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Hypercoagulability is a pathophysiological condition characterized by an increased 
tendency to form blood clots. Since hypercoagulability contributes to an increased risk of 
venous thromboembolism (VTE), research has focused on elucidating the underlying 
mechanisms that lead to hypercoagulability and on identifying preventive and therapeutic 
targets for VTE. Changes in the coagulation system, which includes procoagulants, 
anticoagulants, and pro- and anti-fibrinolytic factors, may lead to a hypercoagulable state. 
Often the cause of these changes is unknown. For example, many genetic variants associated 
with these factors have been identified that affect coagulation factor levels; however, there 
is a need for further investigations to explain the remaining unexplained heritability (1-14). 
Furthermore, growing evidence suggests that an integrated approach is necessary to fully 
understand the coagulation system in the context of vascular health (15-17). This approach 
highlights a need to investigate the link between coagulation and inflammation, immune 
response, endothelial dysfunction, and metabolic stress, which may explain how 
hypercoagulability contributes to the development of VTE but in particular also other 
cardiometabolic disorders. This thesis aims to provide insight into mechanisms leading to 
hypercoagulability and its role in related disorders by 1) exploring in depth the genetic 
determinants of coagulation parameters and VTE risk, and 2) examining the complex 
interplay between coagulation parameters, endothelial function and metabolic markers (i.e., 
high-density lipoprotein; HDL), and their impact on the risk of type 2 diabetes. This 
introduction chapter presents background information on VTE, the coagulation system, and 
hypercoagulability, and describes previous research related to our research goals. It also 
outlines the thesis structure and describes the main study population.  

Venous thromboembolism  

VTE is characterized by abnormal blood clot formation in veins, and the third most common 
cardiovascular disease, affecting 1 or 2 per 1000 individuals annually (18-21). Multiple factors, 
including advanced age, pregnancy, oral contraceptive use, hormone replacement therapy, 
surgery, hospitalization, and genetic factors increase the risk of VTE (22). Increased 
knowledge regarding VTE risk factors improved the identification of high-risk individuals 
and contributed to developing preventive and therapeutic strategies for VTE. However, 
despite advancements, VTE incidence has not decreased over the last decades (23) and the 
biological mechanism underlying an increased VTE risk remains only partially understood 
due to the complex pathophysiology of the disease. All identified risk factors can be grouped 
into three mechanistic categories, already postulated in the 19th century by Virchow (24, 25), 
i.e., changes in the composition of the blood (hypercoagulability), stasis of the blood, and 
vessel wall injury. Investigating these subclinical conditions, particularly hypercoagulability 
and the interaction with the vessel wall, may help elucidate the underlying mechanism of 
VTE and further the development of better prevention and treatment of VTE. 

Coagulation system and hypercoagulability 

Blood clot formation is an essential process to stop bleeding in damaged blood vessels. When 
vessels are damaged, coagulation factors are activated, ultimately leading to the formation 
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of fibrin clots (blood clots). After the bleeding stops, degradation of fibrin clots (fibrinolysis) 
occurs to return the blood flow to normal. This sequential process has been described as a 
cascade and researched in various models. described via coagulation cascade or cell-based 
models (26-29). In summary, when vessel wall injury leads to a release of tissue factor from 
endothelial cells, these factors form a complex with coagulation factor (F) VII to activate FX 
to FXa and FIX to FIXa (30-32). FXa converts prothrombin to thrombin, which amplifies the 
coagulation process by activating platelets, FV, FVIII, and FXI (33-36). Also, the activation of 
FXII, when FXII, high molecular weight kininogen, and prekallikrein bind to a negatively 
charged surface, results in activation of FXI. FXIa activates FIX, which forms a complex with 
FVIIIa to activate FX. A complex of FXa, FVa, and calcium ions produces a large amount of 
thrombin, which converts fibrinogen to fibrin. Thrombin further plays a role in maintaining 
the balance of the coagulation system by activating FXIII involved in stabilizing fibrin clots 
and thrombin activable fibrinolysis inhibitor involved in inhibiting the activation of 
fibrinolytic factor, plasminogen (37), while inducing the activation of the anticoagulant 
protein C (38). In the presence of protein S, activated protein C inactivates FVa and FVIIIa 
(39, 40). Antithrombin also regulates the coagulation system by inhibiting thrombin and 
other procoagulants. In the fibrinolytic system, plasmin, which is an activated form of 
plasminogen by tissue plasminogen activator (tPA) and urokinase plasminogen activator 
(uPA), degrades fibrin into fibrin degradation products such as d-dimer (41). These activators 
are inhibited by plasminogen activator inhibitor-1. 

In healthy conditions, clot formation and breakdown are balanced. However, the balance is 
shifted towards hypercoagulability when increased levels of procoagulants or decreased 
levels of anticoagulants cause excessive blood clot formation or when the blood clots fail to 
dissolve properly, due to an improperly functioning fibrinolytic system. Since all these 
factors intricately interact with each other to regulate blood coagulation, it is important not 
only to examine the role of individual factors but also to understand the global coagulation 
system. To assess the dynamic changes in the global coagulation system, a thrombin 
generation assay was developed (42), measuring thrombin generation potential with 
parameters including endogenous thrombin potential, peak height, velocity, lag time, and 
time-to-peak. Investigating determinants of abnormal procoagulant, anticoagulant, 
fibrinolytic factors, and thrombin generation potential could help to understand the 
mechanism leading to hypercoagulability. Of these parameters, this thesis focuses on the 
following coagulation parameters as these were most consistently associated with VTE risks: 
procoagulants including FVIII, FIX, FXI, and fibrinogen as well as thrombin generation 
potential. 

Genetic determinants of coagulation parameters 

The levels of coagulation factors are determined by both genetic components and 
environmental factors. With advancements in next-generation sequencing technology over 
the past decades, there has been a shift from a target gene approach that investigates variants 
located in genes related to phenotypes to a genome-wide association study (GWAS) that 
explores the genome without a prior assumption, allowing for the discovery of novel genes 
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related to the phenotypes. The latter therefore helps to more comprehensively capture the 
genetic basis of coagulation parameters. Previous GWAS studies have identified genetic 
variants associated with thrombin generation potential (1, 2), FVIII (3-8), FXI (9, 10), and 
fibrinogen (6, 11-14). However, as the heritability of these coagulation parameters remained 
insufficiently explained, further research with increased sample size and genome coverage 
is required to identify additional genetic determinants affecting thrombin generation 
potential and other procoagulant levels. Furthermore, despite evidence that increased levels 
of FIX are associated with an increased risk of VTE (43), a GWAS for FIX remains absent. 
Identifying additional genetic markers associated with thrombin generation potential and 
underexplored FIX could enhance our understanding of biological mechanisms underlying 
hypercoagulability and increased risks of VTE, which could subsequently provide insight 
into developing therapeutic targets to control hypercoagulability and treat the disease.  

Coagulation parameters, vascular health, and cardiometabolic disease 

The term “cardiometabolic disease” describes a cluster of subclinical disorders that are 
shared by cardiovascular disease and type 2 diabetes, including abdominal adiposity, 
hypertension, dyslipidaemia, hyperinsulinaemia and glucose intolerance. In addition to VTE, 
hypercoagulability is also observed in patients with other cardiometabolic disease, such as 
arterial thrombosis, type 2 diabetes, and metabolic dysfunction-associated steatotic liver 
disease (44-51). Since inflammation and metabolic stress are well-established risk factors for 
cardiometabolic disease, research has explored associations between inflammation, glucose 
levels, hepatic triglyceride levels, and coagulation parameters (45, 52-56). However, the 
complex pathophysiology of cardiometabolic disease requires further research to identify 
additional factors associated with coagulation parameters and to determine the role of 
coagulation parameters in cardiometabolic disease beyond VTE.  

Focusing studies on endothelial function may help to further elucidate the underlying 
mechanism of hypercoagulability, due to its close relationship with the coagulation system 
and its crucial role in cardiometabolic disease (57-59). Endothelial dysfunction is a 
pathological condition in which endothelial cells show procoagulant and proinflammatory 
states. As mentioned above, coagulation is initiated when tissue factor forms a complex with 
FVII. Under normal conditions, endothelial cells retain tissue factor to prevent unnecessary 
activation of the coagulation cascade. Furthermore, to maintain an anticoagulant and anti-
inflammatory state, endothelial cells express anticoagulants, fibrinolytic factors, and 
vasodilatory factors. Meanwhile, when activated and dysfunctional, endothelial cells express 
tissue factors, von Willebrand factor, adhesive proteins, and cytokines, thereby activating 
coagulation and inflammation  (60). The endothelial glycocalyx covering endothelial cells 
plays a role in maintaining endothelial cell integrity and homeostasis (61). Degradation of 
this layer contributes to endothelial dysfunction and a pathological condition which is 
suggested as one of the earliest markers of vascular disease (62-64). However, whether the 
degradation of this layer has an impact on circulating coagulation parameters is 
undetermined. An association between endothelial glycocalyx degradation and coagulation 
may have a functional impact on cardiometabolic disease. 
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High-density lipoprotein (HDL) is another interesting marker related to coagulation 
parameters and cardiometabolic disease. Although HDL has been associated with an 
atheroprotective role, accumulating evidence indicates that elevated HDL cholesterol levels 
per se are not causally linked to cardiovascular disease (65-72). The inconsistent effects of 
HDL on disease pathogenesis may be due to the heterogeneity of HDL composition and sizes 
(72, 73). Different HDL composition and particle size reflect distinct functionalities including 
mediating cholesterol efflux, anti-oxidation, anti-inflammation, and anti-thrombotic 
processes. In addition to lipid molecules, proteomic analyses demonstrated that HDL carries 
factors in the coagulation system including FXII, fibrinogen, prothrombin, antithrombin, 
and plasminogen (15). Also, HDL inhibits the self-association of von Willebrand factors, 
leading to reduced platelet adherence and activation, which is crucial for activating the 
coagulation cascade (74). Despite some hints that HDL plays a role in the coagulation system, 
questions remain unanswered, such as whether HDL particles are associated with 
coagulation parameter levels, whether heterogeneity of HDL particles has different effects 
on coagulation system, and whether these associations impact cardiometabolic disease.  

Outline of this thesis 

The aim of the research described in this thesis is to understand the mechanism leading to 
hypercoagulability and its role in cardiometabolic disease with a focus on coagulation 
parameters, with two parts. Part I focuses on the genetic determinants of coagulation factor 
levels, thrombin generation potential, and VTE risk. Before we dive into the genetic 
architecture of coagulation parameters, we first explore the literature on genetics in VTE. 
Chapter 2 summarizes the current knowledge of genetics in the field of VTE with clinical 
implications and challenges of genetic prediction models. In Chapter 3 we aim to elucidate 
how specific genetic factors contribute to an increased risk of VTE. We investigate the effect 
of 61 recently identified VTE-associated genetic variants on coagulation parameters. 
In Chapter 4 and Chapter 5, we present a meta-analysis of GWASs to identify novel genetic 
loci associated with coagulation parameters. In Chapter 4, we show results of the first GWAS 
for plasma FIX activity. Identified genetic loci are used as instrumental variables to provide 
insights into the causal effect of FIX activity on cardiovascular disease. Chapter 5 describes 
novel genetic loci influencing the thrombin generation potential, exploring other OMICS 
datasets to understand the function of identified genetic loci. Part II focuses on the complex 
interplay between hypercoagulability, endothelial function, and HDL parameters, and the 
role of coagulation parameters in cardiometabolic disease. In Chapter 6, we investigate 
whether perfused boundary regions indicating endothelial glycocalyx health status are 
associated with coagulation parameters. Chapter 7 addresses the effects of HDL 
compositions and sizes on the levels of coagulation parameters. In Chapter 8, we examine 
the role of hypercoagulability in cardiometabolic disease beyond VTE, especially studying 
how coagulation parameters relate to the incidence of type 2 diabetes.  
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Main study population 

The Netherlands Epidemiology of Obesity (NEO) study  

The main study population for this thesis is sampled from the Netherlands Epidemiology of 
Obesity (NEO) study, an ongoing population-based cohort study initiated in 2008 to explore 
pathways leading to obesity-related disorders. The NEO study comprises 6,671 individuals 
aged 45–65 years, with an oversampling of individuals with overweight or obesity. Men and 
women living in the greater area of Leiden (in the West of the Netherlands) were invited by 
letters sent by general practitioners and municipalities and by local advertisements. They 
were invited to respond when they were aged between 45 and 65 years and had a self-reported 
body mass index of 27 kg/m2 or higher. In addition, all inhabitants aged between 45 and 65 
years from one municipality (Leiderdorp) were invited to participate, irrespective of their 
body mass index. The study design is described in detail elsewhere (75). The Medical Ethical 
Committee of the Leiden University Medical Center approved the study design. All 
participants gave their written informed consent. 

CROSSLINK consortium 

Chapter 4 and Chapter 5 are part of a collaborative effort within the Coagulation Research 
using multi-Omics data to aSseSs pathomechanisms LINKed to thrombosis (CROSSLINK) 
consortium. The CROSSLINK consortium includes eight studies: the Gutenberg Health Study 
(GHS) (76), the NEO study (75), the Netherlands Twin Register (NTR) (77), the MARseille 
THrombosis Association VTE Study (MARTHA) (78, 79), the Multiple Environmental and 
Genetic Assessment of risk factors for venous thrombosis study (MEGA) (80, 81), and 
MyoVasc study (82). The first three are population-based cohorts, while the MARTHA study 
and the MEGA study are case-control studies for VTE, and the MyoVasc study focuses on 
heart failure. A detailed description of each study is provided in previous literature (75-82). 
All studies were approved by the Institutional Review Board of its respective institutions. All 
participants provided informed consent.  
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