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Abstract
Background Estimating the risk of revision after arthro-
plasty could inform patient and surgeon decision-making.
However, there is a lack of well-performing prediction
models assisting in this task, which may be due to current
conventional modeling approaches such as traditional

survivorship estimators (such as Kaplan-Meier) or compet-
ing risk estimators. Recent advances in machine learning
survival analysismight improve decision support tools in this
setting. Therefore, this study aimed to assess the performance
of machine learning compared with that of conventional
modeling to predict revision after arthroplasty.
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Question/purpose Does machine learning perform better
than traditional regression models for estimating the risk of
revision for patients undergoing hip or knee arthroplasty?
Methods Eleven datasets from published studies from the
Dutch Arthroplasty Register reporting on factors associ-
ated with revision or survival after partial or total knee and
hip arthroplasty between 2018 and 2022 were included in
our study. The 11 datasets were observational registry
studies, with a sample size ranging from 3038 to 218,214
procedures. We developed a set of time-to-event models
for each dataset, leading to 11 comparisons. A set of pre-
dictors (factors associated with revision surgery) was
identified based on the variables that were selected in the
included studies. We assessed the predictive performance
of two state-of-the-art statistical time-to-event models for
1-, 2-, and 3-year follow-up: a Fine and Gray model (which
models the cumulative incidence of revision) and a cause-
specific Cox model (which models the hazard of revision).
These were compared with a machine-learning approach (a
random survival forest model, which is a decision
tree–based machine-learning algorithm for time-to-event
analysis). Performance was assessed according to dis-
criminative ability (time-dependent area under the receiver
operating curve), calibration (slope and intercept), and
overall prediction error (scaled Brier score).
Discrimination, known as the area under the receiver op-
erating characteristic curve, measures the model’s ability to
distinguish patients who achieved the outcomes from those
who did not and ranges from 0.5 to 1.0, with 1.0 indicating
the highest discrimination score and 0.50 the lowest.
Calibration plots the predicted versus the observed proba-
bilities; a perfect plot has an intercept of 0 and a slope of 1.
The Brier score calculates a composite of discrimination
and calibration, with 0 indicating perfect prediction and 1
the poorest. A scaled version of the Brier score, 1 – (model
Brier score/null model Brier score), can be interpreted as
the amount of overall prediction error.
Results Using machine learning survivorship analysis, we
found no differences between the competing risks estima-
tor and traditional regression models for patients un-
dergoing arthroplasty in terms of discriminative ability
(patients who received a revision compared with those who
did not). We found no consistent differences between the
validated performance (time-dependent area under the re-
ceiver operating characteristic curve) of different modeling
approaches because these values ranged between -0.04 and
0.03 across the 11 datasets (the time-dependent area under
the receiver operating characteristic curve of the models
across 11 datasets ranged between 0.52 to 0.68). In addi-
tion, the calibration metrics and scaled Brier scores pro-
duced comparable estimates, showing no advantage of
machine learning over traditional regression models.
Conclusion Machine learning did not outperform tradi-
tional regression models.

Clinical Relevance Neither machine learning modeling
nor traditional regression methods were sufficiently accu-
rate in order to offer prognostic information when pre-
dicting revision arthroplasty. The benefit of these modeling
approaches may be limited in this context.

Introduction

Various predictive modeling tools have been developed
and are used for decision support in healthcare to inform
patient and surgeon decision-making. In orthopaedic
surgery, studies have predicted revision arthroplasty us-
ing competing risk analyses [4, 6, 12, 14, 19, 22-24, 29,
37, 39]. Revision arthroplasty typically involves partial or
complete exchange of the prosthesis implanted during the
initial (sometimes called primary or index) surgical pro-
cedure. In a typical survival setting, only one outcome is
studied, such as revision or death. However, the cumu-
lative incidence of revision (primary outcome) depends
not only on the effect of covariates (such as age or gender)
but also on patient survival, because patients who have
died cannot subsequently undergo revision. Standard
survival analyses (Kaplan-Meier curves) treat death
simply as censored information, but this approach may
overestimate revision rates [13]. Therefore, in certain
settings where a competing risk (such as death) is con-
sidered likely to influence the occurrence of another event
(revision in our setting), a competing risk analysis should
be performed with revision as the primary outcome event
and death as a competing risk.

However, there is a lack of well-performing prediction
models assisting in this task, which may be owing to cur-
rent conventional modeling approaches such as traditional
survivorship estimators (such as Kaplan-Meier) or com-
peting risk estimators (competing risk analyses). Recent
advancements in machine learning survival analysis could
improve decision support tools in this setting. However, it
is unclear whether machine learning generates better risk
estimates than the traditional approach, although there is
some preliminary evidence. A recent study from our group
compared machine learning and logistic regression algo-
rithms to predict binary events (such as reoperation: yes or
no) in nine orthopaedic trauma datasets; machine learn-
ing’s benefit was shown to be limited [21]. To best of our
knowledge, no study to date has compared competing risk
survival models based on machine learning and traditional
regression methods in multiple datasets. We therefore
sought to compare the performance of machine learning
survival analysis and traditional regression modeling in
a competing risk setting. We analyzed 11 datasets in-
cluding patients undergoing arthroplasty surgery registered
in the Dutch Arthroplasty Register to answer this question:
Does machine learning survival analysis with competing
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risk perform better than traditional regression models for
estimating the risk of revision for patients undergoing hip
or knee arthroplasty?

Materials and Methods

Overview: The Survival Analysis Problem in
Orthopaedic Cohorts

Survival analysis for predictive modeling of orthopaedic
outcomes is used to estimate the time it takes for specific
events to occur. In arthroplasty, this often involves analyzing
the duration until a revision surgery after a primary pro-
cedure. Therefore, this method is commonly referred to as
a time-to-event analysis, where the event of interest (such as
revision) lies in the future. The objective of a survival anal-
ysis is to consider factors associated with revision and esti-
mate the likelihood that revision may occur in the future.
Factors associated with revision could be patient-specific
(such as age or gender) or surgery-specific (such as the type
of implant), and they are included as variables in the pre-
diction model. This estimation can inform patients and
clinicians when choosing a specific treatment option.
However, patientsmaybe lost to follow-up ormaydie during
the follow-up period, resulting in censoring of the data,
which is a fundamental challenge in survival analysis
(Fig. 1). Therefore, multiple survival analysis methods exist
to account for censoring (Fine and Gray and cause-specific
Cox).More recently,machine-learning techniques have been
applied to orthopaedic prediction modeling and can improve
the performance of prediction models. In the context of
survival analysis, a machine-learning technique called ran-
dom survival forests shows promise, especially in situations
involving complex censored data.

Our primary study goal was to estimate the model per-
formance of machine learning compared with that of con-
ventional modeling to estimate the likelihood of revision
after arthroplasty in the presence of censored data. To
achieve this, we included 11 datasets and separately com-
pared the performance of machine learning with that of
conventional modeling in those 11 datasets.

Study Design and Setting

Eligible datasets were derived from previously published
studies, including patients registered in the Dutch
Arthroplasty Register [9] and undergoing a partial or total
knee or hip arthroplasty. The overall data completeness for
primary knee and hip arthroplasties was 96% in 2014 and
up to 100% in 2020 [9].

This study was conducted according to the Guidelines
for Developing and Reporting Machine Learning

Predictive Models in Biomedical Research and the
Transparent Reporting of Multivariable Prediction
Models for Individual Prognosis or Diagnosis guide-
lines [7, 17].

Participants’ Baseline Characteristics

We queried the Dutch Arthroplasty Register, a national
registry covering all Dutch hospitals performing arthro-
plasties. The overall data completeness for all hip and knee
arthroplasties was 99% in 2018 and 100% in 2022. Data
completeness for registered hip and knee revision arthro-
plasties was 97% in 2018 and 100% in 2022. In total, 11
datasets from published studies from the Dutch
Arthroplasty Register reported on factors associated with
revision or survival after partial or total knee and hip
arthroplasty between 2018 and 2022 and were therefore
included in our study. We developed a set of time-to-event
models for each dataset, leading to a total of 11 compar-
isons. All were observational registry studies that reported
on factors associated with revision after partial or total knee
and hip arthroplasty [4-6, 12, 15, 19, 23, 24, 29, 37, 38]
(Table 1). The sample size of these datasets ranged from
3038 to 218,214 procedures. The raw datasets supplied by
the Dutch Arthroplasty Register were directly derived from
previous studies and contained several processing steps.
This resulted in different patients and variables being
available across the different datasets. We therefore chose
to compare machine learning versus traditional statistics in
each dataset separately with the same inclusion criteria and
set of associated factors as applied by the original studies.
This also allowed for a direct comparison with the results
from the original studies. The baseline characteristics of the
11 included datasets can be found in the original studies
[4-6, 12, 15, 19, 23, 24, 29, 37, 38].

Traditional Survival Approaches

Of the included studies, one conducted a multivariable
logistic regression analysis [24], five applied Kaplan-Meier
analyses [4-6, 14, 37], and 10 used multivariable Cox
proportional hazard regression analyses [4-6, 12, 15, 19,
23, 29, 37, 38]. None of these methods accounted for
competing risks.

Survival Approaches Accounting for Competing Risks

On the included studies, we developed a set of time-to-
event models with revision as the event of interest and
death as the competing risk for all included studies
separately.
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Conventional Aalen-Johansen Curves

An Aalen-Johansen estimator is a nonparametric estima-
tion of risks, similar to the Kaplan-Meier estimator of
survival. The Aalen-Johansen curve plots the cumulative
incidence function of the event of interest (revision) ac-
counting for a competing risk (death) [1]. These curves
provide insights into the probability of experiencing dif-
ferent types of events over time when multiple events
(revision and death) are present. Aalen-Johansen curves
(cumulative incidence functions) were plotted for the 11
datasets.

Conventional Fine and Gray Model

A Fine and Gray model [10] is a semiparametric method
(proportional hazards model), estimating the incidence of
the outcome of interest (revision) over time in the presence
of a competing risk (death), thereby relating covariates to
the cumulative incidence function of the event of interest
(revision) [3].

Conventional Cause-specific Cox Model

Acause-specificCoxmodel is also a semiparametricmethod.
It is an extension of the describedCox regression analyses. In
the cause-specific Cox model, the revision risk is compared
among patients who are event free and in follow-up (that is,
patients who have not experienced a revision or the com-
peting risk [death] at a particular time point) [26, 35].

Machine Learning: Random Survival Forest

The random survival forest [11] was introduced as a time-to-
event extension to a random forest that can account for
competing risks. Random survival forest is a machine-
learning method that uses ensemble learning on many

decision trees. It can work with high-dimension and complex
(as well as nonlinear) data. A random survival forest shows
promise, especially in situations involving complex censored
data, and may be easier to interpret than other deep-learning
survival models.

Data Preparation

Factors associated with revision were identified based on
the original variable selection of the included studies
(Table 1, Supplemental Tables 1-11; http://links.lww.com/
CORR/B279). Observations where age or gender were
missing were removed from the analysis. All other missing
data were imputed using multivariate imputation by
chained equations [32] creating 11 imputed datasets as
previously applied by our group [21].

Model Development

For each of the 11 datasets, we plotted the cumulative in-
cidence function for revision (outcome of interest) and
competing risk (death) in Aalen-Johansen curves [1].
Subsequently, we compared the predictive performance of
two state-of-the-art statistical time-to-event models: a Fine
andGraymodel and a cause-specific Coxmodel. These were
compared with a machine-learning approach consisting of
a random survival forest with competing risks [11].

The time-to-event was set at 1, 2, and 3 years of follow-
up for each cohort. The imputed data were split into
a training set (two-thirds of the data) and a test set. This
approach was chosen over more sophisticated train designs
(such as nested cross-validation) because of its computa-
tional feasibility. The hyperparameters for the random
survival forest were set via fivefold cross-validation on the
training data (Supplemental Table 12; http://links.lww.
com/CORR/B279). The models were trained on the
training data (with tuned hyperparameters) and applied to
the test data.

Fig. 1 This illustration shows the survival analysis.
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Table 1. Characteristics of the included studies

Author Methodology
Number of
patients Outcome

Predictors
included

Study
period Main findings

Peters et al. [24] Logistic regression 218,214 Survival; 1-year
and 3-year
revision

Age, gender, ASA,
previous operation,

smoking, BMI,
Charnley

2007 to
2018

ASA and BMI were
the strongest

predictors for short-
term revision after

primary THA

Peters et al. [23] Cox proportional
hazards

209,912 Survival; revision
at 5 years and 9

years

Age, gender, ASA,
diagnosis, previous
operation, fixation,
head diameter,

surgical approach,
and period of

surgery

2007 to
2016

Amid-term lower risk
of revision was found
for CoHXLPE, CoC,
and Ox(HXL)PE
compared with
traditional MoPE-
bearing surfaces

van Steenbergen
et al. [38]

Cox proportional
hazards

211,002 Survival; 8-year
revision

Age, gender, ASA
score, diagnosis
(OA vs non-OA),

period

2007 to
2016

Large head MoM hip
arthroplasties
performed

significantly worse
compared to non-

MoM THA

van Oost et al. [37] Kaplan-Meier, Cox
proportional hazards

18,134 Survival Age category, sex,
ASA, year,
diagnosis,

unicondylar side,
type of hospital

2007 to
2016

Higher risk of revision
for partial knee

replacements was
seen in low absolute
volume hospitals

Burger et al. [6] Kaplan-Meier, Cox
proportional hazards

19,832 Survival; 5-year
revision

Age, gender,
diagnosis, prior

operation, bearing
type, and fixation

type

2007 to
2017

There is a notable risk
for revision when
using mobile-

bearing designs for
lateral UKA

Kuijpers et al. [15] Kaplan-Meier, Cox
proportional hazards

19,682 Survival; 5-year
revision

Age, gender,
diagnosis, ASA,

surgical approach,
fixation, bearing

type, head size, and
year

2007 to
2017

The risk of revision in
patients younger
than 55 years

depends on surgical
approach, head size,
and bearing type

Bloemheuvel et al.
[5]

Kaplan-Meier, Cox
proportional hazards

15,922 Survival; 5-year
re-revision

Gender, age, ASA,
fixation

2007 to
2016

The 5-year cup re-
revision rates for dual
mobility cups were

lower than for
unipolar cups.

Bloemheuvel et al.
[4]

Kaplan-Meier, Cox
proportional hazards

3038 Survival; 5-year
cup revision

Gender, age,
diagnosis, previous
operation, ASA,
fixation, surgical
approach, and
femoral head
diameter

2007 to
2016

The 5-year cup
revision rates for dual
mobility cup THA and
unipolar cup THA
were comparable

Spekenbrink-
Spooren et al. [29]

Cox proportional
hazards

133,841 Survival; 8-year
revision

Age, gender, ASA,
and previous
operations

2007 to
2016

Higher mid-term
revision rates of

posterior stabilized
TKA compared with
cruciate retaining

TKA
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Model Performance

Model performance was evaluated following recent guid-
ance for prediction models in the presence of competing
risks [36] that includes discrimination with a time-
dependent area under the receiver operating curve
(AUCt), calibration with a calibration slope and intercept
(in line with the method by Cox [8]), and the overall pre-
diction error with the scaled version of the Brier score [36].

Discrimination

Discrimination is amodel’s ability to distinguish patients who
had the outcome (that is, patients who underwent revision)
from those who did not [30]. It is measured using the c-index
(AUC), which ranges from 0.50 to 1.0, with 1.0 indicating the
highest discrimination score (most effective discrimination)
and 0.50 indicating a similar chance as flipping a coin. The
time-dependent c-index (AUCt) can be calculated for a single
timepoint of interest (such as 2-year revision) [36].

Model performance estimates were pooled across the 11
imputed datasets via Rubin’s Rules [27]. We visualized
model performance comparison in a bee-swarm plot, which
is a scatterplot of the differences in AUCt of each machine
learning and traditional regression pair.

Calibration

Calibration reflects the difference between the likelihood of
an event as a model predicts it and the actual, observed
frequency of the event in question. A calibration plot plots
the primary outcome’s estimated and observed probabilities.
A perfect calibration plot has an intercept of 0 (< 0 reflects
overestimation, > 0 reflects underestimating the probability
of the outcome) and a slope of 1 (the model is performing
similarly in training and test sets) [31, 33]. In a small dataset,
the slope is often < 1, reflecting model overfitting; proba-
bilities are too extreme (low probability is too low, and high
probability is too high) [37].

Overall Prediction Error

Overall prediction error is a composite of discrimination and
calibration, and is measured using the Brier score. A Brier
score of 0 indicates perfect prediction and a Brier score of 1
reflects the poorest prediction [30]. A scaled version of the
Brier score, 1 – (model Brier score/null model Brier score),
can be interpreted as the amount of prediction error in a null
model that the prediction model explains. A 100% scaled
Brier score corresponds to a perfect model, 0% to an in-
effective model, and < 0% to a harmful model [36].

Table 1. continued

Author Methodology
Number of
patients Outcome

Predictors
included

Study
period Main findings

Moerman et al.
[19]

Cox proportional
hazards

30,830 Survival; 1-year
revision

Gender, age, ASA,
smoking BMI,

approach, and stem
fixation

2007 to
2017

Posterolateral
approach and an
uncemented hip
stem have higher
risks for revision
surgery compared

with an anterolateral
approach and
cemented stem

Janssen et al. [12] Cox proportional
hazards

63,354 Survival Age, sex, diagnosis,
ASA, earlier

surgeries, and
coating and

material of stem

2007 to
2013

In THA, cementless
femoral stems with
a proximal shoulder
are associated with

early aseptic
loosening when

inserted through an
anterior or
anterolateral

approach compared
with a posterior

approach

ASA = American Society of Anesthesiologists classification; OA = osteoarthritis; UKA = unicompartimental knee arthroplasty;
CoHXLPE = ceramic-on-HXLPE; CoC = ceramic-on-ceramic; Ox(HXL)PE = oxidized-zirconium-on-(HXL)polyethylene; MoPE = metal-
on-polyethylene; MOM = metal-on-metal.
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Software

Data preprocessing and analysis was performed using R
Version 5.3 (the R Foundation), R- studio Version
1.2.1335 (R-Studio), and Python version 3.10. The fol-
lowing packages were used: caret, cmprsk, geepack,
Hmisc, modelr, prodlim, randomForestSRC,
riskRegression, survival, tidyr, tidyverse, and beeswarm.
We used the following packages for Python: pandas,
numpy, matplotlib, lifelines, sksurv, and sklearn.

Ethical Approval

The Dutch Arthroplasty Register database consists of
anonymized patient data registration; therefore, informed
consent was not necessary. Institutional research board
approval was not required because of the retrospective
nature of the study.

Results

We found no differences between machine learning sur-
vivorship analysis using a competing risks estimator and
traditional regression models for patients undergoing
arthroplasty in terms of discriminative ability (dis-
tinguishing patients who received a revision from those
who did not).

On average, the differences between the validated
performance (AUCt) of different modeling approaches
ranged from -0.04 to 0.03 across the 11 datasets (the
AUCt of the models ranged between 0.52 and 0.68
(Supplemental Table 13; http://links.lww.com/CORR/
B279). There were no consistent differences between
the 11 datasets; on average (the mean difference between
the modeling approaches across 11 comparisons), the
difference was 0.00. These findings indicate that machine
learning and traditional regression models produce
similar probability estimates (Fig. 2).

In addition, there were no consistent differences in
calibration metrics (Supplemental Table 14; http://links.
lww.com/CORR/B279) and overall prediction error
(Supplemental Table 15; http://links.lww.com/CORR/
B279), showing no advantage of machine learning over
conventional modeling.

The cumulative incidence functions (Aalen-Johansen
curves) are shown for the 11 datasets (Fig. 3). For most
datasets, the absolute risk of death surpassed the risk of
revision at some timepoint, which concurs with the pop-
ulation that was generally studied.

The results indicate that the prediction models de-
veloped using the 11 original datasets performed poorly on
discrimination, calibration, and overall prediction error.

Fig. 2 Bee-swarm plots of differences in model performance
AUCt (Dmachine learning – traditional regression) are shown
here. (A) Shows a comparison of the model’s performance at 1-
year follow-up. (B) Shows a comparison of the model’s perfor-
mance at 2 years of follow-up. (C) Shows a comparison of the
model’s performance at 3 years of follow-up. CR = competing risk.
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Fig. 3 These charts demonstrate the cumulative incidence function for the 11 datasets used
in this study. Graph A = Aalen-Johansen curve for Peters et al. [24] for the event of revision
and death after primary THA; Graph B = Aalen-Johansen curve for Peters et al. [23] for the
event of revision and death after primary THA; Graph C = Aalen-Johansen curve for van
Steenbergen et al. [38] for the event of revision and death after primary THA and RHA; Graph
D=Aalen-Johansen curve for vanOost et al. [37] for the event of revision anddeath after PKR;
Graph E = Aalen-Johansen curve for Burger et al. [6] for the event of revision and death after
UKR; Graph F = Aalen-Johansen curve for Kuijpers et al. [15] for the event of revision and
death after primary THA; Graph G = Aalen-Johansen curve for Bloemheuvel et al. [5] for the
event of re-revision anddeath after cup revision surgery; GraphH=Aalen-Johansen curve for
Bloemheuvel et al. [4] for the event of revision and death after primary THA; Graph I = Aalen-
Johansen curve for Spekenbrink-Spooren et al. [29] for the event of revision and death after
primary TKA; Graph J = Aalen-Johansen curve forMoerman et al. [19] for the event of revision
and death after HA and THA; Graph K = Aalen-Johansen curve for Janssen et al. [12] for the
event of revision and death after primary THA. The Aalen-Johansen curve plots the cumu-
lative incidence function of the event of interest (revision) accounting for a competing risk
(death). The x-axis represents the time after the index surgery (in years), the y-axis the
cumulative incidence functions of revision and death. These curves provide insights into the
probability of experiencingdifferent types of events over timewhenmultiple events (revision
and death) are present. RHA = resurfacing hip arthroplasty; PKR = partial knee replacement;
UKR = unicompartmental knee arthroplasty; HA = hemiarthroplasty. A color image accom-
panies the online version of this article.
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This demonstrates that the conventional and machine-
learning algorithms are insufficient for estimating the risk
of revision for patients undergoing arthroplasty, with the
current data available.

Discussion

Estimating the risk of revision after arthroplasty could in-
form patient and surgeon decision-making. However, there
is a lack of well-performing prediction models assisting in
this task, which may be owing to current conventional
modeling approaches such as traditional survivorship
estimators (Kaplan-Meier) or competing risk estimators
(competing risk analyses). Recent advancements in ma-
chine learning survival analysis could improve decision
support tools in this setting. In this comparative study, we
found that a promising machine-learning approach (ran-
dom survival forest) performed similarly to the traditional
survivorship estimator. Neither machine-learning model-
ing nor traditional regression methods were sufficiently
accurate in order to offer prognostic information in the
clinical setting of predicting revision arthroplasty. The
findings of this study suggest that the benefit of these
modeling approaches may be limited in this context.

Limitations

First, the data were derived from the Dutch Arthroplasty
Registry [9] and may not be generalizable to all registry
populations. There is also the potential limitation of pre-
diction modeling of revision after arthroplasty. Further
research should validate these findings in geographically
different settings, considering that other countries may
collect varying sets of variables in their registry with longer
follow-up durations. Second, we chose a common set of
time-to-event points for a true comparison of model per-
formances across the included datasets. Future studies
should evaluate longer time-to-event points for individual
studies investigating the benefits of machine learning sur-
vival analysis with a competing risk. Third, hyper-
parameter tuning was performed on the training dataset.
We did not perform nested cross-validation because of the
current computation time for training a random survival
forest model. However, we did not expect to have an in-
cremental benefit in model performance in our cohorts with
the use of more sophisticated nested cross-validation.

Discussion of Key Findings

Our primary study goal was to estimate the model perfor-
mance of machine learning compared with that of

conventional modeling for estimating the likelihood of
revision after arthroplasty in the presence of censored data.
We included 11 datasets and separately compared the
performance of machine learning to that of conventional
modeling on those 11 datasets and found no incremental
benefit to the use of machine-learning techniques.

Our findings were comparable to those of Aram et al.
[2], who evaluated various model approaches for accu-
rately estimating risk in patients undergoing revision after
knee arthroplasty. Their results showed that a fully para-
metric model (random survival forest) is essential for pre-
dicting revision; however, their study concluded that such
methods did not provide high discriminatory power at the
individual level. Martin et al. [18] aimed to predict revision
surgery after hip arthroscopy, including different model
approaches (such as random survival forest), and con-
cluded that there was limited clinical utility.

The finding that machine learning and traditional
regression methods were comparable is consistent with
a previous study from our group, which compared
machine-learning and logistic regression algorithms for
predicting binary outcomes in orthopaedic trauma using
nine datasets [21]. In other fields, a study expected
machine-learning analysis to outperform Cox proportional
hazard regression analysis in breast cancer survival [20].
However again, random survival forest showed a similar
performance to traditional regression analysis, and
machine-learning algorithms that outperformed traditional
regression analysis did not account for a competing risk.

These findings have implications for future research to
improve decision support tools in the presence of com-
peting risks. First, the observation that machine-learning
models are comparable to traditional models in the pres-
ence of competing risks suggests that their benefit may be
limited. Our findings highlight two points: Machine-
learning methods should not be relied on heavily in pre-
diction modeling, and the benefit of machine-learning
models should be questioned for low-dimensional datasets.
A low-dimensional dataset is a relatively small dataset with
a manageable number of variables, and the specific
threshold depends on the context and study. Most struc-
tured (tabular) orthopaedic datasets are considered low-
dimensional datasets.

Second, the modeling approaches presented here are
insufficient to predict the risk of revision after knee or hip
arthroplasty. The low revision rate ranging between 0.5%
and 4.6% may have limited the models’ ability to distin-
guish between procedures with and without a revision in
the current study’s context [16]. Estimating the likelihood
of revision in arthroplasty will likely remain challenging
for this reason. Imbalance correction techniques could be
applied before training the models in the future, but this
comes at the cost of strong miscalibration [34]. Future re-
search could compare machine learning and traditional
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regression methods for other outcomes, such as patient-
reported outcome measures, and evaluate patient satisfac-
tion after arthroplasty [25, 28].

Conclusion

Neither machine-learning modeling nor traditional re-
gression methods were sufficiently accurate to offer prog-
nostic information in the clinical setting of predicting
revision arthroplasty. The findings of this study suggest
that the benefit of these modeling approaches may be
limited in this context. Developing prediction models for
estimating the risk of revision surgery in patients un-
dergoing arthroplasty is challenging because of the cen-
sored nature of data and the current data availability. Future
efforts should aim at validating this finding in other in-
dependent cohorts.
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