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Benchmarking anomaly detection approaches for multivariate time series is a challenging task due to a lack of 
high-quality datasets. Current publicly available datasets are too small, not diverse and feature trivial anomalies, 
which hinders measurable progress in this research area. We propose a solution: a diverse, extensive, and non

trivial dataset generated via state-of-the-art simulation tools that reflects realistic behaviour of an automotive 
powertrain, including its multivariate, dynamic and variable-state properties. Additionally, our dataset represents 
a discrete-sequence problem, which remains unaddressed by previously-proposed solutions in literature. To cater 
for both unsupervised and semi-supervised anomaly detection settings, as well as time series generation and 
forecasting, we make different versions of the dataset available, where training and test subsets are offered 
in contaminated and clean versions, depending on the task. We also provide baseline results from a selection 
of approaches based on deterministic and variational autoencoders, as well as a non-parametric approach. As 
expected, the baseline experimentation shows that the approaches trained on the semi-supervised version of 
the dataset outperform their unsupervised counterparts, highlighting a need for approaches more robust to 
contaminated training data. Furthermore, results show that the threshold used can have a large influence on 
detection performance, hence more work needs to be invested in methods to find a suitable threshold without 
the need for labelled data.

1. Introduction

As the digitisation of industrial processes progresses, more and more 
data is recorded. Ensuring this data is representative of the process is 
important, as downstream tasks like modelling or optimisation can be 
negatively impacted by incomplete or contaminated data. For tasks that 
require system behaviour modelling, data deviating from the norm is 
hence undesired, and we speak of anomalous behaviour. Recorded data 
manifests itself in many forms depending on the application and do

main, one form being time series. Examples of real-world time series 
applications are diverse, ranging from cardiology [1] and server met

rics monitoring [2] to water systems [3--5] and traffic analysis [6--8]. 
Note that, we use time series and sequences synonymously throughout 
this paper.

Time series are signals that represent a property or feature of a dy

namic system as a function of time, usually sampled at a fixed rate. An 
arbitrary time series  can be univariate, i.e.  ∈ ℝ𝑇 , or multivariate, 
i.e.  ∈ℝ𝑇×𝑑 , where 𝑇 refers to the number of discrete time steps and 
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𝑑 to the number of features in the time series. More specifically, uni

variate time series solely possess a temporal correlation, i.e. along the 
time axis, whereas multivariate time series can also contain correlation 
along the feature axis.

Detecting anomalous behaviour in time series is referred to time series 
anomaly detection, which can be split into two main areas: continuous-

and discrete-sequence [9], where the former is the only type addressed 
in public datasets. Continuous-sequence problems are defined as de

tecting anomalies in a process that runs for a continuous time period 
without breaks. Typically, the test subset test in the dataset  in a 
continuous-sequence problem consists of a singular multivariate time 
series composed of multiple nominal and anomalous sub-sequences, 
i.e. test = {1}. In this work, we use nominal as a synonym for nor

mal or anomaly-free to avoid confusion with Gaussian distributions. 
Discrete-sequence anomaly detection, in contrast, is defined as detect

ing anomalies in 𝑁 chunks of processes that happen independently of 
each other. Discrete-sequence problems include, for example, automo

tive test benches, where several tests may occur sequentially but are 
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not temporally contiguous and hence provide a time series for each test, 
i.e. test = {1, ...,𝑛, ...,𝑁} and 𝑁 > 1. Here, the testees, i.e. the test 
subjects, are not monitored over a continuous period of time, but are in

stead monitored solely during each process chunk. Automotive testing 
is not the only use for discrete-sequence anomaly detection, however. 
Another discrete-sequence problem could also include the analysis of 
the flight behaviour of an aeroplane, where the time while it is docked 
is irrelevant and may not be recorded. Therefore, datasets for discrete

sequence anomaly detection consist of several nominal and anomalous 
time series, where a given anomalous time series may be entirely anoma

lous or only partly. Depending on the system, the time series data may 
also feature variable states, meaning the recorded signals appear slightly 
different if certain external conditions change but are still considered 
nominal. One example of a variable-state system is a battery, where the 
voltage response to current changes depending on states like the battery 
temperature and the battery state of charge (SoC). A problem involving 
such a system requires the distinction between behaviour changes due 
to different states and behaviour changes due to an anomaly, further 
complicating detection.

In addition to that, detecting anomalous behaviour in a timely man

ner is also advantageous because the source of anomalous behaviour 
may bring about damage to said system. Problems where the detection 
delay plays a role require evaluation of the time series before it ends 
and are referred to as online time series anomaly detection.

Analogous to types of learning, there is supervised, semi-supervised, 
and unsupervised anomaly detection. Supervised anomaly detection is es

sentially imbalanced binary time series classification and is only rarely 
found in the literature. This is most likely because, in real-world prob

lems, possible anomaly types and how they manifest themselves in the 
data are rarely known a priori. Moreover, labelling data is expensive, 
which is why unsupervised and semi-supervised anomaly detection are 
more prevalent in literature and relevant to the real world. Unsupervised 
anomaly detection is independent of any labels, i.e. any available data 
for model training contains both anomalous and nominal time series, 
and it is not known which is which [10]. In contrast, semi-supervised 
anomaly detection can be considered a more relaxed setting, where 
anomalous time series are absent from the training subset [10]. In 
the real world, semi-supervised problems still require some labelling 
to ensure an entirely nominal training subset, which is not always 
given. Some literature diverges from this taxonomy, agreeing with the 
supervised and semi-supervised definitions but defining unsupervised 
anomaly detection differently. According to Schmidl et al. [11], un

supervised anomaly detection involves detecting anomalous behaviour 
without a training procedure. This definition implies that learning nom

inal behaviour from mostly-nominal data is not possible, which we chal

lenge in this paper.

Our contribution is a non-trivial, and high-quality discrete-sequence 
dataset consisting of multivariate time series for online anomaly detec

tion, named the Powertrain Anomaly Time series bencHmark (PATH) 
dataset. While primarily aimed at unsupervised anomaly detection, we 
provide versions for semi-supervised anomaly detection and time series 
generation and forecasting as well. Despite the data being generated 
using simulation, the electric vehicle simulation model is strongly mo

tivated by the real world and is therefore complex and variable-state.

This paper is structured as follows. First, we introduce the related 
work in the area of benchmarking time series anomaly detection ap

proaches. It includes discussion on the datasets used to evaluate time 
series anomaly detection approaches in the past, and a summary of the 
work dedicated to outlining the status quo in benchmarking time series 
anomaly detection approaches. Then, we introduce the PATH dataset in 
detail, outlining the generation process and a few benchmarking consid

erations. Following that, we provide some baseline results for a selection 
of deep learning-based models, as well as a non-parametric approach. 
Finally, we conclude our work and outline an outlook on future work. 
The source code corresponding to this paper and the simulation model 

Table 1
Key properties of the most popular datasets, where 
𝑑 refers to the number of features of the time se

ries signals in the dataset, DS to whether it is a 
discrete-sequence dataset, ∑|𝑛| to the number of 
test time steps and %𝐴 to the number of anoma

lous time steps in relation to all test time steps. 
GutenTAG varies in 𝑑 depending on test time se

ries. The number of time steps given for the test 
subset in PATH is the average across all folds.

Name 𝑑 DS

𝑁∑|𝑛| %𝐴

SWaT 51 ✗ 449,919 12%
WADI 127 ✗ 17,287 6%
SMAP 25 ✗ 427,617 13%
MSL 55 ✗ 73,729 11%
SMD 38 ✗ 708,420 4%
GutenTAG 2 − 20 ✗ 240,000 1%
mTADS 4 ✗ 2,396,000 <1%
Ours 16 ✓ 14,341,432 7%

can be found on Github, and the dataset can be downloaded from Zen

odo [12].

2. Related work

2.1. Publicly available datasets

Over the last few years, five benchmark datasets have emerged as by 
far the most popular, with at least one of them being cited in the vast 
majority of publications on multivariate time series anomaly detection. 
A summary of the properties of these datasets is shown in Table 1.

The MSL [13], SMAP [13], and SMD [2] have already been thor

oughly analysed by Wu and Keogh [14], who point out several issues 
with the datasets. The first issue observed in the datasets is triviality, 
defined by being solvable using so-called one-line code, such as the mov

ing standard deviation over a subset of the dataset features. Moreover, 
all of them suffer from what Wu and Keogh [14] have called unrealis

tic anomaly density, meaning that they have sub-sequences with a very 
high anomaly share and hence do not match the assumption that anoma

lies are rare events. In addition to that, Wu and Keogh [14] suspect 
possible mislabelling present in the MSL dataset. They base their sus

picion on the fact that the dataset contains sub-sequences with static 
behaviour in an evidently dynamic channel, which is labelled as nom

inal. Additionally, while the SMAP and MSL datasets are technically 
multivariate, the channels are not synchronised with each other and 
hence each channel needs to be modelled on its own.

Many of the issues pointed out by Wu and Keogh [14] can also 
be extended to the SWaT and WADI datasets, as thoroughly discussed 
by Wagner et al. [15] and Correia et al. [9]. Both datasets have multiple 
features that are constant throughout the training and testing subsets, 
while WADI has some features with missing values. This leads to ambi

guity when benchmarking, as some may choose to omit these features 
while others may not. Furthermore, 65% of the anomalous time steps in 
the SWaT dataset can be detected by simply inspecting one feature.

Additionally, Wenig et al. [16] point out that the SWaT, WADI 
and SMD datasets feature mostly univariate anomalies, i.e. anoma

lous behaviour manifests itself in a single channel. They found that, 
in these datasets, univariate approaches mostly outperform multivari

ate approaches due to the overwhelming presence of such univariate 
anomalies. However, once multivariate anomalies are injected, multi

variate approaches outperform their univariate counterparts.

Wu and Keogh [14] have caused a shift towards more transparency 
when benchmarking time series anomaly detection methods. Since then, 
some contributions have been made to address the aforementioned is
sues, also shown in Table 1.
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As part of the TimeEval framework, Wenig et al. [17] propose the 
Good Time Series Anomaly Generator (GutenTAG), a tool for time series 
dataset generation, which can generate nominal and anomalous multi

variate time series. It works by combining base oscillations, like sine or 
ECG-like waves, and injecting different types of pre-defined anomalies. 
However, GutenTAG only represents the tool to create a dataset, not the 
dataset itself. Further fragmentation of the research field will occur if 
no dataset resulting from GutenTAG is agreed upon, though GutenTAG

based data used in a benchmarking paper by the same authors [11] may 
serve as a reference. While the time series data generated by GutenTAG 
may be complex due to the different combinations of base oscillations, 
it still lacks the relationship to the real world. Arguably, the main pur

pose of research on time series anomaly detection is to solve real-world 
problems, and hence any evaluation should also consider real-world or 
real-world-inspired data.

mTADS [18] is a collection of two types of datasets, one completely 
synthetic generated with GutenTAG and another based on simulation of 
the Lotka-Volterra equations which represent the relationship between 
one predator, two prey populations and another population that’s both 
predator and prey. One interesting aspect of this dataset is that training 
data is offered both with and without anomalous behaviour, allowing 
for semi- and unsupervised anomaly detection. Despite being real world

inspired the two equations are still fairly simple, yielding time series 
data with only four features.

Certain real-world applications like automotive testing present com

plexities previously unseen in public datasets. As outlined by Correia 
et al. [19], such applications comprise much more diverse discrete

sequence datasets, owed to the presence of both highly dynamic and 
mostly static features, as well as variable states. The presence of vari

able states leads to features exhibiting a different pattern depending on 
the time it is observed. In the context of automotive testing, an exam

ple of such a feature would be the state of charge of a battery, which 
discharges with time and hence shows different behaviour for the same 
test done twice in a row.

Hence, we construct a new high-quality dataset that features non

trivial anomalies caused by pre-simulation model changes and that 
mostly reflects real-world complexity. Additionally, as a discrete

sequence dataset, it represents a contribution to an underrepresented 
problem type that often occurs in the real world. Since the dataset is 
generated using simulation, it also strikes the balance between real

world relevance and control over anomalous behaviour [18].

2.2. Doubts regarding applicability of deep learning

Recently, there has been growing doubt on whether deep learning 
(DL) algorithms are definitively the better choice for time series anomaly 
detection. For the purpose of this publication, classical methods refer to 
all approaches not based on DL, including non-parametric and statistical 
approaches, as well as simpler machine learning methods like clustering.

Wu and Keogh [14] claim that the superiority of DL in anomaly de

tection is assumed to be a given, despite a lack of clear evidence for 
the need for DL. They stress that existing classical methods should be 
considered, given their generally simpler and faster nature.

To investigate the comparative performance of classical methods and 
DL-based methods, Audibert et al. [20] analyse a variety of different 
models on five of the most popular benchmark datasets, shown in Ta

ble 1. They conclude that, across the datasets considered, there is no 
algorithm that dominates all the other ones, arguing that there is no 
reason to omit classical methods from benchmarking.

Rewicki et al. [21] also conduct a comparative study of classical and 
DL-based methods, though on the UCR Anomaly Archive benchmark 
proposed by Wu and Keogh [14], which exclusively contains univariate 
time series and therefore lacks correlations between channels present in 
multivariate time series. They conclude that classical methods perform 
better than their DL counterparts, although this is to be expected given 
the simpler, univariate nature of the dataset.

Table 2
Signals included in the PATH dataset, 
along with their physical units and per

sistent indices.

Index Signal Name Unit 
1 Motor Speed rad s−1
2 Motor Torque N m
3 Axle Torque Front N m
4 Axle Torque Rear N m
5 Battery SoC %
6 Battery Current A
7 Battery Power W
8 Axle Force Front N
9 Axle Force Rear N
10 Axle Speed Front rad s−1
11 Axle Speed Rear rad s−1
12 Accelerator Pedal -

13 Brake Pedal -

14 Battery Temperature ◦C
15 Cooling Pump Power W
16 Refrigerator Power W

While the findings and doubts of the above-mentioned are valid, they 
are limited by the lack of large, high-quality multivariate datasets. In 
this paper, we purposefully include results from a state-of-the-art clas

sical method to find out whether doubts on DL are still justified for 
extensive and complex real-world-inspired datasets. See Section 4 for 
results and discussion.

3. Proposed dataset

3.1. Simulation model

To create an extensive and diverse dataset, we propose to use a physi

cally inspired model, from which we can generate data using simulation. 
MathWorks offers reference models for a variety of dynamic systems, 
one of which is the full electric vehicle (FEV) model1 from the power

train blockset in Simulink. This choice is based on our familiarity with 
the domain, as generating data blindly without any background may 
lead to systematic errors. The FEV model offered by MathWorks con

sists of six main subsystems: the drive cycle block, the driver block, 
the environment block, the controllers block and the vehicle block. The 
topology of the FEV model is illustrated in Fig. 1.

To represent system behaviour, 𝑑 = 16 signals are chosen to be 
logged during simulation and are summarised in Table 2. We chose these 
signals based on domain knowledge, with the goal of picking the fea

tures that are most representative of powertrain behaviour. 
The drive cycle block of the FEV model defines the target vehicle 

speed and features a series of real-world drive cycles, i.e. profiles de

picting the target vehicle speed as a function of time. From the list of 
speed profiles available in the original FEV model, a subset is elimi

nated due to their unrealistic nature, e.g. high linearity or duplicity, as 
many cycles are present as sub-sequences in others. Our analysis shows 
that, for example, the presence of the FTP72 drive cycle within FTP75 
or the presence of the LA92Short drive cycle within LA92. In addition 
to that, drive cycles aimed at heavy vehicles, like trucks or buses, are 
also eliminated. The resulting subset of drive cycles chosen for simu

lation contains 33 different speed profiles of varying length, shown in 
Table 3, along with their lengths in seconds. Some drive cycles may be 
designed for specific types of powertrains such as diesel ones, but given 
that they only represent vehicle speed profiles, there is little reason why 
they cannot be driven by a vehicle with an electric powertrain, like the 
one modelled in this case. 

1 https://de.mathworks.com/help/autoblks/ug/explore-the-electric-vehicle-

reference-application.html, last accessed: 24.03.2025.
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Fig. 1. Simplified schematic of the FEV model used for the generation of the PATH dataset. Numbers represent the indices of signal flow, reference is shown in 
Table 2.

Table 3
Drive cycles used for the PATH dataset generation, along with their re

spective lengths in seconds.

Drive Cycle Length [s] 
FTP75 2474 
US06 600 
SC03 600 
HWFET 765 
NYCC 598 
HUDDS 1060 
LA92 1435 
IM240 240 
UDDS 1369 
WLTP Class 1 1022 
WLTP Class 2 1477 
WLTP Class 3 1800 
Artemis Urban 993 
Artemis Rural Road 1082 
Artemis Motorway 130 kmph 1068 
Artemis Motorway 150 kmph 1068 
JC08 1204 
JC08 Hot 1376 
World Harmonized Vehicle Cycle (WHVC) 900 
Braunschweig City Driving Cycle 1740 
RTS 95 886 
ETC FIGE Version 4 1800 
CUEDC Petrol cycle 499 
CUEDC SPC240 cycle 240 
CUEDC diesel cycle - MC 1723 
CUEDC diesel cycle - NA 1795 
CUEDC diesel cycle - NB 1706 
CUEDC diesel cycle - ME 1678 
CUEDC diesel cycle - NC 1797 
CUEDC diesel cycle - NCH 1676 
China Light-Duty Vehicle Test Cycle for Passenger Cars 1800 
China Light-Duty Vehicle Test Cycle for Commercial Vehicles 1800 
China Worldwide Transient Vehicle Cycle 1799 

The driver block of the FEV model regulates the dynamic system to 
maintain the target speed. Its inputs are the target vehicle speed and 
the actual vehicle speed, and its outputs are the acceleration and de

celeration control commands, index 12 and 13 in Table 2, respectively, 
which are fed into the controllers block of the FEV model. This block 
takes said accelerator and brake pedal commands stemming as well as 
vehicle states like actual vehicle speed, electric motor speed and battery 
signals to calculate request signals for the powertrain, like the required 
electric motor torque and the brake signal, as well as battery manage

ment system signals like the battery SoC, index 5 in Table 2. Electric 
vehicles are capable of regenerative braking, meaning, the electric mo

tor is used to decelerate the vehicle by acting as a generator, thereby 
charging the battery if it is not already fully charged.

Following is the vehicle block of the FEV model, which outputs how 
the vehicle reacts to any inputs and contains the electric plant subsys

tem and the drivetrain subsystem. Both take inputs from the controllers 
block, including the battery SoC, and the environment block, as well as 

from each other, as shown in Fig. 2. The electric plant subsystem outputs 
the electric motor torque, the battery current and power, the battery 
temperature and the cooling pump and refrigerator powers, which cor

respond to indices 2, 6, 7, 14, 15 and 16 in Table 2, respectively. The 
electric motor torque is input into the drivetrain subsystem, which in 
turn outputs the electric motor speed, and front and rear axle torques, 
forces and speeds, corresponding to indices 1, 3, 4, 8, 9, 10, 11 in Ta

ble 2, respectively. The motor speed is also fed back into the electric 
plant model, completing the control loop. Both subsystems also contain 
further subsystems within them which uncover the causal relationships 
between their respective signals, but diving as deep as the lowest ab

straction level of the model is outside the scope of this paper. Readers 
interested in more detail can refer to the Simulink model available in 
the provided repository. By default, the battery model features a static 
temperature model, however, to increase system complexity, a dynamic 
temperature model is added to the FEV model. The model used is the 
EV Battery Cooling System,2 also from MathWorks.

The environment block of the FEV model dictates environmental 
conditions that affect the longitudinal dynamics of the FEV model. Pa

rameters like atmospheric pressure, wind speed, road grade and coeffi

cient of friction can be set within this subsystem.

By default, the signals are logged at a sampling frequency of 10 Hz
and the solver used is the differential algebraic equations’ solver for Sim

scape (daessc). Physical simulations may encounter numerical under-

and overflow, which slow down simulations drastically. To avoid this, 
a timeout counter of one hour is set in place to skip the current simu

lation if triggered. Simulation time depends on the length of the drive 
cycle, however, for the computer hardware used simulations never take 
longer than 20 minutes, and hence one hour is considered sufficient for 
problem-free simulations.

3.2. Dataset generation

To generate a dataset that is not only extensive but also diverse, 
100 simulations have been undertaken for each of the 33 drive cycles, 
each with random initial battery temperatures and battery SoCs. At this 
stage, all model properties have been left as default, and hence all sim

ulation results have been considered nominal. For each simulation, the 
two states (battery temperatures and battery SoCs) have been sampled 
from uniform distributions  (10 ◦C,30 ◦C) and  (10 %,100 %), respec

tively, to ensure no bias is introduced. Sampling from uniform distri

butions also reduces the effectiveness of simple threshold and control 
chart methods because the battery temperature and state of charge, but 
also, by extension, other channels, exhibit nominal but high deviation 
from the average behaviour. As a precautionary measure, drive cycles 
with a minimum SoC value lower than 5% have been removed, as very 

2 https://de.mathworks.com/help/hydro/ug/ev-battery-cooling.html, last 
accessed: 24.03.2025.
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Fig. 2. A more detailed schematic of the vehicle model depicted in Fig. 1. Numbers represent the indices of signal flow, reference is shown in Table 2. Output signals 
of the vehicle model, which are not fed back into other subsystems, are not shown, for simplicity.

Table 4
Number of sub-sequence anomalies 𝑁ss and 
number of whole-sequence anomalies 𝑁ws by 
anomaly type.

Anomaly Types 𝑁ss 𝑁ws

Regenerative Braking Off 33 32 
Increased Headwind 33 31 
Reduced Pump Displacement 1 23 
Reduced Motor Torque Request 32 33 
Increased Wheel Diameter 0 33 
Increased Driver Reaction Time 0 33 

low values have been observed to result in abnormal behaviour. After 
simulation, 𝑁n = 3273 highly diverse and unique nominal time series 
have been collected. For illustration purposes, a nominal time series is 
plotted in Fig. 3. 

For the generation of anomalous time series, six types of anoma

lies have been considered. Some types can occur as both sub-sequence 
anomalies and sequence anomalies [9], while others only in sequence 
anomaly form, due to simulation model limitations. To better distin

guish the two anomaly forms, we refer to sequence anomalies as whole

sequence anomalies henceforth. The distribution of sub-sequence and 
whole-sequence anomalies across the different anomaly types is shown 
in Table 4. Anomalies are caused by changing certain model properties 
prior to simulation, ensuring that any observed anomalous behaviour re

sults from simulation rather than manual tampering of the data, like in 
the UCR dataset [22], which eliminates any bias. We ran all simulations 
with a fixed seed of 1. 

For the first kind of anomaly, we turn the regenerative braking off, 
which leads to visibly different motor and axle torques, as well as battery 
current and power, as these can no longer assume negative values. When 
regenerative braking is off, the battery SoC now has an exclusively neg

ative gradient as it is no longer recharged via regenerative braking, and 
hence it decreases at a faster rate. The brake pedal is also used more 
to compensate for the missing braking motor torque. For each of the 
cycles, this anomaly type is simulated in two different ways: without re

generative braking from the beginning and from a random point in time 
within the drive cycle. This random point in time is sampled from a uni

form distribution  (0.2𝑇 ,0.8𝑇 ), where 𝑇 denotes the temporal length 
of the drive cycle in question, see Table 3. This statistical distribution is 
used for all sub-sequence anomaly types. One of the anomalous time se

ries for the CADC130 drive cycle and its control counterpart are plotted 
in Fig. 4. 

In the case of the next anomaly type, we introduce a headwind of 
5m s−1 to the model. This headwind acts as a force on the frontal area 
of the vehicle and needs to be overcome to maintain the target vehicle 
speed by using the accelerator pedal more than the norm, which leads 
to higher motor and axle torques and therefore axle forces. The higher 
motor torque requires a higher battery current and power, which also 
causes accelerated discharging. Like previously, this anomaly type is 
simulated for each drive cycle, both from the beginning and from a ran

dom point in time within the cycle. One of the anomalous time series for 
the CLTCPassenger drive cycle and its control counterpart are plotted in 
Fig. 5. 

Following that, we reduce the displacement of the cooling pump by 
10% to simulate another anomaly type. Evidently, this change leads to 
a higher battery temperature as the cooling capacity is reduced. This 
reduction is also visible in the pump power. Like with the previous two 
anomaly types, this anomaly type can start from the beginning and from 
a random point in time within the cycle. One of the anomalous time 
series for the CUEDCDieselME drive cycle and its control counterpart 
are plotted in Fig. 6. 

For the next anomaly type, we reduce the requested motor torque 
value output by the powertrain control module by 10%. As a response to 
the change, the driver model requests a higher acceleration pedal value 
and consequently a different brake pedal values as well. This anomaly 
type can also start from the beginning and from a random point in time 
within the cycle. One of the anomalous time series for the FTP75 drive 
cycle and its control counterpart are plotted in Fig. 7. 

In the next case, we increase the loaded wheel diameter by 10%
which, for the same target vehicle speed, leads to a lower motor and axle 
angular speed. Furthermore, a larger wheel diameter leads to higher mo

tor and axle torques, which are achieved using higher accelerator and 
brake pedal values. Here, the wheel diameter also has an effect on the 
battery temperature, which, depending on its absolute magnitude, may 
also affect the cooling system. Due to model limitations, this anomaly 
can only be simulated for whole-sequence anomalies. One of the anoma

lous time series for the HUDDS drive cycle and its control counterpart 
are plotted in Fig. 8. 

The last anomaly is recorded after increasing the driver response 
time by a factor of 4. This is one of the more subtle anomalies types, but 
manifests itself in all channels, except for the battery temperature and 
cooling. Like for the wheel diameter anomaly, this anomaly can only 
be simulated for whole-sequence anomalies. One of the anomalous time 
series for the LA92 drive cycle and its control counterpart are plotted in 
Fig. 9. 

To ensure that the different anomaly types actually lead to anoma

lous behaviour, we run control simulations with the same initial battery 
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Fig. 3. Sample plot of a nominal sequence with added noise and undergone trimming. The channel legend can be found in Table 2. 
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Fig. 4. Plot of an anomalous sequence without regenerative braking (in red) and its control counterpart (in black), both with added noise and undergone trimming. 
The anomalous sub-sequence starts after 384.6 s. The channel legend can be found in Table 2.
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Fig. 5. Plot of an anomalous sequence with an added headwind (in red) and its control counterpart (in black), both with added noise and undergone trimming. The 
anomalous sub-sequence starts after 738.0 s. The channel legend can be found in Table 2.
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Fig. 6. Plot of an anomalous sequence with a reduced cooling pump displacement (in red) and its control counterpart (in black), both with added noise and undergone 
trimming. It is a whole-sequence anomaly, and hence the anomalous behaviour starts from the first time step. The channel legend can be found in Table 2.
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Fig. 7. Plot of an anomalous sequence with a reduced requested motor torque (in red) and its control counterpart (in black), both with added noise and undergone 
trimming. The anomalous sub-sequence starts after 940.2 s. The channel legend can be found in Table 2.
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Fig. 8. Plot of an anomalous sequence with an increased loaded wheel diameter (in red) and its control counterpart (in black), both with added noise and undergone 
trimming. It is a whole-sequence anomaly, and hence the anomalous behaviour starts from the first time step. The channel legend can be found in Table 2.
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Fig. 9. Plot of an anomalous sequence with an increased driver response time (in red) and its control counterpart (in black), both with added noise and undergone 
trimming. It is a whole-sequence anomaly, and hence the anomalous behaviour starts from the first time step. The channel legend can be found in Table 2.

Big Data Research 42 (2025) 100573 

12 



L. Correia, J.-C. Goos, T. Bäck et al. 

states but with otherwise nominal model properties. Given the uniform 
distribution from which the battery temperature is sampled from, half 
of the simulated anomaly types start with a battery temperature below 
20 ◦C. In these cases, the battery will naturally heat up as it is being 
used and hence the cooling system does not play a role. Therefore, in 
the case of the reduced cooling pump displacement, often no anomalous 
behaviour can be observed because the simulated anomaly is identical 
with the corresponding control simulation. For these cases, the simu

lated anomaly is discarded.

Finally, this results in 𝑁a = 284 successful anomalous simulations, 
where 𝑁a = 𝑁ss +𝑁ws. Hence, the entire dataset  consists of 𝑁n +
𝑁ss +𝑁ws = 3557 unique (nominal and anomalous) multivariate time 
series, with an anomalous sequence ratio of 284∕3557 ≈ 8%.  is then 
shuffled and divided into three separate folds for cross-validation, which 
corresponds to 2∕3 and 1∕3 split training and test subsets, respectively. 
Formally, the training subset train = {1, ...,𝑚, ...,𝑀} then consists 
of 𝑀 = 2371 multivariate time series on average, where 𝑚 ∈ℝ𝑇𝑚×𝑑 , 
where 𝑇𝑚 is the number of time steps in sequence 𝑚. Likewise, the test 
subset test = {1, ...,𝑛, ...,𝑁} consists of 𝑁 = 1186 multivariate time 
series on average, where 𝑛 ∈ℝ𝑇𝑛×𝑑 , where 𝑇𝑛 is the number of time 
steps in sequence 𝑛. For benchmarking purposes, we suggest the users 
use the prescribed training and test split to ensure comparable results.

To add further complexity and to reflect certain real-world artefacts, 
we undertake some post-processing. First, we trim the beginning of each 
time series in  by random amounts so that time series representing the 
same drive cycle are rarely in sync. The amount by which a given time 
series is trimmed is sampled from uniform distribution  (0,0.1𝑇 ). This 
artefact can happen in the real world and means that, for the same drive 
cycle, any given time step is not comparable across different sequences, 
eliminating the viability of simple statistical methods such as control 
charts. In addition to that, we add noise sampled from Gaussian distri

bution  (0,0.01𝜎) to further move the obtained data towards the real 
world, where 𝜎 is the feature-wise standard deviation of the dataset.

3.3. Usability of the dataset

Clearly, both train and test, as specified previously, contain nom

inal and anomalous time series, though in an unsupervised setting the 
labels for train should be disregarded. This is because the dataset is 
aimed at unsupervised time series anomaly detection, which requires ap

proaches especially robust to contaminated training data.

We believe the underlying properties of the dataset can be useful 
in other research areas too. The same train and test subsets can also 
be used for imbalanced time series classification if the labels are consid

ered. Additionally, we provide a number of different subset variations 
for other tasks. For semi-supervised anomaly detection, we provide a 
clean train with on average 𝑀 = 2182 nominal time series and the 
same labelled test in the dataset, where clean refers to the absence of 
anomalous sequences in the subset. Furthermore, for time series fore

casting or generation, we supply clean versions of both train and test, 
where 𝑀 = 2182 and 𝑁 = 1091 on average, respectively. Despite being 
targeted at online time series anomaly detection, the PATH dataset can 
just as well be used in offline time series anomaly detection.

4. Baseline results on the dataset

4.1. Methodology

The evaluation metrics used to quantify anomaly detection perfor

mance by Correia et al. [19] are adopted, as they provide a parameter

free way to quantify online anomaly detection performance in an in

terpretable way. Said metrics are very similar to the conventional true 
positive, false positive, true negative and false negative labels applied 
to each individual discrete sequence, with the exception that a sub

sequence anomaly can also be labelled as a false positive if detected 

Fig. 10. Arbitrary anomaly score as a function of time. The dotted vertical line 
denotes the start of the anomalous behaviour and the red lines represent three 
different thresholds.

too early. In addition to that, the time between detection and ground

truth anomaly start is also quantified for each anomalous 𝑛, with false 
positives being assigned the absolute value of the ``negative'' delay and 
false negatives being assigned the length of the anomalous sub-sequence 
within 𝑛. The detection delays are finally aggregated into the average 
detection delay 𝛿, given in seconds. The issue with these metrics is that 
they are not recall consistent as defined by Wagner et al. [15], meaning 
that the recall monotonically decreases with an increasing threshold. 
Consider a time series with a sub-sequence anomaly starting off as nom

inal and eventually becoming anomalous, as shown in Fig. 10. For a 
very low threshold 𝜏1, the anomaly is considered a false positive since 
it is an early detection. As the threshold increases to 𝜏2 it leads to a true 
positive but when the threshold reaches 𝜏3, it becomes a false negative. 
This leads to an increase and then decrease in recall, hence the metrics 
do not qualify as recall consistent, which also prevents them from being 
used to calculate the area under the precision-recall curve to quantify 
the uncallibrated detection performance. Despite its short-comings, it is 
the only set of metrics that are apt for online discrete-sequence prob

lems.

In this work, we consider VS-VAE [32], OmniAnomaly [2], VASP 
[23], TCN-AE [24], SISVAE [25], LW-VAE [26], TSADIS [27], and 
TeVAE [19] when conducting experiments. The hyperparameters for 
each approach are set as specified in the respective publication, though 
early stopping is applied to all that require a training procedure. Early 
stopping is parameterised such that the respective reconstruction error 
is monitored and training is stopped once validation loss has stopped 
decreasing for 250 epochs.

The validation subset val is obtained by further splitting train and 
hence is also unlabelled. As future work may not require a validation 
subset, it is left to the individual to extract it from the training subset if 
needed. The test subset test should be the same as the one provided to 
ensure comparable results.

As mentioned in Section 3 the simulation signals are sampled at 
10 Hz by default, however, to reduce the computational load in our 
experiments, we downsample the data to 2 Hz with a low-pass filter 
with a cut-off frequency of 1 Hz, as it is consistent with the Whittaker--

Nyquist--Shannon theorem [28]. This downsampling procedure is con

sidered as part of the approaches tested and is optional for any future 
work, which may alternatively use the raw time series data or perhaps 
even correlation matrices [29,30].

To bring all channels to a common magnitude, the dataset features 
are z-score normalised.

Finally, we segment the time series data into fixed-length sub

sequences, also referred to as windows. The rationale for using windows 
instead of full-length sequences is that the dynamics present in the time 
series data tend to occur quickly and only influence the data for a brief 
duration. Modelling entire variable-length sequences is possible, but it 
would lead to inefficient use of the model’s learning capacity, as it would 
have to maintain information over unnecessarily long periods. By fo

cusing on windows that are just long enough to capture the existing 
dynamics in the data, model training should be more effective. To de

termine the optimal window length at 2 Hz, especially to capture the 
slowest dynamics present in a signal, we perform an autocorrelation 
analysis [19] for each drive cycle and for every feature within those 
cycles, yielding a window size of 256 time steps. In the literature, the 
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window size is often treated as a hyperparameter [26,31,27] or pro

vided without reasoning [32,33,25,24,34]. However, it is not possible 
to tune hyperparameters outside a supervised setting, and therefore such 
methods might not be applicable in real-world settings. In contrast, 
finding a suitable window length using autocorrelation is completely 
unsupervised. TSADIS takes window size as a hyperparameter before 
calling, hence a window size of 256 time steps is also used. To map the 
individual windows back to continuous sequences, mean-type reverse

windowing [19] is used where applicable.

4.2. Reproducibility and benchmarking considerations

While perhaps sounding similar, repeatability, reproducibility, and 
replicability are defined differently according to the Association for 
Computing Machinery [35].

• Repeatability: the property of the research’s finding being obtain

able using the same experimental setup by the same person.

• Reproducibility: the property of the research’s finding being obtain

able using the same experimental setup by a different person.

• Replicability: the property of the research’s finding being obtain

able using the different experimental setup by a different person.

Several position papers [36--42] call for greater attention to be paid 
to reproducibility and replicability in computer science. Additionally, 
some conferences focus on reproduction, like the Machine Learning Re

producibility Challenge [43], or make specific calls for reproducibility 
and replicability papers, like the European Conference on Information 
Retrieval [44]. To enable future work to reproduce the results in this 
paper, we aim to be as transparent as possible by providing publicly 
available, clean and thoroughly commented source code for all experi

ments and the Simulink model under https://github.com/lcs-crr/PATH, 
as is suggested in literature [37,38,42].

The seed for random operations has an impact on model training, 
given that processes like sampling and weight initialisation rely on it. 
To increase robustness of the results and to eliminate the possibility of 
the results owing to a specific fold and seed combination rather from the 
characteristics of the model [42], all three folds are trained on seeds 1
through 3, yielding 9 different combinations. The final result is then 
given as the average of the 9 different combinations. As mentioned, 
TSADIS does not require training, and hence its results are simply the 
average over all three folds.

In case future work aims to replicate the results of this paper, we 
encourage deviating from the experimental setup outlined in this pa

per [45], though, as Bartz-Beielstein et al. [40] point out, there is no 
definition for how different an experimental setup needs to be for re

sults to be considered replicable. Using a different set of seeds, splitting 
the dataset into different folds, using different implementations of the 
approaches or even by using different software and hardware are some 
of the variables that could be changed in the setup, for example. In the 
case of replicability, these changes should not change the outcome [39]. 
Moreover, it is just as important that future work provides the same level 
of transparency regarding the experimental setup and documentation.

It should be noted that the test subset test is often not available in 
the real world, so we strongly discourage approaches performing super

vised threshold search using the labelled test data in test .

Furthermore, there is no way to stop future research from perform

ing hyperparameter tuning using test , hence any results obtained for 
this dataset should be considered as the theoretical maximum anomaly 
detection performance achievable by the approach, not as a realistic 
anomaly detection performance observable in the real world.

We run all simulations that generate the PATH dataset on a work

station equipped with an Intel Xeon Gold 6234 CPU running Windows 
10 Enterprise LTSC version 21H2 with MATLAB 2023b. The framework 
used for model training is TensorFlow 2.15.1 and TensorFlow Probabil

ity 0.23 on Python 3.10 on a workstation running Ubuntu 22.04.5 LTS, 

Table 5
Mean ± standard deviation of 𝐹1 score, precision 𝑃 , recall 𝑅, and 
average detection delay 𝛿 using the unsupervised threshold (top half) 
and theoretical best threshold (bottom half) for a range of approaches 
applied to the unsupervised anomaly detection version of the PATH 
dataset, i.e. the version with anomalous data in training subset train. 
The best 𝐹1 scores are given in bold.

Approach 𝐹1 𝑃 𝑅 𝛿 [𝑠]

VS-VAE 0.03 ± 0.02 0.78 ± 0.41 0.01 ± 0.01 991.4 ± 71.1
OmniA 𝟎.𝟎𝟔± 𝟎.𝟎𝟔 0.60 ± 0.44 0.03 ± 0.03 994.9 ± 69.7
VASP 0.02 ± 0.02 0.21 ± 0.34 0.01 ± 0.01 991.9 ± 70.8
TCN-AE 0.02 ± 0.02 0.45 ± 0.41 0.01 ± 0.01 989.8 ± 66.9
SISVAE 0.03 ± 0.03 0.13 ± 0.10 0.02 ± 0.02 993.1 ± 69.6
LW-VAE 0.01 ± 0.02 0.26 ± 0.41 0.01 ± 0.01 991.9 ± 71.0
TSADIS 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 1209.8 ± 8.9
TeVAE 0.02 ± 0.03 0.27 ± 0.36 0.01 ± 0.02 992.7 ± 70.7

VS-VAE 0.30 ± 0.07 0.35 ± 0.26 0.34 ± 0.05 792.0 ± 75.4
OmniA 0.50 ± 0.09 0.60 ± 0.11 0.44 ± 0.11 767.0 ± 114.7
VASP 0.11 ± 0.01 0.07 ± 0.01 0.47 ± 0.24 673.5 ± 181.2
TCN-AE 0.14 ± 0.01 0.09 ± 0.01 0.41 ± 0.16 750.2 ± 121.1
SISVAE 0.22 ± 0.03 0.19 ± 0.05 0.28 ± 0.04 826.2 ± 80.0
LW-VAE 0.13 ± 0.01 0.07 ± 0.01 0.51 ± 0.22 634.8 ± 172.6
TSADIS 0.10 ± 0.01 0.05 ± 0.00 1.00 ± 0.00 1209.8 ± 8.9
TeVAE 𝟎.𝟓𝟖± 𝟎.𝟎𝟖 0.69 ± 0.12 0.50 ± 0.09 676.4 ± 103.2

equipped with two Nvidia RTX A6000 GPUs. All work involving TSADIS 
is done in a separate environment with the latest compatible Python ver

sion of 3.9. Further information on library versions used can be found 
in the requirements.txt file in the repository.

4.3. Results and discussion

To provide baseline results for the version of the PATH dataset for 
unsupervised anomaly detection, we test several approaches. The corre

sponding results are shown in Table 5. 
First, it is evident that there is a large gap between the unsuper

vised and theoretical best threshold results. The unsupervised threshold 
is a rudimentary estimation based on the unlabelled validation subset 
val [19] and tends to be set higher than the theoretical best. This is be

cause in the unsupervised version of the dataset, there are anomalous 
sequences within val, which are associated with a higher maximum 
anomaly score and therefore threshold. It is clear, however, that the re

sults are far from good, which sets one foundation for future work. We 
can isolate absolute detection performance from the threshold choice by 
performing a grid search on different thresholds, which allows us to find 
the threshold yielding the theoretical best 𝐹1 score. At this threshold, we 
observe the best possible anomaly detection performance the approach 
can achieve on the test set, though it is not observable in the real-world. 
Here, TeVAE performs best in terms of 𝐹1 score, though with a high aver

age detection delay due to the number of high number of false negatives. 
While these results are better than with the unsupervised threshold, they 
still leave room for improvement. Regardless of the results, it cannot be 
denied how much less computationally intensive TSADIS is compared to 
methods based on deep learning. Even on commodity hardware, more 
specifically a laptop with an Intel Core i7-1185G7, it can evaluate test 
data faster than deep learning models. It should be noted that this is 
mainly because no reverse-windowing is needed with TSADIS, a pro

cess that, unlike inference in deep learning models, runs on the CPU, 
not the GPU. However, because TSADIS works on the entire sequence, 
not on windows, it is technically an offline approach, hence why its 
detection delay is the highest. Additionally, TSADIS does not require 
a training procedure. At first glance, this property is a benefit, as the 
implementation hurdle is much lower than with deep learning models, 
which essentially require GPU-acceleration. However, without training 
data, TSADIS cannot know what is a nominal time series and what is 
not, therefore the nominal behaviour is not modelled. It can solely rely 
on the information present within a sequence to calculate an anomaly 
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Table 6
Mean ± standard deviation of 𝐹1 score, precision 𝑃 , recall 𝑅, and 
average detection delay 𝛿 using the unsupervised threshold (top half) 
and theoretical best threshold (bottom half) for TeVAE applied to the 
semi-supervised anomaly detection version of the PATH dataset, i.e. the 
version without anomalous data in training subset train.

Approach 𝐹1 𝑃 𝑅 𝛿 [𝑠]

TeVAE 0.63 ± 0.22 0.95 ± 0.06 0.52 ± 0.26 589.1 ± 212.0
TeVAE 0.80 ± 0.15 0.88 ± 0.11 0.76 ± 0.18 412.6 ± 143.8

score, which is part of the reason it cannot outperform deep learning

based methods.

We also performed limited testing on the version of the dataset for 
semi-supervised anomaly detection. It involves the same testing proce

dure, except that the clean version, i.e. anomaly-free, of the training 
subset is used.

The corresponding results for TeVAE are shown in Table 6. The gap 
between results obtained using the unsupervised threshold and the the

oretical best is now much smaller than observed in Table 5, which can 
be attributed to the lack of anomalous data in val. Additionally, there 
is a large gap between the theoretical best results between the unsuper

vised and semi-supervised versions, indicating the need for more robust 
future work when anomalous data is present in train.

5. Conclusion and outlook

We propose a novel multivariate time series dataset for online 
anomaly detection, called the Powertrain Anomaly Time series bencH

mark (PATH) dataset. The PATH dataset is generated using simulation, 
where the model it is based on resembles a real-world dynamic system. 
In addition to that, simulation is done in a variety of different initial 
states to further add to the diversity of the dataset. To increase the com

plexity of the dataset, noise is applied and the beginning of time series 
are randomly trimmed. The anomalies in the PATH dataset arise from 
changing parameters prior to simulation, as opposed to manual data 
manipulation, resulting in anomalies that are non-trivial and realistic. 
We offer the dataset in three different versions: one for unsupervised 
anomaly detection, where the training subset consists of both anomalous 
and nominal sequences, another for semi-supervised anomaly detection, 
where the training subset consists of nominal sequences only, and one 
for time series generation or forecasting, where both the training and 
test subsets are nominal. Lastly, for each of the versions, we offer three 
different folds with a pre-defined train and test split to ensure gener

alised and comparable results.

The experiments conducted in this work further support the claim 
of non-triviality because, even when the threshold choice is removed as 
a factor, the best approach in an unsupervised setting only manages to 
achieve an 𝐹1 score of 0.58 and an average detection delay of 676.4 s. In 
contrast, however, the results significantly improve when the clean ver

sion of the test subset is used. Here, the average theoretical best 𝐹1 score 
reaches 0.80 and an average detection delay of 412.6 s, highlighting the 
need for methods more robust to anomalous data in the unlabelled and 
contaminated training subset.

In the future, the PATH dataset should be extended to a standardised 
benchmark consisting of not only a dataset based on the longitudinal 
electric vehicle dynamics, but also on simulation models from other do

mains. Additionally, the simulation model can be adapted to take other 
factors into account, like battery ageing. Battery ageing can be char

acterised by the charge capacity, which, fixed in this dataset, can be 
changed dynamically to simulate battery ageing, which will have an 
impact on the entire system. This property can be especially useful for 
research in the area of unsupervised predictive maintenance, where an 
explicit health signal is not present. Additionally, modal channels could 
be considered if a gearbox model was implemented, since, depending on 
the discrete gear, the motor speed is decoupled from the axle speed. Fur

thermore, there is a need for more sophisticated evolution of the online 

evaluation metrics [19] that do not assume a single anomalous sub

sequence per test time series and that are recall consistent. When said 
metrics are available, the dataset could be extended to such anomalies 
types.
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