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the development and upgrade of the HUMLAND ABM, its
integration with a genetic algorithm, and the generation of
scenarios to quantify the impacts of Neanderthals, Mesolithic

population, megafauna, natural fires, and climate on vegetation.

CARAIB-REVEALS comparison of mean vegetation openness
(black dots) and the mean percentage of grid cells dominated
by herbs (yellow) and trees (green) for the LIG and the Early
Holocene.

Summary statistics and values’ distribution of the
Hunting_pressure parameter values required to generate
HUMLAND scenarios with output similar to REVEALS without
anthropogenic fires. Humans do not engage in vegetation
burning, but they exert hunting pressure on herbivores. The
dot indicates the mean value for each dataset. For the LIG, most
simulations matching REVEALS outputs have Hunting_pressure
values around 20-25%, whereas for the Early Holocene, they
typically cluster around 80-90%.

Summary statistics and distribution of the parameters’ values
required to generate scenarios with output similar to REVEALS
for PFT distribution (A, C, E, G) and vegetation openness (B, D, F,
H) with hunting and anthropogenic fires. The dot indicates the
mean value for each dataset.

Mean percentages of grid cells modified by different agents
during the HUMLAND equilibrium state: A-LIG most frequent
scenarios; B-Early Holocene most frequent scenarios.

Vegetation openness representation in REVEALS (A) and in
CARAIB (B, C).

HUMLAND activity diagram.
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Figure Al.3

Figure Al.4

Figure AlL.5

Figure Al.6
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Results of experiments conducted for 100 hunter-gatherer 223
groups: A-percentage of grid cells dominated by trees after

the accessible radius was varied; B-mean vegetation openness
after the accessible radius was varied; C-percentage of grid

cells dominated by trees after the openness criteria to burn was
varied; D-mean vegetation openness after the openness criteria
to burn was varied; E-percentage of grid cells dominated by
trees after the percentage of moving campsites was varied;
F-mean vegetation openness after the percentage of moving
campsites was varied; G—percentage of grid cells dominated

by trees after the movement frequency was varied; H-mean
vegetation openness after the movement frequency was varied.
Each line depicted on the experiment output graph represents
the mean of 30 simulation runs. The horizontal dashed line
indicates REVEALS estimates, and the vertical dotted line shows
the step when simulations reach equilibrium.

Results of experiments conducted for 1000 hunter-gatherer 225
groups: A-percentage of grid cells dominated by trees after

the accessible radius was varied; B-mean vegetation openness
after the accessible radius was varied; C-percentage of grid

cells dominated by trees after the openness criteria to burn was
varied; D-mean vegetation openness after the openness criteria
to burn was varied; E-percentage of grid cells dominated by
trees after the percentage of moving campsites was varied;
F-mean vegetation openness after the percentage of moving
campsites was varied; G—percentage of grid cells dominated

by trees after the movement frequency was varied; H-mean
vegetation openness after the movement frequency was varied.
Each line depicted on the experiment output graph represents
the mean of 30 simulation runs. The horizontal dashed line
indicates REVEALS estimates, and the vertical dotted line shows
the step when simulations reach equilibrium.

CARAIB bare ground. Legend: 1-fraction of bare ground in 228
percentages; 2-no data.
Datasets used in the current ABM: DEM (A), major rivers and 229

lakes (B), CARAIB distribution of first dominant PFTs (C) and
vegetation openness (D), REVEALS distribution of first dominant
PFTs (E) and vegetation openness (F) and its standard errors

(G), CARAIB NPP (H), megafauna vegetation consumption (I).
Legend: 1-elevation (m); 2-no data; 3-major rivers and lakes;
4—herbs; 5-shrubs; 6-broadleaf trees; 7-needleleaf trees; 8-
vegetation openness in percentages; 9-standard errors for
REVEALS vegetation openness; 10-CARAIB NPP (g/m?3); 11-
megafauna vegetation consumption (g/m?3).



Figure All.1
Figure All.2
Figure All.3

Figure All.4
Figure All.5
Figure All.6
Figure Alll.1

Activity diagram of process overview.
Activity diagram for climatic impact on vegetation openness.

Activity diagram for climatic impact on distribution of dominant
PFTs.

Activity diagram for anthropogenic impact.
Activity diagram for thunderstorm impact.
Activity diagram for megafauna impact.

CARAIB vegetation openness for the Last Interglacial (A), 11,700-
11,200 BP (B), 11,200-10,700 (C), 10,700-10,200 (D), 10,200-9700
(E), 9700-9200 (F), 9200-8700 (G), 8700-8200 BP (H). Legend: 1-
no data, 2-vegetation openness (in %).

Figure Alll.2 REVEALS vegetation openness for Mesocratic | (A), Mesocratic

I1'(B), 11,700-11,200 BP (C), 11,200-10,700 (D), 10,700-10,200 (E),
10,200-9700 (F), 9700-9200 (G), 9200-8700 (H), 8700-8200 BP
(I). Legend: 1-no data, 2-vegetation openness (in %); 3-The
northern European and Alpine Saalian glaciation (Lehmkuhl et
al., 2021; Svendsen et al., 2004).

Figure Alll.3 CARAIB distribution of the first dominant PFTs for the Last

Interglacial (A), 11,700-11,200 BP (B), 11,200-10,700 (C), 10,700-
10,200 (D), 10,200-9700 (E), 9700-9200 (F), 9200-8700 (G),
8700-8200 BP (H). Legend: 1-no data, 2-herbs, 3—shrubs; 4-
broadleaf trees; 5-needleleaf trees.

Figure Alll.4 REVEALS distribution of the first dominant PFTs for Mesocratic

I (A), Mesocratic Il (B), 11,700-11,200 BP (C), 11,200-10,700 (D),
10,700-10,200 (E), 10,200-9700 (F), 9700-9200 (G), 9200-8700
(H), 8700-8200 BP (I). Legend: 1-no data, 2-herbs, 3-broadleaf
trees; 4-needleleaf trees, 5-the northern European and Alpine
Saalian glaciation (Lehmkuhl et al., 2021; Svendsen et al., 2004).

Figure Alll.5 Correlation matrices and Pearson correlation coefficients (PCC)

Figure AIV.1

between variables of the possible scenarios for LIG (A) and

Early Holocene (B) tree distribution scenarios; LIG (C) and Early
Holocene (D) vegetation openness scenarios. The experiments
include the combined direct impact of all agents on vegetation:
anthropogenic and natural fires, climatic impact and megafauna
plant consumption. The darkest blue indicates the strongest
negative correlation between the Number_of_groups and
Accessible_radius parameters within the Early Holocene
vegetation openness scenarios. Lighter colours represent either
absent/low or modest correlations for the other parameters.

Activity diagram of process overview.

Figure AIV.2 Activity diagram for climatic impact on vegetation openness.
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Figure AIV.3 Activity diagram for climatic impact on distribution of dominant
PFTs.

Figure AlIV.4 Activity diagram for anthropogenic impact.
Figure AIV.5 Activity diagram for thunderstorm impact.

Figure AIV.6 Activity diagram for megafauna impact.
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