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Machine Learning-Based Prediction of 
Hemoglobinopathies Using Complete Blood 

Count Data
Anoeska Schipper,a,b Matthieu Rutten,b,c Adriaan van Gammeren,d Cornelis L. Harteveld,e Eloísa Urrechaga,f

Floor Weerkamp,g Gijs den Besten,h Johannes Krabbe,i Jennichjen Slomp,i Lise Schoonen,g,j Maarten Broeren,k

Merel van Wijnen,l Mirelle J.A.J. Huijskens,m Tamara Koopmann,e Bram van Ginneken,b Ron Kusters ,a,n,†  

and Steef Kurstjensa,*,†

BACKGROUND: Hemoglobinopathies, the most com
mon inherited blood disorder, are frequently underdiag
nosed. Early identification of carriers is important for 
genetic counseling of couples at risk. The aim of this 
study was to develop and validate a novel machine learn
ing model on a multicenter data set, covering a wide 
spectrum of hemoglobinopathies based on routine com
plete blood count (CBC) testing.

METHODS: Hemoglobinopathy test results from 10 322 
adults were extracted retrospectively from 8 Dutch la
boratories. eXtreme Gradient Boosting (XGB) and logis
tic regression models were developed to differentiate 
negative from positive hemoglobinopathy cases, using 
7 routine CBC parameters. External validation was con
ducted on a data set from an independent Dutch labora
tory, with an additional external validation on a Spanish 
data set (n = 2629) specifically for differentiating thalas
semia from iron deficiency anemia (IDA).

RESULTS: The XGB and logistic regression models 
achieved an area under the receiver operating character
istic (AUROC) of 0.88 and 0.84, respectively, in distin
guishing negative from positive hemoglobinopathy cases 
in the independent external validation set. Subclass ana
lysis showed that the XGB model reached an AUROC 
of 0.97 for β-thalassemia, 0.98 for α0-thalassemia, 
0.95 for homozygous α+-thalassemia, 0.78 for 

heterozygous α+-thalassemia, and 0.94 for the structural 
hemoglobin variants Hemoglobin C, Hemoglobin D, 
Hemoglobin E. Both models attained AUROCs of 
0.95 in differentiating IDA from thalassemia.

CONCLUSIONS: Both the XGB and logistic regression 
model demonstrate high accuracy in predicting a broad 
range of hemoglobinopathies and are effective in differ
entiating hemoglobinopathies from IDA. Integration of 
these models into the laboratory information system fa
cilitates automated hemoglobinopathy detection using 
routine CBC parameters.
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Introduction

Normal adult hemoglobin (Hb A) is a tetramer com
posed of 2 α and 2 β globin chains, which facilitates oxy
gen transport via a reversible binding mechanism. 
Hemoglobinopathies stem from mutations or deletions 
affecting α-globin (HBA1, HBA2) genes, β-globin 
(HBB) genes, γ-globin (HBG1, HBG2) genes, and 
δ-globin (HBD) genes. Structural variants of hemoglo
bin typically result from qualitative changes such as ami
no acid substitutions, whereas quantitative alterations, 
including gene deletions or mutations, manifest as tha
lassemias that reduce globin chain production (1, 2). 
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The clinical presentations of the conditions vary widely, 
ranging from non-anemic states or mild microcytic hy
pochromic anemia up to severe anemia requiring regular 
blood transfusions (3, 4).

According to the World Health Organization 
(WHO), hemoglobinopathies affect over 5.2% of the glo
bal population, and account for 3.4% of deaths in chil
dren below the age of 5 (5, 6). The prevalence is higher 
in malaria-endemic regions but is rising in traditionally 
non-endemic regions, such as Northern Europe and 
North America, due to increased migration (7–10). 
Many hemoglobinopathy carriers remain undiagnosed 
due to the low awareness of physicians in non-endemic 
regions, lack of symptoms in carriers, and limited access 
to advanced laboratory testing in developing countries 
(11, 12). Carrier detection, however, is crucial to identify 
couples at risk of having children affected with severe 
forms of hemoglobinopathy (13). Early diagnosis, which 
can be facilitated through screening and genetic counsel
ing, is crucial in preparing at-risk couples.

Specific changes in complete blood count (CBC) 
parameters are used by laboratory specialists to recom
mend diagnostic testing for hemoglobinopathy to clini
cians. These include reduced levels of hemoglobin (Hb) 
and mean corpuscular volume (MCV). The CBC 
changes seen in hemoglobinopathies can often mimic 
those of iron deficiency anemia (IDA), which can result 
in unnecessary iron supplementation.

To differentiate between hemoglobinopathies and 
IDA, various machine learning (ML) models or rule-based 
formulas, with varying degrees of accuracy, have been de
veloped using CBC results to predict the risk of a potential 
hemoglobinopathy. The majority of these formulas specif
ically differentiate one distinct thalassemia (α or β) from 
IDA (e.g., 14–19). These formulas were not designed to 
differentiate structural hemoglobin variants, combinations 
of multiple hemoglobinopathies, or cases with a hemo
globinopathy and concomitant iron deficiency (20, 21).

The aim of this study was to develop and validate, 
using an extensive multicenter data set, a novel ML 
model and a logistic regression model to detect a broad 
spectrum of hemoglobinopathies that can be applied 
using routine CBC testing results.

Materials and Methods

Anonymized hemoglobinopathy diagnostic test results 
from 10 322 adults were extracted retrospectively over 
12 years (2011 to 2022) from the laboratory informa
tion systems of 8 Dutch laboratories: Amphia Hospital 
(n = 1559), Isala Hospital (n = 1321), Jeroen Bosch 
Hospital (n = 927), Maasstad Hospital (n = 894), 
Máxima Medical Center (n = 719), Meander Medical 
Center (n = 984), Medlon BV (Medlon) (n = 3160), 

and Zuyderland Medical Center (n = 758). Along with 
the hemoglobinopathy test results, the data comprised 
CBC parameters including Hb, MCV, mean corpuscu
lar hemoglobin (MCH), mean corpuscular hemoglobin 
concentration (MCHC), red cell distribution width - 
coefficient of variation (RDWCV), red blood cell 
(RBC) count, and platelets (Plt).

DIAGNOSTIC METHODOLOGY

Analyzers used for measuring the hematological para
meters and the hemoglobinopathy diagnostics vary ac
cording to laboratory (online Supplemental Table 1). 
Hemoglobinopathy diagnostics encompass the diagnostic 
analysis of structural hemoglobin variants and 
β-thalassemia using either high-performance liquid chro
matography (HPLC) or capillary electrophoresis (CE). 
The DNA analysis of α-thalassemia was performed using 
either gene-associated polymorphism PCR (GAP-PCR) 
or strip PCR or multiplex ligation-dependent probe amp
lification (MLPA). In instances where no mutation was 
detected, yet clinical suspicion persisted, whole exome se
quencing was conducted in Leiden University Medical 
Center (UMC) upon request. CBC parameters were mea
sured using either an Advia 2120i (Siemens Healthineers) 
or Sysmex XN-9000 (Sysmex Corporation) 
(Supplemental Table 1). An overview of all CBC data 
(n = 8564) per laboratory is presented in online 
Supplemental Table 2. Differences in CBC parameters be
tween laboratories can be accounted for due to large differ
ences in hemoglobinopathy prevalence in the data sets 
across laboratories, ranging from 29.9% to 49.9%. As 
the data from the Jeroen Bosch Hospital and Maasstad 
Hospital contained no negative cases (Fig. 1), these data 
sets had a 100% prevalence.

MODEL DEVELOPMENT

The CBC parameters were used as input for the models. 
The clinical interpretation of the hemoglobinopathy test 
results by the specialist in laboratory medicine or the lead
ing expert of Leiden UMC served as the ground truth for 
the model, with the primary objective of learning to distin
guish positive from negative cases, maximizing clinical 
utility. Pathology-specific classifiers were trained on 
α-thalassemia, β-thalassemia, and combinations with the 
aim to differentiate subtypes from negative cases for com
parison with the original positive–negative hemoglobin
opathy model. However, the results indicated no 
substantial improvement of the pathology-specific models 
compared to the original positive–negative hemoglobin
opathy classification model (online Supplemental Fig. 1). 
Since incorporating sex as a parameter did not affect the 
models’ performance, it was excluded from our model.

Data from 7 out of 8 laboratories were used for 
model development. Cases that received blood 
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Fig. 1. Inclusions and exclusions in the model development and external validation data set. (A), The mod
el development data set consisted of laboratories: Amphia Hospital (n = 1559), Isala Hospital (n = 1321), 
Jeroen Bosch Hospital (n = 927), Maasstad Hospital (n = 894), Máxima Medical Center (n = 719), Meander 
Medical Center (n = 984), and Zuyderland Medical Center (n = 758); (B), Medlon (n = 3160) was reserved 
for external validation. After exclusions, the development data set included 5908 cases, and the external 
validation data set comprised 2656 cases. Color figure available at https://academic.oup.com/clinchem.
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transfusions in the preceding 3 months or with incon
clusive hemoglobinopathy test results were excluded 
(Fig. 1A). Jeroen Bosch Hospital and Maasstad 
Hospital employ a restricted approach for hemoglobin
opathy diagnostics, primarily relying on an MCV 
(<80 fL) cutoff to decide whether to perform 
α-thalassemia diagnostics. As this leads to biased data, 
cases from Jeroen Bosch Hospital and Maasstad 
Hospital with a negative test result were excluded. 
Cases missing 4 or more CBC parameters were also ex
cluded (n = 445). Cases missing 3 or less CBC para
meters were imputed using iterative imputation. This 
threshold was chosen to balance preservation of enough 
cases from each laboratory while minimizing missing 
parameters for imputation, resulting in a final model de
velopment data set of 5908 cases (npositive = 3249, 
nnegative = 2659). The integrity of the imputation pro
cess was validated through pre- and post-imputation dis
tribution comparisons, conducted via kernel density 
estimation plots, mean and interquartile range assess
ments, and individual case evaluations. Eighty percent 
of the data set (n = 4726) was used for training and tun
ing using repeated stratified 10-fold cross-validation, 
with the aims of preserving the same class distribution 
across the folds and repeating the cross-validation pro
cedure multiple times using the mean performance re
sult for tuning the models (22). Twenty percent was 
reserved for internal validation of the model’s perform
ance (n = 1182).

The XGB model was trained using an eXtreme 
Gradient Boosting algorithm with the XGBoost package 
(1.7.3). The model was trained to maximize the area un
der the receiver operating characteristic (AUROC). 
During training a learning rate (eta) of 0.1, 1000 boosting 
rounds and 20 early-stopping rounds and a tree-depth of 6 
were used. Analyses were carried out using Python 3.8 
(Python Software Foundation), with the packages 
Numpy (1.20), Pandas (0.28), Sklearn (1.1.1), XGBoost 
(0.24), and SHAP (0.41). A logistic regression-based 
model was developed using Sklearn (1.1.1). The formula 
of the logistic regression for calculating the hemo
globinopathy probability = 1/(1 + e^(−(−2.73516742 +  
−0.139101127*MCV [fL] + −0.133152018*RDWCV 
[%] + 3.38704562*MCH[fmol] + −0.998798*Hb[mmol/ 
L] + 0.488415669*MCHC[mmol/L] + 1.74713625*RBC 
[count × 1012/L] + 0.000129845*Plt[count × 109/L]))). 
To use the formula with traditional concentration units, 
the CBC data must be converted to SI units. As this 
study used a multivariable XGB model, the 
Transparant Reporting of a multivariable prediction 
model for Individual Prognosis or Diagnosis 
(TRIPOD) checklist was used for increased transparency 
of the methodology (online Supplemental Table 3). 
XGB and logistic regression models are made publicly 
available via GitHub: doi:https://github.com/ 

aschipper/hemoglobinopathies-AI and via Figshare: 
https://doi.org/10.6084/m9.figshare.25765302.

CLASSIFICATION OF HEMOGLOBINOPATHIES

In total, the data set comprised 106 distinct hemoglobi
nopathies, systematically categorized into 4 subclasses 
for the distinct evaluation of the models’ discriminative 
performance against all negative cases in the external valid
ation set: (a) α-thalassemia, (b) β-thalassemia, (c) struc
tural hemoglobin variants, and (d) combinations of 
thalassemia and concomitant structural hemoglobin var
iants. α-thalassemia was subclassified as: hemoglobin H 
(Hb H) disease, α0-heterozygote, α+-homozygote, com
pound heterozygote, and α+-heterozygote. β-thalassemia 
was subclassified as β-thalassemia and β−δ-thalassemia. 
Structural hemoglobin variants were subclassified as: 
hemoglobin E (Hb E) homozygote/heterozygote, hemo
globin C (Hb C) homozygote/heterozygote, hemoglobin 
D (Hb D) homozygote/heterozygote, hemoglobin S 
(Hb S) heterozygote, and sickle cell anemia. Sickle cell an
emia encompasses Hb S homozygote, and compound het
erozygote Hb S/Hb C, Hb S/β-thalassemia, Hb S/Hb E, 
and Hb S/Hb D. The “combinations” category predom
inantly comprised cases where α-thalassemia was present 
in combination with a structural hemoglobin variant.

MODEL VALIDATION

The complete data set from the Dutch laboratory Medlon 
was reserved for independent external validation (n = 2656, 
npositive = 1004, nnegative = 1652) of the XGB and logistic 
regression models (Fig. 1B). Medlon carries out a compre
hensive diagnostic evaluation for each hemoglobinopathy 
diagnostic request, which encompasses Sanger sequencing 
of both α and β globin genes. Cases with any missing 
CBC parameters were excluded (n = 329) (Fig. 1B).

THALASSEMIA VS IDA

The effectiveness of the XGB and logistic regression 
models in differentiating between thalassemia and IDA 
was evaluated on a previously published patient data 
set from Galdakao-Usansolo Hospital in Spain, which 
focusses on cases with microcytic anemia (14). CBC 
parameters were measured using Abbott Sapphire, 
Siemens Advia, and Beckman Coulter LH750 and 
LH780. IDA was considered present when serum ferritin 
was <15 μg/L, and/or transferrin saturation was <20%. 
The data set consisted of 2629 cases (nthalassemia = 1370, 
nIDA = 1259) over a period of 9 years (2007 to 2015). As 
platelet values were missing in 1832 cases, these values 
were imputed using Sklearn’s iterative imputer.

SCREENING FOR HEMOGLOBINOPATHIES IN CBC RESULTS

The use of the algorithms as a screening tool on all CBC 
requests in a healthcare setting was assessed on a data set 
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from the Jeroen Bosch Hospital. The data set consisted 
of all CBC results of January 2023, a total of 20 870 
CBC results. Sixty-eight positive cases from 2022 to 
2023 were artificially added to enrich the data set with posi
tive cases, due to the low prevalence of hemoglobinopathies 
in the region. These were all positive cases, without any 
preselection (ensuring no selection bias), that underwent 
hemoglobinopathy diagnostics at Jeroen Bosch Hospital 
between April 2022 and June 2023 and were not part of 
the original model development data set. This resulted in 
a final prevalence of 0.59% in the data set. CBC results 
from children or cases with incomplete parameters were ex
cluded (n = 969), resulting in a final data set of 19 969 cases 
(npositive = 118, nnegative = 19 851). “Negative” cases were 
classified as cases that had not been diagnosed with a hemo
globinopathy in the Jeroen Bosch Hospital. Therefore, the 
category of “negative” cases will contain an unknown (lim
ited) number of false-negative cases. Additionally, the area 
under the precision-recall curves (AUPRCs) and 
Matthews correlation coefficients (MCCs) were generated 
to account for the large class imbalance in the data set 
and assess real-world utility scenarios.

STATISTICS

CBC parameters are presented as medians and inter
quartile ranges (±IQR) (Table 1 and online 
Supplemental Tables 2 and 4). Kruskal–Wallis tests 
were used to assess significant differences in medians be
tween each hemoglobinopathy category and cases with
out a hemoglobinopathy. A value of P < 0.05 was 
considered statistically significant.

Confidence intervals (CI) for the AUROC and 
AUPRC values were established through cross- 
validation, employing 10-folds with 50 repeats. The 
2.5th and 97.5th percentiles of the ranked list of 500 
AUROC and AUPRC values were computed to deter
mine the CI. The MCC was derived by identifying 
the optimal threshold that maximized MCC.

Results

Positive hemoglobinopathy cases exhibited distinct patterns 
compared to negative cases. These patterns included signifi
cantly lower MCV, MCH, and MCHC, and notably high
er RDWCV and RBC levels than negative cases (Table 1). 
As Hb and RBC counts are sex-specific, they are presented 
as separate values for each sex (Supplemental Table 4).

MODEL PERFORMANCE

The primary objective of the models developed in this 
study was to differentiate negative cases from positive 
hemoglobinopathy cases based on routine CBC para
meters. The internal validation of the XGB model 
achieved an AUROC of 0.90 (±0.01) compared to an 
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AUROC of 0.86 (±0.01) of the logistic regression (online 
Supplemental Fig. 2). On the independent external valid
ation set, the XGB model achieved an AUROC of 0.88 
(±0.01) and the logistic regression an AUROC of 0.84 
(±0.01) (Fig. 2A and D). The contribution of each param
eter to the models is presented in Fig. 2B and E, including 
the feature contributions to 2 random example cases, one 
negative and positive (online Supplemental Fig. 3). Both 
models generate a quantitative probability ranging from 0 
to 1 that can be converted to a qualitative prediction of 
the absence or presence of hemoglobinopathy using a thresh
old prioritizing either specificity or sensitivity (Fig. 2C and 
F). A probability threshold of ≥0.80 for the XGB model 
and a probability threshold of ≥0.73 for the logistic regres
sion are associated with a 95% specificity cutoff.

SUBCLASS ANALYSIS OF THE MODEL ON SPECIFIC 

HEMOGLOBINOPATHIES

In a subclassification analysis of α-thalassemia, the 
XGB model achieved AUROC scores of 0.98 for 

α0-heterozygote, 0.95 for α+-homo- and compound het
erozygote, and 0.78 for α+-heterozygote (Fig. 3A). In the 
case of β-thalassemia, the XGB model attained an 
AUROC of 0.97 (Fig. 3B). Subclass analysis on struc
tural hemoglobin variants demonstrated AUROCs of 
0.94 for Hb E, Hb C and Hb D homozygotes and het
erozygotes, 0.91 for sickle cell anemia, and 0.70 for Hb 
S heterozygotes (Fig. 3C). For combinations of hemo
globinopathies, the XGB model reached an AUROC 
of 0.92 (Fig. 3D). Performances of specific hemoglobi
nopathies of the logistic regression model can be found 
in online Supplemental Fig. 4.

DIFFERENTIATING THALASSEMIA FROM IDA

We assessed the capability of the XGB and logistic regres
sion models to distinguish between thalassemia and IDA 
using a patient data set previously published by 
Galdakao-Usansolo Hospital in Spain. Both the XGB 
and logistic regression model attained an AUROC of 
0.95 (±0.01) in differentiating cases with IDA and 

Fig. 2. Receiver operating characteristic plots of (A) the XGBoost (XGB) and (D) logistic regression (LR) 
model of the independent external validation set. Contributions of each individual parameter to the 
XGB model are SHapley Additive exPlanations (SHAP) values (B) and logistic regression coefficients (E) 
scaled and plotted as percentage contributions to the prediction. Plot with different probability thresh
olds based on prioritizing specificity or sensitivity for the (C) XGB and (F) logistic regression model. 
Abbreviations: MCV, mean corpuscular volume; RDWCV, red cell distribution width - coefficient of vari
ation; MCH, mean corpuscular hemoglobin; Hb, hemoglobin; MCHC, mean corpuscular hemoglobin con
centration; RBC, red blood cell count; Plt, platelet count. Color figure available at https:// 
academic.oup.com/clinchem. 
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thalassemia (Fig. 4A and D). Subclass analysis demon
strated that the XGB and logistic regression models distin
guished α-thalassemia from IDA with an AUROC of 0.90 
and 0.89, respectively. Both models reached an AUROC 
of 0.97 for distinguishing β-thalassemia from IDA 
(Fig. 4B and E). Median predicted probability scores 
of the XGB model for α-thalassemia (median = 0.93, 
IQR : 0.85 to 0.96) and β-thalassemia cases (median =  
0.98, IQR: 0.96 to 0.99) significantly surpassed that for 
cases with an IDA (median = 0.54, IQR: 0.36 to 0.75) 
(Fig. 4C). The median predicted probability scores of lo
gistic regression for cases with an IDA (median = 0.56, 

IQR: 0.45 to 0.65) was significantly lower compared to 
α-thalassemia (median = 0.83, IQR: 0.74 to 0.88) and 
β-thalassemia cases (median = 0.94, IQR: 0.89 to 0.98) 
(Fig. 4F).

EVALUATION OF THE MODEL AS A SCREENING TOOL ON CBC 

RESULTS

We evaluated the capacity of the XGB and logistic re
gression models as screening tools when implemented 
on a month of CBC results. In total, a data set of 
19 969 CBC results from routine practice, containing 
118 known positive cases, was used. The XGB model 

Fig. 3. Receiver operating characteristic plots for of the XGBoost (XGB) model for the subclasses of the 
external independent validation set. (A), α0-heterozygote (n = 46), homozygote (including compound het
erozygotes) (n = 68), and α+-heterozygote (n = 304); (B), β-thalassemia (n = 306); (C), Hb E (hemoglobin E), 
Hb C (hemoglobin C), Hb D (hemoglobin D) (n = 35), sickle cell anemia (n = 44), and Hb S (Hemoglobin S) 
heterozygote (n = 79); and (D), combinations (combinations between thalassemia, and concomitant struc
tural hemoglobin variants) (n = 118). Color figure available at https://academic.oup.com/clinchem.
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reached an AUROC of 0.97 (±0.01), and the logistic re
gression model 0.98 (±0.01) on differentiating negative 
from positive cases (Fig. 5A and D). When comparing 
sensitivities at several specificity thresholds, the logistic 
regression model showed higher sensitivities compared 
to the XGB model. At a specificity of 99.8%, the logistic 
regression model reached a sensitivity of 57%, whereas 
the XGB model had a sensitivity of 35% (Fig. 5B and 
E). Precision-recall curves revealed that the XGB model 
yielded a lower average precision of 0.55 (±0.06) com
pared to logistic regression’s of 0.65 (±0.05). Notably, 
the logistic regression model exhibited greater uncertainty 
at high precision levels (0.75 to 1.00) (Fig. 5C and F). An 
overview of precision values at specific recall levels for 
both models is provided in online Supplemental Table 6. 
The maximum MCC for the XGB model was 0.51 at a 
probability threshold of 0.92, whereas, for logistic regression, 
it was 0.65 at a threshold of 0.78. Given that a significant 

number of false-positive cases from the XGB model were se
verely anemic patients from the intensive care unit (ICU), 
we do not advise using this algorithm for ICU patients.

Discussion

In this study, an ML algorithm was developed and ex
tensively validated using routine CBC parameters to ac
curately predict a broad range of hemoglobinopathies, 
including thalassemias, various hemoglobin variants, 
and their diverse combinations, showcasing the ML al
gorithm’s wide-ranging applicability in medical diagnos
tics. To address the significant challenge many 
laboratories encounter in integrating ML algorithms 
into their laboratory information systems, a logistic re
gression formula was concurrently developed, offering 
a more straightforward and feasible implementation in 
clinical care.

Fig. 4. Receiver operating characteristic plot of (A) the XGBoost (XGB) model and (D) logistic regression 
(LR) of the Spanish external validation data set differentiating thalassemia from IDA (iron deficiency an
emia). Receiver operating characteristic plot of (B) the XGB model and (E) the logistic regression, differ
entiating α-thalassemia and β-thalassemia from IDA (nα-thalassemia = 429, nβ-thalassemia = 941, nIDA = 1259). 
(C), XGB model predicted probabilities for IDA (median = 0.54, IQR: 0.36 to 0.75), α-thalassemia 
(median = 0.93, IQR: 0.85 to 0.96), and β-thalassemia (median = 0.98, IQR: 0.96 to 0.99); (F), Logistic re
gression predicted probabilities for IDA (median = 0.56, IQR: 0.45 to 0.65), α-thalassemia (median = 0.83, 
IQR: 0.74 to 0.88), and β-thalassemia (median = 0.94, IQR: 0.89 to 0.98). Color figure available at 
https://academic.oup.com/clinchem.
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Numerous ML-based clinical decision support and 
case-finding systems rely heavily on laboratory data. 
These tools offer unique opportunities for laboratories 
to enhance the quality of healthcare. However, existing 
rule-based formulas and ML algorithms for identifying 
hemoglobinopathies have limitations. The majority of 
these rule-based formulas and ML models are tailored 
to specific subcategories or subgoals, such as identifying 
one specific thalassemia (19, 23–26) and distinguishing 
these from IDA (15, 17, 27–32). Moreover, these mod
els are primarily designed using small single-center data 
sets lacking independent validation (15, 16, 18, 33–36). 
These factors limit the applicability and reliability of 
many of these formulas and models when applied out
side their training context.

The deployment of ML models necessitates se
lecting an optimal threshold that prioritizes sensitivity 
or specificity, and the positive or negative predictive 
value. This choice is dependent upon local require
ments and preferences, related to additional workload, 
cost-effectiveness, and the prevalence of hemoglobino
pathies, which varies substantially among endemic 
and non-endemic regions. Considering these factors, 

the models presented in our study enable 2 potential 
clinical implementation strategies. Firstly, leveraging 
a high positive predictive value (PPV), the model 
can screen routine CBC tests to flag new potential 
hemoglobinopathy cases. Laboratory medicine 
specialists can then verify if these flagged patients 
have a known hemoglobinopathy diagnosis and, if 
not, recommend diagnostic testing for hemoglobin
opathy. Secondly, employing its high negative predict
ive value (NPV), the model offers a cost-effective 
approach by advising against the pursuit of expensive 
α-thalassemia DNA diagnostics for patients who have 
both a negative HPLC/CE result combined with a low 
probability of hemoglobinopathy according to our 
model. This dual approach enhances early detection 
and reduces unnecessary testing. In this study the 
sensitivity and specificity for each threshold was pro
vided, enabling laboratories to determine their desired 
cutoff value based on local preferences (Fig. 2C and F). 
Our simulation of the case-finding capacities of our mod
els in a screening-based approach showed satisfactory re
sults. Interestingly, the logistic regression model 
outperformed the XGB model (AUROC 0.98 vs 0.97, 

Fig. 5. Receiver operation characteristic plot of (A) the XGBoost (XGB) and (D) logistic regression (LR) 
models for distinguishing cases of the general population of Jeroen Bosch Hospital, considered negative, 
from known positive hemoglobinopathy cases. (B), XGB model predicted probabilities for positive cases 
(median = 0.85, IQR: 0.72 to 0.95) and negative cases (median = 0.10, IQR: 0.05 to 0.22); (E), LR model 
predicted probabilities for positive cases (median = 0.82, IQR: 0.64 to 0.92) and negative cases (median  
= 0.17, IQR: 0.10 to 0.27). The area under the precision-recall curve of (C) the XGB model and (F) the LR 
model. Color figure available at https://academic.oup.com/clinchem.
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and a MCC of 0.65 vs 0.51). This is likely due to the fact 
that the XGB model was also trained to identify sickle cell 
patients. In this screening analysis, there was only one 
sickle cell patient in the positive cases. Moreover, many 
of the false-positive cases in the XGB model were from 
ICU patients with severe anemia with high MCV, likely 
mimicking sickle cell CBC results. Therefore, use of the 
XGB algorithm for ICU patients is not advised.

Several limitations need to be considered. Firstly, the 
current model was exclusively developed and designed for 
adults, recognizing the substantial differences in CBC para
meters between young children and adults. Secondly, the 
GAP-PCR was specifically designed to identify the com
mon α-thalassemia deletions, and the strip-assay methods 
can detect approximately 90% of α-thalassemia gene muta
tions (8, 37). Consequently, instances classified as “nega
tive” may still possess α-thalassemia mutations not 
covered by these diagnostic tests. The inclusion of such 
false-negative cases in the model development data set leads 
to an underperformance of the model.

On the other hand, this study exhibits several notable 
strengths. The XGB and logistic regression models were 
developed using extensive multicenter data collected over 
a span of 12 years, showcasing robust performance across 
various hematological analyzers. Furthermore, both models 
underwent thorough external validation. Moreover, the ef
ficacy of the XGB model in distinguishing thalassemia 
from IDA was substantiated in a Spanish population, 
where it outperformed all other rule-based formulas, in
cluding Jayabose, Janel, Green and King, and Shine and 
Lal (14) (Supplemental Table 5).

In conclusion, this study effectively demonstrated 
the capability of an ML model to accurately predict a wide 
spectrum of hemoglobinopathies using routine CBC para
meters. Moreover, a logistic regression model was developed, 
providing a more practical approach for implementation. 
Integration of either of these models into the laboratory infor
mation system facilitates automated detection of hemoglobi
nopathies based on routine CBC parameters.

Supplemental Material

Supplemental material is available at Clinical Chemistry 
online.

Nonstandard Abbreviations: CBC, complete blood count; XGB, 
eXtreme Gradient Boosting; IDA, iron deficiency anemia; AUROC, 
area under the receiver operating characteristic; Hb, hemoglobin; 
MCV, mean corpuscular volume; ML, machine learning; RBC, red 
blood cell count; MCC, Matthews correlation coefficient, ICU, inten
sive care unit.

Human Genes: HBA1, hemoglobin subunit alpha 1; HBA2, hemoglo
bin subunit alpha 2; HBB, hemoglobin subunit beta; HBG1, hemoglo
bin subunit gamma 1; HBG2, hemoglobin subunit gamma 2; HBD, 
hemoglobin subunit delta.
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