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distribution accompanied with bar graphs of the proportions 
(100% on the bar graphs equals the number of grid cells 
with both REVEALS and CARAIB estimates) of CARAIB (B) and 
REVEALS (D) after excluding the grid cells where CARAIB 
predicts lower vegetation openness than the REVEALS results. 
Legend: 1–herbs; 2–shrubs; 3–broadleaf trees; 4–needleleaf 
trees; 5–no data.

98

Figure 3.3 Vegetation openness of CARAIB (A) and REVEALS (B) with a 
summary of these datasets and their values’ distribution only 
for grid cells with both REVEALS and CARAIB estimates (C) 
after excluding the grid cells where CARAIB predicts lower 
vegetation openness than the REVEALS results. In subfigure C 
the dot indicates the mean value for each dataset. Legend: 1–
vegetation openness in percentages; 2–no data.

99

Figure 3.4 Percentage of cells dominated by trees (A) and mean vegetation 
openness (B) after natural fires caused by thunderstorms 
and impact of climate, and percentage of cells dominated by 
forest (C) and mean vegetation openness (D) after megafauna 
vegetation consumption and impact of climate. Each line 
depicted on the experiment output graph represents the mean 
of 30 simulation runs. The horizontal dashed line indicates 
REVEALS estimates, and the vertical dotted line shows the step 
when simulations reach equilibrium.

100

Figure 3.5 Percentage of grid cells dominated by trees (A) and mean 
vegetation openness (B) caused by different numbers of hunter-
gatherer groups and climatic impacts. Each line depicted on the 
experiment output graph represents the mean of 30 simulation 
runs. The horizontal dashed line indicates REVEALS estimates, 
and the vertical dotted line shows the step when simulations 
reach equilibrium.

101

Figure 3.6 Results of experiments conducted for 4000 hunter-gatherer 
groups: A–percentage of grid cells dominated by trees after 
the accessible radius was varied; B–mean vegetation openness 
after the accessible radius was varied; C–percentage of cells 
dominated by trees after the openness criteria to burn was 
varied; D–mean vegetation openness after the openness criteria 
to burn was varied; E–percentage of grid cells dominated by 
trees after the percentage of moving campsites was varied; 
F–mean vegetation openness after the percentage of moving 
campsites was varied; G–percentage of grid cells dominated 
by trees after the movement frequency was varied; H–mean 
vegetation openness after the movement frequency was varied. 
Each line depicted on the experiment output graph represents 
the mean of 30 simulation runs. The horizontal dashed line 
indicates REVEALS estimates, and the vertical dotted line shows 
the step when simulations reach equilibrium.
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Figure 3.7 Results of LHS/PRCC sensitivity analysis with bars representing 
standard errors.

105

Figure 3.8 Percentage of grid cells dominated by trees (A) and mean 
vegetation openness (B) after combined impact of humans, 
climate, megafauna and natural fires. The following parameters 
were varied: number of hunter-gatherer groups, accessible 
radius and openness criteria to burn. Movement frequency of 
campsites (500), the number of them which move at specific 
time (50%), proportion of terrestrial cells with thunderstorms 
(0.04%) remained constant with fixed presence of megafauna 
plant consumption. Each line depicted on the experiment 
output graph represents the mean of 30 simulation runs. The 
horizontal dashed line indicates REVEALS estimates.

111

Figure 3.9 Possible scenario of modified first dominant PFTs (A), vegetation 
openness (B), bar graph of dominant PFT proportions (C), 
summary statistics of vegetation openness and their values’ 
distribution (D; the dot indicates the mean value for each 
dataset) in the end of a HUMLAND run, and mean percentage 
of cells modified by different agents (impact on dominant 
PFTs (E) and vegetation openness (F) during equilibrium state). 
Dominant PFT proportions and summary statistics of vegetation 
openness were calculated for the cells with REVEALS and 
CARAIB estimates after excluding the grid cells where CARAIB 
predicts lower vegetation openness than the REVEALS results. 
Legend: 1–recently burnt areas; 2–herbs; 3–shrubs; 4–broadleaf 
trees; 5–needleleaf trees; 6–no data; 7–vegetation openness in 
percentages.

113

Figure 4.1 LIG (A) and Early Holocene (B) study area. Legend: 1–elevations 
(in meters above sea level, m a.s.l.); 2–no data; 3–case studies 
indicating possible vegetation burning by LIG and Early–Middle 
Holocene hunter–gatherers (Heidgen et al., 2022; Innes & 
Blackford, 2023; Latałowa, 1992; Nikulina et al., 2022; Poska et 
al., 2004; Sevink et al., 2023; Wacnik, 2008). List of case studies: 
a–Neumark-Nord; b–Bonfield Gill Head; c–Campo Lameiro; 
d–Dudka Island; e–Dumpokjauratj; f–Ipmatisjauratj; g–Kunda-
Arusoo; h–Lahn valley complex; i–Lake Miłkowskie; j-–Meerstad; 
k–Mesolithic site at Soest; l–North Gill; m–Pulli; n–Rottenburg-
Siebenlinden sites; o–Star Carr; p–Vingen sites; q–Wolin II.

122

Figure 4.2 Vegetation openness: CARbon Assimilation In the Biosphere 
(CARAIB) LIG (A), CARAIB 8700–8200 BP (B); Regional Estimates 
of VEgetation Abundance from Large Sites (REVEALS) 
mesocratic I (C), REVEALS 8700–8200 BP. Vegetation openness 
for other time windows available in Appendix III (Figs. AIII.1 and 
AIII.2). Legend: 1–no data; 2–vegetation openness (%).
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Figure 4.3 Distribution of dominant plant functional types (PFTs): CARAIB 
LIG (A), CARAIB 8700–8200 BP (B); REVEALS mesocratic I (C), 
REVEALS 8700–8200 BP. PFT distribution for other time windows 
available in Appendix III (Figs. AIII.3 and AIII.4). Legend: 1–no 
data; 2–herbs; 3–shrubs; 4–broadleaf trees; 5–needleleaf trees.

124

Figure 4.4 Overview of research steps including the comparison of 
CARAIB (climate-driven potential natural vegetation) and 
REVEALS (pollen-based vegetation reconstruction) data, 
the development and upgrade of the HUMLAND ABM, its 
integration with a genetic algorithm, and the generation of 
scenarios to quantify the impacts of Neanderthals, Mesolithic 
population, megafauna, natural fires, and climate on vegetation.

125

Figure 4.5 CARAIB–REVEALS comparison of mean vegetation openness 
(black dots) and the mean percentage of grid cells dominated 
by herbs (yellow) and trees (green) for the LIG and the Early 
Holocene.

142

Figure 4.6 Summary statistics and values’ distribution of the 
Hunting_pressure parameter values required to generate 
HUMLAND scenarios with output similar to REVEALS without 
anthropogenic fires. Humans do not engage in vegetation 
burning, but they exert hunting pressure on herbivores. The 
dot indicates the mean value for each dataset. For the LIG, most 
simulations matching REVEALS outputs have Hunting_pressure 
values around 20–25%, whereas for the Early Holocene, they 
typically cluster around 80–90%.

144

Figure 4.7 Summary statistics and distribution of the parameters’ values 
required to generate scenarios with output similar to REVEALS 
for PFT distribution (A, C, E, G) and vegetation openness (B, D, F, 
H) with hunting and anthropogenic fires. The dot indicates the 
mean value for each dataset.

146

Figure 4.8 Mean percentages of grid cells modified by different agents 
during the HUMLAND equilibrium state: A–LIG most frequent 
scenarios; B–Early Holocene most frequent scenarios.

148

Figure AI.1 Vegetation openness representation in REVEALS (A) and in 
CARAIB (B, C).

220

Figure AI.2 HUMLAND activity diagram. 221
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Figure AI.3 Results of experiments conducted for 100 hunter-gatherer 
groups: A–percentage of grid cells dominated by trees after 
the accessible radius was varied; B–mean vegetation openness 
after the accessible radius was varied; C–percentage of grid 
cells dominated by trees after the openness criteria to burn was 
varied; D–mean vegetation openness after the openness criteria 
to burn was varied; E–percentage of grid cells dominated by 
trees after the percentage of moving campsites was varied; 
F–mean vegetation openness after the percentage of moving 
campsites was varied; G–percentage of grid cells dominated 
by trees after the movement frequency was varied; H–mean 
vegetation openness after the movement frequency was varied. 
Each line depicted on the experiment output graph represents 
the mean of 30 simulation runs. The horizontal dashed line 
indicates REVEALS estimates, and the vertical dotted line shows 
the step when simulations reach equilibrium.
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Figure AI.4 Results of experiments conducted for 1000 hunter-gatherer 
groups: A–percentage of grid cells dominated by trees after 
the accessible radius was varied; B–mean vegetation openness 
after the accessible radius was varied; C–percentage of grid 
cells dominated by trees after the openness criteria to burn was 
varied; D–mean vegetation openness after the openness criteria 
to burn was varied; E–percentage of grid cells dominated by 
trees after the percentage of moving campsites was varied; 
F–mean vegetation openness after the percentage of moving 
campsites was varied; G–percentage of grid cells dominated 
by trees after the movement frequency was varied; H–mean 
vegetation openness after the movement frequency was varied. 
Each line depicted on the experiment output graph represents 
the mean of 30 simulation runs. The horizontal dashed line 
indicates REVEALS estimates, and the vertical dotted line shows 
the step when simulations reach equilibrium.

225

Figure AI.5 CARAIB bare ground. Legend: 1–fraction of bare ground in 
percentages; 2–no data.

228

Figure AI.6 Datasets used in the current ABM: DEM (A), major rivers and 
lakes (B), CARAIB distribution of first dominant PFTs (C) and 
vegetation openness (D), REVEALS distribution of first dominant 
PFTs (E) and vegetation openness (F) and its standard errors 
(G), CARAIB NPP (H), megafauna vegetation consumption (I). 
Legend: 1–elevation (m); 2–no data; 3–major rivers and lakes; 
4–herbs; 5–shrubs; 6–broadleaf trees; 7–needleleaf trees; 8–
vegetation openness in percentages; 9–standard errors for 
REVEALS vegetation openness; 10–CARAIB NPP (g/m3); 11–
megafauna vegetation consumption (g/m3).
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Figure AII.1 Activity diagram of process overview. 240

Figure AII.2 Activity diagram for climatic impact on vegetation openness. 250

Figure AII.3 Activity diagram for climatic impact on distribution of dominant 
PFTs.

251

Figure AII.4 Activity diagram for anthropogenic impact. 253

Figure AII.5 Activity diagram for thunderstorm impact. 255

Figure AII.6 Activity diagram for megafauna impact. 257

Figure AIII.1 CARAIB vegetation openness for the Last Interglacial (A), 11,700–
11,200 BP (B), 11,200–10,700 (C), 10,700–10,200 (D), 10,200–9700 
(E), 9700–9200 (F), 9200–8700 (G), 8700–8200 BP (H). Legend: 1–
no data, 2–vegetation openness (in %).

262

Figure AIII.2 REVEALS vegetation openness for Mesocratic I (A), Mesocratic 
II (B), 11,700–11,200 BP (C), 11,200–10,700 (D), 10,700–10,200 (E), 
10,200–9700 (F), 9700–9200 (G), 9200–8700 (H), 8700–8200 BP 
(I). Legend: 1–no data, 2–vegetation openness (in %); 3–The 
northern European and Alpine Saalian glaciation (Lehmkuhl et 
al., 2021; Svendsen et al., 2004).

263

Figure AIII.3 CARAIB distribution of the first dominant PFTs for the Last 
Interglacial (A), 11,700–11,200 BP (B), 11,200–10,700 (C), 10,700–
10,200 (D), 10,200–9700 (E), 9700–9200 (F), 9200–8700 (G), 
8700–8200 BP (H). Legend: 1–no data, 2–herbs, 3–shrubs; 4–
broadleaf trees; 5–needleleaf trees.

264

Figure AIII.4 REVEALS distribution of the first dominant PFTs for Mesocratic 
I (A), Mesocratic II (B), 11,700–11,200 BP (C), 11,200–10,700 (D), 
10,700–10,200 (E), 10,200–9700 (F), 9700–9200 (G), 9200–8700 
(H), 8700–8200 BP (I). Legend: 1–no data, 2–herbs, 3–broadleaf 
trees; 4–needleleaf trees, 5–the northern European and Alpine 
Saalian glaciation (Lehmkuhl et al., 2021; Svendsen et al., 2004).

265

Figure AIII.5 Correlation matrices and Pearson correlation coefficients (PCC) 
between variables of the possible scenarios for LIG (A) and 
Early Holocene (B) tree distribution scenarios; LIG (C) and Early 
Holocene (D) vegetation openness scenarios. The experiments 
include the combined direct impact of all agents on vegetation: 
anthropogenic and natural fires, climatic impact and megafauna 
plant consumption. The darkest blue indicates the strongest 
negative correlation between the Number_of_groups and 
Accessible_radius parameters within the Early Holocene 
vegetation openness scenarios. Lighter colours represent either 
absent/low or modest correlations for the other parameters.
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Figure AIV.1 Activity diagram of process overview. 284

Figure AIV.2 Activity diagram for climatic impact on vegetation openness. 295
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Figure AIV.3 Activity diagram for climatic impact on distribution of dominant 
PFTs.

296

Figure AIV.4 Activity diagram for anthropogenic impact. 298

Figure AIV.5 Activity diagram for thunderstorm impact. 300

Figure AIV.6 Activity diagram for megafauna impact. 303

	


