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Hematology

Machine Learning-Based Prediction of
Hemoglobinopathies Using Complete Blood
Count Data
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BACKGROUND: Hemoglobinopathies, the most com-
mon inherited blood disorder, are frequently underdiag-
nosed. Early identification of carriers is important for
genetic counseling of couples at risk. The aim of this
study was to develop and validate a novel machine learn-
ing model on a multicenter data set, covering a wide
spectrum of hemoglobinopathies based on routine com-
plete blood count (CBC) testing.

METHODS: Hemoglobinopathy test results from 10 322
adults were extracted retrospectively from 8 Dutch la-
boratories. eXtreme Gradient Boosting (XGB) and logis-
tic regression models were developed to differentiate
negative from positive hemoglobinopathy cases, using
7 routine CBC parameters. External validation was con-
ducted on a data set from an independent Dutch labora-
tory, with an additional external validation on a Spanish
data set (n = 2629) specifically for differentiating thalas-
semia from iron deficiency anemia (IDA).

RESULTS: The XGB and logistic regression models
achieved an area under the receiver operating character-
istic (AUROC) of 0.88 and 0.84, respectively, in distin-
guishing negative from positive hemoglobinopathy cases
in the independent external validation set. Subclass ana-
lysis showed that the XGB model reached an AUROC
of 0.97 for P-thalassemia, 0.98 for o°-thalassemia,
0.95 for homozygous o'-thalassemia, 0.78 for

heterozygous o-thalassemia, and 0.94 for the structural
hemoglobin variants Hemoglobin C, Hemoglobin D,
Hemoglobin E. Both models attained AUROCs of
0.95 in differentiating IDA from thalassemia.

coNcLUSIONS:  Both the XGB and logistic regression
model demonstrate high accuracy in predicting a broad
range of hemoglobinopathies and are effective in differ-
entiating hemoglobinopathies from IDA. Integration of
these models into the laboratory information system fa-
cilitates automated hemoglobinopathy detection using
routine CBC parameters.

Introduction

Normal adult hemoglobin (Hb A) is a tetramer com-
posed of 2 o and 2 f globin chains, which facilitates oxy-
gen transport via a reversible binding mechanism.
Hemoglobinopathies stem from mutations or deletions
affecting a-globin (HBAI, HBA2) genes, B-globin
(HBB) genes, y-globin (HBGI1, HBG2) genes, and
d-globin (HBD) genes. Structural variants of hemoglo-
bin typically result from qualitative changes such as ami-
no acid substitutions, whereas quantitative alterations,
including gene deletions or mutations, manifest as tha-
lassemias that reduce globin chain production (1, 2).
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Automated Detection of Hemoglobinopathies

The clinical presentations of the conditions vary widely,
ranging from non-anemic states or mild microcytic hy-
pochromic anemia up to severe anemia requiring regular
blood transfusions (3, 4).

According to the World Health Organization
(WHO), hemoglobinopathies affect over 5.2% of the glo-
bal population, and account for 3.4% of deaths in chil-
dren below the age of 5 (5, 6). The prevalence is higher
in malaria-endemic regions but is rising in traditionally
non-endemic regions, such as Northern Europe and
North America, due to increased migration (7-10).
Many hemoglobinopathy carriers remain undiagnosed
due to the low awareness of physicians in non-endemic
regions, lack of symptoms in carriers, and limited access
to advanced laboratory testing in developing countries
(11, 12). Carrier detection, however, is crucial to identify
couples at risk of having children affected with severe
forms of hemoglobinopathy (13). Early diagnosis, which
can be facilitated through screening and genetic counsel-
ing, is crucial in preparing at-risk couples.

Specific changes in complete blood count (CBC)
parameters are used by laboratory specialists to recom-
mend diagnostic testing for hemoglobinopathy to clini-
cians. These include reduced levels of hemoglobin (Hb)
and mean corpuscular volume (MCV). The CBC
changes seen in hemoglobinopathies can often mimic
those of iron deficiency anemia (IDA), which can result
in unnecessary iron supplementation.

To differentiate between hemoglobinopathies and
IDA, various machine learning (ML) models or rule-based
formulas, with varying degrees of accuracy, have been de-
veloped using CBC results to predict the risk of a potential
hemoglobinopathy. The majority of these formulas specif-
ically differentiate one distinct thalassemia (o0 or B) from
IDA (e.g., 14-19). These formulas were not designed to
differentiate structural hemoglobin variants, combinations
of multiple hemoglobinopathies, or cases with a hemo-
globinopathy and concomitant iron deficiency (20, 21).

The aim of this study was to develop and validate,
using an extensive multicenter data set, a novel ML
model and a logistic regression model to detect a broad
spectrum of hemoglobinopathies that can be applied
using routine CBC testing results.

Materials and Methods

Anonymized hemoglobinopathy diagnostic test results
from 10322 adults were extracted retrospectively over
12 years (2011 to 2022) from the laboratory informa-
tion systems of 8 Dutch laboratories: Amphia Hospital
(n=1559), Isala Hospital (n=1321), Jeroen Bosch
Hospital (n=927), Maasstad Hospital (n=2894),
Mixima Medical Center (n=719), Meander Medical
Center (n=984), Medlon BV (Medlon) (n=3160),

and Zuyderland Medical Center (n=758). Along with
the hemoglobinopathy test results, the data comprised
CBC parameters including Hb, MCV, mean corpuscu-
lar hemoglobin (MCH), mean corpuscular hemoglobin
concentration (MCHC), red cell distribution width -
coefficient of variation (RDWCV), red blood cell
(RBC) count, and platelets (Plt).

DIAGNOSTIC METHODOLOGY

Analyzers used for measuring the hematological para-
meters and the hemoglobinopathy diagnostics vary ac-
cording to laboratory (online Supplemental Table 1).
Hemoglobinopathy diagnostics encompass the diagnostic
analysis of structural hemoglobin variants and
B-thalassemia using either high-performance liquid chro-
matography (HPLC) or capillary electrophoresis (CE).
The DNA analysis of o-thalassemia was performed using
either gene-associated polymorphism PCR (GAP-PCR)
or strip PCR or multiplex ligation-dependent probe amp-
lification (MLPA). In instances where no mutation was
detected, yet clinical suspicion persisted, whole exome se-
quencing was conducted in Leiden University Medical
Center (UMC) upon request. CBC parameters were mea-
sured using either an Advia 2120i (Siemens Healthineers)
or Sysmex XN-9000  (Sysmex  Corporation)
(Supplemental Table 1). An overview of all CBC data
(n=28564) per laboratory is presented in online
Supplemental Table 2. Differences in CBC parameters be-
tween laboratories can be accounted for due to large differ-
ences in hemoglobinopathy prevalence in the data sets
across laboratories, ranging from 29.9% to 49.9%. As
the data from the Jeroen Bosch Hospital and Maasstad
Hospital contained no negative cases (Fig. 1), these data
sets had a 100% prevalence.

MODEL DEVELOPMENT
The CBC parameters were used as input for the models.
The clinical interpretation of the hemoglobinopathy test
results by the specialist in laboratory medicine or the lead-
ing expert of Leiden UMC served as the ground truth for
the model, with the primary objective of learning to distin-
guish positive from negative cases, maximizing clinical
utility. Pathology-specific classifiers were trained on
a-thalassemia, B-thalassemia, and combinations with the
aim to differentiate subtypes from negative cases for com-
parison with the original positive—negative hemoglobin-
opathy model. However, the results indicated no
substantial improvement of the pathology-specific models
compared to the original positive-negative hemoglobin-
opathy classification model (online Supplemental Fig. 1).
Since incorporating sex as a parameter did not affect the
models’ performance, it was excluded from our model.
Data from 7 out of 8 laboratories were used for
model development. Cases that received blood
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A Model Development Dataset

N=82
‘ Excluded Cases with blood transfusions
l within three months preceding
hemoglobinopathy testing
N=7080
Cases without blood transfusions
| Excluded | L
XCUCEE . Cases with inconclusive
l hemoglobinopathy test results
N=6353
Cases with conclusive
hemoglobinopathy test results
N=445
| Exciudes . Cases missing four or more
l CBC parameters.
N=5908
Included cases for developing the
machine learning model
B External Validation Dataset
N=9
| Excluded . Cases with blood transfusions
l within three months preceding
hemoglobinopathy testing
N=3151
Cases without blood transfusions
N=166
‘ Excluded . cases with inconclusive
i hemoglobinopathy test results
N=2985
Cases with conclusive
hemoglobinopathy test results
‘ Excluded N=329
»  Cases with any missing CBC
l parameters.

N=2656
Included cases for validating the
machine learning model

Fig. 1. Inclusions and exclusions in the model development and external validation data set. (A), The mod-
el development data set consisted of laboratories: Amphia Hospital (n = 1559), Isala Hospital (n = 1321),
Jeroen Bosch Hospital (n = 927), Maasstad Hospital (n = 894), Maxima Medical Center (n =719), Meander
Medical Center (n = 984), and Zuyderland Medical Center (n = 758); (B), Medlon (n = 3160) was reserved
for external validation. After exclusions, the development data set included 5908 cases, and the external
validation data set comprised 2656 cases. Color figure available at https://academic.oup.com/clinchem.
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transfusions in the preceding 3 months or with incon-
clusive hemoglobinopathy test results were excluded
(Fig. 1A). Jeroen Bosch Hospital and Maasstad
Hospital employ a restricted approach for hemoglobin-
opathy diagnostics, primarily relying on an MCV
(<80fL) cutoff to decide whether to perform
a-thalassemia diagnostics. As this leads to biased data,
cases from Jeroen Bosch Hospital and Maasstad
Hospital with a negative test result were excluded.
Cases missing 4 or more CBC parameters were also ex-
cluded (n=445). Cases missing 3 or less CBC para-
meters were imputed using iterative imputation. This
threshold was chosen to balance preservation of enough
cases from each laboratory while minimizing missing
parameters for imputation, resulting in a final model de-
velopment data set of 5908 cases (nposicive = 3249,
Npegaiive = 2659). The integrity of the imputation pro-
cess was validated through pre- and post-imputation dis-
tribution comparisons, conducted via kernel density
estimation plots, mean and interquartile range assess-
ments, and individual case evaluations. Eighty percent
of the data set (n = 4726) was used for training and tun-
ing using repeated stratified 10-fold cross-validation,
with the aims of preserving the same class distribution
across the folds and repeating the cross-validation pro-
cedure multiple times using the mean performance re-
sult for tuning the models (22). Twenty percent was
reserved for internal validation of the model’s perform-
ance (n=1182).

The XGB model was trained using an eXtreme
Gradient Boosting algorithm with the XGBoost package
(1.7.3). The model was trained to maximize the area un-
der the receiver operating characteristic (AUROC).
During training a learning rate (eta) of 0.1, 1000 boosting
rounds and 20 early-stopping rounds and a tree-depth of 6
were used. Analyses were carried out using Python 3.8
(Python Software Foundation), with the packages
Numpy (1.20), Pandas (0.28), Sklearn (1.1.1), XGBoost
(0.24), and SHAP (0.41). A logistic regression-based
model was developed using Sklearn (1.1.1). The formula
of the logistic regression for calculating the hemo-
globinopathy probability = 1/(1 + eM(—(—2.73516742 +
—0.139101127*MCV [fL] + —0.133152018*RDWCV
[%] + 3.38704562*MCH]|fmol] + —0.998798*Hb[mmol/
L] +0.488415669*MCHC[mmol/L] + 1.74713625*RBC
[count X 10"%/L] + 0.000129845*Plt[count X 10°/L)))).
To use the formula with traditional concentration units,
the CBC data must be converted to SI units. As this
study used a muldivariable XGB model, the
Transparant Reporting of a multivariable prediction
model for Individual Prognosis or Diagnosis
(TRIPOD) checklist was used for increased transparency
of the methodology (online Supplemental Table 3).
XGB and logistic regression models are made publicly
available  via  GitHub:  doi:hteps:/github.com/

aschipper/hemoglobinopathies-Al and via Figshare:
https://doi.org/10.6084/m9.figshare.25765302.

CLASSIFICATION OF HEMOGLOBINOPATHIES

In total, the data set comprised 106 distinct hemoglobi-
nopathies, systematically categorized into 4 subclasses
for the distinct evaluation of the models’ discriminative
performance against all negative cases in the external valid-
ation set: (a) o-thalassemia, (b) B-thalassemia, (c) struc-
tural hemoglobin variants, and (d) combinations of
thalassemia and concomitant structural hemoglobin var-
iants. o-thalassemia was subclassified as: hemoglobin H
(Hb H) disease, a’-heterozygote, a-homozygote, com-
pound heterozygote, and o'-heterozygote. B-thalassemia
was subclassified as B-thalassemia and P—0-thalassemia.
Structural hemoglobin variants were subclassified as:
hemoglobin E (Hb E) homozygote/heterozygote, hemo-
globin C (Hb C) homozygote/heterozygote, hemoglobin
D (Hb D) homozygote/heterozygote, hemoglobin S
(Hb S) heterozygote, and sickle cell anemia. Sickle cell an-
emia encompasses Hb S homozygote, and compound het-
erozygote Hb S/Hb C, Hb S/B-thalassemia, Hb S/Hb E,
and Hb S/Hb D. The “combinations” category predom-
inantly comprised cases where a-thalassemia was present
in combination with a structural hemoglobin variant.

MODEL VALIDATION

The complete data set from the Dutch laboratory Medlon
was reserved for independent external validation (n = 2656,
Nposiive = 1004, Npeguive = 1652) of the XGB and logistic
regression models (Fig. 1B). Medlon carries out a compre-
hensive diagnostic evaluation for each hemoglobinopathy
diagnostic request, which encompasses Sanger sequencing
of both a and B globin genes. Cases with any missing
CBC parameters were excluded (n=329) (Fig. 1B).

THALASSEMIA VS IDA

The effectiveness of the XGB and logistic regression
models in differentiating between thalassemia and IDA
was evaluated on a previously published patient data
set from Galdakao-Usansolo Hospital in Spain, which
focusses on cases with microcytic anemia (14). CBC
parameters were measured using Abbott Sapphire,
Siemens Advia, and Beckman Coulter LH750 and
LH?780. IDA was considered present when serum ferritin
was <15 pg/L, and/or transferrin saturation was <20%.
The data set consisted of 2629 cases (Nyhalassemia = 1370,
nipa = 1259) over a period of 9 years (2007 to 2015). As
platelet values were missing in 1832 cases, these values
were imputed using Sklearn’s iterative imputer.

SCREENING FOR HEMOGLOBINOPATHIES IN CBC RESULTS

The use of the algorithms as a screening tool on all CBC
requests in a healthcare setting was assessed on a data set

Clinical Chemistry 70:8 (2024) 1067
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Table 1. (continued)

MCH? MCHC? Mcv? PIt® RBC? RDWCV?

Hb?®

12.6
(11.0-14.7)°

Category

13.5
(12.7-15.3)

4.9

(4.3-5.0)°

84 273
(220-309)

(79-87)

33.5
(32.5-34.0)°

27.6
(24.2-29.0)

32

Hb D homozygote/heterozygote

Combinations

15.0
(13.9-16.5)°

5.1
(4.5-5.6)°

251

(204-296)°

74
(68-79)°

32,5
(31.4-33.7)°

24.0

(20.9-25.8)°

12.1
(10.8-13.4)°

412

Combinations

The bold values in the table refer to inputs belonging to the positive and negative classes on which the models are developed.

?Hb, hemoglobin [g/dL] (Sl conversion factor [g/dL to mmol/L]: 0.6206); MCH, mean corpuscular hemoglobin [pg] (S| conversion factor [pg to fmol]: 0.0621); MCHC, mean corpuscular hemoglobin

concentration [g/dL] (Sl conversion factor [g/dL to mmol/L]: 0.6206); MCV, mean corpuscular volume [fL]; Plt, platelet count [103/uL] (Sl conversion factor [103/HL to count x107/L]: 1.0); RBC, red blood
cell [10%/uL] (SI conversion factor [10%/uL to count x10'%/L]: 1.0); RDWCYV, red cell distribution width - coefficient of variation [%].

®Median value differed significantly between positive and negative cases.

from the Jeroen Bosch Hospital. The data set consisted
of all CBC results of January 2023, a total of 20 870
CBC results. Sixty-eight positive cases from 2022 to
2023 were artificially added to enrich the data set with posi-
tive cases, due to the low prevalence of hemoglobinopathies
in the region. These were all positive cases, without any
preselection (ensuring no selection bias), that underwent
hemoglobinopathy diagnostics at Jeroen Bosch Hospital
between April 2022 and June 2023 and were not part of
the original model development data set. This resulted in
a final prevalence of 0.59% in the data set. CBC results
from children or cases with incomplete parameters were ex-
cluded (n = 969), resulting in a final data set of 19 969 cases
(Npositive = 118, Npegaive = 19 851). “Negative” cases were
classified as cases that had not been diagnosed with a hemo-
globinopathy in the Jeroen Bosch Hospital. Therefore, the
category of “negative” cases will contain an unknown (lim-
ited) number of false-negative cases. Additionally, the area
under the precision-recall curves (AUPRCs) and
Matthews correlation coefficients (MCCs) were generated
to account for the large class imbalance in the data set
and assess real-world utility scenarios.

STATISTICS

CBC parameters are presented as medians and inter-
quartile ranges (+IQR) (Table 1 and online
Supplemental Tables 2 and 4). Kruskal-Wallis tests
were used to assess significant differences in medians be-
tween each hemoglobinopathy category and cases with-
out a hemoglobinopathy. A value of P<0.05 was
considered statistically significant.

Confidence intervals (CI) for the AUROC and
AUPRC values were established through cross-
validation, employing 10-folds with 50 repeats. The
2.5th and 97.5th percentiles of the ranked list of 500
AUROC and AUPRC values were computed to deter-
mine the CI. The MCC was derived by identifying
the optimal threshold that maximized MCC.

Results

Positive hemoglobinopathy cases exhibited distinct patterns
compared to negative cases. These patterns included signifi-
cantly lower MCV, MCH, and MCHC, and notably high-
er RDWCYV and RBC levels than negative cases (Table 1).
As Hb and RBC counts are sex-specific, they are presented
as separate values for each sex (Supplemental Table 4).

MODEL PERFORMANCE

The primary objective of the models developed in this
study was to differentiate negative cases from positive
hemoglobinopathy cases based on routine CBC para-
meters. The internal validation of the XGB model
achieved an AUROC of 0.90 (+0.01) compared to an
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G20z JoquanoN 61 U0 3s9NB AQ G81./69//4901/8/0./2101E/WSYIUI W00 dNO™DIWapeoe)/:Sdjy WO paPEOUMOQ


http://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvae081#supplementary-data
http://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvae081#supplementary-data
http://academic.oup.com/clinchem/article-lookup/doi/10.1093/clinchem/hvae081#supplementary-data

m

D External validation LR model

A External validation ML model B Parameter contributions ML C Probability threshold selection ML model
1 e _ | Specificity
— 2 Pl ;
o = :g © ar \ Specificity 95%  99% spec=0.93
E - \. { 95% spec = 0.80
2 5 ;
Z 0.6 ° 206 \ I 90% spec = 0.68
= = 46.4% o
£ i 558 & \ 25% spec = 0.58
% 0.4 £ go4 o Sensitivity
7] @ = \
g g A
0.2 3 02 \ 99% sens = 0.10
(=3
= 11.0% 10.2% 9.6% g .- \ 95% =030
—XGBoost AUROC 0.88 £0.01 3 8.8% 8.6% o oy - | sens
] H ' » ” - " » 90% sens =045
0 0.2 04 06 08 1 é 0% 20% 40&-44“ 60% sod.»o_ 1oot;-g_ i
1 - Specificity MCV RDWCV RBC MCH MCHC Pt Hb - - - Specificity (%) Sensitivity (%) 85% sens = 0.52

Parameter contributions LR

z 1 Specificity
z i 99% spec = 0.85
0.8 "g’ 9 s \ Specifict} 95% p
@ £ ] 95% spec = 0.73
F -3 o
Z0.6 o 49.1% g 0.6 90% spec =065
= - .u
& 2 S 85% spec =058
£ i
o 0.4 s £ 04 Sensitivity
g 25.3% T
k3 < o2 9% =
0.2 .5 14.5% 99% sens =0.15
3 95% sens =0.33
— Logistic Regression AUROC 0.84 £0.01 2 7.1% 19% 2.0% o
=1 %6 2.0% 509 =
% o2 04 o6 o088 1 & 0.0% 0% 20% 40% 60% 80% 100% 2k 2ens=0.44
1 - Specificity © MCH RBC  Hb  MCHC RDWCV MGV  Pit = = = Specificity (%) Sensitivity (%) 85% sens = 0.50

F Probability threshold selection LR maodel

academic.oup.com/clinchem.

Fig. 2. Receiver operating characteristic plots of (A) the XGBoost (XGB) and (D) logistic regression (LR)
model of the independent external validation set. Contributions of each individual parameter to the
XGB model are SHapley Additive exPlanations (SHAP) values (B) and logistic regression coefficients (E)
scaled and plotted as percentage contributions to the prediction. Plot with different probability thresh-
olds based on prioritizing specificity or sensitivity for the (C) XGB and (F) logistic regression model.
Abbreviations: MCV, mean corpuscular volume; RDWCV, red cell distribution width - coefficient of vari-
ation; MCH, mean corpuscular hemoglobin; Hb, hemoglobin; MCHC, mean corpuscular hemoglobin con-
centration; RBC, red blood cell count; Plt, platelet count. Color figure available at https://

AUROC of 0.86 (0.01) of the logistic regression (online
Supplemental Fig. 2). On the independent external valid-
ation set, the XGB model achieved an AUROC of 0.88
(20.01) and the logistic regression an AUROC of 0.84
(+0.01) (Fig. 2A and D). The contribution of each param-
eter to the models is presented in Fig. 2B and E, including
the feature contributions to 2 random example cases, one
negative and positive (online Supplemental Fig. 3). Both
models generate a quantitative probability ranging from 0
to 1 that can be converted to a qualitative prediction of
the absence or presence of hemoglobinopathy using a thresh-
old prioritizing either specificity or sensitivity (Fig. 2C and
F). A probability threshold of >0.80 for the XGB model
and a probability threshold of >0.73 for the logistic regres-

sion are associated with a 95% specificity cutoff.

SUBCLASS ANALYSIS OF THE MODEL ON SPECIFIC
HEMOGLOBINOPATHIES
In a subclassification analysis of a-thalassemia, the

XGB model achieved AUROC scores of 0.98 for

1070 Clinical Chemistry 70:8 (2024)

o-heterozygote, 0.95 for o' -homo- and compound het-
erozygote, and 0.78 for a*-heterozygote (Fig. 3A). In the
case of P-thalassemia, the XGB model attained an
AUROC of 0.97 (Fig. 3B). Subclass analysis on struc-
tural hemoglobin variants demonstrated AUROCs of
0.94 for Hb E, Hb C and Hb D homozygotes and het-
erozygotes, 0.91 for sickle cell anemia, and 0.70 for Hb
S heterozygotes (Fig. 3C). For combinations of hemo-
globinopathies, the XGB model reached an AUROC
of 0.92 (Fig. 3D). Performances of specific hemoglobi-
nopathies of the logistic regression model can be found
in online Supplemental Fig. 4.

DIFFERENTIATING THALASSEMIA FROM IDA

We assessed the capability of the XGB and logistic regres-
sion models to distinguish between thalassemia and IDA
using a patient data set previously published by
Galdakao-Usansolo Hospital in Spain. Both the XGB
and logistic regression model attained an AUROC of
0.95 (+0.01) in differentiating cases with IDA and
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Fig. 3. Receiver operating characteristic plots for of the XGBoost (XGB) model for the subclasses of the
external independent validation set. (A), ao-heterozygote (n = 46), homozygote (including compound het-
erozygotes) (n = 68), and o -heterozygote (n = 304); (B), p-thalassemia (n = 306); (C), Hb E (hemoglobin E),
Hb C (hemoglobin C), Hb D (hemoglobin D) (n = 35), sickle cell anemia (n = 44), and Hb S (Hemoglobin S)
heterozygote (n = 79); and (D), combinations (combinations between thalassemia, and concomitant struc-
tural hemoglobin variants) (n = 118). Color figure available at https://academic.oup.com/clinchem.

thalassemia (Fig. 4A and D). Subclass analysis demon-
strated that the XGB and logistic regression models distin-
guished a-thalassemia from IDA with an AUROC of 0.90
and 0.89, respectively. Both models reached an AUROC
of 0.97 for distinguishing [-thalassemia from IDA
(Fig. 4B and E). Median predicted probability scores
of the XGB model for o-thalassemia (median=0.93,
IQR:0.85 to 0.96) and B-thalassemia cases (median =
0.98, IQR: 0.96 to 0.99) significantly surpassed that for
cases with an IDA (median = 0.54, IQR: 0.36 to 0.75)
(Fig. 4C). The median predicted probability scores of lo-
gistic regression for cases with an IDA (median = 0.56,

IQR: 0.45 to 0.65) was significantly lower compared to
a-thalassemia (median =0.83, IQR:0.74 to 0.88) and
B-thalassemia cases (median =0.94, IQR: 0.89 to 0.98)
(Fig. 4F).

EVALUATION OF THE MODEL AS A SCREENING TOOL ON CBC
RESULTS

We evaluated the capacity of the XGB and logistic re-
gression models as screening tools when implemented
on a month of CBC results. In total, a data set of
19969 CBC results from routine practice, containing
118 known positive cases, was used. The XGB model

Clinical Chemistry 70:8 (2024) 1071

G20z JoquanoN 61 U0 3s9NB AQ G81./69//4901/8/0./2101E/WSYIUI W00 dNO™DIWapeoe)/:Sdjy WO paPEOUMOQ



A XGB model thalassemia - IDA

1

D LR model thalassemia - IDA

B XGB model o/p-thalassemia - IDA € Predicted probabilities XGB model

| N il
> 0.8 | !
0.8 = |
5 = [
=)
3 06 !
206 = £ R — '
£ s E :
@ 2 g %4
504 3 3
B b2
0.2 " —1—
— B-thalassemia AUROC 0.97 £0.00 IDA a-thalassemia B-thalassemia
—XGBoost AUROC 0.95 +0.01 - - a-thalassemia AUROC 0.90 £0.01 (n=1259) (n=429) (n=941)
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 .
1 - Specificity 1 - Specificity

E LR model a/B-thalassemia - IDA

1

F Predicted probabilities LR model

1 1 1 ———
0.8 Z o8 |
0.8 = i
% g :
Zo6 Zoe6 £ ° 1= i
= = 3 i |
g g | % o
i~ c ° ]
3 0.4 2 0.4 :' g
' 0.2
| ==
i
0.2 0.2
| — B-thalassemia AUROC 0.7 +0.00 IDA a-thalassemia B-thalassemia
— Logistic Regression AUROC 0.95 =0.01 i = =a-thalassemia AUROC 0.89 +£0.01 (n=1259) (n=429) (n=941)
o] 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

1 - Specificity 1 - Specificity

Fig. 4. Receiver operating characteristic plot of (A) the XGBoost (XGB) model and (D) logistic regression
(LR) of the Spanish external validation data set differentiating thalassemia from IDA (iron deficiency an-
emia). Receiver operating characteristic plot of (B) the XGB model and (E) the logistic regression, differ-
entiating a-thalassemia and B-thalassemia from IDA (ng.thalassemia = 429, Np_thalassemia = 941, Nipa = 1259).
(C), XGB model predicted probabilities for IDA (median=0.54, IQR:0.36 to 0.75), e-thalassemia
(median = 0.93, IQR: 0.85 to 0.96), and B-thalassemia (median = 0.98, IQR: 0.96 to 0.99); (F), Logistic re-
gression predicted probabilities for IDA (median = 0.56, IQR: 0.45 to 0.65), a-thalassemia (median = 0.83,
IQR: 0.74 to 0.88), and B-thalassemia (median=0.94, IQR: 0.89 to 0.98). Color figure available at

https://academic.oup.com/clinchem.

reached an AUROC of 0.97 (+0.01), and the logistic re-
gression model 0.98 (+0.01) on differentiating negative
from positive cases (Fig. 5A and D). When comparing
sensitivities at several specificity thresholds, the logistic
regression model showed higher sensitivities compared
to the XGB model. At a specificity of 99.8%, the logistic
regression model reached a sensitivity of 57%, whereas
the XGB model had a sensitivity of 35% (Fig. 5B and
E). Precision-recall curves revealed that the XGB model
yielded a lower average precision of 0.55 (+0.06) com-
pared to logistic regression’s of 0.65 (+0.05). Notably,
the logistic regression model exhibited greater uncertainty
at high precision levels (0.75 to 1.00) (Fig. 5C and F). An
overview of precision values at specific recall levels for
both models is provided in online Supplemental Table 6.
The maximum MCC for the XGB model was 0.51 at a
probability threshold of 0.92, whereas, for logistic regression,
it was 0.65 at a threshold of 0.78. Given that a significant

1072 Clinical Chemistry 70:8 (2024)

number of false-positive cases from the XGB model were se-
verely anemic patients from the intensive care unit (ICU),
we do not advise using this algorithm for ICU patients.

Discussion

In this study, an ML algorithm was developed and ex-
tensively validated using routine CBC parameters to ac-
curately predict a broad range of hemoglobinopathies,
including thalassemias, various hemoglobin variants,
and their diverse combinations, showcasing the ML al-
gorithm’s wide-ranging applicability in medical diagnos-
tics. To address the significant challenge many
laboratories encounter in integrating ML algorithms
into their laboratory information systems, a logistic re-
gression formula was concurrently developed, offering
a more straightforward and feasible implementation in
clinical care.
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Numerous ML-based clinical decision support and ~ the models presented in our study enable 2 potential
case-finding systems rely heavily on laboratory data.  clinical implementation strategies. Firstly, leveraging
These tools offer unique opportunities for laboratories  a high positive predictive value (PPV), the model
to enhance the quality of healthcare. However, existing ~ can screen routine CBC tests to flag new potential

rule-based formulas and ML algorithms for identifying ~ hemoglobinopathy cases. Laboratory  medicine
hemoglobinopathies have limitations. The majority of  specialists can then verify if these flagged patients

these rule-based formulas and ML models are tailored ~ have a known hemoglobinopathy diagnosis and, if

to specific subcategories or subgoals, such as identifying ~ not, recommend diagnostic testing for hemoglobin-
one specific thalassemia (19, 23-26) and distinguishing opathy. Secondly, employing its high negative predict-
these from IDA (15, 17, 27-32). Moreover, these mod- ive value (NPV), the model offers a cost-effective
els are primarily designed using small single-center data ~ approach by advising against the pursuit of expensive
sets lacking independent validation (15, 16, 18, 33-306). a-thalassemia DNA diagnostics for patients who have
These factors limit the applicability and reliability of  both a negative HPLC/CE result combined with a low

many of these formulas and models when applied out-  probability of hemoglobinopathy according to our
side their training context. model. This dual approach enhances early detection
The deployment of ML models necessitates se-  and reduces unnecessary testing. In this study the

lecting an optimal threshold that prioritizes sensitivity ~ sensitivity and specificity for each threshold was pro-
or specificity, and the positive or negative predictive  vided, enabling laboratories to determine their desired

value. This choice is dependent upon local require-  cutoff value based on local preferences (Fig. 2C and F).
ments and preferences, related to additional workload, ~ Our simulation of the case-finding capacities of our mod-
cost-effectiveness, and the prevalence of hemoglobino- els in a screening-based approach showed satisfactory re-

pathies, which varies substantially among endemic  sults. Interestingly, the logistic regression model
and non-endemic regions. Considering these factors,  outperformed the XGB model (AUROC 0.98 vs 0.97,
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and a MCC of 0.65 vs 0.51). This is likely due to the fact
that the XGB model was also trained to identify sickle cell
patients. In this screening analysis, there was only one
sickle cell patient in the positive cases. Moreover, many
of the false-positive cases in the XGB model were from
ICU patients with severe anemia with high MCV, likely
mimicking sickle cell CBC results. Therefore, use of the
XGB algorithm for ICU patients is not advised.

Several limitations need to be considered. Firstly, the
current model was exclusively developed and designed for
adults, recognizing the substantial differences in CBC para-
meters between young children and adults. Secondly, the
GAP-PCR was specifically designed to identify the com-
mon o-thalassemia deletions, and the strip-assay methods
can detect approximately 90% of a-thalassemia gene muta-
tions (8, 37). Consequently, instances classified as “nega-
tive” may still possess o-thalassemia mutations not
covered by these diagnostic tests. The inclusion of such
false-negative cases in the model development data set leads
to an underperformance of the model.

On the other hand, this study exhibits several notable
strengths. The XGB and logistic regression models were
developed using extensive multicenter data collected over
a span of 12 years, showcasing robust performance across
various hematological analyzers. Furthermore, both models
underwent thorough external validation. Moreover, the ef-
ficacy of the XGB model in distinguishing thalassemia
from IDA was substantiated in a Spanish population,
where it outperformed all other rule-based formulas, in-
cluding Jayabose, Janel, Green and King, and Shine and
Lal (14) (Supplemental Table 5).

In conclusion, this study effectively demonstrated
the capability of an ML model to accurately predict a wide
spectrum of hemoglobinopathies using routine CBC para-
meters. Moreover, a logistic regression model was developed,
providing a more practical approach for implementation.
Integration of either of these models into the laboratory infor-
mation system facilitates automated detection of hemoglobi-
nopathies based on routine CBC parameters.

Supplemental Material

Supplemental material is available at Clinical Chemistry
online.

Nonstandard Abbreviations: CBC, complete blood count; XGB,
eXtreme Gradient Boosting; IDA, iron deficiency anemia; AUROC,
area under the receiver operating characteristic; Hb, hemoglobin;
MCV, mean corpuscular volume; ML, machine learning; RBC, red
blood cell count; MCC, Matthews correlation coefficient, ICU, inten-
sive care unit.

Human Genes: HBA1, hemoglobin subunit alpha 1; HBA2, hemoglo-
bin subunit alpha 2; HBB, hemoglobin subunit beta; H/BG1, hemoglo-
bin subunit gamma 1; HBG2, hemoglobin subunit gamma 2; HBD,
hemoglobin subunit delta.
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