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Computationally Modelling Human

Emergent Communication

In this chapter, we study human sequential behaviour by integrating cognitive, evolutionary, and
computational approaches. Our work revolves around the emergence of shared vocabularies in the
Embodied Communication Game (ECG). Here, participant pairs solve a shared task without access
to conventional means of communication, enforcing the emergence of a new communication system.
This problem is typically solved by negotiating a shared set of sequential signals that acquire meaning
through interactions. Individual differences in Personal Need for Structure (PNS) have been found
to influence how this process develops. We trained deep neural networks to mimic the emergence of
new communicative systems in humans and used hyperparameter optimisation to approximate latent
human cognitive variables in an attempt to explain human behaviour. We demonstrate that models based
on bidirectional LSTM networks are better at capturing human behaviour than unidirectional LSTM
networks. Suggesting that, in the ECG, human sequence processing is influenced by expected future
states. The approximated variables cannot explain the differences in PNS, but we do provide evidence
suggesting that random and uncertainty-directed exploration strategies are combined to develop optimal
behaviour.

Originally published as: Kouwenhoven, T., Verhoef, T., Raaijmakers, S.A., de Kleijn, R.E. (2023).
Modelling Human Sequential Behavior with Deep Learning Neural Networks in Emergent Communication.
In M. Goldwater., F. K. Anggoro., B. K. Hayes., & D. C. Ong., editors, Proceedings of the Annual Meeting of the
Cognitive Science Society, Volume 44, pages 549-555. Cognitive Science Society.
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3.1 Introduction

For communication—between humans or between humans and machines—to be successful,
the coordinated actions of all interlocutors must adhere to the grounding criterion. Accordingly,
interlocutors have to agree on the meaning of the current communicative purposes (Clark
and Brennan, 1991). The fulfilment of this criterion relies extensively on the availability of a
(partially) shared vocabulary between interlocutors of a conversation (Pickering and Garrod,
2004). Yet, the exact dynamics of how humans or agents settle on an effective grounded shared
vocabulary are still unclear (Tylén et al., 2013; Mordatch and Abbeel, 2018). Recent work in
computational linguistics started modelling emergent communication setups using multi-agent
simulations to understand this process better (e.g. Lazaridou et al., 2018; Chaabouni et al.,
2019a, 2020, 2022). However, the findings from these simulations often do not align with the
outcomes of similar experiments with humans (Lazaridou et al., 2020; Galke et al., 2022). As
such, literature proposes to instil human language patterns in machines by including human
feedback in the learning loop instead of only learning from large quantities of data (ter Hoeve
et al., 2022; Brandizzi and Iocchi, 2022), or by inducing additional artificial human-like biases
into machines (Galke and Raviv, 2025).

The interdisciplinary research presented here attempts to instil such human communicative
behaviour in machines, using an experimental setup that allows studying the initial emergence
of simple signals where no communication existed before. As such, we explore the grounding
problem from an evolutionary perspective, where humans must collaboratively create a novel,
shared communication system to play the ECG successfully (Scott-Phillips et al., 2009). This
two-player game addresses two fundamental questions in the emergence of languages: how
does a signal obtain its communicative intent, and how does this signal obtain its meaning?
Most human participants can solve this non-trivial task by establishing an initial convention
(i.e., settling on a default behaviour) and collaboratively bootstrapping new signals onwards
(Scott-Phillips et al. (2009), Chapter 2). These meaningful signals are subsequently used to play
the ECG successfully, creating sequences of communicative behaviour.

Once a communicative system exists, it must be processed by the brain for comprehension
and production. However, it is not entirely clear how this happens for human languages.
Traditional views see the human brain as a forward-looking prediction machine (e.g. Clark,
2013), but recent findings indicate the importance of backward-looking processes for language
comprehension in two self-paced reading and eye-tracking tasks (Onnis et al., 2022). Specifically,
context, in the form of preceding words, can be informative for integrating current words. As
such, Onnis et al. concluded that both forward and backward-looking appear to be important
characteristics of language processing. A similar debate exists regarding the processing of
everyday sequential actions (De Kleijn et al., 2014). Early accounts suggested that sequential
actions are triggered by the perception of motor execution of the previous action (Washburn,
1916). Yet, there is also evidence that anticipated future states also influence subsequent actions
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and that planning mechanisms play a role in sequential tasks (e.g. Lashley et al., 1951; Cohen
and Rosenbaum, 2004; de Kleijn et al., 2018); however, how this happens exactly is hitherto not
well understood.

Context, in the form of preceding behaviour or incoming signals, and intended future
states also play a role in the ECG. Incoming and produced signals (i.e., context) are informative
of future behaviour, and anticipated future states can be thought of as desired behaviours
by the other (i.e., ending on a specific colour). The behaviours in the ECG are moreover
sequential but less complex than everyday actions and can therefore be studied in a relatively
controlled manner. As such, investigating this through computational modelling may reveal
how sequential processing possibly played a role in shaping human language, what types
of agent architectures are required to facilitate natural communication between humans and
machines, and contribute to the debate on sequential action processing in humans.

From a computational view, we use behaviour cloning to 1) investigate whether deep
learning models can learn the expressed human behaviours during the development of signal–
meaning mappings in the ECG; 2) approximate latent human cognitive variables by optimising
model parameters that influence learning and exploration (for an overview of similar work, see
Schulz and Gershman, 2019); 3) identify the applicability of networks with different processing
directions to model human behaviour. We then relate the model parameters with a cognitive
measure of Personal Need for Structure (Thompson et al., 1989) and compare the ability to learn
human behaviour for models with different processing directions and mechanistic learning
preferences. Doing so has the potential to facilitate more natural human-machine interactions
through the development of (language) models that possess shared biases, resulting in a more
human-like quality. Vice versa, deviations between human and computational biases provide a
better understanding of why outcomes of computational simulations might not be as desired.
Lastly, a better understanding of the influence of such biases on the emergence of language
could steer learning mechanisms in computational simulations of emergent communication
and close the gap between evolved human and computational behaviour.

3.2 Background

The origin of language is extensively studied, but the exact dynamics of language emergence
remain unknown. One question concerns the origins of the initial signal–meaning mappings in
case no prior communication system exists. If neither form nor meaning is known, a possible
way to establish this concerns the cooperative process of agreement on the relations between
communicative signals and meanings. This process has been studied extensively through
laboratory experiments in which participants invent and negotiate novel signals to solve a
cooperative task (Steels, 2006; Scott-Phillips and Kirby, 2010; Tylén et al., 2013). These studies
show that humans can establish shared conventions and develop communication systems
through social coordination. It is, moreover, suggested that in addition to language use, human
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learning and the transmission of a language affect the emergence of patterns (Kirby et al., 2015;
Smith, 2022). A paramount explanation for the highly structured nature of human language
is that it emerges due to a human bias for compressible systems, driven by a preference for
simplicity (Kemp and Regier, 2012; Kirby et al., 2015; Kirby and Tamariz, 2022).

The Personal Need for Structure Scale is a measure that assesses the presence and degree of
a human bias for simplicity (Thompson et al., 1989). This questionnaire quantifies individuals’
need for structure (PNS), desire for structure and cognitive simplicity (F1), and the aim of
restructuring an environment into a more manageable and simplified form (F2) (Neuberg and
Newsom, 1993). Differences in the desire for structure influence how individuals understand
and interact with the world (Neuberg and Newsom, 1993) and also affect problem-solving
capabilities (Eva et al., 2014; Svecova and Pavlovicova, 2016). Furthermore, PNS affects the task
progression of participants playing the ECG in that participant pairs who respond differently to
a lack of structure are more successful (Chapter 2).

3.2.1 Embodied Communication Game

The ECG is a cooperative two-player game consisting of two 2×2 grid worlds. Each quadrant of
the grid has one of four colours. Both players move between the quadrants, using the arrow keys,
and share the goal of ending on identically coloured quadrants. When they manage to do so,
they score a point. For both grids, the colours and starting positions are determined randomly
for each round, with the proviso that there is one overlapping colour such that it is always
possible to score a point, i.e., communicate successfully. Players see their own movements and
the movements made by their partner, but only see the colours of their quadrants (Figure 3.1a).
The colours of both worlds are revealed to both players (Figure 3.1b) when both finish moving.
Their goal is to score as many consecutive points as possible, meaning that pairs must find a
way to communicate reliably and coordinate behaviours (see Scott-Phillips et al., 2009, for an
in-depth explanation).

3.2.2 Modelling Human Behaviours

Our work attempts to model human (sequential) behaviour using computational methods.
Similar work by de Kleijn et al. (2018), for example, used reinforcement learning (RL) models to
fit human behaviour in a serial reaction time (SRT) task and found that good human performance
requires a high learning rate and a low discount factor. Suggesting that low-scoring individuals
do not update their action-value function or the expected utility of their actions. Curricularised
learning for RL agents in the SRT task showed that similar to infants’ curiosity-based learning,
exploration can promote robust later learning in virtual agents (de Kleijn et al., 2022).

For textual data, Nikolaus and Fourtassi (2021) evaluated the ability of neural networks to
acquire meanings of words and sentences through laboratory tasks that involve cross-situational
learning used with children. They showed that neural networks mirror learning patterns of
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(a) The view while participants are playing. (b) The view after both players ended the
round.

Figure 3.1: An overview of the two possible game states. While the players are moving, only
the participants’ own grid is coloured (3.1a). When both players are done, the colours of all
quadrants are revealed to both players and feedback is provided (3.1b).

acquiring semantic knowledge in early childhood and suggested that children might use partial
representations of sentence structure to guide semantic interpretation. Additionally, language
models seem to rely more on word frequency than children, but like children, learn words
more slowly when these are part of longer utterances (Chang and Bergen, 2022). These models
notably differed from children in the effects of word length, lexical class, and concreteness on
learning, emphasising the importance of social, cognitive, and sensorimotor experience in child
language development.

3.3 Methods

In this chapter, we attempt to investigate the relationships between computational hyperparam-
eters and cognitive measures through training deep neural networks on human behaviours in
the ECG. Specifically, algorithmic hyperparameters are used as a proxy of human preferences.
We do not claim the existence of exactly these representations in the human brain, but merely
use them as another measuring device of human behaviour.1

3.3.1 Data

The data used in this chapter was collected for the study described in Chapter 2. Here, we
conducted three additional experiments (N = 46: 36 females, 10 males; M age = 22.2, SDage =

3.53). Participants received instructions after which they were separated and placed behind two
connected computers. This setup ensured that conventional communication was impossible and
that the problem of emerging signal–meaning mappings had to be solved by the participants.
The game was played for 40 minutes, for an average of 256 rounds, after which participants
completed the PNS questionnaire and described the communication systems they attempted to

1All code, materials, and data are available on OSF: https://osf.io/n3uj6/.

https://osf.io/n3uj6/
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Figure 3.2: An example communication system established by participants. In this system,
participants would default to a red quadrant or signal another colour through repetitive move-
ments (displayed by the arrows).

develop. Finally, they were debriefed and allowed to discuss their experience. The Psychology
Research Ethics Committee of Leiden University approved this study.

Out of 23 pairs, only 14 managed to create (i.e., reported and demonstrated) a robust
communicative system. A Bayesian t-test showed that these pairs achieved higher scores than
pairs that did not establish a system (BF10 = 26.73). A typical system contains sequences of
movements (i.e., signals) to indicate different colours (i.e., meanings), an exemplary system
is displayed in Figure 3.2. Once established, pairs negotiate which colour is available to both
by repeating the sequential moves associated with this colour. We refer the reader to Scott-
Phillips et al. and Chapter 2 for a detailed description of the emergence of such communicative
behaviour.

A sequence of game states, produced by the movements of each participant, is stored for
each round. These game states are a digital representation of the visual environment participants
see and are used to train our neural networks. A single state contains the players’ position, the
position of the other player, the colour of the currently occupied quadrant, and the entire colour
layout of the players’ grid. This representation reflects the information that a participant sees
during the game. A target label—corresponding to arrow keys and the spacebar—is stored for
each game state, creating a sequence of state-actions pairs. The target label serves as a class
label that is predicted by our deep learning model and is used to compute the prediction loss
required to update the model.

3.3.2 The model

We trained a deep neural network—implemented with Long Short Term Memory (LSTM,
Hochreiter and Schmidhuber, 1997) cells—on the state–action sequences of each participant.
The input data, therefore, differs for each model, but its architecture is generic and fixed
(Figure 3.3). The objective of the model is to predict a participant’s subsequent move given a
particular sequence of states. For unidirectional processing, each state of a sequence is processed
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Figure 3.3: The neural network architecture used to model human behaviours. The model
input Xt is the state at time t. The output layer uses temperature scaling as an activation
function.

chronologically, beginning with the first and ending with the last state2. For bidirectional
processing, the states are additionally processed in reverse order, thus incorporating (i.e.,
anticipating) future behaviour to predict a subsequent move. The model output layer computes
probabilities for subsequent moves using temperature (τ ) scaling. Here, high values of τ cause
actions to be approximately equiprobable, and therefore lead to exploratory behaviour. Low
values of τ result in greater differences between the probabilities, with higher probabilities for
actions with higher expected rewards, and lead to deterministic behaviour. The model learning
rate (lr) influences how quickly it updates its predictions, where a high learning rate means
quick changes. The Adam optimisation algorithm (Kingma and Ba, 2015) is used to minimise
categorical cross-entropy loss.

3.3.3 Measures

Game performance was measured by the number of consecutive successful rounds (high score).
PNS and its sub-factors were collected using a 12-statement questionnaire (see Neuberg and
Newsom, 1993), here, high values for PNS, F1, and F2 correspond to a high need for structure.
To obtain participant-specific τ and lr, we performed hyperparameter optimisation on the
game data of each participant, resulting in 46 independently trained models. Put differently, an
exhaustive grid search was used to optimise model performance using lr ∈ {0.0001, ..., 0.075}
and τ ∈ {0.001, ..., 3.00}, with 10 equally spaced steps per parameter, resulting in 100 param-

2The backward processing layer is not used for unidirectional networks.
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eter settings per participant. Each model was trained independently for five epochs on each
parameter combination. We take the learning rate as a proxy of the extent to which individuals
weigh feedback when updating their estimates and use temperature as an approximation of
how explorative their behaviour was. The ability of the model to predict human sequential
behaviours is reflected in its accuracy (acc). Lastly, the categorical cross-entropy loss (cce, i.e.,
negative log-likelihood) explains how likely the model and human would perform the same
action in a particular game state. For each model, we used three-fold cross-validation to ensure
that the model was not learning the data explicitly but captured the underlying structures of
that participant. The cross-validation score (i.e., the average over all folds) described model
performance. The parameter combination that resulted in the highest cross-validation score was
used as a proxy for the latent human cognitive variables.

3.4 Modelling human sequential behaviour

Behaviour cloning was used to explain human behaviour in the ECG on two accounts. Firstly,
by comparing PNS measures with the computational parameters. Since Neuberg and Newsom
(1993) showed that differences in the need for simple structure influence how individuals
understand and interact with the world, the inferred computational parameters, such as learning
rate and temperature, may capture these effects as well. Therefore, we sought correspondence
between these parameters and the PNS scores of each participant. We hypothesised that learning
rate relates to the desire for cognitive simplicity (F1) and high scores since a desire for structure
implies active searching for patterns, which seems crucial to learning signal–meaning mappings
in the ECG. Learning these patterns more quickly (i.e., high lr) might result in faster emergence
of communicative patterns. Individuals who feel uncomfortable in unstructured environments
(i.e., high F2) show lower adaptability and flexibility in new environments, preferring to respond
with familiar behavioural patterns to counter the uncomfortable feeling (Steinmetz et al., 2011).
Since lower values of τ correspond to less exploratory behaviour and a high lr corresponds with
high adaptability, it was expected for lr and τ to correlate negatively with F2.

Secondly, we manipulated the sequential processing cells of the models. As argued before,
the next move of a signal and the intended finishing colour influence immediate action selection
and can therefore be thought of as an anticipated future state. As such, optimisation as described
in the previous section is done for the unidirectional (LSTM) and bidirectional LSTM (biLSTM)
models. Whereas unidirectional cells process time steps of sequences in a chronological forward
manner, bidirectional cells compute inputs forward and backwards to make predictions (Schuster
and Paliwal, 1997). Note that although the LSTM layer in our model differs for both types, the
remaining architecture is identical.
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Table 3.1: The average model performance (acc) over the cross-validation scores for each
participant and the average optimal learning rate and temperature across participants. Uni and
bi correspond to the model types LSTM and biLSTM respectively.

acc cce lr τ
Type M SD M SD M SD M SD

Uni .831 .112 .355 .241 .019 .019 .356 .745
Bi .972 .055 .084 .153 .039 .020 2.28 .716

Figure 3.4: BiLSTM models show greater and more robust accuracy than LSTM models. Stars
indicate mean accuracy.

3.4.1 Results

Statistical analyses were done using R 4.0.5 (R Core Team, 2023) and the BayesFactor 0.9.12-4.3
package (Morey et al., 2018). First, we consider the overall performance of both network types.
The mean accuracy (acc) over all independently trained models shows that both network types
can learn to predict subsequent moves relatively well (Table 3.1).

Comparison between the two network types with a Bayesian t-test on acc and cce with
network type as a predictor revealed a large performance difference (BF10acc = 6.63e+ 11, d =

1.66 and BF10cce = 1.50e11, d = −1.59). Indicating that bidirectional sequence processing
can better capture the human behaviour in the ECG than unidirectional sequence processing
(Figure 3.4). This result is robust when controlled for the number of parameters between the
two network architectures. Optimal learning rate and temperature were higher for biLSTM
networks when compared to LSTM networks (BF10lr = 5.85e3, d = .790 and BF10τ = 3.46e+

14, d = 2.00). Since the learning rate was taken as a proxy for the extent to which individuals
update their estimates, a higher learning rate implies flexible behaviour. Therefore, this result
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(a) Relationship between learning rate and
high score.

(b) Relationship between learning rate and
temperature.

Figure 3.5: Relationships between learning rate, high score, and temperature. Each point
corresponds to one participant. Note: darker marks denote overlapping data points, and the
shaded area is the 95% confidence interval. Blue is used for unidirectional networks and orange
is used for bidirectional networks.

suggests that bidirectional processing requires more flexibility toward updating behaviour
policies. Additionally, it implies that explorative behaviour might complement updating these
policies. We can assume that a higher learning rate translates to better learning in humans since
learning is required to play the ECG successfully and learning rates were significantly higher
for pairs that managed to establish a communicative system compared to those that did not
(Msuccessful = .047,Munsuccessful = .025,BF10 = 556, d = 1.39).

We now consider the relationships between model parameters, cognitive measures, and
high scores as described earlier. Successful participants (i.e., those with a high score) performed
complex and structured sequences in order to communicate. Nevertheless, we find that for
LSTM networks, but not for biLSTM networks, high score negatively influences acc (BF10 =

3.07, r = −.346, r2 = .120). This suggests that unidirectional processing is able to learn simpler
human behaviour relatively well but has difficulties capturing more elaborate behaviours. This
finding may explain the difference observed in Figure 3.4.

Bayesian regression showed that for biLSTM networks, there is a positive linear relation-
ship between learning rate and high score (Figure 3.5a BF10 = 12.8, r2 = .183), confirming
our hypothesis and suggesting that participants who adopt new behaviours faster are more
successful in creating new signal–meaning mappings in the ECG. We moreover find that re-
gardless of processing directionality, temperature, and learning rate are related (Figure 3.5b,
BF10biLSTM = 28.1, r = .452, r2 = .204 and BF10LSTM = 1.40e7, r = .772, r2 = .597), sug-
gesting that participants who explored more also adapted new behaviours faster. Surprisingly,
we did not find a relation between exploration and high score. A relationship was expected
since explorative behaviour may lead to new conventions in the ECG. Lastly, learning rate
or temperature cannot explain PNS, F1, or F2 for LSTM and biLSTM networks. Thereby also



3.5 DISCUSSION

3

49

rejecting the remaining hypotheses.

3.5 Discussion

In this chapter, we modelled human sequential behaviour in the Embodied Communication
Game with deep neural networks and investigated possible relationships between human
cognitive preferences and computational parameters. Specifically, we looked at relationships
between participants’ personal need for structure, learning rate, and temperature parameters.
Though we showed that current deep neural networks can learn the behaviour associated with
creating signal–meaning mappings, we did not find any correspondences between cognitive
and computational variables. As such, PNS, used here as a human bias for structure (Kirby and
Tamariz, 2022), cannot be captured with this setup. Further research should investigate how
parameters of various network architectures may correspond to cognitive measures or look
at different games that investigate emergent communication (e.g. Galantucci, 2005; Steels and
Loetzsch, 2012; Mordatch and Abbeel, 2018). The ability to capture human biases, such as the
human bias for compressible and simple systems (Kemp and Regier, 2012; Kirby et al., 2015), in
computational systems is insightful for simulations of emergent communication as they are then
closer to human experiments. Furthermore, playing these collaborative games between humans
and machines might also result in shared grounded vocabularies that are adapted to the biases
of humans and computers, ultimately resulting in better conversational AI (Chapter 1).

Manipulation of the processing directionality of action sequences showed that participants’
behaviour was explained better by biLSTM models than by LSTM models. This thereby
provides additional arguments for the bidirectional processing of sequential actions in humans
(Lashley et al., 1951; Cohen and Rosenbaum, 2004; Onnis et al., 2022). For communicative
purposes in the ECG, integrating current actions is dependent on the preceding shared context
(i.e., the negotiations of signals and intended final colours), and must be taken into account
when deciding what moves to take next. The difficulties for LSTM networks to learn more
complex behaviours performed by more successful participants also indicate that unidirectional
processing is insufficient to capture more elaborate human behaviour. Although additional
analysis is needed to support this, these findings suggest that the effect of a backward-looking
mechanism found by Onnis et al. (2022) in a self-paced reading task might originate in the
very early stage of forming signalling conventions. To verify this, simulations of emergent
communication with deep learning agents should look at the effect of processing directionality
of network architectures on the structure of emergent communicative protocols. Integrating
bidirectional networks may close the current gap between human experiments and simulations.

We demonstrated that for biLSTM networks, the learning rate has a positive influence on
high scores and is positively correlated with temperature (Figure 3.5b). This seems to support the
recent view which suggests that humans combine random and uncertainty-directed exploration
strategies to develop optimal behaviour (Jepma et al., 2016; Schulz and Gershman, 2019). An
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explanation for this could be that explorative behaviour in the ECG led to the emergence of
new signals, which need to be learned quickly (i.e., require a high learning rate) to be useful.
In other words, the correlation between learning rate and temperature likely reflects the fact
that participants who are more explorative benefit from higher learning rates (i.e., there is no
benefit to explorative behaviour if you do not use the explored options to update expected
values). However, a more in-depth analysis is required to strengthen this link further. For
optimal behaviour, learning rate and explorative behaviour would be expected to decrease
over time as strategies are learned and exploration becomes less necessary, instead exploiting
the knowledge gathered thus far. However, literature on how learning rate and temperature
parameters develop with age and experience has yielded conflicting results (Nussenbaum and
Hartley, 2019). Games like the ECG could be extended over time to investigate the dynamic
nature of the temperature and learning rate parameters.

Lastly, we acknowledge that the ECG is a highly simplified setup, thereby limiting the
generalisability to real-world processing (Nastase et al., 2020). It also goes without saying that
these models are mere approximations of the human brain and do not capture its breadth,
but we can nevertheless use them as a proxy to mimic human processes. These findings must
therefore be replicated in more ecological settings.

3.6 Conclusion

In this chapter, we modelled sequential human behaviour captured in the Embodied Communi-
cation Game with deep neural networks. Here, participants establish a communication system
from scratch to solve a collaborative task. We demonstrate that neural networks can learn the
human behaviours associated with the creation of a new communication system. Manipulation
of network types shows that bidirectional processing of sequential actions better explains hu-
man behaviour than unidirectional processing, hereby providing additional arguments for the
existence of a planning mechanism for sequential signal production in humans. No relation-
ship was found between Personal Need for Structure and participant-specific computational
parameters, but our results suggest that humans combine random and uncertainty-directed
exploration strategies to develop optimal behaviour in the ECG. Future research should attempt
to extrapolate our results to communicative settings with complex linguistic signal exchange
(e.g., between chatbots and humans). Additionally, experiments on the emergence of a more
complex human–AI language will deepen the understanding of the relationship between natural
and artificial biases that play a role during the emergence of communicative systems.




