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1
Introduction

This dissertation aims to deepen our understanding of how inductive biases shape the emergence
of structured languages across human, machine, and human-machine interactions. It combines
experimental and computational approaches to study how processes of language learning and
language use are exposed differently in various scenarios. The experiments comprising this
dissertation originate from well-known setups in psycholinguistics and are complemented with
contemporary artificially intelligent models of language. This enhances our understanding
of inductive human and machine biases while promoting the development of natural human-
machine interactions, ultimately contributing insights to cognitive science and artificial
intelligence research.

The introduction is largely based on our peer-reviewed journal article: Kouwenhoven, T., Verhoef, T.,
de Kleijn, R.E., Raaijmakers, S.A. (2022). Emerging Grounded Shared Vocabularies between Human and
Machine, inspired by Human Language Evolution. In Frontiers in Artificial Intelligence, section: Language
and Computation. Volume: 5:886349. doi: 10.3389/frai.2022.886349. Sections 1.1.1, 1.1.3, and 1.1.4
have been updated to account for recent findings.

10.3389/frai.2022.886349
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1.1 Background

Our ability to communicate is remarkable. It allows us to collaborate efficiently in
large groups, exchange ideas, and build upon knowledge previously acquired by
others (Tomasello, 1999). To communicate successfully, the coordinated actions of all
participants must adhere to the grounding criterion: that interlocutors agree they have
understood what was meant for the current purposes (Clark and Brennan, 1991). In
other words, we need a shared language, a vocabulary of mappings between signals,
which can be sounds, words, gestures, and so on, and their corresponding meanings.
However, it is not at all trivial that we primarily communicate by means of combining
words in structured ways to create meaningful sentences. How do signals obtain their
specific meaning? And what makes us interpret signals as bearers of communicative
intent in the first place?

Questions like these are still relevant today, even though scholars have debated
about them for decades. Some argue for the existence of an innate biological com-
ponent in a language faculty that is shared by all humans (Chomsky, 1965). This
entails that acquiring a language is guided by the innate constraints of this faculty.
Importantly, it also means that languages can only be acquired when they adhere
to a set of grammar rules, thus limiting the number of possible human languages.
However, this is in stark contrast to the incredible diversity of languages that can be
observed in the world, which exhibit radically different lexical, morphological, and
phonological properties (Evans and Levinson, 2009). Moreover, there is considerable
evidence suggesting that languages, and their evolution, adapt to social, ecological,
and technological factors, indicating that languages adapt to the environments in
which they are used (Lupyan and Dale, 2016). Another position that takes such fac-
tors into account relies not on a universal biological component, but on the social
character of humans. This school argues that language systems evolved as a result
of cultural evolution, where behaviours or ideas are learned through social interac-
tions (e.g. Kirby and Christiansen, 2003; Hurford, 2007; Christiansen and Chater, 2008;
Tomasello, 2008). These interactions facilitate a moment to negotiate what signals refer
to which meanings. In other words, they offer a moment of grounding. According
to this line of thought, learning a language is a collaborative process that imposes
pressures, such as cognitive or expressive, which play a role during repeated learning
and using languages and thereby slowly shape what languages look like (Smith, 2022).
This dissertation is situated in this last school, where it is believed that language
evolves as a result of cooperative interactions between interlocutors with the goal of
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mutual understanding and collaboration.

Although progress has been made over the past decades, research into the evo-
lution of language is still ongoing, and a general consensus on how languages have
evolved is still far from present. One complex problem is that spoken languages
obviously do not fossilise, i.e., they do not leave traceable records. This necessitates
that researchers look beyond written scripts and must instead draw on evidence from
many different sources, such as animal communication, sign languages, archaeological
evidence, experiments in artificial language learning, and computational simulations
(Christiansen and Kirby, 2003). We present work situated in the latter two. In experi-
mental studies of language evolution, participants engage in communication games
that often involve creating, learning and producing artificial miniature languages
(Kirby et al., 2008; Scott-Phillips et al., 2009; Galantucci, 2005; Verhoef, 2012; Perlman
et al., 2015; Raviv et al., 2019a, inter alia). These aim to gain insights into the dynamics
affecting how languages evolve by carefully designing experiments that involve learn-
ing an artificial language and interacting with it. While useful, participants are often
mature language users who have already been exposed to languages, perhaps obfus-
cating what conclusions can be drawn from these insights. This is why computational
simulations play an important role in the endeavour of unravelling the evolution of
language. They provide complete control and allow careful investigations into what
and how building blocks, biases, or interactions play a role in successfully establish-
ing communicative systems (Steels, 1999; Quinn, 2001; de Boer, 2006; Kirby, 2017,
inter alia). In addition, computational simulations are ideal candidates to simulate
longer timespans, lending themselves perfectly to mimic evolutionary processes. Such
simulations were initially agent-based simulations that viewed language as adaptive
dynamic systems where complex solutions could emerge at the population level from
simple individual behaviours (e.g. De Boer, 2000; Steels, 2012b). This makes them
excellent for simulating large groups of interacting agents, potentially demonstrating
the emergence of an apparent design without having an explicit designer, similar to
what we observe in bird flocking behaviour. Despite understanding the mechanisms
driving these behaviours in simulations, they remain simplified models that cannot
fully encompass the rich complexity of human behaviour. Hence, it could be argued
that an interdisciplinary approach combining the strengths of both computational
models and experiments with real humans is a fruitful direction.

More complex models of language, like Large Language Models (LLMs), emerged
as promising tools for studying language acquisition that can enable controlled ex-
periments which model human learning processes (Warstadt, 2022; Contreras Kallens
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et al., 2023). As such, we now shift positions and briefly discuss these contemporary
deep neural networks with a Transformer architecture (Vaswani et al., 2017). LLMs as
novel types of Artificial Intelligence (AI) models of human language use are trained
with masked language modelling and next-word prediction objectives on increasingly
large quantities of (internet) data. As such, they rely on the idea that being exposed
to enough textual data models will suddenly result in the capacity to understand
language and produce fluent speech, a phenomenon known as emergent behaviour
(Wei et al., 2022; Schaeffer et al., 2023). Since their inception, it is difficult to imagine a
week without the release of a new model or algorithm; however, arguably the most
popular ones are known as GPT-4 (OpenAI, 2024), Gemini (Gemini Team, 2024), and
Llama3 (Llama Team, 2024). Even though LLMs are fundamentally different from
humans and learn languages primarily through exposure to text, their internal rep-
resentations effectively simulate cognitive language processing with factors such as
data size, model scaling, and alignment training positively relating to fMRI signals of
the brain (Ren et al., 2025).

At first glance, it may seem like there is a large gap between the evolution of
language and LLMs. These models are, after all, trained on modern natural language
that has already evolved into its present form that we use every day. However,
while typically seen as a niche field, insights from the field of language evolution
are increasingly relevant for computational linguists. For example, methods from
language evolution and psycholinguistics can be used to steer the development of
LLMs that are more human-like (Zheng et al., 2024; Galke and Raviv, 2025) and can be
used to compare (biases in) LLMs directly to humans (Jones et al., 2024). Some even go
as far as to argue that the ability of modern LLMs to model language refutes Chomsky’s
approach to language (Piantadosi, 2024; Kallini et al., 2024). While the representation of
meaning in LLMs is not entirely understood, it is argued that they represent the idea of
meaning-through-use and capture languages as a culturally evolving, adaptive system
that is shaped by learning and communication (Contreras Kallens and Christiansen,
2024). As such, principles that steer and shape languages to become human-like in
experiments or simulations have moreover become relevant to developers of LLMs. A
prime example is provided by Galke and Raviv (2025), who draw parallels between a
well-known pressure for communicative success in emergent communication (Kirby
et al., 2015) and the final training stage in reinforcement learning from human feedback
(i.e., RLHF). A pressure to be understood seems necessary for the emergence of
structure in experiments with humans, and similarly so for computational simulations,
where communicative success is encoded in the optimisation objective of the neural
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networks (e.g. Lian et al., 2023a). While the linguistic capacity and knowledge of
LLMs originate mainly from pre-training (Zhou et al., 2023; Lin et al., 2024), only after
language models are fine-tuned to be understood through the process of RLHF, do
they become more representative of human communicative behaviours (see Galke
and Raviv (2025) for a more complete list of examples).

Vice versa, (large) language models as relatively weakly biased language learn-
ers (Wilcox et al., 2023), can also be informative of language acquisition in general
(Warstadt and Bowman, 2022; Contreras Kallens et al., 2023; van Dijk et al., 2024).
Crucially, we do not claim that artificial LLMs are equivalent to the language mech-
anisms in the human brain—they are inherently different. Rather, we view them as
entirely new forms of understanding that introduce new kinds of problem-solving
capabilities that may not be human-like (Mitchell and Krakauer, 2023). This requires
evaluation without anthropocentric biases, i.e., without dismissing mechanistic strate-
gies of LLMs or vision-and-language models that differ from those present in humans.
Put differently, the way LLMs or other AI models solve a cognitive task cannot serve
as evidence against particular cognitive competences or language understanding, as
long as the solution generalises (Millière and Rathkopf, 2024). In this regard, we take
LLMs as examples that establish a lower bound on what linguistic phenomena in
principle can be learned from distributional information (van Dijk et al., 2023a). In any
case, contemporary language models are interesting models of language that can be
used to answer cognitive and typological questions (Warstadt and Bowman, 2022; van
Dijk et al., 2023a; Binz et al., 2025) and complement explanations of human cognition
resulting from Bayesian modelling (Griffiths et al., 2024). This work presented in
this dissertation can be interpreted as an example of how language modelling and
psycholinguistic research can complement each other.

The primary focus of this dissertation is on the presence of inductive biases in
humans and those present in artificially intelligent systems. We are particularly
interested in implicit mechanistic inductive biases that may result in biased language
learning, not in behavioural biases observed in humans (e.g., the confirmation bias).
This is relevant in the context of language evolution as seemingly arbitrary aspects of
linguistic structure may actually result from general learning and processing biases
deriving from the structure of thought processes, perceptuo-motor factors, cognitive
limitations, and pragmatics (Christiansen and Chater, 2008). At a population level,
these biases may manifest themselves as preferences for compressibility, simplicity, and
efficiency-cognitive tendencies (Kirby et al., 2015; Tamariz and Kirby, 2015; Gibson
et al., 2019) that naturally influence language evolution. For example, in the case of
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human systems (e.g., language) that are culturally transmitted, a memory constraint
can enforce systems to be easy to learn and simple, as hard-to-learn elements are
less likely to be transmitted. Furthermore, the sound systems of human languages
seem to be optimised for criteria such as acoustic distinctiveness or articulatory ease
(Liljencrants and Lindblom, 1972; Lindblom and Maddieson, 1988) through a process
of self-organisation (De Boer, 2000). Human constraints like these could well have
evolved differently and are inherently different between humans and LLMs. In LLMs,
inductive biases are increasingly well understood (Futrell and Mahowald, 2025) and
emerge from the Transformer architecture Vaswani et al. (2017), including preferences
for simplicity, structural organisation, positional sensitivity, and verbosity (Rende
et al., 2024; Chen et al., 2024; Kallini et al., 2024; Liu et al., 2024; Mina et al., 2025;
Zheng et al., 2023; Saito et al., 2023). While the underlying mechanisms differ between
humans and machines, these inductive biases may produce overlapping behavioural
effects since they emerge from the properties of language systems, such as being
culturally transmitted and used for successful communication. The behavioural effects
thereby provide insights into language acquisition, processing, and development in
both natural and artificial systems. We address inductive biases, such as the ones
mentioned before, in humans and artificially intelligent systems through emergent
communication paradigms. Doing so helps us understand in what respects humans
and AI models differ and potentially allows us to alleviate these differences through
the process of collaborative meaning-making between humans and machines.

In the remainder of this introduction, we will situate this dissertation between
the field of language evolution and computational linguistics, and argue for an in-
terdisciplinary hybrid approach in which humans and artificially intelligent systems
collaboratively shape languages (Section 1.1.1). We will then provide more background
on the role of interactions during the emergence of meaningful signals in Section 1.1.2.
Thereafter, in Section 1.1.3, we lay out prominent processes that influence how lan-
guages become structured. We then, given the prominence of language models in our
everyday lives, discuss our view on collaborative human-machine language evolution
and set the stage for the experiments presented in this dissertation (Section 1.1.4). With
this information, we move on to the research questions in Section 1.2.1, methods in
Section 1.2.2, and the dissertation outline in Section 1.2.3.
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1.1.1 The evolution of Human-AI languages

Building conversational AI systems aims to teach machines to understand human
language and respond naturally. The most common way to train language models
to produce and interpret natural language is currently by exposing them to large
quantities of data, in which models are tasked with infilling masked words given a
context (i.e., the cloze task) or predicting the word that follows a given context. These
models are hereafter fine-tuned to respond to instructions and align with human
preferences (Ouyang et al., 2022). Although this has resulted in advances in many
areas, there is fierce debate about the degree to which these systems have an under-
standing of how language is related to the real world (Mordatch and Abbeel, 2018;
Bender et al., 2021; Mitchell and Krakauer, 2023; van Dijk et al., 2023a; Mollo and
Millière, 2023), known as the symbol grounding problem (Harnad, 1990). It is important
to mention that the concept of grounding is heavily conflated, ironically bearing many
different meanings. In this dissertation, we refer to grounding as both referential and
communicative grounding, as laid out by Mollo and Millière (2023). Here linguistic
signals are anchored to a reference in the world (i.e., referentially grounded) or can be
seen as a form of coordinated action (i.e., communicative grounding) that involves
collaborating to reach a common understanding of what is said (Clark and Brennan,
1991). In addition to the debate on grounding, language models are primarily trained
in isolation, while humans are social animals, deeply embedded in culture and sur-
rounded by others. This socio-cultural perspective balances aspects of innovation and
imitation, for which Yiu et al. (2024) draw parallels between children and LLM abilities
to imitate and innovate, and argue that innovation requires more than large-scale
language and image data alone. Complex human behaviours, like language, evolved
in socio-cultural contexts and could not exist without a variety of minds using and
transmitting these behaviours.

These socio-cultural contexts and mechanisms that influence the emergence of
communication and linguistic structure have been studied in the field of language
evolution. Although the precise origins of human language are still widely debated,
computer simulations (de Boer, 2006; Steels, 2012a; Kirby, 2017) and experiments
in which humans use novel communication signals (Scott-Phillips and Kirby, 2010;
Galantucci and Garrod, 2010; Kirby et al., 2014), have revealed some key mechanisms
that drive the initial emergence of a novel language and the gradual appearance of
more complex linguistic structure. Here, we review some of these mechanisms and
propose to apply methods that confirm the importance of including micro-societies of
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1. Random behaviors
2. Signal-Meaning

mappings

3. Vocabulary of

structured mappings

4. Adaptive

communication system

Shared interactions
Recurrent transmission

(horizontal + vertical)
Everyday usage

Figure 1.1: The various steps of evolving natural communication systems. First, initially
random behaviours obtain meanings and become more structured through recurrent horizontal
and vertical transmission. Everyday usage facilitates the continuous evolution of communica-
tion systems, which will adapt as a result of the inductive biases of humans and machines.

interacting minds in the emergence of novel human-machine communication systems.

A major insight from these studies is that language adapts to human inductive
biases that influence how it is learned and used (Kirby et al., 2014, 2015; Smith, 2022).
Current language models based on the Transformer architecture also exhibit inductive
biases affecting their language learning abilities (Futrell and Mahowald, 2025). For
instance, synthetic free-order case-marking languages are more challenging to model
than fixed-order languages (Bisazza et al., 2021). Languages lacking hierarchical
structure or having unnatural or irreversible word orders, categorised as ‘impossible’
by Chomsky (2023), are also more difficult to learn for GPT-2 models than ‘possible’
languages (Kallini et al., 2024). Provided that languages adapt to their users and
that both humans and LLMs display inductive biases that play a role in language
learning, we suggest that language used in human-machine communication should
also evolve more naturally. Concretely, this entails giving a more prominent role to
the co-development of shared vocabularies by conversational partners (human or
AI-based). This facilitates general processes of language learning and use, which
shape languages, which in turn may result in a dynamic grounded communication
system that is natural and adapted to inductive biases and constraints of human and
machine learning. The following sections describe ways to establish such grounded
communicative systems and correspond to different chapters in this dissertation.
Figure 1.1 shows how the various ways are related to each other. Starting from random
behaviours, a signal-meaning mapping emerges from shared interactions (Section 1.1.2,
Chapter 2, and Chapter 3) which become more structured through horizontal and
vertical transmission (Section 1.1.3, Chapter 5, and Chapter 6) and eventually evolve
into an adaptive communication system (Section 1.1.4 and Chapter 7).
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1.1.2 Interactive meaning making

Successful communication requires that communicative acts adhere to the ground-
ing criterion: that interlocutors mutually agree on what was meant for the current
purposes (Clark and Brennan, 1991). This requires a vocabulary that is (partially)
aligned between interlocutors of a conversation (Pickering and Garrod, 2004). The
emergence of such a vocabulary starts with agreeing on what kind of (initially random)
behaviours should be interpreted as communicative and what they refer to (box 1 & 2
in Figure 1.1).

Experiments with human participants have been conducted to study the emergence
of novel communication forms and shared vocabularies (Galantucci, 2005; Steels,
2006; Scott-Phillips et al., 2009; Galantucci and Garrod, 2010). Here, participants
need to invent and negotiate novel signals to solve a communicative or cooperative
task. Albeit often bound to the starting conditions of the experiment, even when no
conventional signalling device is given, actions may gradually become communicative
(Scott-Phillips et al., 2009). Typically, humans quickly establish conventions and settle
on a shared set of signals. The existence of sufficient common ground, interactions,
and social coordination have been identified as crucial to facilitating the emergence of
communication systems. With computational agents, Quinn (2001) investigated the
emergence of signals and cooperation without dedicated communication channels in a
way comparable to the work of Scott-Phillips et al. (2009). Here, robots, equipped only
with sensors to observe a shared environment, were tasked with moving away from a
starting point while maintaining proximity to each other. Initial random behaviours
gradually evolved into an iconic signalling system that could establish the allocation
of leader-follower roles (Quinn, 2001; Quinn et al., 2003).

A large body of work in evolutionary language games, as reviewed in Steels (2012b),
has shown that agents without a pre-programmed language can develop a communi-
cation system from scratch. This happens in a self-organising fashion, as alignment
between agents arises from repeated interactions between individuals without the ex-
istence of a central point of control. In the context of those experiments, Steels already
proposed that robots can participate in the ongoing evolution of language and learn
from human language users if there are sufficiently rich situated interactions (Steels,
2012a). The former is arguably already the case: scientific English is, for example,
changing due to the presence and use of LLMs, with words like ‘delve‘, ‘underscore‘,
and ‘intricate‘ appearing increasingly often in publications (Juzek and Ward, 2025).
Although building an initially shared vocabulary is well-explored between humans
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as well as between agent-based models, to the best of our knowledge, it is rarely
applied in human-machine settings. One exception is a large-scale exhibition of Steels’
Talking Heads experiment (Steels, 1999), in which both agents and human visitors
proposed new words that could become part of an evolving shared vocabulary. We
propose revisiting this idea in the context of conversational AI, allowing the process of
self-organisation to facilitate the grounding of conventional signal-meaning mappings.

Our proposition should not be seen as a replacement for pre-training language
models on data alone, but rather that incorporating interactions that require commu-
nicative intent may be a fruitful direction to induce more natural language learning
in LLMs. This is more relevant than before, given the recent advancements in LLMs,
where interactional aspects of language learning are often overlooked (Beuls and
Van Eecke, 2024). To this end, we similarly argue that the role of interactions should be
more prominent when developing natural communication between humans and ma-
chines. Practically, this pertains to the fundamental question of extending the current
training paradigms of LLMs beyond the current practices of pre-training and fine-
tuning LLMs. It requires determining how to integrate the meaningful, intentional,
situated, communicative, and interactional aspects of human linguistic communica-
tion into the training process (Beuls and Van Eecke, 2024). Chapter 2 addresses how
such interactional aspects can result in newly formed shared conventions in the case of
humans, and Chapter 3 takes an initial step towards modelling this with deep neural
networks.

1.1.3 Emergence of structure in language systems

Human language is uniquely structured and exhibits systematicity at multiple levels
(Kirby, 2017). For example, words are combined into sentences such that their meaning
is a function of the meanings of the parts and the way they are combined, i.e., our
language has a compositional structure. The origins of this and other types of structure
have been studied using computer models and artificial language learning experiments
with humans (for a review see: Kirby, 2017).

Among others, two important processes have been found to contribute to the
emergence of structure in languages (boxes 2 & 3 in Figure 1.1). The first is known as
cumulative cultural evolution where (cultural) information, such as ideas or linguistic
signals, is transmitted vertically along generations of users. The seminal experiment
by Kirby et al. (2008) investigated vertical transmission in an experimental setup known
as iterated learning. In their experiment, the first participant was asked to learn
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an artificial non-structured language and describe stimuli with the acquired words.
Subsequent participants learned the output of the previous participant. Through this
process, imitating generations of language learners, the words gradually changed
and became more compositional and learnable. Such results consistently show that
increases in learnability and structure arise because languages adapt to human in-
ductive biases to be transmitted faithfully (Griffiths and Kalish, 2007a). Words and
patterns that are not easily learned or interpreted will not be reproduced by the next
generation. Since structured languages are more easily compressible (Tamariz and
Kirby, 2015; Kirby et al., 2015), this eventually results in more learnable and structured
languages.

The second process contributing to the emergence of structure in human language
is known as horizontal transmission. Here, linguistic structure originates and evolves
from social coordination through repeated interactions between individuals in micro-
societies. While interactions between dyads can lead to shared vocabularies and initial
regularities (Verhoef et al., 2016b; Theisen-White et al., 2011), a community of users
seems to be necessary for the emergence of system-wide compositional structure
and efficient coding (Fay et al., 2008; Raviv et al., 2019a). An underlying dynamic
was recently proposed by Josserand et al. (2024), who demonstrated that repeated
dyadic interactions cause languages to evolve in a way that accommodates the specific
abilities and preferences of minority individuals at the group level. In these cases,
pressures such as the abilities of your interaction partner, the number of interaction
partners, and expanding meaning spaces cause initially random languages to become
more structured over time.

The effects of horizontal and vertical transmission have also been demonstrated
with agent-based computer simulations (Kirby, 2017; Steels and Loetzsch, 2012). Alto-
gether, there is strong evidence suggesting that the transmission of signals (vertical
or horizontal) within communities contributes to the emergence of structure in lan-
guage. In fact, it has been argued that both types of transmission are essential to
get a language that is learnable and usable (Kirby et al., 2015). In this dissertation,
Chapter 5 shows how horizontal transmission can be applied in simulations with RL
agents. Chapter 6 demonstrates how horizontal and vertical transmission affect the
learnability of artificial languages in LLMs. We argue that both processes should be
projected onto the human-machine language evolution scenario to evolve a vocabulary
that shares features with human language and is equally adapted to be learned and
used by machines (as shown in Chapter 7).
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1.1.4 Human-machine evolution and reinforcement learning

Inspired by general mechanisms of language learning and use in humans, the field of
computational linguistics started to train machines to understand human language
through the emergence of communication systems (e.g. Lazaridou et al., 2017, 2018;
Mordatch and Abbeel, 2018; Clark et al., 2019; Manning et al., 2020). A range of
work has shown that (multi-agent) Reinforcement Learning (RL; Sutton and Barto,
2018) can converge on communication protocols in various scenarios that require
communication (e.g. Lazaridou et al., 2016; Havrylov and Titov, 2017; Chaabouni et al.,
2020; Lian et al., 2023a; Ben Zion et al., 2024). Given the resemblance in experimental
design, scholars began comparing the resulting computational protocols with those
found in human experiments. However, the findings in such models initially did
not always match what is typically found in similar experiments with humans, and
features found in human language often did not emerge (e.g. Chaabouni et al., 2019a;
Lazaridou and Baroni, 2020; Rita et al., 2022b; Galke et al., 2022). Despite having
fundamentally different mechanisms, we now know that initially absent linguistic
properties can be resolved by artificially inducing human-like biases (Galke and Raviv,
2024) or making the simulations more naturalistic (Lian et al., 2023a). Two give some
examples, endowing these agents with a need to be understood (i.e. communicative
success), noise, context sensitivity, and incremental sentence processing help induce
human-like patterns such as a word-order/case-marking trade-off or dependency
length minimisation in RL agents Lian et al. (2023a, 2024); Zhang et al. (2024b). The
emergence of anti-efficient languages (i.e. languages that do not follow Zipf’s law)
found by Chaabouni et al. (2019a) can be mitigated by introducing biases for speaker
’laziness’ and ’impatient’ listeners (Rita et al., 2020).

Even though communicative systems can emerge that are also human-like, these
often suffer from interpretability issues for humans (Mordatch and Abbeel, 2018; Li
et al., 2024), making their applicability to human-machine communication less obvious.
To this end, Lazaridou et al. (2020) endowed RL agents with a pre-trained language
model and used self-play to teach these RL agents to communicate in natural language.
Without human intervention, however, this approach suffers from what is commonly
referred to as language drift, ultimately causing the initially aligned vocabularies
to diverge from human vocabularies and leading to misunderstandings. A similar
point is shown by Shumailov et al. (2024), who trained different contemporary types
of neural learners on recursively generated data. They found that the data quickly
lost relation to the original input and drifted away to accommodate the inductive
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preferences of these models. While too much is problematic, we argue that some
(language) drift is welcome since it allows data (or languages) to be optimised for
entity-specific preferences. When this happens in a collaborative manner, i.e., when
the data is optimised for humans and machines, it can result in more natural human-
machine communication. As such, human feedback should be incorporated directly
into the behaviour of an artificially intelligent language user, rather than learning
it in isolation. This draws parallels to human interactions, which offer a means to
ground communicative signals through recurrent and reciprocal usage (Garrod et al.,
2007), provide feedback on the success of a conversational contribution, and alleviate
miscommunications resulting from partially aligned vocabularies due to variations or
dialects.

In light of contemporary, data-hungry LLMs, the picture is a bit more nuanced as
most linguistic knowledge can be obtained during pre-training (Zhou et al., 2023; Lin
et al., 2024) while human feedback, e.g., through RLHF, must ensure that the otherwise
unwieldy models align with intended human behaviours (Ouyang et al., 2022).1 Yet,
employing RLHF alone is not the same as having collaborative interactions, as it only
considers the adaptation of a single entity, rather than both. On this note, Beuls and
Van Eecke (2024) argued that modelling the situated, communicative, and interactional
environments in which human languages are acquired provides a promising path to
overcome the limitations of current LLMs that essentially rely on the distributional
hypothesis. A much more collaborative approach that is increasingly often employed
is using language games often used in language evolution research. By doing so,
the training regime simulates a more natural interactive (vision-)language learning
approach and oftentimes results in increased performance on linguistic benchmarks
(Lowe et al., 2020; Steinert-Threlkeld et al., 2022; Zheng et al., 2024; Shumailov et al.,
2024). As such, instead of learning signal-meaning mappings in a bottom-up approach,
we argue that general language learning and use processes important in language
evolution should be applied in a top-down manner. We hereby follow Bisk et al. (2020)
in that shared experiences make utterances meaningful and that successful linguistic
communication relies on a shared experience. This is especially important given the
increasing appearance of LLMs in everyday life and their growing influence on human
culture (Brinkmann et al., 2023; Yiu et al., 2024).

To unravel the processes involved in creating mutually understood communicative

1Recent findings showed that the similarity between LLM representations and brain cognitive language
processing fMRI signals increased as a result of RLHF (Ren et al., 2025). Although this is not straight-
forwardly relevant in the context of human-machine collaborations, it implies that fine-tuning can align
representations between humans and machines, which can aid collaboration.
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watopo

Figure 1.2: An exemplar setup in which humans and machines collaborate in a referential
game as used in Chapter 6 and 7. In these games, a speaker (human or machine) utters a
non-existing word which the listener uses to guess the target. Repeated interactions offer a
means to establish initial conventions and extrapolate simple (grammatical) rules that enable
successful interactions. Icons obtained from flaticon.com

systems between humans and machines, we propose to revisit popular methods in
language evolution research such as signalling games (Galantucci, 2005; Scott-Phillips
et al., 2009), referential games (Steels and Loetzsch, 2012; Chaabouni et al., 2020), and
navigation games (Mordatch and Abbeel, 2018; Dubova and Moskvichev, 2020). This
enables collaborative interactions between humans and machines, offering a means
to ground languages in shared experiences (Figure 1.2). Importantly, the evolved
communication systems will not take the same form as human language initially, but
through iterations, may come closer towards it and evolve into a form that makes
human-machine interactions more natural, with communication systems adapted
to biases in both human and machine learning (box 4 in Figure 1.1). Doing so will
contribute to our understanding of human and machine intelligence, but at the same
time may reveal important mismatches between the two types of learners and thereby
inform modelling decisions (Futrell and Mahowald, 2025; Galke and Raviv, 2025). In
this dissertation, Chapter 7 is an example of such work.

In summary, we propose to combine insights from psycholinguistics and the field
of human language evolution, particularly concerning the influence of vertical and
horizontal transmission, with contemporary language models. In doing so, this disser-
tation will contribute in two ways. First, we address how signals and structure emerge
in socio-cultural contexts and discuss how language adapts to the way it is learned
and used. We therefore suggest that language used in human-machine communica-
tion should also evolve naturally, emphasising the importance of co-development of
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shared conventions during communication. To this end, this dissertation addresses
several collaborative meaning-making experiments encompassing human, machine,
and human-machine pairs. Second, we propose that methods from psycholinguistics
can be used to unravel and inform mechanisms in artificial language models. To this
end, this dissertation includes empirical studies that originate in psycholinguistics
that are adapted with the aim of understanding inductive biases in machines. We
believe that this combined approach enhances our understanding of both human and
machine cognition while potentially revealing crucial differences between humans
and machines that can guide future modelling decisions and enhance human-machine
interactions.

1.2 Dissertation design

1.2.1 Research Questions

Now that the background of language evolution and language modelling is in place,
we can formulate the following main research question (MRQ):

How can human and artificial cognition in emergent communication complement
each other?

Main research question

The main research question inherently asks for an interdisciplinary approach. To
this end, this dissertation can be roughly divided into three perspectives: a purely
human-oriented approach, a purely computational approach, and finally a hybrid
approach. Besides studying different entities, the chapters also differ in terms of
the nature of interaction. Some require active cooperation, while other chapters do
not involve interactions but rather study whether computational models display
human-like biases or study human behaviour through behaviour cloning. Finally, this
dissertation is structured such that the linguistic complexity, as a variable of interest,
increases throughout the dissertation. Starting with the evolution of elementary core
concepts in the process of language evolution, and moving towards experiments that
investigate more structured natural language-like expressions.

The first approach (Chapters 2 and 3) focuses on unravelling collaborative human
behaviour at a very elementary stage in language evolution where no conventional
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communicative medium exists. It comprises an interactive experiment with human
participants and training AI models on the behaviour of humans, i.e., behaviour
cloning through training deep neural networks. The second approach (Chapters 4
through 7) focuses on computational preferences and behaviours that are believed
to influence language learning in a slightly later stage of language evolution, where
initial communicative signals are already in place. The computational tools employed
comprise vision-and-language models to assess whether novel words are mapped to
visual features, and we extract visual features for RL agents who utilise these when
learning to communicate. Additionally, we employ a LLM as a novel computational
model of language and cognition in an interactive referential game. In Chapter 7, we
bring together most of the previous chapters and incorporate key aspects and insights
from all previous chapters. In this final chapter, humans and LLMs collaborate so as
to shape and develop their own artificial language in a communicative game.

We break down the MRQ into six research questions corresponding to six self-
contained chapters. These were originally published as research papers at various
peer-reviewed conferences and workshops spanning cognitive science, computational
linguistics and AI-oriented research fields. We included the papers in this dissertation
mostly as-is, apart from minor edits for consistent terminology use, formatting, and
additional clarifications and information. Therefore, each chapter can be read and
understood independently, though this approach means some introductory sections
contain repeated information across chapters. We ask for the reader’s understanding
regarding this redundancy. In the remainder of this section, we introduce and motivate
each research question.

What role does diversity in biases for structure play in developing symbolic
communicative systems?

Research question 1 - Chapter 2

Successful communication requires interlocutors to agree on the meaning of a message
(Clark and Brennan, 1991), i.e., they must agree on the meaning of individual signals
(semantics) but also on how these signals are composed together (syntax). While this
seems very obvious nowadays because we have all sorts of communicative conven-
tions, from an evolutionary point of view, this is not trivial at all (Deacon, 1997). To
agree on the meaning of a message, it must first be clear that a message has a specific
communicative purpose. That is, one’s actions must be understood as having the
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intent of communicating something. Only after something is recognised as having a
communicative intent, can we negotiate what the intended meaning of this ‘message’
is supposed to be (Oliphant, 2002). This process can be rendered as a cooperation
problem in which individuals must find a common ground that serves as a point of
departure for more elaborate signals. The first exploration of the MRQ addresses
this problem by observing how this process unfolds precisely. To this end, we em-
ploy the Embodied Communication Game (ECG; Scott-Phillips et al., 2009) in which
participants must communicate without the existence of an a priori communication
method or medium. This means that participants must converge on a shared system
of reference through repeated interaction. We use individuals’ Personal Need for
Structure (PNS; Neuberg and Newsom, 1993) as a measure of human bias for structure
since the social coordination of a shared language, which is initially unstructured,
can be influenced by an individual’s need for structure. Specifically, we investigate
whether diversity between participants’ PNS influences the process of cooperation.
Offering nuance to what is oftentimes argued: that shared experience and overlapping
biases may help such processes of cooperation (Tylén et al., 2013; Scott-Phillips and
Kirby, 2010).

What insights about human sequential processing can be derived from modelling
human behaviour in emergent communication?

Research question 2 - Chapter 3

Modelling human behaviour using computational methods can complement theories
about human cognition, but at the same time, it can inform more natural learning
mechanisms in machines (Galke and Raviv, 2025). This chapter aims to address both,
making it the first interdisciplinary question of this dissertation. First, we set out
to instil human communicative behaviour in deep neural networks using the data
obtained in the first chapter. Following the methods of previous work (de Kleijn et al.,
2018), we perform behaviour cloning to find out whether deep neural networks can
learn the sequential behaviours humans exhibit while playing the ECG. We manipulate
the processing directionality of our LSTM networks and approximate latent cognitive
variables, which we relate to PNS metrics. In doing so, we provide results that resonate
with the belief that there is a bidirectional sequential processing mechanism in humans
and that humans use uncertainty-directed exploration strategies. Second, our findings
offer insights into the types of neural networks commonly used in simulations with
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RL agents.

To what extent do vision-and-language models exhibit human-like cross-modal
associations such as the bouba-kiki effect?

Research question 3 - Chapter 4

This chapter marks the point where we transition from relatively simple models
to more contemporary large (vision-and-) language models. While LLMs are often
criticised for failing to connect linguistic concepts to meanings in the world, i.e, facing
the ‘symbol grounding problem’ (Harnad, 1990), multi-modal vision-and-language
models (VLMs) offer a possible solution to this challenge. However, disentangling the
inner workings of such models is not at all trivial. Especially so because multi-modal
representations are created using various techniques of different complexity levels.
Common attempts to understand how VLMs process multi-modal input is through
benchmarking them against human performance on specific tasks (e.g. Thrush et al.,
2022; Diwan et al., 2022; Kamath et al., 2023), or by using experimental techniques
originally designed to probe humans (e.g. Jones et al., 2024). In this chapter, we
embrace the latter and focus on one of the most well-known cross-modal associations
between speech sounds and visual shapes: the bouba-kiki effect (Ramachandran and
Hubbard, 2001). While the link between signals and meanings in language may seem
arbitrary, these associations are in fact not arbitrary at all (e.g. Perlman et al., 2015;
Davis et al., 2019). A wealth of work was done on why words look, sound, and
feel the way they do when they refer to certain meanings (e.g. Perniss et al., 2010;
Winter et al., 2017; Dingemanse et al., 2015; Verhoef et al., 2016a; Cuskley and Kirby,
2013). We investigate whether increasingly popular VLMs also display human-like
cross-modal preferences by adapting an experimental setup (Nielsen and Rendall,
2013) and probing four contemporary VLMs. Our findings offer nuance to recent
claims that VLMs show strong cross-modal associations.

What role does representational alignment play in the emergence of composi-
tional language in reinforcement learning?

Research question 4 - Chapter 5

Representational alignment concerns the degree of agreement between internal repre-
sentations of two processing systems (Sucholutsky et al., 2023). In simulations with
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deep reinforcement learning agents, agents typically project signals and meanings
onto agent-specific representations that represent their understanding of the inputs.
At its core, this essentially renders the cooperative task of communication to be one
where both agents need to align their respective image representations (Rita et al.,
2022b). This is similar to what humans do, who perhaps also do not experience
perceptions equally (Locke, 1847), but at the same time introduces some problems.
Whereas humans use repair mechanisms which can alleviate differing perceptions
and meanings to maintain successful cooperation (Garrod et al., 2007), RL agents learn
through single-step interactions and typically do not have such repair mechanisms
and must rely on redundant explicit messaging (Vital et al., 2025). Furthermore, if we
wish machines to have a more natural understanding of human language, they should
develop vocabularies that are referentially grounded in concept-level properties that
are shared by humans. Preferably, this happens in such a way that the individual
characters of signals refer to concepts in the input and such that they are composed
in a structured manner (i.e., in a compositional way). In this chapter, we first con-
firm earlier work revealing that representational alignment hinders the emergence of
conceptually grounded languages. To further explore how these artificial languages
are affected by representational alignment, we propose an additional loss function
and directly test whether RL agents can communicate on a strict compositionality
benchmark (Thrush et al., 2022).

To what extent can Large Language Models learn and use artificial languages in
emergent communication, mirroring human patterns of language evolution?

Research question 5 - Chapter 6

An important finding in the field of language evolution is that individual learning
biases and pressures present during language learning and use continuously shape
languages (Smith and Culbertson, 2020). Many iterated learning studies that have
contributed to this belief involve a process called cumulative cultural evolution in
which information is transmitted across generations (e.g. Kirby et al., 2008, 2015;
Verhoef et al., 2015; Arnon and Kirby, 2024). An important aspect of iterated learning
experiments is that the information transmitted via iterated learning will ultimately
come to mirror the minds of the learners (Griffiths and Kalish, 2007a). In this chapter,
we extend earlier work presented by Galke and Raviv (2024) and use LLMs as language
learners since scholars are increasingly interested in testing LLMs as if they were
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subjects with cognitive abilities (Binz and Schulz, 2023; Pellert et al., 2024; Binz and
Schulz, 2024; Löhn et al., 2024). We subject an LLM to a referential game—an artificial
language learning task commonly used in language evolution experiments with
humans. These experiments involve learning an artificial language and then using it
during a communicative task, which shapes initially holistic unstructured languages
such that they can be reliably used during communication. Additionally, we simulate
cumulative cultural evolution by creating transmission chains of language learners
and users who learn from the output of previous generations. In doing so, we shed
light on the question of whether LLMs can be used in artificial language learning
experiments and show that, just like how this happens in humans, the underlying
mechanistic inductive biases in these models influence the resulting languages.

Can humans and Large Language Models develop shared vocabularies through
collaborative communication?

Research question 6 - Chapter 7

Instead of only learning from humans, scholars sometimes argue that current tech-
nologies are actively contributing to our culture (e.g. Yiu et al., 2024; Brinkmann et al.,
2023). The incorporation of technologies in everyday life also increasingly demands
maintaining alignment between humans and machines (Beuls and Van Eecke, 2024)
and arguably requires referential grounding. One way to do so is to incorporate
repeated interaction between humans and machines (Bisk et al., 2020; Shumailov et al.,
2024; Beuls and Van Eecke, 2024) and optimise for communicative success (Smith
et al., 2024). The integration of a pressure for communicative success in the training
procedure of machines has successfully promoted more natural (vision-)language
learning through the referential game (Lowe et al., 2020; Steinert-Threlkeld et al., 2022;
Zheng et al., 2024). However, this game also offers a fitting test bed for cooperative
alignment between humans and machines. Hence, we test whether general processes
of language learning and use can result in referentially grounded languages that
are mutually understood and expressive when humans and LLMs, each with their
own set of inductive biases, engage in the referential game. In particular, our work
extends the previous chapter by comparing the languages evolved for LLMs only
with those resulting from Human-Human and Human-LLM interactions. In doing so,
we additionally provide suggestions that promote more natural language learning in
current training processes of LLMs.
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Method RQ1 RQ2 RQ3 RQ4 RQ5 RQ6

Human experiments • • •
Computational experiments • • • •
Statistical modelling • • • • •
NLP • • • •
Qualitative analysis • • •
Questionnaires • • •

Chapter 2 3 4 5 6 7

Table 1.1: Overview of the main methods employed for each RQ/chapter.

1.2.2 Methods

The evolution of language is studied in many ways, among which various methods
inspire our combinations of computational and experimental methods. They are
described below.

Lab experiments in which humans play communication games are used to test what
processes are important during the creation of signals (e.g. Galantucci, 2005; Scott-
Phillips et al., 2009) or how these signals become gradually more structured (e.g. Kirby
et al., 2008; Verhoef et al., 2014; Raviv et al., 2019a). Computational simulations may
complement such theories by showing that processes of self-organisation can result
in elaborate behaviours (e.g. De Boer, 2000; Quinn, 2001; Verhoef et al., 2011) and are
used to test hypotheses and findings in human experiments (e.g. Kirby et al., 2015;
de Kleijn et al., 2022; Lian et al., 2023a, 2024). Finally, in AI research, it is common
practice to benchmark model competencies against human performance on cognitive
tasks (e.g. Thrush et al., 2022; Kamath et al., 2023; van Duijn et al., 2023).

In this dissertation, we adopt the methods mentioned above to address the research
questions. For example, we test LLMs in referential games, comparing languages opti-
mised for LLM biases (Chapter 6) against those developed when humans participate
in artificial language learning experiments (Chapter 7). An overview of the methods
employed per chapter is given in Table 1.1. To guide the reader, we elaborate on these
methods in the remainder of this section.

• Human experiments – Refers to conducting controlled language evolution exper-
iments carried out in the lab in which participants engage in artificial language
learning games (RQ1, RQ2, and RQ6).

• Computational experiments – Refers to the involvement of artificially intelligent
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models in emergent communication setups through training them on human data
(RQ2), via reinforcement learning (RQ4), or via in-context learning (RQ5, RQ6).

• Statistical modelling – Refers to statistical models such as (Bayesian) linear models
used for testing hypotheses regarding PNS (RQ1), human latent variables (RQ2),
cross-modal associations (RQ3), and collaborative language evolution (RQ6).

• NLP – Refers to the extraction of information from images or texts using pre-
trained computational tools, for probing cross-modal effects (RQ3), further use in
RL simulations (RQ4), or evolving signal-meaning mappings (RQ5, RQ6).

• Qualitative analysis – Refers to the process of manually going through the be-
haviours and languages that evolve during experiments. This allowed the discov-
ery of behaviours associated with establishing sequential signals (RQ1) and the
structure patterns in languages (RQ5, RQ6).

• Questionnaires – Refers to administering the Personal Need for Structure question-
naire (RQ1, RQ2) or to inquiring participants communicative strategies (RQ1,RQ2,
and RQ6).
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Figure 1.3: The structure of this dissertation as constituted by six chapters and their themes.
Block colours indicate whether the Chapter incorporated interactions (green) or constituted a
non-interactive approach (pink).

1.2.3 Outline

This section is intended as a brief guide for the reader explaining how this dissertation
is organised, which is best read alongside the structure laid out in Figure 1.3.

Chapter 2 – Grounding and the Need for Structure

This interactive experimental chapter is arguably situated at the very early stages of
language evolution with very elementary ‘linguistic’ communicative interactions. It
introduces the notion of grounding, our questionnaire data, and serves as training
data for Chapter 3.

Published as: Kouwenhoven, T., de Kleijn, R.E., Raaijmakers, S.A., Verhoef, T.(2023).
Need for Structure and the Emergence of Communication. In J. Culbertson, A.
Perfors., H. Rabagliati. & V. Ramenzoni., editors, Proceedings of the Annual Meeting of
the Cognitive Science Society, Volume 44, pages 549-555. Toronto, Canada. Cognitive
Science Society.
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Chapter 3 – Computationally Modelling Human Emergent Communication

This non-interactive behaviour cloning chapter is the first interdisciplinary chapter of
this dissertation. It employs deep learning tools to unravel the rudimentary sequential
human behaviours that resulted in grounded vocabularies in the previous chapter.

Published as: Kouwenhoven, T., Verhoef, T., Raaijmakers, S.A., de Kleijn, R.E. (2023).
Modelling Human Sequential Behavior with Deep Learning Neural Networks in
Emergent Communication. In M. Goldwater., F. K. Anggoro., B. K. Hayes., & D. C.
Ong., editors, Proceedings of the Annual Meeting of the Cognitive Science Society, Volume
44, pages 549-555. Sydney, Australia. Cognitive Science Society.

Chapter 4 – Kiki or Bouba?

This computational chapter draws on theories regarding cross-modal associations in
humans. These associations are still pre-linguistic in nature but compared to Chapter 2
and Chapter 3, their role in language evolution is important after communicative
mediums are established. This non-interactive chapter compares associations between
humans and VLMs by probing the latter directly, enabling fine-grained analyses that
bring nuance to claims made in other work.

Published as: Tessa Verhoef∗, Kiana Shahrasbi, and Tom Kouwenhoven∗. 2024.
What does Kiki look like? Cross-modal associations between speech sounds and vi-
sual shapes in vision-and-language models. In Kuribayashi, T., Rambelli, G., Takmaz,
E., Wicke, P., Oseki, Y., editors, In Proceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, pages 199–213, Bangkok, Thailand. Association for
Computational Linguistics. (∗denotes equal contribution.)

Chapter 5 – The Curious Case of Representational Alignment

This computational chapter moves towards more linguistically complex evaluations as
opposed to the earlier chapters. It adopts a Reinforcement Learning setup that enables
training deep neural networks to interactively develop languages. We assess how they
fare on a strict computational benchmark proven difficult for contemporary VLMs.
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Published as: Tom Kouwenhoven, Max Peeperkorn, Bram van Dijk, and Tessa
Verhoef. 2024. The Curious Case of Representational Alignment: Unravelling Visio-
Linguistic Tasks in Emergent Communication. In Kuribayashi, T., Rambelli, G.,
Takmaz, E., Wicke, P., Oseki, Y., editors, In Proceedings of the Workshop on Cognitive
Modeling and Computational Linguistics, pages 57–71, Bangkok, Thailand. Association
for Computational Linguistics.

Chapter 6 – Searching for Structure

This computational chapter assesses the role of inductive biases in a contemporary LLM
on emergent languages. Hence, this chapter shifts the perspective to using LLMs as
psychological subjects. Drawing on methods from the field of language evolution,
we employ LLM-augmented agents in interactive referential games known to reveal
inductive biases. We assess compositional language use and their ability to generalise
to novel inputs. Finally, the data generated here are complemented in Chapter 7.

Published as: Tom Kouwenhoven, Max Peeperkorn, Tessa Verhoef. 2025. Searching
for Structure: Investigating Emergent Communication with Large Language Models.
In Rambow, O., Wanner, L., Apidianaki, M., Al-Khalifa, H., Di Eugenio, B., Schock-
aert. S., editors, In Proceedings of the 31st International Conference on Computational
Linguistics, pages 9977–9991, Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Chapter 7 – Shaping Shared Languages

This experimental chapter encompasses a hybrid experiment combining most aspects
important to this dissertation. It explores our proposition that language used in
human-machine communication should emphasise the importance of co-development
of shared conventions. To this end, we assess languages optimised for human, LLM,
and Human-LLM pairs that interactively shape languages in the communication
game developed in the previous chapter. Enabling direct comparisons between the
languages, and investigating what languages look like when they are optimised for
humans and machines.
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Published as: Kouwenhoven, T., Peeperkorn, M., de Kleijn, R.E. and Verhoef, T.
(2025). Shaping Shared Languages: Human and Large Language Models’ Inductive
Biases in Emergent Communication. In Kwok, J., editor, Proceedings of the Thirty-
Third International Joint Conference on Artificial Intelligence, IJCAI-25, International
Joint Conferences on Artificial Intelligence Organization. Human-Centred AI

Chapter 8 – Conclusions

The conclusion chapter presents answers to all research questions and provides discus-
sions regarding the limitations of this dissertation and directions for future research.




