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Chapter 1

Preface

Tissue homeostasis relies on an intricate balance of extracellular biochemical and physical
stimuli that regulate cellular processes like proliferation, differentiation, migration, apoptosis
and survival.! These regulatory signals are transmitted through the cell via a process known as
signal transduction, which can be initiated by upstream ligands like hormones, growth factors,
and cytokines. Upon binding to specific receptor kinases, these ligands elicit downstream
intracellular biochemical signaling responses through second messengers. Receptor-mediated
signaling pathways can be stratified by the phosphorylation of their target substrates, primarily
tyrosine and serine/threonine residues. Tyrosine receptor kinases (TRKs) are activated by
ligands such as epithelial growth factor (EGF) or vascular endothelial growth factor (VEGF).2 In
contrast, serine/threonine kinase receptors are predominantly represented by members of
the Transforming growth factor-B (TGF-B) superfamily.3

These signaling pathways orchestrate subcellular processes, including gene transcription,
translation, and post-translational modifications, ultimately regulating cellular behavior.
Dysregulated signal transduction is a hallmark of the pathogenesis of many, if not all, human
diseases.»*> Understanding these signaling mechanisms in a context-dependent manner is
therefore essential to identify strategies to restore tissue homeostasis and treat disease. In
this thesis, we will primarily focus on TGF-B signaling and its role in tissue homeostasis and
disease, while also exploring complementary signaling pathways where relevant.

The TGF-f signaling pathway

TGF-B signaling regulates pleiotropic biological processes during development and tissue
homeostasis.® The mammalian TGF-B superfamily consists of more than 33 ligand-encoding
genes including TGF-Bs, Activins, Inhibins, Nodal, Bone morphogenetic proteins (BMPs),
Growth differentiation factors (GDFs), and Anti-Miillerian Hormone (AMH).”13 Most TGF-B
superfamily ligands, with BMPs being the exception,* are secreted as an inactive precursor
and bound within a latent complex.'® The active form is stabilized by latency-associated
peptides (LAPs) and latent TGF-B binding proteins (LTBPs), which shield the ligand from
premature activation.'® Latent complexes are often sequestered at the plasma membrane or
integrated into the extracellular matrix (ECM),'” building a reservoir of latent inactive TGF-B.
Activation occurs through mechanic or enzymatic cleavage, releasing the active ligands, and
allowing a quick functional and localized response on demand.* Additionally, some TGF-B
ligands are secreted in their active form, facilitating autocrine, paracrine or endocrine
signaling. TGF-B ligands can present as monomers or homo/hetero-dimeric complexes.’®1° As
such, circulating levels of e.g. BMP9 (in picogram)?® and Activin A (in pico to nanogram)?! can
be measured.

Active TGF-B ligands bind their respective plasma-membrane receptors guided by binding
affinity and receptor availability (Figure 1).3 The TGF-B receptors consist of seven different type
| receptors (referred to as Activin receptor-like kinase (ALK) 1-7) and five different type I
receptors, including TGFBR2, Activin receptor type 2A (ACTR2A), ACTR2B, BMPR2, and
AMHR2.22 Upon binding of a ligand dimer, the receptors form tetra-heteromeric complexes
consisting of at least two type Il and two type | receptors.? Ligand binding preferences differ
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within the superfamily: TGF-B ligands bind their type Il receptors with high affinity before
recruiting their type | receptors, whereas BMP ligands favour type | receptor binding first.?34
Certain ligands, including TGF-B2, exhibit low affinity for both type | and Il receptors and
depend on TGF-B type Ill co-receptors like Betaglycan (TGFBR3) and Endoglin for signaling.?>%
Type Il co-receptors therefore fine-tune ligand-receptor complex formation.?*226 When
cleaved from the membrane, soluble forms of these co-receptors can act as ligand traps and
reduce ligand availability.?® Also, other extracellular ligands like Noggin, Gremlin and Follistatin
modulate TGF- signaling by functioning as agonists or antagonists (Figure 1).3° Upon complex
receptor oligomerization, the type Il receptor will phosphorylate the type | receptor on its
glycine-serine (GS)-rich motif N-terminally located to the kinase domain, initiating intracellular
signaling.3

The active type | receptor then phosphorylates its downstream effectors including the
receptor-regulated small mothers against decapentaplegic (R-SMADs). The SMAD family
contains 8 different SMADs, categorized into R-SMADs (SMAD1-5 and -8), a common partner-
SMAD (SMAD4 or co-SMAD), and inhibitory (I-)SSMADs (SMAD6 and -7).3! Phosphorylation of
SMAD2/3 occurs through complexes containing ALK5/TGFBR2 by TGF-Bs or ALK4/ACTRII by
Activins. BMPs and GDFs phosphorylate SMAD1/5/8 via ALK1/2/3/6 and type Il containing
complexes. The ligand-specific receptor complexes are depicted in Figure 1. Negative feedback
is mediated by I-SMADs, which inhibit signaling by competing with SMAD43? and promoting
TGF-B receptor degradation by recruiting E3 ubiquitin ligases such as SMURF1/2.33-35

Upon activation, R-SMADs form a trimeric complex with co-SMAD4 in the cytoplasm and
translocate to the nucleus, where they act as nuclear transcription factors. Binding to gene
regulatory elements is motif-specific where SMAD2/3 recognizes CAGA-rich sequences, and
SMAD1/5/8 interact with BMP responsive elements (BRE).3638 SMADs have relatively low
intrinsic DNA-binding affinity and require context-dependent co-factors to enhance
transcription.3® Additionally, SMADs can also function as co-factors for other transcription
factors, adding another layer of regulatory complexity. Canonical downstream targets of
SMAD2/3 include connective tissue growth factor (CTGF) and plasminogen activator inhibitor-
1 (PAI1)/Serpine, whereas SMAD1/5/8 drive the expression of inhibitor of differentiation (ID)-
1 and ID-3, among others. These distinct transcriptional outputs underscore the distinct
cellular outcomes mediated by TGF-B and BMP signaling pathways. Therefore, a balanced
interplay between SMAD2/3 and SMAD1/5/8 signaling is essential for regulating diverse
biological processes and maintaining appropriate cellular responses.

While SMAD-dependent signaling is recognized as the canonical TGF-B pathway, TGF-
receptors can also activate non-SMAD signaling cascades.*®*! These include
phosphatidylinositol 3-kinase (PI3K)/AKT, Rho-associated small GTPases, and mitogen-
activated protein kinases (MAPKs) pathways, including JNK, p38 isoforms and ERK.*!
Mechanistically, the processes underlying TGF-B-induced non-SMAD signaling are less well
understood. While type | receptors are crucial for SMAD-dependent signaling, it is
hypothesized that type Il receptors may play a more central role in non-SMAD signaling.*%*?
Moreover, although TGF-B receptors are primarily serine/threonine kinases, they can
phosphorylate tyrosine substrates, classifying them as dual-specificity kinases.*> Non-SMAD
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pathway activation by TGF-B superfamily receptors is highly context-dependent.** For
example, TGF-B directly phosphorylates ShcA, which activates ERK in mouse fibroblasts,
regulating cellular proliferation and apoptosis.*® In vascular biology, TGF-B-mediated inhibition
of vascular smooth muscle cell proliferation depends on p38 signaling.*® Non-SMAD signaling
downstream of BMP ligands and receptors are even less well-studied than TGF-B-induced
effects.?046=4° This thesis aims to provide further insights into context-dependent activation
and functional outcomes of non-SMAD signaling pathways.

TGF-B and BMP signaling pathways
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J_ / J_ \ disease
< [Pl
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Figure 1. Schematic depiction of TGF-B and BMP signaling pathways. TGF-B superfamily ligands
bind their respective type Il and type | receptors. Following oligomerization, the type | receptors
phosphorylate downstream R-SMADs and form a trimer with co-SMADA4. Active SMAD complexes
translocate to the nucleus and function as transcription factors partnered with other transcriptional
co-factors, binding to CAGA- (R-SMAD2/3 responsive) or BRE-elements (R-SMAD1/5/8 responsive).
Canonical transcriptional targets of TGF-B include CTGF/PAI1 while BMPs typically induce 1D1/3
expression. Negative regulation involves antagonists like Follistatin, binding competition of I-SMADG6/7,
and proteasomal degradation of TGF-f receptors mediated through these inhibitory SMADs. Besides
this SMAD-dependent signaling, non-SMAD signaling pathways (e.g. MAPK, RhoA, PI3K) may be
activated through TGF-B or BMP receptors. Mutations in these signaling pathways can cause the
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Figure 1. (continued)
development of pulmonary arterial hypertension (PAH, shown in blue) or fibrodysplasia ossificans
progressiva (FOP, shown in green). Abbreviations are explained in the text.

Disruption of the delicate balance between TGF-f and BMP signaling, for example through
gene mutations in receptors or altered secretion of TGF-B ligands, can contribute to the
development of various diseases including cancer®>?, fibrosis®?, cardiovascular disease®>*3 and
musculoskeletal disorders®*. This thesis specifically explores two rare genetic disorders linked
to dysregulated TGF-B signaling: pulmonary arterial hypertension (PAH) and fibrodysplasia
ossificans progressiva (FOP).

Pulmonary arterial hypertension

Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder characterized by
pulmonary vascular remodeling, which increases vascular resistance and pressure, resulting in
right ventricle hypertrophy, dilatation and ultimately leading to right heart failure (RHF).
Clinically, PAH is classified within WHO group | of pulmonary hypertension and can be further
stratified into hereditary PAH (HPAH) and idiopathic PAH (IPAH). HPAH encompasses cases with
familial or genetic origins, while IPAH refers to non-familial sporadic cases. Pre-capillary PH,
including PAH, is defined by a mean pulmonary arterial pressure (mPAP) > 20 mmHg, a
pulmonary arterial wedge pressure (PAWP) of < 15 mmHg, and pulmonary vascular resistance
(PVR) of > 2 wood units.>® With an incidence of about ~6 cases per million adults, PAH is
considered a rare disorder.>® Recent registries reveal an increasing diagnosis of older PAH
patients with a balanced sex distribution, often associated with underlying cardiovascular
comorbidities.*® In contrast, younger PAH patients, predominantly those with HPAH, show a
marked female predominance. Notably, male patients present with more severe phenotypes.
Chapter 4 of this thesis explores sex-related differences in PAH in more detail.>’

The pathophysiology of PAH involves a combination of vasoconstriction and remodeling of the
pulmonary vasculature, which leads to remodeling of the right heart as an adaptive response.
Vascular remodeling is characterized by thickening of all three arterial layers due to cellular
proliferation, resistance to apoptosis, inflammatory infiltration, increased migration and
endothelial-to-mesenchymal transition (EndMT). This process of remodeling involves multiple
cell types within the vascular bed, including endothelial cells, smooth muscle cells, pericytes,
and immune cells.>® Advanced vascular remodeling can result in plexiform lesion formation
and increased thrombosis, ultimately obstructing the pulmonary arteries.>® Remodeling of the
right heart in PH begins with ventricular hypertrophy and progresses to dilatation. Cardiac
myofibroblasts play a central role by driving extracellular matrix (ECM) production, which
contributes to fibrosis and stiffening of the ventricle.%%! The heart's adaptive capacity is a
critical determinant of disease severity and mortality. Triggers for PAH development include
inflammation, hypoxia, sex(-hormones), genetic predisposition and dysregulated TGF-B
signaling.>7,°8:62

Loss-of-function mutations in approximately 17 genes contributes to PAH development,®?
many of which are linked to the TGF-B signaling pathway involving BMP signaling. As such,
BMPR2 mutations are found in 80% of all HPAH cases and up to 20% in IPAH patients.
However, the disease penetrance of BMPR2 mutation carriers is low (~30%) with a clear sex-
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bias, with 41% of female carriers developing the disease compared to 14% of males.®* It is
therefore accepted that secondary triggers influence BMPR2 signaling, directly or indirectly.
Indeed, factors such as hypoxia®, inflammation®®%” and sex-hormones®”® have been shown
to regulate the BMPR2 signaling pathway. Although more than 650 BMPR2 mutations have
been described so far, most lead to functional loss or even haploinsufficiency.?®7° Interestingly,
in PAH patients without an identified genetic cause, reduced BMP signaling has been observed
alongside increased TGF-B signaling in the lung vasculature.”*”® This imbalance is further
supported by elevated circulating levels of TGF-B1, GDF8/11, Activin A and Follistatin in patient
blood samples.?»737> Consequently, enhanced TGF-B/SMAD2/3 signaling promotes
endothelial dysfunction, EndMT and pro-proliferative pathways in ECs and smooth muscle
cells,”®78 whereas BMP signaling supports vascular quiescence.” In conclusion, the
disbalanced TGF-f signaling pathway underlies vascular dysfunction and PAH pathogenesis.

At diagnosis, PAH patients are typically prescribed vasodilators targeting the guanylate cyclase,
endothelin, or prostacyclin pathways. Current guidelines recommend triple therapy for severe
disease, which has significantly improved patient outcomes and delayed progression to severe
RHF.>>%6 |n these advanced cases, patients may be eligible for lung transplantation. Although
no curative treatment exists, targeting the underlying aberrant TGF-B signaling offers a
promising therapeutic approach.” This thesis aims to identify more effective and selective
therapeutics targeting the TGF-B signaling family, which could significantly enhance clinical
outcomes for PAH patients.

Fibrodysplasia ossificans progressiva

Fibrodysplasia ossificans progressiva (FOP) is an ultra-rare autosomal dominant genetic
disorder with an estimated prevalence of 1 in a million people.8%81 This musculoskeletal
disorder is characterized by the abnormal formation of heterotopic bone, through
endochondral ossification, in soft connective tissues including tendons, ligaments, and skeletal
muscle. While heterotopic ossification (HO) is the hallmark and most burdensome symptom
causing pain and severe immobility, FOP patients may also develop arthritis®,
osteochondromas®? or (small) skeletal/joint dysplasias®%8*. HO is caused by random or injury-
induced episodic painful inflammatory events known as ‘flare-ups’. Upon injury and related
inflammatory triggers, these flare-ups activate fibro-adipogenic progenitors (FAPs), which
initiate endochondral ossification instead of the normal muscle regeneration process.®>8 The
underlying cause of FOP was identified in 2006 as a mutation in the ACVR1 gene, encoding the
ALK2 receptor.®” Further genetic screening showed that almost all patients carry the specific
gain-of-function mutation ACVR1 c.617G>A which encodes the ALK2 p.R206H variant.

Being a BMP type | receptor, ALK2 induces SMAD1/5/8 signaling, driving osteochondrogenic
pathways in mesenchymal cells.*>#8 Its high-affinity ligands are BMP6, BMP7 and Activins, with
BMPs acting as agonists and Activins as antagonists for the wild-type ALK2. The p.R206H
mutation occurs in the receptor’s GS domain, a crucial regulatory region that mediates kinase
activity and is typically phosphorylated by type Il receptors upon oligomerization.?” Studies
have shown that artificial mutations like ALK2 p.Q207D (also located in the GS domain) lead to
constitutive receptor activation.®® Initially, also the p.R206H mutation was hypothesized to
confer constitutive activity.®® However, research since 2015 has revealed that the mutant
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ALK2R208H receptor exhibits a neofunctional response to Activin A binding.®? Recent studies also
highlight that Activin B, AB and AC can also activate ALK2R?%%H signaling. Other mechanisms of
oligomerizing mutated ALK2 receptor complexes, such as ALK2 antibody binding® or
experimental methods like optogenetics®?, also resulted in downstream pathway activation.
This demonstrates that the oligomerization of ALK2R?%%H receptor complexes alone is sufficient
to activate signaling, whereas ALK2WT receptors remain unresponsive. Nevertheless, the
formation of functional signaling complexes still relies on the presence of a structural, though
not necessarily functional, type Il receptor within the complex.”® In summary, the FOP
mutation renders ALK2 active upon Activin (A, B, AB, and AC isoforms) binding, an effect that
would normally be inhibitory in wild-type cells. Thus, this aberrant overactivation of BMP
signaling likely underlies the osteochondrogenic symptoms observed in FOP.

Noteworthy, despite ALK2R206H heing ubiquitously expressed, FOP manifests in specific tissues,
suggesting that Activin-induced SMAD1/5/8 phosphorylation may not be the only mechanism
causing FOP. This thesis further delves into the abnormal signaling in FOP by focusing on non-
SMAD signaling pathways. As described in section 1.1., TGF-B and BMP signaling receptors can
also activate non-SMAD signaling pathways*!, which are often highly context-dependent and
may function in a cell-type and/or tissue-specific manner. In FOP, several studies have
identified alterations in non-SMAD signaling pathways, including mTOR®?, PI3K®3, and
YAP1/RhoA GTPase®* signaling. To comprehensively characterize non-SMAD pathways in FOP,
in chapter 5, we used non-biased multi-omics profiling in an ALK2R2%H background.

Currently, treatment options for FOP patients remain limited, primarily focusing on injury
prevention and the use of high-dose anti-inflammatory medications (e.g., prednisone, NSAIDs)
during flare-ups.®® Given the extreme pain associated with these flare-ups, the use of
analgesics may also be warranted. However, no curative therapies exist for FOP yet. Given the
importance of altered TGF-B signaling as a driver for HO® and the tissue-specificity in disease
development, this thesis aims to identify novel therapeutics targeting TGF-B signaling including
context-dependent non-SMAD signaling routes to treat FOP.

Since the start of this thesis, the field of TGF- signaling modulators for clinical use (Figure 2)
has gained significant momentum, of which the recent developments are extensively
discussed in chapter 7. The recurrent problem in testing drugs directly targeting TGF-B
signaling lies in the high degree of similarity among its receptors, often leading to drug
development failures. The methodologies used for testing such drugs might be optimized to
identify specific and effective drug candidates. Consequently, we will examine the current in
vitro techniques employed to measure TGF- signaling.
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Conventional in vitro methods to detect TGF-3 signaling and -

modulators

To understand aberrant TGF-B signaling and identify novel therapeutics for TGF-B-associated
disorders, highly selective and potent in vitro high-throughput (HTP) methods are
indispensable. These methods should be particularly valuable for evaluating potential
therapeutics such as small kinase inhibitors, allosteric molecules, antibodies, and fusion ligand
traps (Figure 2). Commonly used assays include cross-linking-based systems, transcriptional
reporters, and western blotting. Cross-linking assays can measure receptor-specific
interactions but require radioactive isotopes, specific antibodies, and labor-intensive
protocols.’® Transcriptional reporter assays (i.e. CAGA- and BRE-luciferase) measure
downstream canonical pathway activation,®°® while western blotting detects
(phosphorylated) protein levels affected by the drug. However, these assays lack receptor
specificity, are typically low- to medium-throughput and require cell lysis. Other approaches
include in vitro kinase assays, surface plasmon resonance (SPR), and protein arrays.%1% |n
vitro kinase assays and SPR rely on purified recombinant proteins, making them scalable but
physiologically limited. Protein arrays, such as sandwich-ELISAs or dot blots, accommodate
complex cellular systems and allow medium throughput.'®! Yet, these rely on antibody
availability and involve cell lysis, preventing real-time kinetic measurements crucial for
understanding cellular physiology and pharmacokinetics.

Therapeutics in the clinic Level of detection Conventional in vitro methods
Fe fusion proteins e.g. - Western Blot
Sotatercept | —+— b Ligands SPR
KER-012 / ELISA
Blocking Antibodies e.g. | qPCR/RNAseq
\z Garetosmab L
DS6016a || ' Recept Western Blot  Crosslinkin SPR
Small molecules e.g. SELAE - 9
vl |+ ELISA Kinase assays
iirtape qPCR/RNAseq PLA
5;"'% z’gﬁ;ﬁggﬁg // ' Proteomics Microscopy
Saracatinib i
BCX9250 Down-stream Western Blot  IF/Microscopy
effectors ELISA
qPCR/RNAseq
] (Phospho-)proteomics
¢
& Transcriptional ~ APCR/RNAseq
A responses CHIP-seq )
= BRE/CAGA-luciferase/GFP reporters

Figure 2. Clinically tested therapeutics directly targeting the TGF-B signaling pathway for
PAH/FOP and conventional methods used to detect the corresponding signaling level. There
are three generally studied groups of therapeutics directly targeting TGF-B signaling: 1) Fc-fusion
proteins, 2) blocking antibodies, and 3) small molecules. The clinical therapeutics exemplified were
mostly developed since the start of this thesis and are discussed in the general discussion found in
chapter 7. These drugs often target a certain signaling level, ranging from circulating ligands to
transcriptional responses. There are various conventional in vitro methods used to detect different
signaling levels. Abbreviations not described in the main text; ELISA: enzyme-linked immunosorbent-
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Figure 2. (continued)
assay, IF: immunofluorescence microscopy, gPCR: quantitative polymerase chain reaction, PLA:
proximity ligation assay and CHIP-seq: Chromatin Immunoprecipitation-sequencing.

Despite their utility, conventional assays share key limitations. Many lack physiological
relevance as they rely on recombinant proteins, artificially high ATP levels, or overly simplified
experimental conditions. Most assays are incompatible with live-cell kinetic readouts because
they involve cell lysis without high-throughput capacity. These shortcomings impede the
ability to study drug effects on cellular physiology, pharmacokinetics, and complex cellular
environments, such as compound diffusion and stability, in real time and high-throughput
settings. Addressing these challenges is crucial for developing HTP screening methods that
reflect cellular complexity and facilitate the identification of effective TGF-B signaling
modaulators. In this thesis, we investigate innovative approaches to overcome these limitations,
advancing the development of novel therapeutics targeting TGF-B signaling.
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Thesis outline

The central hypothesis of this thesis is that novel therapeutics targeting TGF-B-associated
signaling pathways can be identified and investigated for their potential in treating PAH and
FOP. To achieve this, we combined method development with drug screening while
simultaneously exploring relevant downstream signaling pathways and therapeutic targets.
Accordingly, this thesis is structured into two main parts: (I) development of molecular tools
(chapter 2-3): Establishing innovative approaches to identify modulators of TGF-B signaling,
and (I1) molecular mechanisms and target discovery (chapter 4-6): Investigating the molecular
underpinnings of PAH and FOP to discover novel therapeutic targets.

This integrated approach aims to advance both the methodological framework and the
therapeutic landscape for TGF-B associated disorders (Figure 3).

Thesis objective: To identify and assess novel therapeutics and targets
for the treatment of TGF-B-associated genetic disorders

Pulmonary arterial Aberrant TGF-B Fibrodysplasia ossificans
hypertension (PAH) Signaling progressiva (FOP)
o = Loss of o Gainof o & .
§ ‘SR ' Function ’o Function = 7o
S ' L — -
o L Sae e
SO . .@ ¢
Cardiovascular remodeling Heterotopic ossification
Developing new methods to Molecular profiling to
identify TGF-B modulators identify druggable targets
—_ NanoBRET NanoBRET — Sex-biased Multi-omics Therapeutic
= e % PPl ” = ® ®TGF-B .. . AP-1 potential
e y 9¢ 5 P Al (FER) — OF
o o =% ak. - 9
o g "3 a < ® g o
Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6
PAH & FOP PAH PAH FOP FOP

Pre-clinical drug development

Figure 3. An overview of the central objective and thesis outline. The overall objective of this
thesis is to identify and test novel therapeutics and targets for the treatment of the TGF-B-associated
genetic disorders PAH and FOP. The thesis is stratified in two parts: 1) to develop new methods to
identify new TGF-B modulators and 2) to profile molecular mechanisms in disease to find and study
druggable targets. Part | includes chapter 2-3 while part Il involves chapter 4-6. The chapters are
generally arranged at increasing stages of pre-clinical drug development. All abbreviations are
described in the main text.

In chapter 2 we introduce a comprehensive toolkit to study TGF-B receptor-selective
compound target engagement (TE) in live cells. The toolkit includes a combination of
established and newly developed constructs, tracers, cell lines and protocols. The study
focused on optimizing and characterizing the current nanoBRET TE methodology as a high-
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throughput screening method. This improved protocol stands out from other methods for its
TGF-B receptor-specific, live cell (and kinetic), high-throughput, and antibody-independent
readout.

While the nanoBRET TE assay proved valuable for studying kinase inhibitors, it is unsuitable to
quantify ligand-inducible TGF-B receptor activation. As such, tracer-based NanoBRET TE is
limited to small molecules that compete with the tracer’s interaction capacity. However, a
broader range of drugs, including ligand (ant)agonists, allosteric modulators, ligand traps, and
antibodies (Figure 2), can target TGF-f signaling. Therefore, in chapter 3, we further developed
our nanoBRET toolkit to measure the protein-protein interaction (PPI) of TGF-B receptors with
either downstream SMAD effectors or a type Il TGF-B receptor. We focused on interactions
relevant in PAH to ultimately screen for a potential drug to treat this disease. This proof-of-
principle study demonstrated that nanoBRET-based PPl systems can detect ligand-induced
TGF-B receptor-specific interactions. Unfortunately, the nanoBRET-based PPI assays proved
unsuitable for large-scale experiments, hence, we performed a drug screen using nanoBRET
TE and an experimental kinase inhibitor library to identify novel potential PAH therapeutics
(see chapter 3).

In part Il of this thesis, we shifted to exploring and assessing novel TGF-B signaling-associated
molecular mechanisms to find targets for treating PAH or FOP. As such, chapter 4 introduces
context-dependent cross-talk of sex determinants on TGF-B signaling in PAH. In this literature
review, we assessed the relationship of sex-hormones and -genetics on TGF-B superfamily
members. Following this work, we may better explain the increased female predominance and
a more severe male phenotype observed in PAH. The findings reviewed here also led to the
hypothesis that sex-hormones, including estrogen and dehydroepiandrosterone (DHEA), might
be a valid (tissue-specific) therapeutic target dependent on the sex of the patient.

While canonical SMAD signaling has been extensively studied in TGF-B/BMP genetic diseases
like PAH and FOP, chapter 5 focuses on exploring which non-SMAD signaling pathways are
over-activated using FOP as an experimental model. Combining phosphoproteomics with
transcriptomics unveiled multiple non-SMAD signaling routes differentially regulated in
ALK2R206H expressing human mesenchymal stem cells (hMSCs). Downstream differential
regulation of Activator Protein-1 (AP-1) was identified and showed a promising therapeutic
target to reduce endochondral ossification in vitro. Consistent with our multi-omics findings,
in chapter 6, we investigated the molecular and cellular effects of targeting PI3Ka through
BYL719 (Alpelisib) repurposing in FOP. BYL719’s mechanism of action and target selectivity
were determined, alongside the optimization of drug administration protocols, using human
in vitro and mouse in vivo models.

This thesis integrates molecular, cellular and animal studies to redirect TGF-B superfamily-
induced SMAD and non-SMAD signaling pathways. While these studies were conducted in the
context of PAH and FOP, many findings in this thesis may very well be extended to other
research fields including cancer, cardiovascular disease, musculoskeletal disorders and fibrosis.
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