

Anthropogenic landscapes? Modelling the role of huntergatherers in interglacial ecosystems in Europe Nikulina. A.

Citation

Nikulina, A. (2025, November 21). *Anthropogenic landscapes?: Modelling the role of hunter-gatherers in interglacial ecosystems in Europe*. Retrieved from https://hdl.handle.net/1887/4283281

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral

License: thesis in the Institutional Repository of the University

of Leiden

Downloaded from: https://hdl.handle.net/1887/4283281

Note: To cite this publication please use the final published version (if applicable).

BIBLIOGRAPHY

- Abar, S., Theodoropoulos, G. K., Lemarinier, P., & O'Hare, G. M. P. (2017). Agent-Based Modelling and Simulation tools: A review of the state-of-art software. *Computer Science Review*, *24*, 13–33. https://doi.org/10.1016/j.cosrev.2017.03.001
- Abe, C., Leipe, C., Tarasov, P. E., Müller, S., & Wagner, M. (2016). Spatio-temporal distribution of hunter–gatherer archaeological sites in the Hokkaido region (northern Japan): An overview. *The Holocene*, 26(10), 1627–1645. https://doi.org/10.1177/0959683616641745
- Adam, D. (2024). Ditching 'Anthropocene': why ecologists say the term still matters. https://doi.org/10.1038/d41586-024-00786-2
- al Khasawneh, S., Murray, A., Thomsen, K., AbuAzizeh, W., & Tarawneh, M. (2019). Dating a near eastern desert hunting trap (kite) using rock surface luminescence dating. *Archaeological and Anthropological Sciences*, *11*, 2109–2119. https://doi.org/10.1007/s12520-018-0661-3
- Albert, R. M., & Cabanes, D. (2007). Fire in prehistory: An experimental approach to combustion processes and phytolith remains. *Israel Journal of Earth Sciences*, *56*, 175–189. https://doi.org/10.1560/IJES.56.2-4.175
- Allentoft, M. E., Sikora, M., Fischer, A., Sjögren, K.-G., Ingason, A., Macleod, R., Rosengren, A., Paulsson, B. S., Jørkov, M. L. S., Novosolov, M., Stenderup, J., Price, T. D., Mortensen, M. F., Nielsen, A. B., Hede, M. U., Sørensen, L., Nielsen, P. O., Rasmussen, P., Jensen, T. Z. T., ... Willerslev, E. (2024). 100 ancient genomes show repeated population turnovers in Neolithic Denmark. *Nature*, 625, 329–337. https://doi.org/10.1038/s41586-023-06862-3
- Allentoft, M. E., Sikora, M., Refoyo-Martínez, A., Irving-Pease, E. K., Fischer, A., Barrie, W., Ingason, A., Stenderup, J., Sjögren, K.-G., Pearson, A., Mota, B., Paulsson, B. S., Halgren, A., Macleod, R., Jørkov, M. L. S., Demeter, F., Novosolov, M., Sørensen, L., Nielsen, P.-O., ... Willerslev, E. (2022). Population Genomics of Stone Age Eurasia. *BioRxiv*. https://doi.org/10.1101/2022.05.04.490594
- Allred, B. W., Fuhlendorf, S. D., Engle, D. M., & Elmore, D. R. (2011). Ungulate preference for burned patches reveals strength of fire–grazing interaction. *Ecology and Evolution*, *1*(2), 132–144. https://doi.org/10.1002/ece3.12
- Alperson-Afil, N. (2017). Spatial Analysis of Fire Archaeological Approach to Recognizing Early Fire. *Current Anthropology, 58*(S16). https://doi.org/10.1086/692721
- Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A., & Silvestro, D. (2020). The past and future human impact on mammalian diversity. *Science Advances*, 6(36). https://doi.org/10.1126/sciadv.abb2313
- Anderson, D. G., Harrault, L., Milek, K. B., Forbes, B. C., & Kuoppamaa, M. (2019). Animal domestication in the high Arctic: Hunting and holding reindeer on the Yamal peninsula, northwest Siberia. *Journal of Anthropological Archaeology*, *55*. https://doi.org/10.1016/j. jaa.2019.101079
- Anderson, M. K. (2005). *Tending the wild. Native American knowledge and the management of California's natural resources*. University of California Press.
- Antelmi, A., Cordasco, G., D'Ambrosio, G., De Vinco, D., & Spagnuolo, C. (2022). Experimenting with Agent-Based Model Simulation Tools. *Applied Sciences*, *13*(13). https://doi.org/10.3390/app13010013
- Anthropocene Working Group. (2019). Newsletter of the Anthropocene Working Group (Vol. 9).
- Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L., & Bradstock, R. A. (2013). Defining pyromes and global syndromes of fire regimes. *PNAS*, 110(16), 6442–6447. https://doi.org/10.1073/pnas.1211466110

- Arthur, F., Roche, D. M., Fyfe, R., Quiquet, A., & Renssen, H. (2023). Simulations of the Holocene climate in Europe using an interactive downscaling within the iLOVECLIM model (version 1.1). *Climate of the Past, 19,* 87–106. https://doi.org/10.5194/cp-19-87-2023
- Arthur, F., Zapolska, A., Roche, D. M., Li, H., & Renssen, H. (2025). Modelling the climate of the Eemian in Europe using an Interactive Physical Downscaling. *Quaternary*, 8. https://doi.org/10.20944/preprints202502.0262.v1
- Bailey, G., Andersen, S. H., & Maarleveld, T. J. (2020). Denmark: Mesolithic Coastal Landscapes Submerged. In G. Bailey, N. Galanidou, H. Peeters, H. Jöns, & M. Mennenga (Eds.), *The Archaeology of Europe's Drowned Landscapes* (Vol. 35, pp. 39–76). Springer International Publishing.
- Bakels, C. (2012). Non-pollen palynomorphs from the Eemian pool Neumark-Nord 2: Determining water quality and the source of high pollen-percentages of herbaceous taxa. *Review of Palaeobotany and Palynology, 186*, 58–61. https://doi.org/10.1016/j.revpalbo.2012.06.003
- Bakels, C. (2014). A reconstruction of the vegetation in and around the Neumark-Nord 2 basin, based on a pollen diagram from the key section HP7 supplemented bysection HP10. In S. Gaudzinski-Windheuser & W. Roebroeks (Eds.), *Multidisciplinary studies of the Middle Palaeolithic record from Neumark-Nord (Germany)* (Vol. 1, pp. 97–107). Landesmuseum für Vorgeschichte.
- Bakker, E. S., Gill, J. L., Johnson, C. N., Vera, F. W. M., Sandom, C. J., Asner, G. P., & Svenning, J.-C. (2016a). Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. *PNAS*, *113*(4), 847–855. https://doi.org/10.1073/pnas.1502545112
- Bakker, E. S., Pagès, J. F., Arthur, R., & Alcoverro, T. (2016b). Assessing the role of large herbivores in the structuring and functioning of freshwater and marine angiosperm ecosystems. *Ecography*, *39*, 162–179. https://doi.org/10.1111/ecog.01651
- Bamforth, M., Taylor, M., Taylor, B., Robson, H. K., Radini, A., & Milner, N. (2018). Wooden Structures. In N. Milner, C. Conneller, & B. Taylor (Eds.), *Star Carr, A Persistent Place in a Changing World* (pp. 69–121). White Rose University Press.
- Bar-Yosef, O. (2004). Eat what is there: hunting and gathering in the world of Neanderthals and their neighbours. *International Journal of Osteoarchaeology*, 14(3–4), 333–342. https://doi.org/10.1002/oa.765
- Bashirzadeh, M., Abedi, M., & Farzam, M. (2024). Plant-plant interactions influence post-fire recovery depending on fire history and nurse growth form. *Fire Ecology, 20*(9). https://doi.org/10.1186/s42408-024-00246-2
- Bauer, A. M., Edgeworth, M., Edwards, L. E., Ellis, E. C., Gibbard, P., & Merritts, D. J. (2021). Anthropocene: event or epoch? *Nature*, *597*, 332. https://doi.org/10.1038/d41586-021-02448-z
- Behre, K.-E. (1981). The interpretation of anthropogenic indicators in pollen diagrams. *Pollen et Spores*, 23(2), 225–245.
- Berger, A. (1978). Long-term variations of daily insolation and Quaternary climatic changes. *Journal of the Atmospheric Sciences*, *35*, 2362–2367. https://doi.org/10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2

- Bergman, J., Pedersen, R., Lundgren, E. J., Lemoine, R. T., Monsarrat, S., Pearce, E. A., Schierup, M. H., & Svenning, J. C. (2023). Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change. *Nature Communications*, 14. https://doi.org/10.1038/s41467-023-43426-5
- Berti, E., & Svenning, J.-C. (2020). Megafauna extinctions have reduced biotic connectivity worldwide. *Global Ecology and Biogeography*, *29*(12), 2131–2142. https://doi.org/10.1111/geb.13182
- Bertrix, I. A., Sato, H., Viovy, N., Renssen, H., & Roche, D. M. (2025). Holocene potential natural vegetation in Europe: Evaluating the model spread with three dynamical vegetation models. A preprint. https://doi.org/10.31223/X53H8J
- Beschta, R. L., Ripple, W. J., Kauffman, J. B., & Painter, L. E. (2020). Bison limit ecosystem recovery in northern Yellowstone. *Food Webs*, *23*. https://doi.org/10.1016/j.fooweb.2020. e00142
- Bettinger, R. L. (2001). Holocene Hunter–Gatherers. In G. M. Feinman & T. D. Price (Eds.), *Archaeology at the Millennium* (pp. 137–195). Springer.
- Binford, L. R. (1982). The archaeology of place. *Journal of Anthropological Archaeology*, 1(1), 5–31. https://doi.org/10.1016/0278-4165(82)90006-X
- Bird, M. I., Brand, M., Comley, R., Fu, X., Hadeen, X., Jacobs, Z., Rowe, C., Wurster, C. M., Zwart, C., & Bradshaw, C. J. A. (2024). Late Pleistocene emergence of an anthropogenic fire regime in Australia's tropical savannahs. *Nature Geoscience*, *17*, 233–240. https://doi.org/10.1038/s41561-024-01388-3
- Bird, R. B., Bird, D. W., Codding, B. F., Parker, C. H., & Jones, J. H. (2008). The "fire stick farming" hypothesis: Australian Aboriginal foraging strategies, biodiversity, and anthropogenic fire mosaics. *PNAS*, *105*(39), 14796–14801. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.0804757105
- Bird, R. B., Bird, D. W., Martine, C. T., McGuire, C., Greenwood, L., Taylor, D., Williams, T. M., & Veth, P. M. (2024). Seed dispersal by Martu peoples promotes the distribution of native plants in arid Australia. *Nature Communications*, *15*. https://doi.org/10.1038/s41467-024-50300-5
- Bird, R. B., McGuire, C., Bird, D. W., Price, M. H., Zeanah, D., & Nimmo, D. G. (2020). Fire mosaics and habitat choice in nomadic foragers. *PNAS*, *117*(23), 12904–12914. https://doi.org/10.1073/pnas.1921709117
- Birks, H. H. (2001). Plant macrofossils. In J. P. Smol, H. J. B. Birks, & W. M. Last (Eds.), *Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators* (Vol. 3, pp. 49–74). Kluwer.
- Birks, H. J. B., & Birks, H. H. (2004). The rise and fall of forests. *Science*, *305*(5683), 484–485. https://doi.org/10.1126/science.1101357
- Birks, H. J. B., & Birks, H. H. (2008). Biological responses to rapid climate change at the Younger Dryas-Holocene transition at Kråkenes, western Norway. *The Holocene*, 18(1).
- Birks, H. J., & Birks, H. H. (2016). How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras? *New Phytologist*, 209(2), 499–506.
- Bishop, R. R., Church, M. J., & Rowley-Conwy, P. A. (2015). Firewood, food and human niche construction: The potential role of Mesolithic hunter-gatherers in actively structuring Scotland's woodlands. *Quaternary Science Reviews*, 108, 51–75. https://doi.org/10.1016/j. quascirev.2014.11.004

- Bistinas, I., Oom, D., Sá, A. C. L., Harrison, S. P., Prentice, I. C., & Pereira, J. M. C. (2013). Relationships between human population density and burned area at continental and global scales. *PLoS ONE*, 8(12). https://doi.org/10.1371/journal.pone.0081188
- Bocquet-Appel, J.-P., & Degioanni, A. (2013). Neanderthal Demographic Estimates. *Current Anthropology*, *54*(S8), S202–S213. https://doi.org/10.1086/673725
- Boethius, A. (2018). Fishing for ways to thrive. Integrating zooarchaeology to understand subsistence strategies and their implications among Early and Middle Mesolithic southern Scandinavian foragers. In *Studies in Osteology 4* (Issue 70). Lund University.
- Boivin, N., Braje, T., & Rick, T. (2024). New opportunities emerge as the Anthropocene epoch vote falls short. *Nature Ecology and Evolution*, *8*, 844–845. https://doi.org/10.1038/s41559-024-02392-x
- Boivin, N., Zeder, M., Fuller, D., Crowther, A., Larson, G., Erlandson, J., Denham, T., & Petraglia, M. (2016). Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions. *PNAS*, *113*(23), 6388–6396. https://doi.org/http://www.pnas.org/cgi/doi/10.1073/pnas.1525200113
- Bond, W. J., & van Wilgen, B. W. van. (1996). Fire and Plants. Chapman & Hall.
- Boogers, S., & Daems, D. (2022). SAGAscape: Simulating Resource Exploitation Strategies in Iron Age to Hellenistic Communities in Southwest Anatolia. *Journal of Computer Applications in Archaeology*, *5*(1), 169–187. https://doi.org/10.5334/jcaa.90
- Bos, J. A. A., & Urz, R. (2003). Late Glacial and early Holocene environment in the middle Lahn River valley (Hessen, central-west Germany) and the local impact of early Mesolithic people—pollen and macrofossil evidence. *Vegetation History and Archaeobotany*, 12, 19–36. https://doi.org/10.1007/s00334-003-0006-7
- Bouttes, N., Lhardy, F., Quiquet, A., Paillard, D., Goosse, H., & Roche, D. M. (2022). Deglacial climate changes as forced by ice sheet reconstructions. *Climate of the Past*, 19, 1027–1042. https://doi.org/10.5194/egusphere-2022-993
- Boyd, M. (2002). Identification of Anthropogenic Burning in the Paleoecological Record of the Northern Prairies: A New Approach. *Annals of the Association of American Geographers*, 92(3), 471–487. https://doi.org/10.1111/1467-8306.00300
- Braadbaart, F., Poole, I., & van Brussel, A. A. (2009). Preservation potential of charcoal in alkaline environments: an experimental approach and implications for the archaeological record. *Journal of Archaeological Science*, *36*(8), 1672–1679. https://doi.org/10.1016/j.jas.2009.03.006
- Braadbaart, F., Reidsma, F. H., Roebroeks, W., Chiotti, L., Slon, V., Meyer, M., Théry-Parisot, I., van Hoesel, A., Nierop, K. G. J., Kaal, J., van Os, B., & Marquer, L. (2020). Heating histories and taphonomy of ancient fireplaces: A multi-proxy case study from the Upper Palaeolithic sequence of Abri Pataud (Les Eyzies-de- Tayac, France). *Journal of Archaeological Science: Reports*, 33. https://doi.org/10.1016/j.jasrep.2020.102468
- Brittingham, A., Hren, M. T., Hartman, G., Wilkinson, K. N., Mallol, C., Gasparyan, B., & Adler, D. S. (2019). Geochemical Evidence for the Control of Fire by Middle Palaeolithic Hominins. *Scientific Reports*, *9*. https://doi.org/10.1038/s41598-019-51433-0
- Britton, K., Gaudzinski-Windheuser, S., Roebroeks, W., Kindler, L., & Richards, M. P. (2012). Stable isotope analysis of well-preserved 120,000-year-old herbivore bone collagen from the Middle Palaeolithic site of Neumark-Nord 2, Germany reveals niche separation between bovids and equids. *Palaeogeography, Palaeoclimatology, Palaeoecology, 333–334*, 168–177. https://doi.org/10.1016/j.palaeo.2012.03.028

- Britton, K., Pederzani, S., Kindler, L., Roebroeks, W., Gaudzinski-Windheuser, S., Richards, M. P., & Tütken, T. (2019). Oxygen isotope analysis of Equus teeth evidences early Eemian and early Weichselian palaeotemperatures at the Middle Palaeolithic site of Neumark-Nord 2, Saxony-Anhalt, Germany. *Quaternary Science Reviews*, 226. https://doi.org/10.1016/j.quascirev.2019.106029
- Brodowski, S., Amelung, W., Haumaier, L., Abetz, C., & Zech, W. (2005). Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. *Geoderma*, 128(1–2), 116–129. https://doi.org/10.1016/j.geoderma.2004.12.019
- Brovkin, V., Ganopolski, A., & Svirezhev, Y. (1997). A continuous climate-vegetation classification for use in climate-biosphere studies. *Ecological Modelling*, 101(2–3), 251–261. https://doi.org/10.1016/S0304-3800(97)00049-5
- Burge, O. R., Richardson, S. J., Wood, J. R., & Wilmshurst, J. M. (2023). A guide to assess distance from ecological baselines and change over time in palaeoecological records. *The Holocene*, *33*(8), 905–917. https://doi.org/10.1177/09596836231169986
- Callaway, E. (2021). Million-year-old mammoth genomes shatter record for oldest ancient DNA. *Nature*, *590*, 537–538. https://doi.org/10.1038/d41586-021-00436-x
- Campbell, S. K., & Butler, V. L. (2010). Fishes and Loaves? Explaining Sustainable, Long-Term Animal Harvesting on the Northwest Coast Using the "Plant Paradigm." *The Archaeology of Anthropogenic Environments*, *37*, 175–203.
- Cao, X., Tian, F., Li, F., Gaillard, M. J., Rudaya, N., Xu, Q., & Herzschuh, U. (2019). Pollen-based quantitative land-cover reconstruction for northern Asia covering the last 40 ka cal BP. *Climate of the Past*, *15*(4), 1503–1536. https://doi.org/10.5194/cp-15-1503-2019
- Caseldine, C., & Hatton, J. (1993). The development of high moorland on Dartmoor: fire and the influence of Mesolithic activity on vegetation change. In F. M. Chambers (Ed.), *Climate Change and Human Impact on the Landscape* (pp. 119–131). Springer. https://doi.org/10.1007/978-94-011-2292-4_14
- Castree, N. (2017). Anthropocene and planetary boundaries. In D. Richardson, N. Castree, M. F. Goodchild, A. Kobayashi, W. Liu, & R. A. Marston (Eds.), *Encyclopedia of Global Environmental Governance and Politics* (pp. 1–14). John Wiley & Sons. https://doi.org/DOI: 10.1002/9781118786352.wbieg0027
- Chen, X., Kang, S., Cong, Z., Yang, J., & Ma, Y. (2018). Concentration, temporal variation, and sources of black carbon in the Mt. Everest region retrieved by real-time observation and simulation. *Atmospheric Chemistry and Physics*, 18(17), 12859–12875. https://doi.org/10.5194/acp-18-12859-2018
- Ch'ng, E., & Gaffney, V. L. (2013). Simulation and Visualisation of Agent Survival and Settlement Behaviours in the Hunter-Gatherer Colonisation of Mesolithic Landscapes. In E. Ch'ng, V. Gaffney, & H. Chapman (Eds.), *Visual Heritage in the Digital Age* (pp. 235–258). Springer-Verlag.
- Cohen, K. M., Cartelle, V., Barnett, R., Busschers, F. S., & Barlow, N. L. M. (2022). Last Interglacial sea-level data points from Northwest Europe. *Earth System Science Data*, *14*(6), 2895–2937. https://doi.org/10.5194/essd-14-2895-2022
- Cortella, A. R., & Pochettino, M. L. (1994). Starch Grain Analysis as a Microscopic Diagnostic Feature in the Identification of Plant Material. *Economic Botany*, 48(2), 171–181. https://doi.org/10.1007/BF02908212

- Crees, J. J., Carbone, C., Sommer, R. S., Benecke, N., & Turvey, S. T. (2016). Millennial-scale faunal record reveals differential resilience of European large mammals to human impacts across the Holocene. *Phil.Trans. R. Soc. B, 283*. https://doi.org/10.1098/rspb.2015.2152
- Crees, J. J., Collen, B., & Turvey, S. T. (2019). Bias, incompleteness and the "known unknowns" in the Holocene faunal record. *Phil.Trans. R. Soc. B, 374.* https://doi.org/10.1098/rstb.2019.0216
- Cristiani, E., Radini, A., Edinborough, M., & Borić, D. (2016). Dental calculus reveals Mesolithic foragers in the Balkans consumed domesticated plant foods. *PNAS*, *113*(37), 10298–10303. https://doi.org/www.pnas.org/cqi/doi/10.1073/pnas.1603477113
- Crutzen, P. J. (2002). Geology of mankind. Nature, 415, 23. https://doi.org/10.1038/415023a
- Crutzen, P. J., & Stoermer, E. F. (2000). The "Anthropocene." *Global Change Newsletter, 41,* 17–18.
- Cugny, C., Mazier, F., & Galop, D. (2010). Modern and fossil non-pollen palynomorphs from the Basque mountains (western Pyrenees, France): the use of coprophilous fungi to reconstruct pastoral activity. *Vegetation History and Archaeobotany*, *19*, 391–408. https://doi.org/10.1007/s00334-010-0242-6
- Cui, Q.-Y., Gaillard, M.-J., Lemdahl, G., Sugita, S., Greisman, A., Jacobson, G. L., & Olsson, F. (2013). The role of tree composition in Holocene fire history of the hemiboreal and southern boreal zones of southern Sweden, as revealed by the application of the Landscape Reconstruction Algorithm: Implications for biodiversity and climate-change issues. *The Holocene*, 23(12), 1747–1763. https://doi.org/10.1177/0959683613505339
- Dallmeyer, A., Kleinen, T., Claussen, M., Weitzel, N., Cao, X., & Herzschuh, U. (2022). The deglacial forest conundrum. *Nature Communications*, *13*. https://doi.org/10.1038/s41467-022-33646-6
- Dallmeyer, A., Poska, A., Marquer, L., Seim, A., & Gaillard-Lemdahl, M.-J. (2023). The challenge of comparing pollen-based quantitative vegetation reconstructions with outputs from vegetation models a European perspective. *Climate of the Past Discussions*, *9*(7), 1531–1557. https://doi.org/10.5194/cp-19-1531-2023
- Daniau, A. L., Harrison, S. P., & Bartlein, P. J. (2010). Fire regimes during the Last Glacial. *Quaternary Science Reviews*, 29, 2918–2930. https://doi.org/10.1016/j. quascirev.2009.11.008
- Daniau, A.-L., Goñi, M. F. S., & Duprat, J. (2009). Last glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04-2845, Bay of Biscay. *Quaternary Research*, *71*(3), 385–396. https://doi.org/10.1016/j.yqres.2009.01.007
- Danielson, J. J., & Gesch, D. B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010). In *Open-File Report*. https://doi.org/10.3133/ofr20111073
- Davies, P., Robb, J. G. R., & Ladbrook, D. (2005). Woodland clearance in the Mesolithic: the social aspects. *Antiquity*, *79*, 280–288.
- Davoli, M., Kuemmerle, T., Monsarrat, S. M., Crees, J., Cristiano, A., Pacifici, M., & Svenning, J.-C. (2024). Recent Sociocultural Changes Reverse the Long-Term Trend of Declining Habitat Availability for Large Wild Mammals in Europe. *Diversity and Distributions*, 30(12). https://doi.org/10.1111/ddi.13921
- Davoli, M., Monsarrat, S., Pedersen, R., Scussolini, P., Karger, D. N., Normand, S., & Svenning, J.-C. (2023). Megafauna diversity and functional declines in Europe from the Last Interglacial to the present. *Global Ecology and Biogeography*, *33*, 34–47. https://doi.org/10.1111/qeb.13778

- de la Torre, J. A., Cheah, C., Lechner, A. M., Wong, E. P., Tuuga, A., Saaban, S., Goossens, B., & Campos-Arceiz, A. (2022). Sundaic elephants prefer habitats on the periphery of protected areas. *Journal of Applied Ecology*, *59*(12), 2947–2958. https://doi.org/10.1111/1365-2664.14286
- Delcourt, H. (1987). The Impact of Prehistoric Agriculture and Land Occupation on Natural Vegetation. *Trends in Ecology and Evolution*, 2(2), 39–44.
- Dembitzer, J., Barkai, R., Ben-Dor, M., & Meiri, S. (2022). Levantine overkill: 1.5 million years of hunting down the body size distribution. *Quaternary Science Reviews*, *276*. https://doi.org/10.1016/j.quascirev.2021.107316
- Denham, T. P., Golson, J., & Hughes, P. J. (2004). Reading Early Agriculture at Kuk Swamp, Wahgi Valley, Papua New Guinea: the Archaeological Features (Phases 1–3). *Proceedings of the Prehistoric Society, 70*, 259–297. https://doi.org/10.1017/S0079497X00001195
- Denis, E. H., Toney, J. L., Tarozo, R., Anderson, R. S., Roach, L. D., & Huang, Y. (2012). Polycyclic aromatic hydrocarbons (PAHs) in lake sediments record historic fire events: Validation using HPLC-fluorescence detection. *Organic Geochemistry*, *45*, 7–17. https://doi.org/10.1016/j.orgqeochem.2012.01.005
- Dennis, F. C. (1999). Fire-Resistant Landscaping. Natural Resources Series. Forestry, 6.303.
- D'Errico, F., Banks, W. E., Vanhaeren, M., Laroulandie, V., & Langlais, M. (2011). PACEA Geo-Referenced Radiocarbon Database. *PaleoAnthropology*. https://doi.org/doi:10.4207/ PA.2011.ART40
- Deur, D., Dick, A., Recalma-Clutesi, K., & Turner, N. J. (2015). Kwakwaka'wakw "Clam Gardens". Motive and Agency in Traditional Northwest Coast Mariculture. *Human Ecology*, 201–212. https://doi.org/10.1007/s10745-015-9743-3
- Dibble, H. L., Sandgathe, D., Goldberg, P., McPherron, S., & Aldeias, V. (2018). Were Western European Neandertals able to Make Fire? *Journal of Palaeolithic Archaeology*, 1, 54–79. https://doi.org/10.1007/s41982-017-0002-6
- Dietze, E., Theuerkauf, M., Bloom, K., Brauer, A., Dörfler, W., Feeser, I., Feurdean, A., Gedminiene, L., Giesecke, T., Jahns, S., Karpińska-Kołaczek, M., Kołaczek, P., Lamentowicz, M., Latałowa, M., Marcisz, K., Obremska, M., Pędziszewska, A., Poska, A., Rehfeld, K., ... Słowiński, M. (2018). Holocene fire activity during low-natural flammability periods reveals scale-dependent cultural human-fire relationships in Europe. *Quaternary Science Reviews*, 201, 44–56. https://doi.org/10.1016/j.quascirev.2018.10.005
- Divišová, M., & Šída, P. (2015). Plant Use in the Mesolithic Period. Archaeobotanical Data from the Czech Republic in a European Context a Review. *Interdisciplinaria Archaeologica Natural Sciences in Archaeology, 6*(1), 95–106.
- Doran, J. D., Randall, C. K., & Long, A. J. (2004). Fire in the Wildland-Urban Interface: Selecting and Maintaining Firewise Plants for Landscaping. *Edis*, *5*. https://doi.org/10.32473/edis-fr147-2004
- Duffin, K. I., Gillson, L., & Willis, K. J. (2008). Testing the sensitivity of charcoal as an indicator of fire events in savanna environments: quantitative predictions of fire proximity, area and intensity. *The Holocene*, *18*(2), 279–291. https://doi.org/10.1177/0959683607086766
- Dury, M., Hambuckers, A., Warnant, P., Henrot, A., Favre, E., Ouberdous, M., & François, L. (2011). Responses of European forest ecosystems to 21st century climate: Assessing changes in interannual variability and fire intensity. *IForest*, *4*(2), 82–99. https://doi.org/10.3832/ifor0572-004

- Dussex, N., Bergfeldt, N., Prado, V. de A., Dehasque, M., Díez-del-Molino, D., Ersmark, E., Kanellidou, F., Larsson, P., Lemež, Š., Lord, E., Mármol-Sánchez, E., Meleg, I. N., Måsviken, J., Naidoo, T., Studerus, J., Vicente, M., Seth, J. von, Götherström, A., Dalén, L., & Heintzman, P. D. (2021). Integrating multi-taxon palaeogenomes and sedimentary ancient DNA to study past ecosystem dynamics. *Proc. R. Soc. B, 288*. https://doi.org/10.1098/RSPB.2021.1252
- Dutton, A., & Lambeck, K. (2012). Ice volume and sea level during the last interglacial. *Science*, 337(6091), 216–219. https://doi.org/10.1126/science.1205749
- Eby, S. L., Anderson, M., Mayemba, E. P., & Ritchie, M. E. (2014). The effect of fire on habitat selection of mammalian herbivores: the role of body size and vegetation characteristics. *Journal of Animal Ecology*, 83(5), 1196–1205. https://doi.org/10.1111/1365-2656.12221
- Eller, E., Hawks, J., & Relethford, J. H. (2009). Local Extinction and Recolonization, Species Effective Population Size, and Modern Human Origins. *Human Biology, 81*(5/6), 805–824. https://doi.org/10.3378/027.081.0623
- Ellis, E. C., Gauthier, N., Goldewijk, K. K., Bird, R. B., Boivin, N., Díaz, S., Fuller, D. Q., Gill, J. L., Kaplan, J. O., Kingston, N., Locke, H., McMichael, C. N. H., Ranco, D., Rick, T. C., Rebecca Shaw, M., Stephens, L., Svenning, J. C., & Watson, J. E. M. (2021). People have shaped most of terrestrial nature for at least 12,000 years. *PNAS*, 118(17), 1–8. https://doi.org/10.1073/pnas.2023483118
- Ellis, E., Maslin, M., Boivin, N., & Bauer, A. (2016). Involve social scientists in defining the Anthropocene. *Nature*, *540*, 192–193.
- Ember, C. R. (2020). Hunter-Gatherers (Foragers). In Explaining human culture.
- Enno, S. E., Sugier, J., Alber, R., & Seltzer, M. (2020). Lightning flash density in Europe based on 10 years of ATDnet data. *Atmospheric Research*, *235*. https://doi.org/10.1016/j. atmosres.2019.104769
- Esteban, I., Marean, C. W., Fisher, E. C., Karkanas, P., Cabanes, D., & Albert, R. M. (2018). Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa). *PLoS ONE*, *13*(6). https://doi.org/ 10.1371/journal.pone.0198558
- Faurby, S., & Svenning, J.-C. (2015). Historic and prehistoric human-driven extinctions have reshaped global mammal diversity patterns. *Diversity and Distributions*, *21*(10), 1155–1166. https://doi.org/10.1111/ddi.12369
- Feeney, J. (2019). Hunter-gatherer land management in the human break from ecological sustainability. *Anthropocene Review*, *6*(3), 223–242. https://doi.org/10.1177/2053019619864382
- Feurdean, A., Liakka, J., Vannière, B., Marinova, E., Hutchinson, S. M., Mosburgger, V., & Hickler, T. (2013). 12,000-Years of fire regime drivers in the lowlands of Transylvania (Central-Eastern Europe): a data-model approach. *Quaternary Science Reviews*, 81, 48–61. https://doi.org/10.1016/j.quascirev.2013.09.014
- Feurdean, A., Ruprecht, E., Molnár, Z., Hutchinson, S. M., & Hickler, T. (2018). Biodiversity-rich European grasslands: Ancient, forgotten ecosystems. *Biological Conservation*, 228(May), 224–232. https://doi.org/10.1016/j.biocon.2018.09.022
- Feurdean, A., Tonkov, S., Pfeiffer, M., Panait, A., Warren, D., Vannière, B., & Marinova, E. (2019). Fire frequency and intensity associated with functional traits of dominant forest type in the Balkans during the Holocene. *European Journal of Forest Research*, *138*, 1049–1066. https://doi.org/10.1007/s10342-019-01223-0

- Feurdean, A., Veski, S., Florescu, G., Vannière, B., Pfeiffer, M., O'Hara, R. B., Stivrins, N., Amon, L., Heinsalu, A., Vassiljev, J., & Hickler, T. (2017). Broadleaf deciduous forest counterbalanced the direct effect of climate on Holocene fire regime in hemiboreal/boreal region (NE Europe). *Quaternary Science Reviews*, 169, 378–390. https://doi.org/10.1016/j.quascirev.2017.05.024
- Finsinger, W., Tinner, W., Vanderknaap, W., & Ammann, B. (2006). The expansion of hazel (Corylus avellana L.) in the southern Alps: a key for understanding its early Holocene history in Europe? *Quaternary Science Reviews*, *25*(5–6), 612–631. https://doi.org/10.1016/j.quascirev.2005.05.006
- Foster, N. R., Gillanders, B. M., Jones, A. R., Young, J. M., & Waycott, M. (2020). A muddy time capsule: using sediment environmental DNA for the long-term monitoring of coastal vegetated ecosystems. *Marine and Freshwater Research*, 71(8). https://doi.org/10.1071/MF19175
- François, L., Utescher, T., Favre, E., Henrot, A. J., Warnant, P., Micheels, A., Erdei, B., Suc, J. P., Cheddadi, R., & Mosbrugger, V. (2011). Modelling Late Miocene vegetation in Europe: Results of the CARAIB model and comparison with palaeovegetation data. *Palaeogeography, Palaeoclimatology, Palaeoecology, 304*(3–4), 359–378. https://doi.org/10.1016/j.palaeo.2011.01.012
- Friedl, M., & Sulla-Menashe, D. (2019). MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006, NASA EOSDIS L. Process. *DAAC*. https://doi.org/10.5067/MODIS/MCD12Q1.006
- Fuller, D. Q., & Lucas, L. (2014). Archaeobotany. In C. Smith (Ed.), *Encyclopedia of Global Archaeology* (pp. 305–309). Springer Science+Business Media.
- Gaillard, M. J. (2013). Pollen Methods and Studies. Archaeological Applications. In S. Elias & C. J. Mock (Eds.), *Encyclopedia of Quaternary Science: Second Edition* (2nd ed., pp. 880–904). Elsevier. https://doi.org/10.1016/B978-0-444-53643-3.00182-5
- Gaillard, M.-J., Birks, H. J. B., Emanuelsson, U., Karlsson, S., Lagerås, P., & Olausson, D. (1994). Application of modern pollen/land-use relationships to the interpretation of pollen diagrams—reconstructions of land-use history in south Sweden, 3000-0 BP. Review of Palaeobotany and Palynology, 82(1–2), 47–73. https://doi.org/10.1016/0034-6667(94)90019-1
- Garcia, A. (2013). GIS-based methodology for Palaeolithic site location preferences analysis. A case study from Late Palaeolithic Cantabria (Northern Iberian Peninsula). *Journal of Archaeological Science*, 40, 217–226. https://doi.org/10.1016/j.jas.2012.08.023
- García-Moreno, A., Smith, G. M., Kindler, L., Pop, E., Roebroeks, W., Gaudzinski-Windheuser, S., & Klinkenberg, V. (2016). Evaluating the incidence of hydrological processes during site formation through orientation analysis. A case study of the middle Palaeolithic Lakeland site of Neumark-Nord 2 (Germany). *Journal of Archaeological Science: Reports*, 6, 82–93. https://doi.org/10.1016/j.jasrep.2016.01.023
- Gashchak, S., & Paskevych, S. (2019). Przewalski's horse (Equus ferus przewalskii) in the Chornobyl Exclusion Zone after 20 years of introduction. *Theriologia Ukrainica*, 18, 80–100. https://doi.org/10.15407/pts2019.18.080
- Gaudzinski, S., & Roebroeks, W. (2000). Adults only. Reindeer hunting at the Middle Palaeolithic site Salzgitter Lebenstedt, northern Germany. *Journal of Human Evolution*, 38(4), 497–521. https://doi.org/10.1006/jhev.1999.0359

- Gaudzinski-Windheuser, S., Kindler, L., MacDonald, K., & Roebroeks, W. (2023). Hunting and processing of straight-tusked elephants 125.000 years ago: Implications for Neanderthal behaviour. *Science Advances*, *9*. https://doi.org/10.1126/sciadv.add8186
- Gaudzinski-Windheuser, S., Noack, E. S., Pop, E., Herbst, C., Pfleging, J., Buchli, J., Jacob, A., Enzmann, F., Kindler, L., Iovita, R., Street, M., & Roebroeks, W. (2018). Evidence for close-range hunting by last interglacial Neanderthals. *Nature Ecology and Evolution*, *2*, 1087–1092. https://doi.org/10.1038/s41559-018-0596-1
- Gaudzinski-Windheuser, S., & Roebroeks, W. (2014). Neandertal activities in a Last Interglacial lake-landscape: the Neumark-Nord 2 project. In S. Gaudzinski-Windheuser & W. Roebroeks (Eds.), *Multidisciplinary studies of the Middle Palaeolithic record from Neumark-Nord (Germany)* (Vol. 1, pp. 241–248). Landesmuseum für Vorgeschichte.
- Geersen, J., Bradtmöller, M., Schneider, J., Deimling, V., Feldens, P., Auer, J., Held, P., & Lohrberg, A. (2024). A submerged Stone Age hunting architecture from the Western Baltic Sea. *PNAS*, *121*(8). https://doi.org/10.1073/pnas.2312008121
- Gelorini, V., Ssemmanda, I., & Verschuren, D. (2012). Validation of non-pollen palynomorphs as paleoenvironmental indicators in tropical Africa: Contrasting ~200-year paleolimnological records of climate change and human impact. *Review of Palaeobotany and Palynology, 186*, 90–101. https://doi.org/10.1016/j.revpalbo.2012.05.006
- Gesch, D. B., Verdin, K. L., & Greenlee, S. K. (1999). New land surface digital elevation model covers the earth. *Eos*, 80(6), 69–70. https://doi.org/10.1029/99EO00050
- Gibbard, P., Walker, M., Bauer, A., Edgeworth, M., Edwards, L., Ellis, E., Finney, S., Gill, J. L., Maslin, M., Merritts, D., & Ruddiman, W. (2022). The Anthropocene as an Event, not an Epoch. *Journal of Quaternary Science*, *37*(3), 395–399. https://doi.org/10.1002/jqs.3416
- Giesecke, T., Brewer, S., Finsinger, W., Leydet, M., & Bradshaw, R. H. W. (2017). Patterns and dynamics of European vegetation change over the last 15,000 years. *Journal of Biogeography*, 44(7), 1441–1456. https://doi.org/10.1111/jbi.12974
- Giglio, L., Boschetti, L., Roy, D. P., Humber, M. L., & Justice, C. O. (2018). The Collection 6 MODIS burned area mapping algorithm and product. *Remote Sensing of Environment*, 217, 72–85. https://doi.org/10.1016/j.rse.2018.08.005
- Giguet-Covex, C., Ficetola, G. F., Walsh, K., Poulenard, J., Bajard, M., Fouinat, L., Sabatier, P., Gielly, L., Messager, E., Develle, A. L., David, F., Taberlet, P., Brisset, E., Guiter, F., Sinet, R., & Arnaud, F. (2019). S. *Scientific Reports*, *9*. https://doi.org/10.1038/s41598-019-50339-1
- Giguet-Covex, C., Pansu, J., Arnaud, F., Rey, P.-J., Griggo, C., Gielly, L., Domaizon, I., Coissac, E., David, F., Choler, P., Poulenard, J., & Taberlet, P. (2014). Long livestock farming history and human landscape shaping revealed by lake sediment DNA. *Nature Communications*, *5*. https://doi.org/10.1038/ncomms4211
- Gill, J. L., McLauchlan, K. K., Skibbe, A. M., Goring, S., Zirbel, C. R., & Williams, J. W. (2013). Linking abundances of the dung fungus *Sporormiella* to the density of bison: implications for assessing grazing by megaherbivores in palaeorecords. *Journal of Ecology*, 101(5), 1125–1136. https://doi.org/10.1111/1365-2745.12130
- Girard, T. L., Bork, E. W., Neilsen, S. E., & Alexander, M. J. (2013). Landscape-scale factors affecting feral horse habitat use during summer within the rocky mountain foothills. *Environmental Management*, *51*, 435–447. https://doi.org/10.1007/s00267-012-9987-2

- Githumbi, E., Fyfe, R., Gaillard, M., Trondman, A., Mazier, F., Nielsen, A.B., Poska, A., Sugita, S., Woodbridge, J., Azuara, J., Feurdean, A., Grindean, R., Lebreton, V., Marquer, L., Nebout-Combourieu, N., Stančikaitė, M., Tanţău, I., Tonkov, S., Shumilovskikh, L., & LandClimll data contributors (2022). European pollen-based REVEALS land-cover reconstructions for the Holocene: methodology, mapping and potentials. *Earth System Science Data*, 14, 1581–1619.
- Goldberg, P., Miller, C. E., & Mentzer, S. M. (2017). Recognizing Fire in the Palaeolithic Archaeological Record. *Current Anthropology*, *58*(S16), S175–S190. https://doi.org/10.1086/692729
- Goldewijk, K. (2024). *History Database of the Global Environment 3.2.* https://doi.org/10.24416/ UU01-XUTQN5
- Goldewijk, K. K., Beusen, A., Doelman, J., & Stehfest, E. (2017). Anthropogenic land use estimates for the Holocene HYDE 3.2. *Earth System Science Data*, *9*(2), 927–953. https://doi.org/http://dx.doi.org/10.5194/essd-9-927-2017
- Goosse, H., Brovkin, V., Fichefet, T., Haarsma, R., Huybrechts, P., Jongma, J., Mouchet, A., Selten, F., Barriat, P. Y., Campin, J. M., Deleersnijder, E., Driesschaert, E., Goelzer, H., Janssens, I., Loutre, M. F., Morales Maqueda, M. A., Opsteegh, T., Mathieu, P. P., Munhoven, G., ... Weber, S. L. (2010). Description of the Earth system model of intermediate complexity LOVECLIM version 1.2. *Geoscientific Model Development*, 3(2), 603–633. https://doi.org/10.5194/gmd-3-603-2010
- Goosse, H., & Fichefet, T. (1999). Importance of ice-ocean interactions for the global ocean circulation: A model study. *Journal of Geophysical Research: Oceans, 104*(C10), 23337–23355. https://doi.org/10.1029/1999jc900215
- Gowlett, J. A. J., & Wrangham, R. W. (2013). Earliest fire in Africa: Towards the convergence of archaeological evidence and the cooking hypothesis. *Azania: Archaeological Research in Africa*, 48(1), 5–30. https://doi.org/10.1080/0067270X.2012.756754
- Greaves, R. D., & Kramer, K. L. (2014). Hunter-gatherer use of wild plants and domesticates: archaeological implications for mixed economies before agricultural intensification. *Journal of Archaeological Science*, 41, 263–271. https://doi.org/http://dx.doi.org/10.1016/j. jas.2013.08.014
- Greenwood, D. R. (1991). The Taphonomy of Plant Macrofossils. In S. K. Donovan (Ed.), *The Processes of Fossilization* (pp. 141–169). Columbia University Press.
- Gronenborn, D., & Horejs, B. (2021). *Expansion of Farming in Western Eurasia, 9600 4000 Cal BC (Update Vers. 2021.2), vol. 2021.* https://doi.org/10.5281/zenodo.5903165
- Groß, D., Piezonka, H., Corradini, E., Schmölcke, U., Zanon, M., Dörfler, W., Dreibrodt, S., Feeser, I., Krüger, S., Lübke, H., Panning, D., & Wilken, D. (2019). Adaptations and transformations of hunter-gatherers in forest environments: New archaeological and anthropological insights. *The Holocene*, *29*(10), 1531–1544. https://doi.org/10.1177/0959683619857231
- Gumiński, W., & Michniewicz, M. (2003). Forest and Mobility. A Case from the Fishing Camp Dudka, Masuria, north-eastern Poland. In L. Larsson (Ed.), Mesolithic on the Move. Papers presented at the Sixth International Conference on the Mesolithic in Europe (pp. 119–127). Oxbow Books.

- Günther, T., Malmström, H., Svensson, E. M., Omrak, A., Sánchez-Quinto, F., Kılınç, G. M., Krzewińska, M., Eriksson, G., Fraser, M., Edlund, H., Munters, A. R., Coutinho, A., Simões, L. G., Vicente, M., Sjölander, A., Sellevold, B. J., Jørgensen, R., Claes, P., Shriver, M. D., ... Jakobsson, M. (2018). Population genomics of Mesolithic Scandinavia: Investigating early postglacial migration routes and high-latitude adaptation. *PloS Biology, 16*(1). https://doi.org/10.1371/journal.pbio.2003703
- Haas, J. N. (2010). Fresh insights into the palaeoecological and palaeoclimatological value of Quaternary non-pollen palynomorphs. *Vegetation History and Archaeobotany, 19,* 389. https://doi.org/10.1007/s00334-010-0274-y
- Haber, M., Mezzavilla, M., Xue, Y., & Tyler-smith, C. (2016). Ancient DNA and the rewriting of human history: be sparing with Occam's razor. *Genome Biology, 17.* https://doi.org/10.1186/s13059-015-0866-z
- Haile, J., Froese, D. G., MacPhee, R. D. E., Roberts, R. G., Arnold, L. J., Reyes, A. V, Rasmussen, M., Nielsen, R., Brook, B. W., Robinson, S., Demuro, M., Gilbert, M. T. P., Munch, K., Austin, J. J., Cooper, A., Barnes, I., Möller, P., & Willerslev, E. (2009). Ancient DNA reveals late survival of mammoth and horse in interior Alaska. *PNAS*, 106(52), 22352–22357. https://doi.org/10.1073/pnas.0912510106
- Hamby, D. M. (1994). A review of techniques for parameter sensitivity. *Environmental Monitoring and Assessment*, 32, 135–154.
- Hamilton, R., Stevenson, J., Li, B., & Bijaksana, S. (2019). A 16,000-year record of climate, vegetation and fire from Wallacean lowland tropical forests. *Quaternary Science Reviews*, 224. https://doi.org/10.1016/j.quascirev.2019.105929
- Hamon, C., & Manen, C. (2021). The Mechanisms of Neolithisation of Western Europe: Beyond a South/North Approach. *Open Archaeology*, 7(1), 718–735. https://doi.org/10.1515/opar-2020-0164
- Hao, B., Xu, X., Wu, F., & Tan, L. (2022). Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery. Forests, 13(883). https://doi.org/10.3390/ f13060883
- Hardy, B. L., & Moncel, M.-H. (2011). Neanderthal Use of Fish, Mammals, Birds, Starchy Plants and Wood 125-250,000 Years Ago. *PLOS ONE*, *6*(8). https://doi.org/0.1371/journal.pone.0023768
- Hardy, K., Radini, A., Buckley, S., Blasco, R., Copeland, L., Burjachs, F., Girbal, J., Yll, R., Carbonell, E., & Bermúdez de Castro, J. M. (2017). Diet and environment 1.2 million years ago revealed through analysis of dental calculus from Europe's oldest hominin at Sima del Elefante, Spain. *The Science of Nature*, 104(2). https://doi.org/10.1007/s00114-016-1420-x
- Hardy, K., Radini, A., Buckley, S., Sarig, R., Copeland, L., Gopher, A., & Barkai, R. (2016). Dental calculus reveals potential respiratory irritants and ingestion of essential plant-based nutrients at Lower Palaeolithic Qesem Cave Israel. *Quaternary International*, 398, 129–135. https://doi.org/10.1016/j.quaint.2015.04.033
- Harris, D. R. (2013). Plant Domestications. In V. Cummings, P. Jordan, & M. Zvelebil (Eds.), The Oxford Handbook of the Archaeology and Anthropology of Hunter-Gatherers (pp. 729–749). Oxford University Press.

- Harrison, S. P., Prentice, I. C., Bloomfield, K. J., Dong, N., Forkel, M., Forrest, M., Ningthoujam, R. K., Pellegrini, A., Shen, Y., Baudena, M., Cardoso, A. W., Huss, J. C., Joshi, J., Oliveras, I., Pausas, J. G., & Simpson, K. J. (2021). Understanding and modelling wildfire regimes: An ecological perspective. *Environmental Research Letters*, 16. https://doi.org/10.1088/1748-9326/ac39be
- Harrower, M. J. (2016). Water histories and spatial archaeology. Cambridge University Press.
- Hearty, P. J., Hollin, J. T., Neumann, A. C., O'Leary, M. J., & McCulloch, M. (2007). Global sealevel fluctuations during the Last Interglaciation (MIS 5e). *Quaternary Science Reviews*, 26(17–18), 2090–2112. https://doi.org/10.1016/j.guascirev.2007.06.019
- Heidgen, S., Marinova, E., Nelle, O., Ebner, M., Rotava, T., Tafelmaier, Y., Krauß, R., Bofinger, J., & Junginger, A. (2022). Palaeoecological signals for Mesolithic land use in a Central European landscape? *Journal of Quaternary Science*, *37*(6). https://doi.org/10.1002/jqs.3422
- Hellman, S., Bunting, M. J., & Gaillard, M.-J. (2009). Relevant Source Area of Pollen in patchy cultural landscapes and signals of anthropogenic landscape disturbance in the pollen record: A simulation approach. *Review of Palaeobotany and Palynology*, *153*(3–4), 245–258. https://doi.org/10.1016/j.revpalbo.2008.08.006
- Hellman, S. E. V., Gaillard, M.-J., Broström, A., & Sugita, S. (2008). Effects of the sampling design and selection of parameter values on pollen-based quantitative reconstructions of regional vegetation: A case study in southern Sweden using the REVEALS model. Vegetation History and Archaeobotany, 17, 445–459. https://doi.org/10.1007/s00334-008-0149-7
- Henrot, A. J., Utescher, T., Erdei, B., Dury, M., Hamon, N., Ramstein, G., Krapp, M., Herold, N., Goldner, A., Favre, E., Munhoven, G., & François, L. (2017). Middle Miocene climate and vegetation models and their validation with proxy data. *Palaeogeography, Palaeoclimatology, Palaeoecology, 467*, 95–119. https://doi.org/10.1016/j.palaeo.2016.05.026
- Henry, A. G., Brooks, A. S., & Piperno, D. R. (2011). Microfossils in calculus demonstrate consumption of plants and cooked foods in Neanderthal diets (Shanidar III, Iraq; Spy I and II, Belgium). *PNAS*, *108*(2), 486–491. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.1016868108
- Henry, A. G., Brooks, A. S., & Piperno, D. R. (2014). Plant foods and the dietary ecology of Neanderthals and early modern humans. *Journal of Human Evolution*, 69, 44–54. https://doi.org/10.1016/j.jhevol.2013.12.014
- Henry, A., Théry-Parisot, I., & Voronkova, E. (2008). La gestion du bois de feu en forêt boréale: archéo-anthracologie et ethnographie (région de l'Amour, Sibérie). In I. Théry-Parisot, S. Costamagno, & A. Henry (Eds.), Actes du XV Congrès mondial de l'Union Internationale des Sciences Préhistoriques et Protohistoriques. Gestion des combustibles au Paléolithique et au Mésolithique nouveaux outils, nouvelles interprétations (pp. 17–37). Archaeopress.
- Herzog, N. M., Keefe, E. R., Parker, C. H., & Hawkes, K. (2016). What's Burning got to do With it? Primate Foraging Opportunities in Fire-Modified Landscapes. *American Journal of Biological Anthropology*, 159(3), 432–441. https://doi.org/10.1002/ajpa.22885
- Hicks, S. (1992). Modern pollen deposition and its use in interpreting the occupation history of the island Hailuoto, Finland. *Vegetation History and Archaeobotany*, 1, 75–86.
- Hicks, S., & Birks, H. J. B. (1996). Numerical analysis of modern and fossil pollen spectra as a tool for elucidating the nature of fine-scale human activities in boreal areas. *Vegetation History and Archaeobotany*, 5, 257–272.

- Hilding-Rydevik, T., Moen, J., & Green, C. (2017). Baselines and the Shifting Baseline Syndrome Exploring Frames of Reference in Nature Conservation. In C. L. Crumley, T. Lennartsson, & A. Westin (Eds.), *Issues and Concepts in Historical Ecology: The Past and Future of Landscapes and Regions* (pp. 112–142). Cambridge University Press.
- Hinz, M., Furholt, M., Müller, J., Rinne, C., Raetzel-Fabian, D., Sjögren, K.-G., & Wotzka, H.-P. (2012). RADON Radiocarbon dates online 2012. Central European database of 14C dates for the Neolithic and the Early Bronze Age. *Journal of Neolithic Archaeology*. https://doi.org/DOI: https://doi.org/10.12766/jna.2012.65
- Hitchcock, R. K. (2019). Hunters and gatherers past and present: Perspectives on diversity, teaching, and information transmission. *Reviews in Anthropology, 48*(1), 5–37. https://doi.org/10.1080/00938157.2019.1578025
- Hjelle, K. L., & Lødøen, T. K. (2017). Dating of rock art and the effect of human activity on vegetation: The complementary use of archaeological and scientific methods. *Quaternary Science Reviews*, 168, 194–207. https://doi.org/10.1016/j.quascirev.2017.05.003
- Holland, J. H. (1975). *Adaptation in Natural and Artificial Systems*. University of Michigan Press, Ann Arbor.
- Holst, D. (2010). Hazelnut economy of early Holocene hunter-gatherers: A case study from Mesolithic Duvensee, northern Germany. *Journal of Archaeological Science*, *37*(11), 2871–2880. https://doi.org/10.1016/j.jas.2010.06.028
- Hoppe, K. A. (2004). Late Pleistocene mammoth herd structure, migration patterns, and Clovis hunting strategies inferred from isotopic analyses of multiple death assemblages. *Paleobiology*, 30(1), 129–145.
- Hörnberg, G., Bohlin, E., Hellberg, E., Bergman, I., Zackrisson, O., Olofsson, A., Wallin, J.-E., & Påsse, T. (2006). Effects of Mesolithic hunter-gatherers on local vegetation in a non-uniform glacio-isostatic land uplift area, northern Sweden. *Vegetation History and Archaeobotany*, *15*, 13–26. https://doi.org/10.1007/s00334-005-0006-x
- Huang, X., Zhang, J., Storozum, M., Liu, S., Gill, L. J., Xiang, L., Ren, X., Wang, J., Qiang, M., Chen, F., & Grimm, E. C. (2020). Long-term herbivore population dynamics in the northeastern Qinghai-Tibet Plateau and its implications for early human impacts. *Review of Palaeobotany and Palynology, 275*. https://doi.org/10.1016/j.revpalbo.2020.104171
- Hubert, B., François, L., Warnant, P., & Strivay, D. (1998). Stochastic generation of meteorological variables and effects on global models of water and carbon cycles in vegetation and soils. *Journal of Hydrology*, *212–213*, 318–334.
- Hunt, C. O., Gilbertson, D. D., & Rushworth, G. (2012). A 50,000-year record of late Pleistocene tropical vegetation and human impact in lowland Borneo. *Quaternary Science Reviews*, 37, 61–80. https://doi.org/10.1016/j.quascirev.2012.01.014
- Iman, R. L., & Conover, W. J. (1980). Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. *Communications in Statistics Theory and Methods*, *9*(17), 1749–1842. https://doi.org/10.1080/03610928008827996
- Innes, J. B., & Blackford, J. J. (2003). The Ecology of Late Mesolithic Woodland Disturbances: Model Testing with Fungal Spore Assemblage Data. *Journal of Archaeological Science*, 30(2), 185–194. https://doi.org/10.1006/jasc.2002.0832
- Innes, J. B., & Blackford, J. J. (2017). Palynology and the study of the Mesolithic-Neolithic Transition in the British Isles. In M. Williams, T. Hil, I. Boomer, & I. P. Wilkinson (Eds.), *The Archaeological and Forensic Applications of Microfossils: A Deeper Understanding of Human History* (Issue 7, pp. 55–78). https://doi.org/10.1144/TMS007

- Innes, J. B., & Blackford, J. J. (2023). Disturbance and Succession in Early to Mid-Holocene Northern English Forests: Palaeoecological Evidence for Disturbance of Woodland Ecosystems by Mesolithic Hunter-Gatherers. Forests, 14(4). https://doi.org/10.3390/ f14040719
- Innes, J. B., Blackford, J. J., & Rowley-Conwy, P. A. (2013). Late Mesolithic and early Neolithic forest disturbance: a high resolution palaeoecological test of human impact hypotheses. *Quaternary Science Reviews*, 77, 80–100. https://doi.org/http://dx.doi. org/10.1016/j.guascirev.2013.07.012
- Innes, J. B., Blackford, J. J., & Simmons, I. G. (2004). Testing the integrity of fine spatial resolution palaeoecological records: microcharcoal data from near-duplicate peat profiles from the North York Moors, UK. *Palaeogeography, Palaeoclimatology, Palaeoecology, 214*(4), 295–307. https://doi.org/10.1016/j.palaeo.2004.04.004
- Jackson, S., & Barber, M. (2016). Historical and contemporary waterscapes of North Australia: Indigenous attitudes to dams and water diversions. Water History, 8, 385–404. https://doi.org/10.1007/s12685-016-0168-8
- Janssen, T. A. J., Jones, M. W., Finney, D., van der Werf, G. R., van Wees, D., Xu, W., & Veraverbeke, S. (2023). Extratropical forests increasingly at risk due to lightning fires. *Nature Geoscience*, 16, 1136–1144. https://doi.org/10.1038/s41561-023-01322-z
- Johnson, E. A., & Miyanishi, K. (2021). Disturbance and succession. In E. A. Johnson & K. Miyanishi (Eds.), *Plant Disturbance Ecology* (2nd ed., pp. 476–503). Academic Press.
- Kaal, J., Carrión Marco, Y., Asouti, E., Martín Seijo, M., Martínez Cortizas, A., Costa Casáis, M., & Criado Boado, F. (2011). Long-term deforestation in NW Spain: linking the Holocene fire history to vegetation change and human activities. *Quaternary Science Reviews*, 30(1–2), 161–175. https://doi.org/10.1016/j.quascirev.2010.10.006
- Kaal, J., Criado-Boado, F., Costa-Casais, M., López-Sáez, J. A., López-Merino, L., Mighall, T., Carrión, Y., Silva Sánchez, N., & Martínez Cortizas, A. (2013). Prehistoric land use at an archaeological hot-spot (the rock art park of Campo Lameiro, NW Spain) inferred from charcoal, synanthropic pollen and non-pollen palynomorph proxies. *Journal of Archaeological Science*, 40(3), 1518–1527. https://doi.org/10.1016/j.jas.2012.09.024
- Kaal, J., Martinez-Cortizas, A., Eckmeier, E., Costa Casais, M., Santos Estévez, M., & Criado Boado, F. (2008a). Holocene fire history of black colluvial soils revealed by pyrolysis-GC/MS: a case study from Campo Lameiro (NW Spain). *Journal of Archaeological Science*, 35(8), 2133–2143. https://doi.org/10.1016/j.jas.2008.01.013
- Kaal, J., Martinez-Cortizas, A., Buurman, P., & Criado Boado, F. (2008b). 8000 yr of black carbon accumulation in a colluvial soil from NW Spain. *Quaternary Research*, 69(1), 56–61. https://doi.org/10.1016/j.ygres.2007.10.005
- Kageyama, M., Albani, S., Braconnot, P., Harrison, S. P., Hopcroft, P. O., Ivanovic, R. F., Lambert, F., Marti, O., Richard Peltier, W., Peterschmitt, J. Y., Roche, D. M., Tarasov, L., Zhang, X., Brady, E. C., Haywood, A. M., Legrande, A. N., Lunt, D. J., Mahowald, N. M., Mikolajewicz, U., ... Zheng, W. (2017). The PMIP4 contribution to CMIP6 Part 4: Scientific objectives and experimental design of the PMIP4-CMIP6 Last Glacial Maximum experiments and PMIP4 sensitivity experiments. *Geoscientific Model Development*, 10(11), 4035–4055. https://doi.org/10.5194/gmd-10-4035-2017

- Kandel, A. W., Sommer, C., Kanaeva, Z., Bolus, M., Bruch, A. A., Groth, C., Haidle, M. N., Hertler, C., Heß, J., Malina, M., Märker, M., Hochschild, V., Mosbrugger, V., Schrenk, F., & Conard, N. J. (2023). The ROCEEH Out of Africa Database (ROAD): A large-scale research database serves as an indispensable tool for human evolutionary studies. *PLoS ONE*, *18*(8). https://doi.org/10.1371/journal.pone.0289513
- Kaplan, J. O., Pfeiffer, M., Kolen, J. C. A., & Davis, B. A. S. (2016). Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe. *PLoS ONE*, *11*(11). https://doi.org/DOI:10.1371/journal.pone.0166726
- Kassambara, A. (2023). agcorrplot: Visualization of a Correlation Matrix using "agplot2."
- Kasse, C., Van Der Woude, J. D., Woolderink, H. A. G., & Schokker, J. (2022). Eemian to Early Weichselian regional and local vegetation development and sedimentary and geomorphological controls, Amersfoort Basin, the Netherlands. *Netherlands Journal of Geosciences*, 101. https://doi.org/10.1017/njg.2022.4
- Katoch, S., Chauhan, S. S., & Kumar, V. (2021). A review on genetic algorithm: past, present, and future. *Multimed Tools Appl.*, *80*(5), 8091–8126. https://doi.org/doi: 10.1007/s11042-020-10139-6
- Kehrwald, N., Zangrando, R., Gabrielli, P., Jaffrezo, J.-L., Boutron, C., Barbante, C., & Gambaro, A. (2012). Levoglucosan as a specific marker of fire events in Greenland snow. *Tellus B: Chemical and Physical Meteorology*, 64(1). https://doi.org/10.3402/tellusb.v64i0.18196
- Kelly, R. L. (2013). *The Lifeways of Hunter-Gatherers: The Foraging Spectrum*. Cambridge University Press.
- Khomich, L. V. (1966). Istoriko-etnograficheskie ocherki. Nenets (Historical and ethnographic essays). Nauka.
- Kindler, L., Smith, G. M., García-Moreno, A., Gaudzinski-Windheuser, S., Pop, E., & Roebroeks, W. (2020). The Last Interglacial (Eemian) lakeland at Neumark-Nord (Saxony-Anhalt, Germany). Sequencing Neanderthal occupations, assessing subsistence opportunities and prey selection based on estimates of ungulate carrying capacities, biomass production and energ. In A. García-Moreno, J. M. Hutson, G. M. Smith, L. Kindler, E. Turner, A. Villaluenga, & S. Gaudzinski-Windheuser (Eds.), *Human behavioural adaptations to interglacial lakeshore environments* (pp. 67–105). Propylaeum.
- Kindler, L., Smith, G., & Wagner, M. (2014). Introduction to faunal analysis at Neumark-Nord 2. In S. Gaudzinski-Windheuser & W. Roebroeks (Eds.), *Multidisciplinary studies of the Middle Palaeolithic record from Neumark-Nord (Germany)* (pp. 197–211). Landesmuseum für Vorgeschichte.
- Kintigh, K. W., Altschul, J. H., Beaudry, M. C., Drennan, R. D., Kinzing, A. P., Kohler, T. A., Limp, W. F., Maschner, H. D. G., Michener, W. K., Pauketat, T. R., Peregrine, P., Sabloff, J. A., Wilkinson, T. J., Wright, H. T., & Zeder, M. A. (2014). Grand challenges for archaeology. *American Antiquity*, *79*(1), 5–24. https://doi.org/10.1073/pnas.1324000111
- Kirch, P. V. (2005). Archaeology and global change: the Holocene record. *Annual Review of Environment and Resources*, *30*, 409–440. https://doi.org/10.1146/annurev.energy.29.102403.140700
- Kleynhans, E. J., Atchley, A. L., & Michaletz, S. T. (2021). Modeling fire effects on plants: From organs to ecosystems. In K. M. Edward A. Johnson (Ed.), *Plant Disturbance Ecology* (Second, pp. 383–421). Academic Press. https://doi.org/10.1016/B978-0-12-818813-2.00011-3

- Klooss, S., Fischer, E., Out, W., & Kirleis, W. (2016). Charred root tubers of lesser celandine (Ficaria verna HUDS.) in plant macro remain assemblages from Northern, Central and Western Europe. *Quaternary International*, 404(A), 25–42. https://doi.org/10.1016/j. quaint.2015.10.014
- Knorr, W., Kaminski, T., Arneth, A., & Weber, U. (2014). Impact of human population density on fire frequency at the global scale. *Biogeosciences*, *11*(4), 1085–1102. https://doi.org/10.5194/bg-11-1085-2014
- Komarek, E. V. (1969). Fire and animal behaviour. *Proceedings Tall Timbers Fire Ecology Conference*, *9*, 160–207.
- Kotthoff, U., Koutsodendris, A., Pross, J., Schmiedl, G., Bornemann, A., Kaul, C., Marino, G., Peyron, O., & Schiebel, R. (2011). Impact of Lateglacial cold events on the northern Aegean region reconstructed from marine and terrestrial proxy data. *Journal of Quaternary Science*, 26(1), 86–96. https://doi.org/10.1002/jgs.1430
- Kovárník, J., & Beneš, J. (2018). Microscopic Analysis of Starch Grains and its Applications in the Archaeology of the Stone Age. *Interdisciplinaria Archaeologica - Natural Sciences in Archaeology*, IX(1), 83–93. https://doi.org/10.24916/iansa.2018.1.6
- Kowalczyk, R., Kamiński, T., & Borowik, T. (2021). Do large herbivores maintain open habitats in temperate forests? Forest Ecology and Management, 494. https://doi.org/10.1016/j. foreco.2021.119310
- Kubiak-Martens, L. (1996). Evidence for possible use of plant foods in Palaeolithic and Mesolithic diet from the site of Całowanie in the central part of the Polish Plain. *Vegetation History and Archaeobotany, 5,* 33–38.
- Kubiak-Martens, L. (2002). New evidence for the use of root foods in pre-agrarian subsistence recovered from the late Mesolithic site at Halsskov, Denmark. *Vegetation History and Archaeobotany*, 11, 23–32. https://doi.org/10.1007/s003340200003
- Kubiak-Martens, L. (2015). Mesolithic diet. In K. B. Metheny & M. C. Beaudry (Eds.), *Archaeology of food* (pp. 312–316). Rowman & Littlefield.
- Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. *Journal of Statistical Software*, 28(5). https://doi.org/10.18637/jss.v028.i05
- Kuhn, M., Jackson, S., & Cimentada, J. (2022). corrr: Correlations in R.
- Kuijper, W. (2014). Investigation of inorganic, botanical, and zoological remains of an exposure of Last Interglacial (Eemian) sediments at Neumark-Nord 2 (Germany). In S. Gaudzinski-Windheuser & W. Roebroeks (Eds.), *Multidisciplinary studies of the Middle Palaeolithic record from Neumark-Nord (Germany)* (Vol. 1, pp. 79–96). Landesmuseum für Vorgeschichte.
- Lake, M. W. (2000). MAGICAL Computer Simulation of Mesolithic Foraging. In T. A. Kohler & G. J. Gumerman (Eds.), *Dynamics in Human and Primate Societies: Agent-Based Modeling of Social and Spatial Processes* (pp. 107–144). Oxford University Press. https://doi.org/10.1093/oso/9780195131673.003.0011
- Landon, D. B. (2005). Zooarchaeology and Historical Archaeology: Progress and Prospects. *Journal of Archaeological Method and Theory, 12,* 1–36. https://doi.org/10.1007/s10816-005-2395-7
- Lane, P. J. (2015). Archaeology in the age of the Anthropocene: A critical assessment of its scope and societal contributions. *Journal of Field Archaeology*, 40(5), 485–498. https://doi.org/10.1179/2042458215Y.0000000022

- Lang, G. (1994). *Quartäre Vegetationsgeschichte Europas: Methoden und Ergebnisse*. Spektrum Akademischer Verlag.
- Lange, S. (2019). EartH2Observe, WFDEI and ERA-interim data merged and bias-corrected for ISIMIP (EWEMBI). V. 1.1. GFZ data services. https://doi.org/10.5880/pik.2019.004
- Latałowa, M. (1992). Man and vegetation in the pollen diagrams from Wolin island (NW Poland). *Acta Palaeobot*, 32(1), 123–249.
- Laurent, J. M., François, L., Bar-Hen, A., Bel, L., & Cheddadi, R. (2008). European bioclimatic affinity groups: Data-model comparisons. *Global and Planetary Change*, *61*(1–2), 28–40. https://doi.org/10.1016/j.gloplacha.2007.08.017
- Lawson, I. T., Tzedakis, P. C., Roucoux, K. H., & Galanidou, N. (2013). The anthropogenic influence on wildfire regimes: Charcoal records from the Holocene and Last Interglacial at Ioannina, Greece. *Journal of Biogeography*, 40(12), 2324–2334. https://doi.org/10.1111/jbi.12164
- Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: A Package for Multivariate Analysis. *Journal of Statistical Software*, *25*(1). https://doi.org/10.18637/jss.v025.i01
- Ledger, P. M. (2018). Are circumpolar hunter-gatherers visible in the palaeoenvironmental record? Pollen-analytical evidence from Nunalleq, southwestern Alaska. *The Holocene*, 28(3), 415–426. https://doi.org/10.1177/0959683617729447
- Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S. B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., & Hambach, U. (2021). Loess landscapes of Europe Mapping, geomorphology, and zonal differentiation. *Earth-Science Reviews*, 215. https://doi.org/10.1016/j.earscirev.2020.103496
- Lewis, S. G., Ashton, N., & Jacobi, R. (2011). Testing Human Presence During the Last Interglacial (MIS 5e): A Review of the British Evidence. In N. Ashton, S. G. Lewis, & C. Stringer (Eds.), *Developments in Quaternary Sciences* (pp. 125–164). Elsevier.
- Lewis, S. L., & Maslin, M. A. (2015). Defining the Anthropocene. *Nature*, *519*, 171–180. https://doi.org/10.1038/nature14258
- Li, F., Gaillard, M. J., Cao, X., Herzschuh, U., Sugita, S., Ni, J., Zhao, Y., An, C., Huang, X., Li, Y., Liu, H., Sun, A., & Yao, Y. (2023). Gridded pollen-based Holocene regional plant cover in temperate and northern subtropical China suitable for climate modelling. *Earth System Science Data*, *15*(1), 95–112. https://doi.org/10.5194/essd-15-95-2023
- Li, L., Comi, T. J., Bierman, R. F., & Akey, J. M. (2024). Recurrent gene flow between Neanderthals and modern humans over the past 200,000 years. *Science*, *385*. https://doi.org/10.1126/science.adi1768
- Li, M., & Guo, X. (2018). Evaluating Post-Fire Vegetation Recovery in North American Mixed Prairie Using Remote Sensing Approaches. *Open Journal of Ecology, 8*, 646–680. https://doi.org/10.4236/oje.2018.812038
- Lightfoot, K. G., Cuthrell, R. Q., Striplen, C. J., & Hylkema, M. G. (2013). Rethinking the Study of Landscape Management Practices Among Hunter-Gatherers in North America. *American Antiquity*, *78*(2), 285–301. https://doi.org/10.7183/0002-7316.78.2.285
- Lindholm, K.-J., Fernández, N., Svenning, J.-C., Pereira, H., & Kluiving, S. J. (2020). *Terranova White Paper 1: Policy recommendations for sustainable landscape management strategies*. https://doi.org/10.5281/zenodo.4015030

- Liu, L., Bestel, S., Shi, J., Song, Y., & Chen, X. (2013). Palaeolithic human exploitation of plant foods during the last glacial maximum in North China. *PNAS*, 110(14), 5380–5385. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.1217864110
- Loughlin, N. J. D., Gosling, W. D., & Montoya, E. (2018). Identifying environmental drivers of fungal non-pollen palynomorphs in the montane forest of the eastern Andean flank, Ecuador. *Quaternary Research*, 89(1), 119–133. https://doi.org/10.1017/qua.2017.73
- Lozovski, V. M., & Lozovskaya, O. V. (2016). New Evidence of the Fishing Economy of Stone Age Waterlogged Sites in Central and North-Western Russia: The Example of Zamostje 2. *ISKOS*, 21, 85–100.
- Lozovski, V. M., Lozovskaya, O. V., & Clemente Conte, I. (Eds.). (2013). *Zamostje 2. Lake settlement of the Mesolithic and Neolithic fisherman in Upper Volga region*. Institute for the History of Material Culture.
- Lundström, V., Peters, R., & Riede, F. (2021). Demographic estimates from the Palaeolithic-Mesolithic boundary in Scandinavia: Comparative benchmarks and novel insights: Palaeodemographic estimates, Scandinavia. *Phil. Trans. R. Soc, 376.* https://doi.org/10.1098/rstb.2020.0037
- Lytwyn, V. (2001). Torchlight Prey: Night Hunting and Fishing by Aboriginal People in the Great Lakes Region. In J. D. Nichols (Ed.), *Actes du trente-deuxiéme congrès des algonquinistes* (Vol. 32, pp. 304–317). University of Manitoba.
- Mania, D. (2010). *Neumark-Nord. Ein interglaziales Ökosystem des mittelpaläolithischen Menschen.* Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt.
- Mania, D., Thomae, M., Litt, T., & Weber, T. (1990). *Neumark-Gröbern: Beiträge Zur Jagd Des Mittelpaläolithischen Menschen*. Deutscher Verlag der Wissenschaften.
- Mann, D. H., Groves, P., Gaglioti, B. V, & Shapiro, B. A. (2019). Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. *Biological Reviews*, 94(1), 328–352. https://doi.org/10.1111/brv.12456
- Manning, K., Colledge, S., Crema, E., Shennan, S., & Timpson, A. (2016). The Cultural Evolution of Neolithic Europe. EUROEVOL Dataset 1: Sites, Phases and Radiocarbon Data. *Journal of Open Archaeology Data*, *5*. https://doi.org/DOI: 10.5334/joad.40
- Margerum, J., Homann, J., Umbo, S., Nehrke, G., Hoffmann, T., Vaks, A., Kononov, A., Osintsev, A., Giesche, A., Mason, A., Franziska, A., Henderson, G. M., Kwiecien, O., & Breitenbach, S. F. M. (2024). Reconstruction of Holocene and Last Interglacial vegetation dynamics and wildfire activity in southern Siberia. *EGUsphere*. https://doi.org/10.5194/egusphere-2024-1707
- Marino, S., Hogue, I. B., Ray, C. J., & Kirschner, D. E. (2008). A methodology for performing global uncertainty and sensitivity analysis in systems biology. *Journal of Theoretical Biology*, 254(1), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011
- Mariotti Lippi, M., Foggi, B., Aranguren, B., Ronchitelli, A., & Revedin, A. (2015). Multistep food plant processing at Grotta Paglicci (Southern Italy) around 32,600 cal B.P. *PNAS*, 112(39), 12075–12080. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.1505213112
- Marlon, J. R., Bartlein, P. J., Daniau, A. L., Harrison, S. P., Maezumi, S. Y., Power, M. J., Tinner, W., & Vanniére, B. (2013). Global biomass burning: A synthesis and review of Holocene paleofire records and their controls. *Quaternary Science Reviews*, 65, 5–25. https://doi.org/10.1016/j.quascirev.2012.11.029

- Marquer, L., Gaillard, M. J., Sugita, S., Poska, A., Trondman, A. K., Mazier, F., Nielsen, A. B., Fyfe, R. M., Jönsson, A. M., Smith, B., Kaplan, J. O., Alenius, T., Birks, H. J. B., Bjune, A. E., Christiansen, J., Dodson, J., Edwards, K. J., Giesecke, T., Herzschuh, U., ... Seppä, H. (2017). Quantifying the effects of land use and climate on Holocene vegetation in Europe. *Quaternary Science Reviews*, *171*, 20–37. https://doi.org/10.1016/j.quascirev.2017.07.001
- Marquer, L., Mazier, F., Sugita, S., Galop, D., Houet, T., Faure, E., Gaillard, M. J., Haunold, S., de Munnik, N., Simonneau, A., De Vleeschouwer, F., & Le Roux, G. (2020). Pollenbased reconstruction of Holocene land-cover in mountain regions: Evaluation of the Landscape Reconstruction Algorithm in the Vicdessos valley, northern Pyrenees, France. *Quaternary Science Reviews*, 228. https://doi.org/10.1016/j.guascirev.2019.106049
- Martín-Puertas, C., Jiménez-Espejo, F., Martínez-Ruiz, F., Nieto-Moreno, V., Rodrigo, M., Mata, M. P., & Valero-Garcés, B. L. (2010). Late Holocene climate variability in the southwestern Mediterranean region: an integrated marine and terrestrial geochemical approach. *Climate of the Past*, 6(6), 807–816. https://doi.org/10.5194/cp-6-807-2010
- Mason, S. L. R. (2000). Fire and Mesolithic subsistence Managing oaks for acorns in northwest Europe? *Palaeogeography, Palaeoclimatology, Palaeoecology, 164*(1–4), 139–150. https://doi.org/10.1016/S0031-0182(00)00181-4
- Masudi, S. P., Odadi, W. O., Kimuyu, D. M., Gachuiri, C. K., Sensenig, R. L., & Young, T. P. (2024). Wild herbivores and cattle have differing effects on postfire herbaceous vegetation recovery in an African savanna. *Ecological Applications*, 34(5). https://doi.org/10.1002/eap.2975
- Mattila, T. M., Svensson, E. M., Juras, A., Günther, T., Kashuba, N., Ala-hulkko, T., Chyle, M., Mckenna, J., Pospieszny, Ł., & Constantinescu, M. (2023). Genetic continuity, isolation, and gene flow in Stone Age Central and Eastern Europe. *Communications Biology*, 6(793). https://doi.org/10.1038/s42003-023-05131-3
- Mazier, F., Gaillard, M. J., Kuneš, P., Sugita, S., Trondman, A. K., & Broström, A. (2012). Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary Palynological Database. *Review of Palaeobotany and Palynology, 187*, 38–49. https://doi.org/10.1016/j.revpalbo.2012.07.017
- Mazier, F., Galop, D., Brun, C., & Buttler, A. (2006). Modern pollen assemblages from grazed vegetation in the western Pyrenees, France: A numerical tool for more precise reconstruction of past cultural landscapes. *The Holocene*, *16*(1), 91–103. https://doi.org/10.1191/0959683606hl908rp
- Mazier, F., Galop, D., Gaillard, M. J., Rendu, C., Cugny, C., Legaz, A., Peyron, O., & Buttler, A. (2009). Multidisciplinary approach to reconstructing local pastoral activities: An example from the Pyrenean Mountains (Pays Basque). *The Holocene*, *19*(2), 171–188. https://doi.org/10.1177/0959683608098956
- McCarthy, F. M. G., Patterson, T., Head, M. J., Riddick, N. L., Cumming, B. F., Hamilton, P. B., Pisaric, M. F. J., Gushulak, C., Leavitt, P. R., Lafond, K. M., Llew-Williams, B., Marshall, M., Heyde, A., Pilkington, P. M., Moraal, J., Boyce, J. I., Nasser, N. A., Walsh, C., Garvie, M., ... McAndrews, J. H. (2023). The varved succession of Crawford Lake, Milton, Ontario, Canada as a candidate Global boundary Stratotype Section and Point for the Anthropocene series. *The Anthropocene Review*, *10*(1), 146–176. https://doi.org/10.1177/20530196221149281
- McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. *Technometrics*, 21(2), 239–245. https://doi.org/10.1080/00401706.2000.10485979

- McKey, D. B., Durécu, M., Pouilly, M., Béarez, P., Ovando, A., Kalebe, M., & Huchzermeyer, C. F. (2016). Present-day African analogue of a pre-European Amazonian floodplain fishery shows convergence in cultural niche construction. *PNAS*, 113(52), 14938–14943. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.1613169114
- McQuade, M., & O'Donnell, L. (2007). Late Mesolithic fish traps from the Liffey estuary, Dublin, Ireland. *Antiquity*, 81(313), 569–584. https://doi.org/10.1017/S0003598X00095594
- Mellars, P. (1976). Fire Ecology, Animal Populations and Man: a Study of some Ecological Relationships in Prehistory. *Proceedings of the Prehistoric Society, 42,* 15–45. https://doi.org/10.1017/S0079497X00010689
- Mellars, P., & Dark, P. (1998). Star Carr in context. McDonald Institute Monographs.
- Mellars, P., & French, J. C. (2011). Tenfold Population Increase in Western Europe at the Neandertal-to-Modern Human Transition. *Science*, 333(6042), 623–627.
- Meller, H. (2010). Elefantenreich. Eine Fossilwelt in Europa. Landesamt für Denkmalpflege une Archäologie Sachsen-Anhalt Landesmuseum für Vorgeschichte.
- Menozzi, B. I., Zotti, M., & Montanari, C. (2010). A non-pollen palynomorphs contribution to the local environmental history in the Ligurian Apennines: a preliminary study. Vegetation History and Archaeobotany, 19, 503–512. https://doi.org/10.1007/s00334-010-0271-1
- Messner, T. C., Dickau, R., & Harbison, J. (2008). Starch grain analysis: methodology and applications in the northeast. In J. P. Hart (Ed.), *Current Northeast Paleothnobotany II* (pp. 111–128). New York State Museum.
- Milano, S., Pop, E., Kuijper, W., Roebroeks, W., Gaudzinski-Windheuser, S., Penkman, K., Kindler, L., & Britton, K. (2020). Environmental conditions at the Last Interglacial (Eemian) site Neumark-Nord 2, Germany inferred from stable isotope analysis of freshwater mollusc opercula. *Boreas*, 49(3), 477–487. https://doi.org/10.1111/bor.12437
- Milisauskas, S. (2002). Early Neolithic, The First Farmers in Europe, 7000-5500/5000 BC. In S. Milisauskas (Ed.), *European Prehistory* (pp. 153–221). Springer Science, Business Media.
- Miller, E. F., Manica, A., & Amos, W. (2018). Global demographic history of human populations inferred from whole mitochondrial genomes. *Royal Society Open Science*, *5*. https://doi.org/10.1098/rsos.180543
- Milner, N., Conneller, C., & Taylor, B. (2018). *Star Carr: A Persistent Place in a Changing World* (Vol. 1). White Rose University Press.
- Mitchell, F. J. G. (2005). How open were European primeval forests? Hypothesis testing using palaeoecological data. *Journal of Ecology*, *93*, 168–177. https://doi.org/10.1111/j.1365-2745.2004.00964.x
- Moclán, A., Huguet, R., Márquez, B., Laplana, C., Galindo-Pellicena, M. Á., García, N., Blain, H. A., Álvarez-Lao, D. J., Arsuaga, J. L., Pérez-González, A., & Baquedano, E. (2021). A neanderthal hunting camp in the central system of the Iberian Peninsula: A zooarchaeological and taphonomic analysis of the Navalmaíllo Rock Shelter (Pinilla del Valle, Spain). *Quaternary Science Reviews*, 269. https://doi.org/10.1016/j. quascirev.2021.107142
- Moleón, M., Sánchez-Zapata, J. A., Donázar, J. A., Revilla, E., Martín-López, B., Gutiérrez-Cánovas, C., Getz, W. M., Morales-Reyes, Z., Campos-Arceiz, A., Crowder, L. B., Galetti, M., González-Suárez, M., He, F., Jordano, P., Lewison, R., Naidoo, R., Owen-Smith, N., Selva, N., Svenning, J. C., ... Tockner, K. (2020). Rethinking megafauna. *Proceedings of the Royal Society B: Biological Sciences*, 287. https://doi.org/10.1098/rspb.2019.2643

- Montgomery, P., Forsythe, W., & Breen, C. (2015). Intertidal Fish Traps from Ireland: Some Recent Discoveries in Lough Swilly, Co. Donegal. *Journal of Maritime Archaeology, 10,* 117–139. https://doi.org/10.1007/s11457-015-9146-z
- Morris, H., Plavcová, L., Cvecko, P., Fichtler, E., Gillingham, M. A. F., Martínez-Cabrera, H. I., McGlinn, D. J., Wheeler, E., Zheng, J., Ziemińska, K., & Jansen, S. (2016). A global analysis of parenchyma tissue fractions in secondary xylem of seed plants. *New Phytologist*, 209(4), 1553–1565. https://doi.org/10.1111/nph.13737
- Newman, E. A., Kennedy, M. C., Falk, D. A., & McKenzie, D. (2019). Scaling and complexity in landscape ecology. *Frontiers in Ecology and Evolution*, *7.* https://doi.org/10.3389/fevo.2019.00293
- Nielsen, A. B., Giesecke, T., Theuerkauf, M., Feeser, I., Behre, K. E., Beug, H. J., Chen, S. H., Christiansen, J., Dörfler, W., Endtmann, E., Jahns, S., de Klerk, P., Kühl, N., Latałowa, M., Odgaard, B. V., Rasmussen, P., Stockholm, J. R., Voigt, R., Wiethold, J., & Wolters, S. (2012). Quantitative reconstructions of changes in regional openness in north-central Europe reveal new insights into old questions. *Quaternary Science Reviews*, *47*, 131–149. https://doi.org/10.1016/j.quascirev.2012.05.011
- Nielsen, A. B., & Odgaard, B. V. (2010). Quantitative landscape dynamics in Denmark through the last three millennia based on the Landscape Reconstruction Algorithm approach. *Vegetation History and Archaeobotany, 19,* 375–387. https://doi.org/10.1007/s00334-010-0249-z
- Nielsen, T. K., Benito, B. M., Svenning, J.-C., Sandel, B. S., McKerracher, L., Riede, F., & Kjaergaard, P. C. (2017). Investigating Neanderthal dispersal above 55 N in Europe during the Last Interglacial Complex. *Quaternary International 431*(B), 88–103. https://doi.org/10.1016/j.quaint.2015.10.039
- Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A., & Herzschuh, U. (2017). A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. *Molecular Ecology Resources*, *17*(6), e46–e62. https://doi.org/10.1111/1755-0998.12689
- Nikulina, A., MacDonald, K., Scherjon, F., A. Pearce, E., Davoli, M., Svenning, J. C., Vella, E., Gaillard, M. J., Zapolska, A., Arthur, F., Martinez, A., Hatlestad, K., Mazier, F., Serge, M. A., Lindholm, K. J., Fyfe, R., Renssen, H., Roche, D. M., Kluiving, S., & Roebroeks, W. (2022). Tracking Hunter-Gatherer Impact on Vegetation in Last Interglacial and Holocene Europe: Proxies and Challenges. *Journal of Archaeological Method and Theory, 29*, 989–1033. https://doi.org/10.1007/s10816-021-09546-2
- Nikulina, A., MacDonald, K., Zapolska, A., Serge, M. A., Davoli, M., Pearce, E. A., van Wees, D., & Scherjon, F. (2024a). *HUMLAND2: HUMan impact on LANDscapes agent-based model* (2.0.0). https://doi.org/10.25937/qr4h-rt25
- Nikulina, A., MacDonald, K., Zapolska, A., Serge, M. A., Davoli, M., van Wees, D., & Scherjon, F. (2023). *HUMLAND: HUMan impact on LANDscapes agent-based model*. CoMSES Computational Model Library. https://doi.org/10.25937/fxdq-fn86
- Nikulina, A., MacDonald, K., Zapolska, A., Serge, M. A., Roche, D. M., Mazier, F., Svenning, J., van Wees, D., A. Pearce, E., Fyfe, R., Roebroeks, W., & Scherjon, F. (2024b). Hunter-gatherer impact on European interglacial vegetation: A modelling approach. *Quaternary Science Reviews*, 324. https://doi.org/10.1016/j.quascirev.2023.108439

- Nikulina, A., Zapolska, A., Serge, M. A., Roche, D. M., Mazier, F., Davoli, M., Pearce, E. A., J.-C. Svenning, D. van Wees, Fyfe, R., MacDonald, K., Roebroeks, W., & Scherjon, F. (in press). On the ecological impact of prehistoric hunter-gatherers in Europe: Early Holocene (Mesolithic) and Last Interglacial (Neanderthal) foragers compared. *PLOS One*
- Novenko, E. Y., Tsyganov, A. N., Payne, R. J., Mazei, N. G., Volkova, E. M., Chernyshov, V. A., Kupriyanov, D.A., & Mazei, Y.A. (2018). Vegetation dynamics and fire history at the southern boundary of the forest vegetation zone in European Russia during the middle and late Holocene. *The Holocene*, *28*(2), 308–322. https://doi.org/10.1177/0959683617721331
- Odling-Smee, J., Erwin, D. H., Palkovacs, E. P., & Laland, K. N. (2013). Niche Construction Theory: A Practical Guide for Ecologists. *The Quarterly Review of Biology, 88*(1), 3–28. https://doi.org/10.1086/669266
- Oldfield, F., & Dearing, J. A. (2003). The Role of Human Activities in Past Environmental Change. In K. D. Alverson, T. F. Pedersen, & R. S. Bradley (Eds.), *Paleoclimate, Global Change and the Future* (pp. 143–162). Springer.
- Olsen, M. M., Laspesa, J., & Taylor-D'ambrosio, T. (2018). On genetic algorithm effectiveness for finding behaviours in agent-based predator prey models. *Simulation Series*, *50*(10), 169–180. https://doi.org/10.22360/summersim.2018.scsc.025
- Opsteegh, J. D., Haarsma, R. J., Selten, F. M., & Kattenberg, A. (1998). ECBILT: a dynamic alternative to mixed boundary conditions in ocean models. *Tellus*, *3*, 348–367.
- Ordonez, A., & Riede, F. (2022). Changes in limiting factors for forager population dynamics in Europe across the last glacial-interglacial transition. *Nature Communications*, *13*. https://doi.org/10.1038/s41467-022-32750-x
- O'Shea, J. M., & Meadows, G. A. (2009). Evidence for early hunters beneath the Great Lakes. *PNAS*, 106(25), 10120–10123. https://doi.org/10.1073/pnas.0902785106
- Osipowicz, G. (2019). Plant processing in the Late Mesolithic Poland: in search for function of the mysterious 'curved knives.' *Archaeological and Anthropological Sciences, 11,* 3613–3628. https://doi.org/10.1007/s12520-019-00784-w
- Otto, D., Rasse, D., Kaplan, J., Warnant, P., & François, L. (2002). Biospheric carbon stocks reconstructed at the Last Glacial Maximum: Comparison between general circulation models using prescribed and computed sea surface temperatures. *Global and Planetary Change*, 33(1–2), 117–138. https://doi.org/10.1016/S0921-8181(02)00066-8
- Out, W. A., Vermeeren, C., & Hänninen, K. (2013). Branch age and diameter: Useful criteria for recognising woodland management in the present and past? *Journal of Archaeological Science*, 40(11), 4083–4097. https://doi.org/10.1016/j.jas.2013.05.004
- Parducci, L., Jørgensen, T., Tollefsrud, M. M., Elverland, E., Alm, T., Fontana, S. L., Andersen, K., Rasmussen, M., Boessenkool, S., Coissac, E., Brochmann, C., Taberlet, P., Houmark-Nielsen, M., Larsen, N. K., Orlando, L., Gilbert, M. T. P., Kjaer, K. H., Alsos, I. G., & Willerslev, E. (2012). Glacial survival of Boreal Trees in Northern Scandinavia. *Science*, 335(6072), 1083–1086. https://doi.org/10.1126/science.1216043
- Pascoe, B. (2014). Dark Emu. Black seeds: agriculture or accident? Magabala Books.
- Patacca, M., Lindner, M., Lucas-Borja, M. E., Cordonnier, T., Fidej, G., Gardiner, B., Hauf, Y., Jasinevičius, G., Labonne, S., Linkevičius, E., Mahnken, M., Milanovic, S., Nabuurs, G. J., Nagel, T. A., Nikinmaa, L., Panyatov, M., Bercak, R., Seidl, R., Ostrogović Sever, M. Z., ... Schelhaas, M. J. (2023). Significant increase in natural disturbance impacts on European forests since 1950. *Global Change Biology*, *29*(5), 1359–1376. https://doi.org/10.1111/gcb.16531

- Pearce, E. A., Mazier, F., Fyfe, R., Davison, C. W., Serge, M. A., Scussolini, P., & Svenning, J.-C. (2024). Higher abundance of disturbance-favoured trees and shrubs in European temperate woodlands prior to the late- Quaternary extinction of megafauna. *Journal of Ecology*. https://doi.org/10.1111/1365-2745.14422
- Pearce, E. A., Mazier, F., Normand, S., Fyfe, R., Andrieu, V., Bakels, C., Balwierz, Z., Bińka, K., Boreham, S., Borisova, O. K., Brostrom, A., Beaulieu, J. De, Gao, C., González-sampériz, P., Salonen, J. S., Schläfli, P., Schokker, J., Scussolini, P., Šeirienė, V., ... Svenning, J.-C. (2023). Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens. Science Advances, 9. https://doi.org/10.1126/sciadv.adi9135
- Pedersen, R. Ø., Faurby, S., & Svenning, J. (2023). Late-Quaternary megafauna extinctions have strongly reduced mammalian vegetation consumption. *Global Ecology and Biogeography*, *32*(10), 1814–1826. https://doi.org/10.1111/geb.13723
- Pinter, N., Fiedel, S., & Keeley, J. E. (2011). Fire and vegetation shifts in the Americas at the vanguard of Paleoindian migration. *Quaternary Science Reviews*, 30(3–4), 269–272. https://doi.org/10.1016/j.quascirev.2010.12.010
- Piperno, D. R., Ranere, A. J., Holst, I., Iriarte, J., & Dickau, R. (2009). Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. *PNAS*, *106*(13), 5019–5024. https://doi.org/10.1073/pnas.0812525106
- Piperno, D. R., Weiss, E., Holst, I., & Nadel, D. (2004). Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. *Nature*, *430*, 670–673. https://doi.org/10.1038/nature02734
- Piperno, D., & Stothert, K. (2003). Phytolith Evidence for Early Holocene Cucurbita Domestication in Southwest Ecuador. *Science*, *299*, 1054–1057. https://doi.org/10.1126/science.1080365
- Pitkänen, A., Tolonen, K., & Jungner, H. (2001). A basin-based approach to the long-term history of forest fires as determined from peat strata. *The Holocene*, 11(5), 599–605. https://doi.org/10.1191/095968301680223558
- Pop, E. (2014). Analysis of the Neumark-Nord 2/2 lithic assemblage: results and interpretations. In S. Gaudzinski-Windheuser & W. Roebroeks (Eds.), *Multidisciplinary studies of the Middle Palaeolithic record from Neumark-Nord (Germany)* (Vol. 1, pp. 143–197). Landesmuseum für Vorgeschichte.
- Pop, E., & Bakels, C. (2015). Semi-open environmental conditions during phases of hominin occupation at the Eemian Interglacial basin site Neumark-Nord 2 and its wider environment. *Quaternary Science Reviews*, *117*, 72–81. https://doi.org/http://dx.doi.org/10.1016/j.quascirev.2015.03.020
- Pop, E., Charalampopoulos, D., Arps, C. S., Verbaas, A., Roebroeks, W., Gaudzinski-Windheuser, S., & Langejans, G. (2018). Middle Palaeolithic Percussive Tools from the Last Interglacial Site Neumark-Nord 2/2 (Germany) and the Visibility of Such Tools in the Archaeological Record. *Journal of Palaeolithic Archaeology*, 1, 81–106. https://doi.org/10.1007/s41982-018-0008-8
- Pop, E., Kuijper, W., van Hees, E., Smith, G., García-Moreno, A., Kindler, L., Gaudzinski-Windheuser, S., & Roebroeks, W. (2016). Fires at Neumark-Nord 2, Germany: An analysis of fire proxies from a Last Interglacial Middle Palaeolithic basin site. *Journal of Field Archaeology*, 41(5), 603–617. https://doi.org/10.1080/00934690.2016.1208518

- Popova, S., Utescher, T., Gromyko, D. V., Mosbrugger, V., Herzog, E., & François, L. (2013). Vegetation change in Siberia and the northeast of Russia during the cenozoic cooling: A study based on diversity of plant functional types. *Palaios*, *28*(7), 418–432. https://doi.org/10.2110/palo.2012.p12-096r
- Popp, A., & Scheibe, K. M. (2014). The ecological influence of large herbivores Behaviour and habitat utilization of cattle and horses. *Applied Ecology and Environmental Research*, 12(3), 681–693. https://doi.org/10.15666/aeer/1203_681693
- Poska, A., Saarse, L., & Veski, S. (2004). Reflections of pre- and early-agrarian human impact in the pollen diagrams of Estonia. *Palaeogeography, Palaeoclimatology, Palaeoecology,* 209, 37–50. https://doi.org/10.1016/j.palaeo.2003.12.024
- Prentice, I. C., & Webb, T. I. (1986). Pollen percentages, tree abundances and the Fagerlind effect. *Journal of Quaternary Science*, 1(1), 35–43. https://doi.org/10.1002/jgs.3390010105
- Price, G. J., Ferguson, K. J., Webb, G. E., Feng, Y., Higgins, P., Nguyen, A. D., Zhao, J., Joannes-Boyau, R., & Louys, J. (2017). Seasonal migration of marsupial megafauna in Pleistocene Sahul (Australia–New Guinea). *Proc. R. Soc. B, 284*(1863). https://doi.org/http://dx.doi.org/10.1098/rspb.2017.0785
- Pringle, R. M., Abraham, J. O., Anderson, T. M., Coverdale, T. C., Davies, A. B., Dutton, C. L., Gaylard, A., Goheen, J. R., Holdo, R. M., Hutchinson, M. C., Kimuyu, D. M., Long, R. A., Subalusky, A. L., & Veldhuis, M. P. (2023). Impacts of large herbivores on terrestrial ecosystems. *Current Biology*, 33(11), R584–R610. https://doi.org/10.1016/j.cub.2023.04.024
- Pryor, A. J. E., Pullen, A., Beresford-Jones, D. G., Svoboda, J. A., & Gamble, C. S. (2016). Reflections on Gravettian firewood procurement near the Pavlov Hills, Czech Republic. *Journal of Anthropological Archaeology*, 43, 1–12. https://doi.org/10.1016/j.jaa.2016.05.003
- Pryor, A. J. E., Steele, M., Jones, M. K., Svoboda, J., & Beresford-Jones, D. G. (2013). Plant foods in the Upper Palaeolithic at Dolní Věstonice Parenchyma redux. *Antiquity*, *87*(338), 971–984. https://doi.org/10.1017/S0003598X00049802
- Quiquet, A., Roche, D. M., Dumas, C., & Paillard, D. (2018). Online dynamical downscaling of temperature and precipitation within the iLOVECLIM model (version 1.1). *Geoscientific Model Development*, 11(1), 453–466. https://doi.org/10.5194/gmd-11-453-2018
- R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://doi.org/10.4236/oalib.1107821
- Railsback, S. F., Lytinen, S. L., & Jackson, S. K. (2006). Agent-based Simulation Platforms: Review and Development Recommendations. *Simulation*, 82(9), 609–623. https://doi.org/10.1177/0037549706073695
- Ramachandran, S., & Kedia, S. (2010). Black carbon aerosols over an urban region: Radiative forcing and climate impact. *Journal of Geophysical Research: Atmospheres, 115*(D10). https://doi.org/10.1029/2009JD013560
- Rawlence, N. J., Lowe, D. J., Wood, J. R., Young, J. M., Churchman, G. L., Huang, Y.-T., & Cooper, A. (2014). Using palaeoenvironmental DNA to reconstruct past environments: progress and prospects. *Journal of Quaternary Science*, *29*(7), 610–626. https://doi.org/10.1002/jqs.2740
- Raynaud, D., Barnola, J.-M., Chappellaz, J., & Blunier, T. (2000). The ice record of greenhouse gases: a view in the context of future changes. *Quaternary Science Reviews*, 19, 9–17.

- Regnell, M. (2012). Plant subsistence and environment at the Mesolithic site Tågerup, southern Sweden: new insights on the "Nut Age." *Vegetation History and Archaeobotany,* 21, 1–16. https://doi.org/10.1007/s00334-011-0299-x
- Regnell, M., Gaillard, M. J., Bartholin, T. S., & Karsten, P. (1995). Reconstruction of environment and history of plant use during the late Mesolithic (Ertebølle culture) at the inland settlement of Bökeberg III, southern Sweden. *Vegetation History and Archaeobotany*, 4(2), 67–91. https://doi.org/10.1007/BF00206916
- Reid, R. (2012). Savannas of our birth: people, wildlife, and change in East Africa (First edit). University of California Press.
- Revedin, A., Aranguren, B., Becattini, R., Longo, L., Marconi, E., Lippi, M. M., Skakun, N., Sinitsyn, A., Spiridonova, E., & Svoboda, J. (2010). Thirty thousand-year-old evidence of plant food processing. *PNAS*, *107*(44), 18815–18819. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.1006993107
- Revelles, J., & van Geel, B.. (2016). Human impact and ecological changes in lakeshore environments. The contribution of non-pollen palynomorphs in Lake Banyoles (NE Iberia). *Review of Palaeobotany and Palynology, 232,* 81–97. https://doi.org/10.1016/j.revpalbo.2016.05.004
- Reynolds, R. G., Whallon, R., Ali, M. Z., & Zadegan, B. M. (2006). Agent-based modeling of early cultural evolution. 2006 IEEE Congress on Evolutionary Computation, CEC 2006, 1135–1142. https://doi.org/10.1109/cec.2006.1688437
- Riris, P. (2018). Assessing the impact and legacy of swidden farming in neotropical interfluvial environments through exploratory modelling of post-contact Piaroa land use (Upper Orinoco, Venezuela). *Holocene*, 28(6), 945–954. https://doi.org/10.1177/0959683617752857
- Roberts, N., Fyfe, R. M., Woodbridge, J., Gaillard, M. J., Davis, B. A. S., Kaplan, J. O., Marquer, L., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, A. K., & Leydet, M. (2018). Europe's lost forests: A pollen-based synthesis for the last 11,000 years. *Scientific Reports*, 8(1). https://doi.org/10.1038/s41598-017-18646-7
- Robson, A. S., Trimble, M. J., Purdon, A., Young-Overton, K. D., Pimm, S. L., & Van Aarde, R. J. (2017). Savanna elephant numbers are only a quarter of their expected values. *PLoS ONE*, *12*(4). https://doi.org/10.1371/journal.pone.0175942
- Roche, D. M. (2013). δ18 O water isotope in the iLOVECLIM model (version 1.0) Part 1: Implementation and verification. *Geoscientific Model Development, 6,* 1481–1491. https://doi.org/10.5194/gmd-6-1481-2013
- Rodríguez, J., Willmes, C., Sommer, C., & Mateos, A. (2022). Sustainable human population density in Western Europe between 560.000 and 360.000 years ago. *Scientific Reports*, 12(6907). https://doi.org/10.1038/s41598-022-10642-w
- Roebroeks, W., & Bakels, C. (2015). "Forest Furniture" or "Forest managers"? On Neanderthal presence in last interglacial environment. In F. Coward, R. Hosfield, M. Pope, & F. Wenban-Smith (Eds.), Settlement, Society and Cognition in Human Evolution. Landscapes in mind (pp. 174–188). Cambridge University Press.
- Roebroeks, W., Conard, N. J., van Kolfschoten, T., Dennell, R. W., Dunnell, R. C., Gamble, C., Graves, P., Jacobs, K., Otte, M., Roe, D., Svoboda, J., Tuffreau, A., Voytek, B. A., Wenban-Smith, F., & Wymer, J. J. (1992). Dense Forests, Cold Steppes, and the Palaeolithic Settlement of Northern Europe. *Current Anthropology*, *33*(5), 551–586. https://doi.org/10.1086/204113

- Roebroeks, W., Gibbard, P., & Scherjon, F. (2024). Taphonomy matters: Comment on "Substantial light woodland and open vegetation characterized the temperate forest biome before Homo sapiens" by Pearce et al. 2023. *Science Advances*.
- Roebroeks, W., MacDonald, K., Scherjon, F., Bakels, C., Kindler, L., Nikulina, A., Pop, E., & Gaudzinski-Windheuser, S. (2021). Landscape modification by Last Interglacial Neanderthals. *Science Advances*, 7(51). https://doi.org/10.1126/sciadv.abj5567
- Roebroeks, W., & Soressi, M. (2016). Neandertals revised. *PNAS*, *113*(23), 6372–6379. https://doi.org/10.1073/pnas.1521269113
- Roebroeks, W., & Speleers, B. (2002). Last interglacial (eemian) occupation of the North European plain and adjacent areas. In A. Tuffreau & W. Roebroeks (Eds.), *Le Dernier Interglaciaire et les occupations humaines du Paléolithique moyen* (pp. 31–40). Centre d'Etudes et de Recherches Préhistoriques; Université des Sciences et Technologies de Lilla
- Roebroeks, W., & Villa, P. (2011). On the earliest evidence for habitual use of fire in Europe. *PNAS*, 108(13), 5209–5214. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.1018116108
- Rogers, J. D., Nichols, T., Emmerich, T., Latek, M., & Cioffi-Revilla, C. (2012). Modeling scale and variability in human-environmental interactions in Inner Asia. *Ecological Modelling*, 241, 5–14. https://doi.org/10.1016/j.ecolmodel.2011.11.025
- Romanowska, I., Crabtree, S. A., Harris, K., & Davies, B. (2019). Agent-Based Modeling for Archaeologists: Part 1 of 3. *Advances in Archaeological Practice*, 7(2), 178–184. https://doi.org/10.1017/aap.2019.6
- Romanowska, I., Wren, D., C., & Crabtree, A., S. (2021). Agent-Based Modeling for Archaeology. In *Agent-Based Modeling for Archaeology. Simulating the Complexity of Societies*. The Santa FE Institute Press. https://doi.org/10.37911/9781947864382
- Roos, C. I., Zedeño, M. N., Hollenback, K. L., & Erlick, M. M. H. (2018). Indigenous impacts on North American Great Plains fire regimes of the past millennium. *PNAS*, 115(32), 8143–8148. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.1805259115
- Rosell, J., Blasco, R., Rivals, F., Chacón, M. G., Arilla, M., Camarós, E., Rufà, A., Sánchez-Hernández, C., Picin, A., Andrés, M., Blain, H. A., López-García, J. M., Iriarte, E., & Cebrià, A. (2017). A resilient landscape at Teixoneres Cave (MIS 3; Moià, Barcelona, Spain): The Neanderthals as disrupting agent. *Quaternary International*, 435, 195–210. https://doi.org/10.1016/j.quaint.2015.11.077
- Rosen, A. M., & Weiner, S. W. (1994). Identifying Ancient Irrigation: a New Method Using Opaline Phytoliths from Emmer Wheat. *Journal of Archaeological Science*, *21*(1), 125–132. https://doi.org/10.1006/jasc.1994.1013
- Rovner, I. (2001). Cultural behaviour and botanical history: phytolith analysis in small places and marrow intervals. In J. D. Meunier & F. Colin (Eds.), *Phytoliths: Applications in Earth Sciences and Human History* (pp. 119–128). Zeitlinger Publishers.
- Rowley-Conwy, P. (2025). Mesolithic Landscapes and Niche Construction: A Great Capability for Misunderstanding. In Nilsson Stutz, L., Peyroteo Stjerna, R., & Törv, M. (Eds.), *The Oxford Handbook of Mesolithic Europe* (pp. 67–86). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780198853657.001.0001
- Rowley-Conwy, P. A., & Layton, R. (2011). Foraging and farming as niche construction: stable and unstable adaptations. *Philos Trans R Soc Lond B Biol Sci*, *366*(1566), 849–862. https://doi.org/10.1098/rstb.2010.0307

- Ruddiman, W. F. (2013). The Anthropocene. *Annual Review of Earth and Planetary Sciences*, 41, 45–68. https://doi.org/10.1146/annurev-earth-050212-123944
- Ryan, P. A., & Blackford, J. J. (2010). Late Mesolithic environmental change at Black Heath, south Pennines, UK: a test of Mesolithic woodland management models using pollen, charcoal and non-pollen palynomorph data. *Vegetation History and Archaeobotany, 19*, 545–558. https://doi.org/10.1007/s00334-010-0263-1
- Salecker, J., Sciaini, M., Meyer, K. M., & Wiegand, K. (2019). The nlrx r package: A next-generation framework for reproducible NetLogo model analyses. *Methods in Ecology and Evolution*, *10*, 1854–1863. https://doi.org/10.1111/2041-210X.13286
- Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). *Sensitivity analysis in practice: A guide to assessing scientific models.* John Wiley & Sons.
- Sandgathe, D. M., Dibble, H. L., Goldberg, P., McPherron, S. P., Turq, A., Niven, L., & Hodgkins, J. (2011). Timing of the appearance of habitual fire use. *PNAS*, *108*(29). https://doi.org/10.1073/pnas.1106759108
- Sandom, C. J., Ejrnaes, R., Hansen, M. D. D., & Svenning, J.-C. (2014a). High herbivore density associated with vegetation diversity in interglacial ecosystems. *PNAS*, 111(11), 4162–4167. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.1311014111
- Sandom, C. J., Faubry, S., Sandel, B. S., & Svenning, J.-C. (2014b). Global late Quaternary megafauna extinctions linked to humans, not climate change. *Proc. R. Soc. B, 281*. https://doi.org/http://dx.doi.org/10.1098/rspb.2013.3254
- Sang, X. F., Gensch, I., Kammer, B., Khan, A., Kleist, E., Laumer, W., Schlag, P., Schmitt, S. H., Wildt, J., Zhao, R., Mungall, E. L., Abbatt, J. P. D., & Kiendler-Scharr, A. (2016). Chemical stability of levoglucosan: An isotopic perspective. *Geophysical Research Letters*, 43(10), 5419–5424. https://doi.org/10.1002/2016GL069179
- Santos, J. I., Pereda, M., Zurro, D., Álvarez, M., Caro, J., Galán, J. M., & Godino, I. B. I. (2015). Effect of resource spatial correlation and hunter-fisher-gatherer mobility on social cooperation in tierra del fuego. *PLoS ONE*, *10*(4). https://doi.org/10.1371/journal.pone.0121888
- Saqalli, M., Salavert, A., Bréhard, S., Bendrey, R., Vigne, J. D., & Tresset, A. (2014). Revisiting and modelling the woodland farming system of the early Neolithic Linear Pottery Culture (LBK), 5600-4900 B.C. *Vegetation History and Archaeobotany*, *23*(S1), S37–S50. https://doi.org/10.1007/s00334-014-0436-4
- Scherjon, F. (2019). *Virtual Neanderthals: A study in agent-based modelling Late Pleistocene hominins in western Europe*. Leiden University.
- Scherjon, F., Bakels, C., MacDonald, K., & Roebroeks, W. (2015). Burning the Land: An Ethnographic Study of Off-Site Fire Use by Current and Historically Documented Foragers and Implications for the Interpretation of Past Fire Practices in the Landscape. *Current Anthropology*, *56*(3), 299–326. https://doi.org/DOI:10.1086/681561
- Schilt, A., Baumgartner, M., Blunier, T., Schwander, J., Spahni, R., Fischer, H., & Stocker, T. F. (2010). Glacial-interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. *Quaternary Science Reviews*, 29, 182–192. https://doi.org/10.1016/j.guascirev.2009.03.011
- Schlumbaum, A., Tensen, M., & Jaenicke-Després, V. (2008). Ancient plant DNA in archaeobotany. *Vegetation History and Archaeobotany, 17,* 233–244. https://doi.org/10.1007/s00334-007-0125-7

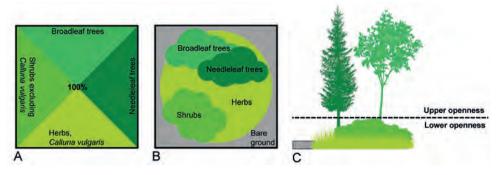
- Schmidt, I., Hilpert, J., Kretschmer, I., Peters, R., Broich, M., Schiesberg, S., Vogels, O., Wendt, K. P., Zimmermann, A., & Maier, A. (2021). Approaching prehistoric demography: Proxies, scales and scope of the Cologne Protocol in European contexts: Approaching Prehistoric Demography. *Phil. Trans. R. Soc. B, 376*. https://doi.org/10.1098/rstb.2019.0714
- Schreuder, L. T., Hopmans, E. C., Castañeda, I. S., Schefuß, E., Mulitza, S., Damsté, J. S. S., & Schouten, S. (2019). Late Quaternary Biomass Burning in Northwest Africa and Interactions With Climate, Vegetation, and Humans. *Paleoceanography and Paleoclimatology*, 34(2), 153–163. https://doi.org/10.1029/2018PA003467
- Schreve, D. (2019). All is flux: the predictive power of fluctuating Quaternary mammalian faunal-climate scenarios. *Phil. Trans. R. Soc. B*, *374*. https://doi.org/http://dx.doi.org/10.1098/rstb.2019.0213
- Scott, A. C. (2000). The Pre-Quaternary history of fire. *Palaeogeography, Palaeoclimatology, Palaeoecology, 164*(1–4), 281–329. https://doi.org/10.1016/S0031-0182(00)00192-9
- Seddon, A. W. R., Mackay, A. W., Baker, A. G., Birks J. B., H., Breman, E., Buck, C. E., Ellis, E. C., Froyd, C. A., Gill, J. L., Gillson, L., Johnson, E. A., Jones, V. J., Juggins, S., Macias-Fauria, M., & Al, E. (2014). Looking forward through the past: identification of 50 priority research questions in palaeoecology. *Journal of Ecology*, *102*(1), 256–267. https://doi.org/10.1111/1365-2745.12195
- Seliger, B. J., McGill, B. J., Svenning, J. C., & Gill, J. L. (2021). Widespread underfilling of the potential ranges of North American trees. *Journal of Biogeography*, 48(2), 359–371. https://doi.org/10.1111/jbi.14001
- Serge, M. A., Mazier, F., Fyfe, R., Gaillard, M. J., Klein, T., Lagnoux, A., Galop, D., Githumbi, E., Mindrescu, M., Nielsen, A. B., Trondman, A. K., Poska, A., Sugita, S., Woodbridge, J., Abel-Schaad, D., Åkesson, C., Alenius, T., Ammann, B., Andersen, S. T., ... Zernitskaya, V. P. (2023). Testing the Effect of Relative Pollen Productivity on the REVEALS Model: A Validated Reconstruction of Europe-Wide Holocene Vegetation. *Land*, 12(5). https://doi.org/10.3390/land12050986
- Serra-Burriel, F., Delicado, P., & Cucchietti, F. M. (2021). Wildfires vegetation recovery through satellite remote sensing and functional data analysis. *Mathematics*, *9*(1305). https://doi.org/10.3390/math9111305
- Sevink, J., Wallinga, J., Reimann, T., van Geel, B., Brinkkemper, O., Jansen, B., Romar, M., & Bakels, C. C. (2023). A multi-staged drift sand geo-archive from the Netherlands: New evidence for the impact of prehistoric land use on the geomorphic stability, soils, and vegetation of aeolian sand landscapes. *Catena*, 224. https://doi.org/10.1016/j.catena.2023.106969
- Sier, M. J., Parés, J. M., Antoine, P., & Locht, J.-L. (2015). Evidence for the Blake Event recorded at the Eemian archaeological site of Caours, France. *Quaternary International*, *357*, 149–157. https://doi.org/http://dx.doi.org/10.1016/j.quaint.2014.05.022
- Sier, M. J., Roebroeks, W., Bakels, C. C., Dekkers, M. J., Brühl, E., De Loecker, D., Gaudzinski-Windheuser, S., Hesse, N., Jagich, A., Kindler, L., Kuijper, W. J., Laurat, T., Mücher, H. J., Penkman, K. E. H., Richter, D., & van Hinsbergen, D. J. J. (2011). Direct terrestrial-marine correlation demonstrates surprisingly late onset of the last interglacial in central Europe. *Quaternary Research*, 75(1), 213–218. https://doi.org/10.1016/j.yqres.2010.11.003
- Sikk, K. (2023). Exploring Environmental Determinism with Agent-Based Simulation of Settlement Choice. In Seuru, S., Albouy, B. (Ed.), *Modelling Human-Environment Interactions in and beyond Prehistoric Europe. Themes in Contemporary Archaeology.* Springer, Cham. https://doi.org/10.1007/978-3-031-34336-0_10

- Simmons, I. G. (1996). The Environmental Impact of Later Mesolithic Cultures: The Creation of Moorland Landscape in England and Wales. Edinburgh University Press.
- Sjödin, P., Sjöstrand, A. E., Jakobsson, M., & Blum, M. G. B. (2012). Resequencing Data Provide No Evidence for a Human Bottleneck in Africa during the Penultimate Glacial Period. *Molecular Biology and Evolution*, 29(7), 1851–1860. https://doi.org/10.1093/molbev/mss061
- Smith, B. D., & Zeder, M. A. (2013). The onset of the Anthropocene. *Anthropocene*, 4, 8–13. https://doi.org/http://dx.doi.org/10.1016/j.ancene.2013.05.001
- Smith, D. B. (2011). General patterns of niche construction and the management of 'wild' plant and animal resources by small-scale pre-industrial societies. *Philos Trans R Soc Lond B Biol Sci*, 366(1566), 836–848. https://doi.org/10.1098/rstb.2010.0253
- Smith, F. A., Elliott Smith, R. E., Lyons, S. K., & Payne, J. (2018). Body size downgrading of mammals over the late Quaternary. *Science*, *360*, 310–313. https://doi.org/10.1126/science.aao5987
- Smith, L. M., Garvey, R., & Carlson, E. S. (2013). Hunter-Gatherer Subsistence Variation and Intensification. In C. Smith (Ed.), *Encyclopedia of Global Archaeology* (pp. 3578–3586). Springer. https://doi.org/10.1007/978-1-4419-0465-2_958
- Smith, M. D., Knapp, A. K., Collins, S. L., Burkepile, D. E., Kirkman, K. P., Koerner, S. E., Thompson, D. I., Blair, J. M., Burns, C. E., Eby, S., Forrestel, E. J., Fynn, R. W. S., Govender, N., Hagenah, N., Hoover, D. L., & Wilcox, K. R. (2016). Shared Drivers but Divergent Ecological Responses: Insights from Long-Term Experiments in Mesic Savanna Grasslands. In *BioScience* (Vol. 66, Issue 8, pp. 666–682). Oxford University Press. https://doi.org/10.1093/biosci/biw077
- Snir, A., Nadel, D., Groman-Yaroslavski, I., Melamed, Y., Sternberg, M., Bar-Yosef, O., & Weiss, E. (2015). The Origin of Cultivation and Proto-Weeds, Long Before Neolithic Farming. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0131422
- Snitker, G. (2018). Identifying natural and anthropogenic drivers of prehistoric fire regimes through simulated charcoal records. *Journal of Archaeological Science*, *95*, 1–15. https://doi.org/10.1016/j.jas.2018.04.009
- Soepboer, W., Sugita, S., & Lotter, A. F. (2010). Regional vegetation-cover changes on the Swiss Plateau during the past two millennia: A pollen-based reconstruction using the REVEALS model. *Quaternary Science Reviews*, 29(3–4), 472–483. https://doi.org/10.1016/j. quascirev.2009.09.027
- Solheim, S., Fossum, G., & Knutsson, H. (2018). Use-wear analysis of Early Mesolithic flake axes from South-eastern Norway. *Journal of Archaeological Science: Reports, 17*, 560–570. https://doi.org/10.1016/j.jasrep.2017.12.017
- Sommer, R. S. (2020). Late Pleistocene and Holocene History of Mammals in Europe. In K. Hackländer & F. E. Zachos (Eds.), *Handbook of the Mammals of Europe* (pp. 83–98).
- Sorensen, A. C., Claud, E., & Soressi, M. (2018). Neandertal fire-making technology inferred from microwear analysis. *Scientific Reports*, 8(1). https://doi.org/10.1038/s41598-018-28342-9
- Speth, J. D., & Clark, J. L. (2006). Hunting and overhunting in the Levantine Late Middle Palaeolithic. *Before Farming*, 3, 1–42. https://doi.org/10.3828/bfarm.2006.3.1

- Staesche, U. (1983). Aspects of the life of Middle Palaeolithic hunters in the N.W. German Lowlands, based on the site Salzgitter-Lebenstedt. In J. Clutton-Brock & C. Grigson (Eds.), *Animals and Archaeology: Hunters and Their Prey* (pp. 173–181). BAR International Series.
- Stewart, M., Carleton, W. C., & Groucutt, H. S. (2021). Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. *Nature Communications*, 12(965). https://doi.org/10.1038/s41467-021-21201-8
- Stiles, D. (1992). The hunter-gatherer "revisionist" debate. *Anthropology Today*, 8(2), 13–17. https://doi.org/10.2307/2783494
- Stiles, D. (2001). Hunter-Gatherer Studies: The Importance of Context. *African Study Monographs*, 26, 41–65. https://doi.org/10.14989/68408
- Strand, E. K., Satterberg, K. L., Hudak, A. T., Byrne, J., Khalyani, A. H., & Smith, A. M. S. (2019). Does burn severity affect plant community diversity and composition in mixed conifer forests of the United States Intermountain West one decade post fire? Fire Ecology, 15(25). https://doi.org/10.1186/s42408-019-0038-8
- Strandberg, G., Lindström, J., Poska, A., Zhang, Q., Fyfe, R., Githumbi, E., Kjellström, E., Mazier, F., Nielsen, A. B., Sugita, S., Trondman, A. K., Woodbridge, J., & Gaillard, M. J. (2022). Mid-Holocene European climate revisited: New high-resolution regional climate model simulations using pollen-based land-cover. *Quaternary Science Reviews, 281*. https://doi.org/10.1016/j.quascirev.2022.107431
- Strömberg, C. A. E., Dunn, R. E., Crifò, C., & Harris, E. B. (2018). Phytoliths in Paleoecology: Analytical Considerations, Current Use, and Future Directions. In D. A. Croft, D. F. Su, & S. W. Simpson (Eds.), *Methods in Paleoecology* (pp. 235–287). Springer International Publishing.
- Stuart, A., & Ord, J. K. (1994). *Kendall's Advanced Theory of Statistics, Distribution Theory*. John Wiley & Sons.
- Sugita, S. (2007a). Theory of quantitative reconstruction of vegetation I: Pollen from large sites REVEALS regional vegetation composition. *Holocene*, *17*(2), 229–241. https://doi.org/10.1177/0959683607075837
- Sugita, S. (2007b). Theory of quantitative reconstruction of vegetation II: All you need is LOVE. *The Holocene*, 17(2), 243–257. https://doi.org/10.1177/0959683607075838
- Sugita, S., Gaillard, M.-J., & Broström, A. (1999). Landscape openness and pollen records: A simulation approach. *The Holocene*, *9*(4), 409–421.
- Sugita, S., Parshall, T., Calcote, R., & Walker, K. (2010). Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin. *Quaternary Research*, 74(2), 289–300. https://doi.org/10.1016/j. yqres.2010.07.008
- Summerhayes, G. R., Leavesley, M., Fairbairn, A., Mandui, H., Field, J., Ford, A., & Fullagar, R. (2010). Human adaptation and plant use in Highland New Guinea 49,000 to 44,000 years ago. *Science*, *330*(6000), 78–81. https://doi.org/10.1126/science.1193130
- Surovell, T. A., & Pelton, S. R. (2016). Spatio-temporal variation in the preservation of ancient faunal remains. *Biology Letters*, *12*. https://doi.org/http://dx.doi.org/10.1098/rsbl 2015 0823
- Surovell, T., Waguespack, N., & Brantingham, P. J. (2005). Global archaeological evidence for proboscidean overkill. *PNAS*, 102(17), 6231–6236. https://doi.org/www.pnas.org/cgi/doi/10.1073/pnas.0501947102

- Svendsen, J. I., Alexanderson, H., Astakhov, V. I., Demidov, I., Dowdeswell, J. A., Funder, S., Gataullin, V., Henriksen, M., Hjort, C., Houmark-Nielsen, M., Hubberten, H. W., Ingólfsson, Ó., Jakobsson, M., Kjær, K. H., Larsen, E., Lokrantz, H., Lunkka, J. P., Lyså, A., Mangerud, J., ... Stein, R. (2004). Late Quaternary ice sheet history of northern Eurasia. *Quaternary Science Reviews*, 23, 1229–1271. https://doi.org/10.1016/j.quascirev.2003.12.008
- Svenning, J. C., & Skov, F. (2004). Limited filling of the potential range in European tree species. *Ecology Letters*, 7(7), 565–573. https://doi.org/10.1111/j.1461-0248.2004.00614.x
- Svenning, J., Lemoine, R. T., Bergman, J., Buitenwerf, R., Roux, E. Le, Lundgren, E., Mungi, N., & Pedersen, R. Ø. (2024). The late-Quaternary megafauna extinctions: Patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. *Cambridge Prisms: Extinction*, 2. https://doi.org/10.1017/ext.2024.4
- Svenning, J.-C. (2002). A review of natural vegetation openness in north-western Europe. *Biological Conservation*, *104*(2), 133–148.
- Svenning, J.-C., & Sandel, B. (2013). Disequilibrium vegetation dynamics under future climate change. *American Journal of Botany*, 100(7), 1266–1286. https://doi.org/10.3732/ajb.1200469
- Sweeney, L., Harrison, S. P., & Vander. Linden, M. (2022). Assessing anthropogenic influence on fire history during the Holocene in the Iberian Peninsula. *Quaternary Science Reviews*, 287. https://doi.org/10.1016/j.quascirev.2022.107562
- Swift, J. A., Bunce, M., Dortch, J., Douglass, K., Faith, J. T., Fellows Yates, J. A., Field, J., Haberle, S. G., Jacob, E., Jonson, C. N., Lindsey, E., Lorenzen, E. D., Louys, J., Miller, G., Mychajliw, A. M., Slon, V., Villavicencio, N. A., Waters, M. R., Welker, F., ... Roberts, P. (2019). Micro Methods for Megafauna: Novel Approaches to Late Quaternary Extinctions and Their Contributions to Faunal Conservation in the Anthropocene. *BioScience*, 69(11), 877–887. https://doi.org/10.1093/biosci/biz105
- Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., & Seppä, H. (2015). Human population dynamics in Europe over the Last Glacial Maximum. *PNAS*, *112*(27), 8232–8237. https://doi.org/10.1073/pnas.1503784112
- Tarasov, L., Dyke, A. S., Neal, R. M., & Peltier, W. R. (2012). A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. *Earth and Planetary Science Letters*, 315–316, 30–40. https://doi.org/10.1016/j.epsl.2011.09.010
- Tarasov, L., & Peltier, W. R. (2002). Greenland glacial history and local geodynamic consequences. *Geophysical Journal International*, *150*(1), 198–229. https://doi.org/10.1046/j.1365-246X.2002.01702.x
- Tasser, E., Ruffini, F. V., & Tappeiner, U. (2009). An integrative approach for analysing landscape dynamics in diverse cultivated and natural mountain areas. *Landscape Ecology*, 24, 611–628. https://doi.org/10.1007/s10980-009-9337-9
- Thompson, J. C., Wright, D. K., & Ivory, S. J. (2020). The emergence and intensification of early hunter-gatherer niche construction. *Evolutionary Anthropology: Issues, News, and Reviews*, 30(1). https://doi.org/10.1002/evan.21877
- Thompson, J. C., Wright, D. K., Ivory, S. J., Choi, J. H., Nightingale, S., Mackay, A., Schilt, F., Otárola-Castillo, E., Mercader, J., Forman, S. L., Pietsch, T., Cohen, A. S., Arrowsmith, J. R., Welling, M., Davis, J., Schiery, B., Kaliba, P., Malijani, O., Blome, M. W., ... Gomani-Chindebvu, E. (2021). Early human impacts and ecosystem reorganization in southern-central Africa. Science Advances, 7(19). https://doi.org/10.1126/sciadv.abf9776

- Toepfer, V. (1958). Steingeräte und Palökologie der mittelpleistozänen Fundstelle Rabutz bei Halle (Saale). *Jahresschrift für Mitteldeutsche Vorgeschichte*, 41–42, 140–177.
- Trondman, A. K., Gaillard, M. J., Sugita, S., Björkman, L., Greisman, A., Hultberg, T., Lagerås, P., Lindbladh, M., & Mazier, F. (2016). Are pollen records from small sites appropriate for REVEALS model-based quantitative reconstructions of past regional vegetation? An empirical test in southern Sweden. *Vegetation History and Archaeobotany*, *25*, 131–151. https://doi.org/10.1007/s00334-015-0536-9
- Trondman, A.K., Gaillard, M.J., Mazier, F., Sugita, S., Fyfe, R., Nielsen, A. B., Twiddle, C., Barratt, P., Birks, H. J., Bjune, A. E., Björkman, L., Broström, A., Caseldine, C., David, R., Dodson, J., Dörfler, W., Fischer, E., van Geel, B., Giesecke, T., ... Wick, L. (2015). Pollen-based quantitative reconstructions of Holocene regional vegetation cover (plant-functional types and land-cover types) in Europe suitable for climate modelling. *Global Change Biology*, 21(2), 676–697. https://doi.org/10.1111/gcb.12737
- Tunno, I., & Mensing, S. A. (2017). The value of non-pollen palynomorphs in interpreting paleoecological change in the Great Basin (Nevada, USA). *Quaternary Research*, 87(3), 529–543. https://doi.org/10.1017/qua.2017.8
- Turgut, Y., & Bozdag, C. E. (2023). A framework proposal for machine learning-driven agent-based models through a case study analysis. *Simulation Modelling Practice and Theory*, 123. https://doi.org/10.1016/j.simpat.2022.102707
- Twiss, P. C. (2001). A Curmudgeon's view of grass phytolithology. In J. D. Meunier & F. Colin (Eds.), *Phytoliths: Applications in Earth Sciences and Human History* (pp. 119–128). Zeitlinger Publishers. https://doi.org/10.1201/NOE9058093455.ch1
- U.S. Geological Survey (USGS). (n.d.). www.usgs.gov
- Vachula, R. S., & Richter, N. (2018). Informing sedimentary charcoal-based fire reconstructions with a kinematic transport model. *The Holocene*, *28*(1), 173–178. https://doi.org/10.1177/0959683617715624
- Vachula, R. S., Russell, J. M., Huang, Y., & Richter, N. (2018). Assessing the spatial fidelity of sedimentary charcoal size fractions as fire history proxies with a high-resolution sediment record and historical data. *Palaeogeography, Palaeoclimatology, Palaeoecology,* 508, 166–175. https://doi.org/10.1016/j.palaeo.2018.07.032
- Van Maldegem, E., Vandendriessche, H., Verhegge, J., Sergant, J., Meylemans, E., Perdaen, Y., Lauryssen, F., Smolders, E., & Crombé, P. (2021). Population collapse or human resilience in response to the 9.3 and 8.2 ka cooling events: A multi-proxy analysis of Mesolithic occupation in the Scheldt basin (Belgium). *Journal of Anthropological Archaeology*, 64. https://doi.org/10.1016/j.jaa.2021.101348
- Vannière, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., & Magny, M. (2008). Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy). *Quaternary Science Reviews*, 27, 1181–1196. https://doi.org/10.1016/j.quascirev.2008.02.011
- Vera, F. W. M. (2000). *Grazing ecology and forest history*. CABI Publishing.
- Verhagen, P., de Kleijn, M., & Joyce, J. (2021). Different models, different outcomes? A comparison of approaches to land use modeling in the Dutch limes. *Heritage*, 4(3), 2081–2104. https://doi.org/10.3390/HERITAGE4030118
- Vermeersch, P. M. (2020). Radiocarbon Palaeolithic Europe database: A regularly updated dataset of the radiometric data regarding the Palaeolithic of Europe, Siberia included. *Data in Brief*, *31*. https://doi.org/10.1016/j.dib.2020.105793


- Verpoorte, A., & Scherjon, F. (2025). Inland Forests. In L. N. Stutz, R. P. Stjerna, & M, Törv (Eds.), Oxford Handbook of Mesolithic Europe.
- Vidal-Cordasco, M., & Nuevo-López, A. (2021). Resilience and vulnerability to climate change in the Greek Dark Ages. *Journal of Anthropological Archaeology, 61*. https://doi.org/10.1016/j.jaa.2020.101239
- Vrac, M. (2018). Multivariate bias adjustment of high-dimensional climate simulations: The Rank Resampling for Distributions and Dependences (R2D2) bias correction. *Hydrology and Earth System Sciences*, 22(6), 3175–3196. https://doi.org/10.5194/hess-22-3175-2018
- Vrac, M., Drobinski, P., Merlo, A., Herrmann, M., Lavaysse, C., Li, L., & Somot, S. (2012). Dynamical and statistical downscaling of the French Mediterranean climate: Uncertainty assessment. *Natural Hazards and Earth System Science*, *12*(9), 2769–2784. https://doi.org/10.5194/nhess-12-2769-2012
- Wacnik, A. (2008). From foraging to farming in the Great Mazurian Lake District: Palynological studies on Lake Miłkowskie sediments, northeast Poland. *Vegetation History and Archaeobotany*, *18*, 187–203. https://doi.org/10.1007/s00334-008-0196-0
- Wang, Y., Pedersen, M. W., Alsos, I. G., De Sanctis, B., Racimo, F., Prohaska, A., Coissac, E., Owens, H. L., Merkel, M. K. F., Fernandez-Guerra, A., Rouillard, A., Lammers, Y., Alberti, A., Denoeud, F., Money, D., Ruter, A. H., McColl, H., Larsen, N. K., Cherezova, A. A., ... Willerslev, E. (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics. *Nature*, 600, 86–92. https://doi.org/10.1038/s41586-021-04016-x
- Warnant, P., Francois, L., & Strivay, D. (1994). CARAIB: A global model of terrestrial biological productivity. *Global Biogeochemical Cycles*, 8(3), 255–270.
- Warren, G., Davis, S., McClatchie, M., & Sands, R. (2014). The potential role of humans in structuring the wooded landscapes of Mesolithic Ireland: A review of data and discussion of approaches. *Vegetation History and Archaeobotany*, 23, 629–646. https://doi.org/10.1007/s00334-013-0417-z
- Wassenaar, L. I. (2008). An Introduction to Light Stable Isotopes for Use in Terrestrial Animal Migration Studies. In K. A. Hobson & L. I. Wassenaar (Eds.), *Terrestrial Ecology. Tracking Animal Migration with Stable Isotopes* (Vol. 2, pp. 21–44). Academic Press.
- Water Information System for Europe: WISE. (n.d.). https://water.europa.eu/
- Waters, C. N., Zalasiewicz, J., Summerhayes, C., Barnosky, A. D., Poirier, C., Galuszka, A., Cearreta, A., Edgeworth, M., Ellis, E., Ellis, M. A., Jeandel, C., Leinfelder, R., McNeill, J., Richter, D., Steffen, W., Syvitski, J. P. M., Vidas, D., Wagreich, M., Williams, M., ... Wolfe, A. P. (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. *Science*, *351*(6269). https://doi.org/10.1126/science.aad2622.
- Westlake, S. M., Mason, D., Lázaro-Lobo, A., Burr, P., McCollum, J. R., Chance, D., & Lashley, M. A. (2020). The magnet effect of fire on herbivores affects plant community structure in a forested system. *Forest Ecology and Management, 458.* https://doi.org/10.1016/j. foreco.2019.117794
- Whelan, R. J. (1995). The ecology of fire. Cambridge University Press.
- White, L., Basurra, S., Gaber, M. M., AlSewari, A. R. A., Saeed, F., & Addanki, S. M. (2022). Agent-Based Simulations Using Genetic Algorithm Calibration: A Children's Services Application. *IEEE Access*, 10. https://doi.org/10.1109/ACCESS.2022.3199770
- Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis.

- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., ... Yutani, H. (2019). Welcome to the Tidyverse. *Journal of Open Source Software*, 4(43). https://doi.org/10.21105/joss.01686
- Wilensky, U. (1999). *NetLogo*. Center for Connected Learning and Computer-Based Modeling. Northwestern University.
- Wißing, C., Rougier, H., Baumann, C., Comeyne, A., Crevecoeur, I., Drucker, D. G., Gaudzinski-Windheuser, S., Germonpré, M., Gómez-Olivencia, A., Krause, J., Matthies, T., Naito, Y. I., Posth, C., Semal, P., Street, M., & Bocherens, H. (2019). Stable isotopes reveal patterns of diet and mobility in the last Neandertals and first modern humans in Europe. *Science China Earth Sciences*, 9(4433). https://doi.org/10.1038/s41598-019-41033-3
- Woldring, H., Schepers, M., Mendelts, J., & Fens, R. (2012). Camping and foraging in Boreal hazel woodland The environmental impact of Mesolithic hunter-gatherers near Groningen, the Netherlands. In M. J. L. T. N. Terberger, R. N. E. Barton, & M. Street (Eds.), *A mind set on flint. Studies in honour of Dick Stapert* (pp. 381–392). Barkhuis Publishing.
- Wolf, E. R. (2010). *Europe and the People Without History* (2nd ed.). University of California Press.
- Woodburn, J. (1980). Hunters and gatherers today and reconstruction of the past. In E. Gallner (Ed.), *Soviet and Western Anthropology*. (pp. 95–117). Duckworth. https://doi.org/10.7312/gell92894
- Wrangham, R. (2009). Catching fire. How cooking made us human (1st ed.). Profile books.
- Wren, C. D., & Burke, A. (2019). Habitat suitability and the genetic structure of human populations during the Last Glacial Maximum (LGM) in Western Europe. *PLoS ONE, 14*(6). https://doi.org/10.1371/journal.pone.0217996
- Yang, X.-S., & He, X.-S. (2019). *Mathematical Foundations of Nature-Inspired Algorithms*. Springer.
- Yin, Q., & Berger, A. (2015). Interglacial analogues of the Holocene and its natural near future. Quaternary Science Reviews, 120, 28–46. https://doi.org/10.1016/j.quascirev.2015.04.008
- Zagwijn, W. H. (1989). Vegetation and climate during warmer intervals in the Late Pleistocene of western and central Europe. *Quaternary International*, 3–4, 57–67. https://doi.org/10.1016/1040-6182(89)90074-8
- Zalasiewicz, J., Waters, C. N., Williams, M., Barnosky, A. D., Cearreta, A., Crutzen, P., Ellis, E., Ellis, M. A., Fairchild, I. J., Grinevald, J., Haff, P. K., Hajdas, I., Leinfelder, R., McNeill, J., Odada, E. O., Poirier, C., Richter, D., Steffen, W., Summerhayes, C., ... Oreskes, N. (2015). When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal. *Quaternary International* https://doi.org/10.1016/j.quaint.2014.11.045
- Zalasiewicz, J., Waters, C. N., Williams, M., & Summerhayes, C. (2019). *The Anthropocene as a geological time unit*. Cambridge University Press.
- Zapolska, A., Serge, M. A., Mazier, F., Quiquet, A., Renssen, H., Vrac, M., Fyfe, R., & Roche, D. M. (2023a). More than agriculture: Analysing time-cumulative human impact on European land-cover of second half of the Holocene. *Quaternary Science Reviews*, 314. https://doi.org/10.1016/j.quascirev.2023.108227
- Zapolska, A., Vrac, M., Quiquet, A., Extier, T., & Arthur, F. (2023b). Improving biome and climate modelling for a set of past climate conditions: evaluating bias correction using the CDF-t approach. *Environmental Research*. *Climate*, *2*. https://doi.org/10.1088/2752-5295/accbe2

- Zeder, M. A., Emshwiller, E., Smith, B. D., & Bradley, D. G. (2006). Documenting domestication: the intersection of genetics and archaeology. *Trends in Genetics*, 22(3), 139–155. https://doi.org/10.1016/j.tig.2006.01.007
- Zhang, J., Lu, H., Wu, N., Li, F., Yang, X., Wang, W., Ma, M., & Zhang, X. (2010). Phytolith evidence for rice cultivation and spread in Mid-Late Neolithic archaeological sites in central North China. *Boreas*, 39(3), 592–602. https://doi.org/10.1111/j.1502-3885.2010.00145.x
- Zielke, L., Wrage-Mönnig, N., Müller, J., & Neumann, C. (2019). Implications of spatial habitat diversity on diet selection of European bison and Przewalski's horses in a rewilding area. *Diversity*, *11*(4). https://doi.org/10.3390/d11040063
- Zilhão, J., D'Errico, F., Banks, W. E., & Teyssandier, N. (2024). A Data-Driven Paradigm Shift for the Middle-to-Upper Palaeolithic Transition and the Neandertal Debate. *Quaternary Environments and Humans*, 2(6). https://doi.org/10.1016/j.qeh.2024.100037
- Zolnikov, I. D., Postnov, A. V., Lyamina, V. A., Slavinski, V. S., & Chupina, D. A. (2013). Geoinformation modeling of environments favourable for prehistoric humans of the Altai Mountains. *Archaeology, Ethnology and Anthropology of Eurasia, 41*(3), 40–47. https://doi.org/10.1016/j.aeae.2014.03.006
- Zurro, D., Madella, M., Briz, I., & Vila, A. (2009). Variability of the phytolith record in fisher–hunter–gatherer sites: An example from the Yamana society (Beagle Channel, Tierra del Fuego, Argentina). *Quaternary International*, 193(1–2), 184–191. https://doi.org/10.1016/j. quaint.2007.11.007
- Zvelebil, M. (1994). Plant use in the Mesolithic and its role in the transition to farming. *Proceedings of the Prehistoric Society*, 60(1), 35–74. https://doi.org/doi:10.1017/S0079497X00003388
- Zwolinski, M. J. (1990). Fire effects on vegetation and succession. In J. S. Krammes (Ed.), Effects of fire management of southwestern natural resources. General Technical Report RM-GTR-191 (pp. 18–24).

APPENDICES

Appendix I Supplementary data to Nikulina et al. (2024b)

Figure AI.1 Vegetation openness representation in REVEALS (A) and in CARAIB (B, C).

Table AI.1 CARAIB and REVEALS conflicting grid cells excluded from the analysis.

CARAIB	REVEALS	Reason
PNV openness is higher than observed vegetation openness	Maximal observed vegetation openness (i.e., estimated vegetation openness + standard error) is lower than PNV openness.	In the current ABM PNV openness cannot be higher than pollenbased vegetation openness.
First dominant PFT: herbs/shrubs	First dominant PFT: trees	In the current ABM trees cannot dominate if climatic conditions only allow dominance of herbs or shrubs.
First dominant PFT: trees/ herbs	First dominant PFT: shrubs	In the current ABM shrubs cannot dominate if climatic conditions only allow dominance of trees or herbs.

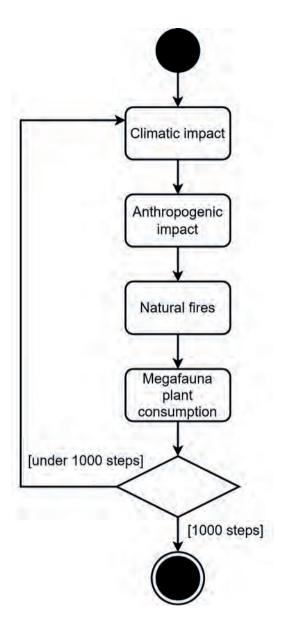
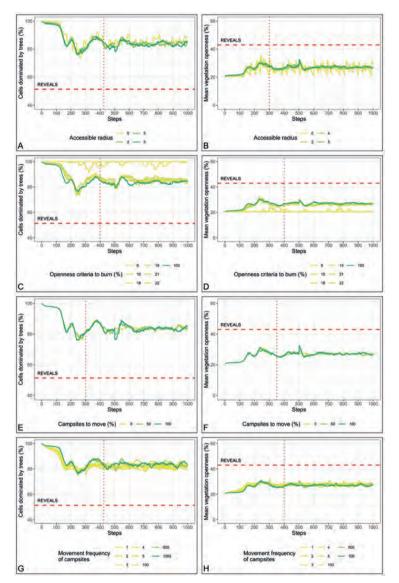



Figure AI.2 HUMLAND activity diagram.

Table AI.2 Existing estimates of FRI/fire frequency from sediment sites dated to the Early–Middle Holocene in Europe.

Region	Vegetation	Dates	FRI/fire activity	Reference	
60 km northeast of city of Tampere (southern boreal vegetation zone)	The establishment of Picea in the area dated to 5290 BP	5290- 1700 BP	Fire frequency was 60–90 years or probably 130–180 years (natural fire regime)	Pitkänen et al., 2001	
Mediterranean	Open landscape that developed into rather closed forests	11,700- 10,400 BP	High IFF (inferred fire frequency) (FRI: 50–350; fire frequency 2,5–4,8 episodes per 500 years)	Vannière et al.,	
basin	Deciduous forests	10,400- 8600 BP	Even more frequent fires (FRI: 50–350; fire frequency 2–5 episodes per 500 years)	2008	
Lowlands of the Transylvanian Plain	Less open deciduous woodland	7100- 4700 BP	317-year mFRI and a maximum FF of 3 fires/1000 years (gradual increase of anthropogenic impact)	Feurdean et al., 2013	
Eastern Latvia	Open landscape (dominance of grass)	11,700- 9500 BP	1–4 fires per 1,000 years	Feurdean et al., 2017	
	Boreal forest	9500- 7500 BP	Shorter FRI (200 years)	2017	
Balkan Peninsula	Boreal forest	8050- 4000 BP	Low-to-moderate CHAR values, a 300-year mFRI (200–400 years) and 12 charcoal peaks for this time interval. Other mountain boreal forests: FRI of 50–100 (Bulgaria), 60–250 (Carpathians and Bohemia), 80–100 (Mediterranean) years	Feurdean et al., 2019	
	Series of consecutive phases of birch and birch-pine forests with an admixture of broadleaved trees	6850- 5600 BP	100 years and was frequently in the range of 10–20 years (presence of anthropogenic impact)		
Central part of the East European Plain	After 5000 BP the expansion of woodland coverage (to 60–70%), the increase in the proportion of broadleaved trees and the appearance of spruce (mixed forest)	5600- 3000 BP	Fire frequency is 300–500 years (presence of anthropogenic impact)	Novenko et al., 2018	

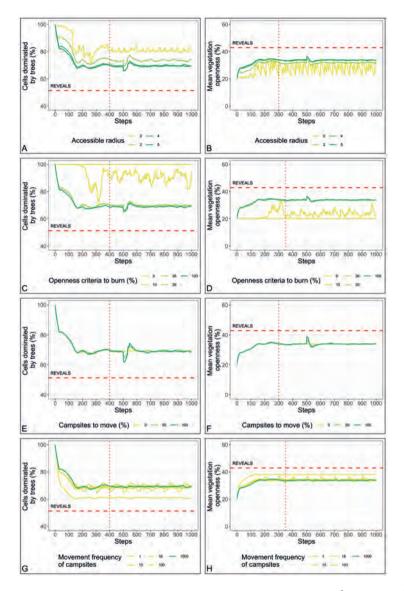

Figure AI.3 Results of experiments conducted for 100 hunter-gatherer groups: A-percentage of grid cells dominated by trees after the accessible radius was varied; B-mean vegetation openness after the accessible radius was varied; C-percentage of grid cells dominated by trees after the openness criteria to burn was varied; D-mean vegetation openness after the openness criteria to burn was varied; E-percentage of grid cells dominated by trees after the percentage of moving campsites was varied; F-mean vegetation openness after the percentage of moving campsites was varied; G-percentage of grid cells dominated by trees after the movement frequency was varied; H-mean vegetation openness after the movement frequency was varied. Each line depicted on the experiment output graph represents the mean of 30 simulation runs. The horizontal dashed line indicates REVEALS estimates, and the vertical dotted line shows the step when simulations reach equilibrium.

Table AL3 Experiment results for human-induced vegetation changes caused by 100 groups with different other parameter values. Equilibrium indicates the step when the simulation output does not vary dramatically. Minimum varied parameter values show the starting impact of the agent, and maximum varied parameter values define the maximal possible impact of an agent (i.e., when REVEALS estimates are reached).

	,							
Sources of impact	Varied parameters	Constants		Equi	Equilibrium reached (steps)	Minimum varied parameter values and mean of	Maxi parame mean of st	Maximum varied parameter values and mean of standard deviation
•		Parameters	Value	Trees	Openness	standard deviation	Trees	Openness
		Territory_impacted_by_thunderstorms	False					
	;	Megafauna	False					
	Accessible_ radius	Openness_criteria_to_burn	50	425	300	0 (5.8*; 2.7**)	3 (5.3*)	2 (2.7**)
	5	Campsites_to_move	50					
		Movement_frequency_of_campsites	200					
		Territory_impacted_by_thunderstorms	False					
	Onenness	Megafauna	False					
	criteria_to_	Accessible_radius	5	400	400	(**0 :*0) 6	21 (6.2*)	19 (3**)
	purn	Campsites_to_move	50					
П		Movement_frequency_of_campsites	200					
2		Territory_impacted_by_thunderstorms	False					
		Megafauna	False					
	Campsites_ to move	Accessible_radius	5	300	350	0 (5*, 2.5**)	0 (2*)	0 (2.5**)
		Openness_criteria_to_burn	50					
		Movement_frequency_of_campsites	200					
		Territory_impacted_by_thunderstorms	False					
	Movement	Megafauna	False					
	frequency_of_	Accessible_radius	5	425	400	3; 4*** (3.6*; 1.8**)	1 (2.7*)	1 (1.4**)
	campsites	Openness_criteria_to_burn	50					
		Campsites_to_move	20					

this value represents the mean standard deviation calculated for the proportion of grid cells dominated by trees between steps 450 to 1000

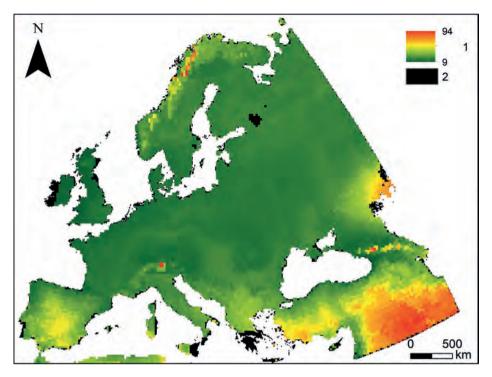
^{***}the first value indicates minimal impact for the percentage of grid cells dominated by trees; the second number indicates minimal impact for the mean **this value represents the mean standard deviation calculated for the mean vegetation openness between steps 450 to 1000 vegetation openness

Figure AI.4 Results of experiments conducted for 1000 hunter-gatherer groups: A-percentage of grid cells dominated by trees after the accessible radius was varied; B-mean vegetation openness after the accessible radius was varied; C-percentage of grid cells dominated by trees after the openness criteria to burn was varied; D-mean vegetation openness after the openness criteria to burn was varied; E-percentage of grid cells dominated by trees after the percentage of moving campsites was varied; F-mean vegetation openness after the percentage of moving campsites was varied; G-percentage of grid cells dominated by trees after the movement frequency was varied; H-mean vegetation openness after the movement frequency was varied. Each line depicted on the experiment output graph represents the mean of 30 simulation runs. The horizontal dashed line indicates REVEALS estimates, and the vertical dotted line shows the step when simulations reach equilibrium.

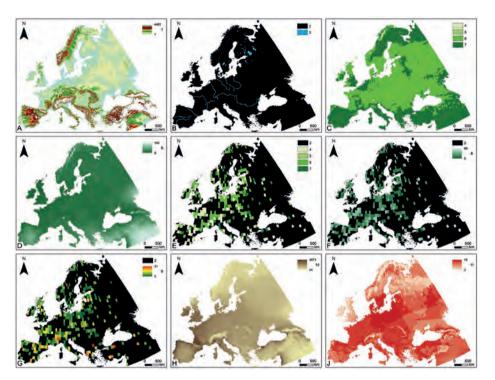
Pable AI.4 Experiment results for human-induced vegetation changes caused by 1000 groups with different other parameter values show the starting impact of the agent, and maximum varied parameter values define the maximal possible impact of an agent (i.e., when REVEALS estimates are reached). values. Equilibrium indicates the step when the simulation output does not vary dramatically. Minimum varied parameter

Sources of impact	Varied parameters	Constants		Equi	Equilibrium reached (steps)	Minimum varied parameter values and mean of	Maximum varied parameter values and mean of standard deviation	ed parameter an of standard ition
•		Parameters	Value	Trees	Openness	standard deviation	Trees	Openness
		Territory_impacted_by_ thunderstorms	False					
	Accessible	Megafauna	False				3	
	radius	Openness_criteria_to_burn	50	400	300	0 (2.4*; 1.1**)	4 (1.7*)	4 (0.8**)
		Campsites_to_move	50					
		Movement_frequency_of_campsites	200					
		Natural_fires	False					
	Openness	Megafauna	False					
	criteria_to_	Accessible_radius	5	400	350	6 (0*; 0**)	39 (1.7*)	36 (0.8)
	purn	Campsites_to_move	50					
		Movement_frequency_of_campsites	200					
Humans		Territory_impacted_by_ thunderstorms	False					
	Campsites	Megafauna	False	9	o o	***************************************	***	***************************************
	to_move	Accessible_radius	2	400	300	0 (1.6*; 0.8**)	0 (1.6*)	0 (0.8**)
		Openness_criteria_to_burn	50					
		Movement_frequency_of_campsites	200					
		Territory_impacted_by_ thunderstorms	False					
	Movement	Megafauna	False		i i			1
	frequency_ of campsites	Accessible_radius	5	400	350	15; 16*** (1.4*; 0.6**)	(L _*)	1 (0.5**)
		Openness_criteria_to_burn	50					
		Campsites_to_move	50					

*this value represents the mean standard deviation calculated for the proportion of grid cells dominated by trees between steps 450 to 1000


^{***}the first number indicates minimal impact for the percentage of grid cells dominated by trees; the second number indicates minimal impact for the mean **this value represents the mean standard deviation calculated for the mean vegetation openness between steps 450 to 1000 vegetation openness

Pable AI.5 Experiment results for human-induced vegetation changes caused by 4000 groups with different other parameter values show the starting impact of the agent, and maximum varied parameter values define the maximal possible impact of an agent (i.e., when REVEALS estimates are reached). values. Equilibrium indicates the step when the simulation output does not vary dramatically. Minimum varied parameter


)								
Sources of Varied impact	Varied parameters	Constants		Equilibriu (st	orium reached (steps)	Equilibrium reached Minimum varied parameter (steps) values and mean of	Maximum varied parameter values and mean of standard deviation	Maximum varied parameter values and mean of standard deviation
		Parameters	Value	Trees	Openness	אמוומשנת מפעומווסוו	Trees	Openness
		Natural_fires	False					
		Megafauna	False					
	Accessible_ radius	Openness_criteria_to_burn	50	300	200	0 (1.3*; 0.6**)	5 (0.9*)	4 (0.5**)
		Campsites_to_move	50					
		Movement_frequency_of_campsites	200					
		Natural_fires	False					
	Onenness	Megafauna	False					
	criteria_to_	Accessible_radius	5	325	300	(**0'*0)6	58 (0.8*)	46 (0.5*)
	burn	Campsites_to_move	50					
		Movement_frequency_of_campsites	200					
numans		Natural_fires	False					
		Megafauna	False					
	Campsites_ to move	Accessible_radius	5	200	200	0 (0.9*; 0.4*)	0 (0.9*)	0 (0.4*)
		Openness_criteria_to_burn	50					
		Movement_frequency_of_campsites	200					
		Natural_fires	False					
	Movement	Megafauna	False					
	frequency_	Accessible_radius	5	200	300	21; 19*** (1*;0.5**)	1 (0.7*)	1 (0.4*)
	of_campsites	Openness_criteria_to_burn	50					
		Campsites_to_move	50					

this value represents the mean standard deviation calculated for the proportion of grid cells dominated by trees between steps 450 to 1000 **this value represents the mean standard deviation calculated for the mean vegetation openness between steps 450 to 1000

^{***}the first number indicates minimal impact for the percentage of grid cells dominated by trees; the second number indicates minimal impact for the mean vegetation openness

Figure AI.5 CARAIB bare ground. Legend: 1–fraction of bare ground in percentages; 2–no data.

Figure AI.6 Datasets used in the current ABM: DEM (A), major rivers and lakes (B), CARAIB distribution of first dominant PFTs (C) and vegetation openness (D), REVEALS distribution of first dominant PFTs (E) and vegetation openness (F) and its standard errors (G), CARAIB NPP (H), megafauna vegetation consumption (I). Legend: 1–elevation (m); 2–no data; 3–major rivers and lakes; 4–herbs; 5–shrubs; 6–broadleaf trees; 7–needleleaf trees; 8–vegetation openness in percentages; 9–standard errors for REVEALS vegetation openness; 10–CARAIB NPP (g/m³); 11–megafauna vegetation consumption (g/m³).

Table AI.6 Confusion matrix for CARAIB and REVEALS PFT comparison.

	Predicted Positive	Predicted Negative
Actual Positive	5	0
Actual Negative	7776	8225

Table AI.7 Experiment results for megafauna, thunderstorm and climatic impact on vegetation. Equilibrium indicates step at which the simulation output reaches a stable state. Minimum varied parameter values show the starting impact of the agent, and maximum varied parameter values define the maximal possible impact of an agent (i.e., when REVEALS estimates are reached).

Sources of impact	Varied parameters	Constants		Equilibrii (st	Equilibrium reached (steps)	Minimum varied parameter values and mean of	Maximum varied param values and mean of standard deviation	Naximum varied parameter values and mean of standard deviation
		Parameters Value	Value	Trees	Openness	standard deviation	Trees	Openness
Thirdoretorms	Territory_impacted_by_	Humans	False	450	450	01 (1 5*. 0 8**)	7 (0 5*)	(**č U) Z V
	thunderstorms	Megafauna	False	2	2	0.0 ' 0.1) 1.0	(5:0) /	(c:0) /:t
Thunderstorms,	Territory_impacted_by_	Humans	False	376	376	01 (1 4*.0 7**)	(*3 0) 1	(**0 0) 4 1
. megafauna	thunderstorms	Megafauna	True	6/6	٠/٢	(',0', +:1) 1:0	(c.o) /	() /:t

this value represents the mean standard deviation calculated for the proportion of grid cells dominated by trees between steps 450 to 1000. **this value represents the mean standard deviation calculated for the mean vegetation openness between steps 450 to 1000

indicates the step at which the simulation output reaches a stable state. Minimum varied parameter values show the starting impact of the agent, and maximum varied parameter values define the maximal possible impact of an agent (i.e., when REVEALS estimates are reached). Table AI.8 Experiment results for human-induced vegetation changes caused by different group numbers. Equilibrium

Sources of impact	Varied parameters	Constants		Equi	Equilibrium reached (steps)	Minimum varied parameter values	Maximi paramete mean o	Maximum varied parameter values and mean of standard deviation
•		Parameters	Value	Trees	Value Trees Openness	standard deviation	Trees	Openness
		Territory_impacted_by_thunderstorms	False					
		Megafauna	False					
	Number_of_hunter-	Accessible_radius	2	376	000	0.50 08:00 08	(*1 1) 4)	(**1 0) 0010
Tullialis	gatherer_groups	Openness_criteria_to_burn	20	272	720	(0.6 , 0.02)	010/ (1.1)	0.0) 0210
		Campsites_to_move	20					
		Movement_frequency_of_campsites	200					

*this value represents the mean standard deviation calculated for the proportion of grid cells dominated by trees between steps 450 to 1000 **this value represents the mean standard deviation calculated for the mean vegetation openness between steps 450 to 1000

Table AI.9 Confusion matrix for HUMLAND and REVEALS PFT comparison.

	Predicted Positive	Predicted Negative
Actual Positive	3925	3854
Actual Negative	3856	4371

Appendix II HUMLAND ABM 1.0 Overview, design concepts and details (ODD) protocol

Anastasia Nikulina¹, Fulco Scherjon¹, Katharine MacDonald^{1,2}

¹ Faculty of Archaeology, Department of World Archaeology, Leiden University, Leiden, The Netherlands

² Deceased

AII.1 Purpose

Humans started transforming their environment long before the emergence of agriculture and industrialization. Foraging societies conduct niche construction activities including vegetation burning which significantly modifies the occupation area of hunter-gatherers. Currently available evidence suggests that both Neanderthals and Mesolithic humans practiced vegetation burning. Due to the scarcity of evidence and the absence of a common research protocol to study the anthropogenic impact on landscapes, there are gaps in research about the dynamics of interglacial environments and the role of hominins in landscape changes. Particularly, the extent of vegetation burning organized by huntergatherers is still a focal point of research.

Landscape dynamics are complex and include variable components such as climatic fluctuations, megafauna impact, natural fires, and anthropogenic activities. Thus, there is a need for further research which can allow us to assess different possible scenarios for anthropogenic impact which play a role in landscape change. Therefore, the purpose of this model is to track and quantify the intensity of different impacts on landscapes on the continental level and to determine the most influential factor in transformation of interglacial vegetation with specific focus on burning organized by hunter-gatherers. This model accumulates different types of spatial datasets (Section All.6) which are used as input and target for ABM results. Additionally, the study incorporates recently obtained specifically for this research continental-scale estimates of fire return intervals (FRI) and speed of vegetation regrowth in the current simulation. The obtained results include maps of possible scenarios of modified landscapes in the past and quantification of input of each agent (climate, humans, megafauna and natural fires). The model has been implemented in NetLogo (version 6.2.2) and is accessible via the CoMSES model depository (https://www.comses.net/, search for HUMLAND; DOI: 10.25937/fxdq-fn86).

AII.2 Entities, state variables, and scales

The following entities are included in the model: agents representing hominin groups (one agent is one group, Table All.1), campsites (turtles, have only one static variable my_hominin which indicates the group occupying this campsite) and grid cells (patches, Table All.2).

Table AII.1 Hominin state variables.

Variable name	Variable type and units	Meaning
my_home	Dynamic, patch	A patch where a campsite is located (home patch of a group)
my_campsite	Dynamic, turtle	Campsite is the home of a hominin group

Table AII.2 Grid cells state variables.

Variable name	Variable type and units	Meaning
patch_elevation	Static, float, meters	Absolute elevation (a.s.l.)
patch_natural_pft	Static, integer	CARAIB (CARbon Assimilation In the Biosphere) first dominant PFT: 1–herbs, 2– shrubs, 3–needleleaf trees, 4–broadleaf trees, -1–no data
patch_pollen_pft	Static, integer	REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) first dominant PFT: 1–herbs, 2–shrubs, 3–needleleaf trees, 4– broadleaf trees, -1–no data
patch_pft_updating	Dynamic, integer	Current dominant PFT: 1–herbs, 2–shrubs, 3– needleleaf trees, 4–broadleaf trees, -1–no data, 0–burnt/fully consumed area
patch_natural_openness	Static, float, percentage	CARAIB vegetation openness: 0-minimal value (0%, totally closed), 100-maximal value (100%, totally open), -1-no data
patch_pollen_openness	Static, float, percentage	REVEALS vegetation openness: 0-minimal value (0%, totally closed), 99-maximal value (99%, totally open), -1-no data
patch_pollen_openness_se	Static, float	REVEALS vegetation openness standard error (se)
patch_pollen_openness_max	Static, float, percentage	Maximal possible REVEALS openness: patch_pollen_openness + patch_pollen_openness_se
patch_openness_updating	Dynamic, integer, percentage	Current vegetation openness: 0-minimal value (0%, totally closed), 100-maximal value (100%, totally open), -1-no data
rivers_lakes	Static, integer	Presence of big rivers and lakes: 0-no rivers/ lakes, 1-presence of rivers/lakes, -1-no data
fri	Static, integer, years	FRI values for each PFT
patch_natural_npp	Static, float, g/m ²	CARAIB NPP
megafauna_npp_ consumption	Static, float, g/m ²	Megafauna carbon consumption
fire_delay_after_consumption	Dynamic, integer	Delay in the frequency of natural fires after partial megafauna consumption of vegetation
openness_regrowth_rate	Dynamic, float	Openness regrowth speed per step after impact

Variable name	Variable type and units	Meaning
last_burning_episode	Dynamic, integer	Simulation step of the last fire episode of a patch
next_burning_episode	Dynamic, integer	Possible next natural fire event when probability of ignition is 100%.
last_partial_consumption_ episode	Dynamic, integer	Step of the last partial consumption episode of a patch
last_agent_impacted_pft	Dynamic, integer	Last agent that changed a dominant PFT of a patch: 1–humans, 2–natural fires, 3–climate, 4–megafauna
last_agent_impacted_ openness	Dynamic, integer	Last agent that impacted a patch: 1–humans, 2–natural fires, 3–climate, 4–megafauna
herbs_regeneration_step	Dynamic, integer	Step when herbs will regrow after vegetation burning or consumption
shrubs_regeneration_step	Dynamic, integer	Step when shrubs will regrow after vegetation burning or consumption
needleleaf_trees_ regeneration_step	Dynamic, integer	Step when needleleaf trees will regrow after vegetation burning or consumption
broadleaf_trees_ regeneration_step	Dynamic, integer	Step when broadleaf trees will regrow after vegetation burning or consumption
agent_that_could_impact_ neigbouring_pathes	Dynamic, integer	Agent that can potentially cause burning on neighbouring patches: 1–humans, 2–natural fires, 3–climate, 4–megafauna
hominin_accessible_area	Dynamic, integer	Defines if the patch is within accessible area for humans: 1–within the area, 0–not accessible for humans
raster_layer	Dynamic, integer/float	Used to create an ASCII file with modelling results

The model is two-dimensional, and its spatial extent is a rectangle with 544×430 patches. Each cell of input raster datasets (Section All.6, Table All.6) is resampled (i.e., spatial resolution was changed) to $10 \text{ km} \times 10 \text{ km}$ in size. The world wraps horizontally and vertically. The current version of the model imports all spatial datasets for one time window (9200–8700 BP). One simulation step equals one year, and the current simulation does not account for seasonal variability. One run is 1000 time steps.

AII.3 Process overview and scheduling

Simulation starts with setup when input datasets are imported, entities are created, their state variables are set, and the conflicting cells are removed. In HUMLAND, more closed vegetation can only switch to more open vegetation after a disturbance event (fire, grazing). In our data comparison, where CARAIB shows a greater degree of openness in vegetation than REVEALS, we exclude these locations:

the ABM will not be able to generate vegetation that is comparable to REVEALS as it is constrained by the CARAIB-prescribed PNV. As a result, the similarity between ABM output and REVEALS datasets can only be improved for grid cells where initial vegetation openness is equal to or lower than observed estimates. These are the conflicting grid cells which are not taken into account when the primary observations (mean vegetation openness and percentage of dominant PFTs for cells with both REVEALS and CARAIB data) during the simulation runs are taken.

The process overview of simulation runs is shown in Figure All.1. Plots update at each step, and the simulation stops after 1000 steps. Each of them starts with vegetation regeneration. This submodel (Section All.7) executes only for patches which were previously (i.e., during the earlier step) burnt or consumed.

Hominins are the first agent that reduces vegetation cover. The anthropogenic fire submodel (Section All.7) is executed via three phases. During the first phase, hominins randomly move towards one of neighbouring patches within the area defined by accessible radius around their campsites. When a hominin reaches a patch with trees or shrubs as a dominant PFT and vegetation openness smaller or equal to a number defined via the Openness_criteria_to_burn variable, this patch is burnt. During the second phase, fire spread is initiated. Finally, the current vegetation openness of burnt patches and dominant PFT are compared with REVEALS data.

The natural fires submodel (Section AII.7) is initiated after hominin impact. During the setup the number of patches, that will be hit by thunderstorms per step, is calculated based on a value of the Territory_impacted_by_thunderstorms variable. Every simulation step random patches are chosen and impacted by thunderstorms. Thunderstorms can occur in high mountains, lakes and rivers, but these episodes never lead to ignition. Depending on the probability of ignition of a patch which are not water bodies or high mountains, patches can be burnt after thunderstorms. Similarly to anthropogenic burning, thunderstorms can cause fire spread. Finally, the current vegetation openness of burnt patches and dominant PFT are compared with REVEALS data.

Only grid cells with fully recovered vegetation can be consumed by megafauna. This assumption arises from our use of estimates for potential maximal megafauna plant consumption and the absence of data regarding partial consumption during the vegetation regrowth phase. After plant consumption, vegetation openness increases depending on the CARAIB NPP values and the maximal megafauna plant consumption estimates. Regarding megafauna impact on PFTs, it is assumed that megafauna equally consumes all PFTs present on a grid cell, i.e., besides the first dominant PFT megafauna consumes second, third and fourth dominant PFTs

in equal proportions. That is why, the first dominant PFT is replaced, only if the vegetation was entirely consumed by megafauna, and vegetation openness value after consumption is 100%. In this case, the first dominant PFT would be replaced by bare ground

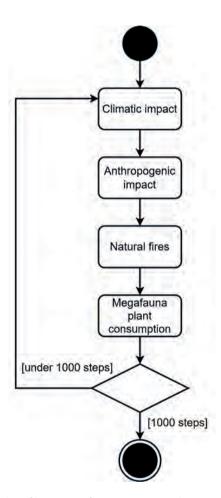


Figure AII.1 Activity diagram of process overview.

AII.4 Design concepts (after Nikulina et al., 2024b)

AII.4.1 Basic principles

The history of anthropogenic impacts on the environment spans over many years, with humans already engaging in landscape transformations before the emergence of agriculture. Ethnographic observations show that hunter-gatherers or foragers (i.e., groups that mainly depended on food collection or foraging of wild resources) influence their surroundings in several ways including modification of vegetation communities via burning. This practice was identified for all vegetation types except tundra at different spatial scales and for diverse objectives including driving game, stimulating the growth of edible plants, and clearing pathway.

Besides ethnographic data, evidence from archaeological contexts show that fire use was an important part of the technological repertoire of the *Homo* lineage since at least the second half of the Middle Pleistocene. Human-induced vegetation burning during the Late Pleistocene has been proposed as a potential factor in several case studies spanning various continents. Notably, the earliest evidence of such activities on a local scale was identified at the Neumark-Nord site in Germany, dated to the Last Interglacial (Eemian, ~130,000–116,000 BP). In addition, fire-using foragers were suggested as one of the primary drivers of vegetation openness in Europe during the Last Glacial Maximum, i.e., possibly constituting one of the earliest large-scale anthropogenic modifications of system earth.

While these Pleistocene cases are still subject to debate, human-induced vegetation burning conducted by hunter-gatherers during the Early–Middle Holocene (~11,700–6000 BP) is generally accepted, even though the quality of the data is not necessarily that different. However, the number of case studies is higher for the Early–Middle Holocene than for the Pleistocene. Most of the Early–Middle Holocene evidence comes from the European context.

Despite the presence of case studies for anthropogenic burning (intentional or not) of past landscapes by hunter-gatherers, it is still difficult to establish whether these local-scale impacts caused changes at the regional and (sub-)continental scales. Furthermore, overall landscape dynamics do not only depend on humans, and rather represent the complex interplay of natural and cultural processes at different spatio-temporal scales. Landscapes are thus complex systems where heterogeneous components interact to impact on ecological processes, and might demonstrate non-linear dynamics and emergence. Therefore, it is often challenging to distinguish different impacts on landscapes using proxy-based reconstructions (e.g., palynological datasets).

Modelling approaches offer excellent opportunities to explore how complex components of systems might interact, particularly when real-time experiments are not possible. Spatially-explicit agent-based modelling (ABM) is commonly used to explore complex systems where multiple factors intertwine and to propose possible scenarios of system functioning, and the outcomes of ABMs can be compared to empirical data. This approach has been applied in various contexts to study past human-environment interactions and land use/land cover changes. There are examples of such models for past societies that practiced agriculture and animal husbandry, and for hunter-gatherer groups. In the case of ABM developed to study foragers, the use of fire by hunter-gatherers to transform foragers' surroundings and the landscape consequences of these practices are usually not discussed.

This model includes four types of impact on vegetation: climatic impact, anthropogenic fires, thunderstorms, and megafauna plant consumption. Thunderstorms were included because lightning is one of the most general and widespread triggers of natural fire. Another source of impact is climate, and it is included as a crucial element for vegetation regeneration after fires or vegetation consumption. Finally, megafauna are also a part of the current ABM, because the herbivory activity impacts litter accumulation, and high levels of megafauna plant consumption reduce fire occurrence in many areas.

AII.4.2 Emergence

The model's key results are increase of average vegetation openness and decrease of the percentage of cells dominated by trees. These results emerge from joint (i.e., several agents together) and separate (i.e., only one agent) impacts of different agents (hominins, thunderstorms and megafauna) on vegetation. The increase of vegetation openness and change of PFT's distribution are driven by a specific combination of agents and values of variables that influence their behaviour.

AII.4.3 Adaptation

There is no adaptation in the model.

AII.4.4 Objectives

Vegetation burning is an objective for hominins. Each step hominins move randomly to one of the neighbouring patches. If it covered by shrubs or trees and its vegetation openness is equal or lower than the Openness_criteria_to_burn value, then the fire will be set. Otherwise, humans do not impact this patch. Megafauna and thunderstorms do not have objectives.

AII.4.5 Learning

Agents do not learn.

AII.4.6 Prediction

Agents do not predict.

AII.4.7 Sensing

Humans are assumed able to sense dominant PFT and vegetation openness of a grid cell where humans are located. Hominins can sense if their campsites and home patches are beyond accessible radius. It is useful in cases when two campsites are located nearby, and their accessible areas overlap. If a hominin is far from his campsite (does not sense his campsite anymore i.e., it is beyond accessible radius), this hominin automatically comes back to its campsite.

AII.4.8 Interaction

Hominins directly affect patches. If a hominin decides to burn a patch, its state variables are modified.

AII.4.9 Stochasticity

Stochasticity is used in initializing the model when random distribution of hominins within the study is set. Additionally, hominins randomly choose one of neighbouring patches on which hominins move around campsites. Finally, humans randomly choose patches when the campsites will be moved during simulation runs. This happens with a specific frequency defined via the Movement_frequency_ of campsites variable.

Thunderstorm impact also includes stochasticity. The number of patches are defined via the Territory_impacted_by_thunderstorms parameter. Several random inland patches are selected every simulation step to potentially have natural fire. The actual natural vegetation burning depends on a probability of ignition P(I) (AII.1):

$$P(I) = \frac{T - B}{F}$$
 (AII.1),

where B is the step when the last burning episode occurred, F–FRI, and T–the number of simulation steps (ticks) since the beginning of the simulation. Once P(I) is calculated, a random float number between 0 and 1 is chosen. If R \leq P(I), this patch will be burnt. Similarly to ignition caused by natural fires, fire can spread on neighbouring patches after natural and human-induced fires. For the

neighbouring patches the P(I) is calculated, and the fire event can occur depending on the obtained P(I) and random a random float number.

AII.4.10 Collectives

There are no collectives in the model.

AII.4.11 Observation

The primary model observations are distribution of dominant PFT (percentage of patches covered by each PFT) and mean vegetation openness for patches which have both REVEALS estimates and CARAIB values (i.e., not all patches are considered). These values are provided via plots on the model interface and extracted tables. The ABM output is considered similar to REVEALS data if the simulation produced the same percentage of first dominant PFTs and mean vegetation openness values or if the difference between ABM output and REVEALS data varies within $\pm 5\%$ (the range of change is 10%). Additionally, the different types of impact (i.e., the number of grid cells modified by each type of impact) are tracked via recording which impact caused openness and PFT changes.

AII.5 Initialization (after Nikulina et al., 2024b)

First, the environment is created during the initialization. Patch state variables at the end of the initialization step are described in Table AII.3. In HUMLAND, more closed vegetation can only switch to more open vegetation after a disturbance event (fire, grazing). In our data comparison, where CARAIB shows a greater degree of openness in vegetation than REVEALS, we exclude these locations: the ABM will not be able to generate vegetation that is comparable to REVEALS as it is constrained by the CARAIB-prescribed PNV. As a result, the similarity between ABM output and REVEALS datasets can only be improved for grid cells where initial vegetation openness is equal to or lower than observed estimates. Secondly, there are several grid cells where climatic conditions only favour dominance of herbs or shrubs, but observed vegetation indicates dominance of trees. Besides that, shrubs cannot dominate grid cells where climatic conditions favour trees or herbs in HUMLAND. Such cases do not improve similarity between ABM output and REVEALS data, and, therefore, these grid cells were also excluded (Table AII.5).

Table AII.3 Patch state variables and their values at the end of the initialization stage.

Variable name	Value	Explanation
patch_elevation	In accordance with GTOPO30	Value is set depending on GTOPO30 dataset
patch_natural_pft	In accordance with CARAIB first dominant PFT	Value is set between 1 and 4 depending on CARAIB dataset
patch_pollen_pft	In accordance with REVEALS first dominant PFT	Value is set between 1 and 4 depending on CARAIB dataset
patch_pft_updating	patch_pft_updating = patch_natural_pft	Variable has the same value as theoretical potential natural vegetation provided by CARAIB
patch_natural_openness	In accordance with CARAIB vegetation openness	Value is set between 9 and 100 depending on CARAIB dataset
patch_pollen_openness	In accordance with REVEALS vegetation openness	Value is set between 0 and 99 depending on REVEALS dataset
patch_pollen_openness_ se	In accordance with REVEALS standard errors	Value is set depending on REVEALS dataset
patch_pollen_openness_ max	patch_pollen_openness + patch_pollen_openness_se	Maximal possible REVEALS vegetation openness
patch_openness_ updating	patch_natural_openness = patch_openness_updating	Variable has the same value as theoretical potential natural vegetation provided by CARAIB
rivers_lakes	0 or 1	Value depends on WISE dataset
fri	246, 426, 286 or 293	The value depends on CARAIB first dominant PFT (Table AII.4)
patch_natural_npp	In accordance with CARAIB NPP	Value is set depending on CARAIB dataset
megafauna_npp_ consumption	In accordance with megafauna vegetation consumption dataset	Value is set depending on megafauna vegetation consumption data
fire_delay_after_ consumption	-1	Before megafauna consumption of a patch this variable is set to -1
openness_regrowth_rate	0	Before simulation runs this value is set to 0
last_burning_episode	0	Before simulation runs this value is set to 0
next_burning_episode	last_burning_episode + fri	Defines the step when this patch has 100% chances to be burnt
last_partial_ consumption_episode		
last_agent_impacted_ pft	_agent_impacted_ 3 Before simulation starts the vegetar cover is created by climate only. The patches have value 3	
last_agent_impacted_ openness	3	Before simulation starts the vegetation cover is created by climate only. Thus, all patches have value 3

Variable name	Value	Explanation
herbs_regeneration_step	0	Before agent's impact all patches do not require regeneration step
shrubs_regeneration_ step	0	Before agent's impact all patches do not require regeneration step
needleleaf_trees_ regeneration_step	0	Before agent's impact all patches do not require regeneration step
broadleaf_trees_ regeneration_step	0	Before agent's impact all patches do not require regeneration step
agent_that_could_ impact_neigbouring_ pathes	0	This value is 0 prior to simulation runs, because there was no impact yet
hominin_accessible_area	0 or 1	If the patch is within accessible area, the value is set to 1. Otherwise, this variable equals 0
raster_layer	-	Used to create .asc file. This variable can have any value depending on chosen patch variable

Table AII.4 Mean FRI for each dominant PFT.

PFT	Mean FRI estimated via MODIS
Needleleaf trees	246
Broadleaf trees	426
Shrubs	286
Herbs	293

Table AII.5 CARAIB and REVEALS conflicting cells excluded from the analysis during initiation stage.

CARAIB	REVEALS	Reason
Possible natural (CARAIB) vegetation openness is higher than observed vegetation openness	Maximal observed (REVEALS) vegetation openness (i.e., estimated vegetation openness + standard error) is lower than possible natural (CARAIB) vegetation openness.	In the current ABM possible natural vegetation openness cannot be higher than pollen-based vegetation openness.
First dominant PFT: herbs/ shrubs	First dominant PFT: trees	In the current ABM trees cannot dominate if climatic conditions only allow dominance of herbs or shrubs.
First dominant PFT: trees/ herbs	First dominant PFT: shrubs	In the current ABM shrubs cannot dominate if climatic conditions only allow dominance of trees or herbs.

Once the environment is created, hominins and their campsites are randomly distributed on surfaces with vegetation. The number of campsites and hominins is defined via the Number_of_groups parameter. Patches around campsites are defined as accessible areas. The Accessible_radius parameter defines the size of this area in the number of grid cells around campsites, and the hominin_accessible_ area state variable equals 1 for patches within the accessible area. Hominins cannot move beyond their foraging areas, on water bodies (sea, big lakes, and main rivers) high mountains. These are the patches with absolute elevations more than 2500 m. Water bodies and the most elevated areas do not have vegetation cover, and, therefore, cannot be burnt or consumed. Except for the patch_elevation and rivers_lakes, patches with high mountains and water bodies have -1 for their state variables.

AII.6 Input data (after Nikulina et al., 2024b)

The simulation uses several datasets (Table All.6). To standardize their spatial extent and resolution Spatial Analysts and Data management ArcMap 10.6.1 toolboxes were used. Grid cell sizes of the datasets were resampled to 10 km \times 10 km.

The initial landscape before simulation runs were reconstructed via the following datasets: GTOPO30, Water Information System for Europe (WISE) and three outputs of a dynamic vegetation model CARbon Assimilation In the Biosphere (CARAIB). GTOPO30 is a digital elevation model (DEM) derived from several raster and vector sources of topographic information. We used this DEM to represent elevation data in the ABM. WISE dataset is based on the information from the Water Framework Directive database, and we used WISE to define the distribution of major rivers and lakes (natural barriers for fire spread) in the model.

In the context of this research, the CARAIB dataset represents theoretical potential natural vegetation (PNV) distribution driven by climatic conditions only. As an input climate we used climatic variables simulated by the iLOVECLIM model with embedded online interactive downscaling. The iLOVECLIM-simulated climatic variables were bias-corrected using the CDF-t bias correction technique and averaged over the studied period to get daily mean climate characteristics of our period of interest. A full description of the modelling setup and the application of the CDF-t technique within this setup is described and tested.

CARAIB outputs used in this study include distribution of fractions of 26 plant functional types (PNV PFTs), vegetation openness (PNV openness), leaf area index (LAI) and net primary productivity (PNV NPP) for the period 9200–8700 BP. Before being imported to the ABM, the mentioned CARAIB outputs were transformed. As the CARAIB dataset here represents climate-only forced vegetation, it is used in

the current ABM as the starting point (i.e., before impact of humans, natural fires and megafauna) of each simulation and as target for vegetation regrowth after impacts.

Table AII.6 Input datasets to the simulation environment (after Nikulina et al., 2024b).

Dataset	Initial data type	Initial spatial resolution/scale	Meaning, units
GTOPO30	Raster	1 km	Digital elevation model, m
WISE	Vector	1:10000000	Distribution of large rivers and lakes
CARAIB first dominant PFT	Raster	~26 km (0.25°)	Potential natural (climate-based) first dominant PFT
CARAIB vegetation openness			Potential natural (climate-based) vegetation openness, in percentage
NPP			Potential net primary carbon productivity (excluding carbon used for respiration), g/m ²
Megafauna vegetation consumption	Raster	30 km	Potential maximal megafauna vegetation consumption (i.e., metabolization of NPP), kg/km² (converted to g/m²)
REVEALS first dominant PFT	Vector	~100 km (1°)	Observed past first dominant PFT
REVEALS vegetation openness			Observed past vegetation openness, in percentage
REVEALS vegetation openness standard errors			Standard errors for estimates of observed past vegetation openness.

AII.7 Submodels (after Nikulina et al., 2024b)

AII.7.1 Climatic impact

The vegetation regrowth after the impact of thunderstorms, megafauna, and/or humans is determined by the climatic conditions. Therefore, this submodel only modifies grid cells that were previously burned or consumed, and during the first simulation step, it does not alter vegetation openness and PFT of patches.

The grid cells' patch_openness_updating and patch_pft_updating (Figs. All.2 and All.3) are changed in response to the climatic impact until they match the values of patch_natural_openness and patch_natural_pft, respectively. If the difference between patch_natural_openness and patch_openness_updating is equal to or less than 10%, the grid cell is considered to have recovered naturally, and the last agent that impacted this patch is assumed to be the climate (last_agent_impacted_openness = 3). Similarly, if patch_natural_pft is equal to patch_pft_updating, the last agent that impacted the PFT of this grid cell is climate (last_agent_impacted_pft = 3).

We used the CARAIB mean number of years to recover (Table AII.7) to calculate the vegetation openness recovery rate and to define the step when natural PFT would reestablish on the grid cell after vegetation burning and/or consumption. PFT recovery on all impacted patches always begins with herbs, which replace bare ground after seven simulation steps. Subsequently, depending on the initial dominant PFT estimated by CARAIB after the required number of years since fire or complete consumption (Table AII.7), the herbs may be replaced by trees or shrubland.

After megafauna plant consumption, natural and anthropogenic fires the rate of vegetation openness recovery (V_{∞}) is calculated via the following formula (All.2):

$$V_{\text{or}} = \frac{O_i - O_c}{\mu} \tag{AII.2}$$

 O_i represents the vegetation openness after the impact caused by fire or megafauna, O_c refers to the CARAIB estimates of vegetation openness, and μ – the mean number of years required for recovery of the initial vegetation openness prior to the fire event or plant consumption (Table All.7). During each simulation step, V_{or} is subtracted from the current simulation openness until it reaches the CARAIB estimates of vegetation openness.

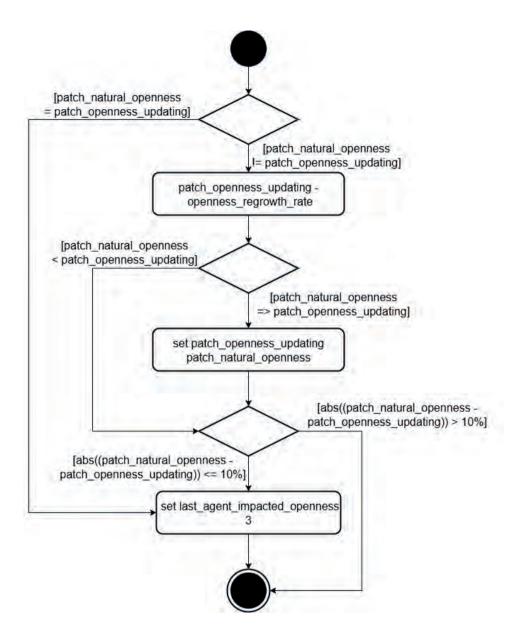
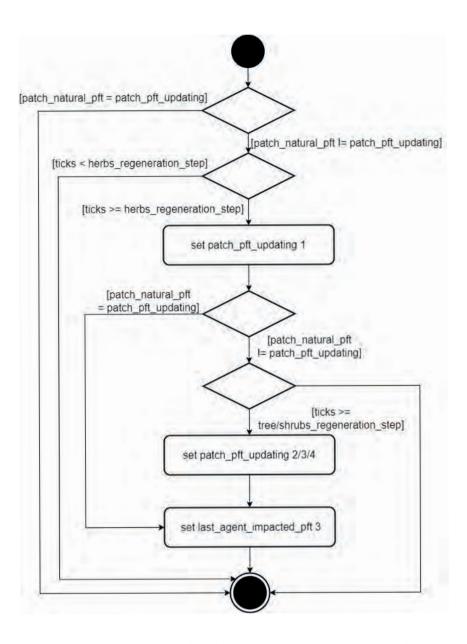



Figure AII.2 Activity diagram for climatic impact on vegetation openness.

Figure AII.3 Activity diagram for climatic impact on distribution of dominant PFTs.

Table AII.7 Mean number of years to recover for each dominant PFT (after Nikulina et al., 2024b).

PFT	Number of years
Needleleaf trees	43
Broadleaf trees	30
Shrubs	43
Herbs	7

AII.7.2 Anthropogenic impact

This submodel introduces changes to the vegetation through human-induced fires. There are five parameters which define human behaviour and intensity of their impact: Number_of_groups, Accessible_radius, Campsites_to_move, Movement_frequency_of_campsites, and Openness_criteria_to_burn.

The first parameter defines the number of hunter-gatherer groups present at the study area during one simulation run, and, therefore, this parameter is associated with human population size. The accessible radius parameter defines the territory within which humans move and set fires around campsites.

Due to the importance of mobility for hunter-gatherer lifestyle, there are two parameters associated with movements of foragers: Movement_frequency_of_campsites (the number of simulation steps after which a group can relocate their campsite) and Campsites_to_move (the percentage of groups that relocate a campsite at certain step defined by movement frequency). Due to the temporal resolution of the current simulation, hunter-gatherers' highest possible frequency of camp movements is every step (i.e., once per year). The search radius for the new grid cell to establish a site is twice bigger than the accessible radius. Any grid cell can be chosen for the new site, except the previously occupied grid cell. The newly established accessible area can overlap with the previous one.

Since hunter-gatherers have different reasons to burn landscapes, and that this practice was documented in almost all vegetation types with more cases for foragers occupying shrublands and forests, the openness criteria to burn was introduced. In the current simulation, humans only burn grid cells dominated by trees or shrubs with vegetation openness lower or equal to this criterion. A low value minimizes the number of positive decisions to start a fire, and higher values increase human-induced fires, because even relatively open areas can be burnt by people in this case.

Humans randomly move between adjacent patches within a defined area determined by the Accessible_radius (the number of grid cells) around campsites. When a human is present on a patch with vegetation openness that is equal to

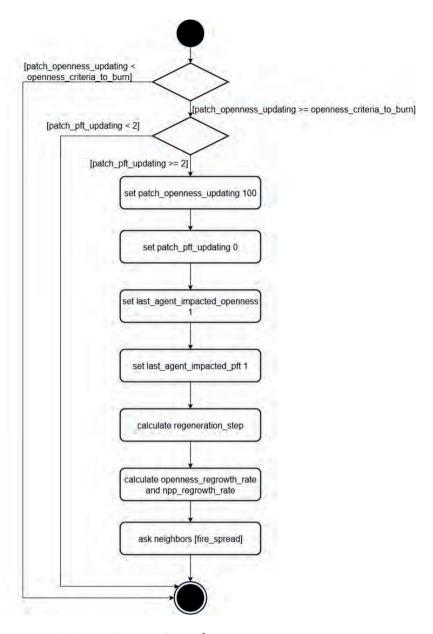


Figure AII.4 Activity diagram for anthropogenic impact.

or lower than the prescribed criteria for burning and contains shrubs or trees (patch_pft_updating >= 2), this human sets fire on that patch. Consequently, the openness of the patch is updated to 100% (completely open), and its PFT (patch_pft_updating) is set to 0, indicating a burnt area. In this scenario, the variables last_agent_impacted_openness and last_agent_impacted_pft are assigned a value of 1 to denote anthropogenic impact. The time step at which this burning event occurs is recorded as last_burning_episode, and next_burning_episode is updated based on the dominant natural PFT (Table All.4). Subsequently, after calculating the regeneration steps (ticks + number of years from Table All.4) and openness regrowth rates (Section All.7.1), the spread of vegetation to neighbouring patches is initiated (Section All.7.4).

AII.7.3 Natural fires

Based on the value of the parameter Territory_impacted_by_thunderstorms, the number of grid cells experiencing thunderstorms per simulation step is determined. This parameter is expressed as a percentage, and based on its value, the calculation determines how many grid cells will be affected by thunderstorms. These thunderstorms randomly occur on different grid cells within the study area. It is important to note that thunderstorms can occur over rivers, lakes, and high mountains, but these areas are not susceptible to burning.

Following the occurrence of thunderstorms, fires may initiate fire spread depending on the probability of ignition for the affected grid cells (Fig. All.5). The spread of fire (Section All.7.4) to neighbouring grid cells can occur after both human-induced and natural fires. Thunderstorms do not always result in vegetation burning, and the ignition of fire does not always lead to its propagation after natural or human-induced ignitions.

The probability of ignition P(I) is determined based on the time elapsed since the last burning episode (B) and the FRI (F), obtained from the MODIS dataset (Table AII.4) (AII.3):

$$P(I) = \frac{T - B}{F}$$
 (AII.3)

Here, T represents the number of simulation steps (ticks) since the beginning of the simulation. If the probability of ignition is equal to or higher than a randomly chosen number (ignt, as shown in Fig. All.5), the corresponding patch will be burnt. The consumption of patches by megafauna impacts the probability of ignition. Depending on the percentage of vegetation consumed (as described in Section All.7.5), the occurrence of the next burning episode can be delayed. To calculate the probability of delayed ignition, the same formula is used, but

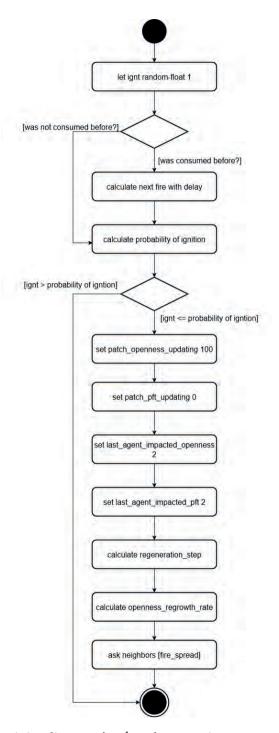


Figure AII.5 Activity diagram for thunderstorm impact.

with a modification: instead of using the current number of ticks (T), we use the sum of T and fire_delay_after_consumption. This patch state variable represents the number of years by which the next burning episode was postponed due to megafauna vegetation consumption (Section All.7.5). The value of B is also updated as a result of megafauna impact (details provided below).

Once a patch is burned (indicated by patch_pft_updating = 0 and patch_openness_updating = 100), the regrowth rate of openness (Section All.7.1) and the steps for PFT regeneration (ticks + number of years from Table All.5) are determined. Additionally, the information of the last agent that impacted the patch is updated Section All.7.1). Subsequently, the neighbouring patches are prompted to spread the fire as explained in Section All.7.4.

AII.7.4 Fire spread

Following natural and anthropogenic burning, fire has the potential to spread to neighbouring patches. However, the actual ignition of these patches depends on the probability of ignition, which is calculated using the same method described for natural fires in Section All.7.3. If a patch is burnt because of fire spread, it will inherit the same values for last_agent_impacted_pft and last_agent_impacted_openness as the patch from which the fire spread originated.

AII.7.5 Megafauna consumption

Megafauna is the final agent responsible for vegetation transformation in the model (Fig. All.6). Only grid cells with fully recovered vegetation are susceptible to consumption by megafauna. Following plant consumption, the vegetation openness increases based on CARAIB NPP values and estimates of maximal megafauna plant consumption.

Regarding the impact of megafauna on PFTs, it is assumed that megafauna consumes all PFTs present on a grid cell in equal proportions, besides the first dominant PFT. Therefore, if the vegetation is entirely consumed by megafauna and the vegetation openness reaches 100%, the first dominant PFT is replaced with bare ground. In such cases, both last_agent_impacted_pft and last_agent_impacted_openness are assigned a value of 4, indicating that the impact was caused by megafauna. However, if the dominant PFT remains unchanged after megafauna consumption, only last_agent_impacted_openness is updated.

The percentage of vegetation consumed (V_c) is calculated for each grid cell, excluding water bodies and high mountains, using the following formula (All.4):

$$V_c = \frac{V_m}{V_o} \times 100 \tag{AII.4}$$

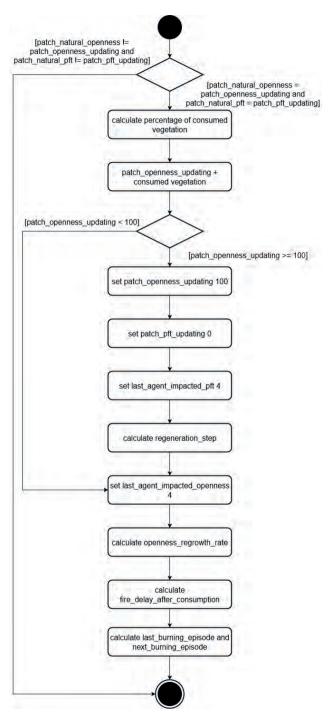
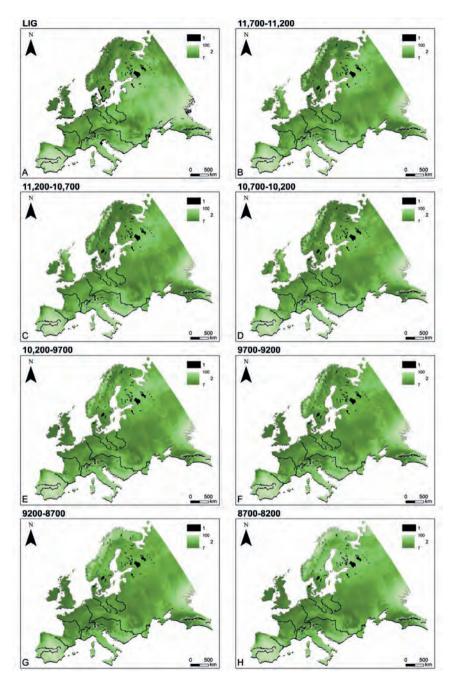
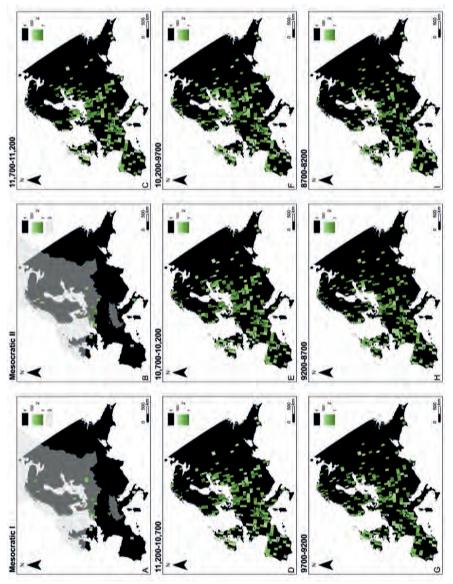
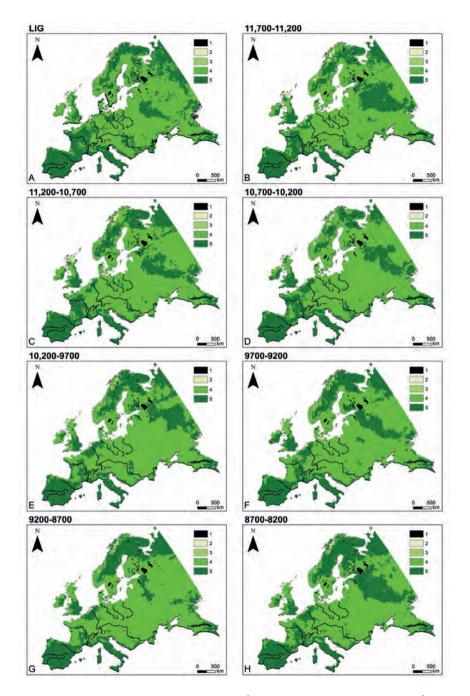
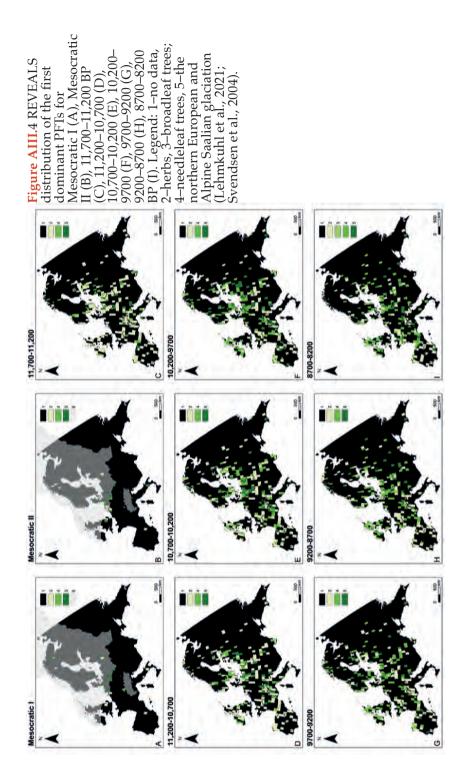



Figure AII.6 Activity diagram for megafauna impact.

 $V_{\rm m}$ represents the grid cell value for potential maximal megafauna metabolization of NPP, and $V_{\rm n}$ corresponds to the CARAIB NPP. Once the percentage of consumed vegetation is calculated for a grid cell, this value is added to the existing vegetation openness to increase it after the impact of megafauna. Furthermore, the first dominant PFT is updated based on the resulting vegetation openness after vegetation consumption.


When there is partial consumption of vegetation by megafauna (i.e., when the first dominant PFT remains unchanged), it leads to delays in fire activity because time is required to accumulate plant material that can be burnt. The number of years by which fire activity is delayed is calculated by multiplying with the FRI of the respective PFT at the patch (Table All.4). Consequently, depending on the percentage of vegetation consumed, the time step at which the vegetation has a 100% probability of being burnt in the presence of an ignition source is postponed.


Appendix III Supplementary data to Nikulina et al. (in press)


Figure AIII.1 CARAIB vegetation openness for the Last Interglacial (A), 11,700–11,200 BP (B), 11,200–10,700 (C), 10,700–10,200 (D), 10,200–9700 (E), 9700–9200 (F), 9200–8700 (G), 8700–8200 BP (H). Legend: 1–no data, 2–vegetation openness (in %).

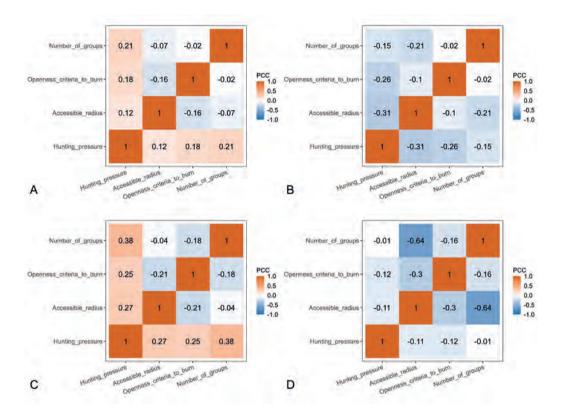

Figure AIII.2
REVEALS vegetation openness for Mesocratic I (A), Mesocratic II (B), 11,700–11,200 BP (C), 11,200–10,700 (B), 10,700–10,200 (E), 10,200–9700 (F), 9700–9200 (G), 9200–8700 (H), 8700–8200 BP (I). Legend: 1–no data, 2–vegetation openness (in %); 3–The northern European and Alpine Saalian glaciation (Lehmkuhl et al., 2021, Svendsen et al., 2004).

Figure AIII.3 CARAIB distribution of the first dominant PFTs for the Last Interglacial (A), 11,700–11,200 BP (B), 11,200–10,700 (C), 10,700–10,200 (D), 10,200–9700 (E), 9700–9200 (F), 9200–8700 (G), 8700–8200 BP (H). Legend: 1–no data, 2–herbs, 3–shrubs; 4–broadleaf trees; 5–needleleaf trees.

Figure AIII.5 Correlation matrices and Pearson correlation coefficients (PCC) between variables of the possible scenarios for LIG (A) and Early Holocene (B) tree distribution scenarios; LIG (C) and Early Holocene (D) vegetation openness scenarios. The experiments include the combined direct impact of all agents on vegetation: anthropogenic and natural fires, climatic impact and megafauna plant consumption. The darkest blue indicates the strongest negative correlation between the Number_of_groups and Accessible_radius parameters within the Early Holocene vegetation openness scenarios. Lighter colours represent either absent/low or modest correlations for the other parameters.

Table AIII.1 PFTs used in ABM (HUMLAND PFTs) and correspondence between CARAIB PFTs and REVEALS plant taxa (after Nikulina et al., 2024b).

CARAIB PFTs	Plant taxon / pollen morphological types	HUMLAND PFTs
Needle-leaved evergreen boreal/ temp cold trees Needle-leaved evergreen meso mediterranean trees Needle-leaved evergreen subtropical trees Needle-leaved evergreen supra mediterranean trees Needle-leaved evergreen temperate cool trees Needle-leaved summergreen boreal/temp cold trees Needle-leaved summergreen subtropical swamp trees	Abies Picea Pinus Juniperus	Needleleaf trees
Broadleaved evergreen meso mediterranean trees Broadleaved evergreen subtropical trees Broadleaved evergreen thermo mediterranean trees Broadleaved evergreen tropical trees Broadleaved raingreen tropical trees Broadleaved summergreen boreal/temp cold trees Broadleaved summergreen tropical trees Broadleaved summergreen boreal/temp cold trees Broadleaved summergreen temperate cool trees Broadleaved summergreen temperate warm trees	Alnus Betula Carpinus betulus Carpinus orientalis Castanea sativa Corylus avellana Fagus Fraxinus Phillyrea Pistacia deciduous Quercus t. evergreen Quercus t. Salix Tilia Ulmus	Broadleaf trees
Broadleaved evergreen boreal/ temp cold shrubs Broadleaved evergreen temperate warm shrubs Broadleaved evergreen xeric shrubs Broadleaved summergreen arctic shrubs Broadleaved summergreen boreal/temp cold shrubs Broadleaved summergreen temperate warm shrubs Subdesertic shrubs Tropical shrubs	Buxus sempervirens Calluna vulgaris Ericaceae	Shrubs
C3 herbs ("dry") C3 herbs ("humid") C4 herbs	Amaranthaceae/Chenopodiaceae Artemisia Cerealia t. Cyperaceae Filipendula Plantago lanceolata Poaceae Rumex acetosa t. Secale cereale	Herbs

Table AIII.2 Datasets used in HUMLAND (after Nikulina et al., 2024b)

Dataset	Initial data type	Initial spatial resolution/scale	Meaning, units	Source
GTOPO30	Raster	1 km	Digital elevation model, m	https://www.usgs. gov/
WISE	Vector	1:10,000,000	Distribution of large rivers and lakes	https://water. europa.eu/
CARAIB first dominant PFT			PNV: first dominant PFT	
CARAIB vegetation openness	Raster	~26 km (0.25°)	PNV: vegetation openness (%)	http://www.umccb. ulg.ac.be/Sci/m_ car e.html
NPP			PNV NPP (excluding carbon used for respiration), g/m2	- car_c.n.ini
Megafauna vegetation consumption	Raster	30 km	Potential maximal megafauna vegetation consumption (i.e., metabolization of NPP), kg/km ² (converted to g/m ²)	Davoli et al., 2023, 2024
REVEALS first dominant PFT			Pollen-based first dominant PFT	
REVEALS vegetation openness	Vector	~100 km (1°)	Pollen-based past vegetation openness (relative %)	Serge et al., 2023
REVEALS vegetation openness standard errors			Standard errors for estimates of pollen- based past vegetation openness	

Table AIII.3 PCA results for the successful genetic algorithm outputs aiming to minimize the HUMLAND–REVEALS difference in mean percentage of grid cells dominated by trees. The experiments include the combined impact of all agents on vegetation: anthropogenic and natural fires, hunting, climatic impact and megafauna plant consumption.

Variables		Openness_	Hunting_	Number_of_	Accessible_
Time windows		criteria_to_burn	pressure	groups	radius
Mesocratic I	Comp. 1 (54.2%)	0.54	0.07	0.36	-0.74
Mesocratic	Comp. 2 (26.1%)	-0.63	0.24	0.72	-0.08
Mesocratic II	Comp. 1 (46.7%)	0.78	0.04	-0.44	-0.42
Mesocratic II	Comp. 2 (36.5%)	0	0.06	0.69	-0.71
10,200-9700 BP	Comp. 1 (44.7%)	-0.31	0.17	-0.67	-0.63
10,200-9700 BF	Comp. 2 (36%)	-0.18	0.82	-0.17	-0.5
9700-9200 BP	Comp. 1 (48.3%)	-0.31	0.48	-0.68	0.44
9700-9200 BF	Comp. 2 (30.4%)	-0.01	0.69	0.02	-0.72
9200-8700 BP	Comp. 1 (51.2%)	-0.51	0.65	0.33	-0.43
9200-6700 BF	Comp. 2 (28%)	-0.66	0	-0.05	0.74
8700-8200 BP	Comp. 1 (47.8%)	-0.27	0.58	0.31	0.69
6700-6200 BP	Comp. 2 (33.9%)	-0.38	0.53	-0.69	0.29

Table AIII.4 PCA results for the successful genetic algorithm outputs aiming to minimize the HUMLAND–REVEALS difference in mean vegetation openness. The experiments include the combined impact of all agents on vegetation: anthropogenic and natural fires, hunting, climatic impact and megafauna plant consumption.

Variables		Openness_	Hunting_	Number_	Accessible_
Time windows		criteria_to_burn	pressure	of_groups	radius
Mesocratic I	Comp. 1 (58.8%)	-0.74	0.09	0.40	0.51
Mesocratic	Comp. 2 (29.4%)	-0.02	0.11	-0.75	-0.65
Mesocratic II	Comp. 1 (45.1%)	0.77	0.01	-0.17	-0.61
Wesocratic II	Comp. 2 (43.7%)	-0.22	0.24	-0.79	-0.51
10,200-9700	Comp. 1 (59.9%)	0.16	0.25	0.63	-0.71
BP	Comp. 2 (27%)	-0.84	0.44	0.24	0.17
9700-9200 BP	Comp. 1 (50.3%)	-0.16	0.39	0.64	-0.62
9700-9200 BF	Comp. 2 (33.8%)	-0.83	0.1	0.2	0.49
9200-8700 BP	Comp. 1 (61.7%)	-0.14	0.09	0.67	-0.72
9200-6700 BP	Comp. 2 (21.4%)	-0.85	0.47	0.19	0.06
8700-8200 BP	Comp. 1 (56%)	0.12	0.05	0.67	-0.72
6700-6200 BP	Comp. 2 (27.8%)	-0.81	0.52	0.22	0.1

Table AIII.5 Mean, mode and standard deviation (SD) for parameter values obtained via the genetic algorithm with

Trees Nean Nean Node	Openness to burn	burn			둘	Parame Hunting pressure	Para press	mete	Parameters and experiment types ressure	exbe	rimen Nur	t type	ment types Number of groups	sdn			Acce	Accessible radius	radi	sn	
79 Mean 77 SD 13 13 13 14 SD	0	Openness	SS		Trees		o	Openness	SS		Trees	ı	ō	Openness	SS		Trees		o	Openness	S
77 14 EI 67	Mean	as	әроѠ	Mean	as	әроМ	Mean	as	әроѠ	Mean	as	әроѠ	Mean	as	әроМ	Mean	as	әроѠ	Mean	as	әроМ
77 14 79 13									22												
77 79 13									23												
79 13	49	23	48	24	29	4	34	13		3266	591	3323	1936	1136	563	3	-	m	7	-	_
79 13									27												
79 13									31												
79 13									39												
79 13									21						139						
	48	22	23	27	33	4	33	15	22	3381	488	3323	2044	1122	1087	2	—	m	7	_	7
									23						2017						
						c			24												
76		ć	9	رر	יו	>	35	-		715	723	2042	1000	7	673	C	,	C	,	,	,
- 13	00	7	1 0	77	67	,	CC	=	<u>.,</u>	0010	/00	2340	000	5	202	n	-	n	7	_	
77						_			39												

Time										Para	mete	irs and	Parameters and experiment types	rime	nt type	es								
windows		Ope	Openness_to_burn	to	unc			H	Hunting_pressure	press	are			N	mber	Number_of_groups	sdn			Acce	ldiss	Accessible_radius	ns	
		Trees		ŏ	Openness	SSi		Trees		o	Openness	SS		Trees		0	Openness	SS		Trees		Ope	Openness	S
	Mean	as	әроМ	Mean	as	әроМ	Mean	as	əpoW	Mean	as	əpoW	Mean	as	əpoW	Mean	as	əpoW	Mean	as	əpoW	Mean	as	əpoW
			45			36																		
			47			38																		
Early Holocene	71	17	57	09	22	45	48	27	31	34	26	4	2895	691	3575	2243	957	1089	3	-	4	3	_	_
			29			62																		
			69			69																		
						36						-												
												9												
10,200-	9/	15	57	61	23	(45	25	31	40	29		3071	462	3161	2090	759	1329	3	-	4	٣	-	7
9/00 br						79						44 5												
											,	82												
									24			7.0												
									30			CC						1188						
9700-9200 RP	71	15	65	58	22	38	51	25	45	43	56	43	3117	543	3115	2074	897		3	-	4	7	_	\sim
5									09			7						2452						
									29			ì						5						
9200-8700	0	ć	45	Ç	,	00	2	ç	5	٥٢	c۲		7550	5	2,453	7277	1005	7631	C	,	-	ر	,	-
ВР		07	29	3	7	ဝိ	<u>-</u>	67	}	07	C7	†	0007	_	040				n	-	†	7	-	-
									c									1079						
8700-8200	89	17	47	C	23	45	45	20	>	75	71	71	2843	808	2490	2466	900	2901	۲,	,	4	,	-	-
ВР		=	È	4	2		2	3	,	3	-		5	3	7			- C	ר	-	+	1	-	-
						(m (3315						
						69			38									3336						

A3

Table AIII.6 Details of HUMLAND runs conducted to track the extent and visibility of modifications done by each agent.

				Paramet	er valu	es		
Time windows		nness_to_ burn		inting_ essure		nber_of_ roups	Acces	sible_radius
	Trees	Openness	Trees	Openness	Trees	Openness	Trees	Openness
		29		21		139		4
Massayatial	01	29	_	23	2222	1091	2	2
Mesocratic I	81	37	0	26	3323	2017	3	1
		28		21		2497		3
Mesocratic II	92	33	10	30	2943	563	4	4
10,200-9700 BP	87	47	42	11	3161	1329	4	5
9700-9200 BP	74	72	52	42	3123	1191	4	4
9700-9200 BP	/4	80	52	74	3123	3375	4	1
9200-8700 BP	81	41	75	6	3450	1627	2	1
		77		16		1079		3
0700 0200 DD	71	72	1.4	9	2400	1460	_	2
8700-8200 BP	71	92	14	10	2488	2901	5	1
		62		7		3315		1

AIII.1 paleoenvironmental modelling setup

The potential natural vegetation (PNV) simulations in this study were conducted using a modelling framework that combines iLOVECLIM climate model, and VECODE and CARAIB vegetation models. Below, we detail the configurations and roles of each model.

AIII.1.1 ILOVECLIM: paleoclimate simulation

Climate simulations were performed with the iLOVECLIM Earth System model of intermediate complexity (Goosse et al., 2010), revised by Roche (Roche, 2013) and further expanded by Quiquet et al. (Quiquet et al., 2018). The applied version of iLOVECLIM includes the following: the atmospheric model, ECBilt (Opsteegh et al., 1998), the sea-ice ocean component, CLIO (Goosse & Fichefet, 1999), and the reduced-form dynamic global vegetation model (DGVM), VECODE (Brovkin et al., 1997). These components are used to simulate climate.

ILOVECLIM operates on a relatively low spatial resolution T21 grid (5.625° latitude/longitude), which in the current study is increased to 0.25° latitude/longitude through the use of the online interactive downscaling method embedded in iLOVECLIM, first described by Quiquet et al. (Quiquet et al., 2018) and tested within the current modelling setup by Zapolska et al. (Zapolska et al., 2023a).

We applied iLOVECLIM to simulate evolution of the climate during the Holocene and LIG through a set of transient runs. Holocene transient run was resampled to a time step that correspond to REVEALS time windows (TWs): time windows between the year 6200 BP and the year 700 BP were assigned at 500 years temporal resolution, following by fixed time windows at 350 (700–350 BP), 250 (350–100 BP), and 165 (2015 CE–1850). To simulate climate during the Last Interglacial (LIG) we first performed a transient iLOVECLIM run over the whole LIG and identified periods with high forest fraction in VECODE outputs: 120,000 BP, 124,000 BP, and 128,000 BP. For these three periods we performed equilibrium climate simulations, which were used to drive the CARAIB model. The transient experiments were initialised with states derived from 3000-year long equilibrium simulations at 11,700 BP (early Holocene) and 129,000 BP (early LIG).

For all simulations, we used the following boundary conditions: standardised boundary conditions for palaeoclimate simulations, provided by the Palaeoclimate Modelling Intercomparison Project Phase 4 (PMIP-4) (Kageyama et al., 2017), astronomical parameters from Berger (Berger, 1978), greenhouse gas levels (Raynaud et al., 2000; Schilt et al., 2010), ice sheets from the GLAC-1D reconstruction (Tarasov et al., 2012; Tarasov & Peltier, 2002) as well as evolving

bathymetry and land-ocean mask coherent with those ice-sheet geometries (with the same methodology as Bouttes et al., 2022).

To further improve reliability of the modelled results in context of intercomparison with pollen data, we applied the CDF-t bias correction technique (Vrac et al., 2012) to correct biases of iLOVECLIM modelled results (Zapolska et al., 2023b).

AIII.1.2 VECODE: dynamic vegetation modelling

To provide a necessary climate-biomass feedback loop for the climate simulations we used a reduced-form DGVM VECODE (Brovkin et al., 1997). VECODE simulates eco-physiological characteristics of vegetation and soil dynamics in a manner necessary for climate models of intermediate complexity. Vegetation in VECODE DGVM is described using two plant functional types (PFTs): trees and grass (with bare ground as a dummy type).

VECODE dynamics is coupled with atmospheric and oceanic modules of iLOVECLIM at an annual timestep, which simulates plant and soil behaviours necessary for accurately simulating the first-order vegetation-climate feedback in iLOVECLIM. However, its level of complexity is not enough to reflect fine-scale changes that are typically attributed to human impact on vegetation. Thus, iLOVECLIM-simulated bias corrected climate was used as an input for CARAIB, a more complex vegetation model.

AIII.1.3 CARAIB: high-resolution vegetation modelling

CARAIB (CARbon Assimilation In the Biosphere) is a grid-point process-based dynamic vegetation model that operates at a grid size of the provided input data (here 0.25° latitude/longitude). CARAIB is a comprehensive and mechanistic vegetation model that simulates the vegetation dynamics based on its relationship with climatic and soil conditions.

It combines several modules: hydrological budget (Hubert et al., 1998), canopy photosynthesis and stomatal regulation, carbon allocation and plant growth (Otto et al., 2002), heterotrophic respiration and litter/soil carbon dynamics, plant competition and biogeography. CARAIB outputs used in this ABM include distribution of fractions of 26 PFTs (PNV distribution), PNV vegetation openness, and potential natural NPP per 26 km \times 26 km grid cell.

To simulate the potential natural vegetation during the Holocene we conducted a series of equilibrium runs with the same boundary conditions and spatio-temporal resolution as iLOVECLIM, using its simulated climate as input and obtaining CARAIB-simulated PNV.

REVEALS estimates for LIG provide data for the highest forested period during the LIG without specifying time bounds of such period. Hence, to represent the peak of forest fraction in LIG we performed three equilibrium CARAIB simulations at 120,000 BP, 124,000 BP, and 128,000 BP. These three periods were selected due to their high forested fraction in VECODE outputs (integrated vegetation module within iLOVECLIM climate model). These simulations (not shown) determined that 128,000 BP had the highest forest fraction during the LIG within our setup. The corresponding CARAIB output for this period was thus used in the HUMLAND 2.0 LIG simulations.

AIII.2 Pearson correlation coefficients and principal component analysis

In Figure AIII.5, the variables within the LIG dataset have both positive and negative correlations, while in the Early Holocene results, correlations are exclusively negative (blue). The magnitudes of the correlation coefficients between parameters are generally modest or low/absent for both LIG (-0.21–0.38) and the Early Holocene (-0.3–0) experiments. Relatively strong correlation (-0.64) is identified between the Number_of_groups and Accessible_area parameters within the vegetation openness experiments (Figure AIII.5D).

PCA results show that contribution of some variables to principal components (i.e., new variables that are derived from an original set of variables to reduce the dimensionality of data) vary through time and genetic algorithm experiment groups (i.e., minimization of the difference in mean vegetation openness or in percentage of grid cells dominated by trees). The distinct result is that the absolute loadings (i.e., how much a variable contributes to the component) of the Hunting_pressure parameter are overall lower for LIG results than for the Holocene runs (Tables AlII.3 and AlII.4). The absolute loadings of the Openness_criteria_to_burn parameter are relatively high for the LIG results regarding PFT distribution (Table AlII.4). The absolute loadings of this parameter slightly decrease for the dominance of trees experiments in the earlier part of the Early Holocene, and increase again during 9200–8700 BP (Table AlII.4). The absolute loadings for the Number_of_groups and the Accessible_radius parameter are relatively high for all time periods (Tables AlII.3) and AlII.4).

AIII.3 CARAIB-REVEALS comparison for 11,700-10,200 BP

REVEALS showed higher percentages of herbs in comparison with the percentage of trees during 11,700-10,200 BP and the inversion of these values between 10,200-9200 BP (Fig. 4.5, bottom figure). These observations might be partially explained by the position of these periods within the glacial/interglacial cycle which could entail a late arrival of some tree types (Giesecke et al., 2017; Svenning & Skov, 2004). The duration of postglacial migration lags is unclear. There are suggestions for both relatively short lags of maximally 1500 years, and substantially longer ones including estimates that many plant species have not reached equilibrium with climate even nowadays (Birks & Birks, 2008; Dallmeyer et al., 2022; Seliger et al., 2021; Svenning & Sandel, 2013). It is also unclear whether the observed specieslevel lags impact continental-scale distribution of forests (Dallmeyer et al., 2022). Due to that, distinguishing between the potential influences of human activities and climate could be challenging in this context for the 11,700-10,200 BP. In addition, the CARAIB vegetation model used in this study is driven by outputs from an equilibrium iLOVECLIM climate model. In the present setup, both the vegetation and climate models are in equilibrium, and hence do not capture transient changes. ILOVECLIM uses ice sheet data, which then remain static throughout the equilibrium-based simulation. This setup inherently limits representation of several aspects of the Early Holocene, including the transition to warmer conditions in the beginning of the Holocene and the associated soil changes due to deglaciation (transient change in soil composition, texture, and nutrient availability). Thus, we made a deliberate decision not to conduct HUMLAND simulations for 11,700–10,200 BP. We have directed our focus on 10,200–8200 BP and two LIG time windows.

Appendix IV HUMLAND ABM 2.0 Overview, design concepts and details (ODD) protocol

Anastasia Nikulina¹, Fulco Scherjon^{1,2}, Katharine MacDonald^{1,3}

¹ Faculty of Archaeology, Leiden University, Einsteinweg 2, 2333CC, Leiden, The Netherlands

² MONREPOS Archaeological Research Centre and Museum for Human Behavioural Evolution, LEIZA, Schloss Monrepos, 56567 Neuwied, Germany

³ Deceased

This document provides a comprehensive overview, design concepts, and detailed descriptions of the HUMLAND ABM 2.0. This model was developed to track and quantify the intensity of different impacts on vegetation on the continental scale and to determine the most influential factor in transformation of interglacial vegetation with specific focus on burning organized by hunter-gatherers. This document follows the Overview, Design concepts, and Details (ODD) protocol to ensure clarity and consistency in model documentation.

The model is accessible via the CoMSES library (search for HUMLAND). HUMLAND 2.0 and all associated data and scripts are licensed under the MIT License.

When referencing HUMLAND 2.0, please cite both the model and the associated publication.

Feedback and contact: Anastasia Nikulina (nikulina1302@gmail.com; a.nikulina@arch.leidenuniv.nl)

AIV.1 Purpose

Humans started transforming their environment long before the emergence of agriculture and industrialization. Foraging societies conduct niche construction activities including vegetation burning which substantially modifies huntergatherers' surroundings. Currently available ethnographic and archaeological evidence suggests that both Neanderthals and Mesolithic humans practiced vegetation burning during the Last Interglacial (LIG; ~130,000–116,000 BP) and the Early Holocene (~11,700–8000 BP). Due to the scarcity of evidence and the absence of a common research protocol to study the anthropogenic impact on landscapes, there are gaps in research about the dynamics of interglacial environments and the role of *Homo* in landscape changes. Particularly, the extent and visibility of vegetation burning organized by hunter-gatherers is still a focal point of research.

Landscape dynamics are complex and include variable components such as climatic fluctuations, megafauna impact, natural fires, and anthropogenic activities. Thus, there is a need for further research which can allow us to assess different possible scenarios for anthropogenic impact in landscape changes. Therefore, the purpose of this model is to track and quantify the intensity of different impacts on vegetation on the continental level and to determine the most influential factor in transformation of interglacial vegetation with specific focus on burning organized by hunter-gatherers. This model accumulates different types of spatial datasets (Section AIV.6) which are used as input and target for ABM runs. Additionally, the study incorporates recently obtained specifically for this research continental-scale estimates of fire return intervals (FRI) and speed of vegetation regrowth. The obtained results include possible scenarios (combinations of HUMLAND parameter

values) with maps of modified vegetation in the past and quantification of changes done by of each source of impact (climate, humans, megafauna and natural fires). The model has been implemented in *NetLogo* (version 6.2.2). HUMLAND 1.0 and 2.0 are accessible via the CoMSES model depository (https://www.comses.net/, search for HUMLAND).

AIV.2 Entities, state variables, and scales

The following entities are included in the model: agents representing hominin groups (one agent is one group, Table AIV.1), campsites (turtles, have only one static variable my_hominin which indicates the group occupying this campsite) and grid cells (patches, Table AIV.2).

Table AIV.1 Hominin state variables.

Variable name	Variable type and units	Meaning
my_home	Dynamic, patch	A patch where a campsite is located (home patch of a group).
my_campsite	Dynamic, turtle	A campsite which is the home of a hominin group.

Table AIV.2 Grid cells state variables.

Variable name	Variable type and units	Meaning
patch_elevation	Static, float, meters	Absolute elevation (a.s.l.)
patch_natural_pft	Static, integer	CARAIB (CARbon Assimilation In the Biosphere) first dominant PFT: 1–herbs, 2–shrubs, 3–needleleaf trees, 4–broadleaf trees, -1–no data
patch_pollen_pft	Static, integer	REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) first dominant PFT: 1–herbs, 2–shrubs, 3–needleleaf trees, 4–broadleaf trees, -1–no data
patch_pft_updating	Dynamic, integer	Current dominant PFT: 1 herbs, 2–shrubs, 3– needleleaf trees, 4–broadleaf trees, -1–no data, 0– burnt/fully consumed area
patch_natural_openness	Static, float, percentage	CARAIB vegetation openness: 0 – minimal value (0%, totally closed), 100–maximal value (100%, totally open), -1–no data
patch_pollen_openness	Static, float, percentage	REVEALS vegetation openness: 0-minimal value (0%, totally closed), 100-maximal value (100%, totally open), -1-no data
patch_pollen_ openness_se	Static, float	REVEALS vegetation openness standard error (se)

Variable name	Variable type and units	Meaning
patch_pollen_ openness_max	Static, float, percentage	Maximal possible REVEALS openness: patch_pollen_openness + patch_pollen_openness_se
patch_openness_ updating	Dynamic, integer, percentage	Current vegetation openness: 0-minimal value (0%, totally closed), 100-maximal value (100%, totally open), -1-no data
rivers_lakes	Static, integer	Presence of big rivers and lakes: 0–no rivers/lakes, 1–presence of rivers/lakes, -1–no data
fri	Static, integer, years	FRI values for each PFT
patch_natural_npp	Static, float, g/m ²	CARAIB NPP
patch_npp_updating	Dynamic, integer	Current patch npp which can be changed due to different types of impact during runs
npp_regrowth_rate	Dynamic, float	NPP regrowth speed per step after impact
megafauna_npp_ consumption	Static, float, g/m ²	Megafauna carbon consumption
megafauna_max_ consumption_restricted_ hunting	Static, float	Potential maximal megafauna plant consumption restricted by hunting
continuous_ consumption	Dynamic, integer	Counts the number of ticks (steps) during which megafauna continuously consumed this patch
fire_delay_after_ consumption	Dynamic, integer	Delay in the frequency of natural fires after partial megafauna consumption of vegetation
openness_regrowth_rate	Dynamic, float	Openness regrowth speed per step after impact
last_burning_episode	Dynamic, integer	Simulation step of the last fire episode of a patch
next_burning_episode	Dynamic, integer	Possible next natural fire event when probability of ignition is 100%
last_partial_ consumption_episode	Dynamic, integer	Step of the last partial consumption episode of a patch
last_agent_impacted_ pft	Dynamic, integer	Last agent that changed a dominant PFT of a patch: 1–humans, 2–natural fires, 3–climate, 4–megafauna
last_agent_impacted_ openness	Dynamic, integer	Last agent that impacted a patch: 1-humans, 2-natural fires, 3-climate, 4-megafauna.
herbs_regeneration_ step	Dynamic, integer	Step when herbs will regrow after vegetation burning or consumption
shrubs_regeneration_ step	Dynamic, integer	Step when shrubs will regrow after vegetation burning or consumption
needleleaf_trees_ regeneration_step	Dynamic, integer	Step when needleleaf trees will regrow after vegetation burning or consumption
broadleaf_trees_ regeneration_step	Dynamic, integer	Step when broadleaf trees will regrow after vegetation burning or consumption
agent_that_could_ impact_neigbouring_ pathes	Dynamic, integer	Agent that can potentially cause burning on neighbouring patches: 1-humans, 2-natural fires, 3-climate, 4-megafauna.
hominin_accessible_area	Dynamic, integer	Defines if the patch is within accessible area for humans: 1–within the area, 0–not accessible for humans

Variable name	Variable type and units	Meaning
occupation	Static, integer	Stores -1 for the British Isles patches for the LIG runs because this region was not occupied by hominins
raster_layer	Dynamic, integer/float	Used to create an ASCII file with modelling results

The model is two-dimensional, and its spatial extent is a rectangle with 544 x 430 patches (grid cells). Each grid cell of input raster datasets (Section AIV.6, Table AIV.6) is resampled (i.e., spatial resolution was changed) to 10 km \times 10 km in size. The world wraps horizontally and vertically. The current version of the model imports all spatial datasets for two LIG and seven Early Holocene time windows. One simulation step equals one year, and the current simulation does not account for seasonal variability. One run is 1000 time steps.

AIV.3 Process overview and scheduling

Simulation starts with setup when input datasets are imported, entities are created, their state variables are set, and the conflicting grid cells are removed. In HUMLAND, more closed vegetation can only switch to more open vegetation after a disturbance event (e.g., fire, grazing). In our data comparison, where CARAIB shows a greater degree of openness in vegetation than REVEALS (maximum pollen-based estimates, which represent the sum of estimated REVEALS openness and the standard error), we exclude these locations. This decision is taken because HUMLAND will not be able to generate vegetation that is comparable to REVEALS as it is constrained by the CARAIB-prescribed theoretical potential natural vegetation (PNV). As a result, the similarity between ABM output and REVEALS datasets can only be improved for grid cells where initial vegetation openness is equal to or lower than observed pollen-based maximum estimates.

The process overview of simulation runs is shown in Figure AIV.1. Each of them starts with vegetation regeneration. This submodel (Section AIV.7) executes only for patches which were previously (i.e., during the earlier step) burnt or consumed.

Hominins are the first agent that reduces vegetation cover. The anthropogenic fire submodel (Section AIV.7) is executed via three phases. During the first phase, hominins randomly move towards one of the eight neighbouring patches within the area defined by accessible radius around their campsites. When a hominin reaches a patch with trees or shrubs as a dominant PFT and vegetation openness smaller or equal to a number defined via the Openness_criteria_to_burn variable, this patch is burnt. During the second phase, fire spread is initiated.

The natural fires submodel (Section AIV.7) is initiated after hominin impact. During the setup the number of patches, that will be hit by thunderstorms per

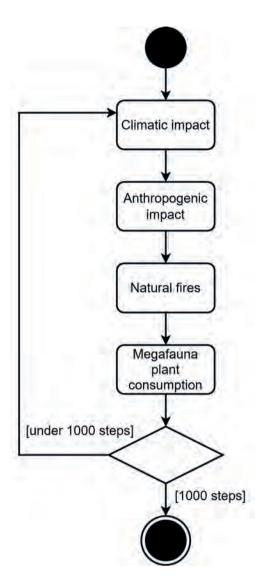


Figure AIV.1 Activity diagram of process overview.

step, is calculated based on a value of the Territory_impacted_by_thunderstorms variable. Every simulation step random patches are chosen and impacted by thunderstorms. Thunderstorms can occur in high mountains, lakes and rivers, but these episodes never lead to ignition. Depending on the probability of ignition of a patches which are not water bodies or high mountains can be burnt after thunderstorms. Similarly to anthropogenic burning, thunderstorms can cause fire spread.

In HUMLAND 1.0 only grid cells with fully recovered vegetation can be consumed by megafauna. In HUMLAND 2.0, both fully recovered and regenerating grid cells can be affected by megafauna. Many herbivores exhibit a preference for areas characterized by secondary vegetation and relatively open regrowth locations following disturbances such as fire because of increased nutrition and palatability of new plants. After plant consumption, vegetation openness increases depending on the CARAIB NPP, current vegetation openness of a patch and hunting pressure. Regarding megafauna impact on PFTs, it is assumed that megafauna equally consumes all PFTs present on a grid cell, i.e., besides the first dominant PFT megafauna consumes second, third and fourth dominant PFTs in equal proportions. That is why, the first dominant PFT is replaced, only if the vegetation was entirely consumed by megafauna, and vegetation openness value after consumption is 100%. In this case, the first dominant PFT would be replaced by bare ground.

Once all sources of impact have affected the study area, the current mean vegetation openness and the distribution of dominant PFTs are compared with REVEALS data. Plots are updated at each step, and the simulation stops after 1000 steps.

AIV.4 Design concepts (after Nikulina et al., 2024b, in press)

AIV.4.1 Basic principles

The history of anthropogenic impacts on the environment spans over many years, with humans already engaging in landscape transformations before the emergence of agriculture. Ethnographic observations show that hunter-gatherers or foragers (i.e., groups that mainly depended on food collection or foraging of wild resources) influence their surroundings in several ways including modification of vegetation communities via burning. This practice was identified for all vegetation types except tundra at different spatial scales and for diverse objectives including driving game, stimulating the growth of edible plants, and clearing pathway.

Besides ethnographic data, evidence from archaeological contexts show that fire use was an important part of the technological repertoire of the *Homo* lineage since at least the second half of the Middle Pleistocene. Human-induced vegetation burning during the Late Pleistocene has been proposed as a potential factor in several case studies spanning various continents. Notably, the earliest evidence of such activities on a local scale was identified at the Neumark-Nord site in Germany, dated to LIG. In addition, fire-using foragers were suggested as one of the primary drivers of vegetation openness in Europe during the Last Glacial

Maximum, i.e., possibly constituting one of the earliest large-scale anthropogenic modifications of system earth.

While these Pleistocene cases are still subject to debate, human-induced vegetation burning conducted by hunter-gatherers during the Early–Middle Holocene (~11,700–6000 BP) is generally accepted, even though the quality of the data is not necessarily that different. However, the number of case studies is higher for the Early–Middle Holocene than for the Pleistocene. Most of the Early to Middle Holocene evidence originates from Europe, with some additional evidence from Australia.

Despite the presence of case studies for anthropogenic burning (intentional or not) of past landscapes by hunter-gatherers, it is still difficult to establish whether these local-scale impacts caused changes at the regional and (sub-)continental scales. Furthermore, overall landscape dynamics do not only depend on humans, and rather represent the complex interplay of natural and cultural processes at different spatio-temporal scales. Landscapes are thus complex systems where heterogeneous components interact to impact on ecological processes, and might demonstrate non-linear dynamics and emergence. Therefore, it is often challenging to distinguish different impacts on landscapes using proxy-based reconstructions (e.g., palynological datasets).

Modelling approaches offer excellent opportunities to explore how complex components of systems might interact, particularly when real-time experiments are not possible. Spatially-explicit agent-based modelling (ABM) is commonly used to explore complex systems where multiple factors intertwine and to propose possible scenarios of system functioning, and the outcomes of ABMs can be compared to empirical data. This approach has been applied in various contexts to study past human-environment interactions and land use/land cover changes. There are examples of such models for past societies that practiced agriculture, animal husbandry, and for hunter-gatherer groups. In the case of ABM developed to study foragers, the use of fire by hunter-gatherers to transform foragers' surroundings and the landscape consequences of these practices are usually not discussed.

This model includes four types of impact on vegetation: climatic impact, anthropogenic fires, thunderstorms, and megafauna plant consumption. Thunderstorms were included because lightning is one of the most general and widespread triggers of natural fires. Another source of impact is climate, and it is included as a crucial element for vegetation regeneration after fires or vegetation consumption. Finally, megafauna are also a part of the current ABM, because the

herbivory activity impacts litter accumulation, and high levels of megafauna plant consumption reduce fire occurrence in many areas.

AIV.4.2 Emergence

The model's key results are increase of average vegetation openness and decrease of the percentage of grid cells dominated by trees and shrubs. These results emerge from joint (i.e., several agents together) and separate (i.e., only one agent) impacts of different agents and processes (hominins, thunderstorms and megafauna plant consumption) on vegetation. The increase of vegetation openness and change of PFT's distribution are driven by a specific combination of agents and values of variables that influence their behaviour.

AIV.4.3 Adaptation

There is no adaptation in the model.

AIV.4.4 Objectives

Vegetation burning is an objective for hominins. Each step hominins move randomly to one of the neighbouring patches. If it covered by shrubs or trees and its vegetation openness is equal or lower than the Openness_criteria_to_burn value, then the fire will be set. Otherwise, humans do not impact this patch. Megafauna and thunderstorms do not have objectives.

AIV.4.5 Learning

Agents do not learn.

AIV.4.6 Prediction

Agents do not predict.

AIV.4.7 Sensing

Humans are assumed able to sense dominant PFT and vegetation openness of a grid cell where humans are located. Hominins can sense if their campsites and home patches are beyond accessible radius. It is useful in cases when two campsites are located nearby, and their accessible areas overlap. If a hominin is far from its campsite (does not sense this campsite anymore i.e., it is beyond accessible radius), this hominin automatically comes back to the campsite.

AIV.4.8 Interaction

Hominins directly affect patches. If a hominin decides to burn a patch, its state variables are modified.

AIV.4.9 Stochasticity

Stochasticity is used in initializing the model when random distribution of hominins within the study is set. Additionally, hominins randomly choose one of the eight neighbouring patches to which hominins move around campsites. Finally, humans randomly choose patches when the campsites will be relocated during simulation runs. This happens with a specific frequency defined via the Movement_frequency_ of_campsites variable. The parameter Campsites_to_move defines the percentage of campsites that will be relocated. Campsites for this action are chosen randomly.

Thunderstorm impact also includes stochasticity. The number of patches are defined via the Territory_impacted_by_thunderstorms parameter. Several random inland patches are selected every simulation step to potentially have natural fire. The actual natural vegetation burning depends on a probability of ignition P(I) (AIV.1):

$$P(I) = \frac{T - B}{F}$$
 (AIV.1),

where B is the step when the last burning episode occurred, F–FRI, and T–the number of simulation steps (ticks) since the beginning of the simulation. Once P(I) is calculated, a random float number between 0 and 1 is chosen. If R \leq P(I), this patch will be burnt. Similarly to ignition caused by natural fires, fire can spread on neighbouring patches after natural and human-induced fires. For the neighbouring patches the P(I) is calculated, and the fire event can occur depending on the obtained P(I) and random a random float number.

AIV.4.10 Collectives

There are no collectives in the model.

AIV.4.11 Observation

The primary model observations are distribution of dominant PFTs (percentage of patches covered by each PFT) and mean vegetation openness for patches which have both REVEALS estimates and CARAIB values (i.e., not all inland patches are considered). These values are provided via plots on the model interface and extracted tables. The ABM output is considered similar to REVEALS data if a simulation produced the same percentage of first dominant PFTs and mean vegetation openness values or if the difference between ABM output and REVEALS data varies within 10%. Additionally, the different types of impact (i.e., the number of grid cells modified by each type of impact) are tracked via recording which impact caused openness and PFT changes.

AIV.5 Initialization (after Nikulina et al., 2024b, in press)

First, the environment is created during the initialization. Patch state variables at the end of the initialization step are described in Table AIV.3. In HUMLAND, more closed vegetation can only switch to more open vegetation after a disturbance event (fire, grazing). In our data comparison, where CARAIB shows a greater degree of openness in vegetation than maximum REVEALS estimates, we exclude these locations: the ABM will not be able to generate vegetation that is comparable to REVEALS as it is constrained by the CARAIB-prescribed PNV. Secondly, there are several grid cells where climatic conditions only favour dominance of herbs or shrubs, but observed vegetation indicates dominance of trees. Besides that, shrubs cannot dominate grid cells where climatic conditions favour trees or herbs in HUMLAND. Such cases do not improve similarity between ABM output and REVEALS data, and, therefore, these grid cells were also excluded (Table AIV.5).

Table AIV.3 Patch state variables and their values at the end of the initialization stage.

Variable name	Value	Explanation	
patch_elevation	In accordance with GTOPO30	Value is set depending on GTOPO30 dataset	
patch_natural_pft	In accordance with CARAIB first dominant PFT	Value is set between 1 and 4 depending on CARAIB dataset	
patch_pollen_pft	In accordance with REVEALS first dominant PFT	Value is set between 1 and 4 depending on CARAIB dataset	
patch_pft_updating	patch_pft_updating = patch_natural_pft	Variable has the same value as theoretical potential natural vegetation provided by CARAIB.	
patch_natural_ openness	In accordance with CARAIB vegetation openness	Value is set between 9 and 100 depending on CARAIB dataset	
patch_pollen_ openness	In accordance with REVEALS vegetation openness	Value is set between 0 and 99 depending on REVEALS dataset	
patch_pollen_ openness_se	In accordance with REVEALS standard errors	Value is set depending on REVEALS dataset	
patch_pollen_ openness_max	patch_pollen_openness + patch_pollen_openness_se	Maximal possible REVEALS vegetation openness	
patch_openness_ updating	patch_natural_openness = patch_openness_updating	Variable has the same value as theoretical potential natural vegetation provided by CARAIB.	
rivers_lakes	0 or 1	Value depends on WISE dataset	
fri	246, 426, 286 or 293	The value depends on CARAIB first dominant PFT (Table AIV.4)	
patch_natural_npp	In accordance with CARAIB NPP	Value is set depending on CARAIB dataset	

Variable name	Value	Explanation		
patch_npp_updating	In accordance with CARAIB NPP	Value is set depending on CARAIB dataset. During simulation runs this value is updated		
npp_regrowth_rate	-1	No regrowth rate is calculated before impact during simulation runs		
megafauna_npp_ consumption	In accordance with megafauna vegetation consumption dataset	Value is set depending on megafauna vegetation consumption data		
megafauna_max_ consumption_ restricted_hunting	Calculated depending on megafauna vegetation consumption dataset andthe Hunting_pressure value	Potential maximal megafauna plant consumption after hunting pressure		
continuous_ consumption	0	Before megafauna started consumption this value is set to 0		
fire_delay_after_ consumption	-1	Before megafauna consumption of a patch this variable is set to -1		
openness_regrowth_ rate	0	Before simulation runs this value is set to 0		
last_burning_episode	0	Before simulation runs this value is set to 0		
next_burning_ episode	last_burning_episode + fri	Defines the step when this patch has 100% chances to be burnt		
last_partial_ consumption_ episode	-1	Before megafauna consumption of a patch this variable is set to -1		
last_agent_ impacted_pft	3	Before simulation starts the vegetation cover is created by climate only. Thus, all patches have value 3		
last_agent_ impacted_openness 3		Before simulation starts the vegetation cover is created by climate only. Thus, all patches have value 3		
herbs_regeneration_ step	0	Before agent's impact all patches do not require regeneration step		
shrubs_ regeneration_step	0	Before agent's impact all patches do not require regeneration step		
needleleaf_trees_ regeneration_step	0	Before agent's impact all patches do not require regeneration step		
broadleaf_trees_ regeneration_step	0	Before agent's impact all patches do not require regeneration step		
agent_that_could_ impact_neigbouring_ pathes	0	This value is 0 prior to simulation runs, because there was no impact yet		
nominin_accessible_ 0 or 1		If the patch is within accessible area, the value is set to 1.Otherwise, this variable equals 0		
occupation 0 or -1		If 0 can be occupied and burnt by humans. If -1 cannot be occupied or burnt by humans		

Variable name	Value	Explanation
raster_layer	-	Used to create .asc file. This variable can have any value depending on chosen patch variable

Table AIV.4 Mean FRI for each dominant PFT.

PFT	Mean FRI estimated via MODIS
Needleleaf trees	246
Broadleaf trees	426
Shrubs	286
Herbs	293

Table AIV.5 CARAIB and REVEALS conflicting cells excluded from the analysis during initiation stage.

CARAIB REVEALS		Reason	
Possible natural (CARAIB) vegetation openness is higher than observed vegetation openness	Maximal observed (REVEALS) vegetation openness (i.e., estimated vegetation openness + standard error) is lower than possible natural (CARAIB) vegetation openness.	In the current ABM possible natural vegetation openness cannot be higher than pollen-based vegetation opennes	
First dominant PFT: herbs/shrubs	First dominant PFT: trees	In the current ABM trees cannot dominate if climatic conditions only allow dominance of herbs or shrubs.	
First dominant PFT: trees/herbs	First dominant PFT: shrubs	In the current ABM shrubs cannot dominate if climatic conditions only allow dominance of trees or herbs.	

Once the environment is created, hominins and their campsites are randomly distributed on surfaces with vegetation. The number of campsites and hominin groups is defined via the Number_of_groups parameter. Patches around campsites are defined as accessible areas. The Accessible_radius parameter defines the size of this area in the number of grid cells around campsites, and the hominin_accessible_ area state variable equals 1 for patches within the accessible area. Hominins cannot move beyond their foraging areas, on water bodies (sea, big lakes, and main rivers) and high mountains. These are the patches with absolute elevations more than 2500 m. Water bodies and the most elevated areas do not have vegetation cover, and, therefore, cannot be burnt or consumed. Except for the patch_elevation and rivers_lakes, patches with high mountains and water bodies have -1 for other state variables.

AIV.6 Input data (after Nikulina et al., 2024b, in press)

The simulation uses several datasets (Table AIV.6). To standardize their spatial extent and resolution Spatial Analysts and Data management ArcMap 10.6.1 toolboxes were used. Grid cell sizes of the datasets were resampled to 10 km imes10 km. To ensure consistency in our analysis, we made the decision to exclude specific regions, namely Anatolia, Cyprus, and the Balkans, from all time windows considered in this study. The rationale behind this exclusion is that these regions have the earliest evidence of agriculture in Europe. To account for the differences in sea levels during the LIG compared to the present, we used available reconstructions and estimates of sea level. Specifically, we utilized coastlines reconstructed for Northwest Europe. However, such detailed reconstructions were not available for the rest of Europe. Consequently, we assigned a uniform value of 6 m for the rest of Europe during the LIG. During the LIG runs, Neanderthals do not occupy or burn vegetation in the British Isles due to the absence or very sparse presence of people during this period. To ensure this region remains unoccupied, we created a specific spatial layer. Consequently, each LIG time window requires 10 spatial layers, while Early Holocene time windows require nine. For both LIG time windows, we used the same spatial layers from CARAIB, corresponding to the maximal biomass development in Europe. In total, 57 spatial layers are stored in the input data folder for HUMLAND 2.0.

The initial landscape before simulation runs were reconstructed via the following datasets: GTOPO30, Water Information System for Europe (WISE) and outputs of a dynamic vegetation model CARbon Assimilation In the Biosphere (CARAIB). GTOPO30 is a digital elevation model (DEM) derived from several raster and vector sources of topographic information. We used this DEM to represent elevation data in the ABM. WISE dataset is based on the information from the Water Framework Directive database, and we used WISE to define the distribution of major rivers and lakes (natural barriers for fire spread) in the model.

In the context of this research, the CARAIB dataset represents PNV distribution driven by climatic conditions only. As an input climate we used climatic variables simulated by the iLOVECLIM model with embedded online interactive downscaling. The iLOVECLIM-simulated climatic variables were bias-corrected using the CDF-t bias correction technique and averaged over the studied period to get daily mean climate characteristics of our period of interest. A full description of the modelling setup and the application of the CDF-t technique within this setup is described and tested.

CARAIB outputs used in this study include distribution of fractions of 26 plant functional types (PNV PFTs), vegetation openness (PNV openness), and net primary productivity (PNV NPP). Before being imported to the ABM, the mentioned CARAIB

outputs were transformed. As the CARAIB dataset here represents climate-only forced vegetation, it is used in the current ABM as the starting point (i.e., before impact of humans, natural fires and megafauna) of each simulation and as target for vegetation regrowth after impacts.

Table AIV.6 Input datasets to the simulation environment (after Nikulina et al., 2024b).

Dataset	Initial data type	Initial spatial resolution/scale	Meaning, units	
GTOPO30	Raster	1 km	Digital elevation model, m	
WISE	Vector	1:10000000	Distribution of large rivers and lakes	
CARAIB first dominant PFT			Potential natural (climate-based) first dominant PFT	
CARAIB vegetation openness	Raster	~26 km (0.25°)	Potential natural (climate-based) vegetation openness, in percentage	
NPP			Potential net primary carbon productivity (excluding carbon used for respiration), g/m ²	
Megafauna vegetation consumption	Raster	30 km	Potential maximal megafauna vegetatic 30 km consumption (i.e., metabolization of NPP), kg/km² (converted to g/m²)	
REVEALS first dominant PFT			Observed past first dominant PFT	
REVEALS vegetation openness	Vector	~100 km (1°)	Observed past vegetation openness, in percentage	
REVEALS vegetation openness standard errors			Standard errors for estimates of observed past vegetation openness	

AIV.7 Submodels (after Nikulina et al., 2024b, in press)

AIV.7.1 Climatic impact

The vegetation regrowth after the impact of thunderstorms, megafauna, and/or humans is determined by the climatic conditions. Therefore, this submodel only modifies grid cells that were previously burned or consumed.

The grid cells' patch_openness_updating and patch_pft_updating (Figs. AIV.2 and AIV.3) are changed in response to the climatic impact until they match the values of patch_natural_openness and patch_natural_pft, respectively. If the difference between patch_natural_openness and patch_openness_updating is equal to or less than 10%, this grid cell is considered to have recovered naturally,

and the last agent that impacted this patch is assumed to be climate (last_agent_impacted_openness = 3). Similarly, if patch_natural_pft is equal to patch_pft_updating, the last agent that impacted the PFT of this grid cell is climate (last_agent_impacted_pft = 3).

We used the CARAIB mean number of years to recover (Table AIV.7) to calculate the vegetation openness recovery rate and to define the step when natural PFT would reestablish on the grid cell after vegetation burning and/or consumption. PFT recovery on all impacted patches always begins with herbs, which replace bare ground after seven simulation steps. Subsequently, depending on the PNV PFT estimated by CARAIB after the required number of years since fire or complete consumption (Table AIV.7), the herbs may be replaced by trees or shrubs.

After consumption or fires the rate of vegetation openness recovery (V_{or}) is calculated via the following formula (AIV.2):

$$V_{or} = \frac{O_i - O_c}{\mu}$$
 (AIV.2)

 O_i represents the vegetation openness after the impact caused by fire and/or megafauna, O_c refers to the CARAIB estimates of vegetation openness, and μ – the mean number of years required for recovery of the initial vegetation openness prior to the fire event or plant consumption (Table AIV.7). NPP recovery is calculated similarly, but instead of using the O_c , model utilizes CARAIB NPP. Instead of the O_i , HUMLAND uses the current carbon content following fire and/or megafauna plant consumption. During each simulation step, V_{or} is subtracted from the current simulation openness until it reaches the CARAIB estimates of vegetation openness. Similarly, the calculated NPP recovery rate is summarised with the current carbon content until the current NPP is the same as PNV NPP.

Table AIV.7 Mean number of years to recover for each dominant PFT (after Nikulina et al., 2024b).

PFT	Number of years
111	itallibel of years

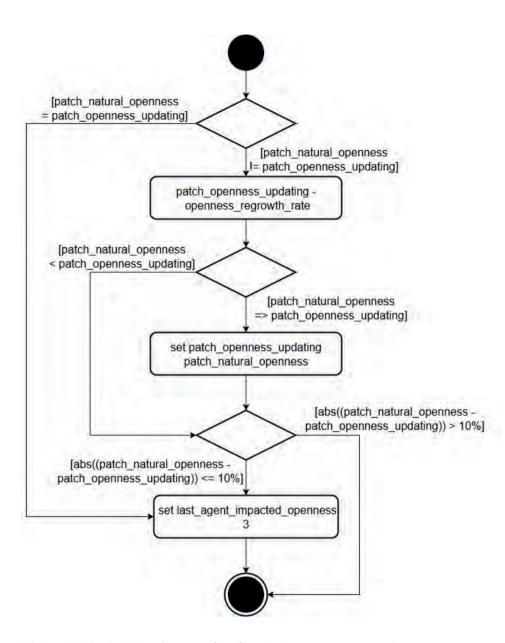
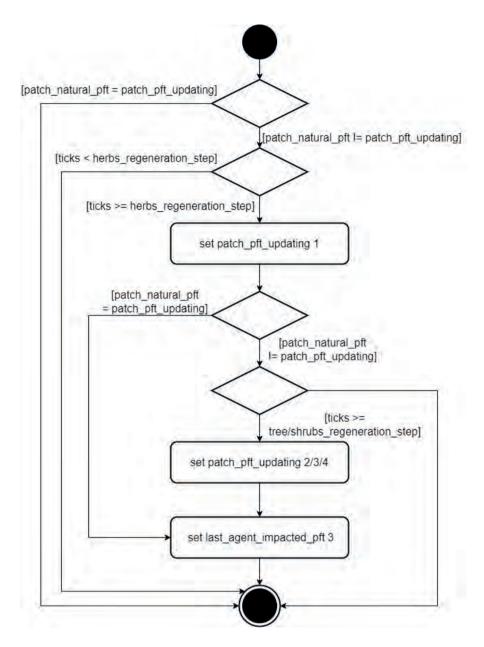



Figure AIV.2 Activity diagram for climatic impact on vegetation openness.

Figure AIV.3 Activity diagram for climatic impact on distribution of dominant PFTs.

Needleleaf trees	43
Broadleaf trees	30
Shrubs	43
Herbs	7

AIV.7.2 Anthropogenic impact

This submodel introduces changes to the vegetation through human-induced fires. There are five parameters which define human behaviour and intensity of their impact: Number_of_groups, Accessible_radius, Campsites_to_move, Movement_frequency_of_campsites, and Openness_criteria_to_burn. An additional parameter, Hunting_pressure, is introduced in HUMLAND 2.0.

The first parameter defines the number of hunter-gatherer groups present at the study area during one simulation run. Therefore, this parameter is associated with human population size. The accessible radius parameter defines the territory within which humans move and set fires around campsites.

There are two parameters associated with movements of foragers' campsites: Movement_frequency_of_campsites (the number of simulation steps after which a group can relocate their campsite) and Campsites_to_move (the percentage of groups that relocate a campsite at certain step defined by movement frequency). Due to the temporal resolution of the current simulation, hunter-gatherers' highest possible frequency of camp movements is every step (i.e., once per year). The search radius for the new grid cell to establish a site is twice bigger than the accessible radius. Any grid cell can be chosen for the new site, except the previously occupied grid cell, high mountains and water bodies. The newly established accessible area can overlap with the previous one.

Since hunter-gatherers have different reasons to burn landscapes, and that this practice was documented in almost all vegetation types with more cases for foragers occupying shrublands and forests, the openness criteria to burn was introduced. In the current simulation, humans only burn grid cells dominated by trees or shrubs with vegetation openness lower or equal to this criterion. A low value minimizes the number of positive decisions to start a fire, and higher values increase human-induced fires, because even relatively open areas can be burnt by people in this case.

Humans randomly move between adjacent patches within a defined area determined by the Accessible_radius (the number of grid cells) around campsites. When a human is present on a patch with vegetation openness that is equal to or lower than the prescribed criteria for burning and contains shrubs or trees (patch_pft_updating >= 2), this human group sets fire on that patch. Consequently, the openness of the patch is set to 100% (completely open), and its PFT (patch_pft_

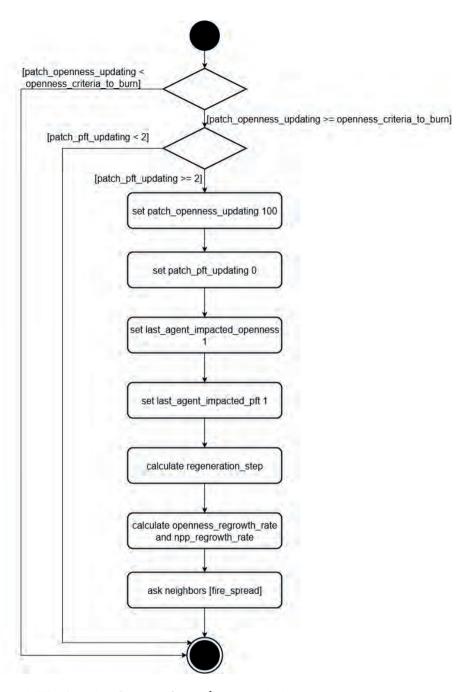


Figure AIV.4 Activity diagram for anthropogenic impact.

updating) is set to 0, indicating a burnt area. In this case, the variables last_agent_impacted_openness and last_agent_impacted_pft are assigned a value of 1 to denote anthropogenic impact. The time step at which this burning event occurs is recorded as last_burning_episode, and next_burning_episode is updated based on the dominant natural PFT. Subsequently, after calculating the regeneration steps (ticks + number of years from Table AIV.4) and openness regrowth rates (Section AIV.7.1), the spread of vegetation to neighbouring patches is initiated (Section AIV.7.4).

The Hunting_pressure parameter defines the percentage reduction in the potential maximum megafauna plant consumption. More details on these calculations can be found in section AIV.7.5.

AIV.7.3 Natural fires

Based on the value of the parameter Territory_impacted_by_thunderstorms, the number of grid cells experiencing thunderstorms per simulation step is determined. This parameter is expressed as a percentage, and based on its value, the calculation determines how many grid cells will be affected by thunderstorms. These thunderstorms randomly occur on different grid cells within the study area. It is important to note that thunderstorms can occur over rivers, lakes, and high mountains, but these areas are not susceptible to burning.

Following the occurrence of thunderstorms, fires may initiate fire spread depending on the probability of ignition for the affected grid cells (Fig. AIV.5). The spread of fire (Section AIV.7.4) to neighbouring grid cells can occur after both human-induced and natural fires. Thunderstorms do not always result in vegetation burning, and the ignition of fire does not always lead to its spread after natural or human-induced ignitions.

The probability of ignition P(I) is determined based on the time elapsed since the last burning episode (B) and the FRI (F), obtained from the MODIS dataset (Table AIV.4) (AIV.3):

$$P(I) = \frac{T - B}{F}$$
 (AIV.3)

Here, T represents the number of simulation steps (ticks) since the beginning of the simulation. If the probability of ignition is equal to or higher than a randomly chosen number (ignt, as shown in Fig. AIV.5), the corresponding patch will be burnt. The consumption of patches by megafauna impacts the probability of ignition. Depending on the percentage of vegetation consumed (as described in Section AIV.7.5), the occurrence of the next burning episode can be delayed. To calculate the probability of delayed ignition, the same formula is used, but with a

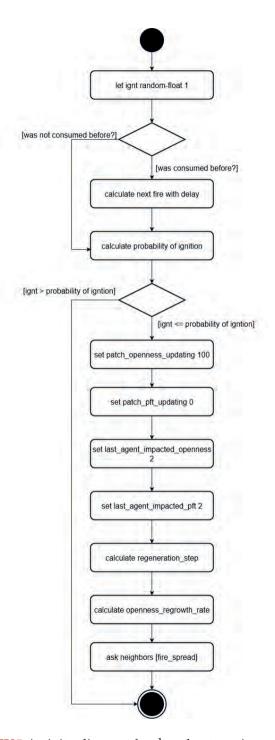


Figure AIV.5 Activity diagram for thunderstorm impact.

modification: instead of using the current number of ticks (T), we use the sum of T and fire_delay_after_consumption. This patch state variable represents the number of years by which the next burning episode was postponed due to megafauna vegetation consumption (section AIV.7.5). The value of B is also updated as a result of megafauna impact (details provided below).

Once a patch is burned (indicated by patch_pft_updating = 0 and patch_openness_updating = 100), the regrowth rate of openness (Section AIV.7.1) and the steps for PFT regeneration (ticks + number of years from Table AIV.7) are determined. Additionally, the information of the last agent that impacted the patch is updated Section AIV.7.1). Subsequently, the neighbouring patches are prompted to spread the fire as explained in Section AIV.7.4.

AIV.7.4 Fire spread

Following natural and anthropogenic burning, fire has the potential to spread to neighbouring patches. However, the actual ignition of these patches depends on the probability of ignition, which is calculated using the same method described for natural fires in Section AIV.7.3. If a patch is burnt because of fire spread, it will inherit the same values for last_agent_impacted_pft and last_agent_impacted_ openness as the patch from which the fire spread originated.

AIV.7.5 Megafauna consumption

Megafauna is the final agent responsible for vegetation transformation in the model (Fig. AIV.6). Compared to the previous version of HUMLAND, in this version, megafauna consumes both fully and partially recovered areas. Following plant consumption, the vegetation openness increases based on CARAIB NPP, current NPP, and estimates of maximal megafauna plant consumption.

We introduced the Hunting_pressure parameter which decreases the estimated potential maximal plant consumption (Table AIV.6) within a range spanning from 0% to 100%. This parameter does not impact LIG megafauna plant consumption in the British Isles because Neanderthals were not present or had very sparse occupation there during this time. Besides hunting, the intensity of megafauna impact is determined by the state of vegetation openness. Areas with greater openness tend to experience more substantial herbivore impact compared to relatively closed locations. This serves as the second determinant of megafauna impact intensity within HUMLAND 2.0. Due to the two modifications made to megafauna plant consumption in this model, megafauna affect grid cells at every simulation step in HUMLAND 2.0.

First, the potential maximal megafauna plant consumption is restricted (V_h) by the Hunting_pressure (H_p) percentage for each grid cell (AIV.4):

$$V_{b} = V_{i} \times \frac{H_{p}}{100\%}$$
 (AIV.4)

 V_i is the initial potential maximal megafauna plant consumption obtained from the imported dataset (Table AIV.6). Once V_h is calculated it does not change during one simulation run. For each grid cell this value is stored as megafauna_max_consumption_restricted_hunting.

Following the constraints imposed by hunting pressure, the resultant value of megafauna plant consumption of a grid cell after hunting (V_h) undergoes further restriction based on the current vegetation openness (O_i) of the grid cell. This restriction yields the final estimate (V_m) of megafauna impact through the following formula (AIV.5):

$$V_{m} = V_{b} \times \frac{O_{i}}{100} \tag{AIV.5}$$

Afterwards, the V_c value quantifies the percentage of vegetation consumed in each grid cell, excluding water bodies and high mountains (AIV.6):

$$V_c = 100 \times \frac{V_m}{V_a}$$
 (AIV.6)

 V_n corresponds to the current NPP of the consumed grid cell. The resulting V_c value is then summarized with the current vegetation openness to reflect the impact of megafauna. Megafauna only impact grid cells with vegetation openness lower than 100%, i.e., there is no herbivory consumption of grid cells without vegetation. Subsequently, after the megafauna plant consumption of a grid cell, the current NPP of this grid cell is reduced based on the calculated percentage of consumed vegetation (V_c).

Regarding the impact of megafauna on PFTs, it is assumed that megafauna consumes all PFTs present on a grid cell in equal proportions, besides the first dominant PFT. Therefore, if the vegetation is entirely consumed by megafauna and the vegetation openness reaches 100%, the first dominant PFT is replaced with bare ground. In such cases, last_agent_impacted_pft and last_agent_impacted_ openness is assigned to a value of 4, indicating that the impact was caused by megafauna.

However, if the dominant PFT remains unchanged after megafauna consumption, the last_agent_impacted_openness is updated after the patch has experienced 10 consecutive ticks of megafauna impact (continuous_consumption = 10) and if the difference between CARAIB and current vegetation openness is more than 10%. This decision was taken considering the relatively low-intensity impact of megafauna on all grid cells (i.e., most of the time megafauna reduces not

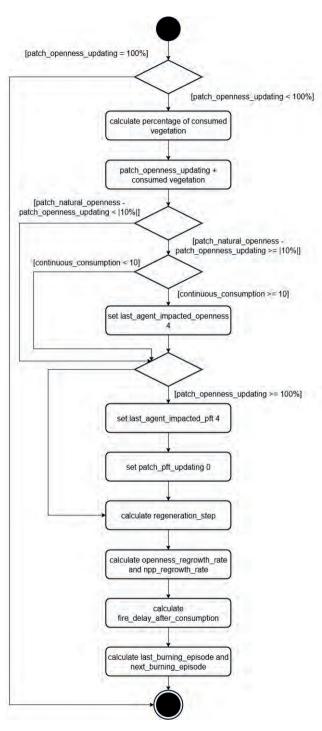


Figure AIV.6 Activity diagram for megafauna impact.

more than $V_m = 1\%$ vegetation on each grid cell per simulation step). We assumed that for megafauna to be recognized as an agent responsible for changing vegetation openness of a grid cell, herbivores must effect a transformation to some extent comparable to that induced by fires and climate per simulation step.

When there is partial consumption of vegetation by megafauna (i.e., when the first dominant PFT remains unchanged), it leads to delays in fire activity because time is required to accumulate plant material that can be burnt. The number of years by which fire activity is delayed is calculated by multiplying with the FRI of the respective PFT at the patch (Table AIV.4). Consequently, depending on the percentage of vegetation consumed, the time step at which the vegetation has a 100% probability of being burnt in the presence of an ignition source is postponed.

GLOSSARY

A

a.s.l. Above Sea Level. 93, 122, 138, 237, 281

ABM Agent-based modelling. Modelling approach used to study complex systems. In ABM heterogeneous individuals act and interact between each other and with their environment. As a result, population-level structures, patterns, and properties can emerge from this interaction. 21, 23, 25, 28, 34–39, 79–80, 82–88, 90–92, 94, 96, 107–108, 114–115, 120–121, 125, 127–129, 133, 135, 138–139, 143, 149, 154, 157–158, 162, 166–168, 170, 172–173, 175–179, 198, 203, 207–209, 214, 220, 229, 235–236, 239, 242, 244, 246–247, 267, 275, 279–280, 283, 286–289, 291–293, 315

aDNA Ancient DNA. 55, 126, 163–165, 170, 176, 179

AP/NAP Ratio of arboreal and non-arboreal pollen taxa percentages. 50-51, 53, 60, 62

B

Black carbon Fire residue produced by incomplete combustion of organic matter. 50, 56, 163, 186, 196, 206

\mathbf{C}

CARAIB CARbon Assimilation In the Biosphere. Dynamic vegetation model which calculates carbon and water fluxes between the atmosphere and the terrestrial biosphere. CARAIB simulates the major processes of the plant development (establishment, growth, decease) as well as their geographic distributions (Plant Functional Types or species) in response to climate change. 21, 23–26, 28–29, 35–38, 83–92, 95–99, 102, 106–107, 113–116, 123–126, 128, 130–131, 134–140, 142–143, 149–150, 156, 158–159, 162, 166–171, 177, 179, 190, 215, 220, 229, 237–239, 244–249, 256, 258, 262, 264, 267–268, 274–277, 281–283, 285, 288–294, 301, 304

D

DGVM Dynamic Global Vegetation Model. 126, 149, 274–275

F

F1-score A measure of a test's accuracy in binary classification, which considers both the precision and the recall of the test to compute the score. The F1 score ranges from 0 to 1, with 1 being the best possible score, indicating perfect precision and recall. 88, 90, 97, 106, 114

Foragers (Hunter-gatherers) Populations that mainly depend on food collection or foraging of wild resources. 21, 33–34, 44, 48–50, 53, 56, 58, 76–77, 81–82, 93, 119–120, 122–123, 129, 134, 140, 143, 149, 152–153, 155, 158, 163–164, 166, 169–170, 172–177, 184–185, 187, 203–204, 241–242, 252, 285–286, 297

FRI Fire Return Intervals. The average period between fires under the presumed historical fire regime. 83, 94, 171, 222, 236–237, 243, 246, 254, 258, 281–282, 288, 291, 299, 304

G

Genetic algorithm An optimization technique inspired by the principles of natural selection. This technique is used to explore the space of possible solutions. 21, 38–39, 120, 125, 127, 129–130, 136, 139–141, 145–146, 149, 151–152, 157–158, 162, 168, 173–174, 176–178, 197, 204, 215, 269–271, 276

GIS Geographic Information System, 5, 168, 190, 314

GTOPO30 A global digital elevation model with a horizontal grid spacing of 30 arc seconds (approximately 1 kilometre). 83–84, 135, 245, 247–248, 268, 289, 292–293

Η

HUMLAND HUMan impact on LANDscapes. 21–26, 28–29, 34, 36–39, 79–80, 82–84, 86–88, 90–95, 97–98, 104, 107–110, 112–115, 119–120, 125, 127–136, 138–141, 143–145, 148–152, 154–158, 162, 167–179, 203, 221, 232, 235–236, 238, 244, 267–270, 273, 276–277, 279–281, 283, 285, 289, 292, 294, 297, 301

Hunter-Gatherers (Foragers) Populations that mainly depend on food collection or foraging of wild resources. 1, 3, 21–22, 33–37, 39, 41–42, 44–58, 60, 62–63, 66, 69, 71, 73–76, 80–83, 91–93, 101–102, 104–105, 107–108, 110–112, 119–122, 126, 128–129, 133–135, 138, 141, 148, 150–151, 153–155, 157, 162–165, 166–167, 169–170, 172, 174–175, 177–179, 212, 223, 225, 231, 236, 241–242, 252, 280, 285–286, 297

I

iLOVECLIM Intermediate Level Ocean-Atmosphere-Vegetation Integrated Model. An intermediate complexity fully coupled climate Earth system model that aims at computation and understanding of the climate system on a millennial timescale. 84, 135–136, 169, 183, 206–207, 247, 274–277, 292

T.

Levoglucosan A degradation product obtained from cellulose burning at temperatures more than 300°C. 50, 57, 163, 197, 209

LHS Latin Hypercube Sampling. A statistical method for generating a near-random sample of parameter values from a multidimensional distribution. It is used to perform uncertainty and sensitivity analysis on numerical models. 97, 105, 107, 110, 172

LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator. 137

LRA Landscape Reconstruction Algorithm. A framework of vegetation reconstruction that includes REVEALS as the first step, and LOVE (LOcal Vegetation Estimates)—as the second step. 53

N

- **Niche Construction** The process whereby organisms, through their metabolism, their activities and their choices, modify their own and/or other species niches. 32, 36, 39, 42–44, 46–50, 62, 73–76, 163–165, 184–185, 202, 204, 208, 211, 213, 236, 280
- **Non-pollen palynomorphs** Remains of organisms within the size range of pollen grains (c. $10-250 \mu m$) (e.g., fungi, zoological remains, plant fragments, algae). 50-52, 54, 60-62, 72-73, 163-164, 183
- **NPP** Net Primary Productivity. It is the difference between Gross Primary Productivity (total amount of energy captured by photosynthesis in an ecosystem) and the energy used in respiration (NPP = GPP R). NPP represents the energy available for growth and reproduction of plants and for consumption by herbivores and decomposers. 83, 85, 87, 95–96, 133, 135, 138, 156, 170, 229, 237, 239, 245, 247–248, 256, 258, 268, 275, 282, 285, 290, 293–294, 301–302

P

- PAHs Polycyclic Aromatic Hydrocarbons. A group of organic compounds composed of multiple aromatic rings. They are environmental pollutants formed primarily during the incomplete combustion of organic materials such as coal, oil, gas, wood, and garbage, 50, 56, 188
- **Parenchyma** A part of plant tissue found in most non-woody plants. 51, 58, 75, 165, 179, 206
- **PFT** Plant Functional Type. A set of species that share similar characteristics. 36–38, 83–92, 94–96, 98, 100, 106–107, 113, 124, 127–131, 134–137, 141, 143, 145–146, 148, 153, 155–157, 166, 168, 170–172, 176, 220, 229, 232, 237–239, 242–249, 251–252, 254, 256, 258, 264–265, 267–268, 275–276, 281–283, 285, 287–291, 293–294, 296–297, 299, 301–302, 304
- **Phytoliths** Rigid, microscopic structures made of silica, present in some plant tissues and persisting after the decay of the plant. 50–52, 55–56, 58–59, 75–76, 165, 179, 182, 189, 205, 208, 212, 214, 217
- **PNV** Potential natural vegetation. 83–85, 87, 89–90, 128, 130–131, 135, 220, 239, 244, 247, 268, 274–275, 283, 289, 292–294
- **PRCC** Partial Rank Correlation Coefficient. A statistical method used to measure the strength and direction of association between an input variable and an output variable, while controlling for the effects of other input variables. The PRCC value ranges from -1 to 1, and values near 0 indicating weak or no correlation. 97, 105, 107, 110, 172

R

REVEALS Regional Estimates of Vegetation Abundance from Large Sites. A method to reconstruct plant cover at a regional spatial scale of ca. 100 km × 100 km via transforming pollen data from large lakes and multiple small-sized sites. 21, 23–26, 28–29, 35–38, 83, 86–90, 96–102, 104, 106–107, 109–115, 123–130, 136–137, 139–146, 149–152, 154–156, 158, 162, 166–171, 173–177, 179, 220, 223–227, 229–232, 237–239, 244–246, 248, 263, 265, 267–271, 274, 276–277, 281–283, 285, 288–289, 291, 293

S

SEIB-DGVM Spatially Explicit Individual Based DGVM. 149 **Simulation** A dynamic model that incorporates changes over time. 21, 28, 37, 79, 83–85, 87–88, 90–96, 100–102, 104–105, 109–111, 128–136, 141, 144, 148, 156–157, 162, 166, 169–171, 176, 178, 183, 186, 194, 212, 215, 223–227, 230–231, 236, 238–239, 243–249, 252, 254, 274–277, 282–285, 288, 290, 292–294, 297, 299, 302, 304

Т

t-value A measure used to assess whether the difference between the means of two groups is significant or if it could have happened by random chance. 90, 97, 114

V

VECODE VEgetation COntinuous DEscription model. 135, 274, 275, 276 **Vegetation openness** In the context of this research, vegetation openness is broadly defined as vegetation density. 22, 37–38, 45, 52–53, 56, 65–66, 80–81, 83–85, 87–90, 92–93, 95–102, 105–109, 111–113, 115, 120, 128–129, 131, 133–135, 137, 139–143, 145–146, 148, 152–153, 155–158, 166, 168, 170–174, 176–177, 220, 223–226, 229–231, 237, 239, 241–250, 252, 256, 258, 262–263, 266, 268, 270, 275–276, 281–283, 285–289, 291, 293–295, 297, 301–302, 304

W

WISE Water Information System for Europe. 37, 83–84, 135, 139, 245, 247–248, 268, 289, 292–293

CURRICULUM VITAE

Anastasia Nikulina was born on February 13, 1993, in Novosibirsk, Russia. Upon graduating from Gymnasium 1 in Novosibirsk in 2011, she began her undergraduate studies at Novosibirsk State University (Novosibirsk, Russia). In the summer of 2015, she graduated with a Bachelor's degree in History. She then pursued her Master's degree in Archaeology of North and Central Asia at the same university, graduating with honours in 2017. Since the beginning of her studies, Anastasia has participated in archaeological excavations in Russia, including Denisova Cave (Altai Krai), Afontova Gora-2 (Krasnoyarsk Krai), Tartas-1 (Novosibirsk Oblast), and Ust-Voikar (Yamalo-Nenets Autonomous Okrug), and in France at Fourneau-du-Diable (Dordogne). Anastasia has seven years of fieldwork experience on archaeological sites dating from the Palaeolithic to the Middle Ages.

During the second year of her Bachelor's program, Anastasia selected specialization in GIS for archaeological studies. She became a member of an interdisciplinary research team studying human–environment interactions in Western Siberia, with projects supported by the Russian Foundation for Basic Research (now the Russian Centre for Science Information), the Russian Science Foundation, and the Ministry of Science and Higher Education of the Russian Federation. After completing her Master's program, Anastasia was involved in the French–Russian International Associated Laboratory ARTEMIR. During this time, she expanded her expertise and applied 3D modelling in her work.

In 2019, Anastasia became a PhD candidate at Leiden University (The Netherlands) as part of the Terranova project supported by the European Union's Horizon 2020 program and recognized as a Marie Skłodowska-Curie Actions Innovative Training Network. Anastasia's research focused on the earliest human impacts on interglacial landscapes in Europe. Besides conducting research, Anastasia's involvement in Terranova included public outreach activities, including blogging about her research, and engaging in public events. Additionally, she was one of the main coordinators for the development of Terranova's massive open online course (MOOC), which is available free of charge. Furthermore, Anastasia contributed to the Terranova digital atlas, a comprehensive tool mapping landscape evolution across Europe, which is currently available to the scientific community upon request.

CV

After completing her PhD, Anastasia joined the European Research Council (ERC) SSE1K project "Science, Society and Environmental Change in the First Millennium CE" as a postdoctoral researcher. The project focuses on human–environment interactions in the Mediterranean during the first millennium CE and is interdisciplinary, bringing together researchers from Ca' Foscari University (Venice, Italy), the University of Basel (Basel, Switzerland), and Durham University (Durham, UK). Anastasia is based at Durham University, where she is working on ABM as part of the project.

Anastasia's involvement in various projects has led her to present at 14 international conferences, including the INQUA Congress in 2023 (Rome, Italy) and the Computer Applications and Quantitative Methods in Archaeology (CAA) conference in 2021–2023 (online; Oxford, UK; Amsterdam, The Netherlands). In 2021, Anastasia's presentation at the CAA conference was honoured with the Nick Ryan Bursary Award for the best talk. Additionally, Anastasia was an invited speaker at several events, including the Hortus Talks podcast series organized by the Botanical Garden in Amsterdam (The Netherlands), the Computational and Digital Archaeology Laboratory Series at the University of Cambridge (UK), the workshop "Advances in Modelling Past Human Ecosystems" at Cologne University (Germany), the symposium on "Fire in Human Evolution" at Leiden University (The Netherlands), and the graduate conference "Humans and the Landscape(s): An Everlasting Story of Mutual Interactions" at University of Basel (Switzerland).

Anastasia has also participated in various international schools and training programs, including Neural Networks for Archaeologists with Python at Pisa University (Italy). She has contributed to several multi-author, peer-reviewed papers, serving as the lead author in six instances. In addition, she has published developed ABMs after peer review in an open-access model library.