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Abstract 

We issue a call to action: in the context of safe design, all pesticides must be traceable via low-cost methods that are accessible for rou
tine environmental monitoring by public institutions. Insights into the far-reaching impacts of pesticides depend on our ability to detect 
these chemicals in the environment. Once a pesticide is authorized for use, environmental monitoring serves as a critical warning sys
tem that complements risk assessments. Postregistration monitoring is recognized by different policy frameworks such as the Water 
Framework Directive and the European Green Deal. However, we highlight an urgent concern: despite formal requirements for detect
ability in registration, novel pesticides are becoming progressively undetectable in practice. We demonstrate how mandated reductions 
in pesticide use measured as volume can drive chemical innovations that unintentionally undermine environmental accountability and 
safety. For example, volume can be decreased while maintaining effectiveness by increasing the specificity or toxicity of the pesticide. 
This phenomenon is analogous to “analytical homeopathy,” where active ingredients remain effective even at extremely low dosages, 
rendering them undetectable by standard analytical chemistry. This issues a significant challenge: higher toxicity can imply lower envi
ronmental quality standards near detection limits. This leads to the troubling problem of “known unknowns,” risks posed by active 
ingredients whose emissions remain unquantified under current field monitoring conditions. In response to this emerging threat, we 
propose a foundational principle, that all synthetic pesticides should be detectable in the environment at the concentration of their ac
tive ingredients, enabling cost-effective and reliable monitoring. If neglected, then the credibility and function of monitoring as a warn
ing system for unintended biodiversity harm is increasingly undermined, regardless of formal analytical capabilities.
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Introduction
Driven by demand from consumers, governments, and civil soci
ety organizations, industries are under increasing pressure to 
adopt responsible business practices and reduce their environ
mental and public health impacts. In response, transparency has 
become a priority within industrial sectors, emphasizing adher
ence to Safe and Sustainable by Design principles (Van de Poel & 
Robaey, 2017). Reflecting this shift, the European Commission 
adopted a recommendation in 2022 to establish a European as
sessment framework for Safe and Sustainable by Design chemi
cals and materials, supporting the Chemical Strategy for 
Sustainability and the Green Deal’s zero pollution targets (e.g., 
Subramanian et al., 2023). Similarly, the European Food Safety 
Authority (EFSA) promotes openness and accountability on pesti
cide data. Here, we argue that with the rise of novel pesticides, 
pesticide detection methods that are sensitive, practical, imple
mentable, and cost-effective are crucial, because without them, 
reduced emissions goals may paradoxically jeopardize human 
and environmental health.

Pesticides are intentionally introduced into the environment 
to control pests, weeds, and fungi. Ideally, pesticides achieve 
a>99.9% efficacy in controlling pest species with negligible 

impact on nontarget organisms and within nontarget areas. 

Ongoing research aims to refine pesticide development to meet 

evolving agricultural needs and sustainability goals. This is driv

ing technological innovation towards less pesticides per acre or 

crop volume, or so-called weight-based and volume-based meas

ures. Using a basic mathematical model (see online supplemen

tary material), it can be shown that novel chemicals can achieve 

mandated reductions in pesticide use in nonmutually exclusive 

ways (Figure 1A): the logarithm of the mandated reduction (log 

(z)) must be matched by a linear increase in effectivity (μnew < μ 
old), a corresponding decrease in specificity (σ new < σ old), or a 

combination of both mean toxicity and uncertainty.
Increased effectivity and specificity, for instance, can be 

achieved by designing molecules that exploit unique biological 

vulnerabilities in target pests (Umetsu & Shirai et al., 2020) and 

understanding the biochemical pathways and physiological pro

cesses of the pest (Ara�ujo et al., 2023). Reducing uncertainty as 

an alternative is often achieved by modifying the bioavailability 

of formulations. For example, granular seed-coating applications 

can have lower impact on nontarget areas than spray applica

tions where drift can occur, e.g., clothianidin-coated oilseed rape 

(Elbert et al., 2008). Pesticide efficacy also depends on how well 
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the active ingredient is absorbed (e.g., nanopesticides [Kah et al., 
2021]), distributed, and remains active in the target organism or 
environment. The formulation is critical in ensuring stability, sol
ubility, and controlled release of the active ingredient.

Schulz et al. (2021) highlighted the limitations of weight-based 
measures in pesticides policy, noting a significant shift in novel 
chemicals over the past 25 years including impacts to vertebrates 
and increased impacts on insects and aquatic invertebrates. At 
the same time, De Snoo (2003) pointed out the psychological 
challenge of applying low amounts of pesticides; applicators 
might feel that small quantities are insufficient for effective pest 
control, potentially leading to overapplication. So even when 
lower application rates are recommended, application rates may 
be high due to perceived beliefs that greater pesticide application 
will achieve greater benefits. Thus, despite foreseen overall 
reductions in pesticide application, the anticipated decline in en
vironmental impacts may not materialize, underscoring the 

inherent complexity of achieving substantive reductions in 

pesticide-related effects.

Trace detection in monitoring
Once a pesticide is authorized, environmental monitoring serves 

as a crucial warning system complementing risk assessments 

(Vijver et al., 2017). However, this system appears increasingly 

compromised as novel, more potent pesticides emerge (Figure 1). 

A clear risk in the development of pesticides that are effective at 

lower dosages that is not highlighted is that we will reach the 

limits in our ability to detect and quantify chemicals in monitor

ing programs—a trend that already seems underway (Figure 1B 

and C). This can lead to undetected environmental damage and 

creates a blind spot in understanding the risks of new chemicals, 

despite the availability of registration-level detection methods.

Figure 1. (A) Required toxicity of novel chemicals to achieve mandated reductions in pesticide usage, as predicted by a basic ecological risk assessment 
model. The mathematical model builds the hypothesis that mass-based reductions incentivize a shift towards lower required dosages in the field due 
to more toxic or more targeted chemicals, or by reducing uncertainty in volumes required (i.e., by spraying more precisely or reducing pesticide losses). 
The x-axis represents the mandated reduction in pesticide usage (1-z), indicating the fractional levels of reduction (0.2¼20% volume or mass based 
reduction in total usage). The y-axis (log-scale) represents the factor increase in median toxicity (κ) of a novel chemical. Lines show the κ needed to 
compensate for the mandated fractional mass-based reduction (1-z). The model suggests that mass-based reduction targets can be met by optimizing 
a combination of toxicity or specificity of new chemicals. The three scenarios illustrated are: less targeted novel chemicals (orange line; σ0 < > σeW): 
median toxicity must always be larger than before (κ >1) and increase disproportionately with the mandated reductions (z). Equally targeted novel 
chemicals (blue line; σ0 ¼ >σeW): Median toxicity must increase with z (κ ≥1). More targeted chemicals (green line; σ0 >σeW): median toxicity can be 
reduced (κ <1), and increases less rapidly with z, and median toxicity may increase (κ >1) depending on how strict the target reduction goals are. See 
online supplementary material for more mathematical details. Numbers of active ingredients (a.i.) with a mean reporting threshold (i.e., LoQ) above 
the acute (B) and chronic (C) environmental norms per year. LOQ ¼ limit of quantitation, which is the lowest concentration or amount of a substance 
that can be reliably and accurately measured by a specific analytical method. In essence, there are an increasing number of substances that are only 
detected at concentrations exceeding environmental protection norms. Data come from the Dutch monitoring program 1997–2022 and contain over 9.3 
million measurements of substances sampled from over 6,364 days at 3,354 locations. The analysis focuses on 158 a.i. with water quality norm in the 
EU legislation. These so-called “untraceable substances” have increased despite the fact that the reporting threshold has dropped on average 28% per 
decade. Orange ¼ Highest line, Blue ¼Middle line, Green ¼ Lowest line.
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Monitoring programs are, by necessity, organized to screen 
numerous pesticides and therefore must deal with constraints in 
analytical methods. All analytical methods have a detection 
limit, defining the smallest amount of substance that can be reli
ably identified. Although analytical detection limits have been 
optimized over recent years and allow detection within the pico
gram to nanogram ranges, small traces or single molecules often 
fall within this limit, requiring methods with extraordinary sensi
tivity. However, even sensitive methods can fail, because a cer
tain amount of molecules is needed before a cumulative signal 
becomes strong enough to outweigh the background noise. 
Moreover, detecting single molecules often requires expensive 
instruments like specialized mass spectrometry or single- 
molecule fluorescence microscopy. All require precise calibra
tion, maintenance, advanced sample preparation, and consider
able technical expertise. Especially for field relevant samples, the 
standard protocols often selected by water managers for broad 
screening purposes may fall short. Logistical constraints and fi
nancial considerations limit tailored matrix-dependent extrac
tion methods, which in practice means that the water manager 
can choose from among two or three different packages of stan
dardized extraction protocols before a multiresidue is analyti
cally measured. As a result, measuring ever lower concentrations 
becomes disproportionately more expensive and increasingly out 
of reach for routine national and regional monitoring systems. 
Moreover, there is an inherent lag in the adaptation of monitor
ing programs to newly authorized compounds, partly due to the 
limited scope of commercial laboratories, which do not always 
offer up-to-date screening options and then, only after request 
by regional water managers. As noted, current standard monitor
ing packages are not specifically designed to address the analyti
cal challenges posed by the most novel pesticides. For instance, 
this is the case with nanopesticides, for which routine analytical 
methods have not yet been developed, as well as that both very 
polar and very nonpolar chemicals can be analytically challeng
ing because they do not ionize efficiently in standard mass spec
trometry setups.

Sampling surface water under field conditions involves varia
tion in water chemistry across locations, seasons, and day-night 
fluctuations. Such variation in water chemistry considerably 
influences detection techniques and hence limits by affecting the 
noise level in samples, emphasizing the need for precise sam
pling preparation protocols tailored to the different water or sedi
ment types sampled (Campanale et al., 2021). The Water 
Framework Directive, through Legislative Decree 172/2015 
(amending Legislative Decree 260/2010), defines technical criteria 
for identifying and characterizing water bodies. Once a pesticide 
enters the environment, it may undergo biotic or abiotic transfor
mation processes. Consequently, the absence of the parent com
pound in environmental samples does not necessarily indicate 
its nonoccurrence but may reflect its conversion into one or 
more transformation products. Transformation products can 
persist and exhibit less or greater toxicity than the parent com
pound. This complexity presents a significant challenge for re
gional water authorities tasked with monitoring and 
risk assessment.

In practical terms, all the reasons above can lead to more 
chemicals—despite being formally registered with validated de
tection methods—going undetected in field conditions. As a re
sult, exceedances of environmental quality standards may go 
unnoticed, representing a concerning risk that aligns with ob
served trends (Figure 1B and C). Moreover, it should be noted that 

even barely detectable trace amounts can accumulate over time 
and contribute to significant cumulative (joint) risks.

Statistical factors further complicate the detection of single 
molecules. Sampling highly toxic but low-concentration pesti
cides from natural surface waters is inherently challenging. 
These highly effective active ingredients, if undetected due to 
their low concentrations, can lead to “unknown knowns”; we un
derstand their reactivity, but remain unaware of their occurrence 
until identified through monitoring. This underscores the princi
pal role cost-effective detection methods play in environmen
tal health.

Transparency in authorization documents 
the way forward in low-cost monitoring
The current authorization of pesticides does not result in zero 
pollution, and despite the consideration of environmental risks, 
we cannot ignore that pesticides are ubiquitous in the environ
ment across virtually the entire globe (Tang et al., 2021). We have 
previously advocated for postregistration monitoring (Vijver 
et al., 2017). Balancing the needs of farmers, landowners, munici
palities, citizens, and others with those of water managers, con
servation nongovernmental organizations (NGOs), and 
governmental institutions responsible for monitoring emissions 
is a delicate task and requires respectful consideration of multi
ple desired goals. As of 2024, there are two evolving routes to en
hance transparency in pesticides authorization.

Preregistration
The EFSA requires manufacturers to submit all pertinent infor
mation when filing a pesticide dossier, including substance test 
methods and measurement protocols. These detailed protocols 
can then be distributed, possibly automatically, to authorities re
sponsible for monitoring, such as authorization agencies, water 
managers, and commercial measurement laboratories. This 
would enable the measurement of new substances from the first 
year of authorization. Currently, protocols are often not available 
after a substance has been authorized (for example, sulfoxaflor 
was only after three years of authorization for the first time mea
sured and introduced within the monitoring reporting; see www. 
bestrijdingsmiddelenatlas.nl). Currently, affordable public moni
toring is not systematically enabled or prioritized despite the the
oretical availability of detection protocols.

Postregistration
The Authorizations Board of Member States is mandated to con
duct official controls to ensure compliance with the regulation 
(Article 68: Monitoring and Controls). Within six months of the 
end of the year, they must report to the Commission detailing 
the scope and outcomes of these controls. Several government 
agencies are involved in monitoring and enforcing pesticide use, 
focusing on compliance checks, enforcement in trade and distri
bution, safe working conditions, biocidal product use, and moni
toring pesticide use in agriculture and horticulture. The broad 
chemical surveillances done in the Rhine catchments under the 
lead of International Commission for the Protection of the Rhine 
are potentially a good model for a monitoring program. Other ex
cellent examples are the monitoring data on pesticides in surface 
waters as measured by water managers within the Netherlands 
made publicly accessible at www.bestrijdingsmiddelenatlas.nl
containing 10 M measurements covering 700 active ingredients 
over a period of 1997 until the present. Integrating this informa
tion into reassessments several years postregistration is now cur
rently under consideration, as advocated by Vijver et al. (2017). 
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However, the effectiveness of this monitoring hinges on detecting 
and quantifying all chemicals at concentrations below their 
norms under field conditions, an outcome not guaranteed by reg
ulatory requirements alone.

National authorization boards for plant protection products 
and biocides have the opportunity to set country-specific legal 
actions to address water-specific or ecosystem-specific needs. 
These boards must rely not only on modeling results but also on 
monitoring data to effectively protect ecosystems. Next to ac
counting for persistence, bioaccumulation, and toxicity (ECHA; 
chemicals of concern criteria adopted within the Green Deal and 
Authorization), it is crucial to ensure that pesticides are traceable 
in nature and at low costs. The latter is essential for transpar
ency and requires cautious admission of highly effective active 
ingredients, as their low detection limit and high toxicity at trace 
levels pose significant operational challenges for those tasked 
with ensuring compliance and environmental safety, particularly 
in budget-constrained monitoring settings. Armed with cost- 
effective monitoring abilities, stakeholders such as drinking wa
ter companies, food producers, water managers, environmental 
NGOs, and governmental organizations concerned with human 
and environmental health will be better equipped to perform 
their tasks.

Accountability comes with traceability
Technological advances are leading to tailored pesticides that 
can meet volume-based emission goals by being more specific 
and effective at lower concentrations. Analytically, these novel 
chemicals resemble homeopathy; their active ingredients are 
untraceable yet still potent. More effective, hence more toxic, 
substances generally require stricter environmental quality 
standards. This means that these new chemicals designed for 
lower dosages create a dual challenge of increased chemical po
tency and reduced traceability, as their norms frequently fall be
low what routine environmental monitoring can reliably detect 
(Figure 1). This poses significant risks because detecting traces or 
even single molecules using standard environmental monitoring 
programs is extremely challenging due to the limitations of ana
lytical methods and low probability of detection of rare mole
cules. This creates a pitfall: the unknown risks of unintended 
emissions of untraceable active ingredients.

Over the years, policymakers, risk assessors, and other rele
vant stakeholders have progressively vacillated between hazard- 
based approaches, which focus primarily on exposure, and risk- 
based monitoring frameworks that incorporate both exposure 
and effect. Taking the European Union’s Water Framework 
Directive as an example, both approaches are mandated: (1) 
chemical monitoring, which aligns with policy frames such as 
the circular economy and zero pollution, and (2) ecological moni
toring, which supports risk-based frames aimed at protecting a 
high proportion (95%) of aquatic species. Within the scope of eco
logical monitoring, the concept of effect-based monitoring has 
gained increasing prominence. Although a detailed discussion of 
the diverse methodologies encompassed within risk-based moni
toring lies beyond the scope of this article, it is important to ac
knowledge that even with the plurality of approaches traceability 
is key.

Cost-effective traceability should be a preregistration criterion 
before any new chemical is allowed or is authorized for use and 
thus allowed to enter environmental systems. Ensuring this 
traceability is essential to monitor emissions effectively, safe
guarding both human and environmental health. These 

underlying principles and implications apply universally across 

environmental compartments—water, soil, and air—as chemi

cals traverse through all ecosystems. We also plead for a system 

ensuring all manmade pesticides come with analytical protocols 

before they are permitted for use. This aligns with transparency, 

open science, and verifiable green claims. Ultimately, it protects 

human and environmental health from the unintended side 

effects of chemical innovation, driven by mass-based reduction 

targets that prioritize volume reduction over detectability and ac

countability.
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