

Graphene transmembrane nanofluidic devices: fabrication strategies and ion transport Kang, X.

Citation

Kang, X. (2025, November 20). *Graphene transmembrane nanofluidic devices: fabrication strategies and ion transport*. Retrieved from https://hdl.handle.net/1887/4283179

Version: Publisher's Version

Licence agreement concerning inclusion of

License: doctoral thesis in the Institutional Repository of

the University of Leiden

Downloaded from: https://hdl.handle.net/1887/4283179

Note: To cite this publication please use the final published version (if applicable).

Propositions

Accompanying the Ph.D. thesis

Graphene transmembrane nanofluidic devices: Fabrication strategies and ion transport

- 1. To understand the mechanisms regulating proton transport across graphene, fabrication challenges should be solved first (Chapter 2 of this thesis).
- 2. Graphene delamination occurs because water intercalates between graphene and the hydrophilic substrate. Turning the substrate hydrophobic should prevent graphene flakes from lifting off (Chapter 3 of this thesis).
- 3. Proton transport in graphene competes with ion transport between the substrate and graphene. Isolating each factor is essential to shed light on the transport mechanisms (Chapter 4 of this thesis).
- 4. Microtome slicing would be a scalable method for producing graphene nanoribbons if graphene could be stably embedded in an epoxy matrix during the slicing process (Chapter 6 of this thesis).
- 5. In practical applications, devices require not only exceptional separation performance but also sufficient stability to withstand harsh conditions (Wang *et al*, *Chem Eng J*, **2025**, 508, 160721).
- 6. In graphene membranes, perfection in structure becomes imperfection in ion transport.
- 7. If vibrational or electronic methods allow *in situ* monitoring of the ion transport process, imaging techniques may no longer be important in characterizing membranes.
- 8. Theoretical studies are important to support an experimental hypothesis when the underlying mechanisms cannot be fully understood through experiments alone.
- 9. Hard work doesn't always pay off, but not working hard almost never does.
- 10. The hardest part of a PhD is staying motivated during long periods of self-doubt.

Xiaofang Kang Leiden, November 20, 2025