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Summary
Background Patients with traumatic brain injury are a heterogeneous population, and the most severely injured 
individuals are often treated in an intensive care unit (ICU). The primary injury at impact, and the harmful secondary 
events that can occur during the first week of the ICU stay, will affect outcome in this vulnerable group of patients. 
We aimed to identify clinical variables that might distinguish disease trajectories among patients with traumatic 
brain injury admitted to the ICU.

Methods We used data from the Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain 
Injury (CENTER-TBI) prospective observational cohort study. We included patients aged 18 years or older with 
traumatic brain injury who were admitted to the ICU at one of the 65 CENTER-TBI participating centres, which 
range from large academic hospitals to small rural hospitals. For every patient, we obtained pre-injury data and injury 
features, clinical characteristics on admission, demographics, physiological parameters, laboratory features, brain 
biomarkers (ubiquitin carboxy-terminal hydrolase L1 [UCH-L1], S100 calcium-binding protein B [S100B], tau, 
neurofilament light [NFL], glial fibrillary acidic protein [GFAP], and neuron-specific enolase [NSE]), and information 
about intracranial pressure lowering treatments during the first 7 days of ICU stay. To identify clinical variables that 
might distinguish disease trajectories, we applied a novel clustering method to these data, which was based on a 
mixture of probabilistic graph models with a Markov chain extension. The relation of clusters to the extended Glasgow 
Outcome Scale (GOS-E) was investigated.

Findings Between Dec 19, 2014, and Dec 17, 2017, 4509 patients with traumatic brain injury were recruited into the 
CENTER-TBI core dataset, of whom 1728 were eligible for this analysis. Glucose variation (defined as the difference 
between daily maximum and minimum glucose concentrations) and brain biomarkers (S100B, NSE, NFL, tau, 
UCH-L1, and GFAP) were consistently found to be the main clinical descriptors of disease trajectories (ie, the 
leading variables contributing to the distinguishing clusters) in patients with traumatic brain injury in the ICU. The 
disease trajectory cluster to which a patient was assigned in a model was analysed as a predictor together with 
variables from the IMPACT model, and prediction of both mortality and unfavourable outcome (dichotomised 
GOS-E ≤4) was improved.

Interpretation First-day ICU admission data are not the only clinical descriptors of disease trajectories in patients with 
traumatic brain injury. By analysing temporal variables in our study, variation of glucose was identified as the most 
important clinical descriptor that might distinguish disease trajectories in the ICU, which should direct further 
research. Biomarkers of brain injury (S100B, NSE, NFL, tau, UCH-L1, and GFAP) were also top clinical descriptors 
over time, suggesting they might be important in future clinical practice.

Funding European Union 7th Framework program, Hannelore Kohl Stiftung, OneMind, Integra LifeSciences 
Corporation, and NeuroTrauma Sciences.

Copyright © 2023 Elsevier Ltd. All rights reserved.

Introduction
Patients with traumatic brain injury who are treated in 
an intensive care unit (ICU) are extensively monitored 
to minimise the risk of harmful secondary events. 
However, between 30% and 40% of patients with severe 
traumatic brain injury will deteriorate within 10 days of 
the injury.1 Therefore, a fundamental question in 
neurointensive care is how to monitor, identify, and 
avoid harmful secondary events and further brain injury. 

Unfortunately, patients with traumatic brain injury are a 
highly heterogeneous group with respect to their initial 
presentation and subsequent clinical trajectory. In a 
2021 review,2 two studies were identified in which 
subgroups of patients with severe traumatic brain injury 
in the acute phase were classified, based on pre-injury 
variables and admission data, but it is unclear how these 
clinical descriptors can be implemented into clinical 
practice.

http://crossmark.crossref.org/dialog/?doi=10.1016/S1474-4422(23)00358-7&domain=pdf
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In a previous study,3 we identified six distinct 
pathophysiological subgroups—often referred to as 
endotypes—of patients with traumatic brain injury in 
the ICU by applying unsupervised clustering methods 
on data obtained from the first day after the injury. These 
subgroups of patients had differences in composite 
metabolic responses, particularly in relation to lactate 
and glucose. However, this work did not address the 
more complex problem of how to distinguish subsequent 
disease trajectories of traumatic brain injury during 
the ICU stay.

Previous studies in general ICU patients have shown 
that clear pathophysiological patterns can emerge during 
the first weeks in the ICU, with different disease 
trajectories related to changes in Sequential Organ Failure 
Assessment (SOFA) score.4 In patients with traumatic 
brain injury, variability in intracranial pressure has been 
described and shown to correlate with the expression of 
an oedema-regulating gene, ABCC8.5 Other studies have 
shown that traumatic brain injury is associated with 
extracranial complications, such as acute respiratory 
distress syndrome (ARDS), acute kidney injury, myo
cardial injury, and coagulopathy.6–8 This work has led us to 
hypothesise that a multidimensional analysis of 
physiological, laboratory, and demographic variables 
during the ICU stay might describe composite 

longitudinal disease trajectories after traumatic brain 
injury. A complete description must also include treatment 
factors, such as those described in the Therapy Intensity 
Level scale,9 which otherwise could confound physiological 
measurements. Multidimensional factors related to the 
trajectory of traumatic brain injury have received relatively 
little attention to date, although Ghaderi and colleagues10 
identified three multivariable clusters of time-series data 
in patients with traumatic brain injury, showing 
differences in physiological and haematological factors, 
thereby suggesting that different clinical presentations 
might have distinct disease trajectories. 

We aimed to identify clinical variables that might 
distinguish disease trajectories in patients with traumatic 
brain injury admitted to the ICU. Objectives were to 
better understand disease progression and to identify 
distinct trajectory-based subgroups of patients with 
traumatic brain injury, which could form the basis for 
targeted therapies in the future.

Methods
Patients
We obtained patient data from the core dataset of the 
Collaborative European NeuroTrauma Effectiveness 
Research in Traumatic Brain Injury (CENTER-TBI) 
prospective observational cohort study.11 All patients 

Research in context

Evidence before this study
We searched PubMed in English with the keywords “traumatic 
brain injury” AND (“clustering” OR “trajectory”), from database 
inception to July 17, 2023, to identify relevant studies. Several 
cross-sectional studies had aimed to identify patients with a 
traumatic brain injury who might benefit from different 
treatment approaches. Few studies have focused on the 
temporal evolution of traumatic brain injury during the first 
days after injury. We identified 14 studies describing disease 
trajectories in acute traumatic brain injury. Most focused on 
single trajectories of intracranial pressure, biomarkers, 
proteomics, or neuroinflammation, and only one previous 
multivariate time-series study assessed composite patterns. 
We identified one report that described pathophysiological 
trajectories in acute traumatic brain injury in the multicentre 
Transforming Research and Clinical Knowledge in Traumatic 
Brain Injury (TRACK-TBI) observational cohort study. In the 
TRACK-TBI study, three longitudinal disease trajectories were 
found by grouping patients according to many clinical features, 
including baseline demographics and time-series features. 
These trajectories were associated with different clinical and 
outcome profiles. However, the TRACK-TBI study did not 
include brain injury biomarkers.

Added value of this study
To the best of our knowledge, our study is the first to describe 
pathophysiological trajectories in patients with traumatic brain 

injury requiring intensive care. We obtained patient data from 
the large multicentre Collaborative European NeuroTrauma 
Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) 
cohort study.

Implications of all the available evidence
Longitudinal changes in physiological parameters add 
valuable information to admission data alone, and provide 
insight into disease trajectories. We identified glucose 
variation and a panel of brain biomarkers (ubiquitin carboxy-
terminal hydrolase L1, S100 calcium-binding protein B, tau, 
neurofilament light, glial fibrillary acidic protein, and neuron-
specific enolase) as key clinical descriptors of disease 
trajectories in traumatic brain injury in the intensive care unit 
(ICU). Although glucose levels are known to be associated 
with traumatic brain injury outcomes, glucose variability has 
been less investigated. Future study of glucose variation is 
warranted, to understand pathophysiological mechanisms 
and potential treatment targets. Together with previous 
findings, our study highlights the potential utility of serial 
brain biomarker measurements in traumatic brain injury and 
suggests incorporation of these measures in clinical care. 
The characterisation of disease trajectories in traumatic brain 
injury could be an important step towards future targeted 
therapeutic approaches.
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enrolled in CENTER-TBI meet general inclusion criteria—
ie, a clinical diagnosis of traumatic brain injury, 
presentation at hospital within 24 h from injury, and 
clinical need for a CT scan. In our analysis, we included all 
patients aged 18 years or older who were admitted to 
the ICU at hospital admission. Version 3.0 of the 
CENTER-TBI core dataset was used in this study.

This study was approved by the CENTER-TBI 
management committee. Ethics approval was obtained at 
every recruiting site. The list of participating sites and 
details of ethics approvals are available online.12 Written 
or oral informed consent was obtained from patients or 
their next of kin, according to local legislation, for all 
patients recruited in the core dataset of CENTER-TBI. 
This information was documented in an electronic case 
report form (e-CRF). In the case of oral consent, written 
confirmation was requested.12

Procedures
Data were collected through the Quesgen e-CRF 
(Quesgen Systems, Burlingame CA, USA), which is 
hosted on the International Neuroinformatics 
Coordinating Facility (INCF) platform. Information 
about 59 candidate admission features and daily 
measures, comprising brain protein biomarkers and 
interventions during the first 7 days of ICU stay was 
extracted from the CENTER-TBI dataset via the INCF 
Neurobot tool (INCF, Stockholm, Sweden); these 
variables cover major aspects of neurological ICU 
monitoring and care (appendix pp 6–7). We did not 
extract data for pairs of features that are known to be 
highly covariate. CT characteristics were based on 
central imaging review in CENTER-TBI. The brain 
biomarker panel consisted of ubiquitin carboxy-
terminal hydrolase L1 (UCH-L1), S100 calcium-binding 
protein B (S100B), tau, neurofilament light (NFL), glial 
fibrillary acidic protein (GFAP), and neuron-specific 
enolase (NSE), as these were available in the 
CENTER-TBI dataset and have shown potential for 
neurological evaluation and prognostication.13,14 Blood 
samples were centrifuged within 60 min of collection, 
stored at –80°C at each centre, and analysed in one 
round at two sites using the same batch of reagents. 
See the appendix (p 2) for further details.

Missing longitudinal data were imputed either by 
interpolation, set to 0, or by last observation carried 
forward (appendix pp 8–14). If a patient was discharged 
or died during the first week post-injury, all features on 
the following days were represented as not available. 
Continuous features were characterised by daily means 
or by the daily difference between maximum and 
minimum values if repeated measures of a feature 
occurred on one day.

The clustering model
Full details of the modelling process are in the 
appendix (pp 3–5). In brief, to identify disease trajectories 

during the first week of ICU stay, we used a clustering 
method based on a mixture of probabilistic graph models 
to group patients based on baseline and longitudinal 
clinical variables. Each graph comprised the univariate 
probability distributions for all clinical variables on each 
day, and joint distributions for pairs of variables that are 
directly correlated. Each cluster represents a similar 
disease trajectory or course. To estimate cluster 
membership probabilities and parameter values within 
the clusters, we used the iterative expectation 
maximisation algorithm,15,16 which calculates a probability 
for each patient’s membership of each cluster and 
estimates cluster means and variances for continuous 
features and the relative frequency of categorical features.

We used an incremental clustering approach, starting 
with two clusters (which each represented a disease 
trajectory) then adding one cluster at a time to a 
maximum of 12 clusters (figure 1). For each step, 
100 patients were randomly assigned to each disease 
trajectory cluster, then the model with the highest log 
likelihood was used as a so-called seed to create the next 
model with one additional cluster. This process was 
repeated 25 times until 25 models had been picked for 
each cluster count from two to 12. To assess cluster 
stability, we calculated a cluster similarity index (CSI),17 
which was defined as the proportion of patients with 
cluster assignment agreement between all possible pairs 

Figure 1: The modelling process
Our modelling approach used an incremental clustering method, with a cluster representing a similar disease 
trajectory after traumatic brain injury. Models (represented as blue circles) were created in which patients were 
grouped into between two and 12 trajectories (represented as segments of each blue circle). To converge on the 
best model for every number of clusters, we initially created ten models of two clusters (top row), with 100 patients 
randomly assigned to each of the two clusters. The model with the highest log likelihood (represented by a purple 
circle) was then used as a seed to create models of three clusters; as for the previous step, 100 patients were 
randomly selected in every cluster, with an additional 100 randomly selected patients assigned to the incremental 
cluster. This optimisation process was repeated until we had 12 clusters per model (bottom row). To assess model 
stability, all steps were repeated 25 times, and stability was assessed using a cluster similarity index for every 
number of clusters. Importance of clinical variables was assessed by averaging mutual information over the 
25 selected models for each number of clusters (Nc).

... ...

NC=2

NC=3

NC=4

NC=12

× 25

See Online for appendix
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of the 25 models for each number of clusters, with a 
higher CSI indicating more stable clustering.

To investigate the importance of each clinical variable 
in the model, we calculated mutual information—ie, a 
measure of how much the distribution of the value of a 
particular clinical feature differs between clusters.15,18 The 
average mutual information over all 25 models for each 
number of clusters was calculated. Additionally, the 
average daily mutual information was calculated for each 
clinical variable to assess the overall most important 
features. We then did a qualitative analysis of disease 
trajectories with respect to the clinical features with the 
highest average mutual information.

To ascertain whether membership of a particular 
cluster by a patient was related to late functional 
outcome, we analysed scores at 6 months on the 
extended Glasgow Outcome Scale (GOS-E). Scores on 
GOS-E range from 1 (dead) to 8 (good recovery), with an 
unfavourable outcome defined as a GOS-E score of 
4 or lower. If GOS-E was missing at 6 months, but 
available at one or more of the other assessment 
timepoints (ie, at 2 weeks or 3 or 12 months post-injury), 
the value was imputed centrally in the CENTER-TBI 
dataset.11,19 Moreover, we evaluated the improvement in 
outcome predictions for mortality and unfavourable 
outcome beyond the International Mission for Prognosis 
and Clinical Trials (IMPACT) model20 by addition of 
trajectory assignments using logistic regression. The 
improvement of predictions was evaluated by calculating 
Nagelkerke’s R². Uncertainty in predictions was 
estimated by bootstrap sampling with replacement 
1000 times, and the results were bias-adjusted to correct 
for adding features in the model. To assess whether 
disease trajectory was site-dependent, mutual 

information was calculated between site and cluster 
label in a post-hoc analysis.

In a previous study, we identified six distinct patho
physiological subgroups (also referred to as endotypes) 
in the CENTER-TBI ICU stratum cohort, using only data 
from the first 24 h post-admission.3 These admission 
endotypes can be described as a composite of Glasgow 
Coma Scale (GCS) and systemic metabolic profiles—
ie, high GCS and normal metabolism (A); intermediate 
GCS and normal metabolism (B); intermediate GCS and 
abnormal metabolism (C); low GCS and normal meta
bolism (D); low GCS and abnormal metabolism with a 
higher incidence of intracranial pathology (E); and low 
GCS and abnormal metabolism with a higher incidence 
of systemic shock (F). To investigate if the disease 
trajectories in this study could be predicted by the 
endotypes described at admission, probabilities of 
following each disease trajectory were calculated for all 
admission clusters.

The models were created using open-source code 
developed in C++ by AH and CAIÅ. All subsequent 
analyses were performed using R version 4.0.5.

CENTER-TBI is registered with ClinicalTrials.gov, 
NCT02210221.

Role of the funding source
The funding sources had no role in data collection, 
analysis, interpretation, writing of the manuscript, or the 
decision to submit for publication.

Results
Between Dec 19, 2014, and Dec 17, 2017, 4509 patients 
were enrolled to the CENTER-TBI core dataset from 
65 centres across 18 European countries. 2006 patients 
were initially eligible for our study, but 1728 patients 
were included in the final analysis after excluding 
278 individuals due to missing GOS-E data at 6 months 
(figure 2). These patients were from 54 of the 
65 recruiting sites in CENTER-TBI. The median GCS 
score at admission was 9 (IQR 4–14). 388 (22·5%) patients 
died, and 779 (45·1%) had unfavourable outcomes 
(defined as upper severe disability or worse, GOS-E ≤4). 
The median age was 52 years (IQR 33–67); 
1269 (73·4%) patients were male and 459 (26·6%) were 
female (table 1, details in appendix pp 16–22).

Disease trajectory clusters were derived from patients’ 
baseline data and from adding information for clinical 
variables obtained over time. No distinct peak was 
identified when comparing the median CSI between 
different numbers of clusters (appendix p 27), which 
indicated that no specific number of clusters generated a 
more stable model. Sensitivity analyses were done to 
evaluate the stability of the mutual information of the 
clinical variables that were included in the clusters 
(table 2; appendix p 28). The progress of cluster 
assignments for increasing the number of clusters from 
two to 12 is illustrated in the appendix (p 29). Because 

Figure 2: Patient selection
CENTER-TBI=Collaborative European NeuroTrauma Effectiveness Research in 
Traumatic Brain Injury. ER=emergency room. ICU=intensive care unit. 
GOS-E=extended Glasgow Outcome Scale.

4509 patients enrolled in CENTER-TBI core study 

2138 in ICU stratum

2371 in ER or admission stratum excluded

132 younger than 18 years excluded

2006 eligible for study

1728 included in analysis

278 missing GOS-E outcome data at 6 months
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there was no optimal number of clusters, six were chosen 
to compare differences between clusters; these disease 
trajectory clusters were labelled α, β, γ, δ, ε, and ζ. Of the 
1728 patients who were included in the final analysis, 
438 were assigned to disease trajectory α, 506 to β, 
119 to γ, 202 to δ, 257 to ε, and 206 to ζ; most patients 
were assigned to their final disease trajectory with 
high probability of being assigned to that disease 
trajectory versus any of the others (appendix pp 16, 30, 23).

The clinical variables that contributed to and 
distinguished disease trajectories during the first week of 
ICU stay in patients with traumatic brain injury were 
glycaemic variation, brain biomarkers (tau, UCH-L1, 
GFAP, S100B, NSE, and NFL), serum creatinine, and 
oxygen saturation (figure 3, table 2). A daily analysis 
revealed that these clinical variables were important on 
all days of ICU stay, whereas mean intracranial pressure 
and sodium variation showed greater importance on the 
first days, 3 versus 2 respectively (appendix p 24). The 
results were consistent across our models from two to 
12 clusters, irrespective of the number of clusters in each 
model. Distributions of these clinical variables on each 
day are presented in the appendix (p 31). Glucose 
variability and brain biomarkers were consistently the 
main clinical descriptors of disease trajectory in patients 
with traumatic brain injury in the ICU.

To evaluate whether CENTER-TBI participating site 
had an effect on disease trajectory, mutual information of 
cluster membership and site was calculated in a post-hoc 
analysis. Findings indicated a mutual information value 
on par with the ninth most important clustering variable, 
indicating a low impact of site effect on trajectory.

Ordering the six disease trajectory clusters from α to ζ 
showed progressively decreasing GOS-E, increasing 
amounts of brain biomarkers, and increasing glucose 
variability, suggesting the disease trajectory clusters could 
be associated with functional outcome. Although the 
primary aim was not to identify subgroups with different 
functional outcomes, the different disease trajectory 
clusters differed substantially in 6-month mortality and 
GOS-E score. The α cluster had the most benign disease 
trajectory, with 6-month mortality of 4% (16 of 438) and 
6-month unfavourable outcome of 18% (78 of 438). The 
most pathological cluster was ζ, which was associated 
with 65% mortality (134 of 206) and 84% unfavourable 
outcome (174 of 206) (figure 4). 42% of patients assigned 
to disease trajectory ζ died within 7 days post-injury, 
whereas most patients assigned to disease trajectory α 
were discharged at 7 days (377 [86%] of 438). Trajectory ε 
had the largest proportion of patients still in ICU 7 days 
post-injury (180 [70%] of 257). Similar patterns were seen 
in models of all numbers of clusters (appendix p 28). 
Moreover, disease trajectory assignments were seen to add 
substantial ability to discriminate both mortality and 
unfavourable outcome in logistic regression models, 
including IMPACT prediction variables (appendix p 26). 
The addition of cluster assignments for 12 clusters was 

associated with the highest increase in bias-adjusted 
Nagelkerke’s pseudo-R², from 0·44 to 0·53 (bootstrap 
SE 0·02) for mortality, and from 0·36 to 0·45 (0·02) for 
unfavourable outcome—showing that unsupervised 
clustering discriminated disease trajectories that were 
related to outcome.

Relations of clusters (disease trajectories) to previously 
identified admission endotypes were explored 
(appendix p 32, 25). Endotype A (ie, patients presenting 
with the highest GCS and normal metabolism) had the 
highest probability (57·1%) of following a specific disease 
trajectory, and this trajectory was the cluster associated 
with best functional outcome (α; GOS-E 7 [IQR 5–8] at 
6 months). Endotype C (moderate traumatic brain 
injury and abnormal metabolic profile) comprised a 
substantially larger proportion of patients who followed 

All patients (n=1728)

Age, years 52 (33–67)

Sex

Female 459 (26·6%)

Male 1269 (73·4%)

ICU length of stay, days 7 (2–16)

Total ISS 29 (25–41)

GCS total score at arrival 9 (4–14)

Pupil reactivity

Both reacting 1403 (81·2%)

One reacting 114 (6·6%)

Both unreactive 211 (12·2%)

ICP monitoring 749 (43·3%)

Intubated 1366 (79·1%)

Creatinine, max (µg/L) 77 (64 · 5–94·0)

Glucose, mean first day (mmol/L)* 7·7 (6·5–9·2)

ICP, mean (mm Hg)* 11·7 (8·2–15·3)

SpO₂, arrival [%] 99% (96–100)

Sodium, mean (mmol/L)* 141 (139–144)

Rotterdam CT score 3 (3–4)

Daily TIL, max 4 (1–10)

GOS-E at 6 months 5 (3–7)

1 388 (22·5%)

2 or 3† 268 (15·5%)

4 123 (7·1%)

5 241 (13·9%)

6 214 (12·4%)

7 229 (13·3%)

8 265 (15·3%)

IMPACT predicted mortality, % 22 · 1% (10 · 7 – 40 · 2)

Data are median (IQR) or n (%) unless otherwise stated. ICU=intensive care unit. 
ISS=injury severity score. GCS=Glasgow coma scale. ICP=intracranial pressure. 
SpO₂=oxygen saturation. TIL=therapy intensity level. GOS-E=extended Glasgow 
outcome scale. IMPACT=International Mission for Prognosis and Analysis of 
Clinical trials in Traumatic Brain Injury. *Data are group medians  and patient 
daily means. †GOS-E 2 and 3 were combined in the CENTER-TBI data due to the 
low incidence of GOS-E 2. This was done centrally and is valid for all CENTER-TBI 
studies.

Table 1: Patient characteristics
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the ζ disease trajectory (associated with 65·0% mortality) 
than endotype D (severe traumatic brain injury and 
normal metabolic profile). In general, endotypes B–F had 
more variable relations to disease trajectory than did 
admission endotype A (appendix p 32), suggesting that 
disease trajectory is affected by multiple biological 
processes and clinical factors during the ICU stay.

Discussion
By applying an unsupervised temporal clustering method 
to a large cohort of patients with traumatic brain injury 
who were treated in the ICU, we were able to investigate 
clinical descriptors (ie, baseline and longitudinal patient 
characteristics and clinical variables) of disease 
trajectories. Glucose variation and brain biomarkers 
(ie, tau, UCH-L1, GFAP, S100B, NSE, and NFL) were 
consistently the best performing clinical descriptors of 
disease trajectories in the ICU. Furthermore, mean 
intracranial pressure, CSF drainage volume, creatinine, 
sodium variation, and oxygen saturation were important 
clinical descriptors of disease trajectories in the first 3 days 
of the ICU stay. These findings have possible implications 
for clinical practice, since these variables have received 
relatively little attention to date.

The importance of glycaemic variability, rather than 
absolute values, has received scant attention to date. In 
previous work, glycaemic variability has been shown to 
correlate with worse outcomes in general ICU cohorts as 
well as traumatic brain injury ICU cohorts.21–23 However, 
the mechanistic and causal relations between glycaemic 
variation and outcome are little understood. Possible 
mechanistic explanations might be multifactorial, 
representing several processes and including biological 
toxicity due to oxidative stress triggered by changing 
glucose levels, neuronal and mitochondrial damage, 
modulation of haemostasis, a direct association with 

greater sympathetic stimulation (a metabolic biomarker 
of injury severity), or simply a reflection of less attentive 
care in general.22,23 Our study suggests that glucose 
variation, rather than absolute values, is a key variable to 
distinguish ICU disease trajectories. An extensive and 
targeted investigation in the future is warranted, to better 
understand patients’ metabolic profiles and the causes 
and effects of glucose variability.

Brain biomarkers (ie, tau, UCH-L1, GFAP, S100B, NSE, 
and NFL) have been associated with both outcome and 
secondary events in patients with traumatic brain 
injury,13,24–27 but implementation into clinical practice has 
not yet taken place. Our study suggests a surprisingly 
high effect of brain biomarkers as clinical descriptors of 
disease trajectories. Biomarker levels can be assumed to 
represent ongoing processes of brain injury, indicating 
that both neuronal or glial release (depending on the 
biomarker), alone or in combination,28 could reflect 
disease evolution, treatment effects, or both. The levels 
and trajectories of biomarkers should be further explored 
as surrogate outcome measures in traumatic brain injury. 
The dynamic evolution of protein biomarkers could 
provide an important first step towards targeted care in 
traumatic brain injury, recognising that the predictive 
value of serial biomarkers needs to be evaluated in 
external datasets.

Our finding that sodium variation was an important 
clinical descriptor of early ICU stay could be a biological 
effect, but it more probably reflects aggressive use of 
hypertonic saline boluses to treat increased intracranial 
pressure. Harrois and colleagues identified an association 
between sodium variability and mortality,29 and rapid 
changes in sodium levels can induce osmotic neuronal 
injury. We postulate that—as an important clinical 
descriptor of disease trajectories in patients with traumatic 
brain injury in the ICU—sodium variation is more highly 

2 clusters 3 clusters 4 clusters 5 clusters 6 clusters 7 clusters 8 clusters 9 clusters 10 clusters 11 clusters 12 clusters

1 ∆ Glucose ∆ Glucose ∆ Glucose ∆ Glucose ∆ Glucose ∆ Glucose ∆ Glucose ∆ Glucose ∆ Glucose ∆ Glucose ∆ Glucose

2 Creatinine Creatinine Tau Tau Tau Tau Tau Tau Tau Tau Tau

3 ∆ SpO2 Tau Creatinine UCH-L1 UCH-L1 UCH-L1 UCH-L1 UCH-L1 GFAP GFAP GFAP

4 Tau UCH-L1 UCH-L1 GFAP GFAP GFAP GFAP GFAP UCH-L1 UCH-L1 UCH-L1

5 SpO2 mean ∆ SpO2 GFAP Creatinine NFL NFL NFL S100B NFL S100B NFL

6 S100B GFAP ∆ SpO2 NFL S100B Creatinine S100B NFL S100B NFL S100B

7 NFL NFL NFL S100B Creatinine S100B Creatinine Creatinine Creatinine Creatinine Creatinine

8 UCH-L1 ∆ pH S100B ∆ SpO2 ∆ SpO2 ∆ SpO2 ∆ SpO2 ∆ SpO2 ∆ SpO2 NSE ∆ SpO2

9 ∆ pH S100B NSE NSE NSE NSE NSE NSE NSE ∆ SpO2 NSE

10 GFAP SpO2 mean SpO2 mean SpO2 mean SpO2 mean SpO2 mean SpO2 mean SpO2 mean SpO2 mean Lactate Lactate

Feature importance was assessed with MI. Features or descriptors of trajectories are ranked in falling order of MI values, with a value of 1 being most important to 10 being 
least important. The top ten features are shown for models ranging from two to twelve clusters. Glycemic variation, the brain biomarkers Tau, UCH-L1, GFAP, S100B, NSE and 
NFL, creatinine, and oxygen saturation are seen to have the highest overall average information content in describing trajectories during the first week of ICU stay in patients 
with TBI. The main parameters were largely consistent for models of two to twelve clusters and can be seen to additionally stabilise with an increasing number of clusters, 
with creatinine and oxygen saturation losing importance with an increasing number of clusters.  MI=mutual information. ∆=change in. SpO₂=oxygen saturation. 
NFL=neurofilament light. NSE=neuron-specific enolase. S100B=S100 calcium-binding protein B. GFAP=glial fibrillary acidic protein. UCH-L1=ubiquitin carboxy-terminal 
hydrolase L1. 

Table 2: The ten most important features describing trajectories in models of two to twelve clusters
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Figure 3: Distribution of features stratified by trajectory cluster and day
The features GCS score, dead, and discharged were not included in the clustering but are shown here for reference. All values (x) are normalised to (x-mean[x])/SD, where SD is standard deviation.
GCS=Glasgow coma scale. S100B=S100 calcium-binding protein B. GFAP=glial fibrillary acidic protein. NFL=neurofilament light. UCH-L1=ubiquitin carboxy-terminal hydrolase L1. NSE=neuron-specific 
enolase. PaO2=arterial partial pressure of oxygen. PaCO2=arterial partial pressure of carbon dioxide. SpO2=oxygen saturation. MAP=mean arterial pressure. ICP=intracranial pressure. TAI=traumatic axonal 
injury. EDH=epidural haematoma. tSAH=traumatic subarachnoid haemorrhage. aSDH=acute subdural haematoma. TIL=therapy intensity level. *Indicates the ten features with highest mutual information.
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related to treatment intensity than to biological effects. 
This will require further study to elucidate.

In our clustering model, we did not by design include 
6-month outcome as a variable, as it is not defined 
during the ICU stay and we aimed to explore an 
unbiased relation of clusters towards outcome. 
Considering the six disease trajectory clusters that were 

identified for between-cluster analysis, the most benign 
disease trajectory (α) had very low mortality, whereas 
the most severe disease trajectory (ζ) showed high 
mortality. The cluster indices also greatly improved 
outcome prediction using canonical IMPACT variables. 
Thus, our findings suggest that disease trajectory 
during the first week in ICU is an independent marker 

Figure 4: Distribution of outcomes by disease trajectory cluster
(A) The bar chart shows the proportion of patients who were assigned to each disease trajectory cluster (α, β, γ, δ, ε, and ζ) according to functional outcome on GOS-E (unfavourable outcome was defined 
as GOS-E ≤4). Cluster α had the most benign disease trajectory and cluster ζ the most pathological. (B) Plots show, for each disease trajectory cluster, the numbers of patients who were dead, discharged, 
or still in ICU for the first 7 days after traumatic brain injury. The numbers of patients assigned to each disease trajectory cluster differed. GOS-E=extended Glasgow Outcome Scale. ICU=intensive care unit. 
(B) In trajectory α, most patients were discharged during the first week of ICU stay. Trajectory ζ had very few patients being discharged alive during the first week, but 42% died during the same period. 
Trajectory cluster ε had the largest proportion of patients still in ICU 7 days post-injury.  

400

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0

100

200

300

N
um

be
r o

f p
at

ie
nt

s

Pr
op

or
tio

n 
(%

)

Timepoint (days)Disease trajectory cluster Timepoint (days)

α
500

0

200

100

300

400

β

50

25

75

100

N
um

be
r o

f p
at

ie
nt

s

γ
200

50

100

150

δ

100

0

25

50

75

250

0

0 0

100

50

150

200

N
um

be
r o

f p
at

ie
nt

s

ε

200

0

50

100

150

ξ

α β γ δ ε ξ

Dead
ICU status

1
GOS-E 6 months

5 82 or 3 4 6 7 Discharged ICU



Articles

www.thelancet.com/neurology   Vol 23   January 2024	 79

of long-term outcome. This finding is important 
because early events post-admission are more readily 
modifiable by therapy and present more tractable 
targets to improve outcome.

Our clustering model did not definitively specify an 
optimal number of clusters (disease trajectories). In 
clustering in general, there is never a guarantee of an 
optimal number of clusters to exist. For example, in 
many situations a hierarchy of clusters can be found, 
whereby each cluster can be further subdivided into 
smaller clusters, and it is subjective when to stop. Rather 
than the absolute number of disease trajectories, the 
most important insights provided by our study relate to 
the clinical variables that appear to be of importance 
when describing disease trajectories during the first 
week of ICU stay in a cohort of patients with traumatic 
brain injury.

We did a post-hoc analysis to investigate if the 
CENTER-TBI recruiting site had any effect on patients’ 
assignment to disease trajectory clusters. Cluster and site 
shared some information, with the mutual information 
on par with the ninth most important cluster variable, 
indicating a low impact of site effect on trajectory. The 
estimate of the mutual information is probably inflated, 
because there were 54 recruiting centres. Moreover, a site 
effect would not exclude a biological meaning of the 
cluster variables. Further explorations by site could form 
the basis for future comparative effectiveness research 
and targeted therapeutic approaches.

Our study has several limitations. First, a large 
proportion of data were missing for several of the clinical 
descriptors that were included in the analysis 
(appendix pp 8–14), and it is impossible to be certain that 
missing data did not bias our results. Data were obtained 
from the CENTER-TBI observational study and reflect 
clinical practice. For example, brain biomarkers were 
more frequently analysed in patients with severe head 
injury, which is a subgroup of patients with typically 
longer ICU stays. Moreover, follow-up CT scans were not 
systematically reported in the version of the CENTER-TBI 
dataset that we used, and the strategy of last observation 
carried forward imputation might have underestimated 
dynamic intracranial pathologies identifiable on CT scans.

A second limitation of our study is that, although our 
aim was to identify clinical descriptors of disease 
trajectories during the first week of ICU stay, we included 
patients with shorter durations of ICU stay (ie, <7 days). 
This inclusion might have biased the analyses, because 
patients in the cohort with short stays in the ICU (≤72 h) 
receive less monitoring of intracranial pressure and less 
mechanical ventilation.30 However, as we did not include 
information on patient discharge into the model—
ie, information about why a patient was discharged (dead 
or discharged to a ward, either as a consequence of being 
stable enough to not need intensive care or owing to 
withdrawal of care)—we believe the effect of ICU length 
of stay is limited. Our analysis strategy provides 

important information about the behaviour of patients 
being discharged within 1 week of ICU admission.

Acknowledging these limitations, with our clustering 
method we identified dynamic disease trajectories in 
traumatic brain injury during the first week of ICU stay. 
Although the optimal number of clusters could not be 
identified, the main clinical descriptors of disease 
trajectories in this large ICU cohort were highly 
consistent over a range of cluster numbers. This finding 
suggests that disease trajectories of traumatic brain 
injury can, to some extent, be categorised. Importantly, 
glucose variation and longitudinal brain biomarker 
profiles were the main clinical descriptors of disease 
trajectories for traumatic brain injury in the ICU. 
Membership of a particular disease trajectory cluster was 
associated with patient outcome, which suggests 
biological relevance of these parameters. Our results 
suggest the need for a detailed investigation of the 
magnitude and mechanisms by which glucose values 
and variation might affect outcome in traumatic brain 
injury. Furthermore, serial brain biomarker measure
ments had substantial discriminating power above other 
measured variables in this study, indicating that use of 
serial biomarker measurements could become part of 
future monitoring plans for patients with traumatic 
brain injury in the ICU. To prove clinical feasibility, our 
results need to be validated in external cohorts, and 
prospective studies are needed to show whether the 
identified disease trajectories can indicate areas for 
clinical action. Nevertheless, our findings are a first step 
towards identification of clinical descriptors of disease 
trajectories for traumatic brain injury in the ICU, with 
which future targeted medicine approaches could be 
identified for this vulnerable patient group and complex 
disease.
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