ak] =E |E |exp erkk aﬁj A%)_l
k#j k#j

Evaluating the conditional expectation yields
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§2.5. Stieltjes Transform and analytic description

exp (w Z i akj

k#j
B A A wr /x
=E H 1_Nf(wkij)+Nf(wkan) k- )
;] A L N—1
=E H (1 + Nf(wk,wj) (e““”klc /A 1))]

—E ﬁ <exp (Jiff(wk,wj) (eivﬁ]f{l/A - 1)) + g3 (N, A))] . (2.50)

where ¢, (N, \) is an error given by

0(N, A)
A N/ A N /A
:1+Nf(wk,wj) (e kk —1) — exp Nf(wk,wj) (e Kk —1) .

Since |e5”7:£;71/ A — 1] < 2, doing a Taylor expansion for the exponential term in
¢, (N, A) gives us

) 4012»\2 A2
G <=0 (5s) (251)
We can write
E |exp inf&_laij
k#j

N A L N—1
=E H <exp (Nf(wk, w;) (e“””kk . 1))) + E[Es], (2.52)

k=1

where FE» is an expression involving all the other terms of the product in (2.50).
To get the order of Es, we take a supremum over k in (2.50) and compute
the binomial expansion of the form (a + b)Y modulo the leading term a”. In
particular, since ]ewfl]cvkil/ A — 1| €2, and again using (2.51), we have

|| < Z( ) ( mf>N_j (%)J :
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2. Limiting spectra of inhomogeneous random graphs

which for some constant C, > 0 and N large enough further simplifies to

N
|Ea| < Ca ) (2C M) Nie™ L N2

7=1

N 2jAC 4O NEN—Tem 5
Caz QCf)\ 2‘7]\[ je N ' = Ca ! 23C;

j=1 1 —4C¢N2N-lem v

where the last equality is due to the sum being a geometric series. Thus,

|E>| = O C\i) : (2.53)

which is a faster error than gy x(u, z) so we can later absorb it into the existing
error of (2.49). Thus, using (2.53), we can rewrite (2.52) as

E |exp LvZf,ﬁ_lazj =FE [e*/\dj exp <)\§N—1 (wj, % ))} +0 (?\j)
k#j
(2.54)

where

N N
1 _
E flwj,wg) and gn—1(wj,b,2) E f(wj, wy)e Lbrljc\;v " (2.55)
k:l k=1

Note that gy is a bounded function and is bounded above by Cf. To get the
error down from the exponent, we again use inequality (2.44).

To conclude the proof of the proposition, we need to return to an expression
involving terms of the form r,i\,z of the original resolvent. To do so, we do an
interpolation argument. Let 0 < ¢ < 1 and define A%, = (1 —t)Ayx + tA%ll
with the resolvent Rar (2), whose entries we denote by i (¢) := riv(z,t), that

also implicitly depends on z but we drop that for convenience of notation. Also,
define

g?v(wg,b Z Zf wzawj Lbrkk )
We remark using property (i) from Lemma 2.5.1 that gl is also bounded above
by C for all values of ¢, since the complex exponential ek (® is bounded by 1

for any b > 0 and 1 < k < N. In particular, we have that |gn(z,b,2)| < Cy for
all z,b > 0.

80



§2.5. Stieltjes Transform and analytic description

1

Our target function is gn(wj,b,2) = & f(w,;,wj)eib”ljc\;c. By the funda-

M=

=1

mental theorem of calculus,

‘gN(U)J,b, Z) _gN—l(wj7b7 Z)| = ‘gg)\f(wjvbv Z) - g}V(wJ)b7 Z)’
1 1 N
_ 9 4 _ b ibrl (t) 0 N
dA

Now, RA?V(Z) = (tA§V — zI)~! and thus, %RA?](Z) = *RA’EV( 2) M Rat (2 (2).
Note that % = —Jpy, where Jy is given by

In(ksl) = 0, ifk,l#j
N ap,, ifk=jorl=jy.

Q
—
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V)
e
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Thus,

\gN(w], b,Z) - ngl(wja b) Z)’

= /0 Nge Ik m§1rkm(t)8trnk(t)
1 N
= / Z ibric(®) Zrkm (t)am;r ]k()dt
0 k 1 m=1
1 N N
<[ 3 2 2 I a0 4z (2.56)
=1m=1

since the complex exponential ek (®) i trivially bounded by 1 as rkk( )eCT.
Then, using Cauchy-Schwarz and Lemma 2.5.2 in (2.56), we have

‘gN(wjvbﬂ z) - gN—l(wjvbvz)’
) 1/2(N )1/2
|Tg kk a?n- dt.
/ Z g ( 7 ) mzzjl 7

Bounding S(riv.(t)) by 1/n (Property (iv) of Lemma 2.5.1) and taking expect-
ation, we get

1y, N N 1/2
Bllow(uy.b.2) —va(wp.b 2] < [ 58 erﬁ<t>|(2a;j) at.
k=1

m=1
(2.57)
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2. Limiting spectra of inhomogeneous random graphs

Now, again using Cauchy-Schwarz and Lemma 2.5.2, we have for some constant
C’ that

(2.58)

35

N N 1/2
EJ%@%¢N@]¢@@ e
k=1 k=1

Thus, using (2.58) and Jensen’s inequality on the function v/X in (2.57), we get

1/2
i Ly |ovN (&L,
Bll ;. .2) — aaluy b2 € [ B | S5 (S ad, )|

m=1

) 1/2
SC'//O \/7773/2< [Zam]]> dt.

Since f is bounded, we have for some new constant C’} that

CbV/A
Ellga(wy,b,2) = gv-(w, 0 2)]) €

Using the fact that gf; is bounded by Cy for all ¢, we get
)\g 1 )\g ~ _ 20N __ \/X
Efle®N1 — N[ <E[|gn—1 — gn[le™ " = O (773/2\/ﬁ) '

Since this is an error of the same order as gy x(u, z), we can absorb it into the
existing error gy x. Finally, using (2.54) and the interpolation argument allows

us to write (2.49) as
[e.9]
E[eiur%] —1_ e—xdj\/a/ Jl(i}/uv)esz [e,\gN(wj,g,z)} dv + qya(u,2),
0 v ’

O]

which proves the proposition.

Now, consider the expression (2.42) from the Proposition 2.5.4. If we multiply
throughout by f(z,w;) and then sum over j, and finally scale by N, we get

1 N
E[gN(xvu7Z)] - N Zf(x’wj)
j=1
LIS ey [ IOV e Toon (s 3.2
Nj;f(x7w])e \/ﬁ/o \/17 ($ E[eg :|d'U
(2.59)
"‘QN,)\(U’ Z) .
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§2.5. Stieltjes Transform and analytic description

Consider the space of Lipschitz functions Lip(R) defined as
h(z) —h
Lip(R) = ¢ h € Cp(R) : sup |h(z)| < 1,supM <CL,0<CL <00, .
T TH#Y ’.CC - y|
Now, under the bounded Lipshitz metric dpr,(-,-) given by
dpr(p,v) = sup H/hdu—/hdv } :
heLip(R)

Hwy = Hw if and Only if dBL(:u’WNa ,Ll,w) — 0,

we have

Q
—
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V)
e
=
©)
=
3
3

where Wy = w,,, for a uniformly chosen vertex oy. So, taking f to be Lipschitz
in one coordinate (and since we already have that f is bounded), the first term
in the RHS of (2.59) becomes

1 N
N L w) = [ fe ) <@ + By, (260)
j=1

where Ex = dpr (1w fhw)-
Recall from (2.13) that we have

dj(wp) = [ fw)pn(do)
Then, one simply gets
|e—)\d]' o e—)\df(w]')‘ < )\ENQQA. (26]‘)

Thus, using (2.60) and (2.61) in (2.42) gives us

Elgn(z,u, z)]
a o uv) v
=dy¢(z) — %Zf(x,wj)e—)\df(wj) (ﬁ/ﬁ ‘m\/\éi)esz [eAgN(wj,X,z)] dv>
j=1
(2.62)
+ CjN,)\(ua Z) )
where

ana(u, z) = qna(u, z) + O(EN).
Finally, for a fixed € [0, 00), define

I(y) = f(z,y)e W) <x/ﬁ /0 h Weisz [em(%%z)} dv> :

Then, we have the following lemma.
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2. Limiting spectra of inhomogeneous random graphs

Lemma 2.5.6.
I,(y) is Lipschitz.

Proof. Consider I,(y) as defined. Then,

|8ng(y) |
oo 0 (v [ BT g [oos39] )

+ }f<x,y>e”f<y>aydf<y> (ﬁ /0 h WPE [ho(ote)] du> ‘
J1(2

+ ‘f(;r,y)emf(y) <\/ﬁ/000 \/\gmesz [e’\gN(y&’Z)} Oygn (y, v/, 2) dv)‘ :
(2:63)

<

Recall that a function is Lipschitz if and only if it has a bounded derivative.
Thus, if f is Lipschitz in y, the first term in (2.63) is uniformly bounded in y.
Moreover, this makes the second term in (2.63) bounded as well since

1Byds ()] < /0 10, () lw(d ) (2.64)

is bounded. To justify interchanging the derivative and the integral in (2.64),
we have to utilise Theorem 2.6.2 for which we need to verify the following

conditions.

o f(z,y) is py,—integrable for each y and the map y — f(x,y) is continuous
for each z.

e For each z, the derivative 0, f(x,y) exists.

e For each y, there is a ji,,—integrable function ¥, () and a neighbourhood
Uy containing y, such that for all y' € Uy, |0y f(z,y)| < ¥y(z).

The first and second are trivial to check, and by Lipschitz property, since
Oy f(z,y) = const., we have W, (z) = const, which is integrable on [0, co) since
[y 18 a probability measure.

Finally, for notational convenience, let h(y,v) be denote

h(y,v) = ‘w\/\gmeisz [e)‘gN(y’”»z)} .

Once again, we need to verify the three conditions as above to apply Theorem
2.6.2. Note that h(y,v) is integrable with respect to v. Moreover,

8yh(y7 U) = h(y7 /U)aygN(y7 v, Z)
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§2.5. Stieltjes Transform and analytic description

where one can compute

N
1 .
8y9N(y7 v, Z) = N Z 8yf(wk7 y)ewrkk 5
k=1

which again is bounded. Thus, 9,h(y,v) exists, and is bounded above by
Cov_%e*”“, which is integrable with respect to v. This verifies the three con-
ditions and allows us to pull the derivative inside the third term in (2.63), and
also makes that term bounded. Thus, I,(y) is Lipschitz. O

Since I4(y) is Lipschitz, we can exploit the weak convergence of j,, under the
Lipschitz metric dgy, in (2.62) to give us

Elgn(x, u, 2)]
= dy(x)
_ /OOO flx,y)e W) (ﬁ/ooo Jl(Z\/\gmemE [eAgN(y’%Z)] dv) tu(dy)
(2.65)
+ana(u, 2) .

Recall the Banach space as defined in (2.11), and consider ¢ € (B, || - ||). In this
space, consider the map

F.(0)(a,u)
—dya) =i [ e (m | REL el dv) ().
(2.66)

Note that ¢ also implicitly depends on z but we drop that for notational purposes

since we fix z throughout.
Take ¢1, ¢ € (B, || -|) such that ||¢1]], ||¢2|| < Cf. Then, using the norm we
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2. Limiting spectra of inhomogeneous random graphs

defined in (2.11) and inequality 2.44, from (2.66) we get
1= (f1) — Fz (o)

< sup 4/ 1 /OO fla,y)e W)
z,u>0 1+U

et ) i

<y / e 3) e (o)

x e)\|¢1(%x)|+)“¢2(y’§)‘ dov Mw(dy)

< A||p1 — ¢2||/ / ie*”” sup 7'1—|_W\e)"¢1(97§)’+’\‘¢2(%§>‘ dv g, (dy)
o Jo Vv yw>0 /1 +v/A

<Al —al [~ [T e ey (\TE Ol + el dv ()

e 77v n ¥
<lo—enl [~ (Sm 4 S0 )@ Rao < S - aall

where (' is the constant upper bound to the integral of the form

)
/ Cle—CQm+03\/de
0

Q
t
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for some c¢3 > 0, and is finite. Taking n > 0 sufficiently large, we get that F,
is a contraction in an open ball B C B of radius Cy < oo, and thus, by the
Banach Fixed Point Theorem, there exists a unique ¢* such that ¢* = F,(¢*)
for I, : B — B.

We are now ready to prove a concentration result. Recall the function Gy (u)
defined in (2.12) as

1 N N
E ur
N ¢
i=1

If we now define a new function Gy (x,u) that acts identically on the first
coordinate as

Gn(z,u) :== Gy(u),

then one can see that sup, , mGN(«T u) < oo, and so Gy(z,u) € B, and

consequently, a concentration result for Gy would imply concentration for G .
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§2.5. Stieltjes Transform and analytic description

Proposition 2.5.7 (Concentration and convergence).

For any z € C" and = € [0,00), and uniformly over u in [0,1], we have

Elgn(z,u, z)] Ao, ¢*(x,u). Further, we have

E [HQN — E[QN]HQ} =o0(1), and

s[5 ] =ot.

Proof of Proposition 2.5.7. Let dn(x,u, z) denote the error

Q
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e
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3

5N<377 u, Z) — e)\gN(x,u,z) o e/\IE[gN(x,u,z)].

Let 1 <k # 1 < N and consider the covariance

Apy = Blei kel | — E[e/ ik |E[e/ 1], (2.67)
Using (2.46) for the first term and Proposition 2.5.4 for the second term, we get
Ay =
~E[T)] - E[T)

J1(2y/avr) J1 (2 /uvz) Jirva): [ v l;j iy a2 +ivo l;ﬁ FN-142

+u o NG e dvidug
+E[T}) + E[T})]

—u//Jl 2/uvr) J1(2\/uv2) i(v1+v2)z )\gN(’u}j,UTl,Z)-‘r)\gN(’wkx,sz,Z)] dvy dovs,
VRN :

(2.68)

where T; and T; are the RHS of equations (2.46) and (2.42) respectively, and
differ by the error gy x(u,z) in expectation. In the first double integral of
(2.68), one can do the interpolation argument term-wise, and obtain the error
CIqJQV, \u, 2) + qJQ\,’ 1(u, 2) by making a difference with the second double integral
n (2.68), where C7 is the constant upper bound to T}, for any k. Thus, we have
that

Akl < Crana(u, 2) + aiyx(u, 2). (2.69)
Using inequality 2.44 on on(x,u, z) gives us

E[|on (2, u, 2)%]

= |:‘e/\gN(:1:,u,z) - e/\IE[gN(:v,u,z)]

2
]saEmm%ma—mM@mamﬂ.
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2. Limiting spectra of inhomogeneous random graphs

since |gn(z,v,2)| < Cy and Oy = e*A¢s

definition of gy to get

. We can now bound this by using the

= % Z E[f((l?, wk>e£uri\;€f(x7 U)l)e[:url]ﬁ — E[f([]}, wk>eiurllc\;c]E[f(x’ wl)eiurﬁ’]
(2.70)

Since f is deterministic, we can pull it out of the expectation and take it com-
mon, giving us

N

ElJon (o, u,2) ] < S | D2 FCwe) o, w) A
k=1

where Ay is as in (2.67). We can conclude using the triangle inequality that

M
E[[6x (2, u, 2)|?] < CLC%sup |A :o()- 2.71
I3 (. 2)") < C1CFsup | A N 2

For n > 0 sufficiently large, taking the norm, we get
2
E [Hem _ e*E[gN}H } — o(1). (2.72)

However, dy is a bounded analytic function in [0, 00)? x C*. Using the identity
theorem from complex analysis, which states that if two holomorphic functions
agree in an open set of the domain then they must agree everywhere on the
domain, we have that since 5y — 0 on an open set of the upper-half complex
plane, it must approach 0 everywhere on the upper-half plane. Since the error
in (2.71) can be absorbed in ¢y x(u, 2), using 2.44 gives us

Elgn(z, u, 2)]
= dy(z /Ooof z,y)e AW <\f/ J1 2\/%) ez ’\E[QN(%MZ)]dv) fw(dy)

+ QN )\(uv Z) )
(2.73)

where the error vanishes in the norm as

| = llgna(u, 2) + O(EN)| < sup
x,uZO
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§2.5. Stieltjes Transform and analytic description

Now, consider the function Gy (z,u) and the error
An(u) := Gy (z,u) — B[GN(z,u)].

By definition of G, one can see that expanding A ~(u) will yield an expression
similar to (2.70) modulo f, and so, using (2.69) again, we get that

By taking the norm and again using the identity theorem, we get that Ay
vanishes in [0,00)? x CT and thus

E[|An[?] < 010]% Sllqllp | Ak = O (

E [HGN—E[(;N]HT —o(1). (2.74)

A quick inspection of (2.70) shows that in fact we also have the concentration
for gn, since the RHS is precisely the upper bound on

EHgN(:Ea u, Z) - E[QN(xa u, Z)]|2],

and so,
E[llgy — ElgnI?] = o(1). (2.75)

Finally, comparing (2.73) with the contraction mapping (2.66), we have the
following;:

E[QN(x’ u, Z)] = FZ(E[QN($’U7 Z)]) + qN)\(u’ Z) )
qS*(:c,u) = FZ(¢*($,U))

So, with n > 0 large enough and F. being a contraction on B C B of radius CY,
we have

[Elgn] — ¢*[| < [|F=(Elgn]) — Fz (") + llanl,
and consequently,
1 -
5 IElgn] = "l < llaw|l.
Thus, since |Egn| < Cf,
[Elgn] - 67l 2= 0.
As a quick remark, notice that

l¢*ll < Cy, (2.76)
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2. Limiting spectra of inhomogeneous random graphs

since gy is bounded.

Now, since E[gy (7, u, 2)] is an analytic function on [0,00)? x CT, we have
limy_ o0 Elgn (2, u, 2)] is an analytic function. Again from the identity theorem
of complex analysis, since limy_, E[gn] and ¢* are analytic and agree on an
open set of [0,00)2x C*, they agree everywhere in the complex domain [0, 00)? x
C™*, and thus the convergence holds for any z € CT. Note that for a fized
z € CT, although both the functionals E[gy] and ¢* live in (B, || - ||5), the
domain of ¢* is [0, 00)? x C* since E[gx] has the domain [0, 00)% x CT. Now, for
each z € C™, fixing v in the compact set [0, 1] gives us that for each z € [0, 00)
and uniformly over u € [0, 1],

Elgn (2, u, 2)] 222 ¢* (2, u) (2.77)

We can now prove Theorem 2.3.9.

Proof of Theorem 2.3.9. Equation (2.74) proves the concentration statement of
Theorem 2.3.9. Recall that we had shown that

E {eiur%] -1_ e)\dj\/&\/ Jl(2\/} Vuv)eisz |:e)\gN(wj’§’Z):| dov + qu)\(u,z),
0 v

and so,

N
[GN u, Z ;Z Lur

N
1 —Ad; > ‘]1(2\/7““)) vz A w;, 2,z
—NZe 7\/6/0 Te E[e an (wj:X )]dv—l—qN,)\(u,z).

(2.78)

Next, we see that the function

i) = e—)\df(y)\/a/oo J12VU) oz po ol
o Vv

is Lipschitz by using an argument similar to Lemma 2.5.6. Thus, we get
ElGN(u, )] =
[e.e] o0 J 2 A v
1 _/ o~ Ads(y) (\/ﬁ/ 1(\f Vm’)esz [eAQN(va,Z)] dv) pw(dy) + gyalu, 2).
0 0 v

Since from Proposition 2.5.7 we have concentration for gy, using inequality
(2.44) we have that

E[Gn(u, 2)] =
1= [Ty [T REE oSl 05 do () + dvae2),
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§2.5. Stieltjes Transform and analytic description

Finally, taking the limit N — oo gives us

1 / M) /g / TRVUO) oz p6 w0/ 4y p(dy),  (279)
0 0 \/E

completing the proof of Theorem 2.3.9. O

§2.5.2 Deriving the expression for the Stieltjes Trans-
form

Since we took u to be in [0, 1], we can take a derivative with respect to u and
evaluate it at u = 0. Recall from equation (2.78) that we have

E[Gn(u, 2)] —EZ bur

1 o 24/ : v
=l-% ;e’\df\/ﬁ/o Jl(ﬁuv)esz [e’\gN(“’J”X’Z)} dv+gna(u, 2).

Note that by definition, Gn(u, z) is a bounded function, and thus by DCT,
limit operations can be interchanged with expectation. We would like to take
a derivative with respect to u and evaluate at u = 0 to extract out tr(Ra (%))
from the LHS of (2.78). On the other hand, we would first like to take N — oo
for the RHS to remove the error term. To interchange these operations, we have
the following result.

Proposition 2.5.8.

Both the limits limy _,oo 2 SE[Gn(u, 2)]| upo and a% limy o0 E[GN(u, z)Hu:O ex-
ist and are equal.

Proof. We fix a z € C*. Now, limy_,o E[Gn(u, 2)] exists due to the RHS of
(2.78), which we denote by G(u, z). If we define Hy(u, z) and H (u, z) as

ElGn(u, 2)] — E[GN(0, 2)]

HN(uv Z) = U )
H(u,z) _ G(“v Z) B G<07z)
U
Then,
lim Hy(u,2) = —-E[Gy (u, 2)
ull)r%] N, 2 au A =0 ’

0
ili% H(u,z) = %G(u, z)
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2. Limiting spectra of inhomogeneous random graphs

We would like to claim

d 0
A}gnoo %E[GN(U z)] . %G(u z) .

Thus, we want to interchange the order of limits. Note that

lim Hpy(u,z) = H(u,z2)

N—oo

uniformly in u € (0, 1], and

0
1113% Hy(u,2z) = %E[GN@L, 2)] . =E[tr(Ra, (2))]
for each NV, where the limit can be taken inside the expectation using dominated
convergence. Thus, using [Rudin, 1976, Theorem 7.11|, we have that the limits
limy, 0 H (u, 2) and limy_,oc E[tr(Ra (2))] exist and are equal. O

We are now ready to prove Corollary 2.3.10.

Proof of Corollary 2.5.10. We now do precisely as we stated before Proposition
2.5.8. We evaluate the derivative at v = 0 and then take N — oo on the
LHS of (2.78), and we do the reverse for the RHS of (2.78). Note that since
limp 00 AN, x = f in probability, Sa (2) = S, (2) and also Sa () = S, (2)
as N — oo for all z € C*. Thus, we then obtain using Proposition 2.5.8

iSp,(2)
(2.36) (2.39) 0
=i Sa(2) ST lim ErRay () TS0 im RGN ()|
d
= 5 lgnooE[GN(u z)] L
S RSN N / > Memew:(%%)dv 1 (d y)
ou 0 u=0
__/ o= (y \f/ J1( 2\/uv) 7M1 (1:%) d v f(d y) (2.80)
0 u=0

We now wish to evaluate the derivative on the RHS of (2.80). Let K (u) denote
o0 2\/ : * v
= \/ﬂ/ Me“’ze)“ﬁz@’i) dw. (2.81)
o Vv
Observe that

e~ ( 1/n
Z/ k'k;+1 Zkz'kJrl se (2.82)

k>0 k>0
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§2.5. Stieltjes Transform and analytic description

for n > 0 by a change of variables. If we expand the Bessel function as defined
in (2.16) in equation (2.81) and take the absolute value, we observe using (2.82)
and using |¢*(z,u)| < Cf (from (2.76)), that we can use Fubini’s Theorem to
interchange the integral with the summand. Thus, we have

B 0 e \/7 2+l vz )\¢§(va)
f/\fz KMk+1r © © s

2, (—1)kykH ks 0 (0,)
Z k: 1! / vPel z dv.
Denote by I (y) the integral

Ii(y) :== /vkewze)“z’;(y’i)dv.

Therefore,
)k k o
Zk, ) = o) + X g ) = Do) + 3 (),
k>1 k=1
(2.83)

where ax(u) denotes
P TRk )
Note that for any k, we have that I;(y) is finite since

oo CrX
Ik (y)| < vhe MeCiA dy = ’ MNk+1).
~Jo nk—i—l

Since K (0) = 0 and by (2.83) it follows that

0
ou

5K (u)

u—0 U

K
= gim B )+ lim 3 ax(u), (2.84)
u=0 1

Therefore we would like to evaluate lim,_q ZkZI ax(u). Note that

eCrAT(k 4 1)
< - “\T T
k(] < T )

, as u is bounded by 1. Note that the series

Cirpnr

C’f)\ e en

Zkl k+1: 72 Z k+2 2

k>1 k>0
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2. Limiting spectra of inhomogeneous random graphs

converges, and consequently by the dominated convergence theorem, we have
lim E ag(u g lim ay(u
u—0 u—>0
E>1

Thus by (2.84) we have

Therefore we get

o0 o0 oo
i Sy, (2) =/ e‘kdf(y)lo(y)ﬂw(dy)/ e‘”f(y)/ 7MW Ay iy (dy).

0 0 0

To conclude the argument, we use Lemma 2.5.3 with Theorem 2.3.7 to state
that Sa () converges in probability to S, (z) for each z € CT. O

We conclude with the proof of Corollary 2.3.11
Proof of Corollary 2.3.11. From Corollary 2.3.10, we have

S, (2) = i / / eV MV ON dy e (dy).
Recall that

¢" (2, u)

(2.85)

is the unique analytical solution of the fixed point equation as in (2.66). Ex-
panding the Bessel function J;(z) in (2.85) using (2.16) gives

¢"(, u)

—\d * (_1)kuk+lvk iz Ao*(y,2
=dy(x / fla,y)e Ml /0 Zme M) do | pu(dy).
£>0
(2.86)
We would like to interchange the summand and integral with respect to v in
(2.86). Using the z = ( + in for some ¢ € R and 1 > 0, we have that

k WF 1k .
Z/ evae—)\df(y)+>\¢ (y,v/N) dov
k' k +1)!
k>0
ukH
< eCrA=rds(y Z M < Eecfk—kdf(y)eu/".
= El(k+1)Ipk+1 = g
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§2.5. Stieltjes Transform and analytic description

Thus, by Fubini’s Theorem, we can interchange the summand with the integral
with respect to v, giving us

¢ (z,u) =
> _ (—1)Fukt! keivz o™ (%)
7 fger i [ STEN T ket (68) d o | g (d ).
/0 l;) El(k+1)! Jo
(2.87)
Now, denote by H*(z,y) the function
HMNz,y) == L'/OO eW2e A (W) FAST(Wv/A) q g, (2.88)
0

Then, by Corollary 2.3.10, we can see that S, (2 fo H2,y) ptw(d y). From

(2.87) we get that
¢"(z,u) = dy(z) —U/ f(x,y)/ o2 MWW q g gy, (dy)

k k+1 k v oy N
[ e [ s a0 o,
k>1

and so, we can write
¢ (z,u) = dg(x) +L'U/ fla, ) H (2, 9)po(dy) + T(x,u, 2, 2)  (2.89)
0

where

T(x,u, A, 2)
k k+1 k .
/ f €T y E / e“)ze_Adf(y)"')‘(ﬁ (y,’l}/>\) d'U ,U/’Ll)(d y)

k>1
(2.90)

Substituting u = v/ for v € Ry in (2.89) and multiplying throughout by A, we
have

—Adg(x) + Ao*(x,v/\) = iv /OOO f(x, y)’r’-[/\(z, Y (dy) + AT (z, 0/, A\ 2).

We begin by claiming the following;:

Claim 2.5.9.
For any x,u > 0, we have

e A (@) FA (@) < (2.91)
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2. Limiting spectra of inhomogeneous random graphs

Then, one can see that

o0 v ’Ukr(k"i‘l)
T(z,0/M A\, 2)| < svll D avanrrmneerll RIC
’U2 s
= Aznze"*df(f)v

and so for each v € (0, 00)

lim AT (z,v/\ N, 2)| — 0.
A—00
Thus, from (2.89), for any v we have

oo
lim (—Ad;(2) + Ad* (2, v/A)) = iv lim / Flo ) H o) p(d ). (2.92)
A—00 A—o0 Jo
What remains now is to justify Claim 2.5.9, and taking the limit A — oo inside
the integral in (2.92).

First we consider the homogeneous case when f = 1. Recall from Remark
2.3.12, that due to the lack of dependency of one coordinate, we denote a;(u) =
¢*(z,v/\) Then,

?6;(”) —1_ \/ﬁ/ J1 (2\/ UU) eivzef)\Jr)\a)\;(v/)\) dw,
0

VU
and from (2.92) we have limy_,oo (=X + )\245;(11//\)) = ivS,,(2). Moreover, from
Corollary 2.3.10, we have

Sy (2) = L/ S U CTRV P
0

Since f = 1, from (2.76) we have that Cy = 1 and |¢*| < 1. Then, e A" < 1,
justifying Claim 2.5.9. Thus, the expression inside the integral is uniformly
bounded by e~"". Using dominated convergence, we can pull the limit A — oo
inside the integral to obtain
. o vz WSy, (z) 1
SM(Z)_L/O e'Te s dv——m,

which is precisely the Stieltjes transform of the semicircle law.
In the case of general f, recall from (2.77) that for any x and wu,
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§2.5. Stieltjes Transform and analytic description

Now, for any N, by trivially bounding the complex exponential efuryl by 1 for
any ¢, we have that

N
EZf (x,w;)e elurii | < ]t;]f(m,wl)] = ]i[Zf(x,wl)

Thus, by triangle inequality, we have that

N
6 ()| < 16, w) — Elgw (2w, 2)]| + 1 3 f o w0).
i=1

Q
—
=)
V)
e
=
©)
=
3
3

Thus, we have that

fo wi) + A|¢*(z, u) <>\v1+U\/—!¢( u) = Elgn (z, u, 2)]|

< MW1+u¢* —Egnlls. (2.93)
Taking N — oo on both sides in (2.93) yields that
—df(z) + N¢™(z,u)] <0.
Using this, we conclude that

‘e—Adf<z>+A¢*(z,u> < e M@ A" (@) < q (2.94)

for any « and u, proving Claim 2.5.9. Now, to evaluate limy_,o S, (2), we take
the limit inside the integral in the RHS of (2.17) using DCT, which we can use
from (2.94). This gives us

Su;(2) = lim Sy, (2) = L/ / elv? hm )\df(y)JrAaﬁ*(y,v/)\)) dv pe(dy).

A—00

and so, using (2.92), we get

/Jf — L/ / LUZ lim eiu fooo f(a:,y)HX(z7m)uw(d$) dv ,Uw(d y) (295)

A—00

Recall from (2.88) that
H)\(Z, y) — L/OO e[vze_)\df(y)+)\¢*(y’v/>\) d,U.
0

Again using (2.94), we have that the integral is bounded in absolute value, and
so, using DCT allows us to define

H(z,y) = lim H (2, y)
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2. Limiting spectra of inhomogeneous random graphs

where [ H(z,y)pw(dy) = Sy, (2). Moreover, since [H*(z,y)| is bounded by a
constant, and p,, is a probability measure, we use DCT once again to take the
limit A — oo inside [;* f(z,y)H (2, 2)pw(d ). Thus, we obtain

[ee] (e} A A 00
Sus(2) = L'/ / ezt 57 f@y)H(z2)pw(dT) g4 Lo (d )
o Jo

= — /OO o (dy) _
0 Z+fooo f(xay)H(zvx)Mw(dx)

The proof follows by observing that H(z,z) satisfies the analytic equation
defined in (2.6). O

§2.6 Appendix

Proposition 2.6.1 (Banach Space).
Let X = [0,00)2 and consider the space B defined by

sup oyl _
z,y>0 \/1+y

B= {¢ : X — C analytic

and consider the norm

_ [p(, y)|
H¢||s—£;1§0 iy

Then, (B, || - ||8) s a Banach space.

Proof of Proposition 2.6. For ease of notation, throughout this argument, [|-|| :=
| - ||g. Clearly || - || is a norm, and thus, (B, || - ||5) is a normed vector space.

Let {¢n}n be a Cauchy sequence in (B, || - ||g). Thus, for all € > 0, there is
an N € N such that for all m,n > Ng,

H¢m - ¢n” <e.

Let u be the Lebesgue measure on X. Define

Emn = {(z,9) € X+ |¢n(2,y) = dm(2,9)| > [|6n — dmlV/1 +y}-

Then, u(Ep,) =0. Let E = |J Empn and F = E€. Then, u(E) =0, and

m,n

F={(z,y) € X :|pn(x,y) — dm(z,y)| < |60 — dmllv/1+ y}.
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So, for all € > 0, we have an N; such that for all (z,y) € F and m,n > N,

’¢n(x7y)_¢m<$7y)| <évy 1 Y.

Let ¢ (z,y) = %\/% Then, we have for all (z,y) € F and m,n > N.

|¢n($7y) - 1/Jm(90, y)| < €.

In other words, for all (z,y) € F, denoting a,, = 1, (x, y) gives us that {a,}, is a
Cauchy sequence in the metric space (C, |-|). Since C is a complete metric space,
for all (z,y) € F, there exists a limit a := lim,, a,, that is, for all (z,y) € F,
there exists a 1) such that

Q
—
=)
V)
e
=
©)
=
3
3

P(x,y) = lim iy (z,y).

For (z,y) € E with u(F) = 0, ¢(x,y) = 0. This is a well-defined limit. Note
that since ¢y, lives in (B, ||-||B), ¥n lives in (L*°(X), ||*||s), and we thus conclude
that

[¥n — ¥mlleo <e.

Passing the limit through m, we have

[9n = bl <e.
For all (z,y) € X, define

o, y) = v(w,y)v/1+y.
One can see that ||¢, — ¢|| = ||[Yn — ¥|leo- Use triangle inequality to conclude
¢ B ls) O
For the next theorem, we refer the reader to [Billingsley, 2012, Theorem 16.8|.

Theorem 2.6.2 (Interchanging derivative and integral).

Consider the measure space (Q, F, i) and an open set A C R. Let f: AxQ — C
be such that for each x € A, w — f(x,w) is p—integrable, and moreover for
p—a.e. w, r+— f(x,w) is continuous. Consider the function g : A — C defined

by
o(z) = /Q f (@ w)p(dw).

Suppose that for each w the partial derivative Oy f(z,w) of f with respect to
x exists. Then, if for every x, there is a non-negative pu—integrable function
hy : & — C and a neighbourhood U, containing x such that for all ¥’ € Uy,
|0 f (2, w)| < hyp(w), then, g(x) is continuously differentiable and

Org(x) = /Q 0y f (2, w)u(d ).
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CHAPTER

Adjacency spectra of kernel-based
random graphs

This chapter is based on:
A. Cipriani, R.S. Hazra, N. Malhotra, M. Salvi. Spectrum of dense kernel-based
random graphs. [arziv:2502:09415], 2025.

Abstract

Kernel-based random graphs (KBRGs) are a broad class of random graph mod-
els that account for inhomogeneity among vertices. We consider KBRGs on a
discrete d—dimensional torus V y of size N¢. Conditionally on an i.i.d. sequence
of Pareto weights (W;);cv, with tail exponent 7 —1 > 0, we connect any two
points ¢ and j on the torus with probability
= 7%(.Wi’.wj) A1

llé — |«
for some parameter a > 0 and k,(u,v) = (u V v)(u A v)? for some o € (0,7 —
1). We focus on the adjacency operator of this random graph and study its
empirical spectral distribution. For o < d and 7 > 2, we show that a non-trivial
limiting distribution exists as N — oo and that the corresponding measure ps -
is absolutely continuous with respect to the Lebesgue measure. fi, -~ is given by
an operator-valued semicircle law, whose Stieltjes transform is characterised by
a fixed point equation in an appropriate Banach space. We analyse the moments
of s~ and prove that the second moment is finite even when the weights have
infinite variance. In the case o = 1, corresponding to the so-called scale-free
percolation random graph, we can explicitly describe the limiting measure and
study its tail.


https://arxiv.org/pdf/2502.09415
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3. Adjacency spectra of kernel-based random graphs

§3.1 Introduction

Kernel-based spatial random graphs encompass a wide variety of classical ran-
dom graph models where vertices are embedded in some metric space. In their
simplest form (see Jorritsma et al. [2023] for a more complete exposition) they
can be defined as follows. Let V be the vertex set of the graph and sample
a collection of weights (W;);cy, which are independent and identically distrib-
uted (i.i.d.), serving as marks on the vertices. Conditionally on the weights, two
vertices ¢ and j are connected by an undirected edge with probability

P (i < j | Wi, W;) = c(Wi, Wj)lli = jlI7* AL, (3.1)

where £ is a symmetric kernel, |7 — j|| denotes the distance between the two
vertices in the underlying metric space and a > 0 is a constant parameter.
Common choices for « include:

Ktriv(wa U) = 17 ’fstrong(wa U) =w Vv,

HProd(U)? U) =wuv, Hpa(w7 U) = (w v U)(w N U)Upa'

In the above opy = (7 — 1)/d — 1, where 7 — 1 is the exponent of the tail dis-
tribution of the weights, such that the kernel xp, mimics the form that appears
in preferential attachment models [Jorritsma et al., 2023|, while the trivial ker-
nel Kyiy corresponds to the classical long-range percolation model [Schulman,
1983, Newman and Schulman, 1986]. The kernel kproq yields a model which
is substantially equivalent to scale-free percolation, introduced in Deijfen et al.
[2013], which has connection probabilities of the form

1 —exp (—WleHZ — j||_a) )

Various percolation properties for kernel-based spatial random graphs are known
on Z% and beyond (Deprez et al. [2015], Hao and Heydenreich [2023], van der
Hofstad and Komjathy [2017], Gracar et al. [2021], Jorritsma et al. [2024], see
also Deprez and Wiithrich [2019], Dalmau and Salvi [2021] for a version of the
same in the continuum) as well as the behaviour of interacting particle systems
on them [Berger, 2002, Heydenreich et al., 2017, Komjathy and Lodewijks, 2020,
Cipriani and Salvi, 2024, Gracar and Grauer, 2024, Bansaye and Salvi, 2024,
Komjathy et al., 2023]. In contrast, their spectral properties, to the best of the
authors’ knowledge, have received less attention.

As a branch of random matrix theory, the study of the spectrum of random
graphs has wide applications ranging from the study of random Schrédinger
operators |[Carmona and Lacroix, 2012, Geisinger, 2015] and quantum chaos
in physics, to the analysis of community structures |[Bordenave et al., 2015]
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§3.1. Introduction

and diffusion processes in network science, to the problems of spectral clus-
tering [Champion et al., 2020] and graph embeddings |Gallagher et al., 2024]
in data science. Many challenges remain unsolved in this area, even for the
simplest models. As a prominent example, for bond percolation on Z? it is
known that the expected spectral measure has a continuous component if and
only if p > p., but this result has not yet been established in higher dimen-
sions [Bordenave et al., 2017|. In this chapter, we begin the study of spectral
properties of spatial inhomogeneous random graphs, which in turn have been
proposed as models for several real-world networks (see e.g. Dalmau and Salvi
[2021]).

We will work with KBRGs in the typical setting where the weights (W)
have support in [1, 00) and the kernel & is an increasing function of the weights.
Let us recall that in this case the vertices of KBRG random graphs on Z% have
almost surely infinite degree as soon as a < d. Thus, as it happens in many
percolation problems, the regime o > d would be the most appealing (and the
toughest to tackle). In the present work we will focus instead on the dense
case a < d. We consider the discrete torus with N¢ vertices equipped with
the torus distance || - ||. The weights are sampled independently from a Pareto
distribution with parameter 7 — 1 with 7 > 2. Conditionally on the weights,
vertices ¢ and j are connected independently from other pairs with probability
given by (3.1) with a kernel of the form k,(w,v) = (w Vv)(w Av)?. It is worth
noting a difference between our connection probability and that studied recently
in Jorritsma et al. [2023], van der Hofstad et al. [2023], where the connection
probabilities are given by

P(i > j | Wi, W;) = (HU(WZ-,W]-)HZ- il A 1) .

The two forms can be made equivalent through a simple modification of the
weights and an appropriate choice of a.

We call Gy the random graph obtained with this procedure and study the
empirical spectral distribution of its adjacency matrix, appropriately scaled.
Note that when a@ = 0 we recover the (inhomogeneous) Erdés—Rényi random
graph (modulo a tweak inserting a suitable tuning parameter ey) . In recent
years, there has been significant research on inhomogeneous Erdés-Rényi ran-
dom graphs, which can be equivalently modelled by Wigner matrices with a
variance profile. The limiting spectral distribution of the adjacency matrix of
such graphs has been studied in Chakrabarty et al. [2021b], Zhu [2020], Bose
et al. [2022], while local eigenvalue statistics have been analysed in Dumitriu
and Zhu [2019], Ajanki et al. [2019]. Zhu and Zhu [2024] studies the fluctu-
ations of the linear eigenvalue statistics for a wide range of such inhomogeneous
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3. Adjacency spectra of kernel-based random graphs

graphs. Additionally, various properties of the largest eigenvalue have been in-
vestigated in Cheliotis and Louvaris [2024], Husson [2022], Chakrabarty et al.
[2022], Ducatez et al. [2024]. One of the most significant properties of the lim-
iting spectral measure for random graphs is its absolute continuity with respect
to the Lebesgue measure, which is closely tied to the concept of mean quantum
percolation [Bordenave et al., 2017, Anantharaman et al., 2021, Arras and Bor-
denave, 2023]. Quantum percolation investigates whether the limiting measure
has a non-trivial absolutely continuous spectrum. Recently, it was shown in
Arras and Bordenave [2023] that the adjacency operator of a supercritical Pois-
son Galton-Watson tree has a non-trivial absolutely continuous part when the
average degree is sufficiently large. Additionally, Bordenave et al. [2017] demon-
strated that supercritical bond percolation on Z% has a non-trivial absolutely
continuous part for d = 2. These results motivate similar questions for KBRGs.

Our contributions: Results and proofs

Here below we showcase our main results and the novelties of our proofs Recall
that we work in the regime o < d and 7 > 2. We also restrict to values of ¢ in
(0,7 —1).

(a) In Theorem 3.2.1 we show that, after scaling the adjacency matrix of Gy by
coN@=)/2 the empirical spectral distribution converges weakly in prob-
ability to a deterministic measure p, . The classical approach to proving
the convergence of the empirical distribution is generally through either
the method of moments or the Stieltjes transform. However, the limiting
measure is expected to be heavy-tailed (see Figure 3.3) and so it is not de-
termined by its moments. As a consequence, we cannot directly apply the
method of moments. To overcome this issue, we pass through a truncation
argument where we impose a maximal value to the weights, reducing the
problem to well-behaved measures. To simplify the method of moments, we
further reduce the model by substituting the adjacency matrix of Gy with
a Gaussian matrix whose entries are centred and have roughly the same
variance as before. This is made possible by a classical result of Chatterjee
[2005]. Once we have shifted our attention to this simpler Gaussianised
matrix with bounded weights, we can use the classical method of moments
using finding its moments is made possible by a combinatorial argument
on partitions and their graphical representation. Finally we remove the
truncation effect.

(b) In Theorem 3.2.2 we investigate the graph corresponding to Kprod, that is,
when o = 1. In this case we can explicitly identify p; - as the free multiplic-
ative convolution of the semicircle law and the measure of the weight distri-
bution. In the o = 1 case the moment expression derived in Theorem 3.2.1
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simplifies, so the challenge is to recover the limiting measure from those
moments. This is made possible thanks to the extension of the free mul-
tiplicative convolution to measures with unbounded support by Arizmendi
and Pérez-Abreu [2009]. Furthermore, we show that p; , has power-law
tails with exponent 2(7 — 1). This is based on a Breiman-type argument
for free multiplicative convolutions [Kotodziejek and Szpojankowski, 2022].

(c) In Theorem 3.2.3 we explicitly derive the second moment of p, - and prove
that it is finite and non-degenerate. The proof is based on the ideas
of Chakrabarty et al. [2016, Theorem 2.2|. This result is noteworthy be-
cause our weight distribution may exhibit infinite variance in the chosen
range of parameters. To show that the second moment is finite, we need to
establish the uniform integrability of a sequence of measures converging to
the limiting measure. This is achieved through an extension of Skorohod’s
representation theorem for measures that converge weakly in probability.

(d) In Theorem 3.2.4 we prove that p, - is absolutely continuous. What makes
the result possible is that we are able to split the original matrix as a
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free sum of a standard Wigner matrix and another Wigner matrix with a
carefully chosen variance profile (yielding, as a by-product, another char-
acterisation of the limit measure p, ). Once this is established, the result
is a consequence of Biane [1997].

(e) In Theorem 3.2.5 we provide an analytical description of js, when 7 > 3
and o0 < 7 — 2. Removing the truncation in the method of moments proof
of Theorem 3.2.1 does not yield an explicit characterisation of the limiting
measure. On the other hand, certain moment recursions for the truncated
Gaussian matrix that appear in the proof can be used to derive properties
of s through the Stieltjes transform. When the weights are bounded,
the limiting measure corresponds to the operator-valued semicircle law
(Speicher [2011]). Its transform can be expressed in terms of functions
solving an analytic recursive equation (see Avena et al. [2023], Zhu [2020]
for similar results in other random graph ensembles). In our case, when the
weights are heavy-tailed, this is no longer possible. We achieve instead the
convergence of the analytic recursive equation by constructing a suitable
Banach space and demonstrating that it forms a contractive mapping.

Outline of the article.

In Section 3.2 we will define the model and state precisely the main results. In
Section 3.3 we will give some auxiliary results which will be used to prove the
main theorems in the rest of the article. More precisely, in Section 3.4 we will
prove the existence of the limiting ESD, and in Section 3.5 we will give estimates
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3. Adjacency spectra of kernel-based random graphs

on its tail behaviour. In Section 3.6 we will prove the non-degeneracy of the
limiting measure and in Section 3.7 we will show its absolute continuity. Finally,
Section 3.8 is devoted to describing the Stieltjes transform of the limiting ESD.

§3.2 Set-up and main results

§3.2.1 Random graph models

To introduce our models, we use aAb to denote the minimum of two real numbers

a and b, and a V b to denote their maximum.

(a)

Vertex set: the vertex set is Vy = {1,2,..., N}¢. The vertex set is
equipped with torus the distance ||i — j||, where

d
li = 4l =" lie = jel A (N = |ig — jel)-
=1

Weights: the weights (W;);ev, are i.i.d. random variables sampled from a
Pareto distribution W (whose law we denote by P) with parameter 7 — 1,
where 7 > 1. That is,

P(W>t)=t " D1y + 150 (3.2)

Kernel: the kernel function . : [0,00) x [0,00) — [0,00) determines how
the weights interact. In this article, we focus on kernel functions of the form

Ko (w,v) == (w Vv)(w Av)?, (3.3)
where o > 0.

Long-range parameter: « > 0 tunes the influence of the distance between
vertices on their connection probability.

Connectivity function: conditional on the weights, each pair of distinct

vertices 7 and j is connected independently with probability P (i <> j) given

by

KU(Wi, Wj)
i =gl

We will be using the short-hand notation p;; := P(i < j | W;, W;) for con-

venience. Note that the graph does not have self-loops (see Remark 3.4.1).

PYV (i ) =P« j | W, W;) = Al (3.4)

The associated graph is connected, as nearest neighbours with respect to

the torus distance are always linked.
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§3.2. Set-up and main results

§3.2.2 Spectrum of a random graph

Let us denote the random graph generated by our choice of edge probabilities
by Gy. Let Ag, denote the adjacency matrix (operator) associated with this
random graph, defined as
1 ifiej
Ag,(i,5) = ’
w (i) {O otherwise.

Since the graph is finite, the adjacency matrix is always self-adjoint and has
real eigenvalues. For a < d, the eigenvalues require a scaling, which turns out
to be independent of the kernel in our setup. Here we assume o € (0,7 —1) and
T > 2, ensuring that the vertex weights (W;);cv, have finite mean. We define
the scaling factor as

1 1
_ _ ~ NG 3.5
eN Nd ‘ Z ||Z _j”a o ’ ( )
1£JEV N

where ¢ is a constant depending on « and d, and for two functions f(-) and
g(+) we use f(t) ~ g(t) to indicate that their quotient f(t)/g(t) tends to one as
t tends to infinity. The scaled adjacency matrix is then defined as

Ay = 5N (3.6)

The empirical measure that assigns a mass of 1/N? to each eigenvalue of
the N x N9 random matrix A is called the Empirical Spectral Distribution
(ESD) of Ay, denoted as

ESD (Ay) : NdZ%,

where A1 < Ay < ... < Aya are the eigenvalues of A .

§3.2.3 Main results

We are now ready to state the main result of this article. Let pyy denote the law
of W. Here onwards, let P = P ® P represent the joint law of the weights and
the edge variables. Note that P depends on N, but we omit this dependence
for simplicity. Let E,E, and E"Y denote the expectation with respect to P, P,
and P" respectively. Furthermore, if (uy) N>0 is a sequence of probability
measures, we write limy_,o. iy = o to denote that pg is the weak limit of the
measures py. Since the empirical spectral distribution is a random probability
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3. Adjacency spectra of kernel-based random graphs

measure, we require the notion of convergence in probability in the context of
weak convergence.

The Lévy-Prokhorov distance dy, : P(R)? — [0, +-00) between two probabil-
ity measures p and v on R is defined as

dr(p,v) :=inf {€ > 0| p(A) < v (A%)+e and v(A) < p(A%)+e VAeB(R)},

where B(R) denotes the Borel o-algebra on R, and A° is the e-neighbourhood
of A. For a sequence of random probability measures (fun5)n>0, we say that

lim py = po in P-probability
N—o0

if, for every ¢ > 0,
lim ]P)(dL(MN,,U«O) > 5) =0.
N—o00

The first result states the existence of the limiting spectral distribution of
the scaled adjacency matrix.

Theorem 3.2.1 (Limiting spectral distribution).
Consider the random graph Gy on V with connection probabilities given by
(3.4) with parameters T > 2, 0 < a < d and o € (0,7 —1). Let ESD(Ay) be
the empirical spectral distribution of AN defined in (3.6). Then there ezists a
deterministic measure fi5 - on R such that
lim ESD(AN) = fior in P-probability .
N—oo
The remaining results focus of the properties of the limiting measure. First
we note that when we set 0 = 1 we can explicitly identify the limiting measure
in terms of free multiplicative convolution. We refer the reader to Anderson
et al. [2010, Section 5.2.3] for an exposition on free multiplicative and additive
convolutions.
For two probability measures p and v the free multiplicative convolution
1 X v oof the two measures is defined as the law of the product ab of free,
random, non-commutative operators a and b, with laws p and v respectively.
The free multiplicative convolution for two non-negatively supported measures
was introduced in Bercovici and Voiculescu [1993]. Note that the semicircle
law is not non-negatively supported and hence we use the extended definition
of Arizmendi and Pérez-Abreu [2009] for the multiplicative convolution.

Theorem 3.2.2 (Limiting ESD for o = 1).
Consider the KBRG for o = 1, while o, 7 are as in the assumptions of The-
orem 8.2.1. The the limiting spectral distribution py - is given by

H1,7 = Hsc X MW
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where pgse 18 the semicircle law

1
:usc(dfp) = 27 V4 — 1:21\a;|<2dx
T <

and X is the free multiplicative convolution of the two measures. Moreover, the
limiting measure p11.+ has a power-law tail, that s,

1 Y
Ml,T(xvoo)Ni(ml(,U/W))T Lp=2r=1) as T — 00,

where my(v) denotes the first moment of the probability measure v.

In the general case, it is hard to explicitly identify the limiting measure, so
we present some characterisations of it. Since we do not impose that 7 > 3 and
consequently the weights can have infinite variance, it is not immediate if the
second moment of the limiting measure is non-degenerate and finite. We prove
this in the following result.

Theorem 3.2.3 (Non-degeneracy of the limiting measure).
Under the assumptions of Theorem 3.2.1, the second moment of the limiting
measure fiq iS5 given by

2 =(r—1)>2 o ! T 00
fiartan) = =17 [ 7 e dedy € 00

Moreover, for p e N and p < (t —1)/(o V 1), we have [ |2|% pio 7 (d ) < 0.

We state the following result as an independent theorem as the absolute
continuity of the KBRG model deserves to be treated separately.

Theorem 3.2.4 (Absolute continuity).
Let 7> 2 and o € (0,7 — 1), then pq . ts symmetric and absolutely continuous
with respect to the Lebesgue measure on R.

We conclude the main results by providing an analytic description of the
limiting measure in terms of its Stieltjes transform when we slightly restrict our
parameters. Recall that, for 2 € CT, where C* denotes the upper half-plane of
the complex plane, the Stieltjes transform of a measure p on R is given by

Su() = [ ——ulda). (3.7)

r—z

Theorem 3.2.5 (Stieltjes transform).
Let 0 < a < d, 7> 3 and 0 < 7 — 2. Then there exists a unique analytic
function a* on C* x [1,00) such that

Sy, () = [ (e, (d),

where we recall that pw s the law of the random variable W.
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3. Adjacency spectra of kernel-based random graphs

The function a* in the above theorem turns out to be a fixed point of a
contraction mapping on an appropriate Banach space. The equation above
shares similarities with the quadratic vector equations introduced and studied
in Ajanki et al. [2019], although in our setting the measures have unbounded
support. The properties and the proof of Theorem 3.2.5 are discussed in Section
3.8.

Remark 3.2.6 (Higher dimensions).

While we have presented our results for 0 < o < d, our proofs are worked out in
the d = 1 setup. This is in order to avoid notational complications that would
especially affect the clarity of Theorem 8.2.1. The limiting spectral distribution
and its properties remain unchanged for d > 1.

§3.2.4 Examples, simulations and discussion

Firstly, in Figure 3.1 we plot the eigenvalue distribution of the adjacency matrix
of two realisations of kernel-based graphs with different parameters, indicated at
the top of the image. Secondly, in Figure 3.2 we sample 10 realisations of scale-

size=5000, alpha=0.8, tau=4, sigma=1.5

Figure 3.1: Figenvalue distribution a KBRG realisation.

free percolation adjacency matrices of size 4000 x 4000 with ¢ = 1 and plot their
eigenvalues (in green). We superpose on them the eigenvalues of the product
PyGpynPy of a GUE matrix Gy with a diagonal matrix Py with i.i.d. entries
distributed as \/Pareto(r) (in blue). Note that by Nica and Speicher [2006,
Remark 14.2], Chakrabarty et al. [2021a, Remark 4.3], the a.s. limiting ESD of
PvGNPy is pse X up. All matrices are centred and rescaled by the sample
second moment. Thirdly, to elucidate the tail behaviour of the limiting ESD
when ¢ = 1 (Theorem 3.2.2) we draw in Figure 3.3 the empirical survival
function of the eigenvalues of a matrix of size 7000 x 7000 in =z > 1.5.
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size=4000, alpha=0.8, tau=5, sigma=1

Figure 3.2: KBRG eigenvalue distribution and PyGn Py distribution.

Finally, we provide in Figure 3.4 a simulation of the eigenvalues of the Gaus-
sian matrix Ay, (see (3.24)) when o = 0 and N = 6000. We compare this
picture with the right-hand side of Figure 3.1, which has a small a. We con-
jecture that the atom appearing in the latter is due to high connectivity of the
kernel-based realisation (if & = 0, for all 7, j we have that p;; is identically one
in (3.4)), whilst in the Gaussian setup this trivialization does not arise.

size=7000, alpha=0.8, tau=4, sigma=1

71 — -log pix,=)

— y=2{1-1)x
& -
5 -
4 -
3 -

T T T T T T
04 05 06 07 038 09

Figure 3.3: Negative of the log-empirical survival function and tails of Theorem 3.2.2
for x> 1.5.

Remark 3.2.7 (Sparse case).
We expect the case o > d to be very different due to the sparse nature of the
graph. There has been a significant development in the area of spectral prop-
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3. Adjacency spectra of kernel-based random graphs

size=6000, alpha=0, tau=5, sigma=0.2

0.6 i 1 = A, ESD
05
0.4

m il -

§ mm
~ L

-1.0 -0.5 0.0 0.5 10

Figure 8.4: ESD for AN,m,g-

erties of sparse random graphs using the techniques of local weak convergence
[Bordenave and Lelarge, 2010, Bordenave et al., 2017, 2011]. However, it is not
immediately clear whether these techniques can be employed in our framework
i order to determine the properties of the limiting measure: the underlying ran-
dom graph generated in our model will not be tree-like to begin with. We plan to
address this case in a future work.

§3.3 Notation and preliminary lemmas

In this section, we fix some notation and collect some technical lemmas that
will be used in the proofs of our main results.

§3.3.1 Notation

We will use the Landau notation oy, Op indicating in the subscript the vari-
able under which we take the asymptotic (typically this variable will grow
to infinity unless otherwise specified). Universal positive constants are de-
noted as c¢, c1, ..., and their value may change with each occurrence. For
an N x N matrix A = (aij)z]'?[jzl we use Tr(A4) = Zf\il a;; for the trace
and tr(A) := N~ !Tr(A) for the normalised trace. When n € N we write
[n] = {1, 2, ..., n}. We denote the cardinality of a set A as #A, and, with a
slight abuse of notation, #o also denotes the number of cycles in a permutation
.

112



§3.3. Notation and preliminary lemmas

§3.3.2 Technical lemmas

The following proposition, known as the Hoffman-Wielandt inequality, follows
from Bai and Silverstein [2010, Corollary A.41].

Proposition 3.3.1 (Hoffman-Wielandt inequality).
Let A and B be two N x N normal matrices and let ESD(A) and ESD(B) be
their ESDs, respectively. Then,

@ammAm%D®»%g%m«A_BxA_Bm. (3.8)

Here A* denotes the conjugate transpose of A. Moreover, if A and B are two
Hermitian matrices of size N x N, then

N
> (N(A) = \i(B))? < Tr[(A —B)?. (3.9)
i=1
The next two straightforward lemmas control the tail of the product of two
Pareto random variables and the expectation of a truncated Pareto.
Lemma 3.3.2.
Let X and Y be two independent Pareto r.v.’s with parameters p1 and (o
respectively, with 81 < Ba. There exist constants ¢1 = c1(f1,02) > 0 and
co = (1) > 0 such that

cit™A if B1 < B2

P@Y>ﬂ:Lﬂ&by if B1 = pa.

Lemma 3.3.3.
Let X be a Pareto random variable with law P and parameter B > 1. For any
m > 0 it holds

B 1-8
E[X1x>ml=———m ".
e R CESY
We state one final auxiliary lemma related to the approximation of sums by
integrals.
Lemma 3.3.4.
Let § € (0, 1]. Then there exists a constant ¢; = ¢1(8) > 0 such that
1 1
— Z T~ A max{ N1~ log N}. (3.10)
oz Tl

If instead B > 1, there exists a constant co > 0 such that

1 1
- T35 ~C2.
N 2 i — 1P

i#jEV N
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3. Adjacency spectra of kernel-based random graphs

We end this section by quoting, for the reader’s convenience, the following
lemma from Chakrabarty et al. [2016, Fact 4.3].

Lemma 3.3.5.

Let (X,d) be a complete metric space, and let (2, A, P) be a probability space.
Suppose that (X, : (m,n) € {1,2,...,00}*\{o0,00}) is a family of random
elements in 3, that is, measurable maps from Q to X, the latter being equipped
with the Borel o-field induced by d. Assume that

(1) for all fired 1 < m < o0

lim d(Xmn, Xmeo) = 0 in P-probability.

n—oo

(2) For alle >0,

lim limsup P (d (Xmn, Xoon) > €) = 0.

m—00 n—oo

Then, there exists a random element Xoooo of X such that

lim d(Xmoo; Xoooo) = 0 in P-probability (3.11)

m—o0

and
lim d(Xoon, Xoooo) = 0 in P-probability.

n—oo

Furthermore, if Xmoo is deterministic for all m, then so is Xoooo, and (3.11)
simplifies to
lim d (Xpmoos Xoooo) = 0. (3.12)

m—r 00

§3.4 Existence and Uniqueness

The proof of Theorem 3.2.1 is split into several parts and we will now briefly
sketch them.

(1) Truncation: The first part of the proof is a truncation argument on the
unbounded weights (W;);cv,. We construct a new sequence (W/");cv
that is obtained by truncating the original weights at a value m > 1. We
construct another scaled adjacency matrix Ay ,, with entries Ay ., (4, j)
distributed as Bernoulli random variables with parameter pj given by
(3.4) with the weights substituted by the truncated ones. We then show
(see Lemma 3.4.2) that the empirical measure ESD(A y) is well approxim-
ated by ESD(An,y), that is, their Lévy distance vanishes in probability

in the limit m — oo.
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(2) Gaussianisation: In the second part, we aim to Gaussianise Ay, us-
ing the ideas of Chatterjee [2005]. We begin with the construction of a
centred matrix Ay, that is obtained by subtracting out the expectation
from each entry of Ay ,,. We then Gaussianise XNM, that is, we pass to
another matrix Ay, with each entry Ay 4(7,7) being a normal random
variable with mean 0 and the same variance pjj(1 — pj) as the corres-
ponding entry of A Nm- Lastly, we tweak the variances of Ay 4 to obtain
a Gaussian random matrix A N,m,g With entries A Nm (4, J) having mean
0 and variance equal to r{7, the “unbounded version” of pj? (see (3.13)).
Thanks to (3.8), we can show (Lemma 3.4.3, Lemma 3.4.4 and Lemma
3.4.6) that in this whole process we did not lose too much: the Lévy
distance between the empirical measures ESD(A ) and ESD(Ay )
is small in probability. We remark here that the order of the errors in
Lemmas 3.4.3 and 3.4.6 is N~¢, and these steps fail for oo = 0.

(3) Identification of the limit: We then proceed to analyse the limit of the
measure ESD(An ) as N goes to infinity. We use Wick’s formula to

Q
=
&
e
S
@
=3
=
=
@
D

compute its expected moments and use a concentration argument to show
the existence of a unique limiting measure

Ho,rm = ]\}gnoo ESD(AN,m,Q)

using Proposition 3.4.9. We conclude the proof of Theorem 3.2.1 by letting
the truncation m go to infinity: using Lemma 3.3.5 we can show that there
is a unique limiting measure ps - such that pe r = limy, o fto,7m- In the
case 0 = 1 calculations become explicit.

Remark 3.4.1 (Self-loops).

We can use Proposition 3.3.1 to show that having self-loops in the model will not
affect the limiting spectral distribution. Let A be the scaled adjacency matriz
of the model as defined in (3.6). Now, consider

Dy = cy'/* Diag(1,...,1)

to be the N x N diagonal matriz with all diagonal entries “1”, scaled by a factor
of \Jen, and Ay s;, = Ax + Dy. If we extend the definition of pi; for the case
i =J as pi = 1, then AN g1, will be the scaled adjacency of the random graph
with self-loops. Using (3.8), we get

1 1 N i

d3 (1A, Ay s) < v Dl(An - Ansi)?] = N Tr[D3] = New — O(ey )-
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3. Adjacency spectra of kernel-based random graphs

§3.4.1 Truncation

Now we show that for our analysis the weights can be truncated. More precisely,
let m > 1 be a truncation threshold and define W/ = W;1lw,<,, for any i €
V. For all N € N, we define a new random graph with vertex set Vy and
connection probability as follows: conditional on the weights (W/");cv, we

connect ¢, j € Vy with probability

m o m : (Wit v Wim Wit nwihye o
pij =rij N1 with  rli = i i#j€eVny.
(3.13)
Let Ay, be the corresponding adjacency matrix scaled by /cy and let its ESD
be denotes by ESD(An ).
It will be useful later to have the two following easy bounds (following from
Lemma 3.3.4):

Z T < m'T°Ney , Z (T;}Z)t < em?T27 max{ Nt log N},
i#jEV N i#JEVN

(3.14)

for some constant ¢ > 0 and ¢ > 1 a real number. The second bound is not
optimal, since for some ¢ > 1 such that ta > 1, the upper bound will just be
a constant depending on ¢ and «. However, for our computations, this bound
suffices.
Lemma 3.4.2 (Truncation).
For every > 0 one has

limsup lim P (d.(ESD(Ay),ESD(AN,)) >0) =0.

m—oo0 N—00

Proof. By (3.8) we have that
E [d} (ESD(An), ESD(ANm))]
1
< N—CNE [Tr (AN — Anm)?)]

1 . .
=v.o 2. E [(AN(W) ~ AN (7)) 1A (1) A e (0)
CN .~
i#JEVN
1 . .
<o D P(AN(L)) # Axm(i.d)). (3.15)
CN »
7 jGVN

For fixed i, j we will analyse P (An(,7) # ANnm(i,7)) as follows. We notice
that An(i,7) # An,m(i,7) can occur only if one between W; and W; exceeds
m. Calling

A={W;>m>W;} and B ={W; >W; >m} (3.16)
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§3.4. Existence and Uniqueness

we have, by symmetry of W; and W}, that P (An(¢,7) # Anm(i,J)) equals

Notice that on the events A and B the variable Ay, (4, ) is always 0. So we
can bound

]P)({AN(Zvj> 7& AN,m(iaj)} N A)
=P({An(i,j) =1} N A)
<E Mu] < PWilwiemlBWF] | m?
lli = jll* [l — [l lli = jll*
for some constant ¢ > 0, where we have used Lemma 3.3.3 and the fact that
E[W7] < co. Analogously we can bound the second summand by

P ({AN(Zaj) 7é AN,m(i¢j)} N B)

W,W¢ EW,1w.>n|E|W?
§E|:] B:|_ [ le.} [ J]
i — il li — gl

m2f‘r

Q
=
&
e
S
@
=3
=
=
@
D

SCo—— -
lli =gl
Plugging these estimates back into (3.15) we obtain
4c m2T
E [d} (ESD(Ay), ESD(A < — e = dem? 7.
(@ (BSD(A), BSD(Ax,)] € g Do s = dem
1#JEV N
We can then conclude by applying Markov’s inequality:
limsup lim P (dr (ESD(An), ESD(AN,m)) > 0)
N—o00

m—0o0
E [d3 (ESD(A ESD(A N
< limsup lim [ L (Aw), (Aw, ))]

=0

since T > 2. O

§3.4.2 Centring

Let 1 < m < oo and Ay, be the centred and rescaled truncated adjacency
matrix, i.e. the matrix defined as

Anm(iyj) = Anm(i,j) — EV[ANm(i,j)], i#j€ V. (3.17)

Note that here m = oo corresponds to the matrix with non-truncated weights.
The following lemma says that the centring does not affect the limiting spectral
distribution.
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3. Adjacency spectra of kernel-based random graphs

Lemma 3.4.3 (Centring).
For any m € (1,00], under the conditions in Theorem 3.2.1, we have, for all
6 >0,

lim P (d;(ESD(An,m), ESD(AN,,)) >0) =0,

N—o0

where ESD(AN,m) is the empirical spectral distribution of A .

Proof. By (3.8) we have

E [d} (ESD(AnN,m), ESD(AN,m))] < %E [Tr(EY [Anm]?)]

1 2
= Now 2 EW]

i#jEV N
< ¥ E [(Wi v W;) (Wi A W)
- | pe]
New 2 Tl
< NCCN max{N'72* log N'}. (3.18)

Here c is some constant as for 7 > 2 and ¢ < 7 — 1 we have
E [(W; V W;) (Wi AW;)°] = 2E [W;W7 lw,sw, | < 2E[W]E[W]] < co.

In the last inequality we used Lemma 3.3.4. The result follows by applying
Markov’s inequality. O

§3.4.3 Gaussianisation

Let {G;;,1 <i < j} be a family of i.i.d. standard Gaussian random variables,
independent of the weights and the graph. Define a symmetric N x N matrix

AN,m,g by

P (1-pl) . .
e Gingavj  for1<i#j<N

ANmg(i,J) = (3.19)

0 for i = j.

Notice that the entries of Ay, , have the same mean and variance of the cor-
responding entries of Ay ,,. Consider a three-times continuously differentiable
function A : R — R such that

max sup ’h(k)(x)‘ < 00
0<k<3 zcR

where h(%) denotes the k-th derivative. For an N x N real symmetric matrix
M define the resolvent of My as

Ry (2) = My — 2z1n) 71, zeCH,
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where Iy is the N x N identity matrix. In particular, if = pnm, is the ESD
of My, the relation between the Stieltjes transform Swp, of um, and resolvent
can be expressed as

H(My) := Smy (2) = tr(Rary (2)), 2z € CT (3.20)

[Bai and Silverstein, 2010, Section 1.3.2]. The next result shows that the real
and imaginary parts of the Stieltjes transform of pzx  are close to those of
KAy, Since one knows that the convergence of the ESD is equivalent to
showing the convergence of the corresponding Stieltjes transform, one can shift
the problem to the Gaussianised setup and work with the matrix Ay ,, 4.

Lemma 3.4.4 (Gaussianisation).
Consider the matriz Ay, defined in Subsection 3.4.1 and the matriz AN m.q
defined in (3.19). For any three-times continuously differentiable function h :
R — R such that

max sup h(k)(m)‘ < 00

0<k<3 zeR

we have

lim B [l (RH (Ann.0)] — E [h (RE (Aym))] | =0,

N—oo

lim ’IE (7 (SH (Anmg))] — E [h (SH (

N—oo

>
=
2

[
JD

where R and S denote the real and imaginary parts respectively and h®) denotes
the k-th derivative of h.

To prove the above lemma, we will need the following result from Chatterjee
[2005].

Theorem 3.4.5 (Chatterjee [2005, Theorem 1.1]).

Let X = (X1,...,Xpn) and Y = (Y1,...,Yy) be two vectors of independent ran-
dom variables with finite second moments, taking values in some open interval
I and satisfying, for each i,EX; = EY; and EX? = EY?. Let f : I — R be
three-times differentiable in each argument. If we set U = f(X) and V = f(Y),
then for any thrice differentiable h : R — R and any K > 0,

n

[ER(U) = ER(V)| < C1(W)X2() ) [E [XP x5 k] + E [V L5 k]]
i=1

+ Ca(h Zn: [ [’Xi|3 1|Xi|s1<} +E [\Yz‘\g 1m|gKH

=1

where Cy(h) = [[1]| o + 1M"]| oo - C2(h) = § |1l + 5 11"l + 5 1" ]| o and
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3. Adjacency spectra of kernel-based random graphs

As(f) = sup{|3gf(a:)|3 1<i<n,1<¢g<s,x€ I"},
where 8 denotes q-fold differentiation with respect to the i-th coordinate.

Proof of Lemma 3.4.4. We prove this for the real part of the Stieltjes transform.
The bounds for the imaginary part remain the same. We fix a complex number
z € C*, given by z = R(2) + in with n > 0.

Let n = N(N —1)/2 and x = (xi;)1<i<j<n € R™. Define R(x) to be the
matrix-valued differentiable function given by

R(x) = (Mn(x) — zIy) 7",

where My (-) is the matrix-valued differentiable function that maps a vector in
R™ to the space of N x N Hermitian matrices, given by

c]_vl/Qxij if i < 7,
My (x)ij = 0;\,1/2:1:]-1’ if i > j,
0 ifi=j.

Since My is symmetric, it has all real eigenvalues. The function H(My(x))
admits partial derivatives of all orders. In particular, we denote for any u €
{(4,7) hi<j<i<n the partial derivative as 0H/0zy. For any u € {(4, ) }hi<j<i<n,
using the identity (My(x) — zI)R(x) = Iy we have

IR (x)

Oz = —R(x)(0uMn)R(x).

By iterative application of derivatives, three identities were derived in Chatterjee
[2005]:

Oty _N Tr ( 0%y R(X) ’

0’H OMy (x) OMy (x) 9

0z NT ( 0y R(x) Oy R(x) ) ’

03H OM y (x) OMy (x) OMy (x) )

e _N Tr ( O R(x) O R(x) . R(x) > .

Note that 0;; My (x) is a matrix with c]_vl/2 at the (i, 7)™ and (j,4)™ entry,
and 0 everywhere else. Using the bounds on Hilbert-Schmidt norms and follow-
ing the exact argument regarding the bounds in equations (4), (5) and (6) in
Chatterjee [2005] we get that

OH
|7l

O3H
03,

12
774Nc%2

4
3NCN

nN,/cN H 0z
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Hence

and

1 1 1) 1
)\3(H)§12max{,,}.
s 2t f N/

Conditional on the weights (W;);>1, consider the following sequence of in-

dependent random variables. Let X, = (Xf’j)lgiqg ~ be a vector with Xf’j ~
Ber(p}) — pij. Similarly, take another vector X, = (X}))1<i<j<n with X7, ~

N (0, el —p;;)). Then,
XN,m = MN(Xb) and AN,g = MN(Xg)
in law. We have that

|E [h (RH. (ANmg)) — h (RH. (Aym))] |
— [E[EY [h(RH. (ANmyg)) — b (RH. (An.m))]] |-

Q
=
)
o]
=
@
=
=
~
@
D

Conditionally on the weights, the sequences X, and Xj form two vectors of
independent random variables, with EW[Xf’j] = EW[X%] and EW[(X%)Q] =
EW[(X%)Q]. Then, using Theorem 3.4.5 on the conditional expectation

EV[h(RH, (ANmg)) — h (RH. (Anm))],
we have that
|E [EY[h (RH. (ANmyg)) — h (RH. (Anm))]] |

<Ci(h)Xa(H) Y E[(X%)21|X§j\>KN]+E[(Xf]j)21\xfj\>KN] (3:21)
1<i<j<N

+ Co(h)A3(H) Z E[<X%)31|ij|§KN] + E[(Xf]j)glmfj\gKN] . (3:22)
1<i<j<N

where Ky is a (possibly) N—dependent truncation and where we have used
that |[OhRH| = |ROGH| < |04H|. Now using the fact that r/p > 0 we have
|OWRH|» < |0LH|?, and therefore

A (RH) < M\ (H).

We begin by evaluating (3.21). To compute the Bernoulli term, notice that
ij are uniformly bounded by 1, so, for any K > 1, we automatically have
that

> ElX))™ x5k, = 0.
1<i<j<N
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3. Adjacency spectra of kernel-based random graphs

For the Gaussian term, we apply the Cauchy-Schwarz inequality (with respect
to E). Using also the trivial bound pij < ri; and Markov’s inequality, we obtain

Y EIX)Lxspiy )< Do EIXDYNRIXG] > Kn)'?

1<i<j<N 1<i<j<N
. E[(X{)?]'/? m E[r}]/?
<3 Z E[(Tij)2]1/2 7}{] <3 Z E[(Tz'j)2]1/2 KJ
1<i<j<N N 1<i<j<N N
(3.14)

=V On(N - Kyt max{N173%2 log N'}).
We thus conclude that (3.21) is of order
(3.21) = On(cy Kt max{N'73%/2 log N'}).
For (3.22), we use that for any random variable X we have the bound
B[ X[*1 <k < KE[XY.
Hence we can bound

Z E[(ij)glmfj\gkjv + (Xigj)31|Xf’j|§KN}
1<i<j<N
<Ky ) EIXH)+ (X))
1<i<j<N
my (3.14)
<2Ky Y E[JJ] = On(KnNey).
1<i<j<N

This yields that (3.22) is of order ON(KNCJ_VUQ). Choosing Ky = On1 gives us
that
|E [ (RH (ANmyg))] —E [h (RH (Anm))]| = on(1). (3.23)

A similar argument holds for the imaginary part S(H) and this completes the
proof. ]
Simplification of the variance structure

To conclude Gaussianisation, we would like to construct a final matrix A N,m,g
with a simpler variance structure than that of Ay, ,. We let its entries be

AN mg(i,j) = Ginjivi 1<i4,j <N (3.24)

where rj7 is as in (3.13) and the {G; ; : @ > j} are the i.i.d. collection of Gaussian

variables used in (3.19). We need to prove that the ESD of this matrix gives
asymptotically a good approximation of the ESD of Ay, 4.
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Lemma 3.4.6 (Simplification of variance).
For any 6 >0

lim P (dy,(BSD(ANmg) ESD(An,m,g)) > 8) =

N—oo

Proof. Construct a matrix Ly , with entries

Vi

<3 | <
Lg(ig) = { vov Coava - L=1FIEN
0 1<i=j<N

where pj} =777 A1. By (3.8), we have that

1 2 @)
3 2 m =
E[d},(ESD(AN,m,g), ESD(Lng))] < New Z [G i <\/1 — P = 1) ] =
1#JEV N §
1 m =
N itjev 3
1 (3.14) '
< No Z E[(Tij) ] on(1).
N A
1#JEV N

For i # j € Vi define the events A;; = {r]7 < 1}. Construct yet another

matrix Ly 4 as

= . . N . X.‘
Lyg(i,7) = LN,g(Zv])lAij +— 1,4%

NG

where, conditional on the weights, X;; ~ N ((), r{?) are mutually independent

and independent of the {G;;}i>;. It is easy to see that EN,g = AN,m,g in
distribution. So, comparing Ly 4 with Ly 4, using (3.8) we get

E[d} (ESD(Ly,g), ESD(Ly,g))] < % > El(Lngli,d) — Lng(i, §))]
#jEV N

N
1 -
N Z [(Livg(iy§) = Dng(i,5))?1ac ]
#jEV
N 2
Ly (Vg - X
N Vaw Cnai — e |G

Using that the G; ; are centred and independent of the weights, and the Cauchy-
Schwarz inequality, we can develop the square to obtain a further upper bound
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3. Adjacency spectra of kernel-based random graphs

of the form
1 N
2 2
New Z E[Gipjivilag] + E[X{1 4 ]
i#J'GVN
Z P(AS) + BX)Y2P(A5)Y?
Z7£.7€VN
m m\2 m m\2011/2
S5 piag) s EOTVIPROT AW
B NCN 7 — 7l Y
i#JjEV N
= on(1)
since c
P(A;) <P WW>1—] —.
() < P ( li= 1) < o

Using the triangle inequality, we get
E[d} (ESD(AN m.g); ESD(AN,m,g))] = on(1).

We conclude the proof using Markov’s inequality. O

§3.4.4 Moment method

Preliminary results: combinatorial setup

We will recall here the combinatorics features of partitions we need in the
chapter, and refer the reader for a detailed exposition to Nica and Speicher
[2006, Chapter 9].

For k > 1, denote by P(2k) the set of partitions of [2k], and by NC(2k) :=
NC([2k]) the set of non-crossing partitions of {1,2,...,2k}. When we write a
partition, we order its blocks in such a way that the first block always contains
1, and the (i + 1)th block contains the smallest element not belonging to any of
the previous ¢ blocks.

In what follows, we shall use Wick’s formula. Let (Xi,...,X,) be a real
Gaussian vector, then

ElX;, - Xy )= Y]] EIX:.Xi), (3.25)

Tw€P2(2k) (r,s)ET

where P3(2k) denotes the pair partitions of [2k].
Any partition 7 € P(k) can be realised as a permutation of [k], that is,
a bijective mapping [k] — [k]. Let Sk denote the set of permutations on k
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elements. Let v = (1,2,...,k) € Sk be the shift by 1 modulo k. We will be
interested in the composition of two permutations + and =, denoted by ~m,
which will be seen below as a partition.

As an example, consider m = {{1,2},{3,4}} and v = (1, 2,3,4). To compute
~m, we read 7 as (1,2)(3,4), and compute ym = (1,3)(2)(4). We finally read ym
as {{1,3},{2},{4}}. We now define a graph associated to a partition, borrowing
the definition from Avena et al. [2023, Definition 2.3|.

Definition 3.4.7 (Graph associated to a partition).

For a fized k > 1, let v denote the cyclic permutation (1,2,...,k). For a
partition 7, we define Gyx = (Vyr, Eyx) as a rooted, labelled directed graph
associated with any partition m of [k|, constructed as follows.

o Initially consider the vertex set V., = [k] and perform a closed walk on
k] as1 -2 —=3 — -+ — k — 1 and with each step of the walk, add an
edge.

e FEvaluate ym, which will be of the form vm = {V1,Va,...,V;u} for some
m > 1 where {Vi}i1<i<m are disjoint blocks. Then, collapse vertices in
V. to a single vertex if they belong to the same block in ym, and collapse
the corresponding edges. Thus, Vyr = {V1,...,Vin}.

o Finally root and label the graph as follows.

— Root: we always assume that the first element of the closed walk (in
this case ‘1°) is in Vi, and we fix the block Vi as the root.

— Label: each vertex V; gets labelled with the elements belonging to the
corresponding block in ym.

For the partitions = = {{1, 2}, {3, 4}}, y# = {{1, 3},{2},{4}}, Figure 3.5
illustrates this procedure.

The following lemma is an exercise in Nica and Speicher [2006, Exercise
22.15] and explains also why non-crossing pair partitions will have the dominant
role in the computations that follow. We will denote as NCy(2k) the set of non-
crossing pair partitions of [2k]. For a partition = we let #7 the number of its
blocks.

Lemma 3.4.8.
Given m € Pa(2k), one has #ym < k + 1 and the equality holds if and only
m € NCo(2k). If m € NC>(2k), the graph Gx is a rooted tree.

Finally, given m# € NC2(2k), we define the map 7 = T : [2k] — [k +
1] as follows. By Lemma 3.4.8, we know that #ym = k + 1 and let ym =
{V1,Va, ..., Vis1}. Define

To(i) =7 if i€V (3.26)
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i

4
Va

Figure 3.5: Left: closed walk on [4]. Right: graph associated to ym = {{1, 3}, {2}, {4}}.
The root is in red.

Moment characterisation

We are now ready to give the proofs on Gaussianisation leading to the main
result of this subsection, the proof of Theorem 3.2.1.

Proposition 3.4.9.
Let AN, g be defined as in (3.24). Let ESD(AN . 4) be its empirical spectral
distribution. Then, for k € N, one has

N—oo

lim E [ /R z % ESD(AN7m7g)(d$)} = Moy, (3.27)

and odd moments are zero. Moreover,

lim Var < /R z ESD(AN7m7g)(d$)> =0, (3.28)

N—oo

where
My= > E I swrwm| <o, (3.29)
TeNC2(2k) (u,0)EE(Gyr)

where Ky is as in (3.3) and E(Gyx) is the edge set of the tree Gr. Moreover,
there exists a unique compactly supported symmetric and deterministic measure
Lorm characterised by the moment sequence { Moy }ren such that

lim ESD(ANng) = florm i P-probability. (3.30)

N—oo
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Proof. Let {G;; : 1 < i < j < N} be a sequence of standard independent
centred Gaussian random variables as in (3.24) which is also independent of
(Wi)iein)- Let G be the matrix

| j||me/?
o j):{\z I Ginivs i (3.31)
0 1=7

Observe that
~ d
AN,m,g = Ta,m o g7

where Y, ,, is the matrix with elements

. KU(WZ.W,WW)
Yom(i,j) = TJ

and o denotes the Hadamard product. Using Wick’s formula (3.25) we have

[ (B%a) - g 3

N
N 1<y, igp<N

2% 2%
E |1 Youmiesiesr) [T G0, ie+1)]

/=1 /=1

2k
E HH?/Q W;},Wzﬁl)]

H E [g(ira ir+1)g(i87 is-‘rl)]
TE€P2(2k) (r,s)ET

2k
1 ' 1/2
“N& > E H’%/ WZ7’WZ7Z1)]

N 1<iy,yiogn <N
H _ «@ {ZrﬂrJrl}:{iSJerl}’ (332)
nEPa(2k) (rs)er 1T [lir = iral]

N 1<y, io <N

where we set i1 = i1 to ease notation, and (r,s) € m means 7m(r) = s and
7(s) = r. Here the Y’ indicates the sum over all the indices (iy,...,i;) such
that iy # ig4q for £ € [2k]. The condition {i,, 4,41} = {is,is+1} is satisfied in
two cases:

C1) i, =is41 and is = ip41, that is, i, = Gy () and i = ¢ ~vm(s)s OF

C2) i, =is and ip41 = 541, that is, i, = U (r) and 4,41 = Z7r(7")+1'

As we are going to show, the limit of (3.32) will be supported on permutations
m € NC3(2k) and such that Case 1) is true for all (r,s) € w. To prove this, let
us define

Catmk = {l = (il, Ceey igk) S [N]2k Dl 75 Tpyl, by = Z x(r) Vre [Qk]}
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When the condition i, = iy.(,) holds for all r, we see that i is constant on the
blocks of ym. We construct a graph G(i) associated to i € Cat, j by performing
a closed walk i1 — 19 — .. .49 — i1, and then collapsing elements i,, 75 into the
same vertex if r, s belong to the same block in vw. We then collapse multiple
edges. After this, we see that G(i) = Gx. Thus, when we sum over i € Cat, ;,
the count is over #~m many indices.

We split the summation in (3.32) into two parts: a first sum over the non-
crossing pairings and i € Cat,j, and a second part with all the other terms,
that we call Ri. Since we take i € Catry, i is constant on the blocks of ~y.
Using this property, we obtain

E i (Ang)}

R
)
s 1
_ 12y
i - Z Z E H’i ZTH) H iy — ips1]|® tR
L TrGNCQ(Qk) N icCaty s, (rs)em " "
% —
= 1
= > > Bl I wewrow)) ] e v R

TI'ENCQ(Qk‘) 1€Cat7T k | (u,v)EE(Gyr) (r,s)em

where in the last line we have used that i is constant on the blocks of y7r. Since
the inner expectation no longer depends on i, we get that

® [ (A%
= > E| JI seWrwm|— > H

TeNC2(2k) (u,0)EE(Grr) N icCaty i, (r,s)en
+ R1.

||Z7" - Zr-i-lHa

Now we make the following two claims which will finish the proof.

Claim 3.4.10.
The following hold.

a) For any m € NC5(2k),

lim Z H =1.

— (0%
N—oo0 NCN IECatw,k (,,, S)ETI' H/I"’" 7/7»+1 ||

b) We have that limy_,o, R1 = 0.
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With the above claim, whose proof is deferred to page 131, we have that
(3.27) holds. Moreover, the odd moments are identically 0, since there are no
non-crossing pair partitions for tuples of the form {1,2,...,2k+ 1},k € N. We
now need to now show that (3.28) holds.

We introduce some new notation to prove (3.28). Let j = (ji1,...,j2r). Let
P(i) denote the expectation

2k
H K“i*/2 Wva W[Zl)g(ig,i”l) )

and P(i,j) be

2k
1 .] =E 11’%1/2 7,1; ) zZ:_l)g(if?iE-i-l) H "/"‘;/2 Wm M/;Tﬂ)g(ipvip—&-l)
p=1

(with the usual cyclic convention that 2k 4 1 equals 1 for subscripts of indices).
We can then see that

Q
=
&
e
S
@
=3
=
=
@
D

- 1
2k _ . RN
Var ([ BSD(Aws)(10)) = e 30 (PGY) - POPGL.
i,j:[2k]—[N]
(3.33)
Note that if the terms involving i and j are completely different, that is, if the
product of the terms G (i1, i2) - - - G(iog, 1) is independent of G(j1, 72) - - - G (J2k, j1),
then P(i,j) = P(i)P(j), and (3.33) becomes identically 0. Hence, we have

. (>1)
Var (/R z? MAN,m,g(dw > NQCQk Z (3.34)

j:[2k]—] ]

where Z(Zl) is over 1i,j such that there is at least one matching of the form
ANmg(ir,ir41) = ANm,g(Js, Js+1) for some 1 < r, s <2k — 1. If there is only
one entry of i, say i1, equal to only one entry of j, say j1, then we still have

EW

2%k
H G (i, i€+1)g(j£7je+1)] =0

(=1

since all entries G(ig,i7+1) are independent (even if i; = j;) and centred. All the
more, P(i,j) = 0, so let us pass to having two equal indices, that is, a matching.

Let us consider the case when there is ezactly one matching. Since both
indices in i and j can be reordered without affecting the variance,without loss of
generality we can assume that the matching is (i1,42) = (j1,j2), and the rest of
the indices of i are different from the ones in j. One now has i’ = (i3, ..., i)
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3. Adjacency spectra of kernel-based random graphs

and j’ = (j3, ..., jor) with 2k—2 indices each, and so we can construct partitions
m, 7 for each of them independently.
For the ease of notation, let

ai; =k 2(W™, WG, j)

and let Z(l) be the sum over i, j such that there is exactly one matching between
i and j. Using Wick’s formula in the second equality, we have

1 1) .
N2c2k Z P(I’J)

N i j:[2k] =[N
r 2k
1 e w

o :W Z E|E Haie7i2+1ajz,je+1]]
= N i j:[2k]—[N] (=1
= _
5 1
= = N2oE > E|EV4] > 1T E%laiivinaiii]
= N ij:[2k]—[N] 7,7 €Pa({3, ..., 2k}) (r,s)Em
S L

w

X H E [ajr,yjr,ﬂajs,’js,ﬂ] . (3.35)
(r',s"en!

Following the idea of the proof for (3.27), we assume Claim 3.4.10 to be true to
obtain the optimal order. We will consider i’,j’ € Cat ;—1, and notice that

140

m
EW[G%,E’] < H

m- (3-36)

Interchanging summands, we obtain

1
(335) = NTC%CE Z Z EY [(112171-2} H EY [a?ﬂ’w(r)]

m,m' €Pa({3,...,2k}) V',jeCatr 11, (r,s)em
117£12€[N]
w 2 /
< I E [“jrzjwwj +R

(r',s")en!

(3.36) 1 1+o 1+o

m m
S B0 VRSP DR e i |

|i7" - 7;wr(r)Ha

m,w' €Pa({3,...,2k}) V',j €Caty jo_1, r,8)ET
i17#12€[N]
1+o
m
X EC— (3.37)
H H]T’ _]'yﬂ(r/)Ha

(r',s")en!
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where R/ is an error term such that limy_,o R} = 0, which follows from Claim
3.4.10. The contributing terms of the right-hand side of (3.37) can be upper-
bounded by

1 m1+U m1+0'
o DY > e U e
N eN m,m' €P2({3,...,2k}) i:i'€Catr p_1, HZI Z2H (r,s)em HZT ZWT(T)H

11742
ml—i—a
DD | B e
J€eCat,y 4 (1,s")en ”]r’ jvﬂ—(T,)H
1+o m1+0'

1 m
= N22k Z Z [i1 — o] H iy — 4 o
N m,' €P2({3, ..., 2k}) i:ii’€Catr 1, (r,s)em ym(r)
117102
Analogously, the sum over i conditioned on i’ € Cat,;_; will be at most of
order N cﬂ“\,. Since the sum over partitions is finite and independent of N, we

obtain
1

(1) .. —1
N2:2k Z P(i,j) = On(cy )
N4 j:[2k]—[N]
More generally, if one has t pairings of the form (i1,i2) = (j1,72), .-, (it—1,1) =
(jt—1,j¢), one can use the same argument and instead obtain a faster error of the
order of cfvtﬂ, simply due to the set (jiy1,72,---,Jj2r) now having only 2k — ¢
independent indices from i. Thus, we conclude

Var ( /R 22y ANm’g(dx)) = On(cyh). (3.38)

This proves (3.28).
To conclude, one can see that

My, < (m*ro)kcy, (3.39)

where Cj, is the k' Catalan number. Since >, C’k_l/% = o0, so Carle-

man’s condition implies that {May}>1 uniquely determine the limiting meas-
ure. Therefore we can find C', R > 0 such that for all £ > 1 we have My <
CR?*. In turn, it is a straightforward exercise to show that this implies that
lr, o, m 1s compactly supported, and since it has odd moments equal to zero it is
symmetric. To conclude the proof of Proposition 3.4.9 we use for example Tao
[2012, pg. 134].

Proof of Claim 3.4.10. We first show a). Fix m € NCy(2k). Recall that i €

Cat,  is constant on the blocks of ym. Therefore the number of free indices
over which we can construct i is #ym =k + 1 (Lemma 3.4.8).
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3. Adjacency spectra of kernel-based random graphs

For any m € NC3(2k), there exists at least one block of the form (r,r+1) € ™
where 1 < r < 2k, and 2k + 1 is identified with “1”. Then, {r + 1} € 7
is a singleton, and consequently, 7,41 is a free index under m, that is, under
the summation over indices i1, ...,42k, 441 runs from 1 to N independent of
other indices. Moreover, as i € Catry, we have i, = i,49. If we remove the
block (r,7 + 1) from 7, we obtain ' € NC5(2k — 2) as a new partition on
{1,2,...,r —1,r+2,...2k}. Let i be the tuple (i1,i2,...,%r—1,%r42,-.,02K)-
We then have i’ € Caty 1. So, we can write

TP e

C
N icCat, i (r,s €7r
N

1 1 1
= N > 1T T 42,—,01 . (340)

i/GCatW/’k_l (7",5)671'/ i +1:1 ||ZT‘+1 - Z’I’+2”

We now proceed inductively. For k& = 1 the result is given by (3.5). Assume
now that we have shown, for some k — 1 > 0 and any 7’ € NCy(2(k — 1)), that

1
NI N > 1y _ZSHQ =1L (3.41)

i'eCat,s j_q (r,s)€n’

We need to show the same statement holds for k, which is precisely Claim
3.4.10a). Now, we have that

1 1 1 1
(9).4()):?,;[_1 > H‘i N; ——

veCat, ,_; \(rs)er “ | N2 = irga ||

(3.42)

=.
S
|
~
e
)
o

Taking the limit N — oo, we have that the second factor in brackets above by
(3.5), and then the remaining expression equals 1 by the induction hypothesis
(3.41). This proves a).

To show b), we now analyse R; explicitly. We have to deal with two cases:

b.1) 7 € Py(2k) and i ¢ Caty .
b.2) 7 € Pa(2k) \ NCy(k) and i € Caty s

Note that for both cases the following factor involving the weights will not
play any role:

H /ﬂ)l/Q m oy ) < mk(l—&—a)‘

Z]+1
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We first deal with Case b.2). From Lemma 3.4.8 we have #ym < k and
hence

1 1
Z Nk, Z HNI/Q W) H T =i

lip — dpy1 |

wEP2(2k)\NC2(2k) N ieCaty g (r,s)em
1
SN YRS M Do
7r€732(2k)\NCQ(2k) zle[N iR €[N] a2 flix

(3.43)

where (3.43) follows from i being constant on the cycles of ym. Thus, we get
that the terms involved in Case b.2) give a contribution of the order

1 1 Q

k(1+ 14+(k=1)(1—a) _ _ 5

B43) <em®™ L gV = O g = v (). B
TEP(2k)\NC2 (2k) o

(3.44) 3

We now show that the contribution from b.1) is also negligible. Begin by EB

fixing a partition 7. For any tuple i, we construct a corresponding graph G(i)
(recall that when i € Catr ) we ended up with G(i) = G,»). For i ¢ Cat,y,
G(i) is constructed by a closed walk i1 — i — ...i9p — i1, thereby adding
the edges (zp,zp+1) ¥, with 49511 = i1. We then collapse indices i,, 15 into the
same vertex when {i,, 4,41} = {is, 4541}, which can be justified by (3.32). We
then proceed by collapsing the multiple edges and looking at the skeleton graph
G(i), with vertex set V(i). Hence, we see that

, 2k
DO S N | P E R I | i —

nePa2k) N i:[2k]—>[N] j=1 (rs)er [
k(140) N1+(#V(1) (1—a)
" Z NcN
TEP2(2k)
< ON@#VH)—k=1)(1-a) (3.45)

since m > 1 is fixed and the sum over the set Po(2k) is finite. We see that the
only non-trivial contribution comes when #V (i) = k + 1, which signifies that
G(i) is a tree. Now we claim that for any 7 € P»(2k) and i ¢ Cat, ; we have
#V(i) <k+1.

When i ¢ Cat, j, it implies that there exists at least one (r,s) € m, such
that i, = i5 and 4,11 = i541. Let us begin by assuming that there exists ezactly
one such pair. Observe that due to the restrictions in Y_’, no pair-wise indices
are same, hence s can neither be r 4+ 1, nor » — 1. Now consider the reduced
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3. Adjacency spectra of kernel-based random graphs

partition 7' = 7\ (r,s). Observe that 7’ € Pa(2k)({1,...,r —1,r+1,...,5—
1,s+1,...,2k}). Note that now i’ € Caty j_1, so its contribution to (3.37)
is of the order of N'+*=1D{1=) "which comes from the tree G(i’) on k vertices,
and where i’ are the (2k —2) indices which are obtained by removal of (i,,iy41).
So, all we are left to show is that due to Case 2), i, and is will not give rise to
a new vertex in G(1i).

Now, there exists an r < e < s — 1 such that (e,s — 1) € 7. Due to Case 2),
we have that i, = i, contribute to the same vertex in G(i). Also i, = is and
ie+1 = is—1 due to Case 1). This implies that i, = is = i., where i, is already
a contributing index in G(i’). This implies that G(i) is a tree on at most k
vertices, and hence #V (i) < k. This shows that the contribution in (3.45) goes
to 0.

The case for which there is more than one pair breaking the constraint in
Caty i leads to an even smaller order. When none of the pairs satisfy the
constraint then i, = iy for all r and hence 7 is constant on the blocks of .
So #V (i) < k and again the contribution in (3.45) goes to 0, thus proving the
claim. O

We wish to highlight that Proposition 3.4.9 is in fact more general, and works
beyond the kernels x, defined in (3.3).

Remark 3.4.11.

The statement of Proposition 5.4.9 holds when we replace the entries of Anm g

in (3.24) by
k(Wi, Wj) .
S I G 1<, <N
en i =gl S =R

for any function k : [1, 00)? — [0, 00) which is symmetric and such that, for all
keN,

Ii(Xj,Xj.H) < o0 (346)

where X1, ..., Xo are i.i.d. random variables in [1,00).

In our case the kernels k(x, y) = ko (x, y)1gy<m satisfy (3.46).

Proof of Theorem 3.2.1. To prove the final result, we shall use Lemma 3.3.5 with
the complete metric space ¥ = P(R) and metric dz. Recall also the definition
of AN g Tesp. Ay of (3.24) resp. (3.17). In Proposition 3.4.9 we have shown
that there exists a (deterministic) measure fiy ., such that, for every m > 0,

lim ESD(ANymyg) = llo,7,m in P—probability.
N—oo
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Hence for any h satisfying the assumptions of Lemma 3.4.4 and H as in (3.20)
it follows that

lim E [h (éRH (AN,m,g))] = h (RS, .. (2))

N—oo

and thus, by means of Lemma 3.4.4 and Lemma 3.4.6,
Jim B[ (RH (B m))] = h (RS0 (2))

Since the above holds true for any h satisfying the assumptions of Lemma 3.4.4
and [t rm is deterministic, it follows that

lim RH (Anm) = RS,,.,..(2) in P-probability.

N—oo

A similar argument for the imaginary part shows that

lim SH (Anm) =S Sy,.,..(2) in P-probability.

N—oo

Q
=
)
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=
@
=
=
~
@
D

Combining the real and imaginary parts, we have, for any z € CT,

]\}l—l}loo SESD(KN,m)(z) = Syy.rm(2) in P-probability.
Since the convergence of the Stieltjes transform characterises weak convergence,
we have
lim ESD(AN,m) = fio.r,m in P-probability.
N—o00

From Lemma 3.4.6 and Lemma 3.4.3, it also follows that, for every § > 0 and
m > 0,
limsup P(dL(pAy . » Hoyrm) > 6) = 0.

N—oo

This shows condition (1) of Lemma 3.3.5. Condition (2) follows from Lemma
3.4.2 where we have proved that

limsup lim P (dz(pay,,. ay) > 0) =0.

m—r0o0

Thus, it follows from Lemma 3.3.5 that there exists a deterministic measure
o+ such that
lim dr,(torm, tor) =0, (3.47)
m—r0o0

and hence using the triangle inequality the result follows.
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3. Adjacency spectra of kernel-based random graphs

§3.5 Scale-Free Percolation: A special case

Proof of Theorem 3.2.2. Step 1: identification. We are now dealing with the
special case of o = 1. We go back to the moments of figr.m,. Let ym =
(Vi,..., Vika1) and let ¢; = #V; (with a slight abuse of notation, we are viewing
here V; as a set rather than a cycle). Since o = 1, ko (W, W) = WPW,". It
follows that

Myy= Y E I wrwr
TeNC2(2k) (u,0)EE(Gyr)
k+1

= > JlEwm™Y

TENCy(2k) i=1
= / x%ﬂsc&ﬂmm<dx)'
R
The last equality follows from the combinatorial expression of the moments
of the free multiplicative convolution of the semicircle element with an element
whose law is given by pw,, (see Nica and Speicher [2006, Theorem 14.4]).
Consider the map z + 22 from R — [0, 00) and let u? be the push-forward of

a probability measure p under this mapping, so that pg. is pushed forward to
p2.. Then by Bercovici and Voiculescu [1993, Corollary 6.7] it follows that

B pyym B i, R pwn = pw B i, Xy
m—r0o0
A consequence of Arizmendi and Pérez-Abreu [2009, Lemma 8| is that

HW,m X :U*gc X HBwm = (Msc X NW,m)2

and
pow B 2, 8 oy = (pse 8 pow ). (3.48)
Thus
Tim (pse ® pwm)* = (psc ® pow)*.

Observe that pse X pyw,m and pse X py are symmetric around the origin [Ariz-
mendi and Pérez-Abreu, 2009, Theorem 7|, hence we have that

lim dL(Hsc X MWy Hsc X HW,m) = lim dL(Hsc X MWy KU1,7mm, ) = 0.
m—0o0 m—0o0
Theorem 3.2.1 then implies that the ESD(A ) converges to s X puy weakly

in probability.
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§3.5. Scale-Free Percolation: A special case

Step 2: tail asymptotics. In the following we use the recent results of
Kolodziejek and Szpojankowski [2022, Lemma 7.2| from which we also borrow
the notation. The free probability analogue of the classical Breiman’s lemma is
as follows: let u, v be probability measures and

p(z, 00) ~ P L(x) (3.49)

with L(-) a slowly varying function [Kolodziejek and Szpojankowski, 2022,
Definition 1.1]. Assume furthermore that the |8 + 1]-th moment of v exists:

m|g41) (V) < oo.

Then

pRv(z,00) ~ mf (v)u(x, 0)

with m(v) the first moment of v.
Since uw X pge is a symmetric measure we have, using Kotodziejek and
Szpojankowski [2022, equation (7.3)] and (3.48),

Q
=
&
s
S
@
=3
=
=
@
&

1 1
pw B phse(, 00) = 5 (pw B9 prse) (2, 00) = S puw B pu, B puwy (2%, 00). - (3.50)

By the commutativity and associativity of the free multiplicative convolution [Nica
and Speicher, 2006, Remark 14.2] we have puy X p2. X uy = p2. X py X pyy.
Let vy = pw W puw. Then a consequence of Kotodziejek and Szpojankowski
[2022, Theorem 1.3(iv)] is that

v (2,00) ~ (ma(uw))™™" pw (, 00). (3.51)
Therefore vy satisfies (3.49) with 3 := 7—1, and clearly m,|(u2.) < co. Thus,
applying Kotodziejek and Szpojankowski [2022, Lemma 7.2],

(3.50) 1

(1se B vw) (,00) "=" 2w B g, B pay (2%, 00)

~ 5 (mi(2)) (e, )

(3.51) 1

RS (ma () (ma ()™ (2, 00)
~ g ()™ ) 20,

We can conclude noting that mq(uy) is finite since 7 > 2 and mq(p2,) =
ma(pse) = 1 [Arizmendi and Pérez-Abreu, 2009, Proposition 5 a)|. O
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3. Adjacency spectra of kernel-based random graphs

§3.6 Non-degeneracy of the limiting measure

The proof of Theorem 3.2.3 follows the arguments in Chakrabarty et al. [2016,
Theorem 2.2|. A key observation is that the limiting measure p, . does not
depend on the parameter «. This will allow us to deal with an easier model,
formally corresponding to the case o = 0, that does not feel the influence of
the torus’ geometry. The lack of geometry also allows us to work on a unique
probability space. More precisely, let (G; ;)i j>1 be an i.i.d. sequence of N'(0, 1)
random variables, and let (W;);>1 be an i.i.d. sequence of Pareto-distributed
random variables with parameter 7 — 1. Assume they are defined on the same
probability space (2, F,P). Define the N x N matrix

Bym = N712, kg (W, W) Ginjivs -

Let By, denote the matrix with non-truncated weights. The following result
can be proven exactly as in Proposition 3.4.9.

Proposition 3.6.1.
Let ESD(Bn,m) be the empirical spectral distribution of By . Then for all
m > 1,

lim ESD(Bnm) = form  in P-probability.

N—o0

Moreover,
lim ESD(Bn ) = to,r in P-probability.

N—oo

We use this result to prove Theorem 3.2.3. Recall that, for a distribution
function F', the generalised inverse is given by

F(y):=inf{z eR: F(z) >y}, 0<y<l.

Proof of Theorem 3.2.3. From Proposition 3.6.1, it follows that there exists a
subsequence (Nj)k>1 such that py, », converges weakly almost surely to fig 7 m;
that is,

klggo dr,(ESD(BN, m)s bo,rm) = 0 P-almost surely. (3.52)

For a n x n matrix A, let us denote by A;(A) < A(4) < -+ < A (4) its
eigenvalues. For fixed integers 1 < k < 0o, 1 < m < o0, define the following
random variables on the probability space (2 x (0,1), F®B(0,1),P = P x Leb):

Zk,m(w,a:) = )\[ka] (BNk’m(w)), w € Q, x € (0, 1),
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§3.6. Non-degeneracy of the limiting measure

and
Z00(W, T) 1= A[N, 2] (BNk,Oo(w)), weQ, ze(0,1).

Let F;;, be the distribution function of ps, -, m (we suppress the dependence on
o and 7 in F,, for ease of notation), and define

Zoom(w,x) = F(z), we, ze(0,1).

m

Now consider L?(2 x (0,1)) with the P measure. This is a complete metric
space, with d(X,Y) = E[(X — Y)?]. Our aim is to use Lemma 3.3.5 applied
to the sequence of random variables Zj, ,,,. We proceed therefore to check as-
sumptions (1) and (2) of the lemma. These will directly follow if we prove
that

lim E [(Zk,m - Zoqm)ﬂ =0 (3.53) Q

and E,
. . 20 ~

Jim_ lim E [(ka — Ziooo) ] = 0. (3.54) .

o)

D

We start by (3.53). First of all we show that

lim Zj,, = Zoo,m P-almost surely. (3.55)

k—o00

Define
A=A"%x(0,1)

= {w € Q: lim dr(ESD(Bn, m), tto,r,m) = 0, Vm > 1} x (0,1).
k—o0

Observe that P(A) = 1 due to (3.52) and Leb(0,1) = 1. To prove (3.55), it
suffices to show that, for all w € A’,

lim Zjm(w,2) = Zoom(w,z), x € (0,1). (3.56)

k—o0

Let Fjm(w,-) be the distribution function of ESD(Bn, m(w)). On A, we
have Fj, ,(w,2) = Fpp(x) for all  at which F}, is continuous. Note that

Zm(w, ) = Fi, (w, ).
It then follows from Resnick [2008, Proposition 0.1] that for all z € (0,1)
lim F,, (z) = F (x).
k—oo 7

Thus, we have proved (3.55).
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3. Adjacency spectra of kernel-based random graphs

Next, we show that for all m > 1,
{Z; ;1 < k < oo} is uniformly integrable. (3.57)

It suffices to show that sup,~; E[Z}},,,] < co. Since [ Njz] is constant on intervals
of length 1/Ny, it easily follows that

Z)\ (BNym) ]

1
= lim 7ETI‘(BN;€ m) - / .2124 Ncm',m(dx) <0
R

k—oo IV

lim E[ka] = lim —E

k—o0 k—oo NN,

using (3.27) and (3.29), hence (3.57) is proven. Using this and (3.55), we obtain
(3.53).
We move to (3.54). To prove this note that

Ny

~ E Z ()‘j<BNk7m) - )‘j(BNk,oo))Q

j=1

1
Ny,

O
o
~
<
~
~
)
i)
(@)
Q,
=
S

E |(Zkm — Zn)’] =

(39 1
< FkE [Tr ((BNgm — By,.0)? )}
Ni

LB (Brm(ind) — Browolis )

ij=1

1
~ N,

Reasoning as in the proof of Lemma 3.4.2, it follows that

Ny

1 g Z (Brgm(iy §) = Bryoo(is 5))?

( o (W7 W) — wa(Wi,Wﬂﬂ

Nk
2
<= Z E [ke(Wi, W) 1w, <mew]
koij=1
2
+ N2 Z E [/{"o’(m’ W])1W12W]>Mj| :
koij=1

We can use similar bounds as for Lemma 3.4.2, which yield that both summands
have order at most m?~7. Hence (3.54) follows, since 7 > 2.
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§3.6. Non-degeneracy of the limiting measure

Since we have now checked assumptions (1) and (2) of Lemma 3.3.5, it
follows that there exists Zo, € L?(£2 x (0, 1)) such that

lim E |[(Zoom — Zoo)?| = 0.

m— 00

Let U be a uniform random variable on (0,1). Then F (U) has the same
distribution as fig rm. Since iy rm converges weakly to pig r by (3.47), Zs has
law pio . Hence

lim E[Z2 ] = lim [ 2%psrm(dz) = / 2% g (d ),

)

and

o0 o 1
lim a:ZMUTm dz)=(r—-1 2/ / dxdy
Ry R A A Y Y R AT

which can be easily obtained from (3.29) with & = 1. This completes the proof
of the first part.

Since limy, o0 flo,7m = Ho,r Weakly, we apply Fatou’s lemma to obtain

Q
=
)
o]
=
@
=
=
~
@
D

/$2p lu’U,T(dx) < limjnf/x2p NU,T,m(d ZL‘) = mlgnoo M2p7

m— 00

where, recalling (3.29),

My= Y B| [ meviw
meNC2(2p) (u,0)EE(Gyr)

For o > 0, we observe that (z Ay)?(z Vy) < (zy)°V!. Thus,

p+1

My < Y JIE[wmevn#i], (3.58)
TENCy(2p) i=1

where {Vi,...,Vp41} are the blocks of ym. Due to Lemma 3.4.8, it follows that
maxi<ij<p+1 #Vi < p, typically achieved by partitions 7 such that

yr={(1,3,...,2p—1),(2),(4),...,(2p)}.

This shows that the maximum moment bound required for the right-hand side
of (3.58) to remain finite is E[(W;)P(°VD]. Since W; has a tail index of 7 — 1, if
p(o V1) < 7—1, then E[(W;)P®VD] < co. Therefore, My, is uniformly bounded
in m, completing the proof of the theorem. O
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3. Adjacency spectra of kernel-based random graphs

§3.7 Absolute continuity and symmetry

We begin by showing absolute continuity. We shall use the following fact from
Chakrabarty and Hazra [2016, Fact 2.1|, which follows from Nica and Speicher
[2006, Proposition 22.32].

Lemma 3.7.1.

Assume that, for each N, Ay is a N x N Gaussian Wigner matriz scaled by
VN, that is, (An(i,§) : 1 <i < j < N) are i.i.d. normal random variables with
mean zero and variance 1/N, and An(j,i) = An(i,7). Suppose that By is a
N x N random matriz, such that for all k > 1

lim NTT <BN> —/Ra: wu(dx)

N—oo

in probability, for some compactly supported (deterministic) probability measure
w. Furthermore, let the families (An : N > 1) and (By : N > 1) be independ-
ent. Then for all k > 1

1
lim —EzTr [(ANA—BN)IC} = / ¥ B prge(d x)
N R

N—oo

in probability, where F := o (Bn : N > 1) and Ex denotes the conditional ex-
pectation with respect to F.

Proof of Theorem 3.2.4. We consider the truncated weights (W/");>1. Let I'y,

7
be an N x N matrix with entries given by

Fm(zaj) = KU(Wz’m7W]m)'
Given § € (0,1), define the function gs,,, such that
2
9o (Wi W2 = (i (W, W) = 6) "+ 28 (o (W, W) = )
As a consequence
Gom (W™, W) + 6% = ko (W], W) . (3.59)

Define the matrix I'g; (4, j) = go,m (W™, W]"). Let {Gi ;}1<ij<n beii.d. stand-
ard Gaussian random variables, independent of the sequence (W;);>1. Denote
by & the matrix with entries
. 1
Gy (i, j) = ﬁGi/\j,ivj .
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§3.7. Absolute continuity and symmetry

Define
B, =Tmo®y.

Similarly, define
Bg\Qf,)m = Fgé,m 0 ®N °

Lastly, consider a sequence of i.i.d. standard Gaussian random variables (G; j)lg,jg N

independent of the sigma field F generated by (W;)i>1,(Gij)ij>1. Define a
3)

. 3 . )
matrix B Nm with entries

1
ﬁG;/\j,i\/]’ .

We claim that, conditionally on (W;);c(n,

By, £ By +iBY . (3.60)

Indeed, conditionally on (W;);cn], the entries of Bg\l,?m, ng?m,
normally distributed. Thus, it is sufficient to compare the mean and variance
of the entries. All the variables in question have mean zero and the variances
match, too, due to (3.59). Following Proposition 3.6.1, there exists a measure
Hgs., such that

and Bg\?,’)m are

Q
=
)
o]
=
@
=
=
~
@
D

.1 2
lim NTr ((Bgv)m)k) = /R:Ek,ug&m(dx)

N—oo

in probability. In particular, we recall the expression for the even moments of
Hgs.,, Siven in (3.29):

My= > E| I @n.wrwr
TENCo(2k) (u,0)EE(Gyn)

Since g3, (W, W) < ko (W, W), it follows that s, . is uniquely determ-
ined by its moments, and is also compactly supported (Corollary 3.4.11). This
verifies the first condition of Lemma 3.7.1. Since Bg\?;)m is a standard Wigner
matrix, it follows from Lemma 3.7.1 that ’

. 1
lim NE]: [Tr ((Bg\%)m + 5B537)m)k)1| = /ka (Mgé,m H Msc,é)(d .1‘),

N—o0

where fi,. 5 is the semicircular law with variance 62 and density

1 T\ 2
Hsc,d(d$) = 975 4— (5) 1|$|S25 dz, zeR
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3. Adjacency spectra of kernel-based random graphs

Since both s m and fis. 5 are compactly supported, so is Hgs m B .5, and thus
the measure is completely determined by its moments.
From Proposition 3.4.9 we have

lim E { NE;[Tr(B(l) ) ]] = /R 2ty 7 (d )

N—oo

and

lim Var <JbE;[Tr((B%)m)k)]> < lim Var <]17 Tr((BE&?m)k)) =0.

N—oo N—oo

Thus,
1

lim —Er [T&“(Bg\l,)m)k] = / 2" g 7m(d )
N ' R

N—o0

in probability. Since the measures are uniquely determined by their moments,
this shows that

fo,rm = Mgy B fises- (3.61)

O
o
~

<

~
~
)

i)

(@)
Q,
=

S

We show that there exists g, such that

n}i_rfloo dr, (/’l’g6,m s tgs) = 0. (3.62)

If we can prove this, using Bercovici and Voiculescu [1993, Proposition 4.13] it
will follow that

Wy_{noo dL(:ugg,m H pise,5, pgs B Usc,z?) < m%gnoo dL(Mga,mmuga) = 0. (3.63)

To show (3.62), we employ Lemma 3.3.5. Note that, from Remark 3.4.11, we
get that for any fixed m > 1 one has

A}i_r}noo dr, (MBE\f?m’Mg&m) =0 in P-probability

where ,uB(z) is the empirical spectral distribution of B( )

This establishes condition (1) of Lemma 3.3.5. To complete the proof, we
need to verify condition (2), namely,

lim limsupP(dz (ESD(BY,), ESD(BY)) > €) = 0. (3.64)

m—ro0 N—o00

Here BS\Q,) is defined as B%?OO with m = co. From Proposition 3.3.1 we see that
31
d (ESD(BY),). ESD(BY)) < - Tr ((ng}m ~By)’)

1 . 2
Z 9s5,m Z ] Fgé,oo(,L’])) GZ/\j A2

= \

144



§3.8. Stieltjes transform of the limiting measure

Hence we have

N
1
E[dL(ESD(Bﬁ}m),ESDU 3} FZ (Tgsm (i:5) = Ts o (i 1))

N
Z 95 OO(W17 W; ) (]—WJ<m<Wl + 1W1>W]>m)]
;ﬁ =1

> N2 Z ’ia WZ)W ) (1Wj<m<W¢ + 1W¢>Wj>m)] .
i#j=1
Just as in the proof of (3.54), it follows that the last term is bounded by Cm?~7.
Thus, using Markov’s inequality, condition (2) of Lemma 3.3.5 holds, too. In
conclusion, we can show that there exists 45 such that

) (3.61) . (3.47)
lim dL(Mga,m B psess oyr) = 1m dr(pigrm, o) =0
m—0o0 m—0o0

(3.63) ..
- Tr}gnoo dr (Mga,m H pse,d5 Hgs B 1hsc,s)-

Q
=
&
e
S
@
=3
=
=
@
D

Therefore it must be that p1, - = prg; B pige,5. The right-hand side is absolutely
continuous, as shown by Biane [1997, Corollary 2].

Finally, to show symmetry, we see that 1, - does not give weight to singletons
by absolute continuity. Therefore, in light of the weak convergence stated
n (3.47),

Uo,7(—00, =) = lim pig 7 m(—00, —2)
m—0o0

= lim Mo, T, m(m +OO) /1077'(*%7 +OO)

m—r0o0

for all x > 0. This completes the proof. O

§3.8 Stieltjes transform of the limiting measure

To prove Theorem 3.2.5, we first identify the Stieltjes transform for the measure
to.rm- We then proceed to take the limit m — oo, which requires a functional
analytic approach. Throughout this section, we fix z € CT, given as z = £ + in
with n > 0. If p is a probability measure having all its moments {my}r>1, it
follows from the definition of Stieltjes transform (3.7) that, for any z € Ct,

Suz) =~ % (3.65)

k>0

where the Laurent series on the right-hand side of (3.65) converges for |z| >
R > 0, with supp(p) = [-R, R].
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3. Adjacency spectra of kernel-based random graphs

§3.8.1 Stieltjes transform for truncated weights

To derive a characterisation of the limiting measure pis -, we need to first study
the truncated version (s rm. We borrow ideas from the proof of Chakrabarty
et al. [2015, Theorem 4.1]. The main result of this subsection will be Proposi-
tion 3.8.1, which requires a few technical lemmas to prove. The results in this
subsection hold for the regime 7 > 2 and ¢ < 7 — 1, as before.

We have that the (even) moments for the measure p, 7, are given by (3.29).
Using these, we derive a representation of S, . .. (2).

Proposition 3.8.1.
For > 2 and o € (0, 7 — 1) there exists a function a(z,x) = am(z,z) defined
on CT x [1,00) such that

Sy (2) = / a2, D)wam(d )
1

where fuy,m is the law of the truncated weights (W™). Moreover, a(z,x) satisfies
the following recursive equation:

oea) (24 [T aGproloimn(an) = -1 369

Before tackling the proof of the proposition, we lay the ground with two
auxiliary results. For any k > 1 and m € NCy(2k), recall the map T of (3.26),
where ym = {Vi,...,Viy1}. Consider the mapping Ly : [1,00)%"! — R defined
as

1/2(

La(x) = 62 (27 (1) 2722) )5 2 (27220, 27 (3)) - - - K 2 (T (2k), T2 (1)) (3.67)

and the function H; : R — R™ given as

Hi(y) = /[ el 22 T i (4), (3.68)

where we are integrating over x’ = (z2,...,2p41) € [1,00)F.

Lemma 3.8.2.
Let {May}r>1 be as in (3.29). Then

Ma= 3 [ Hmn(ay)

TENCy(2k) 71
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§3.8. Stieltjes transform of the limiting measure

Proof of Lemma 3.8.2. We begin by evaluating the integral on the right-hand
side. We have

/ Ho () piwom(d )
/ / La(y, s, ops )EE () v (d )

_/[1 . ’%17/2(377“(1)7377,42)) Hl/2($ﬂ(2k),$ﬁ,(1))/i%k$ (dx).

We know that, for 7 € NC2(2k), #ym = k + 1 and so the graph Gy, has k + 1
vertices. Furthermore, when we perform a closed walk of the form 1 — 2 —

. — 2k — 1 on the (unoriented) graph G, we traverse each edge ezactly
twice. In particular, the product K,(ly/z(ﬂ?'];r(l), TT(2)) Ii};/Q(xTﬂ(gk),xﬂ(l)) has
2k terms with k matchings, and so

k2@ rre) kP En e rnm) = [ Rel@e ).
(u,v)€E(Gyr)

Q
=
)
o]
=
@
=
=
~
@
D

We then have that

OoH7T m(d :/ Ko (T, Ty Ok+1q x
| = [T ol rnitax

(u,v)€E(Gyr)

=K

H Ko (Wy', W)

(u,0) EB(Gryr)

which concludes the proof. O

We show now some properties of H, that will help us in the upcoming compu-
tations.

Lemma 3.8.3.
Let k > 1 and let Hy be as defined in (3.68). Let m € NCo(2k). Then,

(1) If m = (1,2k)Umy, where 1 is a non-crossing pair partition of {2, ..., 2k—
1}, then,
o0
Hely) = [ Hoy (@)oo 9) i (d2). (3.69)
1

(2) If m = m Uma, then Hr (") = Hyp, (*)Hry(¢).
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3. Adjacency spectra of kernel-based random graphs

Proof of Lemma 3.8.3. We first prove property (1). Let 7 = (1,2k)Umy. Then,
vy ={(1),Va,...,Vir1}. We know that 2 € V5 and then yn(2k) = 2 € Vs,
Now, fix x1 = y. Then

H(y)

= /[1 . L:(y,za,..., xk+1)u%}fm(dxl)

= \/[1 )k K/(]}/Q(yu $2)/€£/2(3§'2, xﬂ(?))) e /{,(]7'_/2<Qj'7;r(2k71),1132)5;;'_/2(.%2’ y)ﬂ%}fm(d X/)

oy .

X / ko (w2, 27, (3)) - - Ky 2 (07 o 1)s T2) i (AX) pwm (d 2)

[1700)16—1
— / b (s 22) o (22) i (d ),
1

which is what we desired.

For property (2), let m = m; Umg, with m; € NCy({1,2,...,2r}) and m €
NCy({2r +1,...,2k}) and let us consider the function H(y) with y = 21 =
xﬂ(l) Then,

Hy(y) =
1/2

/[1 N K207, 2) - 5 (@7 20 BT 2041)) - - B! (BT (2 WG (AX).

We now claim that this integral can be split up into two integrals. First, consider
the element @7 (1). Since we assume that ‘1’ maps to V3 € vy, all elements of
V1 are mapped to y. To understand where other elements are mapped, we will
state a claim and see its consequences to this proof, and then prove it on 149.

Claim 3.8.4.
Under ym, the elements {2,...,2r} are mapped to the blocks

Vlu{‘/Q""7‘/;’/} Com,
and the elements {2r + 1,...,2k} are mapped to the blocks
Viu{Viga, o, Vet oy,

where v’ < k41 is some index. In particular yw(2r +1) € V.
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§3.8. Stieltjes transform of the limiting measure

From this claim we have that

Hx(y)
1/2(

:/[1 )k'l{i'/2(y’x7—7r(2))'"H(17'/2(x7—7r(2r)7x7'7r(2r+1))"‘K/a' $77r(2k)’y)ﬂ<§/’fm(dxl)
:/[1 )k Ii},/2(?/,337—7r(2))...n;/2(x7;r(2r),y),,_né/2(xﬂ(2k)’y)ﬂ%lfm(dx/)

= /[1 ) s e D (A7)

x /[ o 52T ) g i (@)
= Hp, (y)Hﬂ'Q (y>
This concludes the proof. ]

Proof of Claim 3.8.4. Let 1 resp. 72 be the shift by one on [2r] resp. {2r +
1, ..., 2k}. To prove this claim, it suffices to analyse the special indices {1, 2r, 2r+
1,2k}, since 1 and 79 are cyclic permutations on [2r] and {2r + 1, ..., 2k},
respectively. We will be using the fact that all elements in a block of v must be
either all odd or all even [Avena et al., 2023, Property 1|, and that any pairing
in 7 must have one element odd and the other even [Avena et al., 2023, Property
2.

(a) We already have 1 € V;. Now, let (01,2k) € mg, for some o7 such that
o1 > 2r + 1. Then, o; must be odd. Now, o7 + 1 is even, and cannot
belong to Vi. Thus y7(2k) = 01 +1 € {V,r41,..., Var}. This takes care
of the index 2k.

(b) Let us continue with (02, 2r) € m for some 03. We know that o2 must be
odd. Thus, yw(2r) = 02 +1 € {Va,...,Viv} =: y9m \ Vi. This resolves
the case of 2r.

(c) Lastly, by construction, ym(02) = 2r+1, which brings us to the last special
element. Since o2 and 2r 4 1 belong to the same block in v, it suffices to
show that this block is V7, that is, the block to which element 1 belongs.
Now, if (1,00 — 1) € 71, we are done, since ym(1) = o02. Suppose not,
and let (1,e1) € m; for some even integer e;. Similarly as before, if now
(e1 + 1,09 — 1) € m, we are done. Since m; and 7o act on the first 2r
elements and the remaining 2k — 2r elements respectively, then, by the
non-crossing nature, there is a sequence of even integers {ei}§:1 such that
(Lye1),(e1 + 1,e2),...,(et + 1,02 — 1) € m;. Computing 7 recursively
gives us that yw(1) = 09, and so yw(2r + 1) € V4.
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3. Adjacency spectra of kernel-based random graphs

This proves the claim. ]

We are now ready to prove Proposition 3.8.1.

Proof of Proposition 3.8.1. We now derive the Stieltjes transform of the meas-
ure fio.rm. Using (3.65) and Proposition 3.4.9, we have that

Moy,
Spto.rm (2) = =D et
k>0

Using Lemma 3.8.2 we substitute the expression for Ms,. We have

Stern(2) =~ X ey / S He()pwm(de)

k>0 TeNC>(2k)

— (Y ¥ L, (3.10)

k>0 €N Cy (2k)

where we could interchange the integral and the sum by Fubini’s theorem. Now,
we define the function a(z,z) as

H,(x
-y oy 9 (371)

k>0 1€ NCy(2k)

Then using (3.70) we have

Sovin(2) = [ alz,0)nnda).

We now state some properties of the function a(z,z). Firstly, for any z € C*
the map z — a(z, ) is in L*([1,00), ppw,m) as Hy is bounded . Secondly, for
any = € [1,00), the map z — a(z,z) is analytic in C, which follows from the
Laurent series expansion. Finally we see that a(z, ) lies in CT, for any z € C*
and x > 1. Indeed, for any (z) > 0, the expansion on the right-hand side
of (3.71) will always have a non-trivial imaginary part. Thus, since a(-,-) is
analytic, it will either lie completely in C~ or CT, since it can never take values
in R. However, Sy, .(z) € C*, and thus, a(z,z) € C* for any z € C* and
x> 1.

To write down a functional recursion for a(-,-) it is convenient to use the
notion of words. Any partition 7m can be associated to a word w, with any
elements in i, j € [2k] being associated with the same letter in w if 4, j are in the
same block of w. For example, m = {{1,2},{3,4}} can be written as w = aabb.
In particular, any partition m € NC5(2k) can be associated to a word w of the
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§3.8. Stieltjes transform of the limiting measure

form w = awiawsy, where wi, wo are words that can be empty. For any word
w associated to a partition m, let Hy = H,,. Furthermore, for w € NC5(2k)
we mean a word w whose associated partition 7 is in NC2(2k). Then we have,
using Lemma 3.8.3 in the third equality,
Hy()
=2 >
k>0 weNCs(2k)
__1_ D Hawyaw, ()
- S2k+1

k>1 weNCy(2k)
w=awiaw

Heywyo(z)Hy,y (2
:_7_2 Z 2(2k)+1 )

k>1weNC2(2k)
w=awiawsy

1 1 k Hawa H’LU
~ iy oy el s M)

E>1£=1 w1 eNC2(20—2) w2 ENCy(2k—20)

(3.72)

One can see that the word aw;a has as corresponding partition (1,2¢) Ury, with
m € NC2(2¢ — 2). Using (3.69) from Lemma 3.8.3, we have

a(z,x)

1 oo
- 22 >t Ha@r i (dy)
Z k=1 0=1 w eNCy (20-2) 1
Hy, ()
X Z z2k72€+1
waENCo(2k—20)
R T H,,(z)
T2z ZZ Z 22k—20+1
k>1 0=1 1€ NCo(2k—20)

D S e )

m ENC2(20—2)
1 00
- _ - _ CL(Z,.CL')/I a(z,y)l{g(l’,y)/«LW,m(dy)'

z z

Thus, we have (3.66), which completes the proof of Proposition 3.8.1. ]

Remark 3.8.5.
Equation (3.66) gives an analytic description of a in terms of the recursive
equation. Now, for any z € CT, we have that

z—L/’ e i ¢ (3.73)
0
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3. Adjacency spectra of kernel-based random graphs

Since a(z,x) € CT for any fived x € [1,00), applying (3.73) to a(z,z) and using
(3.66) gives us that

a(z,z) = z/ooo et exp {it /Ioo a(z, ) ko (2, y) pwm(d y)} dt. (3.74)

An immediate consequence of (3.74) is that a(z,z) is uniformly bounded in x
and m. Indeed, if we take z = & + in with n > 0, we have that

o0
la(z, x)| S/ e
0

o0 1
< / oMt = 1. (3.75)
0 n

exp {L‘t /IOO a(z,y)ko (@, y) wm(d y)}‘ dt

The bound in the second line holds since a(z,z) € CT, and so

/1 " 4z 9)ro (@, v)wam(dy) € CF

as kg > 1.

§3.8.2 Limiting Stieltjes transform

We now set up the framework required to prove Theorem 3.2.5. For the re-
mainder of this section, denote a,(z) := a(z, z), which implicitly depends on m.
We wish to extend Proposition 3.8.1 to the measure 5 by passing to the limit
m — 00. We have a natural candidate for the function a* in Theorem 3.2.5,
which should be the limit of a(-, -) as m tends to infinity. We now formalise this
idea through a series of lemmas.
Since our goal now is to show Theorem 3.2.5 we are going to work for the

remainder of this section with the following parameters:

(a) 7> 3,

(b) 0 <7 —2, and

(c) a parameter 8 such that 2V1+o< <7 —1.
Let C" = C*T UR be the closure of C*, and let v be the measure defined as

vidz) =2 dax. (3.76)

Consider the space L!'([1,00),v) of all functions f : [1,00) — C" that are
L' —integrable with respect to v.
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§3.8. Stieltjes transform of the limiting measure

Definition 3.8.6.

Let B denote the Banach space B := (L([1,00),v),|-|[1), where the norm ||-||1 is
the L' norm with respect to v as in (3.76), which is defined for f € L*([1,00),v)
as

I = | (@) da. (3.77)

Recall that iy, denotes the law of the truncated weights (W)"),, given as

T

MW,m() = Cr_nluw(')]l{'ﬁm}a
where ¢, =1 —m (D isa normalizing constant converging to 1 as m tends
to infinity, and py is the Pareto law defined in (3.2). For z € C*, let T, denote

the map

v =i [ e it [ st pian far (3.78)

Then, we have the following result.

Lemma 3.8.7.
There exists a constant ¢ = &(t,0,3) such that, for all z € C* with S(2)? =

n? > ¢ T, : B— B is a contraction mapping, with a contraction constant én=2.

Proof of Lemma 3.8.7. We first need to show that, for any f € B, one has
T.f € B. Indeed, for x > 1 it holds that

s < [T exp{us | f(y)ﬂa(x,y)uw(dy)}’dt <

where the last inequality holds as f(y) € CT for any y > 1, and thus the second
complex exponential is bounded by 1. Since |T% f(-)| is uniformly bounded, it is
L'—integrable with respect to v, and so T,(B) C B.

Now, we wish to show T, is a contraction. Let us take fi, fo € B. Recall
that for any 21,29 € CT and t > 0, we have

|21 — ef22| <ty — 2. (3.79)
Then, for any x € [1,00) we have that

|Tzf1('r) - Tzf2($)’
i / itz (eit I A @)se(@y)nw (dy) _ oit [ fa(y)ro (@y)nw(d y)) d t‘
0

o0
</ e M
0
oo
< / e M
0

it 77 i)k (@y)uw (dy) _ it [ f2(y)ko (z,y)nw (dy) ‘ dt

[ (1) = o)) et y>] d, (3.80)
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3. Adjacency spectra of kernel-based random graphs

where in (3.80) we use (3.79). Now, evaluating the integral over ¢ in (3.80), we
obtain

T2 f1(z) — T: fa(a)]

< C20 [T 140 - 2wty ay 38

where we explicitly write down the Pareto law pw (dy) := (7—1)y~ " dy. Recall
that ks (z,y) = (z Ay)(x Vy)?. Thus, (3.81) becomes

T, f1(x) — Ts fo(z)]
7-—1 / |f1(y (y)|zy™™ Tdy+/ |f1(y)ff2(y)|xay1—7dy).

T

Integrating with respect to v gives us

T f1 —T. f21

< (/m )| ”—Tdy>x—6daz
+Tn;1 A (a: / h() - <y>\y“dy)xﬁdx
- (/100|f1(y) —f2<y>ry“-T/y°°x1—ﬁdwdy

+ [T1nw) - pt [T dxdy) . (3.82)

Using 8 > 2, the first integral in (3.82) can be bounded by

/ S - Rl / TP dady
1 Y
— o /1 AW - RO dy <allfi — foli, (383)

since y>77°7 < 1 and ¢; = 1/(8 — 2). Similarly, the second integral in (3.82)
gives us

) Y [
/ W) — LWl / P dady < o / A1) — F()ly' " dy
1 1 1
< el fi — fall1, (3.84)

with ¢g = 1/(8 — 1 — o), where for the last line we have used 1 — 7 < —p.
Combining (3.83) and (3.84) in (3.82) gives us that

I
T f1— T2 fal1 < ﬁ”fl — fall1, (3.85)
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§3.8. Stieltjes transform of the limiting measure

where ¢ is a constant depending on 7, ¢ and . Thus, taking n > 0 to be
sufficiently large such that 7 > v/ gives us that T, is a contraction mapping on
B, hence proving the result. O

The following corollary is immediate from the Banach fixed-point theorem for
contraction mappings.

Corollary 3.8.8.
Let T, : B — B be the contraction map given in (3.78). Then, there ezists a
unique analytic function a} € B such that T,(a}) = aj.

We know from (3.74) that

a(z) = i/ el exp {Lt/ c;zlaz(y)/ﬁg(x,y)]l{y<m},uw(dy)} dt. (3.86)
0 1

Define a, as
wo) =i [ een i [T Gla e an e @8
0 1

Then, a, = T,(c,,'a,). We now have the following lemma.

Lemma 3.8.9.
Let a, and a, be as in (3.86) and (3.87), respectively. Then,

- C(m
las — asfy < €0

where C(m) is a constant depending on m such that lim,, ., C(m) = 0.

Proof of Lemma 3.8.9. Since a, € B, we again use (3.79) to get
o
lay(x) — a.(z)] < / e 't
0

T—1 [
< -7 '
< [ laee ey, (389)

[ etotumote ()| as

where we evaluate the integral over ¢ to get the factor of 72 in (3.88). Recall
that ¢, = 1 —m~ ("~ Using (3.75), we have that

5 T—1 [ .,
(@) = () < T [ ol d. (3.89)

)1\/0

Since kq(z,y) < (zy)"'?, we have

a T—1 1Vo /Oo (1vo)— (T — 1)m(1VU)7(7-71) v
z - Uz S a9 T d — 0"
|a (x) ‘ (x)| Cm773x m Y Y Cm((T — 1) - (1 V 0'))773x
(3.90)
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3. Adjacency spectra of kernel-based random graphs

where we use the fact that 7 > max(2,1 + o), and so the integral evaluated in
(3.90) is finite. Define
(7_ _ I)C;llm(l\/a)f(rfl)

o(m) = (r—1)—(1Vo)

Since ¢, tends to one, and m1V?)=("=1) tends to zero we have c(m) = 0,,(1).
Now, integrating both sides of (3.90) against =7 d x gives us

. c(m) [ _ C(m
Jor —asl < S50 [T arvesag = S50, (3.91)
n 1 n
since > 2V 1+ o, and where C(m) = 0,,(1), completing the proof. O

We are now at the penultimate step, where we have the necessary tools to
show the convergence of a, to a} in the space B.

Lemma 3.8.10.
Let a% be the unique fived point of the contraction map T, defined in (3.78).
Then, we have that
lim [jay, —a}]1 =0. (3.92)
m—0o0
Proof of Lemma 3.8.10. We have, using Lemma 3.8.9 and the fact that T}, is a
contraction, that

la. —azlli < lla. — a1 + ||a. — aZll1
< Cm)n> + | Ta(cptaz) — To(al) |
< C(m)n~ % +én ?|eytas — ailh

< Clmn™> + e ey, llaz — azlls + en~?|lazlllen,’ — 1.

Thus, choosing 7 > 0 such that 0 < 1 — éc,,,'n~2 < 1, we have that

1

1 __o

a, —a; < —F
o~ atlh < ;5

(Cm)n™ + Crn~llazllalen,’ —11) - (3.98)
Now, as m — oo, we have that C'(m) — 0, and ¢,, — 1. Since ||a}| < oo, we
have that the right-hand side of (3.93) goes to 0 as m — oco. Thus, ||a,—a}|1 —
0 as m — oo for z in an appropriate domain D,, C C*. However, in the complex
variable z, the domains of a, and a¥ are CT. Since the convergence holds for
an open set of this domain (that is, in D,y C CT), by the identity theorem of

complex analysis, the convergence holds everywhere in C*, that is, for each
zeCt. O
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§3.8. Stieltjes transform of the limiting measure

We now proceed towards a proof of Theorem 3.2.5, and to achieve this we
wish to take the limit m — oo to characterise S,, . We know that since
limy 00 flo,rm = Ho,r, then for each z € C, limp, o0 Sy, 1, (2) = Sy, . (2)-

Proof of Theorem 3.2.5. Let a} be the unique fixed point of the contraction
mapping 7, as in Corollary 3.8.8, and let S, . () be the Stieltjes transform of
o+ for any z € C*. We wish to show that

S0, () = [ at(ohmn(da).
We have that
/1 0. (@) (d ) — /1 a2 (@) (d 2)
/1 02 (@) m(d ) — / 0 (@) v (d )

<

| [ a@mn(n) - [ e, (3.94)
The first term in (3.94) can be evaluated as
[ a@mna) - [ @)
<(r- D! [ auta) - aia)le " da
<(r-— 1)07;1 /00 la.(z) — ai(m)\x*ﬁxﬁ”dx
<(r- 1)%1\\; — az[ly = om(1), (3.95)

as %77 < 1, and ||a, — a?||1 = om(1) from Lemma 3.8.10. The second term of
(3.94) can be evaluated as

| [ a@mntaa) - [~ o)

<t | [ )uw(dw)—/looai(x)uw(dx)+/1ooa§( ()| et — 1

o) [0 el o1 (- Dm T et —1]

< P /m dz + ” = - + » = o (1),
(3.96)

since |a%| < n~!. Combining (3.95) and (3.96) completes the proof of the the-
orem. O
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Scale-free percolation: The graph
Laplacian

This chapter is based on:
R.S. Hazra, N. Malhotra. Spectral properties of the Laplacian of scale-free per-
colation models. [arziv:2504.17552], 2025.

Abstract

We consider scale free percolation on a discrete torus V of size N. Condi-
tionally on an ii.d. sequence of Pareto weights (W;)iev, with tail exponent
7 —1 > 0, we connect any two points ¢ and j on the torus with probability

W, W
pij:H e T

i =gl
for some parameter a@ > 0. We focus on the (centered) Laplacian operator of
this random graph and study its empirical spectral distribution. We explicitly

identify the limiting distribution when a@ < 1 and 7 > 3, in terms of the spectral
distribution of some non-commutative unbounded operators.


https://arxiv.org/pdf/2504.17552
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4. Scale-free percolation: The graph Laplacian

§4.1 Introduction

In recent years, many random graph models have been proposed to model real-
life networks. These models aim to capture three key properties that real-world
networks exhibit: scale-free nature of the degree distribution, small-world prop-
erty, and high clustering coefficients [van der Hofstad, 2024]. It is generally diffi-
cult to find random graph models which incorporate all three features. Classical
random graph models typically fail to capture scale-freeness, small-world beha-
viour, and high clustering simultaneously. For instance, the Erdds-Rényi model
only exhibits the small-world property, while models like Chung-Lu, Norros-
Reittu, and preferential attachment models are scale-free (Chung and Lu [2002],
Barabasi and Albert [1999] and small-world but have clustering coefficients that
vanish as the network grows. In contrast, regular lattices have high clustering
but large typical distances. The Watts-Strogatz model (Watts and Strogatz
[1998]) was an early attempt to create a network with high clustering and small-
world features, but it does not produce scale-free degree distributions.

Scale-free percolation, introduced in Deijfen et al. [2013], blends ideas from
long-range percolation (see e.g. Berger [2002]) with inhomogeneous random
graphs such as the Norros—Reittu model. In this framework, vertices are posi-
tioned on the Z¢ lattice, and each vertex z is independently assigned a random
weight W,.. These weights follow a power-law distribution:

P(W > w) = w "V L(w),

where 7 > 1 and L(w) is a slowly varying function at infinity.

Edges between pairs of vertices x and y are added independently, with a
probability that increases with the product of their weights and decreases with
their Euclidean distance. The edge probability is given by

W, W,
Pry = 1 — exp (—)\> , 4.1
K o -yl oy
where A\, & > 0 are model parameters and || - || denotes the Euclidean norm. This

model has been proposed as a suitable representation for certain real-world sys-
tems, such as interbank networks, where both spatial structure and heavy-tailed
connectivity distributions are relevant (Deprez et al. [2015]). Various properties
of the model are now well known and we refer to the articles by Jorritsma et al.
[2024], Cipriani and Salvi [2024], Cipriani et al. [2025], Heydenreich et al. [2017],
Dalmau and Salvi [2021] for further references.

In recent times, there has been a lot of interest in the models which have
connection probabilities similar to (4.1). Kernel-based spatial random graphs
encompass a wide variety of classical random graph models where vertices are
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embedded in some metric space. In their simplest form (see Jorritsma et al.
[2023] for a more complete exposition) they can be defined as follows. Let V' be
the vertex set of the graph and sample a collection of weights (W;);cy, which
are independent and identically distributed (i.i.d.), serving as marks on the
vertices. Conditionally on the weights, two vertices ¢ and j are connected by an
undirected edge with probability

B (i ¢ § | Wi, Wj) = s(Wi, W))li = 47 A L, (4.2)

where k is a symmetric kernel, ||i — j|| denotes the distance between the two
vertices in the underlying metric space and o > 0 is a constant parameter. In a
recent article, the present authors with A. Cipriani and M. Salvi (Cipriani et al.
[2025]) proved the spectral properties of the adjacency matrix when a < d and
the weights have a finite mean. In the above setting, the model was considered
on a torus of side length NV so that the adjacency operator as a matrix was
easier to describe. In this article, we aim to extend this study to the case of a
Laplacian matrix. Although our approach would extend to general kernel-based
models, we shall stick to the product form kernel, that is, k(z,y) = zy, so that
the ideas can be clearly presented. It is one of the few cases where the limiting
distribution can be explicitly described.

The Laplacian of a graph with IV vertices is defined as Ay — Dy where
Ay is the adjacency matrix and Dy is the diagonal matrix where the i-th di-
agonal entry corresponds to the i-th degree. When the entries of the matrix
are not restricted to 0 or 1, the matrix is also referred to as the Markov matriz
(Bryc et al. [2006], Bordenave et al. [2014]). The graph Laplacian serves as
the discrete analogue of the continuous Laplacian, essential in diffusion theory
and network flow analysis. The Laplacian matrix has several key applications:
The Kirchhoff Matrix-Tree Theorem relates the determinant of the Laplacian
to the count of spanning trees in a graph (Chung [1997]), the multiplicity of the
zero eigenvalue indicates the number of connected components (Chung [1997]),
the second-smallest eigenvalue, known as the Fiedler value or the algebraic con-
nectivity, measures the graph’s connectivity; higher values signify stronger con-
nectivity De Abreu [2007]. For a comprehensive overview of spectral methods
in graph theory, refer to Chung’s monograph Chung [1997] and Spielman’s book
Spielman [2012]. In modern machine learning, spectral techniques are pivotal
in spectral clustering algorithms, where the techniques use the Laplacian eigen-
values and eigenvectors for dimensionality reduction before applying clustering
algorithms like k-means (Abbe et al. [2020], Abbe [2017]). It is particularly
effective for detecting clusters that are not linearly separable. Recent advance-
ments integrate spectral clustering with graph neural networks to enhance graph
pooling operations (Bianchi et al. [2020]). Spectral algorithms are also crucial
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4. Scale-free percolation: The graph Laplacian

for identifying communities within networks by analysing the spectral properties
of the graph (Chung [1997]).

Bryc et al. [2006] established that for large symmetric matrices with inde-
pendent and identically distributed entries, the empirical spectral distribution
(ESD) of the corresponding Laplacian matrix converges to the free convolution
of the semicircle law and the standard Gaussian distribution. In the context
of sparse Erdgs—Rényi graphs, Huang and Landon [2020] studied the local law
of the ESD of the Laplacian matrix. They demonstrated that the Stieltjes
transform of the ESD closely approximates that of the free convolution of the
semicircle law and a standard Gaussian distribution down to the scale N1
Additionally, they showed that the gap statistics and averaged correlation func-
tions align with those of the Gaussian Orthogonal Ensemble in the bulk. Ding
and Jiang [2010] investigated the spectral distributions of adjacency and Lapla-
cian matrices of random graphs, assuming that the variance of the entries of
an N x N adjacency matrix depends only on N. They established the con-
vergence of the ESD of these matrices under such conditions. These results of
the Erdés-Rényi random graphs were extended to the inhomogeneous setting
by Chakrabarty et al. [2021b]. In a recent work, Chatterjee and Hazra [2022]
derived a combinatorial way to describe the limiting moments for a wide variety
of random matrix models with a variance profile.

Our contribution

The empirical spectral distribution of the (centred) Laplacian of a graph that
incorporates spatial distance has not been studied before. For example, we are
not aware of a result that describes the spectral properties of the Laplacian for
the long-range percolation model. Our main contribution is that we establish
this result for the scale-free percolation model on the torus. We restrict ourselves
to the dense regime, that is, o < 1. We show that under mild assumptions on
the weights (having finite variance), we establish the existence of the limiting
distribution. It turns out to be a distribution that involves the Gaussian, the
semicircle, and the Pareto distribution. In a symbolic (and rather informal)
way, it is given by the spectral law of

W2SW2 4 my W AGW 4,

where W is an unbounded operator with spectral law given by the Pareto dis-
tribution, S is a bounded compact operator whose spectral law is the semicircle
law, and G is an unbounded operator whose law is given by the Gaussian dis-
tribution. Finally, m; is the first moment of W. The interaction between these
operators comes from the fact that in the non-commutative space, {W,G} is a
commutative algebra, freely independent of S. Similar results have been estab-
lished when the weights are bounded and degenerate, and no spatial distances
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are involved (Chatterjee and Hazra [2022] and Chakrabarty et al. [2021b]). The
present work extends the results to settings that involve random heavy-tailed
weights and spatial distances.

Outline of the article

In section 4.2 we explicitly describe the setup of the model and state our main
results. In Theorem 4.2.1 we show the existence of the limiting spectral dis-
tribution, and in Theorem 4.2.5, we identify the measure and state some of
its properties. In Section 4.3 we first introduce a Gaussianised version of the
matrix, and this helps us to simplify the variance profile. We then truncate
the weights and decouple the diagonal, which allows us to apply the moment
method. In Section 4.4 we identify the limiting moments of the decoupled Lapla-
cian and show that it does not depend on the spatial parameter « > 0, which
is crucial in the identification of the limiting measure of the original Laplacian.
Finally, in Section 4.5 we identify the limiting measure using results from free
probability. In Appendix 4.6 we provide references to some of the results we use
in our proofs, which are collections of results from other articles and are stated
here for completeness.

§4.2 Setup and main results

In this section we describe the setup of the model and also state the main results.

§4.2.1 Setup

(a) Vertex set: the vertex set is Viy := {1, 2, ..., N}. The vertex set is equipped
with torus the distance ||i — j||, where

li =gl = li = GI A (N =i = ).

(b) Weights: the weights (W;);cv, are i.i.d. random variables sampled from a
Pareto distribution W (whose law we denote by P) with parameter 7 — 1,
where 7 > 1. That is,

P(W > t) = t_(T_l)l{tZH, + 1{t<1}' (4.3)

(c) Long-range parameter: « > 0 is a parameter which controls the influence
of the distance between vertices on their connection probability.

(d) Connectivity function: conditional on the weights, each pair of distinct
vertices 4 and j is connected independently with probability PV (i <+ j) given
by

W, W,
PV(iej) =Pl j| Wy, W) = o

= — —~— A 1. 4.4
=i (44)
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4. Scale-free percolation: The graph Laplacian

We will be using the short-hand notation p;; := P(i < j | W;, W;) for con-
venience. Note that the graph does not have self-loops.

In what follows, we denote by P = P ® PV the joint law of the weights and
the edge variables. Note that P depends on N, but we will omit this dependence
for simplicity. Let E,E, and EV denote the expectation with respect to P, P,
and P respectively.

The associated graph is connected, as nearest neighbours with respect to the
torus distance are always linked. Let us denote the random graph generated by
our choice of edge probabilities by Gy. Let Ag, denote the adjacency matrix
(operator) associated with this random graph, defined as

o 1 ifi <y,
AGN(Za]) = {

0 otherwise.

Since the graph is finite and undirected, the adjacency matrix is always self-
adjoint and has real eigenvalues. Let

]D)(GN = Diag(dl, e ,dN)
where d; denotes the degree of the vertex ¢ and in this case given by

di = Agy (i, j).
J#i
We will consider the Laplacian of the matrix, which is denoted as follows:

AGN = AGN — DGN-

In general, when o < 1, the eigenvalue distribution requires scaling in order to
observe meaningful limiting behaviour. In Cipriani et al. [2025], it was shown
that an appropriate scaling of the adjacency matrix, under which the conver-
gence of the bulk eigenvalue distribution can be studied, is given by

1 1
eN= Y T ~eNT, (4.5)
N2 Tl

JEVN
where ¢ is a positive constant. The scaled adjacency matrix is then defined as

Ag
Ay = 32X, 4.6
N= T (4.6)

We define the corresponding (scaled) Laplacian as

Ay = Ay — Dy,
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§4.2. Setup and main results

where Dy is given by Dy = Diag(dy,--- ,dy) with
d; =) An(i, k).
ki
The empirical measure that assigns a mass of 1/N to each eigenvalue of the

N x N random matrix My is called the Empirical Spectral Distribution (ESD)
of My, denoted as

ESD (My) : 25&,

where A1 < Xy < ... < An are the elgenvalues of Mpy. We are interested in the
centred Laplacian matrix for the bulk distribution. So define

Ay = Ay —E[An] (4.7)

where E[AN](i,7) = E[An(i,j)]. If we define A}, = Ay — E[Ay] and DS,
is the diagonal matrix Diag(dy,...,d3;) where df = >_, ., A}/(i, k), then it is
easy to see that
N =Ay - Dy
In this article we will be interested in understanding the behaviour of ESD(AY))
as N — oo.

§4.2.2 Main Results

The Lévy-Prokhorov distance dy, : P(R)? — [0, 400) between two probability
measures p and v on R is defined as

dp(p,v) :==inf {e > 0| u(A) < v (A%)+e and v(A) < p(A%)+e VAeBR)},
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where B(R) denotes the Borel o-algebra on R, and A¢ is the e-neighbourhood
of A. For a sequence of random probability measures (un)n>0, we say that

lim pny = po in P-probability
N—o00

if, for every € > 0,

i P(dr (s po) > €) = 0.
Our first main result is existential and is as follows.
Theorem 4.2.1.
Consider the random graph Gy on V with connection probabilities given by
(4.4) with parameters T > 3 and 0 < o < 1. Let ESD(AY;) be the empirical
spectral distribution of A% defined in (4.7). Then there exists a deterministic
measure V- on R such that

lim ESD(AY) = v, in P-probability .
N—00
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4. Scale-free percolation: The graph Laplacian

The characterisation of v, is achieved by results from the theory of free
probability. For convenience, we state some technical definitions. We refer the
readers to [Anderson et al., 2010, Chapter 5| for further details.

For the following definitions, we refer the reader to Mingo and Speicher
[2017], and recall from Chapter 1 that a W*—algebra is a C*-algebra of bounded
operators on a Hilbert space closed in the weak operator topology.

Definition 4.2.2.

Let (A, @) be a W*-probability space, where A is a W*-algebra, and ¢ is a
faithful, tracial state. A densely defined operator T is said to be affiliated with
A if for every bounded measurable function h, we have h(T) € A. The law
(or distribution) L(T) of such an affiliated operator T is the unique probability
measure on R satisfying

S(W(T)) = /R h(x) dL(T)(x).

For a collection of self-adjoint operators 11, ..., T, their joint distribution
18 described by specifying

So(hl(T%) R hk(le))v

for all k > 1, all index sequences i1, ... i, € {1,...,n}, and all bounded meas-
urable functions hi,...,hi : R — R.

Definition 4.2.3.
Let (A, ) be a W*-probability space, and suppose a1,as € A. Then a1 and ag
are said to be freely independent if

o(p1(aiy) - - palas,)) =0,

for every n > 1, every sequence i1, ... i, € {1,2} with i; # ij41 for all j =
1,...,n—1, and all polynomials p1, ..., py in one variable satisfying

¢(pjla;;)) =0, forallj=1,...,n.

Definition 4.2.4.
Letay,...,a; andby,. .., by, be operators affiliated with A. The families (aq, .. ., ax)
and (b1, ...,by) are freely independent if and only if

p(hiar) ... hi(ax)) and  q(gi(b1) ... gm(bm))

are freely independent for all bounded measurable functions hi,...,hy and g1, ..., gm,
and for all polynomials p and q in k and m non-commutative variables, respect-
wely.
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§4.2. Setup and main results

We are now ready to state our second main result.

Theorem 4.2.5.
Under the assumptions of Theorem 4.2.1, the limiting measure vy can be iden-
tified as

vr = £ (LT + BT/ Tyt

Here, T, and Ty are commuting self-adjoint operators affiliated with a W*-
probability space (A, @) such that, for bounded measurable functions hy, ha from
R to itself,

o (1) e (1) = ([ m@otaras ) ([~ natue - vu-aa)

with ¢ the standard normal density. Furthermore, Ty has a standard semi-
circle law and is freely independent of (Ty, Ty ).

In particular, when W is degenerate, say W = 1, then v, is given by the free
additive convolution of semicircle and Gaussian law.

§4.2.3 Discussion and simulations

(a) We now briefly describe the main steps of the proof.

1. Gaussianisation: In the first step, we show that replacing the Bernoulli
entries with Gaussian entries having the same mean and variance res-
ults in empirical spectral distributions that are close.

2. Simplification of the variance profile: In this step, we show that
the variance profile can be simplified to W;W;/||i — j||¢, effectively
removing the truncation at 1.

3. Truncation: Here, we show that in the Gaussian matrix, the weights
W; can be replaced by the truncated weights W™ = W1y, <.

4. Decoupling the diagonal: In this step, we show that the Laplacian
can be viewed as the sum of two independent random matrices (con-
ditionally on the weights). Thus, we replace the diagonal matrix Dy
with an independent copy Yy, which has the same variance profile.

5. Moment method: With truncated weights and decoupled matrices,
we apply the moment method to show convergence of the empirical
spectral distribution and identify the limiting moments. A key obser-
vation is that the limiting measure and the method are independent
of a, so the results remain valid even when o = 0.

167

@)
[57
oY)

i<
=4
Q)
L]
=
9
S




4. Scale-free percolation: The graph Laplacian

6. Identification of the limiting measure: Finally, we first identify the
limiting measure in the case of truncated weights. These are typically
associated with bounded operators (except in the Gaussian case). We
then use techniques from Bercovici and Voiculescu [1993] to remove
the truncation and identify the limiting measure in the general case.

(b) We now present some simulations that illustrate how the proof outline
aligns with a specific value of «. In Figure 4.1, we plot the eigenvalue
distribution of the centred Laplacian matrix, with the parameter range
N = 6000, « = 0.5 and 7 = 4.1. A crucial step in the proof of Theorem
4.2.1 requires us to replace the Bernoulli entries with Gaussian entries
with the same variance profile. Also in the Gaussian case, we can simplify
the variance to the following form:

W;W;

i =gl
for any (i, )" entry. We compare the two spectra in Figure 4.2. We also
consider the Gaussianised Laplacian matrix with a decoupled diagonal,
and in Section 4.5, we apply an idea used in Cipriani et al. [2025], where
we take o = 0. We also compare the spectrum of this matrix to the
original centred Laplacian in Figure 4.2. We see that the spectra are quite
similar.

~
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=
)
+
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~
=
<
=
==
()

size=6000, alpha=0.5, tau=4.1

I Centered Laplacian

035 4

030 1

025 4

020 4

015 1

010 1

005 4

0.00 -
=3 -2 -1 o 1 2 3

Figure 4.1: Spectrum of the centred Laplacian matriz .

(c) We remark that our results can be extended in two directions. Although
we state and prove them for the case d = 1 and a < 1, they naturally
generalise to any dimension d > 1 and a < d. In that case, the scaling

168



§4.3. Gaussianisation and setup for main proofs

size=6000, alpha=0.5, tau=41 size=6000, alpha=05, tau=4.1

= Centered Laplacian 035 mm Centered Laplacian
035 = Gaussianised Laplacian i = Decoupled Laplacian, aipha=0

Figure 4.2: Comparing the spectrum of the centred Laplacian with the Gaussianised
and the decoupled case.

constant requires an adjustment, with ¢y ~ co(d) N d=a  For ease of
presentation, we restrict ourselves to d = 1 in this work.

Another possible extension of our first result involves modifying the con-
nection probabilities between vertices ¢ and j to

’QU(Wi’ Wj)

— A1,
lli —Jl

Pij =
where kg (x,y) = (z Vy)(z Ay)?. In this setting, we additionally assume
0 < o0 < (1 —1). Such extensions have been studied in the context of
adjacency matrices in Cipriani et al. [2025]. We strongly believe that
in this case the limiting spectral distribution will exist, but it would be
challenging to identify the limiting measure.

§4.2.4 Notation

We will use the Landau notation oy, Op indicating in the subscript the vari-
able under which we take the asymptotic (typically this variable will grow
to infinity unless otherwise specified). Universal positive constants are de-
noted as ¢, ¢q, ..., and their value may change with each occurrence. For
an N x N matrix A = (aij)fyjzl we use Tr(A) == YN a; for the trace
and tr(A) == N !Tr(A) for the normalised trace. When n € N we write
[n] == {1, 2, ..., n}. We denote the cardinality of a set A as #A, and, with a
slight abuse of notation, #o also denotes the number of cycles in a permutation
.

§4.3 Gaussianisation and setup for main proofs

To prove Theorem 4.2.1, we construct a Laplacian matrix with truncated weights
and a simplified variance profile, with the diagonal decoupled from the adjacency
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4. Scale-free percolation: The graph Laplacian

matrix. We follow the ideas of Cipriani et al. [2025], albeit with a slightly
modified approach, as follows:

(a) We begin by Gaussianising the matrix A%, to obtain a matrix Ay, using
the ideas of Chatterjee [2005]. Since we have 7 > 3, the proof proceeds
without the need to truncate the weight sequence {W;}icv, -

(b) We then tweak the entries of Ay further through a series of lemmas to
obtain the Laplacian matrix Ay 4, whose corresponding adjacency has
mean-zero Gaussian entries and a simplified variance profile.

(c) Next, we truncate the weights {W;};,cv, at m > 1, and construct the
corresponding matrix Ay g, We show that, in P-probability, the Lévy
distance vanishes in the iterated limit m — co and N — oo.

(d) We conclude by decoupling the diagonal of the matrix Ay g, from the
off-diagonal terms. This follows from classical results used in studying the
spectrum of Laplacian matrices.

§4.3.1 Gaussianisation

Suppose (Gj j)i>; is a sequence of i.i.d. N(0,1) random variables and independ-
ent of the sequence (W;);cv, . Define

\/Pz‘j(lfmj)G
Ven
0 1=17,

P
inivi + e 1F

Ay =

where p;; = pij — E[pi;]. Let Ayn be the corresponding Laplacian of the matrix
Ay. Let h be a 3 times differentiable function on R such that

ax sup |h* <
25 el < oo,

where h(¥) is the k-th derivative of h. Define the resolvent of the N x N matrix
My as
RMN(Z) :(MN—ZIN)_I, ZEC+,

where Iy is the N x N identity matrix and CT is the upper-half complex plane.
Further, define H,(My) = Sary (2) = tr(Ray (2)) for z € C*.

Lemma 4.3.1 (Gaussianisation of Apy).
Consider Ay and AS; defined as above. Then for any h as above,

lim |E[h(RH.(AN))] —E[R(RH.(A%))]| =0,

N—oo

and
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§4.3. Gaussianisation and setup for main proofs

lim [E[h(SH.(A))] - E[h(SH.(A%))]| = 0.

N—oo

The proof is very similar to the one presented in Chatterjee and Hazra
[2022] and is modified along the lines of Cipriani et al. [2025]. It uses the
classical result of Chatterjee [2005], and we only give a brief sketch by showing
the estimates of the error probabilities in this setting. In Cipriani et al. [2025],
the Gaussianisation was done with truncated weights, but here we will not need
that.

Proof. Following the proof of Cipriani et al. [2025] for the Laplacian, we define,
conditional on the weights (W;);cv,, a sequence of independent random vari-
ables. Let X; = (X%)1§i<j§N be a vector with Xf’j ~ Ber(p;j) — E[p;;]. Simil-
arly, take another vector Xg = (X{gj)lgi<j§]\7 with ng] ~N (Mij 7pij(1 — pij))-

Let n = N(N —1)/2 and x = (xj;)1<i<j<n € R™. Define R(x) to be the
matrix-valued differentiable function given by

R(x) = (My(x) - 2Iy)"",
where My (-) is the matrix-valued differentiable function that maps a vector in
R™ to the space of N x N Hermitian matrices, given by
C]_Vl/z.’L'ij if i < g,
My (x)ij = c]_\,1/2xji if i > 7,
—ey P ifi= .
Then, we see that A%, = Mpy(X,) and Ay = My(X,). Note that
EVIX}) = EV[XY] = py,
and
EV(X})?] = EW[(X2)?] = pij + Elpi;)* — 2pi;Elpyj).
Consequently, using [Chatterjee, 2005, Theorem 1.1] we have that
[E[h(RH-(AN))] - E[R(RH.(AR))]]
= [E [EV[M(RH.(AN)) — h(RH(A%))]]|

<Ci(M)Xa(H) ) E[(X%)21\Xf’j|>KN]+E[(Xigj)21|ij|>KN] (4.8)
1<i<j<N '

+Ca(M)As(H) > E[(ij)sl\xfﬂgl(]v]+E[(X%)31|X%|§KN] (4.9)
1<i<j<N
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4. Scale-free percolation: The graph Laplacian

where Ao (H) < Cg(%z)NiN and \3(H) < Cg(Sz)ﬁ.

N
We first deal with the terms in (4.8). Note that since p;; < 1, we have
]Xf’j\ <1, and as a consequence, for any Ky > 2, the first term in (4.8) is zero.
For the Gaussian term, applying the Cauchy-Schwarz inequality followed by the

second-moment Markov inequality yields
E[(X])*1 xs 15 k0] < EIXE)TVPR(XG > Kn)Y? < KG'E[(XE) T PEI(X) 2.

Since IE[(X%)Q] = E[pi;+E[pij]|*—2pi;E[pi;]] < E[pij], and similarly, E[(Xigj)‘l] <
E[p?j], we have

No(H) Y BIXD) k0 1)

1<i<j<N
_ )\2(H) Z E[Wi2]1/2E[W]-2]1/2 E[Wl]l/QE[W]]l/Q
STEy A il TERE

o (H o
< 22 gy o v

GE[W,E[W2|N25 Cwto
s [ K]'N][\Dl_]a =On(N /2KN1)a

where the last equality follows as 7 > 3 and ¢ is a constant depending on (2)
only. For the term containing the third moments, we see that

X
5
=
L
)
L
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A3(H) Z ]E[(ij)31|xibj|gKN]+E[(X%)31IX%\§KN]

1<i<j<N
<M(H)Kyx Y E[(X))Y +E[(XE)?
1<i<j<N
1
< N(H)EN2EW]? ) ———
iy 1=l
Cg(%z)

KNEWi2Ney < ésKyey'?.

N C%Q
Here ¢3 is a constant depending on $(z). Choosing any 2 < Ky < 0%2, both

terms go to zero. This completes the proof of the Gaussianisation. O

§4.3.2 Simplification of the variance profile

We now proceed with a series of lemmas to simplify the variance profile of our
Gaussianised matrix. First, we construct a new matrix Ay , as the Laplacian
corresponding to the matrix Ay 4, defined as follows:
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§4.3. Gaussianisation and setup for main proofs

Suppose (G} ;)i>; is a sequence of i.i.d. N(0,1) random variables as before,
and independent of the sequence (W;);cv,. Define
5 (1—pij) o
Awy = v Cinjavi 1#
’ 0 i=j.
We now have the following result.

Lemma 4.3.2.
Let Ay and ANy be as defined above. Then,

lim P(d(ESD(Ay), ESD(An,)) > ) = 0.
—00

Proof. The proof follows using Proposition 4.6.1. Taking expectation on the dr,
distance, we have

E [d (ESD(An,g, ESD(Ay)] < %E Tr ((Ang = An)?)
= %E Z (AN,g(ivj) - AN(iaj))2
1<i,5<N
% > E[(Ang(i,g) — An(i.5))?]
1<ij<N

2
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N
n %ZE 3" Ang(i k) — An(i k)

i=1 ki

We deal with the last two terms separately. The first term is bounded above by
W22 N2—2a

E[u =N"%—=0.

Next, we have that

S Any(i k) — An(ik) =%

k#i k;éz
This makes the second term of the order on(cy). We conclude the proof using
Markov’s inequality. O

Define for ¢ # j

VPig

\/@ LAY A%

and put zero on the diagonal. Here (G;;)i>; are the ii.d. N(0,1) random
variables used in the previous result. Let A N,g be analogously defined. The
next lemma shows that Ay , and A N,g have asymptotically the same spectrum.

AN,g(iaj) =
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4. Scale-free percolation: The graph Laplacian

Lemma 4.3.3.

lim P (dL(ESD(AN,g), ESD(Ay,)) > e) ~0.
Proof. Again using Proposition 4.6.1, we have that
E [d}(ESD(An,), ESD(A )]

< %E Tr (A — Any)?)
— L8| Y (Awglid) - Avgli0)’
1<4,j<N
1<iz#j<N

2
N
1 . ~ .
+ N i:EIE kééz AN79(Z,]€) —Ath(’L,k)

Dealing with the last two terms separately as before, we proceed by bounding
the first term by

2 2 N272a

=N"%—=0.
_ 2 2—
Z#J = ~ s

Expanding the square in the second term, we have
2
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N
1 . < .
N E :E E :AN79<Z7k) _AN79(Z7]€)

i=1 kot
1 & ' - ‘ 2
== ; ;E [(AN,Q(Z, B) = Any(i ) ]
+ ¥ ZZ ST E[(Anglik) — Ag(i b)) (Angli ) — Ang(i,0))].
i=1 ki (£ik

Again, the first term in above sum is of the order N~ and the expectation
in the second term is zero. Indeed, using the independence between (W;)ievy
and G ; we have for k # ¢,

E|(Ang (k) = Ang(i,k)) (Ang(is0) = Ang(i,0)) |
=k [ pir(1 = pir) = v/Pir) (v/Pie(1 = pie) — \/]?Te)} E[GixGid] = 0.

This completes the proof of the lemma. O
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We conclude this subsection with one final simplification. For any i # 7, let
W;W;
lli =gl

Tij =

and let r;; = 0. Define the matrix A N,g as follows: for i # j,

~ . VTingivi
Ano(i,7) = ¥—Ginjivj
Ng( ) Jon N
and put 0 on the diagonal. Define Laplacian matrix A N,g accordingly with
Anyg.

Lemma 4.3.4.
lim P (dL(ESD(AN,g),ESD(AN,g)) > 5) —0.

Proof. For any 1 < i # j < N, define the set C;j; = {r;; < 1}. Let (X;;)i>; be

defined as follows
\/Tiji
X = Nel

Vil
where (G;j)iZj be a sequence of independent N(0,1) random variables, inde-
pendent of the previously defined (Gj;) and (W;)icv,. Define a symmetric
matrix Ly 4 as follows: for 1 <7< j < N,

Lyg(i,7) = Angli, j) e, + Xijleg,

We put zero on the diagonal and consider the A as the Laplacian matrix
corresponding to Ly 4. Note that Ly 4 has the same distribution as A N,g and
hence the A has the same distribution as A N.g-

By Proposition 4.6.1, we again have

< 1 ARY
E ¢ (ESD(AL),ESD(An,))| < TE | D (Arlig) = Anylif))
1<i,j<N
=% Y B[(Lwglid) — Awg(i0)]
N Vs N,g\?, ] N,g\?, ]
1<i#j<N
2
1 & .
+ 5 2 E k%: Lig(i, k) — Ang(i, k)
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Expanding terms on the right-hand side, we obtain

E @ (ESD(AL), ESD(An,))]

S X E[Ewglid) - Ayl )?]
1<i#j<N
N
<t S SB[ (L6 k) — Ay i) (Evgli,0) — Ay i,0)]
i=1 ki 0£ik

Again, we deal with the two sums separately. The first sum can be bounded
above as follows:

% S E {(LMg(i,j) — AN,g(i,j))z}
1<izj<N
> E [(AN,g(iaj) - Xz‘j)Qlcn}
1<ij<N
Z E [AN,g(ivj)2]‘Cij:| +E [nglcij]

1<i#j<N

IN
=] -

IN
2| o

1
NCN

WE

IA

E[G,; v;1ce ) + B[XZ1c]

N EAY ]
z’;«éjevN
1
Necn

IN

Z P(CS;) + E[X;)]'°P(C5)"?
1£JEV N

=
=
o
=
=
)
g
oF
<
-~
@)

N 2117211/2
1 SE[W; W]
< > P+ —————P(C)'?
New &, il
< C(N—a(7—2) + N—%(T—l)) _ ON(l),

where we have used in the last line the following estimate:

c C
P(C) <P (WiW; > [li —j|?) < i =7 [D

which follows from Lemma 4.6.2. For the second term note that

E [ (Lnglis k) = Ang(is k) (Ing(in€) = A0, )]
1
= —E[/pinvpirle, 1ee JE[GinGidl
1 1
- EE[\/pz’k\/”ﬂlej Leg |JE[Gi Gyl — JE[\/rik\/piflej1CfZ]E[ngGiZ]

—E[yriy/Tieleg Log JE[Gy. Gyl
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and since k # £, all the above terms are zero. Thus the proof follows. O

§4.3.3 Truncation

Let m > 1 be a truncation threshold and define W/* = W;ly,<,, for any

(]
1 € V. For all N € N, we define a new random matrix as follows: Let

Wsz]m . .
Tij = Ti=Jjl® i#j€Vn,
and let Ay 4., be defined for ¢ # j as
P
.. 7
AN,g,m(Za]) = F]\ZGMM‘V]‘,

and put 0 on the diagonal. Analogously define Ay g .

Lemma 4.3.5 (Truncation).
For every § > 0 one has

limsup lim P (dL(ESD(AN,g,m),ESD(AMQ)) > 5) ~0.
m—00 —00

Proof. The proof follows the same idea as the previous lemmas. Recall that

Vi

m AV EAYY]

for all ¢ # j, with 0 on the diagonal, and A N,g is the corresponding Laplacian.

Once again, we have

A]\ﬂg(iaj) =

E [d?’ (ESD(AN,g,m),ESD(AN,g)ﬂ

< SB[ Y (Awgmlind) - Ang(id)
1<i,j<N
= % Z E [(AN,g,m(iaj) - KN,g(ivj))z]
1<i#j<N
1 & - 2
+ NZE ZAN,g,m(i’k) - AN,g(iak)
i=1 ki
<t Y E[(Awgnli) - Ang(i )]
1<i#j<N
1 & o a o x
S ONIPIL (Ao k) = B g(ik)) (Angm(i.€) = Ang(i0)) ]
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4. Scale-free percolation: The graph Laplacian

The proof of Lemma 4.3.4 aids us by taking care of the second factor in the last
line, which turns out to be equal to 0 by the independence of Gaussian terms.
For the first term, the common Gaussian factor pulls out by independence,

yielding the upper bound
2
- B [(JW— N ]
Nc

v =l
< 4 Z E[Win - W/szgm]
NCN

V<o i =gl

9

where the inequality follows by using the identity (a — b)? < |a? — b?| for any
a,b > 1. Adding and subtracting the term W;W ™ inside the expectation gives

us that
4 .o N .2
N Z E [(AN,g,m(Z’]) —Any(i, 7))
1<i#j<N

) _ 4 3 EWiEW;1 0y, smy] + EWEW 1y, 0]
< New 2 i Jl°
e <i#£j<N
'5 C’T m277 9
b < ——— =0, (m*7),
"GE New 1<§<N li=gle "

where the last inequality follows from Lemma 4.6.3, with C; a 7—dependent
constant. Markov inequality concludes the proof. O

§4.3.4 Decoupling

Since we now have bounded weights, the decoupling result follows from the argu-
ments from [Bryc et al., 2006, Lemma 4.12]. See also the proof of [Chakrabarty
et al., 2021b, Lemma 4.2] for the inhomogeneous extension.

Lemma 4.3.6.
Let (Z; - i > 1) be a family of i.i.d. standard normal random variables, inde-
pendent of (G;; : 1 <1< j). Define a diagonal matriz Yn of order N by

and let
g,m + YN- (410)
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§4.4. Moment method: Existence and uniqueness of the limit

Then for every m > 1, and for any k € N,

A (5 (B rgn?]) =0

and

i 8 (19 [(Ans] 1 ) -

§4.4 Moment method: Existence and uniqueness of
the limit

We begin by stating a key proposition that describes the limit of the empirical
spectral distribution of Ay 4 .. The majority of this section will be devoted to
the proof of this proposition, and so, we defer the proof of the proposition to
page 180.

Proposition 4.4.1.
Let ESD(AN g.c) be the empirical spectral distribution of Ay 4. defined in (4.10).
Then there exists a deterministic measure vy on R such that

lim ESD(Angc) = Vrm in P-probability .

N—oo

We now use Proposition 4.4.1 and tools from Appendix 4.6 and Section 4.3
to prove Theorem 4.2.1.

Proof of Theorem 4.2.1. Combining Proposition 4.4.1 with Lemma 4.3.6 gives
us that

lim ESD(ApNgm) = Vrm in P-probability . (4.11)
N—o0 0 ’

To show the existence of the limit v, := limy, o0 Vr,m, We wish to apply Lemma
4.6.5. Equation (4.11) satisfies Condition (1) of Lemma 4.6.5. Moreover, Con-
dition (2) can be easily verified by Lemma 4.3.5. Thus, there exists a unique
limit v, such that

lim ESD(Ay,) = v, in P-probability . (4.12)

N—o0
Combining equation (4.12) with Lemma 4.3.4, and subsequently with Lemma
4.3.3 and Lemma 4.3.2 yields

lim ESD(Ay) = v, in P—probability . (4.13)

N—o0

We now wish to show that the limiting empirical spectral distribution for A%,
is v; in P—probability. To this end, note that for any A satisfying conditions of
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4. Scale-free percolation: The graph Laplacian

Lemma 4.3.1, and H, as in subsection 4.3.1, we have by the means of Lemma
4.3.1 that
lim h(R(H:(AY))) =h (RS, (2)).

N—oo

The above characterises convergence in law. However, since v, is a deterministic
measure, the above convergence holds in P—probability, and analogously for
S(H.(A%)). This gives us that

]\}i—l>noo Sesp(as,)(2) = S, (2) in P-probability .

Since convergence of Stieltjes transforms characterises weak convergence, we

obtain
lim ESD(AY) = v in P-probability,
N—oo
completing the proof. O

We now provide the proof of Proposition 4.4.1. We borrow the main ideas of
Chatterjee and Hazra [2022, Section 5.2.1, 5.2.2], and adapt them to our setting
using the results of Cipriani et al. [2025, Section 4.4].

Proof of Proposition 4.4.1. The proof of the moment method is valid when the
weights are bounded, and so for notational convenience, in this proof we will
drop the dependence on m from {r{7}; jev,. Thus, for the remainder of the
proof, we have that

wimwn

li =gl
We apply the method of moments to show the convergence to the law v, ,,. The

TU

proof is split up into three parts as follows:

(a) For any k > 1, we compute the expected moment

E / FESD(Ango)(d ),
1

and show that as N — oo, the above quantity converges to a value 0 <
M}, < oo for k even, and 0 otherwise.

(b) We then show concentration by proving (under the law P) that

Var (/ z* ESD(AN,Q,C)(dx)> —0 as N — oo.
1

(c) Lastly, we show that the sequence { M} }>1 uniquely determines a limiting
measure.

180



§4.4. Moment method: Existence and uniqueness of the limit

Step 1. We begin by considering that k is even. By using the expansion for
(a4 b)k, it is easy to see that

E/loo " ESD(Ap ) (dx) = ]1[ [ (ANgc)]

b X e i A7)

mi,...,Mk,
N1y

where Ay gm and Yy are as in Lemma 4.3.6, and {m;, n;}1<i< are such that
Ele m; +n; = k.
Let M(p) and N(p) be defined as

P P
szi, N(p):Zni
i=1 i=1

for any 1 < p < k. To expand the trace term, we sum over all i = (iy, ..., iM(k)+N(k)+1) €
[NJME)ENEL where [p] := {1,2,...,p}, and we identify IM(k)+N(k)+1 = 11-
Then, from Chatterjee and Hazra [2022, Eq. 5.2.2], we have

L
= Tr (AR YR AT LY

nj
N M(k) k N Tk
-= Y Jle H””“H Ly IES
N i Nij41,85 Vi1 N BESYION CES)
: t=1

i,nip (k) =1 j=1 Jj=1 Jj=1

(4.14)

where also in (4.14) we identify ip;(3)+1 = 71. Taking expectation in (4.14), we
have that

E[ (Aml YL AT Y"k)}

N,g,m N,g,m
1 M (k)
= N Z E H Gij/\ij+1,ijVij+1
U15esT M (k) Jj=1
nj
M (k) 7 k 1 N 2 k
Vo Utit+l ZJ’J+1 ) n;
<E|]] H oy 2 it || B |20,

(4.15)

It is well known that the expectation over a product of independent Gaussian
random variables is simplified using the Wick’s formula (see Lemma 4.6.7). In
particular, if one were to partition the tuple {1,..., K} for some non-negative
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4. Scale-free percolation: The graph Laplacian

integer K, the contributing partitions are typically non-crossing pair partitions
(Nica and Speicher [2006]).

We now introduce some notation from Cipriani et al. [2025]. For any fixed
non-negative even integer K, let P2(K) and NCq(K) be the set of all pair
partitions and the set of all non-crossing pair partitions of [K], respectively.
Let v = (1,...,K) € Sk be the right-shift permutation (modulo K'), and for
any 7 which is a pair-partition, we identify it as a permutation of [K], and read
~m as a composition of permutations. Further, for any © € Py(K), let Cat,
denote the set

Cat, := Cat,(K,N) ={ie [N]¥ :i, =i for all r € [K]}.

ym(r)
Let C(K, N) = Caty, the complement of Cat,, wherein we have i, = i for
any r. By Wick’s formula for the Gaussian terms {G} ;}, since the the sum over
tuples i would be reduced to the sum over pair partitions m € P2(K) and the
associated tuples i € Cat, UC(K, N), we can write

o= > >+ X >+ > ST a6
ie[K]N  wePe(K)ieC(K,N) weNCy(K)ieCaty 7ePa(K)\NCo(K)ieCatr

To analyse further, we use a key tool in the proof which is the following fact
(Cipriani et al. [2025, Claim 4.10]).

Fact 4.4.2.
Let K be an even non-negative integer. Then, we have the following to be true:

(a) For any m € NCa(K), we have

leéoNK/Q 2 H T

icCatr (r,s) T ZT+1Ha

(b) For any pair partition 7, if i € C(K, N), then,

]\}1—r>nooNK/2 Z H =0

— e
ieC(K,N) (r, s)ETr b 7"+1||

(c) For a partition m € Po(K)\ NCo(K), we have
1

LS D DR U ) it

— «a
i€eCatrUC(K,N) (r,s)em r T—HH

Let 7 := 7 for any choice of . From Chatterjee [2005, Eq. 5.2.5], we have
that

k

E(#):=E H o) =1[E| JI 2’| <o (4.17)

j=1 uew JE[k]:
1+M(j)€u
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§4.4. Moment method: Existence and uniqueness of the limit

where u is a block in 7 and ¢, its representative element. Note that this does
not depend on the choice of i, and to obtain a non-zero contribution, we must
have that for all u € 7,

> nj=0 (mod2). (4.18)

Jelkl:1+M(j)€u

Observe that E [H]A/i(lk ) Gij Niji1,ijVij +1} depends only on 7 and not the choice
of i, and as a consequence, we can define

M (k)
<I)(7~r) =E H Gij/\ij+1,ijVij+1 < 0. (419)
j=1
Next, note that the sum
1 N
cN tzl Tivymot = On(1) (4.20)

by definition of ¢y (and the weights are uniformly bounded). Finally, if we look
at the terms

M(k) . 1/2
E(]] % , (4.21)
=1 N

we can again bound the weights above by m. Recall that Wick’s formula on
the Gaussian terms imposes the restriction on choices of i. Using these facts, in
combination with (4.17), (4.19), and (4.20), we have that (4.15) gets bounded
by

2

(4.15)§NL > > o@em [ —

N ePo(M(k)) i€Cat s UC(M (k),N) (r,s)em lir = rsa
(4.22)

If we split (4.22) as (4.16), then using Fact 4.4.2, we see that in the cases when
7w € Po(M(k)) and i € C(M(k), N), and when 7 € Po(M(k)) \ NCy(M(k)) for
all i, the contribution in the limit N — oo is 0.

We are now in the setting where we take m € NCy(M(k)) and 7 := ~m,
and i € Cat,. First, note that 7 is a partition of [M(k)]. We remark that if
M (k) =1 (mod2) then NCy(M(k)) = 0, and so, M (k) must be even.

Next, we focus on analysing the product H]]Vi(lk ) /r?j”‘Z.H1 appearing in (4.15).

We wish to show that this depends only on 7, and not on the choice of i. We
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4. Scale-free percolation: The graph Laplacian

follow the idea of Cipriani et al. [2025], wherein one constructs a graph associated
to a chosen partition 7, and any tuple i € Caty is equivalent to a tuple i with as
many distinct indices as the number of vertices in the constructed graph. First,
note that the coordinates are pairwise distinct (we take r; = 0 for all 7). Next,
we construct a preliminary graph from the closed walk i3 — io — ... iprx) — 1.
Lastly, we collapse vertices and edges that are matched in Cat,, and we denote
the resulting graph as G, since it does not depend on the choice of i but rather
the choice of m itself. The resulting graph G5 is the graph associated to the
partition 7, and we refer the reader to Definition 4.6.8 for a formal description.
For clarity, consider the following example:

Let M(k) = 4, and let # = {{1,2},{3,4}}. Then, 7 = {{1,3},{2},{4}}.
For any i € Cat,, we see that i; = i3, and 49, ¢4 are independent indices. Now,
G5 is a graph on 3 vertices, which are labelled as {{1,3}}, {2} and {4}, and so
its corresponding tuple iis exactly the same as i.

We then have, from Chatterjee and Hazra [2022, Eq. 5.2.12], that

M (k)
IT /. = 11 " (4.23)
j=1

ecFEx

where E; is the edge set of Gz and t. is the number of times an edge e is
traversed in the closed walk on G%. Also observe

o) =E| ] ¢k
ecFEx

Consequently, we must have that ¢, to be even for all e, since the Gaussian terms
are independent and mean 0. We claim that ¢, = 2 for all e € Ex. Indeed, if for
all e, te > 2 with at least one ¢’ such that ¢ > 2, then, Y7 _p_t. > 2|Ez|. Since
G# is connected, |Ez| > |Vz| — 1 = M(k)/2, where V; is the vertex set. Thus,
> eer. te > M(k). But, >° t. = M(k), gives a contradiction. We conclude
that t, = 2 for all e € F;.

A similar contradiction arises when we assume that there exists a self-loop in
G%. Thus G is a tree on @ + 1 vertices with each edge traversed twice in the
closed walk. As a consequence, every Gaussian term in ®(7) appears exactly
twice, and so, ®(7) = 1.

Let bs be the s block of 7 and let ¢ its representative element. Define
voim #{1<j <1+ M(G) € b},
and

{s1,82,...,87,} ={1<j<k:14+M(j)€bs}.
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§4.4. Moment method: Existence and uniqueness of the limit

We then have

k1 N 3 MBy, L Yt ms; /2

H (C Zri1+M(j)z) = | | ( § 7“&75) . (4.24)
. N

Jj=1 t=1 s=1

Note that y
SUNE S
j=1 JE[K]:1+M(5)€b
Let us define ng := Z;.Y‘;l ns;/2. Then,

D i = N;k) (4.25)

S:bs €T
Using Chatterjee and Hazra (2022, Eq. 5.2.16|, we obtain

g

. M(k) k 3
MK Z H VTijij H( Zrme)

Ncy?  i€Catr j=1 =1 t=1
M (k
1 2+ i,
= —mENE > T ree I Ilrese.. (426)
NCN 2 OF Al (k) j2415 (u,w)EE% s=1 t=1

D(s,1)5++P(s,ns) SE {%(k)—&-l]

where for any two blocks b, and bs,, {p(s1,1),p(s1,2),...} and {p(s2,1),p(s2,2), ..

are non-intersecting sets of indices {p1, pa, . .., pa,, } and {p}, ph, . .. ,p%s2 }. Note
that for (u,v) € Ex, 1,0, = Tuv as before, but we rewrite in terms of repres-

entative elements to indicate common factors with the terms ry Taking

sP(s,t) "
expectation in (4.26) gives us

E[(4.26)]
1 W Wi
- M (k)+N (k) Z E H ng _ gvHa
Ney 2 gl7é~~-7££M(k)+1 (uv)EER
M(k>+1 fig wm

x > 11 HII€ - p<”|”a : (4.27)

P(s,1)-P(s,ns):  s=1 t=1
se[Mék)+1]
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4. Scale-free percolation: The graph Laplacian

The vertex set Vi of the graph G yields M (k)/2 + 1 distinct indices, due to
the tree structure. Using Fact 4.4.2, we see that the factor of

> T o

£y, ,fM(k) (uv)EER

M(k)
is of the order of Oy |( cp? since the weights are uniformly bounded in the

range [1,m]. For the second summand in (4.27), the index /4 already appears
in the graph G, and for any s, we have Ny many distinct indices from the
sequence {ps:}, and summing over all s yields N(k)/2 many distinct indices

N(k)
due to (4.25). The second summation is therefore of the order of Oy (CN2 >

We claim that as N — oo, (4.27) converges to the limit

E| [ wewe 1 HWWWPM
(u,v)eE% s=1 t=1

First, note that the weights are bounded, and so, (4.27) is bounded above and

below. Next, we note that with the scaling of N cM(k)/ 2 , we have
: 1 WelVe,
NI R > E|II AT [T wiwi|,
CN Zl#...;ﬁfm_‘_l (u,’l})EEﬁ_ u v (u,U)EEﬁ-
2

which is the moments of the adjacency matrix of the model as in Cipriani et al.
[2025]. Thus, combinatorially, the first summand in (4.27) corresponds with
the graph Gs, as defined in Definition 4.5. Now, consider a modification of
the graph as follows: For each vertex s in G5, attach nig many independent
leaves, and call the new graph Gz. We refer to Chatterjee and Hazra [2022] for
a detailed description, and Figure 4.3 for a visual representation.

The second summand over the sequence {p,:} for each s corresponds to
the added leaves, since the only common index with the original graph is the
index ¢4 for each s. Keeping the index ¢, fixed (since it is summed out in the
first summand involving the indices ¢1 # ... # ¢ M) Jrl) , we see that with the
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=)

Figure 4.8: Modifying the graph Gz to construct G. Here, we pick two vertices s1, s2 €
Vi, with ng, = 3,1s, = 4.

N(k)/2

scaling ¢y we have

SRR —

o i .
N N7 > I HHES— Dren |y

P(s,1)5-- ’p(s,ns) s=1 t=1
M;kz) +1 5
— m m m
= | 1 Twewg, v
s=1 t=1

Due to the compact support of the weights, it is now easy to conclude that

M) Ly
dm @2n=e| [T wzwe ] HWJ” ey | =1 (G, W™)
s=1 t=1

(u,v)EE%
(4.28)

where W™ = (W™, W3",...) and G> is the modified graph as described above

and illustrated in Figure 4.3.
We can therefore conclude that for all even k,

lim NE [tr(ANg . } 3 Y E@HCH W™ (4.29)

LMk nENCo (M (k)

Now, consider the case when k is odd. Due to (4.18), we have that M (k)
must be odd. Thus, m cannot be a pair partition, and in particular, = &
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NCo(M(k)). Consider the term ®(7) in (4.19), and notice that by Wick’s
formula, this term is identically 0 if M (k) is odd. Since the other expecta-
tions in (4.15) are of order Opn(1), we conclude that the odd moments are 0 in
expectation.

Step 2. We now wish to show the concentration of the moments. Define

P(i)
M(k) M(k) k(N 3ok
=E H Glj/\lj+la7'j\/lj+l \/* H CNZ“HM(J')t H Zl+M(g) ’
j=1 j=1 j=1 t=1 j=1
and
P(i, i’)
M(k) M) ok N Tk
=B [ I Gimipriviren 1] L2 ] LZ H
= LN 41,85 VTG 41 VN cN Tiy gyt 21+M(j)
Jj=1 j=1 j=1 t=1 j=1

X
5
=
L
)
L
oF
<
-~
@)

) J J+1 H
X H i’ /\7,J+1,z Vz (
j=1

J:1 Jj=1

Then,

< 2 ESD( ANgc)(dg;)>
-

Z > [PGY) - PEHPE)] (4.30)
ke i [M (k)] [N]

and we would like to show (4.30) — 0. If i and i’ have no common indices, then
P(i,i") = P(i)P(i’) by independence. If there is ezactly one common index,
say i1 = 1}, then by independence of Gaussian terms, the factors E[G;, ;,] and
E|G
least one matching of the form (iy,i2) = (4}, 5).

Let us begin by taking k to be even. Consider exactly one matching, which
we take to be (i1,i2) = (i},i5) without loss of generality. Let m, 7’ be partitions
of {1,2,....,M(k)},{1,2,...,M(k)'} respectively. Let Z(l) denote the sum
over index sets i,i’ with exactly one matching. Then, we have by an extension

] would pull out, causing (4.30) to be identically 0. Thus, we have at

.y
11,15
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of the previous argument

1 (1) -
m Z P(17 1/)
i,i’:[M (k)] —[N]
M (k) M(k)

1 - e
< Wzé(ﬂ)g( ZE Tixiz H Tijij+1 H "

i,i/

(4.31)

Expanding the expression for r;; and using the fact that W™ < m gives us that
(4.31) is bounded above by

Y e 3 H :
— s
N%AN/[(k) 41 — Z2Ha ll3; — ZJ+1HO‘/2 H’L - Z Ha/Q

™

(4.32)

We are now precisely in the setting of Cipriani et al. [2025], and in particular,
following the ideas from Cipriani et al. [2025, p24| and using Fact 4.4.2, we
obtain that the right-hand side of (4.32) is of order On(cy'). For ¢ matchings
in 1,1, the order is O(cy'), giving us that (4.26) is of order O(cy') when k is
even.

The argument for the case where k is odd is similar. Since the optimal
order is achieved when we take i\ {i1,i2} € Cat, and i\ {#},45} € Cat,/, with
m, 7w € NCy(M(k)), one cannot construct these partitions with k being odd with
the restriction from (4.18) imposing that M (k) must be odd. Consequently, we
have convergence in P-probability of the moments of ESD(An4.). Thus, we
conclude that

lim tr(ANg o) = M}, in P-probability,

N—oo
where
My — | 2k Emencauy HGm WME), -k even, (4.33)
0, k odd,
where M (k) is the multiset of all numbers (my, ..., mg, ny,...,ng) that appear

in the expansion (a + b)* for two non-commutative variables a and b.

Step 3. We are now left to show that these moments uniquely determine a
limiting measure. This follows from Chatterjee and Hazra [2022, Section 5.2.2|,
but we show the bounds for the sake of completeness.
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4. Scale-free percolation: The graph Laplacian

First, from Chatterjee and Hazra [2022, Section 5.2.2], we have that £(7) <
2Fk!. Next, observe from (4.28) that |t(Gz, W™)| < (m2)§ = m?2, since W; < m
for all i and G5 is a graph on §+1 vertices with % edges. Lastly, |[NCo(M (k)| <
INCs(k)| = Oy, where Cy is the k' Catalan number, and moreover, |M (k)| <
2% Combining these, we have

B := | My| < 2%.C.mF 28k = (4m)FCk! .
Using Sterling’s approximation, we have
am  4e=(1+3)
k+1)F

where 7 here is now the usual constant, and subsequently, we have

<

T o

B

| =

Sl

1 L

lim sup %622,’; < 0. (4.34)
k—ro0

Equation (4.34) is a well-known criteria to show that the moments uniquely

determine the limiting measure (see Lin [2017, Theorem 1]). This completes

the argument. O

§4.5 Identification of the limit

§4.5.1 Removing geometry
In Section 4.4, we show the existence of a unique limiting measure v, such that
lim ESD(AY) =v, in P-probability .
N—oo

We have also shown that v, is the limiting measure for the ESD of the Laplacian
matrix A N,g- In particular, through the proof of Proposition 4.4.1, we show
that the limit v, ,, is independent of the choice of o, and consequently, v; is
a—independent. We then use the idea of substituting @ = 0 from Cipriani et al.
[2025, Section 6] in the matrix BN,Q, to obtain the Laplacian matrix AY
which corresponds to the adjacency matrix A§’V7 p with entries given by

VWiV
gling) = { VA G 17
0, 1=].
Then, lim oo ESD(A‘]’VQ) = v; in P-probability. Recall that forall 1 <¢ < N,
W™ .= W;lw,<m for any m > 1. We can now apply Lemmas 4.3.5 and 4.3.6 to

contruct a matrix A% ge = AS + Yy such that

N,g,m
limsup lim P (dz(ESD(AY ), ESD(AY ,.) > 6) =0,
—00

m—ro0
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where
A?V,gﬁn(@j) = VN Ging,ivi Z 75]
% L= ],

and Yy is a diagonal matrix with entries

. Wmwm
Vilisi) = 2| ZE2 N

By Proposition 4.4.1, we have that limy o ESD(A?\,%C) = U, in P-probability.
Thus, we begin by identifying v, ,,. To that end, consider the matrix A?\/ g =
Apngc+ Yy, with Ay g4 . as before, and Yy a diagonal matrix with entries

Y5 (iyi) = Zin/ Wi E[WM]

We now have the following lemma.

Lemma 4.5.1.
Let Ay, . and AL . be as defined above. Then,

lim P (dL(ESD( %) BSD(A% ) > 5) ~0.

Proof. We apply Proposition 4.6.1 to obtain

E |dL(ESD(AR ), ESD(AS, )’

@)
[57
oY)

i<
=4
Q)
L]
=
9
S

- N 2
< EY (YRG0) - Y5 6.9)

=1

IN

1 2 m al Zk;éz W];n m
SEIZEWT Y R i—ﬁﬁ——JMM]

i=1

\ /\

NZE

We have that (W/");cv, is a bounded sequence of i.i.d. random variables, and

in particular have finite variance. By the strong law of large numbers, we have
that

] . (4.35)

: ch\]:l ngn m

am =S = BT

However, by the boundedness of the weights, we have that N~! Zf\il wm

is uniformly bounded by m, which is integrable (with respect to E). By the
dominated convergence theorem, we have convergence in L', and consequently,
(4.35) goes to 0 as N — oco. We conclude with Markov’s inequality. O

P-almost surely .
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4. Scale-free percolation: The graph Laplacian

We can now conclude that v, ,, is the limiting measure of the ESD of the
matrix A% g

§4.5.2 Identification of the truncated measure

We have that

A}im ESD(&?V g.c) = Vrm in P-probability .
—00 o
Notice that 3‘1’\]’976 can be written as

A?V,g,c = A?V,g,m + Yy
1
=W,/ (G) W2+ EWPW A ZW A
\/N [ 1 ]

where W,,, = Diag(W{",..., W), G is a standard Wigner matrix with i.i. d
N(0,1) entries above the diagonal and 0 on the diagonal, and Z is a diagonal
matrix with i.i.d. N(0,1) entries.

First, we need to show that

1 1
lim ESD ( W2 [ —G | WY/2 + JE[WwmWL/4 [ —7 ) wl/4
= £ (T2TT2 + VBT AT, T ) weakly in probability .

This easily follows by retracing the arguments in the proof of [Chakrabarty
et al., 2021b, Theorem 1.3] and using the Lemma 4.6.6 presented in the ap-
pendix. This shows that

oo = £ (LTI + JEW T T, 1)

§4.5.3 Identification of the limiting measure

We now conclude with the proof of Theorem 4.2.5.

Proof of Theorem 4.2.5. Consider the measure uym= and py which are laws of
W™ = Wlw<y, and W respectively. Also consider p1y and ps to be the laws of
the standard Gaussian and semicircle law, respectively. We have for all ¢ € R,

|Fuwm (t) - FMW (t)’ <e€ (4'36)

for m large enough. Hence from [Bercovici and Voiculescu, 1993, Theorem 3.9]
there exists a W* probability space (A, ¢) and self-adjoint operators Tyym, Ty, Ty
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and T affiliated to (A4, ¢) and projection p € A such that pTyymp = pTywp and
©(p) > 1—e. Also the spectral laws of Tyym, Ty, Ty and T are given respectively
by pwm, pw, g and g respectively.

We can consider the commutative subalgebra generated by {Tyym,Ty}. Then
using [Bercovici and Voiculescu, 1993, Proposition 4.1], it is possible to generate
random variable from {Tym,T,} that is free from 7. Analogously, one can do
the same for {Tyw,T,}.

Consider a self-adjoint polynomial @, of {Tywm,T,,Ts} and let the law
of this polynomial be given by v,,. Similarly, let @ be the same self-adjoint
polynomial of {Ty, Ty, Ts} and v be its law. Then using pTywmp = pTwp and
(4.36) and [Bercovici and Voiculescu, 1993, Corollary 4.5 and Theorem 3.9] we
have that doo(Vm,v) < € for all m large enough. Here dy is the Kolmogorov
distance. Picking Q(z,y,z) = 21 2yxl/2 4 cxl/A 224 for some constant ¢ =

E[W], completes the proof. O

§4.6 Appendix

In this section we collect some technical lemmas that are used in the proofs of
our main results.

§4.6.1 Technical lemmas

For bounding the dj, distance between the ESDs of two matrices, we will need
the following inequality, due to Hoffman and Wielandt (see Bai and Silverstein
[2010, Corollary A.41]).

Proposition 4.6.1 (Hoffman-Wielandt inequality).
Let A and B be two N x N normal matrices and let ESD(A) and ESD(B) be
their ESDs, respectively. Then,

1
dr, (ESD(A),ESD(B))* < ~ Trl(A-B)(A-B)T]. (4.37)
Here A* denotes the conjugate transpose of A. Moreover, if A and B are two

Hermitian matrices of size N x N, then

N
(Ai(A) = X(B))? < Tr[(A — B)?]. (4.38)
=1

)

The next two straightforward lemmas control the tail of the product of two
Pareto random variables and the expectation of a truncated Pareto.
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4. Scale-free percolation: The graph Laplacian

Lemma 4.6.2.

Let X and Y be two independent Pareto r.v.’s with parameters (1 and (s
respectively, with 1 < Pa. There exist constants ¢; = c1(f1,52) > 0 and
co = (1) > 0 such that

Clt_fBl Zf ﬁl < ﬁ2

P(XY > t) = {CQt_/Bl logt lf ﬁl = 52’

Lemma 4.6.3.
Let X be a Pareto random variable with law P and parameter 8 > 1. For any
m > 0 it holds

B_1s

B-1"

We state one final auxiliary lemma related to the approximation of sums by
integrals.

EX1x>n]=

Lemma 4.6.4.
Let B € (0, 1]. Then there exists a constant ¢; = ¢1(8) > 0 such that

1 1
N 2 i~ amax{N'P log N}, (4.39)
1#JEV N

If instead B > 1, there exists a constant ca > 0 such that
1 1
Ly 1,
— il
N i, =1l
We end this section by quoting, for the reader’s convenience, the following
lemma from Chakrabarty et al. [2016, Fact 4.3].

Lemma 4.6.5.

Let (X,d) be a complete metric space, and let (2, A, P) be a probability space.
Suppose that (an :(m,n) €{1,2,.. .,00}2\{00,00}) is a family of random
elements in X, that is, measurable maps from ) to X, the latter being equipped
with the Borel o-field induced by d. Assume that

(1) for all fizxed 1 < m < o0

lim d(Xmn, Xmoeo) = 0 in P-probability.

n—oo

(2) For alle >0,

lim limsup P (d (Xmn, Xoon) > €) = 0.

m—0 p—oo
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Then, there exists a random element Xoooo of 3 such that

liﬁm d (Xmoos Xoooo) = 0 in P-probability (4.40)
and
lim d(Xoon, Xoooo) = 0 in P-probability.

n—oo

Furthermore, if Xpmeo s deterministic for all m, then so is Xoooo, and (4.40)
simplifies to
lim d (Xn00, Xoooo) = 0. (4.41)
m—0o0
Lemma 4.6.6 (Fact A.4 Chakrabarty et al. [2021b]).
Suppose that Wy is an N X N scaled standard Gaussian Wigner matriz, i.e.,
a symmetric matrix whose upper triangular entries are i.1.d. normal with mean
zero and variance 1/N. Let DY, and D% be (possibly random) N x N symmetric
matrices such that there exists a deterministic C' satisfying

sup HD?VH <C<o
N>1,i=1,2
where || - || denotes the usual matriz norm (which is same as the largest
singular value for a symmetric matriz). Furthermore, assume that there is a
W*-probability space (A, @) in which there are self-adjoint elements di and da
such that, for any polynomial p in two variables, it

. 1
A}gnoo N Tr (p (Dy, D%)) = ¢ (p(d1,ds)) a.s.

Finally, suppose that (D}V,D]zv) is independent of Wy . Then there ezists
a self-adjoint element s in A (possibly after expansion) that has the standard
semicircle distribution and is freely independent of (dy,dsz), and is such that

1
lim —Tr (p (Wi, Dy, Diy)) = @ (p (s, d1,d2)) as.

N—oo

for any polynomial p in three variables.

Lemma 4.6.7 (Wick’s formula).
Let (X1, Xa,...,Xp) be a real Gaussian vector, then, and Po(k) the set of pair
partitions of [k]. Then, for any 1 < k < n,

EX; X ]= > ][] EX:.X.]. (4.42)
P2 (k) (r,s)eT

We borrow the following definition from Avena et al. [2023, Definition 2.3].
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4. Scale-free percolation: The graph Laplacian

Definition 4.6.8 (Graph associated to a partition).

For a fized k > 1, let v denote the cyclic permutation (1,2,....k). For a
partition 7, we define Gyr = (Vyr, Eyx) as a rooted, labelled directed graph
associated with any partition 7 of [k|, constructed as follows.

e Initially consider the vertex set V,r = [k] and perform a closed walk on
k] as1 -2 —3 = --- = k — 1 and with each step of the walk, add an
edge.

e FEvaluate ym, which will be of the form ym = {V1,Va,..., Vi, } for some
m > 1 where {V;}i<i<m are disjoint blocks. Then, collapse vertices in
V. to a single vertex if they belong to the same block in vy, and collapse
the corresponding edges. Thus, Vyr = {V1,..., Vi, }.

e Finally root and label the graph as follows.

— Root: we always assume that the first element of the closed walk (in
this case ‘1°) is in Vi, and we fix the block Vi as the root.

— Label: each vertex V; gets labelled with the elements belonging to the
corresponding block in .
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Chapter Four
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CHAPTER 5

Discussion and future directions

In this short chapter, we show some simulations of spectral distributions of
random graph models discussed in the previous chapters. We focus on the
cases not covered by our main results and compare them with the previous
simulations. This leaves us with many open directions for the future.
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5. Discussion and future directions

§5.1 Introduction

This thesis establishes new results in the study of spectral analysis of inhomogen-
eous random graph models, providing further insight into the area and opening
the door to multiple directions for further research. We discuss some of the
open directions in this chapter.

Chapter 2 extends results of the homogeneous Erdgs-Rényi random graph to
the inhomogeneous setting, providing a characterisation of the limiting spectral
measure of the adjacency matrix. While the limit is not explicitly known, we
provide a combinatorial expression for the moments and an analytic description
of the Stieltjes transform, which complements the random graph description
that one can obtain from Bordenave and Lelarge [2010], since the model has
a local weak limit that is a multi-type branching process (see van der Hofstad
[2024]). However, the results are restricted to the setting where vertex weights
(w;) are deterministic, and a natural extension would be to consider random
weights with f an almost surely continuous connectivity function. As seen in
Remark 2.3.13, our proof techniques require that W (which is the random vari-

able such that w,,, LA W) is compactly supported. What also remains unknown
is the rate of convergence of the measure py to py, even in the homogeneous
setting where p1y = pg.. These questions naturally arise due to the works of Bai
and Silverstein [2010], Augeri [2025], Jung and Lee [2018], Tran et al. [2013],
however, we believe that the fixed-point equation as in Theorem 2.3.9 needs
further analysis to describe the rate of convergence of Stieltjes transforms. Fur-
thermore, the extension of results from Bordenave et al. [2011], Coste and Salez
[2021], Salez [2020] remains an open question in the inhomogeneous setting.

Spectral properties of kernel-based random graphs (as introduced in Jor-
ritsma et al. [2023]), and in particular of the scale-free percolation model, are a
relatively untouched topic. Chapters 3 and 4 now provide a foundation for this
topic. We consider random Pareto weights on the vertices, with tail exponent
7 — 1, 7 > 1. The spectral properties of the adjacency matrix are described in
Chapter 3 for kernel-based random graphs with the kernel structure

K(z,y) = (zVy)(zAy)?

where ¢ < 7 — 2. One extension would be to consider a far more general
kernel. The above multiplicative structure simplifies calculations significantly.
We also restrict ourselves to 7 > 2, where the weights have finite mean. This
is crucial in the truncation step, since for a truncation at m > 1, the error
2=7_ We believe that this is a technical assumption. Analogously,
we do not consider o > 7 — 1. Due to the rank one nature of the kernel when

rate is m

o = 1, we can characterise the limiting measure using tools from free probability.
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§5.2. Erdds-Rényi Random graph

Consequently, we observe an interesting tail asymptotic, where the measure has
a power-law tail with exponent 2(7 — 1). When o # 1, this becomes more
challenging, and we believe that the tail may not have a power-law decay but
rather a more complicated behaviour. A more interesting direction is the case
when o« > 1, with 7 > 2. This yields a sparse random graph, for which the
existence of a limiting measure is guaranteed by Bordenave and Lelarge [2010)].
However, since the local weak limit of the random graph is not locally tree-like,
there is no description of the measure. This will require a novel approach, and
the spectrum of the centred and non-centred adjacency matrices will differ.

The Laplacian matrix of the scale-free percolation model is analysed in
Chapter 4. The existence of the limiting measure is achieved by computing
the moments, which is far more challenging than computing the moments of
the adjacency matrix. We believe that this will be the primary challenge when
attempting to extend the results to the kernel as described in Chapter 3. We
also restrict ourselves to 7 > 3, and an extension to 7 > 2 will require better
bounds in the Gaussianisation step, as well as ensuring that the decoupling of
the diagonal holds. Decoupling is an essential step for the moment method,
without which the approach becomes highly complicated.

Outline of the chapter

The first part of the chapter is devoted to the homogeneous Erdds-Rényi random
graph ERy(p) with p = A/N. We simulate the spectrum of the adjacency matrix
for increasing A to illustrate that, for a A such that 1 < A < log N, u) starts
taking the shape of us. (with possible atoms). We then simulate the spectrum
of the Laplacian matrix, moving from the sparse to the dense case, and show
why centring becomes essential as the graph becomes more dense.

The second part of the chapter showcases simulations for the scale-free per-
colation model. We simulate the spectra of the adjacency matrix for a combin-
ation of a and 7, to analyse the cases where a(7 —1) > 1 and a(7 —1) < 1. We
also simulate the spectrum of the long-range percolation model with increasing
«, to illustrate the sparse setting. We compare the resolvent matrices of the
long-range percolation model, GOE model, and ERx(A/N) with A > 1. We
conclude with the centred Laplacian matrix of the scale-free percolation model
for varying 7, namely the infinite mean regime, the infinite variance regime, and
the finite variance regime.

§5.2 Erdés-Rényi Random graph

Consider the homogeneous Erdgs-Rényi random graph ERx(p) on N vertices,
with p = A/N for some A € (0,00). If Ag, is the adjacency matrix of this
graph, then define Ay = A~V 2Ag, as the scaled adjacency matrix. This
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5. Discussion and future directions

falls under the setting of Chapter 2 as a special case. In particular, Theorem
2.3.7 (and also results from Jung and Lee [2018], Bordenave and Lelarge [2010],
Tran et al. [2013]) tells us that there exists a unique limiting measure p such
that limy_ 0o ESD(AN) = wy in probability, and py = pse as A — oo.
Further, from Bordenave and Lelarge [2010], if Ay is the scaled Laplacian
matrix of this graph, then there exists a unique limiting measure vy such that
limy o0 ESD(Ax) = vy in probability. It follows from Khorunzhy et al. [2004]
that vy = s B pg, where 4 is the Gaussian law.

§5.2.1 Adjacency matrix

Consider the scaled adjacency matrix A of this graph. In Chapter 2, we see
that in the limit N — oo, the ESD of Ay and that of the centred matrix
AN — E[Ay] are close in probability, and so we can study the non-centred
matrix directly.

Size=2000 size=2000

= Eigenvalue distribution = Eigenvalue distribution

(a) X = 0.9. () A=1.9
. - ; T |
MR
>
A
e <R
O 1A SRR 1
(c) A= 3.5. (d) X =9.

Figure 5.1: Eigenvalue distributions of the adjacency of ERn(A/N) with N = 2000.

In Figure 5.1, we see the eigenvalue distributions of this matrix with N =
2000 for varying values of A\. For A < 1, we observe “spikes”, indicating that
the measure has many atoms (in line with Salez [2020]). For A > 1, we observe
a continuous part, indicating the presence of a density (in line with Arras and
Bordenave [2023]). When A > log N (A = 9), we observe a distribution that
resembles the semicircle law, with an outlier that is the largest eigenvalue, which
is of the order v\ (see Erdés et al. [2013]).
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§5.2. Erdds-Rényi Random graph

The interesting case is when A is “large”, but smaller than log N. We observe
at A = 3.5 for N = 2000 that there is a spike at the eigenvalue 0, indicating the
presence of an atom. However, the remaining distribution begins to take the
shape of a semicircle distribution. This indicates that the rate of convergence
in A is relatively fast. While we were not able to prove this, we believe that the
metric defined by Stieltjes transforms as in Augeri [2025] can aid in determining
this rate of convergence. Through moments, we heuristically see a possible
candidate for the convergence rate. The 2k—th moment of ) is

/ 2y (dx) = Cp + Err(A ) = / 2% g (dz) + Err(A71),
R R

where Err(A~!) is an error term with leading order A~! and C} is the k—th
Catalan number. We leave the optimal rate of convergence as an open problem.

size=3000 size=3000

> ™ H 111
1. 1 i,

-2 Y o 1 2 3 i b 5 2 i

(a) Degrees d; ~ Unif[1,10]. (b) Degrees d; ~ Pareto(r — 1), with T = 3.5.

Figure 5.2: Spectral distributions of adjacency matrices of IER models, with edge prob-
ability p;; = A1, where (d;)N., is a given degree sequence and my = vazl d;.
N = 3000.

idj
m1+didj

§5.2.2 Laplacian matrix

From Bordenave and Lelarge [2010], we have the existence of vy for the ESD of
the graph Laplacian when the graph is sparse. We see in Figure 5.3 that the
spectra of the centred and non-centred Laplacian differ significantly, in particu-
lar when the sparsity parameter increases. For dense graphs with a fixed p, the
spectrum of the Laplacian is a Dirac mass at p (see Bryc et al. [2006]), which is
what we observe in Figure 5.3c. It is only meaningful to study the spectrum of
the centred Laplacian in the dense setting. Understanding the ESD and identi-
fying the limiting measure in the general inhomogeneous setting is still an open
problem. Also, it is unclear whether for any A > 0, the limiting measure always
has an absolutely continuous spectrum. It would be interesting to derive the
behaviour of the atoms for A < 1.
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5. Discussion and future directions

size=3000, A=1.5 size=3000, A=9

il L

- 1] 1 2

= Centred Lapiacian
=1 Non-centred Lay

il
.

= 5 Y 1

(a) p=A/N, A=1.5. (b)) p=A/N, X=09.

size=3000. p=0.5

(¢) p = 0.5, with the non-centred Laplacian

scaled by N instead of \/Np(1 — p).

Figure 5.3: Spectral distributions of the Laplacian matrices of ERRG, with N = 3000.

§5.3 Scale-Free percolation

Let us consider the model from Chapter 4, which is a special case of the model
from Chapter 3. We take the discrete torus on N vertices and an i.i.d. se-
quence of Pareto weights (Wl)fil Conditionally on the weights, we add edges
independently with probability

Wil
= A,
P9 =gl
where a > 0 is a parameter of choice and || - || is the torus distance. In the dense

case, we scale the adjacency and Laplacian matrices with the scaling factor
ey ~ N7 for o < 1. In the sparse case, when o > 1, we scale by a constant
scaling ((a), which is the Riemann-Zeta function evaluated at a.

§5.3.1 Adjacency matrix

The degrees of vertices in the model are heavy-tailed with parameter v :=
a(t — 1) (see Deijfen et al. [2013], Cipriani and Salvi [2024]). We simulate the
eigenvalue distribution of the scaled adjacency matrix Ay for the regimes v < 1
and v > 1. For 7 > 1, we have two sub-regimes, namely when o < 1 and o > 1,
and similarly for v < 1, giving us a total of 4 regimes, as in Figure 5.4. While we
have theoretical results for Figure 5.4a, wherein we also see that the centred and
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non-centred adjacency matrices are spectrally close, we believe extension to the
setting simulated in Figure 5.4b should be possible with some modifications to
deal with infinite-mean weights, though the spectrum may differ in the centred
and non-centred cases. The eigenvalue distributions in Figures 5.4a and 5.4c
look similar, where the parameter v > 1. Similarly, the eigenvalue distribution
in Figures 5.4b and 5.4d have a similar shape, where v < 1. This indicates that
~ possibly plays a role in the limiting spectrum, though we do not see this in
Chapters 3 and 4. We believe that the limiting measures exist in all regimes
after appropriate scaling and may be random in certain cases.

size=5000, alpha=07. tau=35 size=5000, alpha=0.7, tau=2.2

= Eigenvalue distribution

= Eigenvalue distribution

(a) «=0.7, 7 = 3.5.

size=5000, alpha=1.2, tau=2.5

= Eigenualue distribution

2 0 2

(c)a=1217=205.

5ize=5000, alpha=0.7, tau=35

= Eigenvalue distribution

(a) Centred adjacency.

(b) a=0.7,17=22.

size=5000, alpha=12, tau=1.5

= Eigenualue distribution

(d) a =12, 7=15.

Figure 5.4: Spectral distributions of the centred adjacency matrices of scale-free percol-
ation, with N = 5000.

size=5000, alpha=0.7, tau=35

= Eigenvalue distribution

] H o =

(b) Non-centred adjacency.

Figure 5.5: Spectral distributions of the centred and non-centred adjacency matrices of
scale-free percolation, with N = 5000, o = 0.7, 7 = 3.5.
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5. Discussion and future directions

For the long-range percolation model (that is, for W; = 1) in Figure 5.6, we
observe the semicircle law when o < 1. At @ = 1, the shape is still semicircle-
like, though we observe some concentration towards the centre. For a € (1,2),
we still observe the presence of a density, with possible atoms at 0, and o = 2,
this density begins to break down. For o > 2, where the model behaves similarly
to bond percolation, the spectrum starts to break down. Such transitions in
forms of percolative behaviour in different regimes have already been observed
in long-range percolation theory (Berger [2002]). It would be interesting to see
this behaviour in the spectrum also.

size=3000, alpha=0.5 size=3000, alpha=1

= Eigenvalue distribution

(a) a =0.5. (b) a=1.

size=3000, alpha=1.5 size=3000, alpha=2

= Eigenvalue distribution == Eigenvalue distribution

(c) a=1.5. (d) oo =2.

Figure 5.6: Spectral distributions of the centred adjacency matrices of long-range per-
colation, with N = 3000.

size=3000, alpha=2.5 size=3000, alpha=3.5

Figure 5.6: (continued)
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§5.3. Scale-Free percolation

§5.3.2 Resolvent Matrix

Recall that for a random matrix Ay, one can define the resolvent as Ra , (2) =
(AN — 21)7L. For some models, there is a concentration on the diagonal of the
resolvent matrix, which makes computation easier. For example, let A be the
GOE, with Ay(i,) = An(j,i) < N=Y/2N(0,1). With the following heuristic,
we can see how concentration on the diagonal of the resolvent occurs:

With Schur’s complement formula from Bordenave [2019], we have

1

Tii =

where 75 = R, )(2) = (Ag\i,) —2I)7!, and A%) is Ay with the i—th row
N

and column deleted. We briefly recall the heuristics from Chapter 2.1. Taking

expectation, we get

1
Elry] = —E = i )
[ ] Z_|_Zj’k;AlTJkAN(%])AN(Z?k)]
. 1
2+ E X s P AN (i ) AN B)|
1 1

i+E {Z#z rjjAN(iaj)Q} 2t u(Ray(2)

%

)

and so for N large, the diagonal terms are in some sense “replaced” by the
Stieltjes transform of ps., with the off-diagonal terms vanishing as N — oc.

This concentration may not happen in other models. Notably, in the sparse
case of the long-range percolation model, we see that there seems to be signific-
ant mass at the off-diagonal terms.

This suggests that understanding the local convergence for these models
is a significant challenge, as most methods require a critical understanding of
the resolvent matrix, which roughly concentrates around the diagonal for the
classical Gaussian models (Anderson et al. [2010], Bordenave [2019]).
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§5.3.3 Laplacian matrix

For the scaled Laplacian matrix of the scale-free percolation model, we have
theoretical results for the existence of a limiting distribution when the weights
have finite variance, as in Figure 5.8a. We observe that as 7 decreases, that is,
the weights become more heavy-tailed, the mass at 0 for the measure increases
as well, and when we have infinite mean weights, as in Figure 5.8c, there is an
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5. Discussion and future directions

Resolvent heatmap for GOE

Resolvent heatmap for LRP, a=0.5

Figure 5.7: Logarithmic resolvent heat maps for centred adjacencies of LRP, GOE,
and ERRG models, with N = 1000. We take z = 1 + 2i, evaluate the resolvent, and
compute the absolute values of the entries. We add N~2 to each entry and compute
the logarithm of the value and plot a heat map.

indication of an atom present at 0. We expect the results to be true under the
assumption of finite mean for the weights. We remark that the Gaussianisation
and decoupling steps may fail when we have infinite variance for the weights,
and so, a new approach has to be taken to tackle the problem. We leave the
case of finite mean and infinite variance open.

In Figure 5.9, we simulate the eigenvalue distributions of the centred Lapla-
cian matrix of the LRP and SFP models, when o > 1. We observe that for
the LRP, the spectrum breaks down when a > 2, as in Figure 5.9b, whereas
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Resolvent heatmap for LRP, =15

(d) LRP, with a = 1.5.

Figure 5.7: (continued)

we observe a density-like shape in Figure 5.9a. For the SFP models, we keep
a = 1.5 fixed, and observe that the distribution skews less when the weights
become more heavy-tailed and the graph becomes denser, as in Figure 5.9d.
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size=2000, alpha=0.5, tau=3.1 size=2000, alpha=05, tau=2.1

= Eigenvalue distribution

= Eigenvalue distribution o

size=2000, alpha=05, tau=1.1

= Eigenvalue distribution, ¥ axis truncated

(c) T=1.1.

Figure 5.8: Spectral distributions of the centred Laplacian matriz of scale-free percola-
tion, with N = 2000, o = 0.5.

size=2000, alpha=1.5 size=2000, alpha=2.5
= Eigenualue dstrbuton = Eigenvalue dstrouton
os 1
04 10
s
) 03
i
N o
-
< 02
04
~ o1
) oz
+~
~
o 00 . 20
~ Y = Y 3 T = = B =2 R [ T
pc
<
=
=
(a) LRP, a = 1.5. (b) LRP, o = 2.5.
size=2000, alpha=1.5, tau=3.5 size=2000, alpha=1.5, tau=2.5
040 =3 Eigenvalue distributon =3 Eigenvalue distrioution
040
035 0ss
030 050
025 025
[ 02
015 015
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210



§5.3. Scale-Free percolation

Q
=
S

o]
=
@
=
&
<
@

211



Bibliography

Bibliography

E. Abbe. Community detection and stochastic block models: recent develop-
ments. Journal of Machine Learning Research (JMLR), 18(1):Paper No. 177,
86, 2017.

E. Abbe, E. Boix-Adsera, P. Ralli, and C. Sandon. Graph powering and spec-
tral robustness. SIAM Journal on Mathematics of Data Science, 2(1):132-157,
2020.

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover
printing, tenth gpo printing edition, 1964.

O. Ajanki, L. Erdss, and T. Kriiger. Quadratic vector equations on complex
upper half-plane, volume 261. Memoirs of American Mathematical Society,
2019.

P. Akara-pipattana and O. Evnin. Random matrices with row constraints and
eigenvalue distributions of graph laplacians. Journal of Physics. A. Mathem-
atical and Theoretical, 56(29):Paper No. 295001, 28, 2023.

D. Aldous. Brownian excursions, critical random graphs and the multiplicative
coalescent. The Annals of Probability, 25(2):812-854, 1997.

D. Aldous and R. Lyons. Processes on unimodular random networks. Electronic
Journal of Probability, 12:no. 54, 1454-1508, 2007.

N. Anantharaman, M. Ingremeau, M. Sabri, and B. Winn. Absolutely continu-
ous spectrum for quantum trees. Communications in Mathematical Physics,
383:537-594, 2021.

G. W. Anderson, A. Guionnet, and O. Zeitouni. An introduction to random
matrices, volume 118. Cambridge University Press, 2010.

O. Arizmendi and V. Pérez-Abreu. The S-transform of symmetric probability
measures with unbounded supports. Proceedings of the American Mathematical
Society, 137(9):3057-3066, 2009.

A. Arras and C. Bordenave. Existence of absolutely continuous spectrum for
galton—-watson random trees. Communications in Mathematical Physics, 403
(1):495-527, 2023.

212



Bibliography

F. Augeri. Large deviations of the empirical spectral measure of supercritical
sparse Wigner matrices. Advances in Mathematics, 466:Paper No. 110156, 53,
2025.

L. Avena, R. S. Hazra, and N. Malhotra. Limiting spectra of inhomogeneous
random graphs. arXiv preprint arXiw:2312.02805, 2023.

L. Avena, F. Capannoli, R. S. Hazra, and M. Quattropani. Meeting, coales-
cence and consensus time on random directed graphs. The Annals of Applied
Probability, 34(5):4940-4997, 2024.

Z. Bai and J. W. Silverstein. Spectral analysis of large dimensional random
matrices, volume 20. Springer, 2010.

Z. D. Bai. Methodologies in spectral analysis of large dimensional random
matrices, a review. Statistica Sinica, 9(3):611-677, 1999.

M. Banna and T. Mai. Berry-Esseen bounds for the multivariate B-free CLT
and operator-valued matrices. Transactions of the American Mathematical
Society, 376(6):3761-3818, 2023.

V. Bansaye and M. Salvi. Branching processes and homogenization for epi-
demics on spatial random graphs. FElectronic Journal of Probability, 29:1-37,
2024.

A.-L. Barabasi and R. Albert. Emergence of scaling in random networks.
Science, 286(5439):509-512, 1999.

M. Bauer and O. Golinelli. Random incidence matrices: moments of the spec-
tral density. Journal of Statistical Physics, 103(1-2):301-337, 2001.

F. Benaych-Georges, A. Guionnet, and C. Male. Central limit theorems for
linear statistics of heavy tailed random matrices. Communications in Math-
ematical Physics, 329(2):641-686, 2014.

F. Benaych-Georges, C. Bordenave, and A. Knowles. Largest eigenvalues of
sparse inhomogeneous Erdés—Rényi graphs. The Annals of Probability, 47(3):
1653-1676, 2019.

F. Benaych-Georges, C. Bordenave, and A. Knowles. Spectral radii of sparse
random matrices. Annales de ’Institut Henri Poincaré Probabilités et Stat-
istiques, 56(3):2141-2161, 2020.

I. Benjamini and O. Schramm. Recurrence of distributional limits of finite
planar graphs. Electronic Journal of Probability, 6:no. 23, 13, 2001.

213



Bibliography

H. Bercovici and D. Voiculescu. Free convolution of measures with unbounded
support. Indiana University Mathematics Journal, 42(3):733-773, 1993.

N. Berger. Transience, recurrence and critical behavior for long-range percol-
ation. Communications in Mathematical Physics, 226(3):531-558, 2002.

G. Bet, K. Bogerd, and V. Jacquier. First-order asymptotics for the structure
of the inhomogeneous random graph. arXw preprint arXiv:2306.06396, 2023.

S. Bhamidi, R. Van Der Hofstad, and J. S. van Leeuwaarden. Scaling limits for
critical inhomogeneous random graphs with finite third moments. FElectronic
Journal of Probability, 15:1682-1702, 2010.

S. Bhamidi, S. N. Evans, and A. Sen. Spectra of large random trees. Journal
of Theoretical Probability, 25(3):613-654, 2012.

F. M. Bianchi, D. Grattarola, and C. Alippi. Spectral clustering with graph
neural networks for graph pooling. In International conference on machine
learning, pages 874-883. PMLR, 2020.

P. Biane. On the free convolution with a semi-circular distribution. Indiana
University Mathematics Journal, 46(3):705-718, 1997.

P. Billingsley. Probability and measure. Wiley Series in Probability and Stat-
istics. John Wiley & Sons, Inc., Hoboken, NJ, anniversary edition, 2012. ISBN
978-1-118-12237-2.

B. Bollobas, S. Janson, and O. Riordan. The phase transition in inhomogeneous
random graphs. Random Structures € Algorithms, 31(1):3-122, 2007.

C. Bordenave. Lecture notes on random matrix theory. IMPA, 2019.

C. Bordenave and M. Lelarge. Resolvent of large random graphs. Random
Structures €& Algorithms, 37(3):332-352, 2010.

C. Bordenave, M. Lelarge, and J. Salez. The rank of diluted random graphs.
The Annals of Probability, 39(3):1097-1121, 2011.

C. Bordenave, P. Caputo, and D. Chafai. Spectrum of Markov generators on
sparse random graphs. Communications on Pure and Applied Mathematics, 67
(4):621-669, 2014.

C. Bordenave, M. Lelarge, and L. Massoulié. Non-backtracking spectrum of
random graphs: community detection and non-regular Ramanujan graphs.
In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pages 1347-1357. IEEE, 2015.

214



Bibliography

C. Bordenave, A. Sen, and B. Virag. Mean quantum percolation. Journal of
the European Mathematical Society, 19(12):3679-3707, 2017.

A. Bose, K. Saha, A. Sen, and P. Sen. Random matrices with independent
entries: beyond non-crossing partitions. Random Matrices. Theory and Ap-
plications, 11(2):Paper No. 2250021, 42, 2022.

N. Broutin, T. Duquesne, and M. Wang. Limits of multiplicative inhomogen-
eous random graphs and lévy trees: Limit theorems. Probability Theory and
Related Fields, 181:865-973, 2021.

W. Bryc, A. Dembo, and T. Jiang. Spectral measure of large random Hankel,
Markov and Toeplitz matrices. The Annals of Probabality, 34(1):1-38, 2006.

R. Carmona and J. Lacroix. Spectral theory of random Schrédinger operators.
Springer Science & Business Media, 2012.

A. Chakrabarty and R. S. Hazra. Remarks on absolute continuity in the con-
text of free probability and random matrices. Proceedings of the American
Mathematical Society, 144(3):1335-1341, 2016.

A. Chakrabarty, R. S. Hazra, and D. Sarkar. Limiting spectral distribution
for Wigner matrices with dependent entries. Acta Phys. Polon. B, 46(9):1637—
1652, 2015. ISSN 0587-4254.

A. Chakrabarty, R. S. Hazra, and D. Sarkar. From random matrices to long
range dependence. Random Matrices. Theory and Applications, 5(2):1650008,
52, 2016.

A. Chakrabarty, S. Chakraborty, and R. S. Hazra. A note on the folklore of
free independence. Statistics and Applications, 19(1):187-198, 2021a.

A. Chakrabarty, R. S. Hazra, F. den Hollander, and M. Sfragara. Spectra
of adjacency and Laplacian matrices of inhomogeneous Erdds-Rényi random
graphs. Random Matrices. Theory and Applications, 10(1):Paper No. 21500009,
34, 2021b.

A. Chakrabarty, R. S. Hazra, F. den Hollander, and M. Sfragara. Large de-
viation principle for the maximal eigenvalue of inhomogeneous Erdgs-Rényi
random graphs. Journal of Theoretical Probability, 35(4):2413-2441, 2022.

C. Champion, B. Mélanie, B. Rémy, L. Jean-Michel, and R. Laurent.
Robust spectral clustering using Lasso regularization. arXiv preprint
arXiv:2004.03845, 2020.

215



Bibliography

A. Chatterjee and R. S. Hazra. Spectral properties for the Laplacian of a
generalized Wigner matrix. Random Matrices. Theory and Applications, 11
(3):Paper No. 2250026, 66, 2022.

S. Chatterjee. A simple invariance theorem. arXiv preprint math/0508213,
2005.

U. Chatterjee, K. Huang, R. Karmakar, B. R. V. Kumar, G. Lugosi, N. Malho-
tra, A. Mandal, and M. A. Tarafdar. Detecting weighted hidden cliques. arXiv
preprint arriv:2506.21543, 2025.

D. Cheliotis and M. Louvaris. The limit of the operator norm for random
matrices with a variance profile. arXiv preprint arXiv:2404.13795, 2024.

F. Chung and L. Lu. The average distances in random graphs with given
expected degrees. Proceedings of the National Academy of Sciences, 99(25):
15879-15882, 2002.

F. Chung, L. Lu, and V. Vu. Eigenvalues of random power law graphs. Annals
of Combinatorics, 7(1):21-33, 2003.

F. R. Chung. Spectral graph theory, volume 92 of CBMS Regional Conference
Series in Mathematics. American Mathematical Society, 1997. ISBN 0-8218-
0315-8.

A. Cipriani and M. Salvi. Scale-free percolation mixing time. Stochastic Pro-
cesses and their Applications, 167:104236, 2024.

A. Cipriani, R. S. Hazra, N. Malhotra, and M. Salvi. The spectrum of dense
kernel-based random graphs. arXiv preprint arXiv:2502.09415, 2025.

S. Coste and J. Salez. Emergence of extended states at zero in the spectrum
of sparse random graphs. The Annals of Probability, 49(4):2012-2030, 2021.

J. Dalmau and M. Salvi. Scale-free percolation in continuous space: quenched
degree and clustering coefficient. Journal of Applied Probability, 58(1):106-127,
2021.

N. M. M. De Abreu. Old and new results on algebraic connectivity of graphs.
Linear algebra and its applications, 423(1):53-73, 2007.

M. Deijfen, R. van der Hofstad, and G. Hooghiemstra. Scale-free percolation.
Annales de I’Institut Henri Poincaré Probabilités et Statistiques, 49(3):817-838,
2013.

216



Bibliography

P. Deprez and M. V. Wiithrich. Scale-free percolation in continuum space.
Communications in Mathematics and Statistics, 7(3):269-308, 2019.

P. Deprez, R. S. Hazra, and M. V. Wiithrich. Inhomogeneous long-range per-
colation for real-life network modeling. Risks, 3(1):1-23, 2015.

L. Devroye and N. Fraiman. Connectivity of inhomogeneous random graphs.
Random Structures € Algorithms, 45(3):408-420, 2014.

X. Ding and T. Jiang. Spectral distributions of adjacency and Laplacian
matrices of random graphs. The Annals of Applied Probability, 20(6):2086—
2117, 2010.

P. Dionigi, D. Garlaschelli, R. S. Hazra, F. den Hollander, and M. Mandjes.
Central limit theorem for the principal eigenvalue and eigenvector of Chung—Lu
random graphs. Journal of Physics; Complexity, 4(1), 2023.

R. Ducatez, A. Guionnet, and J. Husson. Large deviation principle for the
largest eigenvalue of random matrices with a variance profile. arXiv preprint
arXiv:2408.05413, 2024.

[. Dumitriu and Y. Zhu. Sparse general Wigner-type matrices: local law and
eigenvector delocalization. Journal of Mathematical Physics, 60(2):023301, 16,
2019.

F. J. Dyson. A brownian-motion model for the eigenvalues of a random matrix.
Journal of Mathematical Physics, 3(6):1191-1198, 1962.

L. Erd6s and H.-T. Yau. A dynamical approach to random matriz theory,
volume 28 of Courant Lecture Notes in Mathematics. Courant Institute of
Mathematical Sciences, New York; American Mathematical Society, Provid-
ence, RI, 2017. ISBN 978-1-4704-3648-3.

P. Erd6s and A. Rényi. On random graphs. Publicationes mathematicae, 6
(26):290-297, 1959.

L. Erdés, A. Knowles, H.-T. Yau, and J. Yin. Spectral statistics of erdGs-rényi
graphs i: Local semicircle law. The Annals of Probability, 41(3B):2279-2375,
2013.

I. Gallagher, A. Jones, A. Bertiger, C. E. Priebe, and P. Rubin-Delanchy.
Spectral embedding of weighted graphs. Journal of the American Statistical
Association, 119(547):1923-1932, 2024.

217



Bibliography

L. Geisinger. Convergence of the density of states and delocalization of eigen-
vectors on random regular graphs. Journal of Spectral Theory, 5(4):783-827,
2015.

E. N. Gilbert. Random graphs. Annals of Mathematical Statistics, 30(4):
1141-1144, 1959.

P. Gracar and A. Grauer. The contact process on scale-free geometric random
graphs. Stochastic Processes and their Applications, 173:104360, 2024.

P. Gracar, L. Liichtrath, and P. Morters. Percolation phase transition in
weight-dependent random connection models. Advances in Applied Probab-
ility, 53(4):1090-1114, 2021.

W. H. Haemers. Hoffman’s ratio bound. arXiv preprint arXiv:2102.05529,
2021.

N. Hao and M. Heydenreich. Graph distances in scale-free percolation: the
logarithmic case. Journal of Applied Probability, 60(1):295-313, 2023.

R. S. Hazra and N. Malhotra. Spectral properties of the Laplacian of scale-free
percolation models. arXiv preprint arXiv:2504.17552, 2025.

R. S. Hazra and K. Maulik. Free subexponentiality. The Annals of Probability,
41(2):961-988, 2013.

M. Heydenreich, T. Hulshof, and J. Jorritsma. Structures in supercritical scale-
free percolation. The Annals of Applied Probability, pages 2569-2604, 2017.

J. Huang and B. Landon. Spectral statistics of sparse Erdés—Eényi graph
Laplacians. Annales de 'Institut Henri Poincaré Probabilités et Statistiques,
56(1):120-154, 2020.

H. J. Hupkes, M. Juki¢, P. Stehlik, and V. Svigler. Propagation reversal for
bistable differential equations on trees. SIAM Journal on Applied Dynamical
Systems, 22(3):1906-1944, 2023.

J. Husson. Large deviations for the largest eigenvalue of matrices with variance
profiles. Electronic Journal of Probability, 27:Paper No. 74, 44, 2022.

S. Janson, D. E. Knuth, T. Luczak, and B. Pittel. The birth of the giant
component. Random Structures & Algorithms, 4(3):233-358, 1993.

T. Jiang. Empirical distributions of Laplacian matrices of large dilute random
graphs. Random Matrices. Theory and Applications, 1(03):1250004, 2012.

218



Bibliography

I. M. Johnstone. On the distribution of the largest eigenvalue in principal
components analysis. Annals of Statistics, 29(2):295-327, 2001.

J. Jorritsma, J. Komjathy, and D. Mitsche. Cluster-size decay in supercritical
kernel-based spatial random graphs. arXiv preprint arXiv:2303.00724, 2023.

J. Jorritsma, J. Komjathy, and D. Mitsche. Large deviations of the gi-
ant in supercritical kernel-based spatial random graphs. arXiv preprint
arXiv:2404.02984, 2024.

P. Jung and J. Lee. Delocalization and limiting spectral distribution of Erdds-
Rényi graphs with constant expected degree. FElectronic Communications in
Probability, 23:Paper No. 92, 13, 2018.

O. Khorunzhy, M. Shcherbina, and V. Vengerovsky. Eigenvalue distribution
of large weighted random graphs. Journal of Mathematical Physics, 45(4):
1648-1672, 2004.

B. Kotodziejek and K. Szpojankowski. A phase transition for tails of the free
multiplicative convolution powers. Advances in Mathematics, 403:Paper No.
108398, 50, 2022.

J. Komjathy and B. Lodewijks. FExplosion in weighted hyperbolic random
graphs and geometric inhomogeneous random graphs. Stochastic Processes
and their Applications, 130(3):1309-1367, 2020.

J. Komjathy, J. Lapinskas, J. Lengler, and U. Schaller. Four universal growth
regimes in degree-dependent first passage percolation on spatial random graphs
I. arXw preprint arXiw:2309.11840, 2023.

R. J. LeVeque. Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-State and Time-Dependent Problems. Society for Industrial
and Applied Mathematics, 2007. ISBN 978-0-89871-629-0.

G. Lin. Recent developments on the moment problem. Journal of Statistical
Distributions and Applications, 4(1):1-17, 2017.

L. Lovész and B. Szegedy. Limits of dense graph sequences. Journal of Com-
binatorial Theory, Series B, 96(6):933-957, 2006.

C. Male. The limiting distributions of large heavy wigner and arbitrary random
matrices. Journal of Functional Analysis, 272(1):1-46, 2017.

219



Bibliography

J. A. Mingo and R. Speicher. Free probability and random matrices, volume 35
of Fields Institute Monographs. Springer, New York; Fields Institute for Re-
search in Mathematical Sciences, Toronto, ON, 2017. ISBN 978-1-4939-6941-8;
978-1-4939-6942-5.

H. L. Montgomery. The pair correlation of zeros of the zeta function. Ana-
lytic number theory, Proceedings of Symposia in Pure Mathematics, 24:181-193,
1973.

C. M. Newman and L. S. Schulman. One dimensional 1/|j — i|* percolation
models: The existence of a transition for s < 2. Communications in Mathem-
atical Physics, 104(4):547-571, 1986.

A. Nica and R. Speicher. Lectures on the combinatorics of free probability,
volume 13 of London Mathematical Society Lecture Note Series. Cambridge
University Press, Cambridge, 2006. ISBN 978-0-521-85852-6; 0-521-85852-6.

R. Pastor-Satorras, C. Castellano, P. Van Mieghem, and A. Vespignani. Epi-
demic processes in complex networks. Reviews of Modern Physics, 87(3):925—
979, 2015.

M. Pernici. Noncrossing partition flow and random matrix models. arXiv
preprint arXiv:2106.02655, 2021.

S. I. Resnick. Extreme values, regular variation, and point processes, volume 4.
Springer Science & Business Media, 2008.

W. Rudin. Principles of mathematical analysis. International Series in
Pure and Applied Mathematics. McGraw-Hill Book Co., New York-Auckland-
Diisseldorf, third edition, 1976.

W. Rudin. Functional Analysis. International Series in Pure and Applied
Mathematics. McGraw-Hill, Inc., New York, second edition, 1991. ISBN 0-07-
054236-8.

O. Ryan. On the limit distributions of random matrices with independent or
free entries. Communications in Mathematical Physics, 193:595-626, 1998.

J. Salez. Some implications of local weak convergence for sparse random graphs.
Thesis, Université Pierre et Marie Curie—Paris VI. Ecole Normale Supérieure
de Paris—ENS Paris, 2011.

J. Salez. Spectral atoms of unimodular random trees. Journal of the European
Mathematical Society, 22(2):345-363, 2020.

220



Bibliography

L. S. Schulman. Long range percolation in one dimension. Journal of Physics
A: Mathematical and General, 16(17):L639, 1983.

A. Sen and B. Virag. Absolute continuity of the limiting eigenvalue distribution
of the random Toeplitz matrix. Electronic Communications in Probability, 16:
706-711, 2011.

R. Speicher. Free probability theory. In G. Akemann, J. Baik, and
P. D. Francesco, editors, The Ozford Handbook of Random Matriz Theory,
chapter 23, pages 465-491. Oxford University Press, 2011.

R. Speicher. Lecture Notes on "Random Matrices”. EMS Series of Lectures in
Mathematics. EMS Press, Berlin, 2024. ISBN 978-3-98547-075-4; 978-3-98547-
575-9.

D. Spielman. Spectral graph theory. Combinatorial scientific computing, 18
(18), 2012.

T. Tao. Topics in Random Matriz Theory, volume 132 of Graduate studies in
mathematics. American Mathematical Society, 2012.

C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel.
Communications in Mathematical Physics, 159(1):151-174, 1994.

L. V. Tran, V. H. Vu, and K. Wang. Sparse random graphs: Eigenvalues and
eigenvectors. Random Structures €& Algorithms, 42(1):110-134, 2013.

J. A. Tropp. An Introduction to Matrixz Concentration Inequalities. Founda-
tions and Trends in Machine Learning, 2015.

R. van der Hofstad. Critical behavior in inhomogeneous random graphs. Ran-
dom Structures € Algorithms, 42(4):480-508, 2013.

R. van der Hofstad. Random graphs and complex networks. Vol. I, volume
[43] of Cambridge Series in Statistical and Probabilistic Mathematics, [43].
Cambridge University Press, Cambridge, 2017. ISBN 978-1-107-17287-6.

R. van der Hofstad. Random graphs and complex networks- Vol. II, volume 2.
Cambridge Series in Statistical and Probabilistic Mathematics, 2024. ISBN
9781107174009.

R. van der Hofstad and J. Komjathy. Explosion and distances in scale-free
percolation. arXww preprint arXiv:1706.02597, 2017.

221



Bibliography

R. van der Hofstad, P. Van Der Hoorn, and N. Maitra. Local limits of spatial
inhomogeneous random graphs. Advances in Applied Probability, 55(3):793—
840, 2023.

R. van der Hofstad, P. van der Hoorn, C. Kerriou, N. Maitra, and P. Morters.
Condensation in scale-free geometric graphs with excess edges. arXiv preprint
arXiv:2405.20425, 2024.

D. Voiculescu. Limit laws for Random Matrices and Free Products. Inventiones
Mathematicae, 104(1):201-220, 1991.

D.-V. Voiculescu. Symmetries of some reduced free product C*-algebras. In
Operator Algebras and Their Connections with Topology and Ergodic Theory,
volume 1132 of Lecture Notes in Mathematics, pages 556-588. Springer, 1985.

D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks.
Nature, 393(6684):440, 1998.

E. P. Wigner. Characteristic vectors of bordered matrices with infinite dimen-
sions. Annals of Mathematics, 62(3):548-564, 1955.

E. P. Wigner. On the distribution of the roots of certain symmetric matrices.
Annals of Mathematics, 67(2):325-327, 1958.

J. Wishart. The generalised product moment distribution in samples from a
normal multivariate population. Biometrika, 20A(1/2):32-52, 1928.

X. Zhu and Y. Zhu. Central limit theorems for linear spectral statist-
ics of inhomogeneous random graphs with graphon limits. arXiv preprint
arXiv:2412.19352, 2024.

Y. Zhu. A graphon approach to limiting spectral distributions of Wigner-type
matrices. Random Structures & Algorithms, 56(1):251-279, 2020.

222



Publications

List of publications

L. Avena, R. S. Hazra, N. Malhotra.
Limiting spectra of inhomogeneous random graphs.

arXiwv preprint arXiv:2312.02805, 2023

A. Cipriani, R. S. Hazra, N. Malhotra, M. Salvi.
The spectrum of dense kernel-based random graphs.

arXiw preprint arXiw:2502.09415, 2025.

R. S. Hazra, N. Malhotra.
Spectral properties of the Laplacian of scale-free percolation models.

arXiwv preprint arXiv:2504.17552, 2025.

U. Chatterjee, K. Huang, R. Karmakar, B. R. V. Kumar, G. Lugosi,
N. Malhotra, A. Mandal, M. A. Tarafdar.

Detecting weighted hidden cliques.

arXiw preprint arxiv:2506.21543, 2025.

223



Summary

Sumimary

This thesis comprises five chapters, three of which contain the core mathematical
content. We study the limiting spectral distributions of random graph models
with vertex inhomogeneity. In particular, we focus on the adjacency matrix of
the inhomogeneous Erdés—Rényi random graph in the sparse regime, as well as
the adjacency and Laplacian matrices for random graph models that incorporate
spatial structure.

Random graph models provide a mathematical framework for understanding
complex networks observed in fields such as physics, biology, computer science,
and the social sciences. The classical Erdés—Rényi model, in which edges are
added independently with equal probability, serves as a foundational model
that continues to yield deep insights. Spectral graph theory plays a key role in
this context, connecting the eigenvalues and eigenvectors of the adjacency and
Laplacian matrices of graphs to structural and geometric properties of graphs.
For instance, the Perron—Frobenius theorem ensures a unique largest eigenvalue
for the adjacency matrix of a connected graph, with a corresponding posit-
ive eigenvector. More broadly, the spectrum gives information about the graph
connectivity, subgraph counts, the chromatic number, and other topological fea-
tures. Laplacian eigenvalues are central in the study of diffusion, mixing times
of random walks, and spectral clustering algorithms. Notably, the Kirchhoff
Matrix—Tree Theorem relates the determinant of the combinatorial Laplacian
to the count of the spanning trees of the graph. These connections make spec-
tral analysis a powerful tool for studying the geometry of complex networks.
Chapter 1 provides a detailed introduction to spectral graph theory, random
graphs, and random matrices.

The spectra of the adjacency and Laplacian matrices are well understood in the
dense Erdds-Rényi random graph model. In the sparse case, three main ana-
lytical techniques are used: (i) characterising the limiting spectrum via local
weak limits such as Galton—Watson trees; (ii) using combinatorial methods and
special symmetric partitions to compute the moments of the limiting spectral
measure; (iii) deriving the Stieltjes transform of the limiting measure using a
fixed-point equation in an appropriate Banach space. In Chapter 2, we extend
the Erdés—Rényi random graph model by incorporating deterministic vertex
weights to introduce inhomogeneity, where now edges are added independently
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Summary

with a probability proportional to a function of the vertex weights. We study
this model in the sparse setting, where the connectivity function is bounded.
We analyse the empirical spectral distribution of the adjacency matrix using the
moment method and the Stieltjes transform, and describe the limiting distribu-
tion through homomorphism densities, symmetric partitions, and a fixed-point
equation.

Real-world networks often exhibit spatial structure in addition to vertex in-
homogeneity. In Chapter 3, we consider a kernel-based random graph model
on a discrete torus, where the vertices are equipped with random weights that
follow a power-law distribution, and connection probabilities between two ver-
tices depend directly on a function of the two weights and that is inversely
proportional to the torus distance between the two vertices. Using the method
of moments, we study the adjacency matrix of this model and show the ex-
istence and uniqueness of a limiting spectral measure. We further analyse the
measure through its prelimit to show that it is absolutely continuous and non-
degenerate. We characterise the Stieltjes transform of this measure through a
fixed-point equation. When the kernel is rank-one, that is, it has a product
structure, we identify the limiting measure explicitly as a free multiplicative
convolution between the semicircle law and the Pareto law using tools from free
probability.

In Chapter 4, we focus on the centred Laplacian matrix of the rank-one model,
which is known as the Scale-Free percolation model. Using the method of
moments, we show the existence of a unique limiting spectral measure. We
further identify the measure in terms of the spectral distribution of some non-
commutative unbounded operators, again using techniques from free probability
theory.

In Chapter 5, we present simulations and provide a brief discussion of examples
that fall outside the restrictions assumed in the previous chapters.
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Samenvatting

Dit proefschrift bestaat uit vijf hoofdstukken, waarvan er drie de kern van de
wiskundige inhoud bevatten. We bestuderen limieten van spectrale verdelin-
gen van toevallige graafmodellen met puntinhomogeniteiten. In het bijzonder
richten we ons op de nabuur-matrix van de inhomogene Erd&s—Rényi graaf in
het ijle regime, en op de nabuur- en Laplace-matrices voor modellen die een
ruimtelijke structuur bevatten.

Toevallige graafmodellen bieden een wiskundig kader voor het begrijpen van
complexe netwerken in vakgebieden zoals natuurkunde, biologie, informatica en
sociale wetenschappen. Het klassieke Erdés—Rényi-model, waarin lijnen onaf-
hankelijk met gelijke waarschijnlijkheid worden toegevoegd, dient als een fun-
damenteel model dat diepgaande inzichten blijft opleveren. Spectrale grafen-
theorie speelt een sleutelrol in deze context, door de eigenwaarden en eigenvec-
toren van de nabuur- en Laplace-matrices van graafmodellen te verbinden met
structurele en geometrische eigenschappen van graafmodellen. De stelling van
Perron-Frobenius garandeert bijvoorbeeld een unieke grootste eigenwaarde voor
de nabuur-matrix van een verbonden graaf, met een bijbehorende positieve ei-
genvector. Breder gezien geeft het spectrum informatie over de connectiviteit
van de graaf, het aantal subgrafen van een bepaald type, het chromatische getal
en andere topologische kenmerken. Laplace-eigenwaarden spelen een centrale
rol in de studie van diffusie, mengtijden van toevallige wandelingen en spec-
trale clusteringalgoritmen. Met name de matrix-boomstelling van Kirchhoff
relateert de determinant van de combinatorische Laplace-matrix aan het aantal
opspannende bomen van de graaf. Deze verbindingen maken spectrale analyse
een krachtig hulpmiddel voor het bestuderen van de geometrie van complexe
netwerken. Hoofdstuk 1 biedt een gedetailleerde inleiding tot spectrale grafen-
theorie, toevallige grafen en toevallige matrices.

De spectra van de nabuur- en Laplace-matrices worden goed begrepen in het
Erdé&s-Rényi-model in het dichte regime. In het ijle regime worden drie belang-
rijke analytische technieken gebruikt: (i) karakterisering van het limietspectrum
via lokale zwakke limieten zoals Galton-Watson-bomen; (ii) het gebruik van
combinatorische methoden en speciale symmetrische partities om de momenten
van de limietspectraalmaat te berekenen; (iii) het afleiden van de Stieltjestrans-
formatie van de limietmaat met behulp van een vaste-puntvergelijking in een
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geschikte Banach-ruimte. In hoofdstuk 2 breiden we het Erd&s-Rényi-model
uit door deterministische puntgewichten te integreren om inhomogeniteit te in-
troduceren, waarbij lijnen nu onafhankelijk worden toegevoegd met een waar-
schijnlijkheid evenredig met een functie van de puntgewichten. We bestuderen
dit model in het ijle regime, waar de connectiviteitsfunctie begrensd is. We ana-
lyseren de empirische spectrale verdeling van de nabuur-matrix met behulp van
de momentenmethode en de Stieltjestransformatie, en beschrijven de limietver-
deling met behulp van homomorfismedichtheden, symmetrische partities en een
vaste-puntvergelijking.

Netwerken vertonen vaak een ruimtelijke structuur naast puntinhomogeniteit.
In hoofdstuk 3 beschouwen we een kernelgebaseerd toevallig graafmodel op een
discrete torus, waarbij de punten zijn voorzien van toevallige gewichten die een
machtswetverdeling volgen, en de verbindingskansen tussen twee punten afthan-
gen van een functie van de twee gewichten die omgekeerd evenredig is met de
torusafstand tussen de twee punten. Met behulp van de momentenmethode be-
studeren we de nabuur-matrix van dit model en tonen we het bestaan en de
uniciteit van een spectrale limietmaat aan. We analyseren de maat via zijn pre-
limiet om aan te tonen dat deze absoluut-continu en niet-ontaard is. We karak-
teriseren de Stieltjestransformatie van deze maat via een vaste-puntvergelijking.
Wanneer de kernel rang-1 is, dat wil zeggen, een productstructuur heeft, identi-
ficeren we de limietmaat expliciet als een vrije multiplicatieve convolutie tussen
de halvecirkelwet en de Paretowet, met behulp van hulpmiddelen uit de vrije
kansrekening.

In hoofdstuk 4 richten we ons op de gecentreerde Laplace-matrix van het rang-
1-model, ook wel bekend als het schaalvrije percolatiemodel. Met behulp van de
momentenmethode tonen we het bestaan van een unieke spectrale limietmaat
aan. We identificeren de maat verder aan de hand van de spectrale verdeling
van enkele niet-commutatieve onbegrensde operatoren, wederom met behulp van
technieken uit de vrije kansrekening.

In hoofdstuk 5 presenteren we simulaties en geven we een korte bespreking
van voorbeelden die buiten de veronderstelde beperkingen van de voorgaande
hoofdstukken vallen.
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