

Von Willebrand disease and von Willebrand factor: an old story, a new perspective Biguzzi, E.F.

Citation

Biguzzi, E. F. (2025, November 7). *Von Willebrand disease and von Willebrand factor: an old story, a new perspective*. Retrieved from https://hdl.handle.net/1887/4282104

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral

License: thesis in the Institutional Repository of the University

of Leiden

Downloaded from: https://hdl.handle.net/1887/4282104

Note: To cite this publication please use the final published version (if applicable).

Chapter 5

Acquired von Willebrand syndrome and response to desmopressin

Eugenia Biguzzi, Simona Maria Siboni, Flora Peyvandi

Published in Haemophilia 2018; 24: e25-e28

DOI: 10.1111/hae.13382

Dear Sir.

Acquired Von Willebrand Syndrome (AVWS) is a rare and probably underestimated bleeding disorder, characterized by late onset in individuals with no family or personal history of bleeding. Clinical symptoms of AVWS are not specific and include spontaneous muco-cutaneous bleeding, gastrointestinal haemorrhage and postsurgical bleeding.

Different pathological mechanisms were described in AVWS [1], based on the underlying disease associated with AVWS in most patients: 1) autoimmune clearance or VWF inhibition by the paraprotein in patients with monoclonal gammopathy of undetermined significance (MGUS) or lymphoproliferative disorders with monoclonal gammopathy; 2) increased direct clearance of VWF by the neoplastic cells in essential thrombocytemia and solid tumors such as Wilm's tumor; 3) increased clearance (in particular of the high molecular weight multimers) associated with abnormal shear stress in cardiovascular diseases, such as aortic stenosis, septal defects, use of left ventricular assist devices; 4) increased clearance or inhibition of VWF by autoantibodies in autoimmune diseases, such as systemic lupus erythematosus, Crohn's disease; 5) decreased synthesis of VWF in hypothyroidism.

Several therapeutic approaches can be used in patients affected by AVWS. Treating the underlying disease can eradicate the AVWS in patients affected by hypothyroidism, cardiovascular autoimmune diseases, diseases. lymphoproliferative myeloproliferative diseases [1]. Nevertheless, these therapies can take some time before being efficacious. For the immediate treatment of bleeding events other strategies need to be used. In particular desmopressin (DDAVP) and FVIII/VWF concentrate increase FVIII and VWF levels immediately, but often only for a short period of time. The use of high dose intravenous immunoglobulins (1g/kg for 2 days or 0.5g/kg for 5 days) can be successfully used in patients with IgG monoclonal gammopathy, enabling to reach normal levels of FVIII and VWF after 3-4 days and lasting for 4-6 weeks [2]. Recently the successful use of thalidomide and lenalidomide was reported in four patients affected by AVWS and severe bleeding [3-5].

The aim of our study was to describe the biochemical and clinical response to DDAVP in patients affected by AVWS.

All patients affected by AVWS who underwent a DDAVP-test followed at our centre between 1982 and February 2017 were included (case series).

FVIII:C and VWF:RCo levels were measured before DDAVP infusion, after 1 hour and 4 hours. Response to DDAVP was defined as: complete (both FVIII:C and VWF:RCo 50 IU/dL or higher); partial (FVIII:C or VWF:RCo lower than 50 IU/dL but increased at

least 3-fold) or absent. VWF: propeptide was measured with an ELISA, using the MW1939 antibody pair anti-human VWFpp (Sanquin, Amsterdam, The Netherlands). VWF: propeptide/antigen ratio was evaluated as a measure of VWF clearance.

Eighteen patients were included in the study (7 males and 11 females). Median age at diagnosis was 55 years (range 22-74). Underlying disorders were present in 17/18 patients: 11 monoclonal gammopathy of uncertain, 1 Waldenstrom's macroglobulinemia, 1 chronic lymphatic leukemia, 3 essential thrombocytemia, 1 inflammatory bowel disease. Blood group was 0 in 5 patients, non-0 in 10 and not available in 3.

Table 1 shows patients characteristics. Median values of FVIII:C were 28 IU/dI (range 9-73, n=18) at baseline, 143 IU/dI (range 18-234, n=18) after 1 hour and 78 IU/dI (range 14-163, n=13) after 4 hours. Median values of VWF:RCo were 9 IU/dI (range 5-68, n=18) at baseline, 62 IU/dI (range 5-205, n=18) after 1 hour and 37 IU/dI (range 5-129, n=12) after 4 hours. The median value of VWF: propeptide/antigen ratio was 4.3 (range 0.9-47, n=16, normal range <1.7). The response to DDAVP after 1 hour was complete in 13 patients (72%), partial in 2 (11%) and absent in 3 (17%). After 4 hours, the response was complete in 5 of 13 patients (38%), partial in 1 (8%) and absent in 7 (54%), data not available in 5 patients.

Even with the small number of patients, an analysis of factors influencing the response to DDAVP is presented in table 2. Three variables seem to influence the response to DDAVP: 1) VVW propeptide/antigen ratio, that is a surrogate marker for clearance (higher levels of VWF propeptide/antigen ratio are associated with a worse response, especially after 4 hours, as expected in case of increased clearance); 2) underlying disease: patients with MGUS (especially those with IgM MGUS) seem to have a worse response to DDAVP, especially after 4 hours; 3) baseline levels of FVIII and VWF are, as it could be expected, an important variable in the response to DDAVP.

DDAVP was used in 11 patients (61%) to prevent bleeding during minor surgery or to treat minor bleeding events, with some failures. Other therapeutic interventions were used in 10 patients (FVIII/VWF concentrate in 5 patients, high dosage immunoglobulins in 1 patient, both in 4 patients), since DDAVP is not useful in patients with very low FVIII and VWF levels at baseline. This is especially disappointing as these are the patients with frequent and spontaneous bleeding symptoms. Besides the use of DDAVP can be contraindicated in older patients with hypertension or coronary heart disease.

In the present single centre case-series one third of the patients with AVWS (38%) showed a complete and sustained response after DDAVP infusion (4 hours). DDAVP

was used in the majority of patients to prevent bleeding in minor surgeries or to treat minor bleeding events. Large multicenter studies are necessary to evaluate DDAVP efficacy in AVWS.

REFERENCES

- [1] Federici AB, Budde U, Castaman G, Rand JH, Tiede A. Current diagnostic and therapeutic approaches to patients with acquired von Willebrand syndrome: a 2013 update. Semin Thromb Haemost, 2013; 39: 191-201.
- [2] Federici AB, Stabile F, Castaman G, Canciani MT, Mannucci PM. Treatment of Acquired von Willebrand syndrome in patients with monoclonal gammopathy of uncertain significance: comparison of three different therapeutic approaches. Blood, 1998; 92: 2707-2711.
- [3] Engelen ET, van Galen KP, Schutgens RE. Thalidomide for the treatment of gastrointestinal bleedings due to angiodysplasia: a case report in acquired von Willebrand syndrome and review of the literature. Haemophilia, 2015; 21: 419-429.
- [4] Boey JP, Hahn U, Sagheer S, Mc Rae SJ. Thalidomide in angiodysplasia-related bleeding. Int Med J 2015; 45: 972-976.
- [5] Lavin M, Brophy TM, Rawley O, et al. Lenalidomide as a novel treatment for refractory acquired von Willebrand syndrome associated with monoclonal gammopathy. J Thromb Hemost 2016; 14: 1200-1205

Table 1. Patients characteristics, associated disorders and response to DDAVP

ž	Age	Sex	Associated disorder	FVIII:C (IU DDAV	FVIII:C (IU/dL) before and after DDAVP administration	and after ration	VWF:RCo after DDA	VWF:RCo (IU/dL) before and after DDAVP administration	fore and stration	Post-1h answer	Post-4h answer	VWF:pp/ag ratio
				baseline	Post-1h	Post-4h	baseline	Post-1h	Post-4h			
	4	щ	MGUS (IgG A)	10	29	14	9>	7	9>	OU	OU	AN
	22	Σ	MGUS (IgG k)	6	73	17	9	2		0	0	47
3 5	55	ш	MGUS (IgG A)	13	120	34	12	25	16	yes	OL.	80
	4	ш	MGUS (IgM k+IgG λ)	20	140		9	4		partial		3.5
	4	Σ	MGUS (IgM k)	37	153		1	20		yes		Ϋ́
	90	ш	MGUS (IgG k)	89	204	163	28	109	86	yes	yes	2.9
	೮	ш	MGUS (IgG k)	4	184	84	20	103	46	yes	0	4.8
	88	ш	MGUS (IgG k)	1	144	35	9	89	9>	yes	0	4.1
	99	ш	MGUS (IgG k)	13	18		9	∞		ou		8
	12	ш	MGUS (IgG A)	19	182	78	9	86	28	yes	partial	6.9
11 6	29	Σ	Waldestrom's macroglobulinemia	51	165	138	35	137	129	yes	yes	6.
			Chronic Lymphatic									
12 7	74	Σ	Leukaemia	38	74	29	9	27	9	yes	OLI	4.5
			IgM k + IgM A									
13 2	22	ш	Essential Thrombocytemia + Ehler Danlos Syndrome	64	175		89	205		yes		1.51
	72	щ	Essential Thrombocytemia	49	234	105	38	120	96	yes	yes	1.3
	2	Σ	Essential Thrombocytemia	32	126		16	26		yes		1.42
16 7	20	Σ	Inlammatory Bowel Disease	23	62	28	9	37	80	partial	ou	17.3
	17	Σ	none	18	142	108	2	134	108	yes	yes	6.2
18 7	0	ш	MGUS (IaG)	73	196	145	49	110	68	Nes	Vev	60

Table 2. Response to DDAVP. Patients characteristics and response to DDAVP

		1 hour after DDAVP	r DDAVP	4 hours after DDAVP	DAVP
		Complete or partial response to DDAVP	sponse to DDAVP	Complete or partial response to DDAVP	onse to DDAVP
		z	%	z	%
3	Males	7	86	5	40
X 90	Females	11	82	7	22
•	<55 yrs	O	88	5	40
Age	≥55 yrs	თ	78	ω	20
1	0	Ŋ	100	4	20
picod group	Non 0	10	20	ω	38
Underlying	MGUS	7	73	ω	38
disease*	ET	က	100	-	100
	FVIII:C and/or VWF:RCo <25 IU/dL	13	77	6	22
Daseille levels	FVIII:C and VWF:RCo≥25 IU/dL	ις	100	4	100
VAME: 50 / 50 in the	<u>≤4.5</u>	O	100	9	29
vwr:pp/ag ratio	>4.5	7	7.1	9	33

*MGUS= monoclonal component of undetermined significance, ET= Essential Thrombocythemia