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Graphical abstract 

 

Abstract  
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary 
hypertension and, o
en fatal, right heart failure. Sex-differences in PAH are evident, which 
primarily presents with a female predominance and increased male severity. Disturbed 
transforming growth factor-β (TGF-β) signaling and gene muta�ons in the Bone morphogene�c 
protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues 
affect TGFb signaling in PAH remains poorly understood. In this review we aim to gain deeper 
understanding of the sex-bias in PAH by exploring sex-differences in TGF-β signaling through 
mechanis�cal and transla�onal evidence. Sex-hormones including estrogens, progestogens 
and androgens, can determine the expression of TGF-β receptors (including BMPR2), ligands 
and soluble antagonists in a �ssue-specific manner. Furthermore, sex-related gene�c 
processes, i.e. Y-chromosome expression and X-chromosome inac�va�on, can influence TGF-
β signaling at mul�ple levels. Given the clinical and mechanis�cal similari�es, we expect that 
the conclusions arising from this review may apply also to hereditary hemorrhagic 
telangiectasia (HHT), a rare vascular disorder affec�ng the TGF-β signaling pathway. In 
summary, we an�cipate that inves�ga�ng TGF-β signaling in a sex-specific manner will 
contribute to further understand the underlying processes leading to PAH and likely HHT.  

Keywords: Ac�vin, androgen, BMP, BMPR2, endothelial, estrogen, HHT, hypertension, PAH, 
TGF-β 
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Introduc�on  

Pulmonary arterial hypertension 
Pulmonary arterial hypertension (PAH) belongs to group I in the total of five (I-V) groups of 
pulmonary hypertension. Group I is substra�fied in, among others, Idiopathic PAH (IPAH) and 
Heritable PAH (HPAH). HPAH has a known gene�c origin, by either familial contribu�on or 
gene�c correla�on1, while IPAH has an un-familial cause at the �me of diagnosis. As 
established in the 2022 ESC/ERS Guidelines for the diagnosis and treatment of Pulmonary 
Hypertension, pre-capillary PH (including PAH) is defined by a mean Pulmonary Arterial 
Pressure (mPAP) of > 20 mmHg, pulmonary arterial wedge pressure (PAWP) of  ≤ 15 mmHg, 
and pulmonary vascular resistance (PVR) of > 2 Wood Units (WU).2 The increased workload on 
the right heart causes ventricular dilata�on and hypertrophy, resul�ng in progressive right 
heart failure. Pulmonary vascular remodeling cons�tutes the main pathological event at the 
onset of PAH. Remodeling of the distal pulmonary arteries involves: abnormal prolifera�on of 
endothelial cells (ECs), smooth muscle cells (SMCs), and fibroblasts; apoptosis resistance of 
ECs; excessive EC migra�on that become dysfunc�onal, in part due to endothelial-to-
mesenchymal transi�on (EndMT) (distal); migra�on of SMCs (proximal); inflammatory influx 
of macrophages and lymphocytes; and the forma�on of plexiform lesions.3–5 

Although PAH is a disease caused by remodeling of the pulmonary vasculature, end-stage 
pa�ents ul�mately die from right heart failure.6 To date there is no approved treatment curing 
or reversing disease progression. The current treatment of PAH mainly consists in the single or 
combined administra�on of pulmonary vasodilators ac�ng on the guanylate cyclase, 
endothelin, or prostacyclin pathways7, only postponing further progression and eventually 
requiring lung transplanta�on in severe cases.6 Recently, the phase 3 clinical trial STELLAR has 
concluded excellent clinical outcomes in PAH pa�ents using Sotatercept.8 

Sex-related differences in disease prevalence and severity are known for PAH. The US REVEAL 
study showed that 80% of the PAH pa�ents are women (4:1 ra�o).9,10 Comparably, mul�ple 
registries across Europe concluded a female bias in PAH of approximately 70% (2,3:1 ra�o).11–

16 Interes�ngly, disease bias towards women declines by age when comparing age groups 18-
65 with >65 years old in IPAH pa�ents.12 In addi�on, PAH disease penetrance is also defined 
by sex, with a 42% in females over 14% in male HPAH pa�ents.17 Remarkably, diagnosed PAH 
male pa�ents are more severely burdened with nearly a 10% reduc�on in 5-year survival rate 
(53%) compared to females (62,9%).9  

The underlying cellular and molecular causes of these sex-related differences in PAH have not 
yet been fully understood, although many hypotheses have been proposed. These o
en 
involve hormonal based altera�ons, although metabolism, gene�cs, and/or the immune 
system might also play a role.18–20 In general, androgens are considered vasculo-protec�ve and 
a contributor to pulmonary vasodila�on21, perhaps underlying the female predominance in 
PAH. However, estrogens have a cardioprotec�ve effect on right ventricle adapta�on in 
women22, which might lead to a less severe phenotype in PAH compared to men.23 Further, 
chromosomal differences also play a role, for instance, the Y-chromosome is thought to have 
vascular protec�ve expression profiles in PAH.24 In this review, we further assess if sex-
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determinants, i.e. sex-hormones and -chromosomal effects, are a driver of PAH development 
by altering transforming growth factor-β (TGF-β) signaling. 

Transforming growth factor-β signal transduc�on  
Disturbances in TGF-β signaling contribute to PAH disease development and progression.25–27 
TGF-β signaling drives developmental processes and �ssue homeostasis28 within the 
cardiovascular system.27,29 In mammals, the TGF-β family is comprised of 33 structurally 
related polypep�des, including TGF-β1-3, bone morphogene�c proteins (BMP1-15), nodal, 
growth differen�a�on factors (GDFs), ac�vins, inhibins, and an�-Müllerian hormone (AMH).30–

36 TGFb ligands exert pleiotropic effects by controlling cell prolifera�on, migra�on and 
differen�a�on in a spa�al and temporal manner.28 Disturbed signaling can result in cancer37, 
musculoskeletal disorders38, fibrosis39 and cardiovascular diseases27,40–42.  

Most TGF-β members, with BMPs being the excep�on43, are secreted in an inac�ve form within 
a latent complex (reviewed in44). These large latent complexes include the mature TGF-β 
polypep�de shielded by latency-associated pep�des and latent TGF-β binding proteins.45 
These addi�onal factors also bind to the extracellular matrix (ECM) or the plasma membrane 
via receptors like glycoprotein-A repe��ons predominant (GARP), crea�ng an ECM storage of 
accumulated latent TGF-β. Mature TGF-β polypep�des are released via several mechanisms 
allowing a quick func�onal response on demand.44  

Ac�ve TGF-β ligands signal via a heterotetrameric complex of type I and II serine-threonine 
kinase receptors (Figure 1).46 In vertebrates, seven type I receptors (ac�vin-like kinase (ALK)1-
7) and five type II receptors (TGF-β receptor 2 (TGFβR2), ac�vin receptor 2A (ACVR2A), 
ACVR2B, bone morphogene�c protein receptor 2 (BMPR2) and an�-Müllerian hormone 
receptor 2 (AMHR2)) exist. Since TGF-β ligands bind with different affini�es to their receptor 
complexes, the rela�ve expression level of the TGF-β receptors may determine sensi�vity of a 
par�cular cell type or �ssue to a TGF-β ligand.47 Overall, TGF-βs and ac�vins bind with a higher 
affinity to their type II receptors, whereas BMPs and GDFs exhibit a higher affinity for their 
type I receptors.48 Co-receptors like TGFβR3 (betaglycan) or Endoglin (Figure 1 and 2) can 
enhance ligand binding to type I/II receptors when membrane bound, but can act as ligand 
trap when excreted in soluble form.49 Next to these accessory proteins, soluble signaling 
modulators including Noggin, Gremlin, and Follista�n also exert regulatory effects on TGF-β 
signaling as ligand agonists or antagonists.50 

Upon ligand-receptor interac�on and receptor complex forma�on, the cons�tu�vely ac�ve 
type II receptor phosphorylates a
er which the ac�vated type I receptor kinase ini�ates the 
signal transduc�on cascade by phosphoryla�ng intracellular downstream proteins, i.e. 
receptor regulated-SMADs (R-SMADs) (Figure 1). Generally, TGF-β1-3 and Ac�vins signal by 
SMAD2/3 phosphoryla�on whereas BMPs, GDFs and AMH signal via phosphoryla�on of 
SMAD1/5/8. In the vasculature for instance, BMP9 and -10 are important factors necessary for 
endothelial homeostasis, exhibi�ng a high affinity for BMPR2/ALK1 receptor complexes, 
mainly expressed in ECs.51,52 Both ALK1/SMAD1/5/8 and ALK5/SMAD2/3 signaling are co-
regulated by Endoglin in ECs.53 Interes�ngly, the two splice variants short- and long-endoglin 
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favor different type I receptors, being S-endoglin pro-ALK5 and L-endoglin pro-ALK1 (Figure 
2).54 

Once phosphorylated, R-SMADs bind to the co-SMAD SMAD4 and form heterotrimeric 
complexes. Furthermore, Inhibitory SMADs (I-SMADs, SMAD6 and 7) are transcrip�onal 
targets of the TGF-β superfamily and create a classical nega�ve feedback loop interac�ng with 
and promo�ng the degrada�on of TGF-β receptors by e.g. SMURF1/2.55,56 

SMAD4-containing heterotrimeric complexes translocate to the nucleus, where they associate 
with cell type- and pathway-induced transcrip�on factors to modulate target gene 
expression.57 Different DNA mo�fs on the regulatory regions of genes have been described for 
the SMAD4, SMAD2/3 and SMAD1/5/8.55,58–60 The binding affinity of SMADs for DNA is 
rela�vely low, and can be enhanced through associa�on with other transcrip�on factors, which 
may determine cell type-specific TGF-β responses.55 Therefore, the transcrip�onal ac�vity 
induced by TGF-β ligands can be ‘fine-tuned’ at mul�ple levels, including the rela�ve 
expression levels of ligands, (co)receptors, (ant)agonists and nuclear transcrip�on factors that 
are ac�vated in a �ssue and s�mulus-dependent manner.55,61 Much of the cell type-specific 
responses to TGF-β ligands is due to the so-called non-canonical pathways. The non-canonical 
signaling seems not to require the type I receptor kinase ac�vity.62 Furthermore, although the 
TGF-β type I and II receptors are known serine/threonine kinases they can also phosphorylate 
tyrosine residues and act as dual-specificity kinases. Therefore tyrosine phosphoryla�on may 
be an alterna�ve route to mediate SMAD independent signaling.63 TGF-β non-canonical 
signaling is o
en highly context dependent. For example in vascular se�ngs, TGF-β-induced 
EndMT is also mediated through the ac�va�on of extracellular signal-regulated kinase (ERK)64 
and c-Jun N-terminal Kinase (JNK)65. Further, TGF-β-mediated inhibi�on of primary vascular 
smooth muscle cell prolifera�on has been demonstrated to be p38 dependent.66 
Unfortunately, much is s�ll to be deciphered in the context of non-canonical TGF-β signaling 
and PAH. Accordingly, in this review we mainly focus on canonical TGF-β signaling.  
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Figure 1. Schema�c representa�on of TGF-β signaling. Ligands of the TGF-β family (TGF-β1-3, 
Ac�vin A, BMP2/4/5/6/7/9/10, AMH) bind their type I (ALK1/2/3/4/5/6) and II (TGFβR2, ACTR2A/B, 
BMPR2, AMHR2) plasma membrane receptors. Soluble antagonists (Follista�n, Chordin, Noggin, 
Gremlin) can decrease ligand accessibility. Type III receptors (Endoglin) can further regulate ligand-
receptor complex forma�on. Upon type I receptor ac�va�on the intracellular signaling molecules (R-
SMADs) are phosphorylated and form a heterotrimeric complex with SMAD4. ALK4/5 (by TGF-β/Ac�vin 
A ligands) signal via SMAD2/3 whereas ALK1/2/3/6 (by BMP/AMH ligands) signal via SMAD1/5/8. R-
SMAD/SMAD4 complexes translocate to the nucleus where it func�ons as transcrip�on factor. Also 
non-canonical signaling (JNK, ERK, p38, PI3K/Akt) can occur via TGF-β signaling. Muta�ons in genes 
encoding TGF-β factors have been linked to PAH development. Not all factors within the TGF-β signaling 
family have been incorporated in the figure for clarity purposes. Abbrevia�ons; PAH: Pulmonary 
Arterial Hypertension, TGF-β: Transforming Growth Factor-β, BMP: Bone Morphogene�c Protein, AMH: 
An�-Müllerian Hormone, CAV-1: Caveolin-1, ENG: Endoglin, ALK: Ac�vin receptor-like Kinase, TGFβR2: 
TGF-β Receptor 2, ACTR2: Ac�vin Receptor Type II, BMPR2: BMP Receptor Type II, SMAD: Small 
Mothers Against Decapentaplegic, JNK: c-Jun N-terminal Kinase, ERK: Extracellular signal-Regulated 
Kinase, PI3K: Phosphoinosi�de 3-Kinase, and SRE: SMAD Responsive Element.
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Figure 2. A schema�c depic�on of the splice variants (A) and signaling func�on (B) of 
Endoglin on TGF-β1 signaling. The short (S-) and long (L-)endoglin variants are alterna�vely spliced 
by excluding or including exon 14, respec�vely (a). Both S- and L-endoglin increases TGF-β1 signaling, 
however, S-endoglin favors ALK5 signaling where L-endoglin favors ALK1 dependent signaling (b). 
Therefore, as observed by54,67, a balance shi
 towards S-endoglin increases TGF-β signaling by 
SMAD2/3 phosphoryla�on. Abbrevia�ons; TGF: Transforming Growth Factor, ALK: Ac�vin Like Kinase, 
SMAD: Small Mothers Against Decapentaplegic. 

TGF-β signaling in PAH 
PAH is linked to disturbances within the TGF-β signaling pathway. Muta�ons within the TGF-β 
signaling cascade have been iden�fied, such as ACVRL1 (encoding ALK1), ENG (encoding 
endoglin), SMAD9 (encoding SMAD8)68,69, SMAD168, SMAD468 and GDF2 (encoding BMP9)70 
(Figure 1). The most relevant gene muta�on by far affects the BMPR2 gene, which is affected 
by loss of func�on muta�ons in 70-80% of the HPAH and in 10-20% of the IPAH pa�ents.71 
Furthermore, genes not directly affec�ng TGF-β signaling have also been described (i.e., 
CAV172, TBX473, EIF2AK474, KCKN375).  
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Currently more than 650 different BMPR2 muta�ons have been described.76–78 These 
muta�ons can occur in non-coding regions but are mostly located in the coding regions 
containing the extracellular, transmembrane, kinase and cytoplasmic func�onal domains. 
Noteworthy, approximately 50% of total muta�ons are found in the kinase domain of 
BMPR2.76,79 The different gene muta�ons consist of single nucleo�de subs�tu�ons, leading to 
nonsense, missense or splice site muta�ons; and inser�ons or dele�ons causing small and 
par�al inser�ons, dele�ons or duplica�ons. A study looking at 144 different BMPR2 muta�ons 
from a broad interna�onal PAH pa�ent cohort, predicted that around 70% of all the muta�ons 
result in non-mediated decay of the truncated transcripts.79 Follow-up studies concluded 
similar findings.76 The resul�ng haploinsufficiency is therefore the main cause of disrupted 
TGF-β signaling. S�ll, PAH penetrance is low in families with muta�ons causing 
haploinsufficiency. Comparing non-affected muta�on carriers with PAH pa�ents within the 
same family, Hamid and colleagues showed that the expression levels from the wild type 
BMPR2 allele impact disease progression, with lower BMPR2 expression levels observed in 
more affected individuals.80 Therefore, next to loss of BMPR2 due to gene�c muta�ons, 
addi�onal triggers to reduce endogenous BMPR2 expression are needed to result in 
pathogenic disturbed TGF-β signaling. 

In HPAH pa�ents carrying a BMPR2 muta�on, the BMPR2 and phosphorylated SMAD1/5/8 
expression are decreased in lung �ssues41,81,82, consistent with a decreased expression of BMP 
transcrip�onal targets such as ID3.83 Interes�ngly, BMPR2 expression is also decreased in 
idiopathic pa�ents81, which might be due to (post)transcrip�onal inhibi�on of BMPR2 
expression in inflammatory environments.65,84 Serum and lung expression of TGF-β1 and TGF-
β3 ligands are increased in PAH pa�ents85,86, consistent with enhanced expression of a TGF-β 
target gene SERPINE1.87 Addi�onally, Ac�vin A and its natural antagonist Follista�n and 
Follista�n Like-3 are both increased in serum of HPAH and IPAH pa�ents88,89, of which Ac�vin 
A is known to be secreted by macrophages, bronchial epithelial cells and lung microvascular 
ECs.90 Given the widely acknowledged counterbalance between BMP and TGF-β signaling, it is 
well accepted that increased TGF-β and Ac�vin A signaling in PAH results from inac�va�ng 
muta�ons in BMP pathway components.25,91 However, recent publica�ons have unveiled novel 
mechanisms triggered upon loss of BMPR2. Hiepen and colleagues recently showed that loss 
of BMPR2 in ECs results in the forma�on of a mixed-tetrameric receptor complex TGF-β-TGF-
βR2-ALK5 including a type I BMP receptor.92 The inclusion of a type I BMP receptor allows the 
ac�va�on of pSMAD1/5/8 signaling, while this is prevented upon BMPR2 expression. Earlier 
work by other groups further strengthen this hypothesis of mixed-TGF-β/BMP receptor 
complexes and subsequent ac�va�on of pSMAD1/5/8 upon s�mula�on with TGF-β or 
Ac�vins.93–96 This can be a very relevant mechanism in PAH, as not only TGF-β1, but also Ac�vin 
A levels are increased in serum of IPAH and HPAH pa�ents.88,89 

Loss of func�on muta�ons in ENG have been found in familial PAH pa�ents.97 IPAH pa�ents 
display increased circula�ng and non-circula�ng ENG levels85, measured in serum and EC 
isola�on respec�vely. This increased soluble Endoglin is related with disturbed EC func�on. 
Moreover, alterna�ve splice variants of Endoglin can shi
 the TGF-β/BMP signaling balance.54 
These variants differ in exon 14, transcribing a small intracellular domain, giving L-endoglin a 
longer intracellular part compared to S-endoglin.98 This intracellular domain contains 
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phosphoryla�on sites for TGFβR2, ALK5, and ALK1.99 As shown by Lee et al., increased short 
(S-)endoglin over long (L-)endoglin causes an increase in SMAD2/3 over SMAD1/5 
phosphoryla�on in ECs (Figure 2).67 Interes�ngly, this disbalance may also occurs in HPAH 
pa�ents with muta�ons in exon 14 of the ENG gene, favoring the short splicing variant S-
Endoglin and therefore increasing TGF-β signaling. 

Taken together, altera�ons in BMP receptor complexes due to, for example, loss of func�on 
muta�ons in BMPR2 or ENG, can disbalance the cellular responses to the increased circula�ng 
levels of TGF-β/Ac�vin ligands. Induc�on of BMP-driven pSMAD1/5/8 is o
en described as 
protec�ve in PAH, however, irregular BMP signaling ini�a�on by TGF-β or Ac�vins may not be 
beneficial as well. One explana�on might be that TGF-β- and Ac�vin-induced mixed-tetrameric 
receptor complexes lead to a compe��on for canonical BMP-induced receptor complexes, 
resul�ng in less potent BMP-induced pSMAD1/5/8 and, perhaps, different non-canonical 
signaling ac�va�on. Further, it can lead to short-term signaling satura�on (by e.g. SMAD4 
compe��on). Therefore, comprehensive studies including not only BMPR2 downstream 
signaling, but also other TGF-β branches in the context of PAH are needed, as they all may 
contribute to vascular remodeling and subsequent PAH development.92  

In line with a prominent role of aberrant TGF-β signaling as underlying cause of PAH, the 
ACTR2A-Fc fusion molecule Sotatercept aims to counter this imbalance by trapping soluble 
TGF-β ligands (Figure 3) and thereby restoring pathogenic �ssue remodeling.8,100 Indeed, in 
vitro evidence shows that ACTR2A-Fc treatment of pulmonary ECs reduces pSMAD2/3 while 
enhances pSMAD1/5/8 signaling. Further, pulmonary arterial thickening and cardiac 
hypertrophy were par�ally restored by only 2-4 weeks of Sotatercept treatment in PH rat 
models.100 The type II receptor ACTR2A is able to bind many different TGF-β ligands (Figure 1) 
with different affini�es. High affinity ligands of ACTR2A include Ac�vin A, GDF8 and GDF1148, 
which levels are all increased in PAH.88,89,100 Due to the promiscuous role of ACTR2A in complex 
forma�on and binding capacity to many other ligands (also e.g. BMP10)48, we stress that 
Sotatercept’s success might rely on its unspecific targe�ng of TGF-β ligands. The balance of the 
combinatory levels of circula�ng TGF-β ligands in the pa�ent and their differen�al affini�es to 
Sotatercept therefore drives its pharmacological func�on. However, Sotatercept may also 
reduce BMP ac�vity, which can underlie the undesirable side effects observed in PAH pa�ents 
involved in a recent clinical trial (as reviewed in101). For instance, the inhibi�on of BMP10 by 
high doses of Sotatercept can interfere with BMP10 homeosta�c func�on on the 
endothelium52, possibly resul�ng in telangiectasias (Figure 3). Furthermore, thus far this drug 
has been tested in pa�ents on background therapy. Whether a therapeu�c approach based on 
solely targe�ng ACTR2A ligands is successful, remains to be inves�gated. 
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Figure 3. Sotatercept (ACTR2A-Fc) traps TGF-β ligands to restore the disbalanced signaling in 
PAH. The soluble ligands Ac�vin A, GDF8/11 and TGF-β1/3 are increased in PAH causing increased 
SMAD2/3 phosphoryla�on over SMAD1/5/8 signaling. This disturbed TGF-β signaling causes increased 
pulmonary arterial thickening with a subsequent rise in pulmonary arterial pressure and right ventricle 
hypertrophy. Treatment with Sotatercept normalizes the signaling imbalance by trapping soluble TGF-
β ligands, resul�ng in a decrease in pulmonary arterial thickening and right ventricle hypertrophy. 
*Possibly, low affinity inhibi�on of BMP10 by Sotatercept might disturb endothelial homeostasis and 
subsequently causing telangiectasias. Abbrevia�ons; TGF: Transforming Growth Factor, GDF: Growth 
Differen�a�on Factor, BMP: Bone Morphogene�c Protein, ALK: Ac�vin receptor-like Kinase, ACTR2: 
Ac�vin Receptor type II, BMPR2: BMP receptor type II, SMAD: Small Mothers Against Decapentaplegic.  

Sex-hormones and TGF-β signaling 
As aforemen�oned, disturbed TGF-β signaling cons�tutes a hallmark in PAH development. 
Given the sex-bias observed in this disease, it becomes key to understand the mechanisms by 
which sex-specific cues may fine-tune TGF-β signaling. Sex hormones are derived from 
cholesterol. Female sex hormones are estrogens and progestogens, including estradiol and 
progesterone, respec�vely. Male hormones are Androgens, of which testosterone is the 
dominant effector. Sex steroids induce chemical signal transduc�on by binding to their soluble 
nuclear receptors; Estrogen Receptor (ER), Progesterone Receptor (PR), and Androgen 
Receptor (AR). These receptors act as signal transducer and transcrip�on factors by binding to 
DNA responsive elements (RE; ERE, PRE, ARE).102–104 In addi�on, membrane bound G-Protein-
coupled receptors for all these sex hormones exist105 which modulate non-canonical TGF-β 
signaling pathways.  
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Estrogens have strong implica�ons in vascular diseases and promote cardiovascular 
protec�on.106,107 Frump and colleagues showed that 17β-Estradiol substan�ally improves right 
ventricular func�on in the Sugen-Hypoxia (SuHx) PH rat model108, and they further linked ERα 
signaling in the right ventricle to protec�ve adapta�on in PAH in a BMPR2-dependent 
manner.109 Although less characterized than estrogens, progestogens and androgens are also 
cardiovascular ac�ve, and play a substan�al role in vascular health and disease.110–113 While 
the effect of sex hormones on the (pulmonary) vasculature is well appreciated110,114,115, the 
molecular mechanisms underlying their func�ons remain elusive. Both sex hormones and TGF-
β family members exert a �ght control of the vasculature including pathogenic condi�ons like 
PAH.25,115,116 For comprehensive understanding of the TGF-β and sex-hormone crosstalk we 
will summarize the molecular mechanisms described so far, mainly in vascular cells. 
Unfortunately, most mechanis�c studies have been performed in non-vascular se�ngs. Given 
that sex-hormones act on many non-cardiovascular �ssues, influencing systemic levels of 
circula�ng TGF-β components and hence indirectly the cardiovascular system, we will learn 
from studies performed in non-vascular �ssues, and discuss how the crosstalk between TGF-β 
signaling and sex hormones may be applicable to vascular biology and PAH.  

Estrogens 
Estrogen signaling involves several members of the TGF-β family signaling pathway in vascular 
context (Table 1). As such, transcriptome analysis of human umbilical vein endothelial cells 
(HUVECs) showed that the expression of ACVRL1 (encoding ALK1), and Latent-transforming 
growth factor beta-binding protein 3 (LTBP3) are increased in response to exogenous estradiol, 
while CAV2 (caveolin-2), a nega�ve regulator of TGF-β1 induced ALK5/SMAD2/3 signaling in 
ECs117, and SMURF2 are decreased, par�ally overlapping the transcriptome of TGF-β1-
s�mulated cells.118 Addi�onally, administra�on of the selec�ve estrogen receptor modulator 
(SERM) Raloxifene increased the protein expression of ALK1 and Endoglin in ECs119, hence 
favoring SMAD1/5/8 over SMAD2/3 signaling. SERMs can have an agonis�c and antagonis�c 
effect, depending on the �ssue type and availability of estrogen receptors.120 These effects 
have been extensively studied in mammary and skeletal �ssues but are underexplored in the 
cardiovascular system, which is evidently necessary in the context of PAH therapy. 

The plasma membrane G-Protein-Coupled estrogen receptor (GPER, or GPR30) is an important 
mediator of estrogen-induced signaling in vascular e�ologies.121,122 Interes�ngly, GPER 
ac�va�on by Estradiol or the GPER agonist G1 increased SMAD1/5/8 phosphoryla�on and the 
downstream target ID1 in HUVECs.123 These effects can be inhibited by a G-protein pathway 
inhibitor, indica�ng a specific role for canonical GPER signaling. This study suggests for the first 
�me a cross-talk between GPER and canonical TGF-β signaling in ECs, and therefore more 
research is encouraged. Ac�va�on of GPER induces Src, MAPK, and PI3K/Akt signaling via 
transac�va�on of the epidermal growth factor receptor (EGFR) pathway.124 GPER modulates 
hypoxia induced factor (HIF) and vascular endothelial growth factor (VEGF) signaling, which 
makes it an interes�ng receptor to target in the endothelium.105 In addi�on, estrogen-GPER 
signaling enhances Notch-mediated epithelial-to-mesenchymal transi�on (EMT)105,125, a 
process resembling EndMT (important in PAH as described above). Importantly, all these non-
canonical TGF-β signaling routes (Figure 1) have shown relevance in PAH.126–129  



Chapter 4 

90 

Estrogens have been implicated to influence PAH disease development and are thought to be 
an important driver causing the sex-bias in PAH. As such, decreased expression of an important 
2-hydroxyestrogen (2-OHE) catalyst, CYP1B1, may be a second-hit favoring PAH development 
in female HPAH pa�ents.130 In blood isolated lymphoblastoid cells, this enzyme showed a 10-
fold decreased expression in affected compared to unaffected female BMPR2 muta�on 
carriers.130 As a follow-up, Aus�n and colleagues showed that female BMPR2 muta�on carriers 
have a 4-fold decreased disease penetrance when expressing the N453S CYP1B1 variant 
compared to wild-type.131 Further, they observed a decreased urinary 2-OHE/16α-OHE 
metabolite ra�o in affected female BMPR2 muta�on carriers. Unexpectedly, the enzyma�c 
func�on of CYP1B1 was unrelated to 2-OHE levels but predominantly caused by increased 
levels of 16α-OHE (although highly variable).131 This study therefore demonstrates the 
importance of estrogen metabolites in PAH disease penetrance in women.  

Indeed, Mair and colleagues found that basal BMPR2 protein levels in female non-PAH 
hPASMCs are lower compared to male cells.132 BMP4 induced pSMAD1/5/8 and ID1/3 
expression was lower in female than male hPASMCs. Interes�ngly, administra�on of 
exogenous estradiol to male hPASMCs decreased ID1/3 expression to levels comparable to 
female cells.132  Consistently, estrogen-ERα ac�va�on was reported to downregulate BMPR2 
expression via an ERE in the promoter of BMPR2 in pulmonary microvascular ECs (MVECs).133 
Moreover, inhibi�on of estrogen synthesis by the aromatase inhibitor anastrozole alleviated 
experimental PAH in a SuHx rat model by restoring BMPR2 expression.134 Conversely, in the 
right ventricles of mul�ple PH rat models and cultured rat right ventricle cardiomyocytes, E2-
ERα signaling increased BMPR2 expression.109 Further, basal BMPR2 levels were higher in 
female right ventricle samples compared to males. Interes�ngly, they showed a direct 
interac�on between ERα and BMPR2, which improved cardiac func�on via Apelin 
upregula�on. In this study, Frump and colleagues also showed a protec�ve effect of E2, or an 
ERα agonist, by preven�ng PH disease development in mul�ple PH rat models, driven via this 
BMPR2/Apelin-axis. Compared to human control samples, IPAH pa�ents showed decreased 
ERα levels in the right ventricle.109 Taken together, estrogens can decrease BMPR2 expression 
in the vasculature, but promote BMPR2 levels in the right heart. This cell type-dependent 
effect can explain female predominance and increased male severity in PAH. 

Mechanis�cally, estrogens have been shown to decrease BMPR2 levels in mul�ple vascular 
models132–134 and increase BMPR2 levels in the right heart.109 Further, DHEA treatment of PAH 
pa�ent derived PASMCs increased BMPR2 mRNA expression135, explaining an increased 
disease penetrance in individuals presen�ng with low DHEA-S levels.136–138 Consequently, 
basal BMPR2 vascular levels are lower in females132,133, which might explain the female 
predominance and male protec�on of PAH development. Further, estrogens increase right 
ventricular BMPR2 levels with subsequent cardiac protec�on109, poten�ally jus�fying a more 
severe PAH phenotype in men. Addi�onally, the broad transcrip�onal effects of estrogen on 
TGF-β signaling components (Table 1), especially in BMPR2-mutated individuals could result in 
an increased disbalance in TGF-β and BMP signaling, thereby contribu�ng to vascular 
remodeling and PAH development, par�cularly in women. 
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Circula�ng sex hormones may be also secreted by and affec�ng non-cardiovascular �ssues, 
which in turn may impact the cardiovascular system indirectly. Through this angle, mul�ple 
studies have been performed using non-vascular cell models like MCF-7 and HEK293 that could 
help us to unveil the mechanis�c crosstalk between TGF-β and sex hormones (summarized in 
Table 1). Researchers have shown that ERα/β can directly bind, inhibit and recruit protein 
degrada�on systems (by e.g. SMURF1) to SMAD2/3 in an estrogen dependent manner (Figure 
4).139–142 BMP s�mulated SMAD1/5/8 phosphoryla�on was also reduced by estrogen 
treatment in the same non-vascular cell lines.143 To add complexity to this estrogen-TGF-β 
crosstalk, SMADs can also be a cofactor for sex-hormone receptor-mediated 
transcrip�on.144,145 Evidently, as these studies made use of non-vascular cells, there is a need 
to confirm their findings towards vascular biology in the context of PAH. 

In conclusion, accumula�ng evidence indicate that estrogens can regulate canonical TGF-β 
signaling by directly altering the expression of TGF-β receptors and signaling modulators, at 
the transcrip�onal and protein level. Moreover, estrogen signaling via GPER may indirectly 
modulate TGF-β non-canonical routes (Figure 4).  

Progestogens 
Progestogens may posi�vely impact the cardiovascular system146, by nega�vely regula�ng 
prolifera�on of ECs and SMCs.111,147,148 Progesterone induces a strong vasodilatory response 
compared to estradiol and testosterone in male and female rat coronary and pulmonary 
arteries ex vivo.113  Congruently, low progesterone levels correlate with increased risk of PAH 
in men.149 To date, a direct link between progestogens and TGF-β signaling (including BMPR2 
regula�on) in cardiovascular cells is underexplored. In epithelial cells, progesterone dose 
dependently inhibits TGF-β1-induced SMAD3 phosphoryla�on150, and antagonizes TGF-β1-
mediated upregula�on of the target genes CTGF, transgelin, and PAI-1. In human granulosa 
cells, BMP-15-induced signaling via BMPR2 and ALK6 was shown to suppress progesterone 
produc�on151, although the authors show indirect effects. In addi�on, Ac�vin A repressed 
progesterone synthesis in the reproduc�ve system152,153, which might explain low progestogen 
levels in male PAH pa�ents149, as Ac�vin A plasma levels are increased88. Similarly, BMP4 and 
BMP7 also suppressed progesterone synthesis in Granulosa-Lutein cells.154 The crosstalk 
between progesterone and TGF-β signaling is most likely cell-type and context dependent. 

In summary, although func�onal progesterone responses on vascular cells are well-described, 
data regarding cross-talk between progestogens and TGF-β signaling in this context is lacking, 
and more research is needed to further understand the sex-related differences in PAH. 

Androgens 
Androgens have been proposed as a therapeu�c treatment for PH115,155, because of its quick 
beneficial vasodilatory effect on the pulmonary vasculature21 and its protec�ve effect on right 
ventricle adapta�on and func�on.155,156 Androgens classical mode of ac�on involves gene 
transcrip�onal responses through intracellular binding to AR112,157,158, expressed in PASMCs 
and ECs. The androgen-induced vasodila�on response occurs within 20 minutes a
er 
androgen administra�on.21,113 As a direct effector, testosterone can antagonize calcium 
channels in SMCs, thereby triggering a fast cellular response, not mediated by classical AR-
dependent gene transcrip�on. The androgen metabolite DHEA is shown to restore cardiac 
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remodeling and increase right ventricular func�on in rat models for experimentally induced 
PAH.135,155 As aforemen�oned, in PAH pa�ent derived PASMCs, DHEA administra�on increased 
BMPR2 mRNA expression levels135, and DHEA (or DHEA-sulphate, -S) treatment is currently 
inves�gated in a clinical se�ng.156  

Beyond the vasculature, androgens are described to modulate TGF-β signaling at mul�ple 
levels (Figure 4 and Table 1). Also mechanis�cally, in prostate cancer cell lines such as LNCaP 
and PC3 cells, dihydrotestosterone (DHT)-induced AR transac�va�on can form a complex with 
SMAD3 and SMAD4, where SMAD3/AR complexes promote transcrip�on via DNA binding to 
AREs while SMAD3/SMAD4/AR complexes inhibit androgen target gene expression.144 Hayes 
and colleagues observed repression of androgen target gene expression by SMAD3/AR 
complexes159, by direct binding of the MH2 domain of SMAD3 with the transcrip�on ac�va�on 
domain of the AR. Interes�ngly, the androgen driven inhibitory effects on gene transcrip�on is 
not specific for the TGF-β branch of the family, but also BMP signaling and its downstream 
targets are inhibited upon DHT treatment in e.g. intes�nal stromal cells.160 Furthermore, 
phosphorylated SMAD1 interacts with AR to suppress its transcrip�onal func�on161, indica�ng 
that androgens may regulate both TGF-β and BMP signaling pathways and vice versa (Figure 
4). 

In conclusion, androgens and TGF-β cross-talk via direct AR and SMAD interac�ons and 
indirectly via transcrip�onal regula�on through AREs (Figure 4). The vast majority of these data 
result from studies using prostate cancer or other non-vascular models, but may very well be 
applicable to PAH. For example, testosterone administra�on increased the expression of the 
circula�ng TGF-β regulators follista�n, chordin and noggin expression in muscle stellate cells162 
(Table 1), which may impact distant organs, including the heart and the pulmonary 
vasculature. PAH pa�ents exhibit increased Ac�vin A and Follista�n circula�ng levels88, and 
Ac�vin A levels correlate with increased mortality. Higher androgen-mediated Follista�n in 
males could poten�ally suppress high amounts of Ac�vin A in PAH, and might contribute to 
the lower prevalence in men.163 The decrease in androgens by age would lead to decreased 
follista�n levels with increased ac�ve Ac�vin A levels and disturbed TGF-β and BMP signaling 
balance as consequence. In line, the sex-biased disease prevalence in PAH also decreases upon 
age.12 The same mechanisms apply to chordin and noggin, suppressing the BMP branch with 
decreased effect upon age. Following this hypothesis, one might warrant the prescrip�on of 
(Ac�vin A) ligand traps like Sotatercept. Indeed, as described earlier, clinical trials have been 
performed trea�ng Sotatercept to PAH pa�ents with striking results.8,164   

Taking into considera�on the TGF-β/BMP balance and the effects sex hormones have on TGF-
β signaling components, including BMPR2, one could hypothesize that BMPR2 expression 
levels are higher in men compared to women. Low androgen levels with a corresponding drop 
in BMPR2 expression could ini�ate PAH development, as low DHEA-S levels are correlated with 
worse disease outcome in male PAH pa�ents.138 Further, high androgen driven follista�n levels 
in men might protect from extensive signaling by e.g. Ac�vin A in PAH. Taken together, this 
delineates a higher incidence in PAH development in predominantly younger women, but also 
a more severe disease outcome in men with low DHEA levels.138  
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An�-Müllerian hormone  
AMH is expressed in follicular sertoli and ovarian granulosa cells, and is known to be a 
circula�ng hormone throughout life, although declining by age. AMH is a TGF-β family member 
that binds its dedicated TGF-β type II receptor AMHR2165, also expressed in the human 
heart.166 Associated type I receptors include ALK2, -3 and -6, thereby involving BMP-like 
downstream signaling (Figure 1).36,165 Although typically linked with sexual dimorphisms167 and 
female fer�lity, other studies indicate AMH to have cardiovascular regulatory proper�es and 
it is long known to be a circula�ng hormone throughout life. From 2012 onward, higher levels 
of AMH have been correlated with cardiovascular protec�on168, decreased plaque diameter in 
non-human primates169, and decreased male aor�c diameter (implica�ons for aneurisms).170 
More recently, in the Doe�nchem Cohort Study, they found that decreasing AMH trajectories 
are associated with a substan�al elevated risk of CVD in women.171  

A poten�al role of AMH in PAH was recently suggested as part of a case report study172 
describing a novel loss-of-func�on BMPR2 muta�on in exon 2 associated with IPAH 
development. The resul�ng BMPR2 mutant protein is unable to translocate to the plasma 
membrane. Comprehensive analysis of the TGF-β/BMP signaling signature in peripheral blood 
mononuclear cells (BPMCs) of this pa�ent confirmed low BMPR2 expression levels, and 
increased expression of AMHR2, ALK1, ALK3, and ALK6 protein levels, whereas TGF-β receptors 
remained unchanged.172 Noteworthy, increased SMAD1/5 and SMAD2/3 phosphoryla�on was 
observed upon BMP2 and TGF-β s�mula�on. Furthermore, mRNA expression of the BMP 
target genes ID1, SMAD6 and STAT1 was increased, sugges�ng that BMP signaling was not 
compromised due to the BMPR2 muta�on, at least in PBMCs. The expression of AMHR2 in 
PBMCs supports the hypothesis that AMH affects inflamma�on responses and therefore 
influences PAH. Indeed, higher circula�ng AMH levels has been correlated with reduced 
inflamma�on marker c-reac�ve protein in men.173 Disturbed inflamma�on has been proposed 
as addi�onal driver of PAH development174, therefore, reducing inflamma�on via increased 
AMH signaling in BMPR2 muta�on carriers might be beneficial in PAH. In this case-report 
however, increased AMHR2 not necessarily proves increased signaling as func�onal AMHR2 
ligands ac�vity was not quan�fied.  

Studies using lung cancer epithelial cells reported cross-talk with AMHR2 and BMPR2 signaling 
causing increased SMAD2/3 phosphoryla�on upon loss of AMH or AMHR2175, possibly via 
mixed-heteromeric receptor complexes driven by BMP ligands.92 Correspondingly, in these 
cancerous epithelial cells, siRNA deple�on of AMH or AMHR2 drives EMT175, sugges�ng 
inhibitory func�ons of AMH in EMT. Early in life, males show higher AMH levels than females, 
but women have higher AMH levels throughout life.170 To date, relevant data in rela�on to the 
pulmonary vasculature are lacking, but if the mechanisms described above for AMH are 
applicable to vascular cells too, unraveling the role of AMH in the vasculature might help 
understand PAH disease development. 
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Figure 4. Signaling cross-talk of sex hormones and TGF-β signaling. The membrane permeable 
sex hormones androgens, progestogens and estrogens bind their nuclear receptors Androgen Receptor 
(AR), Progestogen Receptor (PR), and Estrogen Receptor (ER), respec�vely. Estrogens also bind the 
membrane receptor G Protein-coupled Estrogen Receptor (GPER). Sex-hormones cross-talk on three 
different levels with TGF-β signaling. 1) The ac�vated nuclear receptors can directly interact with 
SMADs to inhibit downstream signaling. Estrogen-ER signaling has been associated with SMURF1-
mediated proteasomal degrada�on of SMADs. 2) All sex-hormones have shown to regulate TGF-β
target genes, via their corresponding responsive elements. 3) The Estrogen-GPER signaling cascade 
includes routes overlapping non-canonical TGF-β signaling routes. Abbrevia�ons; TGF-β: Transforming 
Growth Factor-β, BMP: Bone Morphogene�c Protein, AMH: An�-Müllerian Hormone, AR/PR/ER: 
Androgen/Progestogen/Estrogen Receptor, GPER: G Protein-coupled Estrogen Receptor, 
SRE/ARE/PRE/ERE: SMAD /Androgen /Progestogen /Estrogen Responsive Element, SMAD: Small 
Mothers Against Decapentaplegic, and SMURF: SMAD Specific Ubiqui�n Ligase.
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Hormone Expression 
↑/↓ 

Level of 
expression 

Model (tissue) / 
cell-type 

Metabolite  Ref. 

Estrogens ↑ ALK1 mRNA & protein   
mRNA 

HMEC-1   
HUVECs 

Raloxifene 
17β-Estradiol 

119  
118 

↑ ALK5 Promoter 
Protein 

Rat osteoblasts Estradiol 176 

↑ BMP2 mRNA Mouse MSCs 17β-Estradiol 177 
↑ BMP6 Promoter Osteoblasts / 

MCF-7 
17β-Estradiol 178 

↑ BMPR2 Protein RV Su-Hx rat 
RVCM WT / Su-
Hx rats 

17β-Estradiol 
PPT 

109 

↑ ENG mRNA & protein HMEC-1 Raloxifene 119  
↑ LTBP3 mRNA HUVECs 17β-Estradiol 118 
↑ TGF-β3 Promoter & 

mRNA 
Rat (bone) 17β-Estradiol 

Raloxifene 
179 

↓ BMPR2 mRNA 
Protein 
Protein 

Wild-type mice 
HPASMC  
Su-Hx rat 

17β-Estradiol 
17β-Estradiol 
Anastrozole 

133  
132 
134 

↓ ID Protein HPASMC 17β-Estradiol 132 
↓ SMURF2 mRNA HUVECs 17β-Estradiol 118 

Progestogens ↓ CTGF  
(TGF-β1 
induced) 

Promoter 
mRNA 
Protein 

A549 (lung 
epithelial cells) 

Progesterone 150 

↓ PAI-1  
(TGF-β1 
induced) 

Promoter MLECs (mink 
lung epithelial 
cells) 

Progesterone 150 

↓ TAGLN  
(TGF-β1 
induced) 

Promoter 
mRNA 
Protein 

A549 Progesterone 150 

Androgens ↑ BMPR2 mRNA PAH HPASMC DHEA 135 
↑ BMP7 mRNA Stellate cells Testosterone 162 
↑ Chordin mRNA (array) Stellate cells Testosterone 162 
↑ FST Protein 

 
Stellate cells Testosterone 162 

↑ Noggin mRNA (array) Stellate cells Testosterone 162 
↑ SMAD7 mRNA Stellate cells Testosterone 162 
↓ ACVR2A mRNA Stellate cells Testosterone 162 
↓ BMP2 mRNA (array) Stellate cells Testosterone 162 
↓ BMP4 mRNA (array) Stellate cells Testosterone 162 
↓ Nodal mRNA (array) Stellate cells Testosterone 162 
↓ PAI-1 mRNA (array) Stellate cells Testosterone 162 
↓ SMAD2/3 Protein Rat (kidney) Testosterone 

Propionate 
180 

↓ SMAD4 Protein Rat (kidney) Testosterone 
Propionate 

180 
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↓ SMURF1 mRNA (array) Stellate cells Testosterone  162 
↓ TGF-β1 mRNA 

 
Protein 

Stellate cells 
 
Rat (kidney) 

Testosterone 
Testosterone 
Propionate 

162  
 
180 

↓ TGFβR2 mRNA Stellate cells Testosterone 162 
AMH ↓ ALK2 Protein Lung epithelial 

cells 
AMH 
(expressed) 

175 

↓ ALK3 Protein Lung epithelial 
cells 

AMH 
(expressed) 

175 

↓ BMPR2 Protein Lung epithelial 
cells 

AMH 
(expressed) 

175 

Table 1. An overview of studies inves�ga�ng transcrip�onal effects of the different sex 
hormones on targets within the TGF-β signaling cascade. The table shows increased or decreased 
expression, at which level it has been inves�gated, in which model or cell-type and the specific 
metabolite used.  

Sex hormonal therapy in the clinic 
The cross-talk between estrogens and androgens and TGF-β signaling is rela�vely well 
described in the vascular system. The findings described in previous chapters indicated a 
protec�ve effect of androgen, by increasing BMPR2 expression and circulatory Follista�n 
levels, and estrogens being an addi�onal risk factor by decreasing BMPR2 levels in the 
vasculature but cardioprotec�ve in the heart. Correspondingly, targe�ng sex-hormone 
signaling in PAH is a strategy applied within the clinic by mul�ple groups.  

Baird et al. showed that lower levels of dehydroepiandrosterone-sulphate (DHEA-S, a 
prohormone for androgens and estrogens) and higher levels of E2 were associated with severe 
PAH in men136 and in post-menopausal women137. This profile caused a worsened disease 
outcome, sugges�ng substan�al roles of these sex-hormones in disease progression and 
response.136 In a recent study analyzing a large Dutch PAH cohort we confirmed low DHEA-S 
levels in male and female PAH pa�ents.138 These studies validated a clinical trial to evaluate 
the effect of DHEA-S administra�on in PAH (NCT03648385).156 Targe�ng high estrogen levels 
also seems a possible treatment op�on for PAH as estrogen inhibi�on by anastrozole 
(aratomase inhibitor) and fulvestrant (ER antagonist) treatment prevented and reversed PAH 
development in BMPR2 mutant mice.181 There are two clinical studies conducted using 
anastrozole in PAH. The first small phase-2 clinical trial of anastrozole in PAH pa�ents showed 
a 40% reduc�on of estrogen plasma levels, a good safety profile and a significant increased 6-
minute walking distance, although other PAH clinical outcome measures were unchanged 
(NCT01545336).182 A larger follow-up trial is performed (PHANTOM: NCT03229499), however, 
the outcomes are not published yet. Importantly, as estrogens show a protec�ve effect on the 
right heart by increasing BMPR2 levels109, an�-estrogen therapy might be detrimental and 
therefore �ssue dependent effects of estrogen should be carefully considered. 
Correspondingly, pre-clinical data shows a protec�on of PH development when trea�ng with 
E2.109 Addi�onally, an�-estrogen therapy in reproduc�ve aged women is far from ideal but 
treatment might be considered for post-menopausal women. Taken together, these studies 
underline the importance of sex-hormones in PAH disease ini�a�on and progression and set 
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the stage for clinical (an�-)hormone therapies for PAH, although context dependent cellular 
and molecular mechanisms driving these effects are s�ll incompletely understood.  

Gene�c-related sex-differences and TGF-β signaling 
The X and Y sex-chromosomes contain specific gene�c informa�on which might differen�ally 
regulate TGF-β signaling in males and females. Although most of the genes expressed from the 
Y chromosome encode for proteins required during gonad development, some factors also 
have roles outside the reproduc�ve system. In females, expression levels of genes located on 
the X chromosome are regulated by the inac�va�on of one of the two X chromosomes. As we 
will discuss below, in some occasions this process can be disturbed, leading to enhanced gene 
expression due to increased gene�c load. In this sec�on we elaborate on X and Y- linked genes 
in rela�on to TGF-β signaling in PAH.  

Y Chromosomal expression  
The Y chromosome is a rela�vely small chromosome containing a low number of genes in 
comparison with other mammalian chromosomes. There are 568 genes harbored on the Y 
chromosome, of which only 71 have protein encoding poten�al.183 Mul�ple genes encode 
proteins of the same protein families, leaving only 27 non-related proteins encoded on the Y-
chromosome. In a mouse model for PAH, Umar et al. found that the Y chromosome protects 
disease development, unrelated to gonadal sex (testes or ovaries)24, sugges�ng an important 
role for Y-chromosomal expression in preven�ng PAH development. Of all Y-chromosomal 
genes, the sex-determining region Y (SRY) gene is the most studied.184 SRY is a DNA binding 
transcrip�on factor regula�ng gene expression at the early ini�a�on of testes development, 
but SRY also func�ons outside the reproduc�ve system.185 As such, SRY directly binds the 
promoter of BMPR2 to upregulate BMPR2 expression in PAH fibroblasts.186 As females lack SRY 
this BMPR2 transcrip�onal regula�on does not occur. Correspondingly, BMPR2 mRNA levels in 
male PAH pa�ent derived lymphocytes are higher compared to female equals.133 Further, SRY 
may indirectly modulate TGF-β signaling by interac�ng with AR thereby dampening 
testosterone-induced transcrip�on.187  

Of all the genes found on the Y-chromosome in PAH pa�ents, 8 genes showed decreased 
expression in diseased lung �ssues.24 One of these genes is USP9Y, a ubiqui�n-associated 
hydrolase preven�ng ubiqui�n-dependent degrada�on of proteins including SMAD4, thereby 
increases TGF-β signaling (188 and ENSG00000114374). Another downregulated Y-linked gene 
in PAH lungs is the ATP-dependent RNA helicase DDX3Y 24. Although DDX3Y interacts with 
SMAD2 and SMAD3189, the func�onal consequences of this interac�on is unknown. In 
summary, Y-specific expression profiles may alter TGF-β signaling (Figure 5B) and might 
prevent the ini�a�on and progression of PAH. How these interac�ons with the TGF-β family 
results in changes of cellular behavior needs s�ll to be deciphered.   

X Chromosome inac�va�on 
The X chromosome contains over 1,200 genes. In females, the expression of X-linked genes is 
�ghtly regulated by X-chromosomal inac�va�on. This process is necessary for gene�c dosage, 
leading to similar gene expression levels of X-linked genes in female XX cells compared to XY 
male cells.190 Silencing of the X chromosome is mediated by the long non-coding RNA (lncRNA) 
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an�sense pair X-inac�ve specific transcript (XIST) and TSIX (XIST, opposite strand). While XIST 
shields (thereby silences) one of the X-chromosomes, TSIX impairs the inac�va�on of the 
ac�ve X-chromosome through complementary binding to XIST. Furthermore, epigene�c 
modifica�ons of the XIST locus can cause XIST silencing.191 In addi�on, the lncRNA X-ac�ve 
specific transcript (XACT) coats the ac�ve X-chromosome and also antagonizes XIST.192 Most 
genes on the inac�vated X-chromosome remain silenced, however, 15-25% of X-linked genes 
escape this silencing process (known as ‘escapees’).193 These escapees have been linked to sex-
differences in diseases like auto-immune diseases and cancers.194  

Recently, in the EHitsn-KOITSN+/- PAH mouse model for plexiform arteriopathy, Xist expression 
levels were increased in female PAH mice compared to the male mice or female WT mice.195 
Noteworthy, female EHitsn-KOITSN+/- mice showed worsened vascular remodeling compared to 
their male equals. While no difference in Xist levels were observed in the SuHx PAH rat model, 
increased Xist expression was observed in human female PAH lungs compared to healthy 
subjects. Taken together, the upregula�ons of the lncRNA Xist/XIST may explain the sexual 
dimorphism in vascular remodeling, and therefore highlights the importance of X-
chromosome inac�va�on in the sex-bias in PAH.  

Several studies suggest an interplay with Xist and BMP/TGF-β signaling. Gene�c knockdown of 
ACVR1B (ALK4), BMPR2, and SMAD2 inhibit the expression of Xist in mouse fibroblasts.196 BMP 
signaling was found to induce and maintain the expression of XIST, while TGF-β signaling 
served as an antagonist. Furthermore TGF-β signaling induced TSIX expression in dermal 
fibroblasts.197 Although specific XIST/TSIX expression levels are sugges�ve for X-chromosomal 
silencing, deeper comprehensive studies are needed for conclusive results. Nevertheless, 
dysregula�on of TGF-β/BMP signaling could impact the chance of genes on the X-chromosome 
to escape gene silencing thereby contribu�ng to sex-differences in PAH pathology.  

Gene�c impact on PAH development suggest a protec�ve role for specific genes expressed 
from the Y-chromosome.24 The Y-chromosomal expressed SRY transcrip�on factor upregulates 
BMPR2 expression in PAH fibroblasts.186 As discussed above, TGF-β signaling can influence X-
chromosomal inac�va�on in females, further enhancing TGF-β signaling disbalance in PAH. 
These observa�ons strengthen the link between sex-hormones, sex-related gene�cs, 
disturbed TGF-β signaling and PAH disease development. 
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Figure 5. Gene�cs sex-related differences on TGF-β signaling in health and PAH. A) In  females, 
proper X Chromosome inac�va�on results in healthy gene�c output leading to a balanced TGF-β/BMP 
signaling. However, disturbances in X chromosome inac�va�on results in dysregulated genes 
(escapees) and increased gene�c output which might cause a diseased disbalance in TGF-β/BMP 
signaling. B) In males, SRY has been linked to increased BMPR2 expression, while USP9Y is an ubiqui�n-
dependent hydrolase that targets SMAD4. Abbrevia�ons; TGF-β: Transforming Growth Factor-β, BMP: 
Bone Morphogene�c Protein, SMAD: Small Mothers Against Decapentaplegic, SRY: Sex-determining 
Region of Y, USP9Y: Ubiqui�n Specific Pep�dase 9 Y-linked, BMPR2: BMP Receptor type 2. 

Hereditary Hemorrhagic Telangiectasia 
The gene�c background and disease e�ology in Hereditary Hemorrhagic Telangiectasia (HHT) 
(or Rendu-Osler-Weber syndrome) and HPAH pa�ents some�mes overlap.198 Interes�ngly, 
there is also a sex-bias observed in HHT although this is less pronounced compared to PAH. 
Therefore, many findings in this review are also relevant in a HHT context, which we shortly 
highlight in this chapter. 

HHT is a vascular disorder presen�ng with malformed vessels leading to telangiectasia (spider 
veins), hemorrhages, and arteriovenous malforma�ons (AVMs).199 Similarly as HPAH, HHT 
originates in people harboring loss-of-func�on muta�ons in genes encoding BMP receptors, 
i.e. ACVRL1 (ALK1: HHT2) and ENG (Endoglin: HHT1).97,200 It is thought that decreased BMP 
signaling causes endothelial dysfunc�on, leading to the malformed vasculature in HHT.201,202 
Sex differences in HHT present mainly by more severe symptoms in women compared to men 
(increased pulmonary and hepa�c AVMs)203,204, although some small registry studies describe 
a female predominance.205–207  
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In this review, we explored sex-differences in TGF-β signaling in PAH, but our findings can have 
implica�ons for HHT too. For instance, administra�on of Raloxifene increases ALK1 and ENG 
expression in ECs119 and is therefore proposed as treatment op�on for HHT (reviewed in208). 
Another SERM, Tamoxifen, showed promising effects in a clinical trial reducing severe 
epistaxis.209 There is a marked influence of sex in pulmonary and hepa�c vascular 
malforma�ons in HHT, sugges�ng organ or �ssue specific features in comparison with other 
organs.210 It might be that expression levels of sex-hormone receptors in hepa�c or pulmonary 
endothelial cells makes these cells more sensi�ve to circula�ng sex-hormones. This review 
highlights three levels on which sex-hormones can alter TGF-β signaling (Figure 4). Further 
research of these organ specific endothelial effects is warranted to delineate the sex-bias in 
HHT.  

Discussion and concluding remarks  
PAH is a cardiovascular disease with a clear sex-bias towards increased female predominance 
and more severe male phenotype. The molecular causes of this bias are incompletely 
understood. This review therefore explored sex differences in TGF-β signaling to understand 
sex-bias in PAH (and by extension in HHT). 

We have emphasized that hormonal and gene�c sex-differences may regulate TGF-β signaling 
in different ways to contribute to PAH. Noteworthy, many of the mechanis�c findings described 
above originate from non-vascular cell models, hence transla�on into PAH should be done 
carefully. Future studies should be performed aiming to inves�gate sex-specific effects on TGF-
β signaling in a cardiovascular se�ng. O
en, sex-related gene�cs are not taken into account 
while inves�ga�ng sex-hormonal effects on TGF-β signaling. For instance, researchers should 
include karyotypes of the cells or �ssues studied. We further stress the importance of 
implemen�ng sex-related gene�cs in sex-hormone based studies.  

In the mean�me, we can an�cipate that personalized treatments will progressively become 
more relevant in clinical decision making, and therefore sex-related components need to be 
addressed accordingly. We highlight sex-specific features like hormones and gene�c 
differences in rela�on to the TGF-β signaling pathway in pulmonary vascular diseases. These 
findings could implicate differen�al treatments based on sex, e.g. hormonal therapy like 
tamoxifen, raloxifene, anastrozole or DHEA-S, of which the la�er two clinical trials are 
discussed in this review (chapter 4.5). These trials are eligible for all sexes although, dependent 
on the study outcomes, sex driven differen�al treatments should not be overlooked. Adverse 
effects of hormone therapies might be overcome by development and clinical tes�ng of next 
genera�on SERMs like LY2066948.120,211 Although an�-estrogen (anastrozole) has been studied 
in a clinical se�ng for PAH, pre-clinical evidence shows that estrogen administra�on also 
ameliorates PAH outcome in a �ssue specific manner, by targe�ng the right heart.109 Estrogen 
therapy targe�ng the heart, as an organ-specific treatment, might therefore be a promising 
treatment op�on, especially in men showing less right ventricular adapta�on.  

Furthermore, pregnancy might become a key determinant of PAH diagnosis and treatment. As 
such, pregnancy has been associated with increased risk of PAH development in BMPR2 
muta�on carriers, as  pa�ents have been diagnosed with PAH a
er pregnancy212 and disease 
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outcomes are more severe peri- and post-partum.213 These observa�ons can easily be linked 
to dras�c hemodynamic changes during pregnancy213, but the long-term effects of hormonal 
changes are o
en not considered. As such, estrogens and progestogens rise drama�cally 
during pregnancy. As we have described above, this affects the TGF-β signaling pathway by 
direct inhibi�on of SMADs, classical transcrip�onal effects (e.g. BMPR2 down-regula�on in the 
vasculature and up-regula�on in the right heart) and non-canonical cross-talk. Hence, sex-
hormonal changes during pregnancy might enhance TGF-β signaling dysregula�on (by an 
addi�onal drop of BMPR2 levels in the vasculature) and subsequent PAH development.  

Overall, sex-specific differences in TGF-β signaling poten�ally explains sex-differences in PAH. 
Many aspects of sex-related crosstalk with TGF-β signaling within the cardiovascular system 
are incompletely understood and more research is therefore warranted. Sex dependent 
determinants are ge�ng increasingly important for biomarker iden�fica�on, drug 
development and therefore curing PAH.  
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