

Understanding hypercoagulability: determinants and impact on cardiometabolic disease Han, J.

Citation

Han, J. (2025, November 19). *Understanding hypercoagulability: determinants* and impact on cardiometabolic disease. Retrieved from https://hdl.handle.net/1887/4283325

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral thesis License:

in the Institutional Repository of the University of Leiden

https://hdl.handle.net/1887/4283325 Downloaded from:

Note: To cite this publication please use the final published version (if applicable).

Chapter 1

General introduction and thesis outline

Hypercoagulability is a pathophysiological condition characterized by an increased tendency to form blood clots. Since hypercoagulability contributes to an increased risk of venous thromboembolism (VTE), research has focused on elucidating the underlying mechanisms that lead to hypercoagulability and on identifying preventive and therapeutic targets for VTE. Changes in the coagulation system, which includes procoagulants, anticoagulants, and pro- and anti-fibrinolytic factors, may lead to a hypercoagulable state. Often the cause of these changes is unknown. For example, many genetic variants associated with these factors have been identified that affect coagulation factor levels; however, there is a need for further investigations to explain the remaining unexplained heritability (1-14). Furthermore, growing evidence suggests that an integrated approach is necessary to fully understand the coagulation system in the context of vascular health (15-17). This approach highlights a need to investigate the link between coagulation and inflammation, immune response, endothelial dysfunction, and metabolic stress, which may explain how hypercoagulability contributes to the development of VTE but in particular also other cardiometabolic disorders. This thesis aims to provide insight into mechanisms leading to hypercoagulability and its role in related disorders by 1) exploring in depth the genetic determinants of coagulation parameters and VTE risk, and 2) examining the complex interplay between coagulation parameters, endothelial function and metabolic markers (i.e., high-density lipoprotein; HDL), and their impact on the risk of type 2 diabetes. This introduction chapter presents background information on VTE, the coagulation system, and hypercoagulability, and describes previous research related to our research goals. It also outlines the thesis structure and describes the main study population.

Venous thromboembolism

VTE is characterized by abnormal blood clot formation in veins, and the third most common cardiovascular disease, affecting 1 or 2 per 1000 individuals annually (18-21). Multiple factors, including advanced age, pregnancy, oral contraceptive use, hormone replacement therapy, surgery, hospitalization, and genetic factors increase the risk of VTE (22). Increased knowledge regarding VTE risk factors improved the identification of high-risk individuals and contributed to developing preventive and therapeutic strategies for VTE. However, despite advancements, VTE incidence has not decreased over the last decades (23) and the biological mechanism underlying an increased VTE risk remains only partially understood due to the complex pathophysiology of the disease. All identified risk factors can be grouped into three mechanistic categories, already postulated in the 19th century by Virchow (24, 25), i.e., changes in the composition of the blood (hypercoagulability), stasis of the blood, and vessel wall injury. Investigating these subclinical conditions, particularly hypercoagulability and the interaction with the vessel wall, may help elucidate the underlying mechanism of VTE and further the development of better prevention and treatment of VTE.

Coagulation system and hypercoagulability

Blood clot formation is an essential process to stop bleeding in damaged blood vessels. When vessels are damaged, coagulation factors are activated, ultimately leading to the formation

of fibrin clots (blood clots). After the bleeding stops, degradation of fibrin clots (fibrinolysis) occurs to return the blood flow to normal. This sequential process has been described as a cascade and researched in various models. described via coagulation cascade or cell-based models (26-29). In summary, when vessel wall injury leads to a release of tissue factor from endothelial cells, these factors form a complex with coagulation factor (F) VII to activate FX to FXa and FIX to FIXa (30-32). FXa converts prothrombin to thrombin, which amplifies the coagulation process by activating platelets, FV, FVIII, and FXI (33-36). Also, the activation of FXII, when FXII, high molecular weight kiningen, and prekallikrein bind to a negatively charged surface, results in activation of FXI. FXIa activates FIX, which forms a complex with FVIIIa to activate FX. A complex of FXa, FVa, and calcium ions produces a large amount of thrombin, which converts fibrinogen to fibrin. Thrombin further plays a role in maintaining the balance of the coagulation system by activating FXIII involved in stabilizing fibrin clots and thrombin activable fibrinolysis inhibitor involved in inhibiting the activation of fibrinolytic factor, plasminogen (37), while inducing the activation of the anticoagulant protein C (38). In the presence of protein S, activated protein C inactivates FVa and FVIIIa (39, 40). Antithrombin also regulates the coagulation system by inhibiting thrombin and other procoagulants. In the fibrinolytic system, plasmin, which is an activated form of plasminogen by tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA), degrades fibrin into fibrin degradation products such as d-dimer (41). These activators are inhibited by plasminogen activator inhibitor-1.

In healthy conditions, clot formation and breakdown are balanced. However, the balance is shifted towards hypercoagulability when increased levels of procoagulants or decreased levels of anticoagulants cause excessive blood clot formation or when the blood clots fail to dissolve properly, due to an improperly functioning fibrinolytic system. Since all these factors intricately interact with each other to regulate blood coagulation, it is important not only to examine the role of individual factors but also to understand the global coagulation system. To assess the dynamic changes in the global coagulation system, a thrombin generation assay was developed (42), measuring thrombin generation potential with parameters including endogenous thrombin potential, peak height, velocity, lag time, and time-to-peak. Investigating determinants of abnormal procoagulant, anticoagulant, fibrinolytic factors, and thrombin generation potential could help to understand the mechanism leading to hypercoagulability. Of these parameters, this thesis focuses on the following coagulation parameters as these were most consistently associated with VTE risks: procoagulants including FVIII, FIX, FXI, and fibrinogen as well as thrombin generation potential.

Genetic determinants of coagulation parameters

The levels of coagulation factors are determined by both genetic components and environmental factors. With advancements in next-generation sequencing technology over the past decades, there has been a shift from a target gene approach that investigates variants located in genes related to phenotypes to a genome-wide association study (GWAS) that explores the genome without a prior assumption, allowing for the discovery of novel genes

related to the phenotypes. The latter therefore helps to more comprehensively capture the genetic basis of coagulation parameters. Previous GWAS studies have identified genetic variants associated with thrombin generation potential (1, 2), FVIII (3-8), FXI (9, 10), and fibrinogen (6, 11-14). However, as the heritability of these coagulation parameters remained insufficiently explained, further research with increased sample size and genome coverage is required to identify additional genetic determinants affecting thrombin generation potential and other procoagulant levels. Furthermore, despite evidence that increased levels of FIX are associated with an increased risk of VTE (43), a GWAS for FIX remains absent. Identifying additional genetic markers associated with thrombin generation potential and underexplored FIX could enhance our understanding of biological mechanisms underlying hypercoagulability and increased risks of VTE, which could subsequently provide insight into developing therapeutic targets to control hypercoagulability and treat the disease.

Coagulation parameters, vascular health, and cardiometabolic disease

The term "cardiometabolic disease" describes a cluster of subclinical disorders that are shared by cardiovascular disease and type 2 diabetes, including abdominal adiposity, hypertension, dyslipidaemia, hyperinsulinaemia and glucose intolerance. In addition to VTE, hypercoagulability is also observed in patients with other cardiometabolic disease, such as arterial thrombosis, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (44-51). Since inflammation and metabolic stress are well-established risk factors for cardiometabolic disease, research has explored associations between inflammation, glucose levels, hepatic triglyceride levels, and coagulation parameters (45, 52-56). However, the complex pathophysiology of cardiometabolic disease requires further research to identify additional factors associated with coagulation parameters and to determine the role of coagulation parameters in cardiometabolic disease beyond VTE.

Focusing studies on endothelial function may help to further elucidate the underlying mechanism of hypercoagulability, due to its close relationship with the coagulation system and its crucial role in cardiometabolic disease (57-59). Endothelial dysfunction is a pathological condition in which endothelial cells show procoagulant and proinflammatory states. As mentioned above, coagulation is initiated when tissue factor forms a complex with FVII. Under normal conditions, endothelial cells retain tissue factor to prevent unnecessary activation of the coagulation cascade. Furthermore, to maintain an anticoagulant and antiinflammatory state, endothelial cells express anticoagulants, fibrinolytic factors, and vasodilatory factors. Meanwhile, when activated and dysfunctional, endothelial cells express tissue factors, von Willebrand factor, adhesive proteins, and cytokines, thereby activating coagulation and inflammation (60). The endothelial glycocalyx covering endothelial cells plays a role in maintaining endothelial cell integrity and homeostasis (61). Degradation of this layer contributes to endothelial dysfunction and a pathological condition which is suggested as one of the earliest markers of vascular disease (62-64). However, whether the degradation of this layer has an impact on circulating coagulation parameters is undetermined. An association between endothelial glycocalyx degradation and coagulation may have a functional impact on cardiometabolic disease.

High-density lipoprotein (HDL) is another interesting marker related to coagulation parameters and cardiometabolic disease. Although HDL has been associated with an atheroprotective role, accumulating evidence indicates that elevated HDL cholesterol levels per se are not causally linked to cardiovascular disease (65-72). The inconsistent effects of HDL on disease pathogenesis may be due to the heterogeneity of HDL composition and sizes (72, 73). Different HDL composition and particle size reflect distinct functionalities including mediating cholesterol efflux, anti-oxidation, anti-inflammation, and anti-thrombotic processes. In addition to lipid molecules, proteomic analyses demonstrated that HDL carries factors in the coagulation system including FXII, fibrinogen, prothrombin, antithrombin, and plasminogen (15). Also, HDL inhibits the self-association of von Willebrand factors, leading to reduced platelet adherence and activation, which is crucial for activating the coagulation cascade (74). Despite some hints that HDL plays a role in the coagulation system, questions remain unanswered, such as whether HDL particles are associated with coagulation parameter levels, whether heterogeneity of HDL particles has different effects on coagulation system, and whether these associations impact cardiometabolic disease.

Outline of this thesis

The aim of the research described in this thesis is to understand the mechanism leading to hypercoagulability and its role in cardiometabolic disease with a focus on coagulation parameters, with two parts. Part I focuses on the genetic determinants of coagulation factor levels, thrombin generation potential, and VTE risk. Before we dive into the genetic architecture of coagulation parameters, we first explore the literature on genetics in VTE. Chapter 2 summarizes the current knowledge of genetics in the field of VTE with clinical implications and challenges of genetic prediction models. In Chapter 3 we aim to elucidate how specific genetic factors contribute to an increased risk of VTE. We investigate the effect of 61 recently identified VTE-associated genetic variants on coagulation parameters. In Chapter 4 and Chapter 5, we present a meta-analysis of GWASs to identify novel genetic loci associated with coagulation parameters. In Chapter 4, we show results of the first GWAS for plasma FIX activity. Identified genetic loci are used as instrumental variables to provide insights into the causal effect of FIX activity on cardiovascular disease. Chapter 5 describes novel genetic loci influencing the thrombin generation potential, exploring other OMICS datasets to understand the function of identified genetic loci. Part II focuses on the complex interplay between hypercoagulability, endothelial function, and HDL parameters, and the role of coagulation parameters in cardiometabolic disease. In Chapter 6, we investigate whether perfused boundary regions indicating endothelial glycocalyx health status are associated with coagulation parameters. Chapter 7 addresses the effects of HDL compositions and sizes on the levels of coagulation parameters. In Chapter 8, we examine the role of hypercoagulability in cardiometabolic disease beyond VTE, especially studying how coagulation parameters relate to the incidence of type 2 diabetes.

Main study population

The Netherlands Epidemiology of Obesity (NEO) study

The main study population for this thesis is sampled from the Netherlands Epidemiology of Obesity (NEO) study, an ongoing population-based cohort study initiated in 2008 to explore pathways leading to obesity-related disorders. The NEO study comprises 6,671 individuals aged 45–65 years, with an oversampling of individuals with overweight or obesity. Men and women living in the greater area of Leiden (in the West of the Netherlands) were invited by letters sent by general practitioners and municipalities and by local advertisements. They were invited to respond when they were aged between 45 and 65 years and had a self-reported body mass index of 27 kg/m² or higher. In addition, all inhabitants aged between 45 and 65 years from one municipality (Leiderdorp) were invited to participate, irrespective of their body mass index. The study design is described in detail elsewhere (75). The Medical Ethical Committee of the Leiden University Medical Center approved the study design. All participants gave their written informed consent.

CROSSLINK consortium

Chapter 4 and Chapter 5 are part of a collaborative effort within the Coagulation Research using multi-Omics data to aSseSs pathomechanisms LINKed to thrombosis (CROSSLINK) consortium. The CROSSLINK consortium includes eight studies: the Gutenberg Health Study (GHS) (76), the NEO study (75), the Netherlands Twin Register (NTR) (77), the MARseille Thrombosis Association VTE Study (MARTHA) (78, 79), the Multiple Environmental and Genetic Assessment of risk factors for venous thrombosis study (MEGA) (80, 81), and MyoVasc study (82). The first three are population-based cohorts, while the MARTHA study and the MEGA study are case-control studies for VTE, and the MyoVasc study focuses on heart failure. A detailed description of each study is provided in previous literature (75-82). All studies were approved by the Institutional Review Board of its respective institutions. All participants provided informed consent.

References

- 1. Rocanin-Arjo A, Cohen W, Carcaillon L, Frère C, Saut N, Letenneur L, Alhenc-Gelas M, Dupuy A-M, Bertrand M, Alessi M-C, Germain M, Wild PS, Zeller T, Cambien F, Goodall AH, Amouyel P, Scarabin P-Y, Trégouët D-A, Morange P-E, Consortium at C. A meta-analysis of genome-wide association studies identifies ORM1 as a novel gene controlling thrombin generation potential. Blood. 2014; 123: 777–85.
- 2. Martin-Fernandez L, Ziyatdinov A, Carrasco M, Millon JA, Martinez-Perez A, Vilalta N, Brunel H, Font M, Hamsten A, Souto JC, Soria JM. Genetic Determinants of Thrombin Generation and Their Relation to Venous Thrombosis: Results from the GAIT-2 Project. PLoS One. 2016; 11: e0146922.
- 3. Sabater-Lleal M, Huffman JE, De Vries PS, Marten J, Mastrangelo MA, Song C, Pankratz N, Ward-Caviness CK, Yanek LR, Trompet S. Genome-wide association transethnic meta-analyses identifies novel associations regulating coagulation factor VIII and von Willebrand factor plasma levels. Circulation. 2019; 139: 620–35.
- 4. de Vries PS, Reventun P, Brown MR, Heath AS, Huffman JE, Le N-Q, Bebo A, Brody JA, Temprano-Sagrera G, Raffield LM. A genetic association study of circulating coagulation Factor VIII and von Willebrand Factor levels. Blood. 2024; 143: 1845–55.
- 5. Pankratz N, Wei P, Brody JA, Chen MH, de Vries PS, Huffman JE, Stimson MR, Auer PL, Boerwinkle E, Cushman M, de Maat MPM, Folsom AR, Franco OH, Gibbs RA, Haagenson KK, Hofman A, Johnsen JM, Kovar CL, Kraaij R, McKnight B, Metcalf GA, Muzny D, Psaty BM, Tang W, Uitterlinden AG, van Rooij JGJ, Dehghan A, O'Donnell CJ, Reiner AP, Morrison AC, Smith NL. Whole-exome sequencing of 14 389 individuals from the ESP and CHARGE consortia identifies novel rare variation associated with hemostatic factors. Hum Mol Genet. 2022; 31: 3120–32.
- 6. Huffman JE, de Vries PS, Morrison AC, Sabater-Lleal M, Kacprowski T, Auer PL, Brody JA, Chasman DI, Chen MH, Guo X, Lin LA, Marioni RE, Müller-Nurasyid M, Yanek LR, Pankratz N, Grove ML, de Maat MP, Cushman M, Wiggins KL, Qi L, Sennblad B, Harris SE, Polasek O, Riess H, Rivadeneira F, Rose LM, Goel A, Taylor KD, Teumer A, Uitterlinden AG, Vaidya D, Yao J, Tang W, Levy D, Waldenberger M, Becker DM, Folsom AR, Giulianini F, Greinacher A, Hofman A, Huang CC, Kooperberg C, Silveira A, Starr JM, Strauch K, Strawbridge RJ, Wright AF, McKnight B, Franco OH, Zakai N, Mathias RA, Psaty BM, Ridker PM, Tofler GH, Völker U, Watkins H, Fornage M, Hamsten A, Deary IJ, Boerwinkle E, Koenig W, Rotter JI, Hayward C, Dehghan A, Reiner AP, O'Donnell CJ, Smith NL. Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF. Blood. 2015; 126: e19–29.
- 7. Johnsen JM, Auer PL, Morrison AC, Jiao S, Wei P, Haessler J, Fox K, McGee SR, Smith JD, Carlson CS, Smith N, Boerwinkle E, Kooperberg C, Nickerson DA, Rich SS, Green D, Peters U, Cushman M, Reiner AP. Common and rare von Willebrand factor (VWF) coding variants, VWF levels, and factor VIII levels in African Americans: the NHLBI Exome Sequencing Project. Blood. 2013; 122: 590–7.
- 8. Smith NL, Chen MH, Dehghan A, Strachan DP, Basu S, Soranzo N, Hayward C, Rudan I, Sabater-Lleal M, Bis JC, de Maat MP, Rumley A, Kong X, Yang Q, Williams FM, Vitart V, Campbell H, Mälarstig A, Wiggins KL, Van Duijn CM, McArdle WL, Pankow JS, Johnson AD, Silveira A, McKnight B, Uitterlinden AG, Aleksic N, Meigs JB, Peters A, Koenig W, Cushman M, Kathiresan S, Rotter JI, Bovill EG, Hofman A, Boerwinkle E, Tofler GH, Peden JF, Psaty BM, Leebeek F, Folsom AR, Larson MG, Spector TD, Wright AF, Wilson JF, Hamsten A, Lumley T, Witteman JC, Tang W, O'Donnell CJ. Novel associations of multiple genetic loci with plasma levels of factor VII, factor VIII, and von Willebrand factor: The CHARGE (Cohorts for Heart and Aging Research in Genome Epidemiology) Consortium. Circulation. 2010; 121: 1382–92.
- 9. Sennblad B, Basu S, Mazur J, Suchon P, Martinez-Perez A, van Hylckama Vlieg A, Truong V, Li Y, Gådin JR, Tang W, Grossman V, de Haan HG, Handin N, Silveira A, Souto JC, Franco-Cereceda A, Morange P-E, Gagnon F, Soria JM, Eriksson P, Hamsten A, Maegdefessel L, Rosendaal FR, Wild P, Folsom AR, Trégouët D-A, Sabater-Lleal M. Genome-wide association study with additional genetic and post-transcriptional analyses reveals novel regulators of plasma factor XI levels. Hum Mol Genet. 2017; 26: 637–49.
- 10. Sabater-Lleal M, Martinez-Perez A, Buil A, Folkersen L, Souto JC, Bruzelius M, Borrell M, Odeberg J, Silveira A, Eriksson P, Almasy L, Hamsten A, Soria JM. A genome-wide association study identifies KNG1

as a genetic determinant of plasma factor XI Level and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol. 2012; 32: 2008–16.

11. de Vries PS, Chasman DI, Sabater-Lleal M, Chen MH, Huffman JE, Steri M, Tang W, Teumer A, Marioni RE, Grossmann V, Hottenga JJ, Trompet S, Müller-Nurasyid M, Zhao JH, Brody JA, Kleber ME, Guo X, Wang JJ, Auer PL, Attia JR, Yanek LR, Ahluwalia TS, Lahti J, Venturini C, Tanaka T, Bielak LF, Joshi PK, Rocanin-Arjo A, Kolcic I, Navarro P, Rose LM, Oldmeadow C, Riess H, Mazur J, Basu S, Goel A, Yang Q, Ghanbari M, Willemsen G, Rumley A, Fiorillo E, de Craen AJ, Grotevendt A, Scott R, Taylor KD, Delgado GE, Yao J, Kifley A, Kooperberg C, Qayyum R, Lopez LM, Berentzen TL, Räikkönen K, Mangino M, Bandinelli S, Peyser PA, Wild S, Trégouët DA, Wright AF, Marten J, Zemunik T, Morrison AC, Sennblad B, Tofler G, de Maat MP, de Geus EJ, Lowe GD, Zoledziewska M, Sattar N, Binder H, Völker U, Waldenberger M, Khaw KT, McKnight B, Huang J, Jenny NS, Holliday EG, Qi L, McEvoy MG, Becker DM, Starr JM, Sarin AP, Hysi PG, Hernandez DG, Jhun MA, Campbell H, Hamsten A, Rivadeneira F, McArdle WL, Slagboom PE, Zeller T, Koenig W, Psaty BM, Haritunians T, Liu J, Palotie A, Uitterlinden AG, Stott DJ, Hofman A, Franco OH, Polasek O, Rudan I, Morange PE, Wilson JF, Kardia SL, Ferrucci L, Spector TD, Eriksson JG, Hansen T, Deary IJ, Becker LC, Scott RJ, Mitchell P, März W, Wareham NJ, Peters A, Greinacher A, Wild PS, Jukema JW, Boomsma DI, Hayward C, Cucca F, Tracy R, Watkins H, Reiner AP, Folsom AR, Ridker PM, O'Donnell CJ, Smith NL, Strachan DP, Dehghan A. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration. Hum Mol Genet. 2016; 25: 358-70.

12. Sabater-Lleal M, Huang J, Chasman D, Naitza S, Dehghan A, Johnson AD, Teumer A, Reiner AP, Folkersen L, Basu S, Rudnicka AR, Trompet S, Mälarstig A, Baumert J, Bis JC, Guo X, Hottenga JJ, Shin SY, Lopez LM, Lahti J, Tanaka T, Yanek LR, Oudot-Mellakh T, Wilson JF, Navarro P, Huffman JE, Zemunik T, Redline S, Mehra R, Pulanic D, Rudan I, Wright AF, Kolcic I, Polasek O, Wild SH, Campbell H, Curb JD, Wallace R, Liu S, Eaton CB, Becker DM, Becker LC, Bandinelli S, Räikkönen K, Widen E, Palotie A, Fornage M, Green D, Gross M, Davies G, Harris SE, Liewald DC, Starr JM, Williams FM, Grant PJ, Spector TD, Strawbridge RJ, Silveira A, Sennblad B, Rivadeneira F, Uitterlinden AG, Franco OH, Hofman A, van Dongen J, Willemsen G, Boomsma DI, Yao J, Swords Jenny N, Haritunians T, McKnight B, Lumley T, Taylor KD, Rotter JI, Psaty BM, Peters A, Gieger C, Illig T, Grotevendt A, Homuth G, Völzke H, Kocher T, Goel A, Franzosi MG, Seedorf U, Clarke R, Steri M, Tarasov KV, Sanna S, Schlessinger D, Stott DJ, Sattar N, Buckley BM, Rumley A, Lowe GD, McArdle WL, Chen MH, Tofler GH, Song J, Boerwinkle E, Folsom AR, Rose LM, Franco-Cereceda A, Teichert M, Ikram MA, Mosley TH, Bevan S, Dichgans M, Rothwell PM, Sudlow CL, Hopewell JC, Chambers JC, Saleheen D, Kooner JS, Danesh J, Nelson CP, Erdmann J, Reilly MP, Kathiresan S, Schunkert H, Morange PE, Ferrucci L, Eriksson JG, Jacobs D, Deary IJ, Soranzo N, Witteman JC, de Geus EJ, Tracy RP, Hayward C, Koenig W, Cucca F, Jukema JW, Eriksson P, Seshadri S, Markus HS, Watkins H, Samani NJ, Wallaschofski H, Smith NL, Tregouet D, Ridker PM, Tang W, Strachan DP, Hamsten A, O'Donnell CJ. Multiethnic meta-analysis of genome-wide association studies in >100 000 subjects identifies 23 fibrinogen-associated Loci but no strong evidence of a causal association between circulating fibrinogen and cardiovascular disease. Circulation. 2013; 128: 1310-24.

- 13. Dehghan A, Yang Q, Peters A, Basu S, Bis JC, Rudnicka AR, Kavousi M, Chen MH, Baumert J, Lowe GD, McKnight B, Tang W, de Maat M, Larson MG, Eyhermendy S, McArdle WL, Lumley T, Pankow JS, Hofman A, Massaro JM, Rivadeneira F, Kolz M, Taylor KD, van Duijn CM, Kathiresan S, Illig T, Aulchenko YS, Volcik KA, Johnson AD, Uitterlinden AG, Tofler GH, Gieger C, Psaty BM, Couper DJ, Boerwinkle E, Koenig W, O'Donnell CJ, Witteman JC, Strachan DP, Smith NL, Folsom AR. Association of novel genetic Loci with circulating fibrinogen levels: a genome-wide association study in 6 population-based cohorts. Circ Cardiovasc Genet. 2009; 2: 125–33.
- 14. Danik JS, Paré G, Chasman DI, Zee RY, Kwiatkowski DJ, Parker A, Miletich JP, Ridker PM. Novel loci, including those related to Crohn disease, psoriasis, and inflammation, identified in a genome-wide association study of fibrinogen in 17 686 women: the Women's Genome Health Study. Circ Cardiovasc Genet. 2009; 2: 134–41.
- 15. Zhang Z, Rodriguez M, Zheng Z. Clot or Not? Reviewing the Reciprocal Regulation Between Lipids and Blood Clotting. Arterioscler Thromb Vasc Biol. 2024; 44: 533–44.
- 16. Yong J, Toh CH. The convergent model of coagulation. J Thromb Haemost. 2024; 22: 2140-6.

- 17. Wilhelm G, Mertowska P, Mertowski S, Przysucha A, Strużyna J, Grywalska E, Torres K. The Crossroads of the Coagulation System and the Immune System: Interactions and Connections. Int J Mol Sci. 2023; 24.
- 18. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020; 141: e139–e596.
- 19. Beckman MG, Hooper WC, Critchley SE, Ortel TL. Venous thromboembolism: a public health concern. Am J Prev Med. 2010; 38: S495–S501.
- 20. Martinez C, Cohen AT, Bamber L, Rietbrock S. Epidemiology of first and recurrent venous thromboembolism: a population-based cohort study in patients without active cancer. Thromb Haemost. 2014; 112: 255–63.
- 21. Heit JA, Spencer FA, White RH. The epidemiology of venous thromboembolism. Journal of thrombosis and thrombolysis. 2016; 41: 3–14.
- 22. Khan F, Tritschler T, Kahn SR, Rodger MA. Venous thromboembolism. The Lancet. 2021; 398: 64–77.
- 23. Brækkan SK, Hansen J-B. VTE epidemiology and challenges for VTE prevention at the population level. Thrombosis Update. 2023; 10: 100132.
- 24. Virchow R. Gesammelte abhandlungen zur wissenschaftlichen medicin. BoD-Books on Demand, 2022
- 25. Virchow R. Gesammelte Abhandlungen zur wissenschaftlichen Medicin. Mit 3 Tafeln und 45 Holzschnitten. Meidinger, 1856.
- 26. Hoffman M, Monroe DM, 3rd. A cell-based model of hemostasis. Thromb Haemost. 2001; 85: 958-65.
- 27. Davie EW, Ratnoff OD. WATERFALL SEQUENCE FOR INTRINSIC BLOOD CLOTTING. Science. 1964; 145: 1310–2.
- 28. Macfarlane RG. AN ENZYME CASCADE IN THE BLOOD CLOTTING MECHANISM, AND ITS FUNCTION AS A BIOCHEMICAL AMPLIFIER. Nature. 1964; 202: 498–9.
- 29. Bouma BN, von dem Borne PA, Meijers JC. Factor XI and protection of the fibrin clot against lysis--a role for the intrinsic pathway of coagulation in fibrinolysis. Thromb Haemost. 1998; 80: 24–7.
- 30. Rao LV, Rapaport SI. Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation. Proc Natl Acad Sci U S A. 1988; 85: 6687–91.
- 31. Osterud B, Rapaport SI. Activation of factor IX by the reaction product of tissue factor and factor VII: additional pathway for initiating blood coagulation. Proc Natl Acad Sci U S A. 1977; 74: 5260–4.
- 32. Marlar RA, Kleiss AJ, Griffin JH. An alternative extrinsic pathway of human blood coagulation. Blood. 1982; 60: 1353–8.
- 33. Monkovic DD, Tracy PB. Activation of human factor V by factor Xa and thrombin. Biochemistry. 1990; 29: 1118–28.
- 34. Gailani D, Broze GJ, Jr. Factor XI activation in a revised model of blood coagulation. Science. 1991; 253: 909–12.
- 35. Naito K, Fujikawa K. Activation of human blood coagulation factor XI independent of factor XII. Factor XI is activated by thrombin and factor XIa in the presence of negatively charged surfaces. J Biol Chem. 1991; 266: 7353–8.
- 36. von dem Borne PA, Meijers JC, Bouma BN. Feedback activation of factor XI by thrombin in plasma results in additional formation of thrombin that protects fibrin clots from fibrinolysis. Blood. 1995; 86: 3035–42.
- 37. Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem. 1995; 270: 14477–84.

- 38. Maas C, Meijers JC, Marquart JA, Bakhtiari K, Weeterings C, de Groot PG, Urbanus RT. Activated factor V is a cofactor for the activation of factor XI by thrombin in plasma. Proc Natl Acad Sci U S A. 2010; 107: 9083–7.
- 39. Shen L, Dahlbäck B. Factor V and protein S as synergistic cofactors to activated protein C in degradation of factor VIIIa. J Biol Chem. 1994; 269: 18735–8.
- 40. Lu D, Kalafatis M, Mann KG, Long GL. Comparison of activated protein C/protein S-mediated inactivation of human factor VIII and factor V. Blood. 1996; 87: 4708–17.
- 41. Cesarman-Maus G, Hajjar KA. Molecular mechanisms of fibrinolysis. Br J Haematol. 2005; 129: 307–21.
- 42. Hemker HC, Giesen P, AlDieri R, Regnault V, de Smed E, Wagenvoord R, Lecompte T, Béguin S. The calibrated automated thrombogram (CAT): a universal routine test for hyper- and hypocoagulability. Pathophysiol Haemost Thromb. 2002; 32: 249–53.
- 43. Vlieg A, Linden IK, Bertina R, Rosendaal F. High levels of factor IX increase the risk of venous thrombosis. Blood. 2000; 95: 3678–82.
- 44. Boden G, Vaidyula VR, Homko C, Cheung P, Rao AK. Circulating tissue factor procoagulant activity and thrombin generation in patients with type 2 diabetes: effects of insulin and glucose. J Clin Endocrinol Metab. 2007; 92: 4352–8.
- 45. Kotronen A, Joutsi-Korhonen L, Sevastianova K, Bergholm R, Hakkarainen A, Pietiläinen KH, Lundbom N, Rissanen A, Lassila R, Yki-Järvinen H. Increased coagulation factor VIII, IX, XI and XII activities in non-alcoholic fatty liver disease. Liver International. 2011; 31: 176–83.
- 46. Tripodi A, Fracanzani AL, Primignani M, Chantarangkul V, Clerici M, Mannucci PM, Peyvandi F, Bertelli C, Valenti L, Fargion S. Procoagulant imbalance in patients with non-alcoholic fatty liver disease. J Hepatol. 2014; 61: 148–54.
- 47. Folsom AR. Hemostatic risk factors for atherothrombotic disease: an epidemiologic view. Thromb Haemost. 2001; 86: 366–73.
- 48. Duncan BB, Schmidt MI, Offenbacher S, Wu KK, Savage PJ, Heiss G. Factor VIII and other hemostasis variables are related to incident diabetes in adults. The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care. 1999; 22: 767–72.
- 49. Carcaillon L, Alhenc-Gelas M, Bejot Y, Spaft C, Ducimetière P, Ritchie K, Dartigues J-F, Scarabin P-Y. Increased thrombin generation is associated with acute ischemic stroke but not with coronary heart disease in the elderly: the Three-City cohort study. Arteriosclerosis, thrombosis, and vascular biology. 2011; 31: 1445–51.
- 50. Olson N, Cushman M, Judd S, Kissela B, Safford M, Howard G, Zakai N. Associations of coagulation factors IX and XI levels with incident coronary heart disease and ischemic stroke: the REGARDS study. Journal of Thrombosis and Haemostasis. 2017; 15: 1086–94.
- 51. Folsom AR, Rosamond WD, Shahar E, Cooper LS, Aleksic N, Nieto FJ, Rasmussen ML, Wu KK. Prospective study of markers of hemostatic function with risk of ischemic stroke. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Circulation. 1999; 100: 736–42.
- 52. Levi M, Poll Tvd, Büller HR. Bidirectional Relation Between Inflammation and Coagulation. Circulation. 2004; 109: 2698–704.
- 53. Beijers HJBH, Ferreira I, Spronk HMH, Bravenboer B, Dekker JM, Nijpels G, ten Cate H, Stehouwer CDA. Impaired glucose metabolism and type 2 diabetes are associated with hypercoagulability: potential role of central adiposity and low-grade inflammation The Hoorn Study. Thromb Res. 2012; 129: 557–62.
- 54. Oikonomopoulou K, Ricklin D, Ward PA, Lambris JD. Interactions between coagulation and complement--their role in inflammation. Semin Immunopathol. 2012; 34: 151–65.
- 55. Morelli VM, de Mutsert R, de Roos A, Lamb HJ, van Hylckama Vlieg A, Bos MH, Rosendaal FR, Lijfering WM, Cannegieter SC. Association Between Hepatic Triglyceride Content and Coagulation Factors: The Netherlands Epidemiology of Obesity Study. Arteriosclerosis, Thrombosis, and Vascular Biology. 2020; 40: 3004–14.

- 56. van der Toorn FA, de Mutsert R, Lijfering WM, Rosendaal FR, van Hylckama Vlieg A. Glucose metabolism affects coagulation factors: The NEO study. J Thromb Haemost. 2019; 17: 1886–97.
- 57. Huemer M-T, Huth C, Schederecker F, Klug SJ, Meisinger C, Koenig W, Rathmann W, Peters A, Thorand B. Association of endothelial dysfunction with incident prediabetes, type 2 diabetes and related traits: the KORA F4/FF4 study. BMJ Open Diabetes Research & Care. 2020; 8: e001321.
- 58. Meigs JB, O'Donnell CJ, Tofler GH, Benjamin EJ, Fox CS, Lipinska I, Nathan DM, Sullivan LM, D'Agostino RB, Wilson PW. Hemostatic markers of endothelial dysfunction and risk of incident type 2 diabetes: the Framingham Offspring Study. Diabetes. 2006; 55: 530–7.
- 59. Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of Endothelial Dysfunction and Risk of Type 2 Diabetes Mellitus. JAMA. 2004; 291: 1978–86.
- 60. Liao JK. Linking endothelial dysfunction with endothelial cell activation. J Clin Invest. 2013; 123: 540–1.
- 61. Wang G, de Vries MR, Sol W, van Oeveren-Rietdijk AM, de Boer HC, van Zonneveld AJ, Quax PHA, Rabelink TJ, van den Berg BM. Loss of Endothelial Glycocalyx Hyaluronan Impairs Endothelial Stability and Adaptive Vascular Remodeling After Arterial Ischemia. Cells. 2020; 9.
- 62. Lee DH, Dane MJ, van den Berg BM, Boels MG, van Teeffelen JW, de Mutsert R, den Heijer M, Rosendaal FR, van der Vlag J, van Zonneveld AJ, Vink H, Rabelink TJ. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS One. 2014; 9: e96477.
- 63. Rabelink TJ, de Boer HC, van Zonneveld AJ. Endothelial activation and circulating markers of endothelial activation in kidney disease. Nat Rev Nephrol. 2010; 6: 404–14.
- 64. Dane MJ, van den Berg BM, Avramut MC, Faas FG, van der Vlag J, Rops AL, Ravelli RB, Koster BJ, van Zonneveld AJ, Vink H, Rabelink TJ. Glomerular endothelial surface layer acts as a barrier against albumin filtration. Am J Pathol. 2013; 182: 1532–40.
- 65. Sharrett AR, Ballantyne CM, Coady SA, Heiss G, Sorlie PD, Catellier D, Patsch W. Coronary Heart Disease Prediction From Lipoprotein Cholesterol Levels, Triglycerides, Lipoprotein(a), Apolipoproteins A-I and B, and HDL Density Subfractions. Circulation. 2001; 104: 1108–13.
- 66. Di Angelantonio E, Sarwar N, Perry P, Kaptoge S, Ray KK, Thompson A, Wood AM, Lewington S, Sattar N, Packard CJ, Collins R, Thompson SG, Danesh J. Major lipids, apolipoproteins, and risk of vascular disease. JAMA. 2009; 302: 1993–2000.
- 67. Gordon DJ, Rifkind BM. High-density lipoprotein—the clinical implications of recent studies. New England Journal of Medicine. 1989; 321: 1311–6.
- 68. Abbasi A, Corpeleijn E, Gansevoort RT, Gans RO, Hillege HL, Stolk RP, Navis G, Bakker SJ, Dullaart RP. Role of HDL cholesterol and estimates of HDL particle composition in future development of type 2 diabetes in the general population: the PREVEND study. The Journal of Clinical Endocrinology & Metabolism. 2013; 98: E1352–E9.
- 69. Bots M, Elwood PC, Nikitin Y, Salonen J, de Concalves AF, Inzitari D, Sivenius J, Benetou V, Tuomilehto J, Koudstaal P. Total and HDL cholesterol and risk of stroke. EUROSTROKE: a collaborative study among research centres in Europe. J Epidemiol Community Health. 2002; 56: i19–i24.
- 70. Woodward M, Barzi F, Feigin V, Gu D, Huxley R, Nakamura K, Patel A, Ho S, Jamrozik K. Associations between high-density lipoprotein cholesterol and both stroke and coronary heart disease in the Asia Pacific region. Eur Heart J. 2007; 28: 2653–60.
- 71. Shahar E, Chambless LE, Rosamond WD, Boland LL, Ballantyne CM, McGovern PG, Sharrett AR. Plasma lipid profile and incident ischemic stroke: the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2003; 34: 623–31.
- 72. Haase CL, Tybjærg-Hansen A, Nordestgaard BG, Frikke-Schmidt R. HDL cholesterol and risk of type 2 diabetes: a Mendelian randomization study. Diabetes. 2015; 64: 3328–33.

- 73. Reina SA, Llabre MM, Allison MA, Wilkins JT, Mendez AJ, Arnan MK, Schneiderman N, Sacco RL, Carnethon M, Delaney JC. HDL cholesterol and stroke risk: The Multi-Ethnic Study of Atherosclerosis. Atherosclerosis. 2015; 243: 314–9.
- 74. Chung DW, Chen J, Ling M, Fu X, Blevins T, Parsons S, Le J, Harris J, Martin TR, Konkle BA. High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood, The Journal of the American Society of Hematology. 2016; 127: 637–45.
- 75. de Mutsert R, den Heijer M, Rabelink TJ, Smit JW, Romijn JA, Jukema JW, de Roos A, Cobbaert CM, Kloppenburg M, le Cessie S, Middeldorp S, Rosendaal FR. The Netherlands Epidemiology of Obesity (NEO) study: study design and data collection. Eur J Epidemiol. 2013; 28: 513–23.
- 76. Wild P, Zeller T, Beutel M, Blettner M, Dugi K, Lackner K, Pfeiffer N, Münzel T, Blankenberg S. The Gutenberg health study. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz. 2012; 55: 824–9.
- 77. Willemsen G, de Geus EJC, Bartels M, van Beijsterveldt CEMT, Brooks AI, Estourgie-van Burk GF, Fugman DA, Hoekstra C, Hottenga J-J, Kluft K, Meijer P, Montgomery GW, Rizzu P, Sondervan D, Smit AB, Spijker S, Suchiman HED, Tischfield JA, Lehner T, Slagboom PE, Boomsma DI. The Netherlands Twin Register Biobank: A Resource for Genetic Epidemiological Studies. Twin Research and Human Genetics. 2010; 13: 231–45.
- 78. Oudot-Mellakh T, Cohen W, Germain M, Saut N, Kallel C, Zelenika D, Lathrop M, Trégouët DA, Morange PE. Genome wide association study for plasma levels of natural anticoagulant inhibitors and protein C anticoagulant pathway: the MARTHA project. Br J Haematol. 2012; 157: 230–9.
- 79. Tregouet DA, Delluc A, Roche A, Derbois C, Olaso R, Germain M, de Andrade M, Tang W, Chasman DI, van Hylckama Vlieg A, Reitsma PH, Kabrhel C, Smith N, Morange PE. Is there still room for additional common susceptibility alleles for venous thromboembolism? J Thromb Haemost. 2016; 14: 1798–802.
- 80. Blom JW, Doggen CJ, Osanto S, Rosendaal FR. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA. 2005; 293: 715–22.
- 81. Bezemer ID, Doggen CJ, Vos HL, Rosendaal FR. No association between the common MTHFR 677C->T polymorphism and venous thrombosis: results from the MEGA study. Arch Intern Med. 2007; 167: 497–501.
- 82. Göbel S, Prochaska JH, Tröbs SO, Panova-Noeva M, Espinola-Klein C, Michal M, Lackner KJ, Gori T, Münzel T, Wild PS. Rationale, design and baseline characteristics of the MyoVasc study: A prospective cohort study investigating development and progression of heart failure. Eur J Prev Cardiol. 2021; 28: 1009–18.