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Articles

Clinical descriptors of disease trajectories in patients with
traumatic brain injury in the intensive care unit
(CENTER-TBI): a multicentre observational cohort study

Cecilia A | Akerlund, Anders Holst, Shubhayu Bhattacharyay, Nino Stocchetti, Ewout Steyerberg, Peter Smielewski, David K Menon, Ari Ercole,
David W Nelson, on behalf of the CENTER-TBI participants and investigators*

Summary

Background Patients with traumatic brain injury are a heterogeneous population, and the most severely injured
individuals are often treated in an intensive care unit (ICU). The primary injury at impact, and the harmful secondary
events that can occur during the first week of the ICU stay, will affect outcome in this vulnerable group of patients.
We aimed to identify clinical variables that might distinguish disease trajectories among patients with traumatic
brain injury admitted to the ICU.

Methods We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain
Injury (CENTER-TBI) prospective observational cohort study. We included patients aged 18 years or older with
traumatic brain injury who were admitted to the ICU at one of the 65 CENTER-TBI participating centres, which
range from large academic hospitals to small rural hospitals. For every patient, we obtained pre-injury data and injury
features, clinical characteristics on admission, demographics, physiological parameters, laboratory features, brain
biomarkers (ubiquitin carboxy-terminal hydrolase L1 [UCH-L1], S100 calcium-binding protein B [S100B], tau,
neurofilament light [NFL], glial fibrillary acidic protein [GFAP], and neuron-specific enolase [NSE]), and information
about intracranial pressure lowering treatments during the first 7 days of ICU stay. To identify clinical variables that
might distinguish disease trajectories, we applied a novel clustering method to these data, which was based on a
mixture of probabilistic graph models with a Markov chain extension. The relation of clusters to the extended Glasgow
Outcome Scale (GOS-E) was investigated.

Findings Between Dec 19, 2014, and Dec 17, 2017, 4509 patients with traumatic brain injury were recruited into the
CENTER-TBI core dataset, of whom 1728 were eligible for this analysis. Glucose variation (defined as the difference
between daily maximum and minimum glucose concentrations) and brain biomarkers (S100B, NSE, NFL, tau,
UCH-L1, and GFAP) were consistently found to be the main clinical descriptors of disease trajectories (ie, the
leading variables contributing to the distinguishing clusters) in patients with traumatic brain injury in the ICU. The
disease trajectory cluster to which a patient was assigned in a model was analysed as a predictor together with
variables from the IMPACT model, and prediction of both mortality and unfavourable outcome (dichotomised
GOS-E =4) was improved.

Interpretation First-day ICU admission data are not the only clinical descriptors of disease trajectories in patients with
traumatic brain injury. By analysing temporal variables in our study, variation of glucose was identified as the most
important clinical descriptor that might distinguish disease trajectories in the ICU, which should direct further
research. Biomarkers of brain injury (S100B, NSE, NFL, tau, UCH-L1, and GFAP) were also top clinical descriptors
over time, suggesting they might be important in future clinical practice.

Funding European Union 7th Framework program, Hannelore Kohl Stiftung, OneMind, Integra LifeSciences
Corporation, and NeuroTrauma Sciences.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction

Patients with traumatic brain injury who are treated in
an intensive care unit (ICU) are extensively monitored
to minimise the risk of harmful secondary events.
However, between 30% and 40% of patients with severe
traumatic brain injury will deteriorate within 10 days of
the injury! Therefore, a fundamental question in
neurointensive care is how to monitor, identify, and
avoid harmful secondary events and further brain injury.
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Unfortunately, patients with traumatic brain injury are a
highly heterogeneous group with respect to their initial
presentation and subsequent clinical trajectory. In a
2021 review,’ two studies were identified in which
subgroups of patients with severe traumatic brain injury
in the acute phase were classified, based on pre-injury
variables and admission data, but it is unclear how these
clinical descriptors can be implemented into clinical
practice.
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Research in context

Evidence before this study

We searched PubMed in English with the keywords “traumatic
brain injury” AND (“clustering” OR “trajectory”), from database
inception to July 17, 2023, to identify relevant studies. Several
cross-sectional studies had aimed to identify patients with a
traumatic brain injury who might benefit from different
treatment approaches. Few studies have focused on the
temporal evolution of traumatic brain injury during the first
days after injury. We identified 14 studies describing disease
trajectories in acute traumatic brain injury. Most focused on
single trajectories of intracranial pressure, biomarkers,
proteomics, or neuroinflammation, and only one previous
multivariate time-series study assessed composite patterns.
We identified one report that described pathophysiological
trajectories in acute traumatic brain injury in the multicentre
Transforming Research and Clinical Knowledge in Traumatic
Brain Injury (TRACK-TBI) observational cohort study. In the
TRACK-TBI study, three longitudinal disease trajectories were
found by grouping patients according to many clinical features,
including baseline demographics and time-series features.
These trajectories were associated with different clinical and
outcome profiles. However, the TRACK-TBI study did not
include brain injury biomarkers.

Added value of this study
To the best of our knowledge, our study is the first to describe
pathophysiological trajectories in patients with traumatic brain

In a previous study’ we identified six distinct
pathophysiological subgroups—often referred to as
endotypes—of patients with traumatic brain injury in
the ICU by applying unsupervised clustering methods
on data obtained from the first day after the injury. These
subgroups of patients had differences in composite
metabolic responses, particularly in relation to lactate
and glucose. However, this work did not address the
more complex problem of how to distinguish subsequent
disease trajectories of traumatic brain injury during
the ICU stay.

Previous studies in general ICU patients have shown
that clear pathophysiological patterns can emerge during
the first weeks in the ICU, with different disease
trajectories related to changes in Sequential Organ Failure
Assessment (SOFA) score. In patients with traumatic
brain injury, variability in intracranial pressure has been
described and shown to correlate with the expression of
an oedema-regulating gene, ABCC8.° Other studies have
shown that traumatic brain injury is associated with
extracranial complications, such as acute respiratory
distress syndrome (ARDS), acute kidney injury, myo-
cardial injury, and coagulopathy.®® This work has led us to
hypothesise that a multidimensional analysis of
physiological, laboratory, and demographic variables
during the ICU stay might describe composite

injury requiring intensive care. We obtained patient data from
the large multicentre Collaborative European NeuroTrauma
Effectiveness Research in Traumatic Brain Injury (CENTER-TBI)
cohort study.

Implications of all the available evidence

Longitudinal changes in physiological parameters add
valuable information to admission data alone, and provide
insight into disease trajectories. We identified glucose
variation and a panel of brain biomarkers (ubiquitin carboxy-
terminal hydrolase L1, $100 calcium-binding protein B, tau,
neurofilament light, glial fibrillary acidic protein, and neuron-
specific enolase) as key clinical descriptors of disease
trajectories in traumatic brain injury in the intensive care unit
(ICU). Although glucose levels are known to be associated
with traumatic brain injury outcomes, glucose variability has
been less investigated. Future study of glucose variation is
warranted, to understand pathophysiological mechanisms
and potential treatment targets. Together with previous
findings, our study highlights the potential utility of serial
brain biomarker measurements in traumatic brain injury and
suggests incorporation of these measures in clinical care.

The characterisation of disease trajectories in traumatic brain
injury could be an important step towards future targeted
therapeutic approaches.

longitudinal disease trajectories after traumatic brain
injury. A complete description must also include treatment
factors, such as those described in the Therapy Intensity
Level scale,’ which otherwise could confound physiological
measurements. Multidimensional factors related to the
trajectory of traumatic brain injury have received relatively
little attention to date, although Ghaderi and colleagues®
identified three multivariable clusters of time-series data
in patients with traumatic brain injury, showing
differences in physiological and haematological factors,
thereby suggesting that different clinical presentations
might have distinct disease trajectories.

We aimed to identify clinical variables that might
distinguish disease trajectories in patients with traumatic
brain injury admitted to the ICU. Objectives were to
better understand disease progression and to identify
distinct trajectory-based subgroups of patients with
traumatic brain injury, which could form the basis for
targeted therapies in the future.

Methods

Patients

We obtained patient data from the core dataset of the
Collaborative European NeuroTrauma Effectiveness
Research in Traumatic Brain Injury (CENTER-TBI)
prospective observational cohort study” All patients
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enrolled in CENTER-TBI meet general inclusion criteria—
ie, a clinical diagnosis of traumatic brain injury,
presentation at hospital within 24 h from injury, and
clinical need for a CT scan. In our analysis, we included all
patients aged 18 years or older who were admitted to
the ICU at hospital admission. Version 3.0 of the
CENTER-TBI core dataset was used in this study.

This study was approved by the CENTER-TBI
management committee. Ethics approval was obtained at
every recruiting site. The list of participating sites and
details of ethics approvals are available online.” Written
or oral informed consent was obtained from patients or
their next of kin, according to local legislation, for all
patients recruited in the core dataset of CENTER-TBI.
This information was documented in an electronic case
report form (e-CRF). In the case of oral consent, written
confirmation was requested.”

Procedures

Data were collected through the Quesgen e-CRF
(Quesgen Systems, Burlingame CA, USA), which is
hosted on the International Neuroinformatics
Coordinating Facility (INCF) platform. Information
about 59 candidate admission features and daily
measures, comprising brain protein biomarkers and
interventions during the first 7 days of ICU stay was
extracted from the CENTER-TBI dataset via the INCF
Neurobot tool (INCF, Stockholm, Sweden); these
variables cover major aspects of neurological ICU
monitoring and care (appendix pp 6-7). We did not
extract data for pairs of features that are known to be
highly covariate. CT characteristics were based on
central imaging review in CENTER-TBI. The brain
biomarker panel consisted of ubiquitin carboxy-
terminal hydrolase L1 (UCH-L1), S100 calcium-binding
protein B (S100B), tau, neurofilament light (NFL), glial
fibrillary acidic protein (GFAP), and neuron-specific
enolase (NSE), as these were available in the
CENTER-TBI dataset and have shown potential for
neurological evaluation and prognostication.”* Blood
samples were centrifuged within 60 min of collection,
stored at —80°C at each centre, and analysed in one
round at two sites using the same batch of reagents.
See the appendix (p 2) for further details.

Missing longitudinal data were imputed either by
interpolation, set to 0, or by last observation carried
forward (appendix pp 8-14). If a patient was discharged
or died during the first week post-injury, all features on
the following days were represented as not available.
Continuous features were characterised by daily means
or by the daily difference between maximum and
minimum values if repeated measures of a feature
occurred on one day.

The clustering model

Full details of the modelling process are in the
appendix (pp 3-5). In brief, to identify disease trajectories
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Figure 1: The modelling process

Our modelling approach used an incremental clustering method, with a cluster representing a similar disease

trajectory after traumatic brain injury. Models (represented as blue circles) were created in which patients were
grouped into between two and 12 trajectories (represented as segments of each blue circle). To converge on the

best model for every number of clusters, we initially created ten models of two clusters (top row), with 100 patients
randomly assigned to each of the two clusters. The model with the highest log likelihood (represented by a purple
circle) was then used as a seed to create models of three clusters; as for the previous step, 100 patients were
randomly selected in every cluster, with an additional 100 randomly selected patients assigned to the incremental
cluster. This optimisation process was repeated until we had 12 clusters per model (bottom row). To assess model
stability, all steps were repeated 25 times, and stability was assessed using a cluster similarity index for every
number of clusters. Importance of clinical variables was assessed by averaging mutual information over the

25 selected models for each number of clusters (N.).

during the first week of ICU stay, we used a clustering
method based on a mixture of probabilistic graph models
to group patients based on baseline and longitudinal
clinical variables. Each graph comprised the univariate
probability distributions for all clinical variables on each
day, and joint distributions for pairs of variables that are
directly correlated. Each cluster represents a similar
disease trajectory or course. To estimate cluster
membership probabilities and parameter values within
the clusters, we used the iterative expectation
maximisation algorithm," which calculates a probability
for each patient’'s membership of each cluster and
estimates cluster means and variances for continuous
features and the relative frequency of categorical features.

We used an incremental clustering approach, starting
with two clusters (which each represented a disease
trajectory) then adding one cluster at a time to a
maximum of 12 clusters (figure 1). For each step,
100 patients were randomly assigned to each disease
trajectory cluster, then the model with the highest log
likelihood was used as a so-called seed to create the next
model with one additional cluster. This process was
repeated 25 times until 25 models had been picked for
each cluster count from two to 12. To assess cluster
stability, we calculated a cluster similarity index (CSI),”
which was defined as the proportion of patients with
cluster assignment agreement between all possible pairs

See Online for appendix
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| 4509 patients enrolled in CENTER-TBI core study |

—>| 2371 in ER or admission stratum excluded |

A
| 2138 in ICU stratum |

—>| 132 younger than 18 years excluded |

A
| 2006 eligible for study |

—>| 278 missing GOS-E outcome data at 6 months

A
| 1728 included in analysis |

Figure 2: Patient selection

CENTER-TBI=Collaborative European NeuroTrauma Effectiveness Research in
Traumatic Brain Injury. ER=emergency room. ICU=intensive care unit.
GOS-E=extended Glasgow Outcome Scale.

of the 25 models for each number of clusters, with a
higher CSI indicating more stable clustering.

To investigate the importance of each clinical variable
in the model, we calculated mutual information—ie, a
measure of how much the distribution of the value of a
particular clinical feature differs between clusters.”" The
average mutual information over all 25 models for each
number of clusters was calculated. Additionally, the
average daily mutual information was calculated for each
clinical variable to assess the overall most important
features. We then did a qualitative analysis of disease
trajectories with respect to the clinical features with the
highest average mutual information.

To ascertain whether membership of a particular
cluster by a patient was related to late functional
outcome, we analysed scores at 6 months on the
extended Glasgow Outcome Scale (GOS-E). Scores on
GOS-E range from 1 (dead) to 8 (good recovery), with an
unfavourable outcome defined as a GOS-E score of
4 or lower. If GOS-E was missing at 6 months, but
available at one or more of the other assessment
timepoints (ie, at 2 weeks or 3 or 12 months post-injury),
the value was imputed centrally in the CENTER-TBI
dataset.” Moreover, we evaluated the improvement in
outcome predictions for mortality and unfavourable
outcome beyond the International Mission for Prognosis
and Clinical Trials (IMPACT) model® by addition of
trajectory assignments using logistic regression. The
improvement of predictions was evaluated by calculating
Nagelkerke’s R2. Uncertainty in predictions was
estimated by bootstrap sampling with replacement
1000 times, and the results were bias-adjusted to correct
for adding features in the model. To assess whether
disease trajectory was site-dependent, mutual

information was calculated between site and cluster
label in a post-hoc analysis.

In a previous study, we identified six distinct patho-
physiological subgroups (also referred to as endotypes)
in the CENTER-TBI ICU stratum cohort, using only data
from the first 24 h post-admission.’ These admission
endotypes can be described as a composite of Glasgow
Coma Scale (GCS) and systemic metabolic profiles—
ie, high GCS and normal metabolism (A); intermediate
GCS and normal metabolism (B); intermediate GCS and
abnormal metabolism (C); low GCS and normal meta-
bolism (D); low GCS and abnormal metabolism with a
higher incidence of intracranial pathology (E); and low
GCS and abnormal metabolism with a higher incidence
of systemic shock (F). To investigate if the disease
trajectories in this study could be predicted by the
endotypes described at admission, probabilities of
following each disease trajectory were calculated for all
admission clusters.

The models were created using open-source code
developed in C++ by AH and CAIA. All subsequent
analyses were performed using R version 4.0.5.

CENTER-TBI is registered with ClinicalTrials.gov,
NCT02210221.

Role of the funding source

The funding sources had no role in data collection,
analysis, interpretation, writing of the manuscript, or the
decision to submit for publication.

Results

Between Dec 19, 2014, and Dec 17, 2017, 4509 patients
were enrolled to the CENTER-TBI core dataset from
65 centres across 18 European countries. 2006 patients
were initially eligible for our study, but 1728 patients
were included in the final analysis after excluding
278 individuals due to missing GOS-E data at 6 months
(figure 2). These patients were from 54 of the
65 recruiting sites in CENTER-TBI. The median GCS
score at admission was 9 (IQR 4-14). 388 (22 5%) patients
died, and 779 (45-1%) had unfavourable outcomes
(defined as upper severe disability or worse, GOS-E =<4).
The median age was 52 years (IQR 33-67);
1269 (73-4%) patients were male and 459 (26-6%) were
female (table 1, details in appendix pp 16-22).

Disease trajectory clusters were derived from patients’
baseline data and from adding information for clinical
variables obtained over time. No distinct peak was
identified when comparing the median CSI between
different numbers of clusters (appendix p 27), which
indicated that no specific number of clusters generated a
more stable model. Sensitivity analyses were done to
evaluate the stability of the mutual information of the
clinical variables that were included in the clusters
(table 2; appendix p 28). The progress of cluster
assignments for increasing the number of clusters from
two to 12 is illustrated in the appendix (p 29). Because
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there was no optimal number of clusters, six were chosen
to compare differences between clusters; these disease
trajectory clusters were labelled o, 3, v, §, €, and £. Of the
1728 patients who were included in the final analysis,
438 were assigned to disease trajectory o, 506 to f3,
119 to vy, 202 to 6, 257 to €, and 206 to {; most patients
were assigned to their final disease trajectory with
high probability of being assigned to that disease
trajectory versus any of the others (appendix pp 16, 30, 23).

The clinical variables that contributed to and
distinguished disease trajectories during the first week of
ICU stay in patients with traumatic brain injury were
glycaemic variation, brain biomarkers (tau, UCH-LI,
GFAP, S100B, NSE, and NFL), serum creatinine, and
oxygen saturation (figure 3, table 2). A daily analysis
revealed that these clinical variables were important on
all days of ICU stay, whereas mean intracranial pressure
and sodium variation showed greater importance on the
first days, 3 versus 2 respectively (appendix p 24). The
results were consistent across our models from two to
12 clusters, irrespective of the number of clusters in each
model. Distributions of these clinical variables on each
day are presented in the appendix (p 31). Glucose
variability and brain biomarkers were consistently the
main clinical descriptors of disease trajectory in patients
with traumatic brain injury in the ICU.

To evaluate whether CENTER-TBI participating site
had an effect on disease trajectory, mutual information of
cluster membership and site was calculated in a post-hoc
analysis. Findings indicated a mutual information value
on par with the ninth most important clustering variable,
indicating a low impact of site effect on trajectory.

Ordering the six disease trajectory clusters from a to
showed progressively decreasing GOS-E, increasing
amounts of brain biomarkers, and increasing glucose
variability, suggesting the disease trajectory clusters could
be associated with functional outcome. Although the
primary aim was not to identify subgroups with different
functional outcomes, the different disease trajectory
clusters differed substantially in 6-month mortality and
GOS-E score. The a cluster had the most benign disease
trajectory, with 6-month mortality of 4% (16 of 438) and
6-month unfavourable outcome of 18% (78 of 438). The
most pathological cluster was ¢, which was associated
with 65% mortality (134 of 206) and 84% unfavourable
outcome (174 of 206) (figure 4). 42% of patients assigned
to disease trajectory ( died within 7 days post-injury,
whereas most patients assigned to disease trajectory o
were discharged at 7 days (377 [86%)] of 438). Trajectory €
had the largest proportion of patients still in ICU 7 days
post-injury (180 [70%)] of 257). Similar patterns were seen
in models of all numbers of clusters (appendix p 28).
Moreover, disease trajectory assignments were seen to add
substantial ability to discriminate both mortality and
unfavourable outcome in logistic regression models,
including IMPACT prediction variables (appendix p 26).
The addition of cluster assignments for 12 clusters was

www.thelancet.com/neurology Vol 23 January 2024

All patients (n=1728)

Age, years 52 (33-67)
Sex

Female 459 (26-6%)

Male 1269 (73-4%)
ICU length of stay, days 7 (2-16)
Total ISS 29 (25-41)
GCS total score at arrival 9 (4-14)
Pupil reactivity

Both reacting 1403 (81-2%)

One reacting 114 (6-6%)

Both unreactive 211 (12-2%)
ICP monitoring 749 (43-3%)
Intubated 1366 (79-1%)

77 (64-5-94-0)
7-7 (6:5-9-2)
117(8-2-153)
99% (96-100)
141 (139-144)

4)

Creatinine, max (ug/L)

Glucose, mean first day (mmol/L)*
ICP, mean (mm Hg)*

SpO,, arrival [%]

Sodium, mean (mmol/L)*

Rotterdam CT score

3(3-
Daily TIL, max 4 (1-10)
GOS-E at 6 months 5(3-7)
1 388 (22:5%)
2or3t 268 (15-5%)
4 123 (7-1%)
5 241 (13:9%)
6 214 (12-4%)
7 229 (13-3%)
8 265 (15-3%)

IMPACT predicted mortality, % 22:1% (10-7-40-2)

Data are median (IQR) or n (%) unless otherwise stated. ICU=intensive care unit.
ISS=injury severity score. GCS=Glasgow coma scale. ICP=intracranial pressure.
Sp0,=oxygen saturation. TlL=therapy intensity level. GOS-E=extended Glasgow
outcome scale. IMPACT=International Mission for Prognosis and Analysis of
Clinical trials in Traumatic Brain Injury. *Data are group medians and patient
daily means. TGOS-E 2 and 3 were combined in the CENTER-TBI data due to the
low incidence of GOS-E 2. This was done centrally and is valid for all CENTER-TBI
studies.

Table 1: Patient characteristics

associated with the highest increase in bias-adjusted
Nagelkerke’s pseudo-R2, from 0-44 to 0-53 (bootstrap
SE 0-02) for mortality, and from 0-36 to 0-45 (0-02) for
unfavourable outcome—showing that unsupervised
clustering discriminated disease trajectories that were
related to outcome.

Relations of clusters (disease trajectories) to previously
identified admission endotypes were explored
(appendix p 32, 25). Endotype A (ie, patients presenting
with the highest GCS and normal metabolism) had the
highest probability (57-1%) of following a specific disease
trajectory, and this trajectory was the cluster associated
with best functional outcome (a; GOS-E 7 [IQR 5-8] at
6 months). Endotype C (moderate traumatic brain
injury and abnormal metabolic profile) comprised a
substantially larger proportion of patients who followed
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2clusters 3clusters  4clusters  5clusters 6 clusters

7 clusters  8clusters 9clusters 10 clusters 11clusters 12 clusters

1 AGlucose  AGlucose  AGlucose  AGlucose A Glucose

2 Creatinine  Creatinine  Tau Tau Tau

3 A Sp0: Tau Creatinine  UCH-L1 UCH-L1

4 Tau UCH-L1 UCH-L1 GFAP GFAP

5 SpO, mean A SpO, GFAP Creatinine  NFL

6 S100B GFAP A SpO: NFL S100B

7 NFL NFL NFL S$100B Creatinine
8 UCH-L1 ApH S100B A SpO, A SpO,

9 ApH S100B NSE NSE NSE

10 GFAP SpO, mean  SpO, mean  SpO, mean  SpO, mean

hydrolase L1.

Feature importance was assessed with MI. Features or descriptors of trajectories are ranked in falling order of Ml values, with a value of 1 being most important to 10 being
least important. The top ten features are shown for models ranging from two to twelve clusters. Glycemic variation, the brain biomarkers Tau, UCH-L1, GFAP, S100B, NSE and
NFL, creatinine, and oxygen saturation are seen to have the highest overall average information content in describing trajectories during the first week of ICU stay in patients
with TBI. The main parameters were largely consistent for models of two to twelve clusters and can be seen to additionally stabilise with an increasing number of clusters,
with creatinine and oxygen saturation losing importance with an increasing number of clusters. MI=mutual information. A=change in. SpO,=oxygen saturation.
NFL=neurofilament light. NSE=neuron-specific enolase. $100B=5100 calcium-binding protein B. GFAP=glial fibrillary acidic protein. UCH-L1=ubiquitin carboxy-terminal

AGlucose  AGlucose  AGlucose AGlucose  AGlucose A Glucose

Tau Tau Tau Tau Tau Tau
UCH-L1 UCH-L1 UCH-L1 GFAP GFAP GFAP
GFAP GFAP GFAP UCH-L1 UCH-L1 UCH-L1
NFL NFL S100B NFL S100B NFL
Creatinine  S100B NFL S100B NFL S100B
S100B Creatinine  Creatinine  Creatinine  Creatinine  Creatinine
A SpO, A SpO, A SpO, A SpO, NSE A SpO,
NSE NSE NSE NSE A SpO, NSE

SpO, mean SpO, mean SpO, mean SpO, mean Lactate Lactate

Table 2: The ten most important features describing trajectories in models of two to twelve clusters

the ¢ disease trajectory (associated with 65-0% mortality)
than endotype D (severe traumatic brain injury and
normal metabolic profile). In general, endotypes B-F had
more variable relations to disease trajectory than did
admission endotype A (appendix p 32), suggesting that
disease trajectory is affected by multiple biological
processes and clinical factors during the ICU stay.

Discussion

By applying an unsupervised temporal clustering method
to a large cohort of patients with traumatic brain injury
who were treated in the ICU, we were able to investigate
clinical descriptors (ie, baseline and longitudinal patient
characteristics and clinical variables) of disease
trajectories. Glucose variation and brain biomarkers
(ie, tau, UCH-L1, GFAP, S100B, NSE, and NFL) were
consistently the best performing clinical descriptors of
disease trajectories in the ICU. Furthermore, mean
intracranial pressure, CSF drainage volume, creatinine,
sodium variation, and oxygen saturation were important
clinical descriptors of disease trajectories in the first 3 days
of the ICU stay. These findings have possible implications
for clinical practice, since these variables have received
relatively little attention to date.

The importance of glycaemic variability, rather than
absolute values, has received scant attention to date. In
previous work, glycaemic variability has been shown to
correlate with worse outcomes in general ICU cohorts as
well as traumatic brain injury ICU cohorts.”” However,
the mechanistic and causal relations between glycaemic
variation and outcome are little understood. Possible
mechanistic explanations might be multifactorial,
representing several processes and including biological
toxicity due to oxidative stress triggered by changing
glucose levels, neuronal and mitochondrial damage,
modulation of haemostasis, a direct association with

greater sympathetic stimulation (a metabolic biomarker
of injury severity), or simply a reflection of less attentive
care in general®” Our study suggests that glucose
variation, rather than absolute values, is a key variable to
distinguish ICU disease trajectories. An extensive and
targeted investigation in the future is warranted, to better
understand patients’ metabolic profiles and the causes
and effects of glucose variability.

Brain biomarkers (ie, tau, UCH-L1, GFAP, S100B, NSE,
and NFL) have been associated with both outcome and
secondary events in patients with traumatic brain
injury,**¥ but implementation into clinical practice has
not yet taken place. Our study suggests a surprisingly
high effect of brain biomarkers as clinical descriptors of
disease trajectories. Biomarker levels can be assumed to
represent ongoing processes of brain injury, indicating
that both neuronal or glial release (depending on the
biomarker), alone or in combination,® could reflect
disease evolution, treatment effects, or both. The levels
and trajectories of biomarkers should be further explored
as surrogate outcome measures in traumatic brain injury.
The dynamic evolution of protein biomarkers could
provide an important first step towards targeted care in
traumatic brain injury, recognising that the predictive
value of serial biomarkers needs to be evaluated in
external datasets.

Our finding that sodium variation was an important
clinical descriptor of early ICU stay could be a biological
effect, but it more probably reflects aggressive use of
hypertonic saline boluses to treat increased intracranial
pressure. Harrois and colleagues identified an association
between sodium variability and mortality,” and rapid
changes in sodium levels can induce osmotic neuronal
injury. We postulate that—as an important clinical
descriptor of disease trajectories in patients with traumatic
brain injury in the ICU—sodium variation is more highly
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Figure 3: Distribution of features stratified by trajectory cluster and day

The features GCS score, dead, and discharged were not included in the clustering but are shown here for reference. All values (x) are normalised to (x-mean[x])/SD, where SD is standard deviation.
GCS=Glasgow coma scale. 5100B=5100 calcium-binding protein B. GFAP=glial fibrillary acidic protein. NFL=neurofilament light. UCH-L1=ubiquitin carboxy-terminal hydrolase L1. NSE=neuron-specific
enolase. Pa0,=arterial partial pressure of oxygen. PaCO,=arterial partial pressure of carbon dioxide. SpO,=oxygen saturation. MAP=mean arterial pressure. ICP=intracranial pressure. TAl=traumatic axonal
injury. EDH=epidural haematoma. tSAH=traumatic subarachnoid haemorrhage. aSDH=acute subdural haematoma. TIL=therapy intensity level. *Indicates the ten features with highest mutual information.

www.thelancet.com/neurology Vol 23 January 2024 77



Articles

H20r3 4 EHs5 @6 17 M8

ICU status

o

400

w

o

o
1

Number of patients
N
s}
s}
1

1004

Number of patients

GOS-E 6 months
B
100+
75
S
c
o
£ 504
o
Q
o
a
25
0
o

Number of patients

0 1 2

Y 8 €

Disease trajectory cluster

Bl Dead [ Discharged WM ICU

3

Timepoint (days)

500

400

300

200

100

200+

150

100+

50

200

150

100+

50

4 5 6 7 o 1 2 3 4 5 6 7
Timepoint (days)

Figure 4: Distribution of outcomes by disease trajectory cluster
(A) The bar chart shows the proportion of patients who were assigned to each disease trajectory cluster (, B, v, 8, €, and &) according to functional outcome on GOS-E (unfavourable outcome was defined
as GOS-E <4). Cluster o had the most benign disease trajectory and cluster { the most pathological. (B) Plots show, for each disease trajectory cluster, the numbers of patients who were dead, discharged,
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(B) In trajectory o, most patients were discharged during the first week of ICU stay. Trajectory { had very few patients being discharged alive during the first week, but 42% died during the same period.
Trajectory cluster € had the largest proportion of patients still in ICU 7 days post-injury.
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related to treatment intensity than to biological effects.
This will require further study to elucidate.

In our clustering model, we did not by design include
6-month outcome as a variable, as it is not defined
during the ICU stay and we aimed to explore an
unbiased relation of clusters towards outcome.
Considering the six disease trajectory clusters that were

identified for between-cluster analysis, the most benign
disease trajectory (a) had very low mortality, whereas
the most severe disease trajectory () showed high
mortality. The cluster indices also greatly improved
outcome prediction using canonical IMPACT variables.
Thus, our findings suggest that disease trajectory
during the first week in ICU is an independent marker
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of long-term outcome. This finding is important
because early events post-admission are more readily
modifiable by therapy and present more tractable
targets to improve outcome.

Our clustering model did not definitively specify an
optimal number of clusters (disease trajectories). In
clustering in general, there is never a guarantee of an
optimal number of clusters to exist. For example, in
many situations a hierarchy of clusters can be found,
whereby each cluster can be further subdivided into
smaller clusters, and it is subjective when to stop. Rather
than the absolute number of disease trajectories, the
most important insights provided by our study relate to
the clinical variables that appear to be of importance
when describing disease trajectories during the first
week of ICU stay in a cohort of patients with traumatic
brain injury.

We did a post-hoc analysis to investigate if the
CENTER-TBI recruiting site had any effect on patients’
assignment to disease trajectory clusters. Cluster and site
shared some information, with the mutual information
on par with the ninth most important cluster variable,
indicating a low impact of site effect on trajectory. The
estimate of the mutual information is probably inflated,
because there were 54 recruiting centres. Moreover, a site
effect would not exclude a biological meaning of the
cluster variables. Further explorations by site could form
the basis for future comparative effectiveness research
and targeted therapeutic approaches.

Our study has several limitations. First, a large
proportion of data were missing for several of the clinical
descriptors  that were included in the analysis
(appendix pp 8-14), and it is impossible to be certain that
missing data did not bias our results. Data were obtained
from the CENTER-TBI observational study and reflect
clinical practice. For example, brain biomarkers were
more frequently analysed in patients with severe head
injury, which is a subgroup of patients with typically
longer ICU stays. Moreover, follow-up CT scans were not
systematically reported in the version of the CENTER-TBI
dataset that we used, and the strategy of last observation
carried forward imputation might have underestimated
dynamic intracranial pathologies identifiable on CT scans.

A second limitation of our study is that, although our
aim was to identify clinical descriptors of disease
trajectories during the first week of ICU stay, we included
patients with shorter durations of ICU stay (ie, <7 days).
This inclusion might have biased the analyses, because
patients in the cohort with short stays in the ICU (<72 h)
receive less monitoring of intracranial pressure and less
mechanical ventilation.*® However, as we did not include
information on patient discharge into the model—
ie, information about why a patient was discharged (dead
or discharged to a ward, either as a consequence of being
stable enough to not need intensive care or owing to
withdrawal of care)}—we believe the effect of ICU length
of stay is limited. Our analysis strategy provides
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important information about the behaviour of patients
being discharged within 1 week of ICU admission.
Acknowledging these limitations, with our clustering
method we identified dynamic disease trajectories in
traumatic brain injury during the first week of ICU stay.
Although the optimal number of clusters could not be
identified, the main clinical descriptors of disease
trajectories in this large ICU cohort were highly
consistent over a range of cluster numbers. This finding
suggests that disease trajectories of traumatic brain
injury can, to some extent, be categorised. Importantly,
glucose variation and longitudinal brain biomarker
profiles were the main clinical descriptors of disease
trajectories for traumatic brain injury in the ICU.
Membership of a particular disease trajectory cluster was
associated with patient outcome, which suggests
biological relevance of these parameters. Our results
suggest the need for a detailed investigation of the
magnitude and mechanisms by which glucose values
and variation might affect outcome in traumatic brain
injury. Furthermore, serial brain biomarker measure-
ments had substantial discriminating power above other
measured variables in this study, indicating that use of
serial biomarker measurements could become part of
future monitoring plans for patients with traumatic
brain injury in the ICU. To prove clinical feasibility, our
results need to be validated in external cohorts, and
prospective studies are needed to show whether the
identified disease trajectories can indicate areas for
clinical action. Nevertheless, our findings are a first step
towards identification of clinical descriptors of disease
trajectories for traumatic brain injury in the ICU, with
which future targeted medicine approaches could be
identified for this vulnerable patient group and complex
disease.
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