
Understanding hypercoagulability: determinants and impact
on cardiometabolic disease
Han, J.

Citation
Han, J. (2025, November 19). Understanding hypercoagulability: determinants
and impact on cardiometabolic disease. Retrieved from
https://hdl.handle.net/1887/4283325
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4283325
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/4283325


 

 

 

 

 

 

 

 

 

 

 

Chapter 9 
Summary and general discussion 

 



Chapter 9 

166 

This thesis is aimed to better understand the mechanisms that lead to hypercoagulability and 
its role in cardiometabolic disease. Part I explores the genetic architecture of individual 
coagulation factor levels (FVIII, FIX, FXI, and fibrinogen), thrombin generation potential, 
and venous thromboembolism (VTE). Part II examines the complex interplay between 
individual coagulation factor levels, thrombin generation potential, endothelial function, 
and high-density lipoprotein (HDL) characteristics, as well as the impact of these coagulation 
parameters on the risk of type 2 diabetes. This discussion chapter summarizes the main 
findings and addresses implications and future perspectives.  

Summary of main findings  

Part I of this thesis starts with Chapter 2, which provides an overview of genetic variants that 
increase VTE risk. Since the 1960s, when the first genetic risk factor for VTE was identified 
(1), a large number of genetic risk factors has been found through various approaches. These 
genetic findings have contributed to an improved understanding of the genetic susceptibility 
to VTE. Also, adding genetic findings to clinical prediction models has improved the ability 
to identify individuals at a high risk of VTE. However, questions remain unanswered, e.g., 
whether the added value of genetic findings in the prediction model is clinically relevant, 
whether this added value outweighs the additional burden and cost from genetic testing, and 
which target population could benefit from genetic prediction models. Furthermore, the 
underlying mechanism by which these genetic factors increase the risk of VTE often remains 
unclear. To provide insights into the mechanism, the study presented in Chapter 3 
investigated the association between 61 recently identified VTE-associated genetic variants, 
individual coagulation factor levels, and thrombin generation potential. We observed that 31 
genetic variants are associated with at least one of these coagulation parameters, of which 
four variants showed robust associations after multiple testing corrections. As individual 
coagulation factors and thrombin generation potential we focused on are well-established 
contributors to VTE risk, our findings provide insight into how these genetic factors influence 
VTE risk by disrupting the coagulation cascade. Chapters 4 and 5 were aimed to evaluate the 
genetic architecture of individual coagulation factor levels and thrombin generation 
potential through a meta-analysis of genome-wide association studies (GWAS). In Chapter 4, 
we performed the first GWAS for FIX activity and identified 10 genetic loci associated with 
FIX activity. Notably, a subset of these loci has been associated with glucose levels and liver 
enzymes, implying a relationship between FIX activity and metabolism. Therefore, we 
further examined the functional role of specific genetic variants in metabolic and hemostatic 
phenotypes. We demonstrated genetic associations between FIX activity levels and 
hemostatic phenotypes, including activated partial thromboplastin time, FVIII, FXI, and 
FXII activity. Additionally, we identified associations with metabolic phenotypes, such as 
triglycerides, gamma-glutamyl transferase, and low-density lipoprotein cholesterol levels. 
Lastly, we provided insight into the causal role of FIX activity in the risk of VTE, stroke, and 
peripheral artery disease using Mendelian randomization analysis. In Chapter 5, we 
explored genetic determinants of the thrombin generation potential. We performed a meta-
analysis of GWASs for thrombin generation potential measured at low or high tissue factor 
concentrations. Discovery analyses identified several hundred genetic variants and several 
dozens of these were replicated in independent cohorts. We further found functional 
impacts of identified genetic variants by integrating transcriptomics, proteomics, and 
coagulation factor activity data. We also highlighted that thrombin generation potential is 
associated with atherosclerosis, lipid metabolism via phenome-wide association study, and 
clinical outcomes (i.e., atherosclerosis and type 2 diabetes) via Mendelian randomization 
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analyses. Our study contributes to a better understanding of the genetic landscape of 
hypercoagulability and its relationships with downstream phenotypes and clinical outcomes. 

In Part II, we shift our focus towards pathophysiological mechanism leading to 
hypercoagulability, particularly through microvascular health and HDL particles, and the 
effect of hypercoagulability on the risk of type 2 diabetes. In Chapter 6, we aimed to elucidate 
the effect of microvascular health on individual coagulation factor levels and thrombin 
generation potential. Endothelial glycocalyx, a thin layer covering the inner surface of blood 
vessels, plays an important role in maintaining vascular homeostasis. Its perturbation 
implies microvascular dysfunction, which is seen in procoagulant and proinflammatory 
conditions (2-8). Sidestream dark-filed imaging is used to assess the condition of endothelial 
glycocalyx with several markers including perfused boundary region markers that measure 
the extent to which red blood cells penetrate the glycocalyx. A larger perfused boundary 
region marker indicates a thinner or more degraded glycocalyx. We examined the 
association between these markers and individual coagulation factor levels as well as 
thrombin generation potential. We observed that perfused boundary region markers were 
positively associated with fibrinogen levels in the total population. We further demonstrated 
a sex-specific positive association between perfused boundary region and FIX, FVIII, and 
fibrinogen in women but not men. In Chapter 7, we examined the anti-thrombotic effect of 
various HDL particles. Although HDL particles vary in composition and size, previous 
research mainly focused on HDL-cholesterol levels showing inconsistent effects on VTE risk 
(9-13), which suggests that mere HDL-cholesterol levels might not be a proper marker for 
studying the anti-thrombotic effect of HDL particles. Investigating whether the composition 
and size of HDL particles were associated with individual coagulation factor levels and 
thrombin generation potential, we observed particle size-dependent associations; large HDL 
particles were consistently and negatively associated with these coagulation parameters, 
while small HDL particles were consistently and positively associated. We further 
investigated whether the particle size-dependent associations were mediated by perfused 
boundary region based on findings in Chapter 6. However, this was not supported by the 
data. In Chapter 8, we examined the association between individual coagulation factor levels, 
thrombin generation potential, and the incidence of type 2 diabetes. Although 
hypercoagulability has been identified in patients with type 2 diabetes (14-16), only a few 
studies have investigated the role of coagulation factors in the incidence of type 2 diabetes 
(17-22). We showed that elevated FIX activity and thrombin generation potential were 
associated with an increased risk of type 2 diabetes. We further sought to explain the 
underlying mechanism of these associations via glycoprotein acetylation (GlycA), which is 
suggested to be a biomarker of inflammation and originates from glycoproteins including 
many coagulation factors. However, performing mediation analysis, we observed the 
proportion mediated was marginal, which suggests that the role of GlycA is negligible in the 
association between coagulation factors and the incidence of type 2 diabetes.  

Implications and future perspectives 

Is it still worthwhile doing GWAS?  

GWAS have contributed to uncovering genetic loci associated with cardiometabolic disease 
including VTE, as discussed in Chapter 2, and biomarkers for hypercoagulability including 
the thrombin generation potential presented in Chapter 5. These findings helped explore a 
genetic landscape of cardiometabolic disease and hypercoagulability, yet unstudied 
phenotypes and missing heritability for studied phenotypes need further research. The first 
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GWAS on FIX activity in Chapter 4 discovered genetic loci associated with FIX activity that 
contributed to a better understanding of the genetic architecture of FIX activity. 

The Identification of additional genetic variants becomes feasible with increased sample 
sizes, advanced sequencing technology, and a better reference genome for imputation. For 
example, while the previous GWAS for thrombin generation potential included 1,967 
participants and identified one locus associated with thrombin generation potential (23), the 
meta-analysis of GWASs presented in Chapter 5 included 19,159 participants and identified 
multiple novel loci. Furthermore, using whole-genome sequencing data and Trans-Omics for 
Precision Medicine (TOPMED) as a reference panel for imputation with an increased 
coverage of genome compared with previous GWASs, recent GWAS for FVIII activity 
identified additional novel genetic loci associated with FVIII activity (24). This progress 
enhances our understanding of the genetic architecture underlying hypercoagulability and 
cardiometabolic disease.  

It has been argued that understanding the downstream function of genetic variants, which 
are replicated in independent populations but mechanistically underexplored, should come 
first to add value to clinical practice rather than identifying additional novel genetic signals. 
Many genetic variants identified so far have not been mechanistically determined for several 
reasons, which hinders the further application of genetic findings in clinics. First, it is often 
uncertain whether the identified genetic variants are causal or only associated with the 
causal variants due to linkage disequilibrium. Also, over 90% of identified genetic variants 
are located in non-coding regions (25), which makes it difficult to identify target genes and 
understand the function of genetic variants. Furthermore, the pleiotropic effects of genetic 
variants hinder the clear characterization of genetic function with target phenotypes.  

Multiple approaches have been suggested to characterize the functionality of identified 
genetic loci, including using public repositories and performing experiments, as reviewed in 
previous literature (26, 27). A Bayesian approach can be employed to prioritize causal 
variants among identified genetic signals by calculating the probability of each being causal. 
Furthermore, candidate genes can be prioritized by assessing whether the variant influences 
gene expression (expression quantitative loci, eQTL), protein levels (protein QTL), or protein 
function by disturbing protein-coding sequences. Overlap with transcription factor binding 
sites or histone markers can also indicate that a variant may act as a regulatory element, such 
as a promotor, enhancer, or splicing site. Public functional data repositories developed by 
large-scale projects (e.g., GTEx, ENCODE, and Roadmap Epigenomics), facilitate the 
annotation of genetic functions (28-30). However, as these datasets are primarily derived 
from cells or tissues in a stable state, further molecular assays are needed to investigate 
genetic function in specific cell types and under cellular conditions where genetic variants 
function (31, 32). Lastly, evaluating whether the changes caused by genetic variants have 
clinically relevant impacts is crucial. In vivo or in vitro experiments using knock-out or 
knock-down models can be useful to estimate the biological impact of genetic variants.  

GWAS remains worthwhile for advancing our understanding of the genetic architecture of 
diseases and phenotypes, especially with the integration of advanced technologies such as 
whole-genome sequencing. The combination of these technologies and large-scale 
international collaboration can help identify novel genetic loci that could lead to better 
insights into disease mechanisms. However, it is also important to understand the functional 
roles of these identified genetic variants to ensure their clinical applicability. By conducting 
functional validation and molecular experiments, we can bridge the gap between genetic 
discovery and its clinical implementation. Therefore, while GWAS provides novel insights 
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into the genetics of cardiometabolic disease, an effort to understand the causal mechanisms 
of genetic variants is crucial to make these findings more worthwhile in clinical practice. 

How can we use genetic findings in clinical practice? 

Genetic findings have been integrated into clinical practice in various ways. One application 
is in risk prediction, where genetic findings are used to identify high-risk individuals, even 
without definitive evidence of causality for the genetic effects. Furthermore, genetic variants 
with established causal effects have contributed to the development of therapeutic strategies 
for cardiometabolic disease. These findings also enhance our understanding of disease 
pathogenesis, enabling the identification of novel drug targets involved in the process of 
genetic variants influencing disease or physiological conditions. However, translating 
genetic findings into clinical practice remains challenging. Below, we discuss approaches for 
translating genetic findings into clinical practice, their potential benefits and limitations.  

First, genetic findings are used to estimate individual genetic risk for disorders or 
pathological conditions, which can then enhance preventive management strategies in 
clinical practice. This approach may be particularly beneficial for individuals at high risk of 
disease as prophylaxis after early screening may help prevent the disease and its subsequent 
complications, as discussed in Chapter 2. However, the clinical relevance of the genetic 
prediction model remains uncertain due to the lack of impact studies demonstrating their 
effectiveness in diagnoses and prediction of cardiometabolic disease. Also, the feasibility of 
its implementation is questionable as sequencing needs additional time, labor, and expenses. 
Furthermore, the generalizability of genetic prediction models to diverse populations is also 
limited. For instance, a genetic risk score based on five well-known genetic variants for VTE 
effectively identifies high-risk individuals with European ancestry (33), but is less accurate 
for those with African ancestry (34). These discrepancies arise from differences in genetic 
architecture between populations, underscoring the importance of research on population-
specific genetics, especially underrepresented populations. Further research that involves 
underrepresented populations could lead to the development of clinically relevant risk 
prediction models tailored to specific populations, eventually contributing to the mitigation 
of clinical biases (35). As discussed in Chapter 2 and recent literature (36), further research 
is needed to determine the clinical relevance of genetic risk predictions, including when, for 
whom, for which condition, and for what purpose the genetic prediction provides added 
value in clinical practice.  

Second, genetic findings can help drug development by identifying drug targets, evaluating 
drug responses, repurposing existing drugs for other disorders, and providing evidence for 
clinical trials. Several drugs for cardiometabolic disease have already been developed using 
this approach. For example, the finding that PCSK9 variants are associated with low-density 
lipoprotein cholesterol levels and the risk of cardiovascular disease (37, 38) has led to the 
development of lipid-lowering drugs, which function as PCSK9 inhibitors (39-42). Also, 
VKORC1 and CYP2C9 variants, which are associated with drug responses and metabolism, 
have been studied to guide the determination of anticoagulant dosage to prevent side effects 
(43-46). Furthermore, genetic findings have been used to identify opportunities for drug 
repurposing, as demonstrated by Finan et al., who showed a substantial number of drugs 
could potentially target cardiometabolic diseases for which they were not originally targeted 
(47). Additionally, the possibility of successful drug development increases when supported 
by genetic evidence (48) while clinical trials for drug targets lacking genetic evidence have 
a higher chance of early termination than those with genetic evidence (49). However, as 
previously discussed, many genetic variants remain uncharacterized regarding causality, 
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target genes, and function, which limits the application of genetic findings in drug 
development. Moreover, even when a target gene is identified, it encodes a protein that may 
not always be suitable for drug development. Out of 20,300 protein-coding genes, 4,479 (22%) 
either serve as a drug target or have the potential for drug development (47), which suggests 
the pool of druggable targets is limited. Despite promising opportunities in drug 
development with genetic findings, further research is required to improve the process of 
drug development based on the genetic evidence.  

Lastly, we can use genetic findings to study genetic correlations or causal relationships 
between traits, which contributes to the identification of similarities in genetic architecture 
between complex traits and a better understanding of biological mechanisms (50). For 
example, in Chapter 4, we investigated genetic correlations between FIX activity and 
multiple hemostatic and metabolic phenotypes, showing FIX activity was genetically 
associated with FXI, FVIII, and activated partial thromboplastin time of hemostatic factors, 
and gamma-glutamyl transferase, low-density lipoprotein cholesterol, triglyceride levels of 
metabolic factors. However, as the genetic correlation does not imply causality, additional 
investigations are needed to establish causal relationships. Mendelian randomization, which 
uses genetic variants as instrumental variables, provides insights into the causal 
relationships between exposures and outcomes. This method minimizes the possibility of 
reverse causation and residual confounding in observational studies. In Chapter 4, we also 
performed Mendelian randomization analyses to infer the causal relationships between 
genetically correlated traits. Our findings demonstrated that genetically influenced FIX 
activity was not associated with any of the investigated metabolic phenotypes, whereas 
genetically influenced BMI, GGT, and triglyceride levels were associated with FIX activity, 
which suggests the importance of further investigation into complex mechanisms between 
metabolism and coagulation system. However, Mendelian randomization is valid only under 
stringent assumptions, including the requirement that variants used as instrumental 
variables have strong associations with the phenotype. Also, it estimates the impacts of 
genetically predicted exposures on outcomes, reflecting cumulative effects over a lifetime. 
Because it does not consider environmental changes in a lifetime, the genetically predicted 
effects might be inconsistent with the actual effects, or less meaningful when disease or 
pathophysiological conditions occur only in specific situations. Therefore, conducting 
genetic correlation and Mendelian randomization analyses requires appropriate 
implementation and careful interpretation to derive clinically relevant insights from genetic 
findings.  

How can we further understand the mechanisms leading to hypercoagulability and its role 
in cardiometabolic health?  

Hypercoagulability results from complex mechanisms. From the basic perspective, multiple 
coagulation factors are involved in the coagulation system. These factors work intricately 
together to regulate each other and maintain homeostasis. In addition, these coagulation 
factors interact with various other factors, including anticoagulants that inhibit coagulation 
factors (51, 52), endothelial cells that initiate the coagulation process (53), and platelets that 
enhance the coagulation process (54). For example, endothelial cells play a crucial role in 
producing and activating coagulation factors, and the degradation of endothelial glycocalyx 
contributes to endothelial dysfunction, which is an early marker of microvascular disorders 
(2-8). Studying the association between glycocalyx perturbation markers and coagulation 
parameters in Chapter 6, we observed that glycocalyx perturbation markers were associated 
with procoagulants and the associations were more prominent in women than men. These 
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findings suggest that monitoring the markers of early microvascular disturbance may 
eventually help prevent hypercoagulability-related cardiometabolic disorders, particularly 
in women. Furthermore, the complexity increases when we consider the process of 
production of these factors, transport to the sites where they are active, and clearance when 
they malfunction or are no longer needed. Thus, while this thesis focused on coagulation 
factors to understand hypercoagulability, further research is required to investigate all 
related factors and to gain a deeper understanding of the mechanisms leading to 
hypercoagulability.  

Investigation of the complex relationships between all hypercoagulability-related factors 
will further contribute to understanding and eventually preventing hypercoagulability and 
cardiometabolic disease. Components involved in production, transport, activation, and 
clearance of coagulation factors are often related to cardiometabolic health. For instance, 
HDL particles play a role in anti-inflammation, cholesterol efflux, anti-oxidation, and anti-
thrombotic processes, with their functionality in each process varying based on the 
composition and size of HDL. The study presented in Chapter 7 demonstrated size-
dependent associations between HDL particles and coagulation parameters. Therefore, 
characterization of these distinct associations may provide opportunities to control 
hypercoagulability and develop preventive strategies for cardiometabolic disease. To 
effectively apply this knowledge in preventing cardiometabolic disease, it is also crucial to 
identify specific hypercoagulability-related disorders and the role of hypercoagulability in 
the disorders. Although hypercoagulability is observed in patients with cardiometabolic 
disease (20, 55-61), it remains uncertain which disorders are especially associated with 
hypercoagulability and whether hypercoagulability is a cause or a consequence of the 
disease. For instance, Chapter 8 showed positive associations between coagulation 
parameters and the incidence of type 2 diabetes. In Chapter 4 and 5, we provided evidence 
for the causal effects of hypercoagulability on VTE, ischemic stroke, peripheral artery 
disease, and type 2 diabetes using Mendelian randomization analyses. Although 
observational studies and Mendelian randomization analyses have certain limitations in 
establishing definitive causality, as discussed earlier, our findings provide evidence for the 
causal effects of hypercoagulability on specific cardiometabolic diseases. Further 
investigation is required to validate these findings and clarify the underlying mechanisms of 
these diseases, ultimately helping identify potential therapeutic targets.  

What are the remaining methodological challenges and opportunities in understanding the 
complex mechanism of hypercoagulability?  

Challenges in understanding the complex mechanism of hypercoagulability include the fact 
that the associated factors are related reciprocally, rather than in one direction. This 
highlights the importance of studying the process over time, rather than relying on snapshots 
to understand the mechanism leading to hypercoagulability comprehensively. The 
associations observed in this thesis are based on cross-sectional data, which limits the ability 
to address causality. This limitation warrants further longitudinal data with biological factors 
measured at multiple time points. Nevertheless, collecting these biological factors during 
follow-up is challenging (62). Unlike medical history, which can be extracted from the 
healthcare system without direct involvement from participants, these factors are measured 
from blood or tissue samples requiring participants to visit the research center physically. 
Therefore, the chance of participants dropout and missing samples increases with the 
duration of the data collection period. Additionally, maintaining accuracy and consistency 
in measurements over time can be difficult, and the process of sample collection, storage, 
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and data generation increases cost and labor burden. These challenges in regularly collecting 
biological markers hinder understanding the complex relationships between the factors, the 
mechanism leading to hypercoagulability, and its role in cardiometabolic health. Further 
research is needed to develop new methods to collect and manage samples, which are 
convenient and cost-effective while still maintaining comparability with the accuracy and 
representativeness of measurements obtained through current methods.  

In the Understanding Society Innovation Panel, the feasibility of using dried blood spot cards 
was studied (63). Blood samples were collected in various settings, including collection by 
trained nurses using venepuncture and dried blood spot cards, and self-collection by 
participants using the cards. Although the response rate of self-collection was lower than 
that of nurse collection, the measurements obtained through the card showed good quality 
and similar ability to stratify patients as with the measurements collected via venepuncture. 
However, as only a few markers have been evaluated, further research is needed to 
implement this method in hypercoagulability and cardiometabolic health research. Another 
potential approach to study the mechanism leading to hypercoagulability in a less pervasive 
but more convenient way is using gut microbiome data. Unlike blood samples, participants 
can collect samples themselves at home and send them to researchers, alleviating the burden 
of in-person visits. Only limited studies on the role of gut microbiome in hypercoagulability 
have been studied (64, 65), so additional research is necessary to identify microbiome related 
to hypercoagulability and cardiometabolic health. Despite the potential of these methods to 
reduce the burden of in-person visits and the need for trained researchers to collect the 
samples, several challenges abovementioned remained. Further research is needed to 
address these challenges and to optimize methods to study the complex relationships 
between factors and thus understand the mechanism underlying hypercoagulability and 
cardiometabolic disease. 

Conclusion 

The elucidation of the underlying mechanisms that lead to hypercoagulability ultimately 
aims to contribute to developing better preventive and treatment strategies for related 
disorders, such as cardiometabolic disease. The current thesis identified genetic and 
pathophysiological markers, including endothelial function and HDL particles, associated 
with coagulation parameters and the role of coagulation parameters in type 2 diabetes. 
Further investigation is required to understand the biological mechanism underlying these 
associations and to explore additional markers and their roles in hypercoagulability and 
cardiometabolic disease.  
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