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Appendices

Figure AL1 Vegetation openness representation in REVEALS (A) and in

CARATIB (B, C).

Table AL1 CARAIB and REVEALS conflicting grid cells excluded from the

analysis.

CARAIB

REVEALS

Reason

PNV openness is
higher than observed
vegetation openness

First dominant PFT:
herbs/shrubs

First dominant PFT: trees/
herbs

Maximal observed vegetation
openness (i.e., estimated vegetation
openness + standard error) is lower
than PNV openness.

First dominant PFT: trees

First dominant PFT: shrubs

In the current ABM PNV openness
cannot be higher than pollen-
based vegetation openness.

In the current ABM trees cannot
dominate if climatic conditions
only allow dominance of herbs
or shrubs.

In the current ABM shrubs cannot
dominate if climatic conditions
only allow dominance of trees or
herbs.
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Figure AL.2 HUMLAND activity diagram.
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Table AL2 Existing estimates of FRI/fire frequency from sediment sites dated
to the Early-Middle Holocene in Europe.

Region Vegetation Dates FRI/fire activity Reference
60 km northeast
of city of Z?tiblishment Fire frequency was 60-90 years
Tampere f Piceain th 5290- bq bl 1)3/0 180 4 Pitkdnen et al.,
(southern boreal O Ficeainthe 9754 gp - Or probably 130-180 years 2001
vegetation area dated to (natural fire regime)
; Og o 5290 BP
%gfggé?;gaege 11700- High IFF (inferred fire frequency)
into rather 10400 BP (FRI: 50-350; fire frequency
Mediterranean  closed forests ! 2,5-4,8 episodes per 500 years)  Vanniere et al,,
basin £ ¢ tfires (FRI 2008
. _ ven more frequent fires (FRI:
:%?glsczgous ;;gg(()) gp 50-350; fire frequency 2-5
episodes per 500 years)
317-year mFRI and a maximum
_Il__%vxlsar?\(/i;ncgrt]he hiscsigfci?s 7100- FF of 3 fires/1000 years (gradual  Feurdean et al.,
Plain y woodland 4700 BP increase of anthropogenic 2013
impact)
Open landscape 11.700-
(dominance of 95’00 BP 1-4 fires per 1,000 years
Eastern Latvia  9rass) ggﬁgdean etal,
Boreal forest ?ggg_BP Shorter FRI (200 years)
Low-to-moderate CHAR values,
a 300-year mFRI (200-400 years)
and 12 charcoal peaks for this
. 8050- time interval. Other mountain Feurdean et al.,
Balkan Peninsula Borealforest — 46308p  poreal forests: FRI0f 50-100 2019
(Bulgaria), 60-250 (Carpathians
and Bohemia), 80-100
(Mediterranean) years
Series of
consecutive
phases of birch 100 years and was frequently
and birch-pine  6850- in the range of 10-20 years
forests withan ~ 5600BP  (presence of anthropogenic
admixture of impact)
broadleaved
trees
Centra' art After 5000 BP
of the Et?st the expansion Novenko et al.,
European Plain of woodland 2018
coverage (to
ie,n()c_l’z(a)z/oe)'irt\ht?\e 5600- Fire frequency is 300-500 years
proportion of 3000 BP (presence of anthropogenic
broadleaved impact)
trees and the
appearance of
spruce (mixed
forest)
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Figure AL3 Results of experiments conducted for 100 hunter-gatherer groups:
A-percentage of grid cells dominated by trees after the accessible radius was
varied; B-mean vegetation openness after the accessible radius was varied;
C—percentage of grid cells dominated by trees after the openness criteria to
burn was varied; D-mean vegetation openness after the openness criteria
to burn was varied; E—percentage of grid cells dominated by trees after the
percentage of moving campsites was varied; F-mean vegetation openness
after the percentage of moving campsites was varied; G-percentage of grid
cells dominated by trees after the movement frequency was varied; H-mean
vegetation OEenness after the movement frequenc%; was varied. Each line
depicted on the experiment output graph represents the mean of 30 simulation
runs. The horizontal dashed line indicates REVEALS estimates, and the
vertical dotted line shows the step when simulations reach equilibrium.
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Figure AIL4 Results of experiments conducted for 1000 hunter-gatherer
groups: A—percentage of grid cells dominated by trees after the accessible
radius was varied; B-mean vegetation openness after the accessible radius
was varied; C—percentage of grid cells dominated by trees after the openness
criteria to burn was varied; D-mean vegetation openness after the openness
criteria to burn was varied; E-percentage of grid cells dominated by trees after
the percentage of moving campsites was varied; F-mean vegetation openness
after the percentage of moving campsites was varied; G-percentage of grid
cells dominated by trees after the movement frequency was varied; H-mean
vegetation OEenness after the movement frequenc%{1 was varied. Each line
depicted on the experiment output graph represents the mean of 30 simulation
runs. The horizontal dashed line indicates REVEALS estimates, and the
vertical dotted line shows the step when simulations reach equilibrium.
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Figure AL5 CARAIB bare ground. Legend: 1-fraction of bare ground in
percentages; 2-no data.
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Figure AL6 Datasets used in the current ABM: DEM (A), major rivers and
lakes (B), CARAIB distribution of first dominant PFTs (C) and vegetation
openness (D), REVEALS distribution of first dominant PFTs (E) and
vegetation openness (F) and its standard errors (G), CARAIB NPP (H),
megafauna vegetation consumption (I). Legend: 1-elevation (m); 2-no data;
3-major rivers and lakes; 4-herbs; 5-shrubs; 6-broadleaf trees; 7-needleleaf
trees; 8—vegetation openness in percentages; 9-standard errors for REVEALS
vegetation openness; 10-CARAIB NPP (g/m?®); 11-megafauna vegetation
consumption (g/m?).

Table AI6 Confusion matrix for CARAIB and REVEALS PFT comparison.

Predicted Positive Predicted Negative
Actual Positive 5 0
Actual Negative 7776 8225
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Table AIL9 Confusion matrix for HUMLAND and REVEALS PFT comparison.

Predicted Positive Predicted Negative
Actual Positive 3925 3854
Actual Negative 3856 4371
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Appendix II
HUMLAND ABM 1.0 Overview,
design concepts and details (ODD)
protocol

Anastasia Nikulina', Fulco Scherjon’, Katharine MacDonald'2
! Faculty of Archaeology, Department of World Archaeology, Leiden University, Leiden, The

Netherlands
2 Deceased
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AIl.1 Purpose

Humans started transforming their environment long before the emergence of
agriculture and industrialization. Foraging societies conduct niche construction
activities including vegetation burning which significantly modifies the
occupation area of hunter-gatherers. Currently available evidence suggests that
both Neanderthals and Mesolithic humans practiced vegetation burning. Due
to the scarcity of evidence and the absence of a common research protocol to
study the anthropogenic impact on landscapes, there are gaps in research about
the dynamics of interglacial environments and the role of hominins in landscape
changes. Particularly, the extent of vegetation burning organized by hunter-
gatherers is still a focal point of research.

Landscape dynamics are complex and include variable components such
as climatic fluctuations, megafauna impact, natural fires, and anthropogenic
activities. Thus, there is a need for further research which can allow us to assess
different possible scenarios for anthropogenic impact which play a role in
landscape change. Therefore, the purpose of this model is to track and quantify
the intensity of different impacts on landscapes on the continental level and to
determine the most influential factor in transformation of interglacial vegetation
with specific focus on burning organized by hunter-gatherers. This model
accumulates different types of spatial datasets (Section All.6) which are used as
input and target for ABM results. Additionally, the study incorporates recently
obtained specifically for this research continental-scale estimates of fire return
intervals (FRI) and speed of vegetation regrowth in the current simulation. The
obtained results include maps of possible scenarios of modified landscapes in the
past and quantification of input of each agent (climate, humans, megafauna and
natural fires). The model has been implemented in NetLogo (version 6.2.2) and is
accessible via the COMSES model depository (https://www.comses.net/, search for
HUMLAND; DOI: 10.25937/fxdg-fn86).

AIlL.2 Entities, state variables, and scales

The following entities are included in the model: agents representing hominin
groups (one agent is one group, Table All.1), campsites (turtles, have only one static
variable my_hominin which indicates the group occupying this campsite) and grid
cells (patches, Table All.2).
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Table AIL1 Hominin state variables.

Variable name Variable type and units Meaning
. A patch where a campsite is located
my_home Dynamic, patch (home patch of a group)
my_campsite Dynamic, turtle Campsite is the home of a hominin group
Table AIL2 Grid cells state variables.
. Variable type .
Variable name and units Meaning
: Static, float, .
patch_elevation meters Absolute elevation (a.s.l.)
CARAIB (CARbon Assimilation In the
- Biosphere) first dominant PFT: 1-herbs, 2—-
patch_natural_pft Static, integer shrubs, 3-needleleaf trees, 4-broadleaf trees,
-1-no data
REVEALS (Regional Estimates of VEgetation
- Abundance from Large Sites) first dominant
patch_pollen_pft Static, integer PFT: 1-herbs, 2-shrubs, 3-needleleaf trees, 4-

broadleaf trees, -1-no data

Current dominant PFT: 1-herbs, 2-shrubs, 3-
patch_pft_updating Dynamic, integer needleleaf trees, 4-broadleaf trees, -1-no data,
0-burnt/fully consumed area

CARAIB vegetation openness: 0-minimal value

patch_natural_openness Steartclg,nftlgag (0%, totally closed), 100-maximal value (100%,
P 9 totally open), -1-no data
Static. float REVEALS vegetation openness: 0-minimal
patch_pollen_openness perce'ntage’ value (0%, totally closed), 99-maximal value

(99%, totally open), -1-no data

patch_pollen_openness_se Static, float REVEALS vegetation openness standard error

(se)
Static. float Maximal possible REVEALS openness: patch_
patch_pollen_openness_max perce’ntage' pollen_openness + patch_pollen_openness_

se

Current vegetation openness: 0-minimal value

Dynamic, integer, (0%, totally closed), 100-maximal value (100%,

patch_openness_updating

percentage totally open), -1-no data
. o Presence of big rivers and lakes: 0-no rivers/
fivers_lakes Static, integer lakes, 1-presence of rivers/lakes, -1-no data
. Static, integer,
fri years FRI values for each PFT
patch_natural_npp Static, float, g/m? CARAIB NPP

megafauna_npp_

. ) .
consumption Static, float, g/m*  Megafauna carbon consumption

Delay in the frequency of natural fires after

fire_delay_after_consumption Dynamic, integer partial megafauna consumption of vegetation

Openness regrowth speed per step after

openness_regrowth_rate Dynamic, float impact
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Variable name

Variable type
and units

Meaning

last_burning_episode

next_burning_episode

episode
last_agent_impacted_pft

last_agent_impacted_
openness

herbs_regeneration_step

shrubs_regeneration_step

needleleaf _trees_
regeneration_step

broadleaf_trees_
regeneration_step

neigbouring_pathes

hominin_accessible_area

raster_layer

last_partial_consumption_

agent_that_could_impact_

Dynamic, integer
Dynamic, integer

Dynamic, integer

Dynamic, integer

Dynamic, integer
Dynamic, integer
Dynamic, integer
Dynamic, integer

Dynamic, integer

Dynamic, integer

Dynamic, integer

Dynamic,
integer/float

Simulation step of the last fire episode of a
patch

Possible next natural fire event when
probability of ignition is 100%.

Step of the last partial consumption episode
of a patch

Last agent that changed a dominant PFT of a
patch: 1-humans, 2-natural fires, 3-climate,
4-megafauna

Last agent that impacted a patch: 1-humans,
2-natural fires, 3-climate, 4-megafauna

Step when herbs will regrow after vegetation
burning or consumption

Step when shrubs will regrow after vegetation
burning or consumption

Step when needleleaf trees will regrow after
vegetation burning or consumption

Step when broadleaf trees will regrow after
vegetation burning or consumption

Agent that can potentially cause burning on
neighbouring patches: 1-humans, 2—-natural
fires, 3-climate, 4-megafauna

Defines if the patch is within accessible
area for humans: 1-within the area, 0-not
accessible for humans

Used to create an ASClI file with modelling
results

The model is two-dimensional, and its spatial extent is a rectangle with 544 x 430
patches. Each cell of input raster datasets (Section All.6, Table All.6) is resampled
(i.e., spatial resolution was changed) to 10 km x 10 km in size. The world wraps
horizontally and vertically. The current version of the model imports all spatial
datasets for one time window (9200-8700 BP). One simulation step equals one
year, and the current simulation does not account for seasonal variability. One run
is 1000 time steps.

AII3 Process overview and scheduling

Simulation starts with setup when input datasets are imported, entities are
created, their state variables are set, and the conflicting cells are removed. In
HUMLAND, more closed vegetation can only switch to more open vegetation after
a disturbance event (fire, grazing). In our data comparison, where CARAIB shows a
greater degree of opennessin vegetation than REVEALS, we exclude these locations:
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the ABM will not be able to generate vegetation that is comparable to REVEALS as
it is constrained by the CARAIB-prescribed PNV. As a result, the similarity between
ABM output and REVEALS datasets can only be improved for grid cells where
initial vegetation openness is equal to or lower than observed estimates. These
are the conflicting grid cells which are not taken into account when the primary
observations (mean vegetation openness and percentage of dominant PFTs for
cells with both REVEALS and CARAIB data) during the simulation runs are taken.

The process overview of simulation runs is shown in Figure All.1. Plots update
at each step, and the simulation stops after 1000 steps. Each of them starts with
vegetation regeneration. This submodel (Section All.7) executes only for patches
which were previously (i.e., during the earlier step) burnt or consumed.

Hominins are the first agent that reduces vegetation cover. The anthropogenic
fire submodel (Section All.7) is executed via three phases. During the first phase,
hominins randomly move towards one of neighbouring patches within the area
defined by accessible radius around their campsites. When a hominin reaches a
patch with trees or shrubs as a dominant PFT and vegetation openness smaller
or equal to a number defined via the Openness_criteria_to_burn variable, this
patch is burnt. During the second phase, fire spread is initiated. Finally, the current
vegetation openness of burnt patches and dominant PFT are compared with
REVEALS data.

The natural fires submodel (Section All.7) is initiated after hominin impact.
During the setup the number of patches, that will be hit by thunderstorms per
step, is calculated based on a value of the Territory_impacted_by_thunderstorms
variable. Every simulation step random patches are chosen and impacted by
thunderstorms. Thunderstorms can occur in high mountains, lakes and rivers, but
these episodes never lead to ignition. Depending on the probability of ignition of
a patch which are not water bodies or high mountains, patches can be burnt after
thunderstorms. Similarly to anthropogenic burning, thunderstorms can cause fire
spread. Finally, the current vegetation openness of burnt patches and dominant
PFT are compared with REVEALS data.

Only grid cells with fully recovered vegetation can be consumed by megafauna.
This assumption arises from our use of estimates for potential maximal megafauna
plant consumption and the absence of data regarding partial consumption during
the vegetation regrowth phase. After plant consumption, vegetation openness
increases depending on the CARAIB NPP values and the maximal megafauna
plant consumption estimates. Regarding megafauna impact on PFTs, it is assumed
that megafauna equally consumes all PFTs present on a grid cell, i.e., besides the
first dominant PFT megafauna consumes second, third and fourth dominant PFTs
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in equal proportions. That is why, the first dominant PFT is replaced, only if the
vegetation was entirely consumed by megafauna, and vegetation openness value
after consumption is 100%. In this case, the first dominant PFT would be replaced
by bare ground

Figure AIIL1 Activity diagram of process overview.
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AIl.4 Design concepts (after Nikulina et al., 2024b)

All.4.1 Basic principles

The history of anthropogenic impacts on the environment spans over many years,
with humans already engaging in landscape transformations before the emergence
of agriculture. Ethnographic observations show that hunter-gatherers or foragers
(i.e., groups that mainly depended on food collection or foraging of wild resources)
influence their surroundings in several ways including modification of vegetation
communities via burning. This practice was identified for all vegetation types
except tundra at different spatial scales and for diverse objectives including driving
game, stimulating the growth of edible plants, and clearing pathway.

Besides ethnographic data, evidence from archaeological contexts show that
fire use was an important part of the technological repertoire of the Homo lineage
since at least the second half of the Middle Pleistocene. Human-induced vegetation
burning during the Late Pleistocene has been proposed as a potential factor in
several case studies spanning various continents. Notably, the earliest evidence of
such activities on a local scale was identified at the Neumark-Nord site in Germany,
dated to the Last Interglacial (Eemian, ~130,000-116,000 BP). In addition, fire-using
foragers were suggested as one of the primary drivers of vegetation openness
in Europe during the Last Glacial Maximum, i.e., possibly constituting one of the
earliest large-scale anthropogenic modifications of system earth.

While these Pleistocene cases are still subject to debate, human-induced
vegetation burning conducted by hunter-gatherers during the Early-Middle
Holocene (~11,700-6000 BP) is generally accepted, even though the quality of the
data is not necessarily that different. However, the number of case studies is higher
for the Early—-Middle Holocene than for the Pleistocene. Most of the Early-Middle
Holocene evidence comes from the European context.

Despite the presence of case studies for anthropogenic burning (intentional or
not) of past landscapes by hunter-gatherers, it is still difficult to establish whether
these local-scale impacts caused changes at the regional and (sub-)continental
scales. Furthermore, overall landscape dynamics do not only depend on humans,
and rather represent the complex interplay of natural and cultural processes at
different spatio-temporal scales. Landscapes are thus complex systems where
heterogeneous components interact to impact on ecological processes, and
might demonstrate non-linear dynamics and emergence. Therefore, it is often
challenging to distinguish different impacts on landscapes using proxy-based
reconstructions (e.g., palynological datasets).
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Modelling approaches offer excellent opportunities to explore how complex
components of systems might interact, particularly when real-time experiments
are not possible. Spatially-explicit agent-based modelling (ABM) is commonly
used to explore complex systems where multiple factors intertwine and to
propose possible scenarios of system functioning, and the outcomes of ABMs
can be compared to empirical data. This approach has been applied in various
contexts to study past human-environment interactions and land use/land cover
changes. There are examples of such models for past societies that practiced
agriculture and animal husbandry, and for hunter-gatherer groups. In the case of
ABM developed to study foragers, the use of fire by hunter-gatherers to transform
foragers’ surroundings and the landscape consequences of these practices are
usually not discussed.

This model includes four types of impact on vegetation: climatic impact,
anthropogenic fires, thunderstorms, and megafauna plant consumption.
Thunderstorms were included because lightning is one of the most general and
widespread triggers of natural fire. Another source of impact is climate, and it is
included as a crucial element for vegetation regeneration after fires or vegetation
consumption. Finally, megafauna are also a part of the current ABM, because the
herbivory activity impacts litter accumulation, and high levels of megafauna plant
consumption reduce fire occurrence in many areas.

AlIl.4.2 Emergence

The model's key results are increase of average vegetation openness and decrease
of the percentage of cells dominated by trees. These results emerge from joint (i.e.,
several agents together) and separate (i.e., only one agent) impacts of different
agents (hominins, thunderstorms and megafauna) on vegetation. The increase
of vegetation openness and change of PFT's distribution are driven by a specific
combination of agents and values of variables that influence their behaviour.

All.4.3 Adaptation
There is no adaptation in the model.

AIl4.4 Objectives

Vegetation burning is an objective for hominins. Each step hominins move
randomly to one of the neighbouring patches. If it covered by shrubs or trees and its
vegetation openness is equal or lower than the Openness_criteria_to_burn value,
then the fire will be set. Otherwise, humans do not impact this patch. Megafauna
and thunderstorms do not have objectives.
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AIl.4.5 Learning
Agents do not learn.

All.4.6 Prediction
Agents do not predict.

All.4.7 Sensing

Humans are assumed able to sense dominant PFT and vegetation openness of
a grid cell where humans are located. Hominins can sense if their campsites and
home patches are beyond accessible radius. It is useful in cases when two campsites
are located nearby, and their accessible areas overlap. If a hominin is far from his
campsite (does not sense his campsite anymore i.e., it is beyond accessible radius),
this hominin automatically comes back to its campsite.

AIl.4.8 Interaction

Hominins directly affect patches. If a hominin decides to burn a patch, its state
variables are modified.

AIlL4.9 Stochasticity

Stochasticity is used in initializing the model when random distribution of
hominins within the study is set. Additionally, hominins randomly choose one of
neighbouring patches on which hominins move around campsites. Finally, humans
randomly choose patches when the campsites will be moved during simulation
runs. This happens with a specific frequency defined via the Movement_frequency_
of_campsites variable.

Thunderstorm impact also includes stochasticity. The number of patches are
defined via the Territory_impacted_by_thunderstorms parameter. Several random
inland patches are selected every simulation step to potentially have natural fire.
The actual natural vegetation burning depends on a probability of ignition P(l)
(AILT):

P(l) = L8 (AlLY),

where B is the step when the last burning episode occurred, F-FRI, and T-the
number of simulation steps (ticks) since the beginning of the simulation. Once
P(l) is calculated, a random float number between 0 and 1 is chosen. If R < P(l),
this patch will be burnt. Similarly to ignition caused by natural fires, fire can
spread on neighbouring patches after natural and human-induced fires. For the
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neighbouring patches the P(l) is calculated, and the fire event can occur depending
on the obtained P(l) and random a random float number.

AIl.4.10 Collectives
There are no collectives in the model.

All.4.11 Observation

The primary model observations are distribution of dominant PFT (percentage of
patches covered by each PFT) and mean vegetation openness for patches which
have both REVEALS estimatesand CARAIB values (i.e., notall patches are considered).
These values are provided via plots on the model interface and extracted tables.
The ABM output is considered similar to REVEALS data if the simulation produced
the same percentage of first dominant PFTs and mean vegetation openness values
or if the difference between ABM output and REVEALS data varies within +5%
(the range of change is 10%). Additionally, the different types of impact (i.e., the
number of grid cells modified by each type of impact) are tracked via recording
which impact caused openness and PFT changes.

AIL5 Initialization (after Nikulina et al., 2024b)

First, the environment is created during the initialization. Patch state variables at
the end of the initialization step are described in Table All.3. In HUMLAND, more
closed vegetation can only switch to more open vegetation after a disturbance
event (fire, grazing). In our data comparison, where CARAIB shows a greater
degree of openness in vegetation than REVEALS, we exclude these locations: the
ABM will not be able to generate vegetation that is comparable to REVEALS as it
is constrained by the CARAIB-prescribed PNV. As a result, the similarity between
ABM output and REVEALS datasets can only be improved for grid cells where initial
vegetation openness is equal to or lower than observed estimates. Secondly, there
are several grid cells where climatic conditions only favour dominance of herbs
or shrubs, but observed vegetation indicates dominance of trees. Besides that,
shrubs cannot dominate grid cells where climatic conditions favour trees or herbs
in HUMLAND. Such cases do not improve similarity between ABM output and
REVEALS data, and, therefore, these grid cells were also excluded (Table All.5).
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Table AIL3 Patch state variables and their values at the end of the initialization

stage.

Variable name

Value

Explanation

patch_elevation
patch_natural_pft

patch_pollen_pft

patch_pft_updating

patch_natural_openness

patch_pollen_openness

patch_pollen_openness_
se

patch_pollen_openness_
max

patch_openness_
updating

rivers_lakes

fri
patch_natural_npp

megafauna_npp_
consumption

fire_delay_after_
consumption

openness_regrowth_rate
last_burning_episode

next_burning_episode

last_partial_
consumption_episode

last_agent_impacted_
pft

last_agent_impacted_
openness

In accordance with
GTOPO30

In accordance with CARAIB
first dominant PFT

In accordance with REVEALS
first dominant PFT

patch_pft_updating =
patch_natural_pft

In accordance with CARAIB
vegetation openness

In accordance with REVEALS
vegetation openness

In accordance with REVEALS
standard errors

patch_pollen_openness +
patch_pollen_openness_se

patch_natural_openness =
patch_openness_updating

Oor1
246,426, 286 or 293

In accordance with CARAIB
NPP

In accordance with
megafauna vegetation
consumption dataset

-1

last_burning_episode + fri

-1

Value is set depending on GTOPO30
dataset

Value is set between 1 and 4 depending
on CARAIB dataset

Value is set between 1 and 4 depending
on CARAIB dataset

Variable has the same value as theoretical
potential natural vegetation provided by
CARAIB

Value is set between 9 and 100
depending on CARAIB dataset

Value is set between 0 and 99 depending
on REVEALS dataset

Value is set depending on REVEALS
dataset

Maximal possible REVEALS vegetation
openness

Variable has the same value as theoretical
potential natural vegetation provided by
CARAIB

Value depends on WISE dataset

The value depends on CARAIB first
dominant PFT (Table All.4)

Value is set depending on CARAIB
dataset

Value is set depending on megafauna
vegetation consumption data

Before megafauna consumption of a
patch this variable is set to -1

Before simulation runs this value is set
to0

Before simulation runs this value is set
to0

Defines the step when this patch has
100% chances to be burnt

Before megafauna consumption of a
patch this variable is set to -1

Before simulation starts the vegetation
cover is created by climate only. Thus, all
patches have value 3

Before simulation starts the vegetation
cover is created by climate only. Thus, all
patches have value 3
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Variable name Value Explanation

Before agent’s impact all patches do not

herbs_regeneration_step 0 require regeneration step

shrubs_regeneration_ 0 Before agent’s impact all patches do not
step require regeneration step
needleleaf_trees_ 0 Before agent’s impact all patches do not

regeneration_step require regeneration step

broadleaf_trees_ 0 Before agent’s impact all patches do not
regeneration_step require regeneration step

agent_that_could_ This value is 0 prior to simulation runs,

impact_neigbouring_ 0 :
pathes because there was no impact yet

If the patch is within accessible area, the
hominin_accessible_area 0or 1 value is set to 1. Otherwise, this variable

equals 0

Used to create .asc file. This variable can
raster_layer - have any value depending on chosen
patch variable

Table AIL4 Mean FRI for each dominant PFT.

PFT Mean FRI estimated via MODIS
Needleleaf trees 246
Broadleaf trees 426
Shrubs 286
Herbs 293

Table AIL5 CARAIB and REVEALS conflicting cells excluded from the
analysis during initiation stage.

CARAIB REVEALS Reason

Possible natural (CARAIB)  Maximal observed (REVEALS) In the current ABM possible natural
vegetation openness is vegetation openness (i.e., vegetation openness cannot
higher than observed estimated vegetation openness  be higher than pollen-based
vegetation openness + standard error) is lower than ~ vegetation openness.

possible natural (CARAIB)
vegetation openness.

First dominant PFT: herbs/  First dominant PFT: trees In the current ABM trees cannot

shrubs dominate if climatic conditions
only allow dominance of herbs or
shrubs.

First dominant PFT: trees/  First dominant PFT: shrubs In the current ABM shrubs cannot

herbs dominate if climatic conditions
only allow dominance of trees or
herbs.
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Once the environment is created, hominins and their campsites are randomly
distributed on surfaces with vegetation. The number of campsites and hominins
is defined via the Number_of_groups parameter. Patches around campsites are
defined as accessible areas. The Accessible_radius parameter defines the size of this
area in the number of grid cells around campsites, and the hominin_accessible_
area state variable equals 1 for patches within the accessible area. Hominins cannot
move beyond their foraging areas, on water bodies (sea, big lakes, and main rivers)
high mountains. These are the patches with absolute elevations more than 2500
m. Water bodies and the most elevated areas do not have vegetation cover, and,
therefore, cannot be burnt or consumed. Except for the patch_elevation and
rivers_lakes, patches with high mountains and water bodies have -1 for their state
variables.

AIL6 Input data (after Nikulina et al., 2024b)

The simulation uses several datasets (Table All.6). To standardize their spatial extent
and resolution Spatial Analysts and Data management ArcMap 10.6.1 toolboxes
were used. Grid cell sizes of the datasets were resampled to 10 km x 10 km.

The initial landscape before simulation runs were reconstructed via the
following datasets: GTOPO30, Water Information System for Europe (WISE)
and three outputs of a dynamic vegetation model CARbon Assimilation In the
Biosphere (CARAIB). GTOPO30 is a digital elevation model (DEM) derived from
several raster and vector sources of topographic information. We used this DEM
to represent elevation data in the ABM. WISE dataset is based on the information
from the Water Framework Directive database, and we used WISE to define the
distribution of major rivers and lakes (natural barriers for fire spread) in the model.

In the context of this research, the CARAIB dataset represents theoretical
potential natural vegetation (PNV) distribution driven by climatic conditions only.
As an input climate we used climatic variables simulated by the iLOVECLIM model
with embedded online interactive downscaling. The iLOVECLIM-simulated climatic
variables were bias-corrected using the CDF-t bias correction technique and
averaged over the studied period to get daily mean climate characteristics of our
period of interest. A full description of the modelling setup and the application of
the CDF-t technique within this setup is described and tested.

CARAIB outputs used in this study include distribution of fractions of 26 plant
functional types (PNV PFTs), vegetation openness (PNV openness), leaf area index
(LAI) and net primary productivity (PNV NPP) for the period 9200-8700 BP. Before
being imported to the ABM, the mentioned CARAIB outputs were transformed. As
the CARAIB dataset here represents climate-only forced vegetation, it is used in
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the current ABM as the starting point (i.e., before impact of humans, natural fires

and megafauna) of each simulation and as target for vegetation regrowth after

impacts.

Table AIL6 Input datasets to the simulation environment (after Nikulina et

al., 2024b).
Dataset Initial data Initial spatial Meaning, units
type resolution/scale

GTOPO30 Raster 1km Digital elevation model, m

WISE Vector 1:10000000 Distribution of large rivers and lakes

CARAIB first Raster ~26 km (0.25°) Potential natural (climate-based) first

dominant PFT dominant PFT

CARAIB vegetation Potential natural (climate-based)

openness vegetation openness, in percentage

NPP Potential net primary carbon
productivity (excluding carbon used for
respiration), g/m?

Megafauna Raster 30 km Potential maximal megafauna

vegetation vegetation consumption (i.e.,

consumption metabolization of NPP), kg/km?
(converted to g/m?)

REVEALS first Vector ~100 km (1°) Observed past first dominant PFT

dominant PFT

REVEALS Observed past vegetation openness, in

vegetation percentage

openness

REVEALS Standard errors for estimates of

vegetation observed past vegetation openness.

openness standard
errors

AIL7 Submodels (after Nikulina et al., 2024b)

AIlL7.1 Climatic impact
The vegetation regrowth after the impact of thunderstorms, megafauna, and/or

humans is determined by the climatic conditions. Therefore, this submodel only

modifies grid cells that were previously burned or consumed, and during the first

simulation step, it does not alter vegetation openness and PFT of patches.
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The grid cells’ patch_openness_updating and patch_pft_updating (Figs.
All.2 and All.3) are changed in response to the climatic impact until they match
the values of patch_natural_openness and patch_natural_pft, respectively. If the
difference between patch_natural_openness and patch_openness_updating is
equal to or less than 10%, the grid cell is considered to have recovered naturally,
and the last agent that impacted this patch is assumed to be the climate (last_
agent_impacted_openness = 3). Similarly, if patch_natural_pft is equal to patch_
pft_updating, the last agent that impacted the PFT of this grid cell is climate
(last_agent_impacted_pft = 3).

We used the CARAIB mean number of years to recover (Table All.7) to calculate
the vegetation openness recovery rate and to define the step when natural PFT
would reestablish on the grid cell after vegetation burning and/or consumption.
PFT recovery on all impacted patches always begins with herbs, which replace
bare ground after seven simulation steps. Subsequently, depending on the initial
dominant PFT estimated by CARAIB after the required number of years since fire
or complete consumption (Table All.7), the herbs may be replaced by trees or
shrubland.

After megafauna plant consumption, natural and anthropogenic fires the rate
of vegetation openness recovery (V ) is calculated via the following formula (All.2):

or

vV, = 25% (All.2)

O, represents the vegetation openness after the impact caused by fire or
megafauna, 0, refers to the CARAIB estimates of vegetation openness, and p — the
mean number of years required for recovery of the initial vegetation openness
prior to the fire event or plant consumption (Table All.7). During each simulation
step, V__is subtracted from the current simulation openness until it reaches the
CARAIB estimates of vegetation openness.
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Figure AIL2 Activity diagram for climatic impact on vegetation openness.
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Figure AIL3 Activity diagram for climatic impact on distribution of dominant
PFTs.

251



Appendices

Table AIL7 Mean number of years to recover for each dominant PFT (after
Nikulina et al., 2024b).

PFT Number of years
Needleleaf trees 43

Broadleaf trees 30

Shrubs 43

Herbs 7

AIl7.2 Anthropogenic impact

This submodel introduces changes to the vegetation through human-induced fires.
There are five parameters which define human behaviour and intensity of their
impact: Number_of_groups, Accessible_radius, Campsites_to_move, Movement_
frequency_of_campsites, and Openness_criteria_to_burn.

The first parameter defines the number of hunter-gatherer groups present
at the study area during one simulation run, and, therefore, this parameter is
associated with human population size. The accessible radius parameter defines
the territory within which humans move and set fires around campsites.

Due to the importance of mobility for hunter-gatherer lifestyle, there are two
parameters associated with movements of foragers: Movement_frequency_of_
campsites (the number of simulation steps after which a group can relocate their
campsite) and Campsites_to_move (the percentage of groups that relocate a
campsite at certain step defined by movement frequency). Due to the temporal
resolution of the current simulation, hunter-gatherers’ highest possible frequency
of camp movements is every step (i.e., once per year). The search radius for the
new grid cell to establish a site is twice bigger than the accessible radius. Any grid
cell can be chosen for the new site, except the previously occupied grid cell. The
newly established accessible area can overlap with the previous one.

Since hunter-gatherers have different reasons to burn landscapes, and that
this practice was documented in almost all vegetation types with more cases for
foragers occupying shrublands and forests, the openness criteria to burn was
introduced. In the current simulation, humans only burn grid cells dominated by
trees or shrubs with vegetation openness lower or equal to this criterion. A low
value minimizes the number of positive decisions to start a fire, and higher values
increase human-induced fires, because even relatively open areas can be burnt by
people in this case.

Humans randomly move between adjacent patches within a defined area
determined by the Accessible_radius (the number of grid cells) around campsites.
When a human is present on a patch with vegetation openness that is equal to
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Figure AIL4 Activity diagram for anthropogenic impact.
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or lower than the prescribed criteria for burning and contains shrubs or trees
(patch_pft_updating >= 2), this human sets fire on that patch. Consequently, the
openness of the patch is updated to 100% (completely open), and its PFT (patch_
pft_updating) is set to 0, indicating a burnt area. In this scenario, the variables
last_agent_impacted_openness and last_agent_impacted_pft are assigned a
value of 1 to denote anthropogenic impact. The time step at which this burning
event occurs is recorded as last_burning_episode, and next_burning_episode
is updated based on the dominant natural PFT (Table All.4). Subsequently, after
calculating the regeneration steps (ticks + number of years from Table All.4) and
openness regrowth rates (Section All.7.1), the spread of vegetation to neighbouring
patches is initiated (Section All.7.4).

AIL7.3 Natural fires

Based on the value of the parameter Territory_impacted_by_thunderstorms,
the number of grid cells experiencing thunderstorms per simulation step is
determined. This parameter is expressed as a percentage, and based on its value,
the calculation determines how many grid cells will be affected by thunderstorms.
These thunderstorms randomly occur on different grid cells within the study area.
It is important to note that thunderstorms can occur over rivers, lakes, and high
mountains, but these areas are not susceptible to burning.

Following the occurrence of thunderstorms, fires may initiate fire spread
depending on the probability of ignition for the affected grid cells (Fig. AllL5).
The spread of fire (Section All.7.4) to neighbouring grid cells can occur after
both human-induced and natural fires. Thunderstorms do not always result in
vegetation burning, and the ignition of fire does not always lead to its propagation
after natural or human-induced ignitions.

The probability of ignition P(l) is determined based on the time elapsed since
the last burning episode (B) and the FRI (F), obtained from the MODIS dataset
(Table All.4) (All.3):

Pl) = 1B (All.3)

Here, T represents the number of simulation steps (ticks) since the beginning
of the simulation. If the probability of ignition is equal to or higher than a
randomly chosen number (ignt, as shown in Fig. All.5), the corresponding patch
will be burnt. The consumption of patches by megafauna impacts the probability
of ignition. Depending on the percentage of vegetation consumed (as described
in Section All.7.5), the occurrence of the next burning episode can be delayed.
To calculate the probability of delayed ignition, the same formula is used, but
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Figure AIL5 Activity diagram for thunderstorm impact.
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with a modification: instead of using the current number of ticks (T), we use the
sum of T and fire_delay_after_consumption. This patch state variable represents
the number of years by which the next burning episode was postponed due
to megafauna vegetation consumption (Section All.7.5). The value of B is also
updated as a result of megafauna impact (details provided below).

Once a patch is burned (indicated by patch_pft_updating = 0 and patch_
openness_updating = 100), the regrowth rate of openness (Section All.7.1) and
the steps for PFT regeneration (ticks + number of years from Table All.5) are
determined. Additionally, the information of the last agent that impacted the
patch is updated Section All.7.1). Subsequently, the neighbouring patches are
prompted to spread the fire as explained in Section All.7.4.

AIl7.4 Fire spread

Following natural and anthropogenic burning, fire has the potential to spread to
neighbouring patches. However, the actual ignition of these patches depends on
the probability of ignition, which is calculated using the same method described
for natural fires in Section All.7.3. If a patch is burnt because of fire spread, it will
inherit the same values for last_agent_impacted_pft and last_agent_impacted_
openness as the patch from which the fire spread originated.

AIlL7.5 Megafauna consumption

Megafauna is the final agent responsible for vegetation transformation in the
model (Fig. All.6). Only grid cells with fully recovered vegetation are susceptible
to consumption by megafauna. Following plant consumption, the vegetation
openness increases based on CARAIB NPP values and estimates of maximal
megafauna plant consumption.

Regarding the impact of megafauna on PFTs, it is assumed that megafauna
consumes all PFTs present on a grid cell in equal proportions, besides the first
dominant PFT. Therefore, if the vegetation is entirely consumed by megafauna
and the vegetation openness reaches 100%, the first dominant PFT is replaced
with bare ground. In such cases, both last_agent_impacted_pft and last_agent_
impacted_openness are assigned a value of 4, indicating that the impact was
caused by megafauna. However, if the dominant PFT remains unchanged after
megafauna consumption, only last_agent_impacted_openness is updated.

The percentage of vegetation consumed (V) is calculated for each grid cell,
excluding water bodies and high mountains, using the following formula (All.4):

V. = ‘\j—:x 100 (All.4)

C
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Figure AIL6 Activity diagram for megafauna impact.
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V_ represents the grid cell value for potential maximal megafauna
metabolization of NPP, and V_ corresponds to the CARAIB NPP. Once the
percentage of consumed vegetation is calculated for a grid cell, this value is added
to the existing vegetation openness to increase it after the impact of megafauna.
Furthermore, the first dominant PFT is updated based on the resulting vegetation
openness after vegetation consumption.

When there is partial consumption of vegetation by megafauna (i.e., when the
first dominant PFT remains unchanged), it leads to delays in fire activity because
time is required to accumulate plant material that can be burnt. The number of
years by which fire activity is delayed is calculated by multiplying with the FRI
of the respective PFT at the patch (Table All.4). Consequently, depending on the
percentage of vegetation consumed, the time step at which the vegetation has a
100% probability of being burnt in the presence of an ignition source is postponed.
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Figure AIIL1 CARAIB vegetation openness for the Last Interglacial (A),
11,700-11,200 BP (B), 11,200-10,700 (C), 10,700-10,200 (D), 10,200-9700
(E), 9700-9200 (F), 9200-8700 (G), 8700-8200 BP (H). Legend: 1-no data, 2—
vegetation openness (in %).
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Figure AIIL.3 CARAIB distribution of the first dominant PFTs for the Last
Interglacial (A), 11,700-11,200 BP (B), 11,200-10,700 (C), 10,700-10,200 (D),
10,200-9700 (E), 9700-9200 (F), 9200-8700 (G), 8700-8200 BP (H). Legend: 1-no
data, 2-herbs, 3—shrubs; 4-broadleaf trees; 5-needleleaf trees.
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Figure AIIL5 Correlation matrices and Pearson correlation coefficients (PCC)
between variables of the possible scenarios for LIG (A) and Early Holocene
(B) tree distribution scenarios; LIG (C) and Early Holocene (D) vegetation
oFenness scenarios. The experiments include the combined direct impact of
all agents on vegetation: anthropogenic and natural fires, climatic impact
and megafauna plant consumption. The darkest blue indicates the strongest
negative correlation between the Number_of_groups and Accessible_radius
parameters within the Early Holocene vegetation openness scenarios. Lighter
colours represent either absent/low or modest correlations for the other
parameters.
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Table AIIL.1 PFTs used in ABM (HUMLAND PFTs) and correspondence
between CARAIB PFTs and REVEALS plant taxa (after Nikulina et al., 2024b).

Broadleaved evergreen
subtropical trees

Broadleaved evergreen thermo
mediterranean trees
Broadleaved evergreen tropical
trees

Broadleaved raingreen tropical
trees

Broadleaved summergreen
boreal/temp cold trees
Broadleaved summergreen
temperate cool trees
Broadleaved summergreen
temperate warm trees

Broadleaved evergreen boreal/
temp cold shrubs

Broadleaved evergreen temperate
warm shrubs

Broadleaved evergreen xeric
shrubs

Broadleaved summergreen arctic
shrubs

Broadleaved summergreen
boreal/temp cold shrubs
Broadleaved summergreen
temperate warm shrubs
Subdesertic shrubs

Tropical shrubs

C3 herbs (“dry”)
C3 herbs (“humid”)
C4 herbs

Carpinus betulus
Carpinus orientalis
Castanea sativa
Corylus avellana
Fagus

Fraxinus

Phillyrea

Pistacia

deciduous Quercus t.
evergreen Quercus t.
Salix

Tilia

Ulmus

Buxus sempervirens
Calluna vulgaris
Ericaceae

Amaranthaceae/Chenopodiaceae
Artemisia

Cerealia t.

Cyperaceae

Filipendula

Plantago lanceolata

Poaceae

Rumex acetosart.

Secale cereale

CARAIB PFTs Plant taxon / pollen morphological HUMLAND PFTs
types

Needle-leaved evergreen boreal/  Abies Needleleaf trees

temp cold trees Picea

Needle-leaved evergreen meso  Pinus

mediterranean trees Juniperus

Needle-leaved evergreen

subtropical trees

Needle-leaved evergreen supra

mediterranean trees

Needle-leaved evergreen

temperate cool trees

Needle-leaved summergreen

boreal/temp cold trees

Needle-leaved summergreen

subtropical swamp trees

Broadleaved evergreen meso Alnus Broadleaf trees

mediterranean trees Betula

Shrubs

Herbs
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Table AIIL2 Datasets used in HUMLAND (after Nikulina et al., 2024b)

standard errors

openness

Initial data Initial spatial . .
Dataset type resolution/scale Meaning, units Source
Digital elevation https://www.usgs.
GTOPO30 Raster 1km model, m gov/
. Distribution of large https://water.
WISE Vector 110,000,000 rivers and lakes europa.eu/
CARAIB first PNV: first dominant
dominant PFT PFT
CARAIB PNV: vegetation
. http://www.umcch.
Ze%itr?;';n Raster ~26 km (0.25°) openness (%) ulg.ac.be/Sci/m_
P car_e.html
PNV NPP (excluding
NPP carbon used for
respiration), g'm2
Potential maximal
fauna vegetation
Megafauna megarauna vee .
: consumption (i.e., Davoli et al., 2023,
\clggsltf:rt\lot?on Raster 30km metabolization 2024
P of NPP), kg/km?
(converted to g/m?)
REVEALS first Pollen-based first
dominant PFT dominant PFT
Pollen-based past
sgg\;/géal';ison vegetation openness
T 0
openness Vector ~100 km (1°) (relative %) Serge et al., 2023
REVEALS Standard errors for
vegetation estimates of pollen-
openness based past vegetation
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Table AIIL3 PCA results for the successful genetic algorithm outputs aiming
to minimize the HUMLAND-REVEALS difference in mean percentage of grid
cells dominated by trees. The experiments include the combined impact of
all agents on vegetation: anthropogenic and natural fires, hunting, climatic
impact and megafauna plant consumption.

Variables Openness_ Hunting_ Number_of  Accessible_
Time windows criteria_to_burn pressure groups radius
. Comp. 1 (54.2%) 0.54 0.07 0.36 -0.74

Mesocratic |

Comp. 2 (26.1%) -0.63 0.24 0.72 -0.08

. Comp. 1 (46.7%) 0.78 0.04 -0.44 -0.42

Mesocratic Il

Comp. 2 (36.5%) 0 0.06 0.69 -0.71

Comp. 1 (44.7%) -0.31 0.17 -0.67 -0.63
10,200-9700 BP

Comp. 2 (36%) -0.18 0.82 -0.17 -0.5

Comp. 1 (48.3%) -0.31 0.48 -0.68 0.44
9700-9200 BP

Comp. 2 (30.4%) -0.01 0.69 0.02 -0.72

Comp. 1 (51.2%) -0.51 0.65 0.33 -0.43
9200-8700 BP

Comp. 2 (28%) -0.66 0 -0.05 0.74

Comp. 1 (47.8%) -0.27 0.58 0.31 0.69
8700-8200 BP

Comp. 2 (33.9%) -0.38 0.53 -0.69 0.29
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Table AIIL4 PCA results for the successful genetic algorithm outputs aiming
to minimize the HUMLAND-REVEALS difference in mean vegetation
openness. The experiments include the combined impact of all agents on
vegetation: anthropogenic and natural fires, hunting, climatic impact and
megafauna plant consumption.

Variables Openness_ Hunting_ Number_  Accessible_
Time windows criteria_to_burn pressure  of_groups radius
. Comp. 1(58.8%) -0.74 0.09 0.40 0.51
Mesocratic |
Comp. 2 (29.4%) -0.02 011 -0.75 -0.65
_ Comp. 1 (45.1%) 0.77 0.01 -0.17 -0.61
Mesocratic |l
Comp. 2 (43.7%) -0.22 0.24 -0.79 -0.51
10,200-9700 Comp. 1 (59.9%) 0.16 0.25 0.63 -0.71
BP Comp. 2 (27%) -0.84 0.44 0.24 0.17
Comp. 1(50.3%) -0.16 0.39 0.64 -0.62
9700-9200 BP
Comp. 2 (33.8%) -0.83 0.1 0.2 0.49
Comp. 1 (61.7%) -0.14 0.09 0.67 -0.72
9200-8700 BP
Comp. 2 (21.4%) -0.85 0.47 0.19 0.06
Comp. 1 (56%) 0.12 0.05 0.67 -0.72
8700-8200 BP
Comp. 2 (27.8%) -0.81 0.52 0.22 0.1
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Table AIIL6 Details of HUMLAND runs conducted to track the extent and
visibility of modifications done by each agent.

Parameter values
Time Openness_to_ Hunting_ Number_of _ . .
windows burn pressure groups Accessible_radius
Trees Openness Trees Openness Trees Openness Trees Openness

29 21 139 4

29 23 1091 2
Mesocratic | 81 0 3323 3

37 26 2017 1

28 21 2497
Mesocratic Il 92 33 10 30 2943 563 4 4
§200-9700 g7 47 2 11 3161 1329 4 5

72 42 1191 4
9700-9200BP 74 52 3123 4

80 74 3375 1
9200-8700BP 81 4 75 6 3450 1627 2 1

77 16 1079 3

72 9 1460 2
8700-8200BP 71 14 2488 5

92 10 2901 1

62 7 3315 1
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AIII1 paleoenvironmental modelling setup

The potential natural vegetation (PNV) simulations in this study were conducted
using a modelling framework that combines iLOVECLIM climate model, and
VECODE and CARAIB vegetation models. Below, we detail the configurations and
roles of each model.

AIIL.1.1 ILOVECLIM: paleoclimate simulation

Climate simulations were performed with the iLOVECLIM Earth System model of
intermediate complexity (Goosse et al., 2010), revised by Roche (Roche, 2013) and
further expanded by Quiquet et al. (Quiquet et al., 2018). The applied version of
iLOVECLIM includes the following: the atmospheric model, ECBilt (Opsteegh et
al., 1998), the sea-ice ocean component, CLIO (Goosse & Fichefet, 1999), and the
reduced-form dynamic global vegetation model (DGVM), VECODE (Brovkin et al.,
1997). These components are used to simulate climate.

ILOVECLIM operates on a relatively low spatial resolution T21 grid
(5.625° latitude/longitude), which in the current study is increased to 0.25° latitude/
longitude through the use of the online interactive downscaling method
embedded in iLOVECLIM, first described by Quiquet et al. (Quiquet et al., 2018)
and tested within the current modelling setup by Zapolska et al. (Zapolska et al.,
2023a).

We applied iLOVECLIM to simulate evolution of the climate during the
Holocene and LIG through a set of transient runs. Holocene transient run was
resampled to a time step that correspond to REVEALS time windows (TWSs): time
windows between the year 6200 BP and the year 700 BP were assigned at 500
years temporal resolution, following by fixed time windows at 350 (700-350BP),
250 (350-100BP), and 165 (2015 CE-1850). To simulate climate during the Last
Interglacial (LIG) we first performed a transient iLOVECLIM run over the whole LIG
and identified periods with high forest fraction in VECODE outputs: 120,000 BP,
124,000 BP, and 128,000 BP. For these three periods we performed equilibrium
climate simulations, which were used to drive the CARAIB model. The transient
experiments were initialised with states derived from 3000-year long equilibrium
simulations at 11,700 BP (early Holocene) and 129,000 BP (early LIG).

For all simulations, we used the following boundary conditions: standardised
boundary conditions for palaeoclimate simulations, provided by the
Palaeoclimate Modelling Intercomparison Project Phase 4 (PMIP-4) (Kageyama
et al., 2017), astronomical parameters from Berger (Berger, 1978), greenhouse
gas levels (Raynaud et al., 2000; Schilt et al., 2010), ice sheets from the GLAC-1D
reconstruction (Tarasov et al., 2012; Tarasov & Peltier, 2002) as well as evolving
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bathymetry and land-ocean mask coherent with those ice-sheet geometries (with
the same methodology as Bouttes et al., 2022).

To further improve reliability of the modelled results in context of
intercomparison with pollen data, we applied the CDF-t bias correction technique
(Vrac et al., 2012) to correct biases of iLOVECLIM modelled results (Zapolska et al.,
2023b).

Alll.1.2 VECODE: dynamic vegetation modelling

To provide a necessary climate-biomass feedback loop for the climate simulations
we used a reduced-form DGVM VECODE (Brovkin et al., 1997). VECODE simulates
eco-physiological characteristics of vegetation and soil dynamics in a manner
necessary for climate models of intermediate complexity. Vegetation in VECODE
DGVM is described using two plant functional types (PFTs): trees and grass (with
bare ground as a dummy type).

VECODE dynamics is coupled with atmospheric and oceanic modules of
iLOVECLIM at an annual timestep, which simulates plant and soil behaviours
necessary for accurately simulating the first-order vegetation-climate feedback
in iLOVECLIM. However, its level of complexity is not enough to reflect fine-scale
changes that are typically attributed to human impact on vegetation. Thus,
iLOVECLIM-simulated bias corrected climate was used as an input for CARAIB, a
more complex vegetation model.

AIIlL.1.3 CARAIB: high-resolution vegetation modelling

CARAIB (CARbon Assimilation In the Biosphere) is a grid-point process-based
dynamic vegetation model that operates at a grid size of the provided input
data (here 0.25° latitude/longitude). CARAIB is a comprehensive and mechanistic
vegetation model that simulates the vegetation dynamics based on its relationship
with climatic and soil conditions.

It combines several modules: hydrological budget (Hubert et al., 1998), canopy
photosynthesis and stomatal regulation, carbon allocation and plant growth
(Otto et al., 2002), heterotrophic respiration and litter/soil carbon dynamics,
plant competition and biogeography. CARAIB outputs used in this ABM include
distribution of fractions of 26 PFTs (PNV distribution), PNV vegetation openness,
and potential natural NPP per 26 km x 26 km grid cell.

To simulate the potential natural vegetation during the Holocene we
conducted a series of equilibrium runs with the same boundary conditions and
spatio-temporal resolution as iLOVECLIM, using its simulated climate as input and
obtaining CARAIB-simulated PNV.
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REVEALS estimates for LIG provide data for the highest forested period during
the LIG without specifying time bounds of such period. Hence, to represent the
peak of forest fraction in LIG we performed three equilibrium CARAIB simulations
at 120,000 BP, 124,000 BP, and 128,000 BP. These three periods were selected due
to their high forested fraction in VECODE outputs (integrated vegetation module
within iLOVECLIM climate model). These simulations (not shown) determined that
128,000 BP had the highest forest fraction during the LIG within our setup. The
corresponding CARAIB output for this period was thus used in the HUMLAND 2.0
LIG simulations.

AIII.2 Pearson correlation coefficients and principal component
analysis

In Figure Alll.5, the variables within the LIG dataset have both positive and negative
correlations, whileinthe Early Holoceneresults, correlations are exclusively negative
(blue). The magnitudes of the correlation coefficients between parameters are
generally modest or low/absent for both LIG (-0.21-0.38) and the Early Holocene
(-0.3-0) experiments. Relatively strong correlation (-0.64) is identified between
the Number_of_groups and Accessible_area parameters within the vegetation
openness experiments (Figure Alll.5D).

PCA results show that contribution of some variables to principal components
(i.e., new variables that are derived from an original set of variables to reduce the
dimensionality of data) vary through time and genetic algorithm experiment
groups (i.e., minimization of the difference in mean vegetation openness or in
percentage of grid cells dominated by trees). The distinct result is that the absolute
loadings (i.e., how much a variable contributes to the component) of the Hunting_
pressure parameter are overall lower for LIG results than for the Holocene runs
(Tables Alll.3 and Alll.4). The absolute loadings of the Openness_criteria_to_burn
parameter are relatively high for the LIG results regarding PFT distribution (Table
Alll.4). The absolute loadings of this parameter slightly decrease for the dominance
of trees experiments in the earlier part of the Early Holocene, and increase again
during 9200-8700 BP (Table Alll.4). The absolute loadings for the Number_of
groups and the Accessible_radius parameter are relatively high for all time periods
(Tables Alll.3 and Alll.4).
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AIIIL.3 CARAIB-REVEALS comparison for 11,700-10,200 BP

REVEALS showed higher percentages of herbs in comparison with the percentage
of trees during 11,700-10,200 BP and the inversion of these values between 10,200-
9200 BP (Fig. 4.5, bottom figure). These observations might be partially explained
by the position of these periods within the glacial/interglacial cycle which could
entail a late arrival of some tree types (Giesecke et al., 2017; Svenning & Skov, 2004).
The duration of postglacial migration lags is unclear. There are suggestions for
both relatively short lags of maximally 1500 years, and substantially longer ones
including estimates that many plant species have not reached equilibrium with
climate even nowadays (Birks & Birks, 2008; Dallmeyer et al., 2022; Seliger et al,,
2021; Svenning & Sandel, 2013). It is also unclear whether the observed species-
level lags impact continental-scale distribution of forests (Dallmeyer et al., 2022).
Due to that, distinguishing between the potential influences of human activities
and climate could be challenging in this context for the 11,700-10,200 BP. In
addition, the CARAIB vegetation model used in this study is driven by outputs from
an equilibrium iLOVECLIM climate model. In the present setup, both the vegetation
and climate models are in equilibrium, and hence do not capture transient
changes. ILOVECLIM uses ice sheet data, which then remain static throughout the
equilibrium-based simulation. This setup inherently limits representation of several
aspects of the Early Holocene, including the transition to warmer conditions in the
beginning of the Holocene and the associated soil changes due to deglaciation
(transient change in soil composition, texture, and nutrient availability). Thus, we
made a deliberate decision not to conduct HUMLAND simulations for 11,700-10,200
BP. We have directed our focus on 10,200-8200 BP and two LIG time windows.
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This document provides a comprehensive overview, design concepts, and detailed
descriptions of the HUMLAND ABM 2.0. This model was developed to track and
quantify the intensity of different impacts on vegetation on the continental scale
and to determine the most influential factor in transformation of interglacial
vegetation with specific focus on burning organized by hunter-gatherers. This
document follows the Overview, Design concepts, and Details (ODD) protocol to
ensure clarity and consistency in model documentation.

The model is accessible via the CoMSES library (search for HUMLAND).
HUMLAND 2.0 and all associated data and scripts are licensed under the MIT
License.

When referencing HUMLAND 2.0, please cite both the model and the
associated publication.

Feedback and contact: Anastasia Nikulina (nikulina1l302@gmail.com;
a.nikulina@arch.leidenuniv.nl)

AIV.1 Purpose

Humans started transforming their environment long before the emergence of
agriculture and industrialization. Foraging societies conduct niche construction
activities including vegetation burning which substantially modifies hunter-
gatherers’ surroundings. Currently available ethnographic and archaeological
evidence suggests that both Neanderthals and Mesolithic humans practiced
vegetation burning during the Last Interglacial (LIG; ~130,000-116,000 BP) and the
Early Holocene (~11,700-8000 BP). Due to the scarcity of evidence and the absence
of a common research protocol to study the anthropogenic impact on landscapes,
there are gaps in research about the dynamics of interglacial environments and
the role of Homo in landscape changes. Particularly, the extent and visibility of
vegetation burning organized by hunter-gatherers is still a focal point of research.

Landscape dynamics are complex and include variable components such as
climatic fluctuations, megafaunaimpact, natural fires, and anthropogenic activities.
Thus, there is a need for further research which can allow us to assess different
possible scenarios for anthropogenic impact in landscape changes. Therefore, the
purpose of this model is to track and quantify the intensity of different impacts on
vegetation on the continental level and to determine the most influential factor in
transformation of interglacial vegetation with specific focus on burning organized
by hunter-gatherers. This model accumulates different types of spatial datasets
(Section AlV.6) which are used as input and target for ABM runs. Additionally, the
study incorporates recently obtained specifically for this research continental-
scale estimates of fire return intervals (FRI) and speed of vegetation regrowth. The
obtained results include possible scenarios (combinations of HUMLAND parameter
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values) with maps of modified vegetation in the past and quantification of changes
done by of each source of impact (climate, humans, megafauna and natural fires).
The model has been implemented in NetLogo (version 6.2.2). HUMLAND 1.0 and
2.0 are accessible via the CoMSES model depository (https:/www.comses.net/,
search for HUMLAND).

AITIV.2 Entities, state variables, and scales

The following entities are included in the model: agents representing hominin
groups (one agent is one group, Table AIV.1), campsites (turtles, have only one static
variable my_hominin which indicates the group occupying this campsite) and grid
cells (patches, Table AIV.2).

Table AIV.1 Hominin state variables.

Variable name Variable type and units Meaning

A patch where a campsite is located

my_home Dynamic, patch (home patch of a group).

A campsite which is the home of a

my_campsite Dynamic, turtle hominin group

Table AIV.2 Grid cells state variables.

Variable type

Variable name and units Meaning
patch_elevation ;tz;lec; Sfloat, Absolute elevation (a.s.l.)

CARAIB (CARbon Assimilation In the Biosphere)
patch_natural_pft Static, integer first dominant PFT: 1-herbs, 2-shrubs, 3-needleleaf
trees, 4-broadleaf trees, -1-no data

REVEALS (Regional Estimates of VEgetation
Abundance from Large Sites) first dominant PFT:
1-herbs, 2-shrubs, 3-needleleaf trees, 4-broadleaf
trees, -1-no data

Current dominant PFT: 1 herbs, 2-shrubs, 3-
patch_pft_updating Dynamic, integer needleleaf trees, 4-broadleaf trees, -1-no data, 0-
burnt/fully consumed area

patch_pollen_pft Static, integer

CARAIB vegetation openness: 0 - minimal value

patch_natural_openness St:rtclg,nftlgag (0%, totally closed), 100-maximal value (100%,

P 9 totally open), -1-no data

Static. float REVEALS vegetation openness: 0-minimal value
patch_pollen_openness erce’nta e' (0%, totally closed), 100-maximal value (100%,

P 9 totally open), -1-no data
patch_pollen_ Static, float REVEALS vegetation openness standard error (se)

openness_se
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Variable type

Variable name and units Meaning
patch_pollen_ Static, float, Maximal possible REVEALS openness: patch_
openness_max percentage pollen_openness + patch_pollen_openness_se

patch_openness_
updating

rivers_lakes

fri

patch_natural_npp

patch_npp_updating

npp_regrowth_rate

megafauna_npp_
consumption

megafauna_max_

consumption_restricted_

hunting

continuous_
consumption

fire_delay_after_
consumption

openness_regrowth_rate
last_burning_episode

next_burning_episode

last_partial_

consumption_episode
last_agent_impacted_

pft

last_agent_impacted_

openness

herbs_regeneration_

step

shrubs_regeneration_

step

needleleaf_trees_
regeneration_step

broadleaf_trees_
regeneration_step

agent_that_could_

impact_neigbouring_

pathes

hominin_accessible_area
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Dynamic, integer,
percentage

Static, integer

Static, integer,
years

Static, float, g/m?
Dynamic, integer
Dynamic, float

Static, float, g/m?

Static, float

Dynamic, integer

Dynamic, integer

Dynamic, float
Dynamic, integer

Dynamic, integer
Dynamic, integer
Dynamic, integer
Dynamic, integer
Dynamic, integer
Dynamic, integer
Dynamic, integer

Dynamic, integer

Dynamic, integer

Dynamic, integer

Current vegetation openness: 0—minimal value (0%,
totally closed), 100-maximal value (100%, totally
open), -1-no data

Presence of big rivers and lakes: 0-no rivers/lakes,
1-presence of rivers/lakes, -1-no data
FRI values for each PFT

CARAIB NPP

Current patch npp which can be changed due to
different types of impact during runs

NPP regrowth speed per step after impact

Megafauna carbon consumption

Potential maximal megafauna plant consumption
restricted by hunting

Counts the number of ticks (steps) during which
megafauna continuously consumed this patch

Delay in the frequency of natural fires after partial
megafauna consumption of vegetation

Openness regrowth speed per step after impact
Simulation step of the last fire episode of a patch

Possible next natural fire event when probability of
ignition is 100%

Step of the last partial consumption episode of a
patch

Last agent that changed a dominant PFT of a patch:
1-humans, 2-natural fires, 3-climate, 4-megafauna

Last agent that impacted a patch: 1-humans, 2—-
natural fires, 3-climate, 4-megafauna.

Step when herbs will regrow after vegetation
burning or consumption

Step when shrubs will regrow after vegetation
burning or consumption

Step when needleleaf trees will regrow after
vegetation burning or consumption

Step when broadleaf trees will regrow after
vegetation burning or consumption

Agent that can potentially cause burning on
neighbouring patches: 1-humans, 2-natural fires,
3-climate, 4-megafauna.

Defines if the patch is within accessible area for
humans: 1-within the area, 0-not accessible for
humans
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. Variable type .
Variable name and units Meaning
) L Stores -1 for the British Isles patches for the LIG runs
occupation Static, integer because this region was not occupied by hominins
Dynamic, . .
raster_layer integer/float Used to create an ASClI file with modelling results

The model is two-dimensional, and its spatial extent is a rectangle with 544 x 430
patches (grid cells). Each grid cell of input raster datasets (Section AIV.6, Table AIV.6)
is resampled (i.e., spatial resolution was changed) to 10 km X 10 km in size. The
world wraps horizontally and vertically. The current version of the model imports
all spatial datasets for two LIG and seven Early Holocene time windows. One
simulation step equals one year, and the current simulation does not account for
seasonal variability. One run is 1000 time steps.

AIV.3 Process overview and scheduling

Simulation starts with setup when input datasets are imported, entities are
created, their state variables are set, and the conflicting grid cells are removed.
In HUMLAND, more closed vegetation can only switch to more open vegetation
after a disturbance event (e.g., fire, grazing). In our data comparison, where CARAIB
shows a greater degree of openness in vegetation than REVEALS (maximum
pollen-based estimates, which represent the sum of estimated REVEALS openness
and the standard error), we exclude these locations. This decision is taken because
HUMLAND will not be able to generate vegetation that is comparable to REVEALS as
it is constrained by the CARAIB-prescribed theoretical potential natural vegetation
(PNV). As a result, the similarity between ABM output and REVEALS datasets can
only be improved for grid cells where initial vegetation openness is equal to or
lower than observed pollen-based maximum estimates.

The process overview of simulation runs is shown in Figure AIV.1. Each of them
starts with vegetation regeneration. This submodel (Section AIV.7) executes only
for patches which were previously (i.e., during the earlier step) burnt or consumed.

Hominins are the first agent that reduces vegetation cover. The anthropogenic
fire submodel (Section AlV.7) is executed via three phases. During the first phase,
hominins randomly move towards one of the eight neighbouring patches within
the area defined by accessible radius around their campsites. When a hominin
reaches a patch with trees or shrubs as a dominant PFT and vegetation openness
smaller or equal to a number defined via the Openness_criteria_to_burn variable,
this patch is burnt. During the second phase, fire spread is initiated.

The natural fires submodel (Section AlV.7) is initiated after hominin impact.
During the setup the number of patches, that will be hit by thunderstorms per
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Figure AIV.1 Activity diagram of process overview.

step, is calculated based on a value of the Territory_impacted_by_thunderstorms
variable. Every simulation step random patches are chosen and impacted by
thunderstorms. Thunderstorms can occur in high mountains, lakes and rivers, but
these episodes never lead to ignition. Depending on the probability of ignition
of a patches which are not water bodies or high mountains can be burnt after
thunderstorms. Similarly to anthropogenic burning, thunderstorms can cause fire
spread.
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In HUMLAND 1.0 only grid cells with fully recovered vegetation can be
consumed by megafauna. In HUMLAND 2.0, both fully recovered and regenerating
grid cells can be affected by megafauna. Many herbivores exhibit a preference
for areas characterized by secondary vegetation and relatively open regrowth
locations following disturbances such as fire because of increased nutrition
and palatability of new plants. After plant consumption, vegetation openness
increases depending on the CARAIB NPP, current vegetation openness of a patch
and hunting pressure. Regarding megafauna impact on PFTs, it is assumed that
megafauna equally consumes all PFTs present on a grid cell, i.e., besides the first
dominant PFT megafauna consumes second, third and fourth dominant PFTs
in equal proportions. That is why, the first dominant PFT is replaced, only if the
vegetation was entirely consumed by megafauna, and vegetation openness value
after consumption is 100%. In this case, the first dominant PFT would be replaced
by bare ground.

Once all sources of impact have affected the study area, the current mean
vegetation openness and the distribution of dominant PFTs are compared with
REVEALS data. Plots are updated at each step, and the simulation stops after 1000
steps.

AIV.4 Design concepts (after Nikulina et al., 2024b, in press)

AIV.4.1 Basic principles

The history of anthropogenic impacts on the environment spans over many years,
with humans already engaging in landscape transformations before the emergence
of agriculture. Ethnographic observations show that hunter-gatherers or foragers
(i.e., groups that mainly depended on food collection or foraging of wild resources)
influence their surroundings in several ways including modification of vegetation
communities via burning. This practice was identified for all vegetation types
except tundra at different spatial scales and for diverse objectives including driving
game, stimulating the growth of edible plants, and clearing pathway.

Besides ethnographic data, evidence from archaeological contexts show
that fire use was an important part of the technological repertoire of the Homo
lineage since at least the second half of the Middle Pleistocene. Human-induced
vegetation burning during the Late Pleistocene has been proposed as a potential
factor in several case studies spanning various continents. Notably, the earliest
evidence of such activities on a local scale was identified at the Neumark-Nord site
in Germany, dated to LIG. In addition, fire-using foragers were suggested as one
of the primary drivers of vegetation openness in Europe during the Last Glacial
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Maximum, i.e., possibly constituting one of the earliest large-scale anthropogenic
modifications of system earth.

While these Pleistocene cases are still subject to debate, human-induced
vegetation burning conducted by hunter-gatherers during the Early-Middle
Holocene (~11,700-6000 BP) is generally accepted, even though the quality of
the data is not necessarily that different. However, the number of case studies is
higher for the Early-Middle Holocene than for the Pleistocene. Most of the Early to
Middle Holocene evidence originates from Europe, with some additional evidence
from Australia.

Despite the presence of case studies for anthropogenic burning (intentional or
not) of past landscapes by hunter-gatherers, it is still difficult to establish whether
these local-scale impacts caused changes at the regional and (sub-)continental
scales. Furthermore, overall landscape dynamics do not only depend on humans,
and rather represent the complex interplay of natural and cultural processes at
different spatio-temporal scales. Landscapes are thus complex systems where
heterogeneous components interact to impact on ecological processes, and
might demonstrate non-linear dynamics and emergence. Therefore, it is often
challenging to distinguish different impacts on landscapes using proxy-based
reconstructions (e.g., palynological datasets).

Modelling approaches offer excellent opportunities to explore how complex
components of systems might interact, particularly when real-time experiments
are not possible. Spatially-explicit agent-based modelling (ABM) is commonly used
to explore complex systems where multiple factors intertwine and to propose
possible scenarios of system functioning, and the outcomes of ABMs can be
compared to empirical data. This approach has been applied in various contexts
to study past human-environment interactions and land use/land cover changes.
There are examples of such models for past societies that practiced agriculture,
animal husbandry, and for hunter-gatherer groups. In the case of ABM developed
to study foragers, the use of fire by hunter-gatherers to transform foragers’
surroundings and the landscape consequences of these practices are usually not
discussed.

This model includes four types of impact on vegetation: climatic impact,
anthropogenic fires, thunderstorms, and megafauna plant consumption.
Thunderstorms were included because lightning is one of the most general and
widespread triggers of natural fires. Another source of impact is climate, and it is
included as a crucial element for vegetation regeneration after fires or vegetation
consumption. Finally, megafauna are also a part of the current ABM, because the
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herbivory activity impacts litter accumulation, and high levels of megafauna plant
consumption reduce fire occurrence in many areas.

AIV.4.2 Emergence

The model’s key results are increase of average vegetation openness and decrease
of the percentage of grid cells dominated by trees and shrubs. These results emerge
from joint (i.e., several agents together) and separate (i.e., only one agent) impacts
of different agents and processes (hominins, thunderstorms and megafauna plant
consumption) on vegetation. The increase of vegetation openness and change
of PFT's distribution are driven by a specific combination of agents and values of
variables that influence their behaviour.

AIV.4.3 Adaptation
There is no adaptation in the model.

AlIV.4.4 Objectives

Vegetation burning is an objective for hominins. Each step hominins move
randomly to one of the neighbouring patches. If it covered by shrubs or trees and its
vegetation openness is equal or lower than the Openness_criteria_to_burn value,
then the fire will be set. Otherwise, humans do not impact this patch. Megafauna
and thunderstorms do not have objectives.

AIV.4.5 Learning
Agents do not learn.

AlV.4.6 Prediction
Agents do not predict.

AIV.4.7 Sensing

Humans are assumed able to sense dominant PFT and vegetation openness of
a grid cell where humans are located. Hominins can sense if their campsites and
home patches are beyond accessible radius. It is useful in cases when two campsites
are located nearby, and their accessible areas overlap. If a hominin is far from its
campsite (does not sense this campsite anymore i.e., it is beyond accessible radius),
this hominin automatically comes back to the campsite.

AIV.A4.8 Interaction
Hominins directly affect patches. If a hominin decides to burn a patch, its state
variables are modified.
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AIV.4.9 Stochasticity
Stochasticity is used in initializing the model when random distribution of hominins
within the study is set. Additionally, hominins randomly choose one of the eight
neighbouring patches to which hominins move around campsites. Finally, humans
randomly choose patches when the campsites will be relocated during simulation
runs. This happens with a specific frequency defined via the Movement_frequency_
of_campsites variable. The parameter Campsites_to_move defines the percentage
of campsites that will be relocated. Campsites for this action are chosen randomly.
Thunderstorm impact also includes stochasticity. The number of patches are
defined via the Territory_impacted_by_thunderstorms parameter. Several random
inland patches are selected every simulation step to potentially have natural fire.
The actual natural vegetation burning depends on a probability of ignition P(l)
(AIV.1):

P() = L8 (AIV.1),

where B is the step when the last burning episode occurred, F-FRI, and T-the
number of simulation steps (ticks) since the beginning of the simulation. Once
P(l) is calculated, a random float number between 0 and 1 is chosen. If R < P(l),
this patch will be burnt. Similarly to ignition caused by natural fires, fire can
spread on neighbouring patches after natural and human-induced fires. For the
neighbouring patches the P(l) is calculated, and the fire event can occur depending
on the obtained P(l) and random a random float number.

AIV.4.10 Collectives
There are no collectives in the model.

AIV.4.11 Observation

The primary model observations are distribution of dominant PFTs (percentage
of patches covered by each PFT) and mean vegetation openness for patches
which have both REVEALS estimates and CARAIB values (i.e., not all inland patches
are considered). These values are provided via plots on the model interface
and extracted tables. The ABM output is considered similar to REVEALS data
if a simulation produced the same percentage of first dominant PFTs and mean
vegetation openness values or if the difference between ABM output and REVEALS
data varies within 10%. Additionally, the different types of impact (i.e., the number
of grid cells modified by each type of impact) are tracked via recording which
impact caused openness and PFT changes.
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AIV.5 Initialization (after Nikulina et al., 2024b, in press)

First, the environment is created during the initialization. Patch state variables at
the end of the initialization step are described in Table AIV.3. In HUMLAND, more
closed vegetation can only switch to more open vegetation after a disturbance
event (fire, grazing). In our data comparison, where CARAIB shows a greater degree
of openness in vegetation than maximum REVEALS estimates, we exclude these
locations: the ABM will not be able to generate vegetation that is comparable
to REVEALS as it is constrained by the CARAIB-prescribed PNV. Secondly, there
are several grid cells where climatic conditions only favour dominance of herbs
or shrubs, but observed vegetation indicates dominance of trees. Besides that,
shrubs cannot dominate grid cells where climatic conditions favour trees or herbs
in HUMLAND. Such cases do not improve similarity between ABM output and
REVEALS data, and, therefore, these grid cells were also excluded (Table AIV.5).

Table AIV.3 Patch state variables and their values at the end of the initialization

stage.

Variable name

Value

Explanation

patch_elevation
patch_natural_pft

patch_pollen_pft

patch_pft_updating

patch_natural_
openness

patch_pollen_
openness

patch_pollen_
openness_se

patch_pollen_
openness_max

patch_openness_
updating

rivers_lakes

fri

patch_natural_npp

In accordance with
GTOPO30

In accordance with CARAIB
first dominant PFT

In accordance with REVEALS
first dominant PFT

patch_pft_updating =
patch_natural_pft

In accordance with CARAIB
vegetation openness

In accordance with REVEALS
vegetation openness

In accordance with REVEALS
standard errors

patch_pollen_openness +
patch_pollen_openness_se

patch_natural_openness =
patch_openness_updating
Oor1

246, 426, 286 or
293

In accordance with CARAIB
NPP

Value is set depending on GTOPO30 dataset
Value is set between 1 and 4 depending on
CARAIB dataset

Value is set between 1 and 4 depending on
CARAIB dataset

Variable has the same value as theoretical
potential natural vegetation provided by
CARAIB.

Value is set between 9 and 100 depending
on CARAIB dataset

Value is set between 0 and 99 depending on
REVEALS dataset

Value is set depending on REVEALS dataset
Maximal possible REVEALS vegetation
openness

Variable has the same value as theoretical
potential natural vegetation provided by
CARAIB.

Value depends on WISE dataset

The value depends on CARAIB first
dominant PFT (Table AIV.4)

Value is set depending on CARAIB dataset
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Variable name Value Explanation
. In accordance with CARAIB  Value is set depending on CARAIB dataset.
patch_npp_updating NPP During simulation runs this value is updated

npp_regrowth_rate

megafauna_npp_
consumption

megafauna_max_
consumption_
restricted_hunting

continuous_
consumption

fire_delay_after_
consumption

openness_regrowth_
rate

last_burning_episode

next_burning_
episode

last_partial _
consumption_
episode

last_agent_
impacted_pft

last_agent_
impacted_openness

herbs_regeneration_
step

shrubs_
regeneration_step

needleleaf _trees_
regeneration_step

broadleaf _trees_
regeneration_step

agent_that_could_
impact_neigbouring_
pathes

hominin_accessible_
area

occupation

290

-1
In accordance with

megafauna vegetation
consumption dataset

Calculated depending on
megafauna vegetation
consumption dataset
andthe Hunting_pressure
value

0
-1

0
0

last_burning_episode + fri

Oor1

Oor-1

No regrowth rate is calculated before
impact during simulation runs

Value is set depending on megafauna
vegetation consumption data

Potential maximal megafauna plant
consumption after hunting pressure

Before megafauna started consumption this
value is setto 0

Before megafauna consumption of a patch
this variable is set to -1

Before simulation runs this value is set to 0

Before simulation runs this value is set to 0

Defines the step when this patch has 100%
chances to be burnt

Before megafauna consumption of a patch
this variable is set to -1

Before simulation starts the vegetation
cover is created by climate only. Thus, all
patches have value 3

Before simulation starts the vegetation
cover is created by climate only. Thus, all
patches have value 3

Before agent’s impact all patches do not
require regeneration step

Before agent’s impact all patches do not
require regeneration step

Before agent’s impact all patches do not
require regeneration step

Before agent’s impact all patches do not
require regeneration step

This value is 0 prior to simulation runs,
because there was no impact yet

If the patch is within accessible area, the
value is set to 1.0therwise, this variable
equals 0

If 0 can be occupied and burnt by humans.
If -1 cannot be occupied or burnt by humans
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Variable name Value Explanation
Used to create .asc file. This variable can
raster_layer - have any value depending on chosen patch
variable

Table AIV.4 Mean FRI for each dominant PFT.

PFT Mean FRI estimated via MODIS
Needleleaf trees 246
Broadleaf trees 426
Shrubs 286
Herbs 293

Table AIV.5 CARAIB and REVEALS conflicting cells excluded from the
analysis during initiation stage.

CARAIB REVEALS Reason
. Maximal observed (REVEALS)
Possible natural ] h
(CARAIB) vegetation vegetation openness (i.e, In the current ABM possible natural

estimated vegetation openness
+ standard error) is lower than
possible natural (CARAIB)
vegetation openness.

openness is higher
than observed
vegetation openness

vegetation openness cannot be higher
than pollen-based vegetation openness.

. . . In the current ABM trees cannot
Eg?ésd/gmhng:t PFT: First dominant PFT: trees dominate if climatic conditions only
allow dominance of herbs or shrubs.

In the current ABM shrubs cannot
First dominant PFT: shrubs dominate if climatic conditions only
allow dominance of trees or herbs.

First dominant PFT:
trees/herbs

Once the environment is created, hominins and their campsites are randomly
distributed on surfaces with vegetation. The number of campsites and hominin
groups is defined via the Number_of_groups parameter. Patches around campsites
are defined as accessible areas. The Accessible_radius parameter defines the size of
this areain the number of grid cells around campsites, and the hominin_accessible_
area state variable equals 1 for patches within the accessible area. Hominins cannot
move beyond their foraging areas, on water bodies (sea, big lakes, and main rivers)
and high mountains. These are the patches with absolute elevations more than
2500 m. Water bodies and the most elevated areas do not have vegetation cover,
and, therefore, cannot be burnt or consumed. Except for the patch_elevation and
rivers_lakes, patches with high mountains and water bodies have -1 for other state
variables.
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AIV.6 Input data (after Nikulina et al., 2024b, in press)

The simulation uses several datasets (Table AIV.6). To standardize their spatial
extent and resolution Spatial Analysts and Data management ArcMap 10.6.1
toolboxes were used. Grid cell sizes of the datasets were resampled to 10 km x
10 km. To ensure consistency in our analysis, we made the decision to exclude
specific regions, namely Anatolia, Cyprus, and the Balkans, from all time windows
considered in this study. The rationale behind this exclusion is that these regions
have the earliest evidence of agriculture in Europe. To account for the differences in
sealevels during the LIG compared to the present, we used available reconstructions
and estimates of sea level. Specifically, we utilized coastlines reconstructed for
Northwest Europe. However, such detailed reconstructions were not available for
the rest of Europe. Consequently, we assigned a uniform value of 6 m for the rest
of Europe during the LIG. During the LIG runs, Neanderthals do not occupy or burn
vegetation in the British Isles due to the absence or very sparse presence of people
during this period. To ensure this region remains unoccupied, we created a specific
spatial layer. Consequently, each LIG time window requires 10 spatial layers, while
Early Holocene time windows require nine. For both LIG time windows, we used
the same spatial layers from CARAIB, corresponding to the maximal biomass
development in Europe. In total, 57 spatial layers are stored in the input data folder
for HUMLAND 2.0.

The initial landscape before simulation runs were reconstructed via the
following datasets: GTOPO30, Water Information System for Europe (WISE) and
outputs of a dynamic vegetation model CARbon Assimilation In the Biosphere
(CARAIB). GTOPO30 is a digital elevation model (DEM) derived from several raster
and vector sources of topographic information. We used this DEM to represent
elevation data in the ABM. WISE dataset is based on the information from the
Water Framework Directive database, and we used WISE to define the distribution
of major rivers and lakes (natural barriers for fire spread) in the model.

In the context of this research, the CARAIB dataset represents PNV distribution
driven by climatic conditions only. As an input climate we used climatic
variables simulated by the iLOVECLIM model with embedded online interactive
downscaling. The iLOVECLIM-simulated climatic variables were bias-corrected
using the CDF-t bias correction technique and averaged over the studied period to
get daily mean climate characteristics of our period of interest. A full description of
the modelling setup and the application of the CDF-t technique within this setup
is described and tested.

CARAIB outputs used in this study include distribution of fractions of 26 plant
functional types (PNV PFTs), vegetation openness (PNV openness), and net primary
productivity (PNV NPP). Before being imported to the ABM, the mentioned CARAIB
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outputs were transformed. As the CARAIB dataset here represents climate-only
forced vegetation, it is used in the current ABM as the starting point (i.e., before
impact of humans, natural fires and megafauna) of each simulation and as target
for vegetation regrowth after impacts.

Table AIV.6 Input datasets to the simulation environment (after Nikulina et

al., 2024b).

Initial data Initial spatial . .

Dataset type resolution/scale Meaning, units

GTOPO30 Raster 1km Digital elevation model, m

WISE Vector 1:10000000 Distribution of large rivers and lakes

CARAIB first Potential natural (climate-based) first

dominant PFT dominant PFT

. Potential natural (climate-based)

CARAIB vegetation ; -

openness Raster ~26 km (0.25°) vegetation openness, in percentage
Potential net primary carbon productivity

NPP (excluding carbon used for respiration),
g/m?

Megafauna Potential maximal megafauna vegetation

vegetation Raster 30km consumption (i.e., metabolization of

consumption NPP), kg/km? (converted to g/m?)

gg\rﬁﬁga{ IFEIS:EI' Observed past first dominant PFT

REVEALS Observed past vegetation openness, in

vegetation percentage

openness Vector ~100 km (1°)

REVEALS

vegetation Standard errors for estimates of observed

openness past vegetation openness

standard errors

AIV.7 Submodels (after Nikulina et al., 2024b, in press)

AIV.7.1 Climatic impact

The vegetation regrowth after the impact of thunderstorms, megafauna, and/or
humans is determined by the climatic conditions. Therefore, this submodel only
modifies grid cells that were previously burned or consumed.

The grid cells’ patch_openness_updating and patch_pft_updating (Figs. AIV.2
and AIV.3) are changed in response to the climatic impact until they match the
values of patch_natural_openness and patch_natural_pft, respectively. If the
difference between patch_natural_openness and patch_openness_updating is
equal to or less than 10%, this grid cell is considered to have recovered naturally,
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and the last agent that impacted this patch is assumed to be climate (last_
agent_impacted_openness = 3). Similarly, if patch_natural_pft is equal to patch_
pft_updating, the last agent that impacted the PFT of this grid cell is climate
(last_agent_impacted_pft = 3).

We used the CARAIB mean number of years to recover (Table AlV.7) to calculate
the vegetation openness recovery rate and to define the step when natural PFT
would reestablish on the grid cell after vegetation burning and/or consumption.
PFT recovery on all impacted patches always begins with herbs, which replace
bare ground after seven simulation steps. Subsequently, depending on the PNV
PFT estimated by CARAIB after the required number of years since fire or complete
consumption (Table AIV.7), the herbs may be replaced by trees or shrubs.

After consumption or fires the rate of vegetation openness recovery (V) is
calculated via the following formula (AIV.2):

vV, = 23% (AIV.2)

O, represents the vegetation openness after the impact caused by fire and/or
megafauna, 0, refers to the CARAIB estimates of vegetation openness, and p - the
mean number of years required for recovery of the initial vegetation openness
prior to the fire event or plant consumption (Table AIV.7). NPP recovery is calculated
similarly, but instead of using the 0, model utilizes CARAIB NPP. Instead of the
O, HUMLAND uses the current carbon content following fire and/or megafauna
plant consumption. During each simulation step, V_is subtracted from the current
simulation openness until it reaches the CARAIB estimates of vegetation openness.
Similarly, the calculated NPP recovery rate is summarised with the current carbon

content until the current NPP is the same as PNV NPP.

Table AIV.7 Mean number of years to recover for each dominant PFT (after
Nikulina et al., 2024b).

PFT Number of years ‘
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Figure AIV.2 Activity diagram for climatic impact on vegetation openness.
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Figure AIV.3 Activity diagram for climatic impact on distribution of dominant
PFTs.
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Needleleaf trees 43
Broadleaf trees 30
Shrubs 43
Herbs 7

AIV.7.2 Anthropogenic impact

This submodel introduces changes to the vegetation through human-induced
fires. There are five parameters which define human behaviour and intensity
of their impact: Number_of_groups, Accessible_radius, Campsites_to_move,
Movement_frequency_of_campsites, and Openness_criteria_to_burn. An addi-
tional parameter, Hunting_pressure, is introduced in HUMLAND 2.0.

The first parameter defines the number of hunter-gatherer groups present at
the study area during one simulation run. Therefore, this parameter is associated
with human population size. The accessible radius parameter defines the territory
within which humans move and set fires around campsites.

There are two parameters associated with movements of foragers’ campsites:
Movement_frequency_of_campsites (the number of simulation steps after which
a group can relocate their campsite) and Campsites_to_move (the percentage of
groups that relocate a campsite at certain step defined by movement frequency).
Due to the temporal resolution of the current simulation, hunter-gatherers’
highest possible frequency of camp movements is every step (i.e., once per
year). The search radius for the new grid cell to establish a site is twice bigger
than the accessible radius. Any grid cell can be chosen for the new site, except
the previously occupied grid cell, high mountains and water bodies. The newly
established accessible area can overlap with the previous one.

Since hunter-gatherers have different reasons to burn landscapes, and that
this practice was documented in almost all vegetation types with more cases for
foragers occupying shrublands and forests, the openness criteria to burn was
introduced. In the current simulation, humans only burn grid cells dominated by
trees or shrubs with vegetation openness lower or equal to this criterion. A low
value minimizes the number of positive decisions to start a fire, and higher values
increase human-induced fires, because even relatively open areas can be burnt by
people in this case.

Humans randomly move between adjacent patches within a defined area
determined by the Accessible_radius (the number of grid cells) around campsites.
When a human is present on a patch with vegetation openness that is equal to or
lower than the prescribed criteria for burning and contains shrubs or trees (patch_
pft_updating >= 2), this human group sets fire on that patch. Consequently, the
openness of the patch is set to 100% (completely open), and its PFT (patch_pft_
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Figure AIV.4 Activity diagram for anthropogenic impact.
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updating) is set to 0, indicating a burnt area. In this case, the variables last_agent_
impacted_openness and last_agent_impacted_pft are assigned a value of 1 to
denote anthropogenic impact. The time step at which this burning event occurs is
recorded as last_burning_episode, and next_burning_episode is updated based
on the dominant natural PFT. Subsequently, after calculating the regeneration
steps (ticks + number of years from Table AIV.4) and openness regrowth rates
(Section AIV.7.1), the spread of vegetation to neighbouring patches is initiated
(Section AlIV.7.4).

The Hunting_pressure parameter defines the percentage reduction in
the potential maximum megafauna plant consumption. More details on these
calculations can be found in section AIV.7.5.

AIV.7.3 Natural fires

Based on the value of the parameter Territory_impacted_by_thunderstorms,
the number of grid cells experiencing thunderstorms per simulation step is
determined. This parameter is expressed as a percentage, and based on its value,
the calculation determines how many grid cells will be affected by thunderstorms.
These thunderstorms randomly occur on different grid cells within the study area.
It is important to note that thunderstorms can occur over rivers, lakes, and high
mountains, but these areas are not susceptible to burning.

Following the occurrence of thunderstorms, fires may initiate fire spread
depending on the probability of ignition for the affected grid cells (Fig. AIV.5).
The spread of fire (Section AIV.7.4) to neighbouring grid cells can occur after
both human-induced and natural fires. Thunderstorms do not always result in
vegetation burning, and the ignition of fire does not always lead to its spread after
natural or human-induced ignitions.

The probability of ignition P(l) is determined based on the time elapsed since
the last burning episode (B) and the FRI (F), obtained from the MODIS dataset
(Table AIV.4) (AIV.3):

P() = 1B (AIV.3)

Here, T represents the number of simulation steps (ticks) since the beginning of
the simulation. If the probability of ignition is equal to or higher than a randomly
chosen number (ignt, as shown in Fig. AIV.5), the corresponding patch will be
burnt. The consumption of patches by megafauna impacts the probability of
ignition. Depending on the percentage of vegetation consumed (as described in
Section AIV.7.5), the occurrence of the next burning episode can be delayed. To
calculate the probability of delayed ignition, the same formula is used, but with a
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Figure AIV.5 Activity diagram for thunderstorm impact.
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modification: instead of using the current number of ticks (T), we use the sum of T
and fire_delay_after_consumption. This patch state variable represents the number
of years by which the next burning episode was postponed due to megafauna
vegetation consumption (section AIV.7.5). The value of B is also updated as a result
of megafauna impact (details provided below).

Once a patch is burned (indicated by patch_pft_updating = 0 and patch_
openness_updating = 100), the regrowth rate of openness (Section AIV.7.1) and
the steps for PFT regeneration (ticks + number of years from Table AIV.7) are
determined. Additionally, the information of the last agent that impacted the
patch is updated Section AIV.7.1). Subsequently, the neighbouring patches are
prompted to spread the fire as explained in Section AIV.7.4.

AIV.7.4 Fire spread

Following natural and anthropogenic burning, fire has the potential to spread to
neighbouring patches. However, the actual ignition of these patches depends on
the probability of ignition, which is calculated using the same method described
for natural fires in Section AIV.7.3. If a patch is burnt because of fire spread, it will
inherit the same values for last_agent_impacted_pft and last_agent_impacted_
openness as the patch from which the fire spread originated.

AIV.7.5 Megafauna consumption

Megafauna is the final agent responsible for vegetation transformation in the
model (Fig. AIV.6). Compared to the previous version of HUMLAND, in this version,
megafauna consumes both fully and partially recovered areas. Following plant
consumption, the vegetation openness increases based on CARAIB NPP, current
NPP, and estimates of maximal megafauna plant consumption.

We introduced the Hunting_pressure parameter which decreases the
estimated potential maximal plant consumption (Table AIV.6) within a range
spanning from 0% to 100%. This parameter does not impact LIG megafauna plant
consumption in the British Isles because Neanderthals were not present or had
very sparse occupation there during this time. Besides hunting, the intensity of
megafauna impact is determined by the state of vegetation openness. Areas
with greater openness tend to experience more substantial herbivore impact
compared to relatively closed locations. This serves as the second determinant of
megafauna impact intensity within HUMLAND 2.0. Due to the two modifications
made to megafauna plant consumption in this model, megafauna affect grid cells
at every simulation step in HUMLAND 2.0.

First, the potential maximal megafauna plant consumption is restricted (V,) by
the Hunting_pressure (Hp) percentage for each grid cell (AIV.4):
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H
V, = V, X 158% (AIV.4)

V. is the initial potential maximal megafauna plant consumption obtained
from the imported dataset (Table AIV.6). Once V, is calculated it does not
change during one simulation run. For each grid cell this value is stored as
megafauna_max_consumption_restricted_hunting.

Following the constraints imposed by hunting pressure, the resultant value
of megafauna plant consumption of a grid cell after hunting (V,) undergoes
further restriction based on the current vegetation openness ) of the grid cell.
This restriction yields the final estimate (V_) of megafauna impact through the
following formula (AIV.5):

V. =V, X (AIV.5)

Afterwards, the V_value quantifies the percentage of vegetation consumed in
each grid cell, excluding water bodies and high mountains (AIV.6):

V. = 100 x ¢ (AIV.6)

V_ corresponds to the current NPP of the consumed grid cell. The resulting
V_value is then summarized with the current vegetation openness to reflect the
impact of megafauna. Megafauna only impact grid cells with vegetation openness
lower than 100%, i.e., there is no herbivory consumption of grid cells without
vegetation. Subsequently, after the megafauna plant consumption of a grid cell,
the current NPP of this grid cell is reduced based on the calculated percentage of
consumed vegetation (Vc).

Regarding the impact of megafauna on PFTs, it is assumed that megafauna
consumes all PFTs present on a grid cell in equal proportions, besides the first
dominant PFT. Therefore, if the vegetation is entirely consumed by megafauna and
the vegetation openness reaches 100%, the first dominant PFT is replaced with
bare ground. In such cases, last_agent_impacted_pft and last_agent_impacted_
openness is assigned to a value of 4, indicating that the impact was caused by
megafauna.

However, if the dominant PFT remains unchanged after megafauna
consumption, the last_agent_impacted_openness is updated after the patch has
experienced 10 consecutive ticks of megafauna impact (continuous_consumption
= 10) and if the difference between CARAIB and current vegetation openness is
more than 10%. This decision was taken considering the relatively low-intensity
impact of megafauna on all grid cells (i.e., most of the time megafauna reduces not
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Figure AIV.6 Activity diagram for megafauna impact.
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more than V_ = 1% vegetation on each grid cell per simulation step). We assumed
that for megafauna to be recognized as an agent responsible for changing
vegetation openness of a grid cell, herbivores must effect a transformation to
some extent comparable to that induced by fires and climate per simulation step.
When there is partial consumption of vegetation by megafauna (i.e., when the
first dominant PFT remains unchanged), it leads to delays in fire activity because
time is required to accumulate plant material that can be burnt. The number of
years by which fire activity is delayed is calculated by multiplying with the FRI of
the respective PFT at the patch (Table AlV.4). Consequently, depending on the
percentage of vegetation consumed, the time step at which the vegetation has a
100% probability of being burnt in the presence of an ignition source is postponed.
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A

a.s.l. Above Sea Level. 93,122, 138, 237, 281

ABM Agent-based modelling. Modelling approach used to study complex systems. In
ABM heterogeneous individuals act and interact between each other and with their
environment. As a result, population-level structures, patterns, and properties can
emerge from this interaction. 21, 23, 25, 28, 34-39, 79-80, 82-88, 90-92, 94, 96,
107-108, 114-115, 120-121, 125, 127-129, 133, 135, 138-139, 143, 149, 154, 157-158, 162,
166-168, 170, 172-173, 175-179, 198, 203, 207-209, 214, 220, 229, 235-236, 239, 242,
244, 246-247, 267, 275, 279-280, 283, 286-289, 291-293, 315

aDNA Ancient DNA. 55, 126, 163-165, 170, 176, 179

AP/NAP Ratio of arboreal and non-arboreal pollen taxa percentages. 50-51, 53, 60, 62

B

Black carbon Fire residue produced by incomplete combustion of organic matter. 50, 56,
163, 186, 196, 206

C

CARAIB CARbon Assimilation In the Biosphere. Dynamic vegetation model which calcu-
lates carbon and water fluxes between the atmosphere and the terrestrial biosphere.
CARAIB simulates the major processes of the plant development (establishment,
growth, decease) as well as their geographic distributions (Plant Functional Types or
species) in response to climate change. 21, 23-26, 28-29, 35-38, 83-92, 95-99, 102,
106-107, 113-116, 123-126, 128, 130-131, 134-140, 142-143, 149-150, 156, 158-159, 162,
166-171, 177,179, 190, 215, 220, 229, 237-239, 244-249, 256, 258, 262, 264, 267-268,
274-277,281-283, 285, 288-294, 301, 304

D

DGVM Dynamic Global Vegetation Model. 126, 149, 274-275

F

F1-score A measure of a test’s accuracy in binary classification, which considers both the
precision and the recall of the test to compute the score. The F1 score ranges from 0
to 1, with 1 being the best possible score, indicating perfect precision and recall. 88,
90, 97, 106, 114

Foragers (Hunter-gatherers) Populations that mainly depend on food collection or
foraging of wild resources. 21, 33-34, 44, 48-50, 53, 56, 58, 76-77, 81-82, 93, 119-120,
122-123, 129, 134, 140, 143, 149, 152-153, 155, 158, 163-164, 166, 169-170, 172-177,
184-185, 187, 203-204, 241-242, 252, 285-286, 297

FRI Fire Return Intervals. The average period between fires under the presumed historical
fire regime. 83, 94, 171, 222, 236-237, 243, 246, 254, 258, 281-282, 288, 291, 299, 304
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G

Genetic algorithm An optimization technique inspired by the principles of natural
selection. This technique is used to explore the space of possible solutions. 21, 38-39,
120, 125, 127, 129-130, 136, 139-141, 145-146, 149, 151-152, 157-158, 162, 168, 173-174,
176-178, 197, 204, 215, 269-271, 276

GIS Geographic Information System. 5, 168, 190, 314

GTOPO30 A global digital elevation model with a horizontal grid spacing of 30 arc
seconds (approximately 1 kilometre). 83-84, 135, 245, 247-248, 268, 289, 292-293

H

HUMLAND HUMan impact on LANDscapes. 21-26, 28-29, 34, 36-39, 79-80, 82-84, 86-88,
90-95, 97-98, 104, 107-110, 112-115, 119-120, 125, 127-136, 138-141, 143-145, 148-152,
154-158, 162, 167-179, 203, 221, 232, 235-236, 238, 244, 267-270, 273, 276-277,
279-281, 283, 285, 289, 292, 294, 297, 301

Hunter-Gatherers (Foragers) Populations that mainly depend on food collection or
foraging of wild resources. 1, 3, 21-22, 33-37, 39, 41-42, 44-58, 60, 62-63, 66, 69,
71,73-76,80-83,91-93, 101-102, 104-105, 107-108, 110-112, 119-122, 126, 128-129,
133-135, 138, 141, 148, 150-151, 153-155, 157, 162-165, 166-167, 169-170, 172, 174-175,
177-179, 212, 223, 225, 231, 236, 241-242, 252, 280, 285-286, 297

I

iLOVECLIM Intermediate Level Ocean-Atmosphere-Vegetation Integrated Model. An
intermediate complexity fully coupled climate Earth system model that aims at
computation and understanding of the climate system on a millennial timescale. 84,
135-136, 169, 183, 206-207, 247, 274-277, 292

L

Levoglucosan A degradation product obtained from cellulose burning at temperatures
more than 300°C. 50, 57, 163, 197, 209

LHS Latin Hypercube Sampling. A statistical method for generating a near-random
sample of parameter values from a multidimensional distribution. It is used to
perform uncertainty and sensitivity analysis on numerical models. 97, 105, 107, 110,
172

LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator. 137

LRA Landscape Reconstruction Algorithm. A framework of vegetation reconstruction
that includes REVEALS as the first step, and LOVE (LOcal Vegetation Estimates)-as the
second step. 53

309



Glossary

N

Niche Construction The process whereby organisms, through their metabolism, their
activities and their choices, modify their own and/or other species niches. 32, 36, 39,
42-44, 46-50, 62, 73-76, 163-165, 184-185, 202, 204, 208, 211, 213, 236, 280

Non-pollen palynomorphs Remains of organisms within the size range of pollen grains
(c. 10-250 um) (e.g., fungi, zoological remains, plant fragments, algae). 50-52, 54,
60-62, 72-73, 163-164, 183

NPP Net Primary Productivity. It is the difference between Gross Primary Productivity
(total amount of energy captured by photosynthesis in an ecosystem) and the energy
used in respiration (NPP = GPP - R). NPP represents the energy available for growth
and reproduction of plants and for consumption by herbivores and decomposers. 83,
85, 87,95-96, 133, 135, 138, 156, 170, 229, 237, 239, 245, 247-248, 256, 258, 268, 275,
282, 285, 290, 293-294, 301-302

P

PAHs Polycyclic Aromatic Hydrocarbons. A group of organic compounds composed of
multiple aromatic rings. They are environmental pollutants formed primarily during
the incomplete combustion of organic materials such as coal, oil, gas, wood, and
garbage. 50, 56, 188

Parenchyma A part of plant tissue found in most non-woody plants. 51, 58, 75, 165, 179,
206

PFT Plant Functional Type. A set of species that share similar characteristics. 36-38,
83-92,94-96, 98, 100, 106-107, 113, 124, 127-131, 134-137, 141, 143, 145-146, 148,
153, 155-157, 166, 168, 170-172, 176, 220, 229, 232, 237-239, 242-249, 251-252, 254,
256, 258, 264-265, 267-268, 275-276, 281-283, 285, 287-291, 293-294, 296-297, 299,
301-302, 304

Phytoliths Rigid, microscopic structures made of silica, present in some plant tissues and
persisting after the decay of the plant. 50-52, 55-56, 58-59, 75-76, 165, 179, 182, 189,
205, 208, 212, 214, 217

PNV Potential natural vegetation. 83-85, 87, 89-90, 128, 130-131, 135, 220, 239, 244, 247,
268, 274-275, 283, 289, 292-294

PRCC Partial Rank Correlation Coefficient. A statistical method used to measure the
strength and direction of association between an input variable and an output
variable, while controlling for the effects of other input variables. The PRCC value
ranges from -1 to 1, and values near 0 indicating weak or no correlation. 97, 105, 107,
110, 172

R

REVEALS Regional Estimates of Vegetation Abundance from Large Sites. A method to
reconstruct plant cover at a regional spatial scale of ca. 100 km x 100 km via trans-
forming pollen data from large lakes and multiple small-sized sites. 21, 23-26, 28-29,
35-38, 83, 86-90, 96-102, 104, 106-107, 109-115, 123-130, 136-137, 139-146, 149-152,
154-156, 158, 162, 166-171, 173-177,179, 220, 223-227, 229-232, 237-239, 244-246,
248, 263, 265, 267-271, 274, 276-277, 281-283, 285, 288-289, 291, 293
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S

SEIB-DGVM Spatially Explicit Individual Based DGVM. 149

Simulation A dynamic model that incorporates changes over time. 21, 28, 37, 79, 83-85,
87-88,90-96, 100-102, 104-105, 109-111, 128-136, 141, 144, 148, 156-157, 162, 166,
169-171, 176, 178, 183, 186, 194, 212, 215, 223-227, 230-231, 236, 238-239, 243-249,
252,254,274-277, 282-285, 288, 290, 292-294, 297, 299, 302, 304

T

t-value A measure used to assess whether the difference between the means of two
groups is significant or if it could have happened by random chance. 90, 97, 114

\%

VECODE VEgetation COntinuous DEscription model. 135, 274, 275, 276

Vegetation openness In the context of this research, vegetation openness is broadly
defined as vegetation density. 22, 37-38, 45, 52-53, 56, 65-66, 80-81, 83-85, 87-90,
92-93,95-102, 105-109, 111-113, 115, 120, 128-129, 131, 133-135, 137, 139-143, 145-146,
148, 152-153, 155-158, 166, 168, 170-174, 176-177, 220, 223-226, 229-231, 237, 239,
241-250, 252, 256, 258, 262-263, 266, 268, 270, 275-276, 281-283, 285-289, 291,
293-295, 297, 301-302, 304

W

WISE Water Information System for Europe. 37, 83-84, 135, 139, 245, 247-248, 268, 289,
292-293
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