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Cosmological observations from big bang nucleosynthesis and the cosmic microwave background
(CMB) offer crucial insights into the Early Universe, enabling us to trace its evolution back to lifetimes as
short as 0.01 s. Upcoming CMB spectrum measurements will achieve unprecedented precision, allowing
for more accurate extraction of information about the primordial neutrinos. This provides an opportunity to
test whether their properties align with the predictions of the standard cosmological model or indicate the
presence of new physics that influenced the evolution of the MeV-temperature plasma. A key component in
understanding how new physics may have affected primordial neutrinos is solving the neutrino Boltzmann
equation. In this paper, we address this question by developing a novel approach—neutrino direct
simulation Monte Carlo (DSMC). We discuss it in depth, highlighting its model independence, trans-
parency, and computational efficiency—features that current state-of-the-art methods lack. Then, we
introduce a proof-of-concept implementation of the neutrino DSMC and apply it to several toy scenarios,
showcasing key aspects of the primordial plasma’s evolution in the presence of new physics.
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I. INTRODUCTION

Primordial neutrinos are an importantmessenger from the
Early Universe, bringing us information about the state
of the Universe at times as early as t ≪ 1 s. Their direct
detection is significantly more challenging than that of
primordial photons due to their tiny interaction cross section,
which is governed by weak interactions. However, numer-
ously populating the primordial plasma, they affected a
number of cosmological observables. It makes it possible to
indirectly extract information about their properties from
precise cosmic measurements. In particular, they contribute
to the number of ultrarelativistic (UR) degrees of freedom,

Neff ¼
8

7

�
11

4

�4
3 ρUR − ργ

ργ
; ð1Þ

where ρUR is the energy density of the ultrarelativistic
species at the moment of cosmic microwave background

(CMB) formation, and ργ is the energy density of photons.
This quantity influences the CMB and may be extracted
from its measurements.
It is not only the total neutrino energy density that is

important. Another essential property is the shape of the
neutrino energy distribution function. It handles the neu-
tron-to-proton conversion at MeV temperatures, which
determines the onset of big bang nucleosynthesis (BBN),
as well as affects baryon acoustic oscillations (BAO) [1,2].
The shape of the distribution may significantly modify the
cosmological neutrino mass bound [3].
Assuming the standard cosmological history, based

on the ΛCDM model, Neff is fully represented by
the neutrino, and its value is 3.043–3.044 [4–10]. The
shape of the neutrino distribution is very close to the
Fermi-Dirac distribution, with tiny distortions in the high-
energy tail. Finally, there is no asymmetry between
neutrinos and antineutrinos. Altogether, it serves as an
input to the standard big bang nucleosynthesis model,
which predicts the helium abundance Yp ¼ 0.247�
0.00017 (see, e.g., [11,12]). These numbers agree with
the current BBN and CMB observations. In particular, the
measurements performed by the Planck collaboration [13]
constrain Neff ¼ 2.99þ0.34

−0.33 at 95% CL, whereas the pri-
mordial helium abundance measurements are in a range
0.233–0.2573, obtained by combining the observations
from the works [14–21].
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However, the uncertainty window of these observations
leaves room for sizable deviations from standard neutrino
properties that may potentially originate from the presence
of new physics at temperatures TEM ≲ 5 MeV, when
neutrinos start decoupling.1 Examples of such scenarios
include the presence of nonstandard neutrino interactions
[22–25], a lepton asymmetry in the neutrino sector [26–32],
a change in the expansion dynamics of the Universe, and
the injection of nonthermal neutrinos by hypothetical long-
lived particles, or LLPs [33–42]. The accuracy of the CMB
measurements will be significantly improved with the
future observations with Simons Observatory [43] (which
has started collecting the data on June 2024) and CMB-S4
mission [44]. They will be able to measure Neff with a
percent precision, thus providing a unique potential to shed
light on properties of the new physics or constrain it in case
of the absence of deviations from ΛCDM.
Under certain approximations of neutrino oscillations,

understanding the impact of the new physics effects on the
neutrino properties requires solving the Boltzmann equa-
tion on the neutrino distribution function fνα :

∂fνα
∂t

− pH
∂fνα
∂p

¼ I coll;α½fνα ; p�: ð2Þ

Here, p is neutrinos’ momentum, H is the Hubble factor
accounting for the expansion of the Universe, and Icoll;α is
the collision integral that takes care of the microscopic of
the thermalization.
The main approach considered in literature is to reduce

the integration inside Icoll analytically as much as possible
and convert the complex integrodifferential equation (2)
into a system of the ordinary differential equations by
discretizing the grid of the comoving momenta (see the
pioneering work [45] as well as later realizations [7,46,47],
and references therein). The method has also been used to
study some well-motivated scenarios with LLPs such as
heavy neutral leptons (HNLs) [33,35,39–42] and particles
in late reheating scenarios [34,48,49].
However, several problems exist with this approach. First,

it has a limited range of applicability, requiring analytic
matrix elements for the processes and high reducibility of the
dimensionality of the integration in I coll;α. Second, even
within the case studies, its computational complexity
quickly grows if high-energy neutrinos are present in the
system. For instance, depending on the grid density, solving
the Boltzmann equation under the presence of HNLs with
masses just≃200 MeV (injecting neutrinoswith energies up
to 100 MeV) may take days [39].
In addition, the method itself is very complex. The

analytic reduction of the collision integral is highly non-
trivial, the comoving grid density has to be adjusted to the

model’s parameters, and solver stability must be carefully
verified. An indirect consequence of this is that there is the
existing discrepancy between the predictions of various
neutrino Boltzmann codes for the behavior of Neff in the
presence of the injection of high-energy neutrinos with
energies well exceeding the plasma temperature.While some
studies predict that injection of such neutrinoswould increase
Neff [33,41], the others show the opposite [35,40,42].
In this paper, we address these issues by developing

proof of principle of a novel approach to solving the
neutrino Boltzmann equation based on the so-called direct
simulation Monte Carlo (DSMC) [50–53]. Its basis is the
numerical particle representation of the Boltzmann equa-
tion: one starts with a large number of particles obeying
some initial condition in momentum and spatial spaces
and then directly simulates their interactions to study the
equilibration. Because of the straightforwardness of the
method, DSMC directly calculates the linear functionals,
e.g., the number and energy densities, velocities, etc.,
without any simplifications. The existing case studies
describe the implementations of DSMC that efficiently
simulate collisions of a number of particles as large as
108 [54,55]. As we will see, the simplicity of the scheme
describing the interactions and the absence of momentum
binning automatically release the DSMC approach from
most of the problems described above.
This work also serves as the companion to the Letter

[56], which presents a summary of the results.
The paper is organized as follows. In Sec. II, we review

the properties of the primordial plasma around the neutrino
decoupling, considering both the standard cosmological
scenario and setups with new physics. Section III is devoted
to a discussion on the existing approaches to solve the
neutrino Boltzmann equation. In Sec. IV, we describe the
basics of the DSMC approach and, in particular, why it may
be well applicable to studying the dynamics of primordial
neutrinos. Section V discusses the necessary modifications
to the DSMC simulation required to study the primordial
MeV plasma, and how they can be implemented. In
Sec. VI, we present our proof-of-principle realization of
the approach and different cross-checks we performed to
validate it against well-defined scenarios. In Sec. VII, we
apply the developed approach to a few case studies
simplifying various physics setups, highlighting the variety
of the applicability of the neutrino DSMC and the impor-
tance of using full Boltzmann equations. Finally, in
Sec. VIII, we make conclusions.

II. PRIMORDIAL PLASMA
AT MEV TEMPERATURES

As we discussed in the Introduction, throughout this
study, we mainly focus on the temperature domain
1 MeV≲ TEM ≲ 5 MeV, where neutrinos are already par-
tially decoupled at T ≃ 5 MeV [39], but still interact
significantly with the electromagnetic (EM) particles and

1Here and below, TEM denotes the temperature of the electro-
magnetic plasma.
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themselves. This necessitates a detailed understanding of
the dynamics of these interactions.
At these temperatures, the primordial plasma consists of

light particles—neutrinos ν; ν̄, electromagnetically (EM)
interacting light particles (electrons e−, positrons eþ, and
photons γ), as well as baryons B ¼ p, n. The thermal
population of other particles, such as muons, τ leptons,
mesons, and excited baryon states, can be safely neglected,
as they are too heavy to be abundantly present at this epoch.
The homogeneous and isotropic Universe expands with

the rate HðtÞ ¼ ȧðtÞ=aðtÞ, where aðtÞ is the scale factor,
and H is the Hubble parameter. Assuming spatial flatness
and neglecting the dark energy contribution, we get

HðtÞ ¼ 1

MPl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π

3
ρUniverse

r
; ð3Þ

whereMPl is the Planck mass, and ρUniverse the total energy
density of the Universe.
To understand the scaling of ρUniverse, we need to discuss

different components of the primordial plasma and, in
particular, their interactions.

A. EM plasma and nucleons

Let us first consider the EM plasma. Examples of the
processes are Compton scattering and electron-positron
annihilation into a pair of photons. The corresponding rate
well exceeds the Hubble parameter for times t≲ 104 s,
which includes the period we are interested in.2 This means
that the population of the EM particles can always be well
described by just one quantity—the temperature of the EM
plasma TEM ≡ T.
The distribution function fe� of electrons and positrons

is Fermi-Dirac, while for photons it is Bose-Einstein:

fe�ðp; TÞ ¼
1

exp

� ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

e

p
T

�
þ 1

; ð4Þ

fγðp; TÞ ¼
1

exp½pT� − 1
; ð5Þ

with the electron’s mass me ≈ 0.511 MeV. The temper-
ature TEM is related to the total energy density of the EM
particles ρEM by the formula

ρEMðTEMÞ ¼ ρe�ðTEMÞ þ ργðTEMÞ: ð6Þ

Here, the energy densities of e�; γ are

ρe�ðTEMÞ ¼ ge�
Z

d3p
ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

e

q
fe�ðp; TEMÞ; ð7Þ

ργðTEMÞ ¼ gγ

Z
d3p
ð2πÞ3 pfγðp; TEMÞ; ð8Þ

with the factors ge� ¼ 4 and gγ ¼ 2 staying for the spin and
charge degrees of freedom.
Because of the electroneutrality of the Universe, we may

neglect the chemical potential of electrons at the temper-
atures of interest TEM ≃ 1 MeV. Indeed, it is μe�=TEM ∼
ηB ≃ 10−9, where ηB is the baryon-to-photon ratio.3

In terms of TEM, the Hubble factor (3) can be rewritten as

HðTEMÞ≡T2
EM

M�
pl
; M�

pl≈
Mpl

1.66
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�ðTEMÞ

p ; ð9Þ

where g� the effective number of relativistic species:
g� ¼ ρUniverse= π2

30
T4
EM, with gi being the number of spin

and charge degrees of freedom. Assuming the ΛCDM
scenario and that all the species are in perfect equilibrium,
we have g� ≈ gγ þ 7=8ðge þ gνÞ ¼ 10.75.
Finally, the number density of baryons B in the Early

Universe, nB, may be expressed in terms of the baryon-to-
photon ratio ηB and the photon number density:

nBðTEMÞ ¼ ηBðTEMÞnγðTEMÞ: ð10Þ

Knowing the value of ηB during the CMB formation,
ηB;Planck ¼ 6.09 × 10−10 [13], and the dynamics of the
Universe expansion, the temperature dependence of ηB
may be calculated as

ηBðTEMÞ¼ ηB;Planck ×

�
aðTEM;CMBÞTEM;CMB

aðTEMÞTEM

�
3

; ð11Þ

where a is the scale factor of the Universe. The scaling of
ηB comes from the behavior of the baryon number density,
nB ∝ a−3, and the number density of photons, nγ ∝ T3

EM.
The resulting temperature-dependent factor stays for the
entropy dilution of the Universe. In the standard cosmo-
logical scenario, Eq. (11) gives ηBðTEM ≃ 1 MeVÞ≈
1.67 × 10−9.
The relative ratio between protons and neutrons, impor-

tant for BBN, is handled by their weak interactions with
neutrinos and e� particles, which drive the p ↔ n con-
version, so the baryons are coupled to the UR content of the
plasma. However, because of the tiny number density and

2The decoupling of EM particles happens much later. In
particular, the EM particles’ thermalization time is much shorter
than any relevant timescale for the temperatures above
TEM ≳ 1 keV. At lower temperatures, for example, by injecting
high-energy e�; γs, we have a chance for them to photodisinte-
grate primordial nuclei before the EM particles thermalize [57].

3The asymmetry, obviously, becomes non-negligible after
eþe− annihilation, at TEM ≲me, but then electrons become
irrelevant for the dynamics of the primordial plasma.
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the absence of other hadrons in the plasma in the standard
scenario, nucleons play a negligible role in the thermody-
namics of the Universe at MeV temperatures.

B. Neutrinos

Let us now discuss neutrinos. Generically, there may be
an asymmetry between neutrinos and antineutrinos, but the
minimal cosmological setup assumes zero asymmetry.4

Neutrinos interact with themselves and e� particles via
the weak force. The dimensional estimate for the weak
interaction rates gives

Γweak ≃ nν · hσvi ∼G2
FT

5
EM; ð12Þ

where we assumed that the neutrinos have the thermal
equilibrium with the EM plasma and, for the moment, set
the neutrino temperature Tν ¼ TEM. Namely, nν ∝ T3

EM is
the neutrino number density, while hσvi is the thermally
averaged cross section, which scales as

hσvi ∼G2
Fhsi ∼ G2

FT
2
EM; ð13Þ

and GF ≈ 1.167 × 10−5 GeV−2 is the Fermi coupling. The
important feature is that the cross section scales with the
energies of the interacting particles (we will return to it in
Sec. VII).
The rate becomes comparable to the Hubble expansion

rate of the Universe already at TEM ∼ 1 MeV. As a result, at
these temperatures, the weak reactions are no longer able to
maintain equilibrium in the neutrinos sector, and the latter
gradually decouple [58]. The shape of their spectrum in
ΛCDM closely follows the Fermi-Dirac one. Its temper-
ature Tνα remains equal to the EM temperature until the
annihilation of electron-positron pairs, which happens
around TEM ≃me. Then, their relation may be found from
the entropy conservation law, giving Tνα ≈ ð4=11Þ1=3TEM.
Extended neutrino decoupling introduces a small correction
to this relation, leading to the value of Neff that is slightly
larger than the instant decoupling result Neff ¼ 3.
Neutrino interaction processes. Let us now discuss

neutrino interactions in more detail. They include elastic
scatterings off neutrinos and e� and annihilations:

ναþe� ↔ ναþe�; ναþ ν̄α ↔ e−þeþ; ð14Þ

ναþνβ ↔ ναþνβ; ναþ ν̄α↔ νβþ ν̄β; ð15Þ

as well as charge-conjugated ones [39]. The other reactions
include the electroweak corrections, such as subdomi-
nant eþe− → ναν̄αγ.

The MeV plasma is “flavor-asymmetric” in the sense that
electrons and positrons are present in plasma, while μ and τ
leptons are not. Given the structure of the charged current of
weak interactions, which includes the lepton and the corre-
sponding neutrino, the direct interaction rate of νe with e� is
larger than the rate of the corresponding scatterings but with
νμ;τ. Because of this, one can naively expect that νμ;τs
decouple earlier from the EM plasma, while νes are kept
longer in equilibrium.However, besides the interactions (15),
neutrinos also experience flavor transitions called oscilla-
tions.Theoscillationsgenerically appear because the neutrino
charge eigenstates do not coincide with the mass eigenstates.
In the primordial plasma, the neutrino oscillation rate is

severely affected by the dense medium. Namely, neutrinos
acquire a correction to the self-energy caused by inter-
actions with electrons and positrons [58]. It effectively

translates to a potential VðναÞ
eff in the Hamiltonian describing

the propagation of neutrinos να. The functional form of the

potential is VðναÞ
eff ¼ Cα G2

FT
4
EMEν

αEM
, where Cα is a neutrino-

dependent constant.

If VðναÞ
eff is higher than the energy splitting for different

neutrino eigenstates Δm2=2Eν, the mixing angle is effec-
tively suppressed, and oscillations can be ignored.
Therefore, the oscillations are absent at high temperatures
and/or for high-energy neutrinos. In ΛCDM, they effec-
tively turn on at TEM ≃ 3 MeV.
In total, because of oscillations, the interactions of three

neutrino flavors with the EM plasma are similar. Therefore,
the decoupling of νe, νμ, ντ occurs in a similar fashion.

C. How new physics may spoil properties
of primordial plasma

There are various ways of introducing new physics to the
primordial plasma. They will change the dynamics of the
primordial plasma, in particular, departing the neutrino
properties from the ΛCDM ones. To be specific, let us
consider the scenario appearing in many well-motivated
extensions of the Standard Model, adding LLPs (with
mass m ≫ TEM).
To significantly affect the Universe, such particles need

to be out-of-equilibrium relics. Before decaying, they
would increase the energy density of the Universe and,
hence, modify the Hubble factor. After decaying, their
influence gets split into many contributions. First, they still
modify the dynamics of the Universe by introducing the
dilution to the scale factor aðTÞ. It influences the behavior
and value of ηB at MeV temperatures via Eq. (11).5

Second, their decay products may either constitute
additional species (“dark radiation”) or inject energy into

4In principle, the sector of the charged particles has the
asymmetry, but it is at the level of the baryon-to-photon ratio,
which can be neglected.

5In particular, the presence of additional energy at high
temperatures compared to ΛCDM leads to an increase of the
scale factor at the CMB epoch, aðTCMBÞ. As ηBðTCMBÞ is fixed,
ηBðT ≃ 1 MeVÞ from Eq. (11) must be larger than the ΛCDM
value to compensate for the dilution.
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the population of neutrinos and the EM particles. The EM
population gets immediately thermalized, which results in
an increase of TEM, while the neutrino injections cause the
spectral distortions. Since neutrinos with different energies
interact at different rates, much slower than the EM
particles, the distortions will not disappear, affecting the
total neutrino number and energy densities, as well as the
p ↔ n conversion rates.
Under such scenarios, the nucleons may also be involved

in the thermodynamics of the Universe in a nontrivial way.
Decaying LLPsmay inject relatively long-livedmesons such
as π�; K�; KL. Before decaying, these particles experience
numerous interactions with the SM plasma particles and
themselves. Scattering off nucleons surprisingly becomes
very efficient—the smallness of ηB is compensated by the
largeness of the nucleon interaction cross section, driven
by the strong force [38]. Because of these scatterings, the
mesons change the distribution of their energy among the
neutrino and EM sector [59], which leads to the impact on
the time-temperature relation tðTEMÞ and neutrino properties.

III. EXISTING APPROACHES
TO SOLVE THE ν BOLTZMANN EQUATION

In general, to study the thermalization of neutrinos, one
has to solve the quantum kinetic equations (QKEs) for the
neutrino density matrix [7,8,47,60–62]. However, for our
purposes, it may be reasonable to approximate the oscil-
lations by the temperature-dependent oscillation probabil-
ities, hPαβiðEν; TEMÞ, similarly to how this is done in [35,39].
Then, it may be possible to reduce the complexity by
converting the QKEs into the Boltzmann equations for the
neutrino distribution function fνα in the momentum space:

∂fναðEν; tÞ
∂t

− EνH
∂fναðEν; tÞ

∂Eν

¼
X
β

hPβαi · I coll;νβ ½Eν; fνα ; fνβ ; T�; ð16Þ

supplemented with the Friedmann equation describing the
expansion of the Universe (and in particularH), the equation
for the evolution of the EMplasma temperature TEM, and the
equation governing the dynamics of LLPs in case they are
present. Here, Eνα ¼ jpνj is the neutrino physical momen-
tum. Icoll;νβ is the collision integral for the neutrino of the
flavor β, which in general contains a source term from new
physics particles, a neutrino-neutrino interaction term, and a
neutrino-EM interaction term. It has the form [46]

Icoll;να ¼
1

2Eνα

XZ Y
i¼2

d3pi

ð2πÞ32Ei

Y
f¼1

d3pf

ð2πÞ32Ef

× jMj2F½f�ð2πÞ4δð4Þ
�X

i¼1

pi −
X
f¼1

pf

�
: ð17Þ

The first summation encompasses all potential interaction
processes involving να, with i ¼ 1 representing the neu-
trino itself [p1 ≡ ðEνα ;p1Þ]. The integral extends over all
possible states of να characterized by momentum p1. Here,
i and j denote the initial and final states of a given process,
respectively. The term jMj2 represents the squared matrix
element of the process (see Table 3 in Ref. [39] for
the explicit expressions of jMj2 relevant to neutrino
processes at MeV-scale temperatures). The factor F½f�
accounts for the statistical distribution within the medium
and is given by

F½f� ¼
Y
i¼1

ð1 ∓ fiÞ
Y
f¼1

ff −
Y
i¼1

fi
Y
f¼1

ð1 ∓ ffÞ; ð18Þ

where fi;f denote the momentum distributions for the ith
and fth particles. Finally, the factor (1 − f) corresponds to
Pauli blocking for fermions, whereas (1þ f) corresponds
to Bose enhancement for bosons. Finally, the δ function
ensures the conservation of the four-momentum in the
process.
Depending on the scenario studied, there are two differ-

ent state-of-the-art approaches to solving the Boltzmann
equation (16). If the neutrinos injected by decays of new
physics are close to thermal, Eν ≃ 3.15TEM, or if decays are
solely electromagnetic, then it may be possible to approxi-
mate the neutrino distribution by

fναðEν; tÞ ≈ fFDðEν; TναðtÞÞ ¼
1

exp½ Eν
Tνα ðtÞ� þ 1

ð19Þ

and consider an integrated version of the Boltzmann
equations on the three neutrino temperatures TναðtÞ
[28,63]. In the limit of negligible electron mass, it may
be possible to represent the energy transfer rates in the
system as an analytic expression. Another example
includes obtaining a correction to the neutrino high-energy
tail caused by noninstant decoupling in the standard
scenarios [64].6

In practice, once we add new physics, the assumption of
the perfect thermality of the neutrino distribution is
typically violated. The first reason is the energy depend-
ence of the equilibration of neutrinos, as discussed in
Sec. II. Neutrinos with different energies interact at very
different rates, which leads to neutrino spectral distortions
even if we simply heat the EM plasma.
To study the distortions, one needs to solve the

Boltzmann equation (16) in the full generality. In the
literature, this is done using the approach that we will call
the discretization method. The algorithm is to analytically
reduce the dimensionality of the integration in I coll to some

6It may be converted to the momentum-dependent correction
to the neutrino temperature TνðpÞ that approaches TEM at
p ≫ 3.15 · TEM and vanishes at small momenta.
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integer k and then discretize the comoving momentum
space y ¼ p · aðtÞ.7 The integrodifferential Boltzmann
equation is then converted into a system of ordinary
differential equations (see [7,45–47] and references
therein).
While the approach has been successfully used in the

standard cosmological scenario (see, e.g., [7,10,46,47]), it
has limitations when applying it to new physics scenarios.
To understand this, let us assume that we inject neutrinos
with high energy Eν;max in the temperature range from
TEM ¼ T ini to TEM ¼ Tfin. Generically, the computational
time of the discretization approach, required to evolve
the system during this temperature range, scales as
(see Appendix A)

tcomp ∝ Ekþ2
ν;max: ð20Þ

Here, the factor k is the dimensionality of the collision
integral after the analytic reduction of the integration:

Icoll;να ¼
Z Yk

i¼1

dξiFðfξgÞ; ð21Þ

with fξg ¼ fξ1;…; ξkg being integration variables, and F
is some function depending on the distribution. The k value
is bounded from below by the standard cosmological
scenario case, which is k ¼ 2 [45]. New physics may drive
the computational time (20) to enormously large values,
or simply destroy the whole approach via spoiling the
reduction (21).
Indeed, first, the discretization approach requires simple

analytic matrix elements in the neutrino source terms. In
practice, this is not the case when we have hadronically
decaying LLPs with mass m ≫ ΛQCD. This is because
quarks and hadrons appearing in the decays undergo
subsequent showering and hadronization. The latter results
in a complicated phase space structure which is hard to fit in
the form of an analytic matrix element.
Second, even if simple analytic matrix elements do exist,

the computational complexity quickly increases if we
depart significantly from the standard cosmological case.
For example, simply increasing the integration dimension-
ality from k ¼ 2 to higher values may enormously increase
the time of calculations. This is the case of, e.g., 2 → 3
scatterings with neutrinos such as the famous eþe− → νν̄γ.
Another example is when there are n-body decays with
n > 3, which are quite often for LLPs [65].
Finally, the computational time problem exists even in

the most optimistic case k ¼ 2. Let us assume injections of
neutrinos with large energy Eν ≫ TEM. They may appear in

decays of heavy LLPs. Considering, e.g., Eν ∼ 1 GeV
would enlarge the computational time compared to the
standard cosmological case (where we assume Eν;max ¼
20 MeV) by a factor ∼504 ∼ 107 [Eq. (A3)], making any
applications impossible in practice. Finally, depending on
the energy density of the LLP, it may sizably contribute to
the Universe’s energy density. For the same temperature
range, the scale factor would be larger than in the Standard
Model case, which does not allow fixing the maximal
comoving momentum in the grid ymax.
To summarize, there is no adequate approach to studying

the dynamics of primordial neutrinos in the presence of
new physics while maintaining model independence, effi-
ciency, and transparency.

IV. BASICS OF DSMC

Consider the Liouville equation for the N-particle
probability distribution density FNðR;V; tÞ, where R, V
is the set of coordinates and velocities of the particles, with
a short-range potential Φi;j of binary interactions:

∂FN

∂t
þ
XN
i¼1

vi
∂FN

∂ri
þ

X
1≤i<j≤N

Φi;jFN ¼ 0: ð22Þ

The DSMC approach approximately solves it using the
following scheme (see [53,66,67] and references therein):
(1) Apply the N − 1 space variable reduction

FN → F̃N ¼ R
FN

Q
N
s¼2 drs.

(2) Switch to the iteration scheme by considering the
equation on the time intervals ðt; tþ ΔtÞ.

(3) Decompose the space domain D onto disconnected
subdomains D ¼∪M

l¼1 D
ðlÞ (“cells”), populated by

fixed amounts of particles during Δt.
(4) Split the evolution into three successive procedures

within each time step: ballisticmotion (free streaming
in the absence of collisions), binary collisions within
each DðlÞ, and then interchanging particles between
cells as a result of the first two steps. These collisions
may change the kinematics of particles, their types,
and number (e.g., via the collision 2 → n).

Under an assumption that the system obeys ergodic
conditions, the DSMC approach may be converted to an
analog of the Bogoliubov-Born–Green-Kirkwood–Yvon
hierarchy for 3þ 3N phase space, which reduces to the
Boltzmann equation in the limit N → ∞ and assuming the
molecular chaos (i.e., that the velocities of colliding
particles are statistically independent).

A. No-time-counter scheme

The central part of the DSMC approach is to simulate the
evolution of particles within an individual cell. There are
various methods [53,68–72]. The most efficient ones have
OðNÞ computational complexity. Examples of the latter are

7In the standard cosmological scenario case, the comoving grid
is convenient since it “freezes” the neutrino distribution: e.g., the
peak of the energy distribution corresponds to the same y at
different times.
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no-time-counter (NTC), Majorant collision frequency, sim-
plified Bernoulli trial, and others [72]. Here, wewill discuss
the NTC method, proposed in [71], which we will adapt for
our purposes.
First, one defines the time step of the simulation Δt. It

must be sufficiently small to resolve the characteristic
interaction time in the system. It may be calculated as

Δt ¼
�ðχparticle · σvÞmax ·N

Vsystem

�−1
: ð23Þ

Here, N is the number of computational particles (those
actually used in the simulation), on the opposite of the
number of physical particles N. χparticle is the particles’
weight (see below); Vsystem is the system’s volume; σ is the
interaction cross section; and v is the relative velocity. The
subscript “max” denotes finding the maximal value among
the system.
Let us discuss the relation between N, N , and macro-

scopic observables. The quantity N is fixed by the volume
Vsystem to represent the number density of the ith species,
ni ¼ Ni=Vsystem. In its turn, it is related to the number of
computational particles actually used in the simulation, N ,
as N ¼ PN

i¼1 χi, where χi are individual weights of the
particles. They need to be introduced if we address some
redundancy in the system by replacing multiple particles
with a single one. For example, in the setup without charge
asymmetries, there is no need to consider particles and
antiparticles separately. We can replace electrons and
positrons with a single particle having the weight χe ¼ 2.
Next, consider splitting the system’s volume into cells.

Let us assume that there are ncells cells, each having the
volume Vcell ¼ Vsystem=ncells. In the standard DSMC appli-
cation cases, particular cells contain Ncell ≡N =ncells par-
ticles as low asOð10–20Þ and even lower, which is enough
for simulating the evolution properly [53,72]. Within a
particular cell, one samples randomly

Nsampled ¼
NcellðNcell − 1Þ

2

ωcell;maxΔt
Vcell

ð24Þ

pairs of particles to interact. Here, ωcell;max ¼
ðχparticleσvÞcell;max is the estimate of the maximum inter-
action cross section within the cell.
For each sampled pair, one accepts its interaction with

the probability

Pacc ¼
ω

ωcell;max
; ω ¼ ðχparticleσvÞpair: ð25Þ

If the interaction is accepted, one simulates the possible
final states for the given pair and its scattering kinematics.
The complexity of the NTC scheme grows as OðNcellÞ

[55]. This is achieved by the fact thatωcell;maxΔt=Vcell in the
number of sampled events is typically ≪ 1. The systems

with the total number of particles N ≫ 106 may be
simulated within minutes, even on ordinary laptops.
Such large values are already enough to reach the precision
required in our studies.
The NTC method has been tested for various systems,

including relativistic ones [73–77], which demonstrates its
flexibility and coverage of the wide range of scenarios.

V. DSMC FOR NEUTRINOS

Let us now discuss how to apply the DSMC approach to
study the evolution of primordial neutrinos.
As in the case of the state-of-the-art methods, we will

first utilize the simplification coming from the properties of
the Early Universe at the times of interest—its homogeneity
and isotropy. Because of this, we may drop the spatial
degrees of freedom and treat the system as effectively zero
dimensional, with all interactions occurring at one point.
Splitting the system into cells is a formal step to maintain
performance because it allows parallelization for applying
the NTC scheme. We will also neglect any cells’ boundary
interactions.
To accurately trace the thermalization of neutrinos, we

represent their population by a set of individual particles
characterized by the four-momentum, flavor, and particle-
antiparticle type. Every interaction involving the neutrino
[Eq. (15)] would modify its properties. Namely, it may
change its four-momentum (if the interaction is elastic) and/
or flavor (if it is the annihilation of the type ναν̄α → νβν̄β).
Finally, there are annihilation processes ναν̄α ↔ eþe−,
which may lead to a change in the number of neutrinos.
Proceeding with the traditional DSMC method in the

case of the primordial plasma with neutrinos is impossible,
as it does not incorporate its fundamental features. These
include the expansion of the Universe, the hierarchy
between the equilibration rates in the neutrino and EM
sectors, the Pauli principle, neutrino oscillations, and the
presence of decaying particles. Below, we discuss these
features and how we address them in detail (see also Fig. 1,
showing the modification of the NTC scheme).
(1) Expansion of the Universe. From the DSMC’s point

of view, it simply represents an external force acting
on the particles of the system, with an additional
modification of increasing the system’s (and cells’)
volume. These two effects may be simply accounted
for by redshifting the total volume of the system
Vsystem (and hence the cell’s volume) as well as the
individual energies Ei of the particles fig, applied at
each step of the simulation. Namely, at the beginning
of the time step Δt, we calculate the Hubble factorH
using Eq. (3), and then make use of the relation

Vsystem→Vsystemð1þ3HΔtÞ; Ei→
Ei

1þHΔt
ð26Þ
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provided that HΔt ≪ 1. To account for this require-
ment, we modify the definition (23):

Δt¼min

�
0.01H−1;

�ðχparticle ·σvÞmax ·N

Vsystem

�−1�
:

ð27Þ

Here, 0.01 is an arbitrary small factor. Given varying
H, volume Vsystem, and neutrino energy Eν through-
out the evolution of the system, the value Δt gets
updated at the beginning of each iteration during the
simulation using the following formula for the
maximal rate:

ðχparticleσvÞmax ¼
2G2

F

3π
· 2Eν;maxhEνi; ð28Þ

where we used χparticle ¼ 1 (provided that we imple-
mented particles and antiparticles separately) and the
estimate for ðσÞmax corresponding to the process
να þ ν̄α → να þ ν̄α, which is the fastest among all
the neutrino interaction processes (15) [39]. The
factor 2Eν;maxhEνi stays for the averaged invariant
mass of the interacting high-energy neutrino with the
rest of the neutrinos.

(2) Properties of the EM plasma. As we discussed
previously in Sec. II, the reactions involving solely
EM particles are orders of magnitude faster than
those where neutrinos participate. As we have
chosen the time step Δt comparable to the neutrino
interaction rates, the EM particles may be viewed
as a part of perfectly thermal plasma characterized
by one parameter—temperature TEM. However, we
then need to implement the response of any single
interaction involving the EM particles on TEM.
To reach this, at the beginning of the iteration,

we characterize the EM plasma with the energy
density ρEM, both globally (for the whole system)
and locally (at the level of the individual cell). The
global and cells’ EM temperatures, which we denote
by TEM and TEM;cell respectively, is related to the
global and cell’s energy densities of the EM plasma
ρEM, ρEM;cell by Eq. (6).
During the NTC routine, the local number of

electrons and positrons Ne�;cell per cell is calculated
from the relation between TEM;cell and the number
density nEMðTEM;cellÞ. The kinematics of any e�
selected within the NTC algorithm is sampled from
the Fermi-Dirac distribution fFDðp; TEM;cellÞ. The
change in ρEM;cell resulting from the accepted inter-
action leads to the update in TEM;cell and Ne�;cell.
At the global level, once the simulations for all

cells are performed, ρEM;cell are merged into the total
energy density ρEM;system, which allows obtaining the
global temperature of the EM plasma.

(3) Quantum statistics. It enters the binary part of the
collision integral (16) with fermionic final states F1,
F2 having energies EF1;2

via multiplicative Pauli
blocking factors,

Pblock ¼
�
1 − fF1

ðEF1
Þ� × �

1 − fF2
ðEF2

Þ�; ð29Þ

where f is the energy distribution of the given final
state. Thus, it suppresses interactions where the final
states would occupy the high-populated part of the
energy distribution (e.g., E≲ T for the equilibrium
shape distribution with the temperature T). To
implement this, one should consider the local energy
distributions for both EM particles and neutrinos
and calculate Pblock. A possible simplification is,
when calculating the blocking factor, to describe
neutrino’s distribution by the Fermi-Dirac function
fFDðTνα;cellÞ, where Tνα;cell is the local effective

FIG. 1. Themodification of the no-time-counter scheme, used to
simulate the interactions within the system’s cells within the direct
simulation Monte Carlo approach, for describing interactions in
the MeV primordial plasma. First, we sample Nsampled pairs to
interact, Eq. (24). For each pair, we compute its interaction weight
andmake an intermediate decision onwhether it will interact using
the criterion (25). Then, we sample the kinematics of the
interacting particles, generate the final states resulting from the
collision, and make the final decision of whether the interaction
takes place from the Pauli principle (29). Finally, we update the
local properties of the plasma: the EM plasma temperature and the
number of EM particles, as well as neutrino flavor distributions by
the oscillation probabilities, Eq. (30).

MAKSYM OVCHYNNIKOV and VSEVOLOD SYVOLAP PHYS. REV. D 111, 063527 (2025)

063527-8



neutrino temperature obtained in a way similar as we
do for the EM plasma.8

(4) Neutrino oscillations. We incorporate them at the
end of the iteration time step by changing each of the
neutrino flavors according to the formula

ναðEνÞ →
X
β

hPαβiðEν; TEMÞνβðEνÞ; ð30Þ

where hPαβiðEν; TEMÞ are averaged neutrino oscil-
lation probabilities [also Eq. (16)]. For the neutrino
oscillation parameters, we use the results from [78].

(5) Presence of LLPsX and new interactions. Let us start
with discussing LLPs. Further, we assume that LLPs
are nonrelativistic and decoupled at the temperatures
of interest, which ideally matches the scope of this
study. Decaying either into the EM plasma particles
or neutrinos, they would heat the EM plasma temper-
ature and distort the neutrino bath.
Having the initial condition for the X’s number

density, nXðT iniÞ for some temperature T ini, at the
beginning of the simulation, we add the amount
NX of X particles fixed in a way such that
NX=Vsystem ¼ nXðT iniÞ. Per each time step Δt, pro-
vided that it is much smaller than the LLP’s lifetime
τX, their number is evolved by the exponential
distribution: dNX=dt ¼ −NX=τX.
For each decay, it is possible to obtain the energies

of resulting neutrinos and calculate the amount of the
EM energy using Monte Carlo simulations—the
baseline approach for particle physics. This is a
natural choice if one wants to maintain the model
independence, as it is maximally general and may
describe any process. In particular, exclusive decays
(where we have well-defined “fixed” final states, e.g.,
X → 3π) may be simulated on-flight by sampling the
phase space of decay products using the analytic
matrix element of the process. The phase space of
hadronic decays in the LLP mass range m ≫ ΛQCD

(such as X → qq̄ν, where q is a quark) may be
obtained by simulating them in Pythia8 [79] for a grid
ofmasses and subsequently using the output particle’s
data in the form of events inside the DSMC code.
The Monte Carlo sampler must incorporate the

interactions of the decay products with the primordial
plasma, which may substantially redistribute their
energy between the neutrino and EM sectors com-
pared to the vacuum case. Namely, all electrically
charged particles with lifetimes τ ≳ 10−10 s, such as
muons, charged pions, and kaons, appearing in the

MeV plasmamay undergo kinetic energy loss via EM
interactions, annihilation, and interactions with nu-
cleons before decaying [80]. This evolutionmayagain
be implemented probabilistically, in the spirit of
Monte Carlo simulations.
Absolutely similarly, it is possible to sample the

energies for the nonstandard scattering processes,
e.g., for the 2 → 3 scatterings eþe− → ναν̄αγ.

In order to finish the discussion of the approach, let us
address the question of the number of particles per cell,
Ncell, entering Eq. (24). In our system, it is

Ncell ¼ Ne�;cell þ 2
X
α

Nνα;cell: ð31Þ

Since statistical quantities, such as temperatures, are
involved in simulating the interactions, it is not possible
to use small Ncell ∼ 10, as it is typically done in the DSMC
simulations. Instead, the values as large as Ncell ¼ Oð100Þ
should be considered (see Appendix C). As a bonus, such a
large number also allows for avoiding various stochastic
problems of the NTC method, including repeated inter-
action of the same pair [52].
Now, let us discuss the values of N;Ncell we use and the

scaling of the DSMC simulation time with the maximal
neutrino energy in the system Eν;max. More details may be
found in Appendix C, and here we make a summary.
The typical number of particles per neutrino flavor

we consider in the setup is Nν ≃ 106, which results in
N ¼ few × 106. The standard number of particles per cell
we have chosen is Ncell ¼ 400. These numbers are enough
to keep the statistical noise at the level of 0.1% in the
absence of high-energy neutrinos.
The scaling of the computational timewithEν;max is linear

to quadratic (in some marginal cases, as we comment on
below). The scaling comes from the unavoidable linear
dependence of the number of time steps on Eν;max [Eq. (27)]
and the possible scaling NðEν;maxÞ. The latter may be
required tomaintain a computationally large enoughnumber
of high-energy injected neutrinos to avoid fluctuations in the
microscopy of thermalization. As far as Eν;max ≲ 1 GeV, N
may be kept constant, and the scaling of the simulation time
is linear. If Eν;max ≳ 10 GeV, one would need to increase N
to keep the number of injected neutrinos large enough to
avoid fluctuations. However, the increase is linear with
Eν;max. As a result, in this worst-case scenario, the scaling of
the running time becomesE2

ν;max—still much better than the
scaling of the discretization approach, Eq. (20).9

8The actual neutrino distribution is, of course, nonthermal, and
we use this approximation only when calculating Pblock. Since the
deviations from the thermality we study are not very large without
loss of generality, we believe that the approximation is accurate.

9There may be, in principle, an additional slowdown coming
from the need to distribute particles into cells at the beginning of
each iteration. We have checked that this splitting only costs a
tiny fraction of the whole time independently of the value of the
number of computational particles N and, hence, does not add
anything on top of the expected scaling.

HOW NEW PHYSICS AFFECTS PRIMORDIAL NEUTRINOS … PHYS. REV. D 111, 063527 (2025)

063527-9



VI. CURRENT IMPLEMENTATION

We have implemented a simplified version of the
DSMC method described above, which serves as proof
of principle.10

The main approximation of the current implementation
is that we have neglected the electron mass me when
describing the population of the EM particles; this is done
to simplify the sampling of e� particles and relate the total
energy of the EM plasma to its temperature.
Although keeping me finite is necessary to know the

final value of neutrino-to-EM energy densities ratio
(¼ Neff ), it is irrelevant for studying the main topic of this
work—nonequilibrium dynamics of neutrinos at the times
when they start decoupling, and qualitative behavior such
as the sign of the correctionΔNeff ¼ Neff − NΛCDM

eff . This is
because of two reasons. First, me does not affect the
dynamics at MeV temperatures (the domain of interest
of this study), since it can be simply neglected compared
to the typical electrons’ energies of Ee ≈ 3.15 · TEM. To
validate this statement, we compare the predictions of
DSMC at MeV temperatures with the approaches keeping
finite electron mass and next-to-leading order (NLO) QED
corrections, and find a perfect agreement. Second, includ-
ing it at lower temperatures cannot change the sign of
ΔNeff , modifying only its magnitude ΔNeff .
We will include the electron mass and its QED correc-

tions [5,81,82] in future papers delivering the full DSMC
implementation.
The implementation is written in Mathematica.

However, low-level routines, such as simulations of inter-
actions and manipulations with cells, are compiled in C++.
This approach allows combining moderate performance
with symbolic calculations, which are needed when dealing
with describing kinematics and deriving the matrix ele-
ments of various processes. Also, it makes it possible to use
existing realizations of Monte Carlo sampling of decays of
LLPs, such as SensCalc [83]. In the next revisions, we will
write a part of the code in native C++ and use it as a library
inside Mathematica.
On a laptop with CPU AMD Ryzen AI 9 HX 370, the

running time required to produce most of the plots below is
≲5 min; it varied only mildly depending on the setup,
including the energies of the neutrinos included in the
system. In particular, in order to produce the neutrino
distributions shown in Fig. 5, we spent only 30 s. We expect
significant improvement, possibly by an order of magni-
tude, in the running time after optimizing the code and/or
rewriting some of its modules in native C++. Finally, with
the implementation, we maintain the approximate linear
scaling of the computational time with N, as expected from
the basics of the NTC approach.

To validate the developed neutrino DSMC, we have
studied its predictions in the case of well-established
scenarios, including the following:
(1) Approaching thermal equilibrium. In the absence of

Universe expansion, independently of the initial
conditions, neutrinos have to reach thermal equilib-
rium with the EM particles. In particular, their differ-
ential distribution in the number and energy densities,
which we will plot throughout the paper, must be

dnν
dEν

¼ gν
2π2

fFDðEν; TνÞ × E2
ν; ð32Þ

dρν
dEν

¼ gν
2π2

fFDðEν; TνÞ × E3
ν; ð33Þ

where Tν ¼ TEM is the neutrino temperature, two
powers of Eν come from the phase space, and one in
Eq. (33) from the definition of ρν. Finally, fFD is the
Fermi-Dirac distribution [Eq. (5)], with gν being the
lepton charge degree of freedom [Eq. (9)].
Equation (33) automatically implies that, in equi-

librium, the ratio of the energy densities of the
neutrino and EM plasmas is

�
ρν
ρEM

�
eq
¼ 7=8 · gν

7=8 · ge þ gγ
¼ 21

22
; ð34Þ

wherewe have used Eq. (6) and assumed TEM ≫ me.
(2) Energy transition rates. Consider the initial setup

where the distribution function of neutrinos is
fixed by fFD, parametrized with the temperature
Tνα ≠ TEM. During the equilibration and in the
absence of expansion, the energy transition rates
between the neutrino and EM sectors must match the
well-known analytic result from [28] (where we turn
off the expansion as well).

(3) Expansion and decoupling. If including the expan-
sion of the Universe in the previous setup, we should
consistently recover the decoupling of neutrinos,
which prevents their population from full thermal-
ization, as well as reproduce the results of [28].

Details may be found in Appendix D. In addition, we
have performed tests that are not present in the paper. Those
include the evolution of neutrinos and antineutrinos
(the evolution must preserve the lepton symmetry up to
Monte Carlo fluctuations) and independence on the exact
simulation setup (e.g. number of simulation cells, the total
number of particles, etc.). We believe that it proves that our
approach fulfills the requirements to be accepted as a valid
method for treating the evolution of neutrinos.

VII. CASE STUDIES

To demonstrate the potential of various implications of
the DSMC method, we will consider several toy case10The code may be provided upon request.
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studies specified by the initial conditions on the neutrino
distribution functions. These setups have two applications.
On the one hand, they mimic distinct scenarios with new
physics and thus provide useful insights into the dynamics
of the primordial plasma. On the other hand, they will
comprehensively demonstrate the performance and flexi-
bility of the neutrino DSMC approach.
First, we investigate the evolution of a system where

neutrinos initially possess an equilibrium energy distribu-
tion with a temperature Tνα ≠ TEM (see Sec. VII A). This
setup encompasses two distinct scenarios. The first sce-
nario arises when energy is injected exclusively into the
electromagnetic (EM) sector, resulting in TEM > Tνα . The
second scenario occurs when nearly thermal neutrinos are
introduced into the neutrino sector, as explored in [28].
These cases can be analyzed using the integrated
Boltzmann equation developed in [28,63]. Nevertheless,
we will demonstrate that, even within these simplified
setups, deviations from the thermal shape of the neutrino
distribution emerge, leading to discrepancies between the
solutions of the unintegrated and integrated approaches to
the neutrino Boltzmann equation, particularly in the deter-
mination of Neff .
Second, we will consider injections of high-energy

monochromatic neutrinos (Sec. VII B). This scenario rep-
resents the case of two-body decays of heavy LLPs, such
as neutrinophilic scalars [84], majorons [85], B − Lα

mediators [86], and relics in late reheating scenarios
[34]. In the context of our studies, it is preferable over
the realistic continuous injections by decaying LLPs
because of the transparency of the analysis; despite the
simplicity, understanding the dynamics of instant injections
provides qualitative insights for the continuous decays,
which we explore in our companion Letter [56].11

We will consider high injection temperatures,
TEM ≳ 1 MeV. We will show that in the case of sufficiently
large neutrino energy, such that Eν ≫ TEM, these injections
would result in a decrease in the neutrino-to-EM energy
densities ratio compared to the standard cosmological
scenarios. This setup will also serve to demonstrate that
the performance of the DSMC does not depend on the
neutrino energy (supporting the initial expectations) and to
cross-check it by comparing the neutrino evolution with the
predictions of the discretization codes.
Finally, we will study injections of neutrinos from

decays of different long-lived SM particles, such as muons,
charged pions, and kaons (Sec. VII C). This case corre-
sponds to a common scenario of LLPs with complex decay
chains, which may not decay into neutrinos directly but

instead decay into such heavy states. Examples are, e.g., a
decay of the Higgs-like scalars into πþπ−=KþK−, the dark
photon decay into 2π=3π=4π, and decays of HNLs into
πμ [87]. Another illustrative case is the decay into quarks,
where we have a high multiplicity of meson states. We will
show that, independently of the decaying particle (or the
fraction of their energy placed to the neutrino plasma right
after decay), the ratio (35) decreases below the equilibrium
value. This case also study demonstrates the flexibility of
our approach, which may handle any decay chain with
complicated kinematics.
To make the illustrative analysis for this and other studies

performed in this paper, we introduce the quantity

δρν ¼
�

ρν
ρEM

�
−1

eq

ρν
ρEM

− 1: ð35Þ

Throughout the section, we will compare the predictions
of DSMC with the modified discretization approach from
[7], which we develop for the work [59]. The brief descrip-
tion of the approach can be found in Appendix B. It serves
two important purposes. First, the overall agreements
between DSMC and this approach serve as a very robust
cross-check of our method, showing how well it traces the
dynamics of neutrinos. In particular, in the discretization
approach, we keep finite electron mass and include LOQED
corrections. Finding the very good agreement, we validate
our approximation of neglecting the electron mass in our
proof-of-principle study.
Second, we will compare the performances of the two

methods, highlighting the setups where the discretization
approach becomes inapplicable in practice.

A. From equilibrium spectral
shapes to distortions

Let us consider a system with neutrinos having an
equilibrium shape of energy distributions, but the temper-
atures of these distributions differ from the EM plasma
temperature.
We will study how the equilibration of this initial

condition evolves in time, to identify the possible devia-
tions from the description dynamics of the equilibration
following Ref. [28], where we turn off the electron mass in
order to compare apples with apples. These deviations
genuinely appear from the nonthermal distortions in the
neutrino sector (invisible within the method of [28]). It is
because the interaction rates of different parts of the
neutrino spectrum are energy dependent (Sec. II).
We will consider the particular initial condition where

neutrinos have the same temperature Tνα ¼ 3.5 MeV, and
the EM plasma has a lower temperature TEM ¼ 3 MeV.
The resulting evolution of δρν, as predicted by the

DSMC approach and the method from [28], is shown in
Fig. 2. From the figure, we see that in terms of δρν, the two
descriptions match at the initial stages, while the deviations

11For the instant injections, the computational time of both the
discretization approach and DSMC does not include scaling of
the number of time steps with the injected neutrino energy Eν;max
(Appendix A). This is because they quickly lose their energy, and
the time step required to resolve their thermalization no longer
depends on Eν;max.
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appear once the system develops, signaling the accumulat-
ing neutrino spectral distortions. They get frozen through-
out the evolution because of the decoupling of neutrinos.
The same conclusion holds in the opposite case of the
initial condition TEM > Tν. The accumulation of the dis-
tortions is easily visible if considering the analog of δρν but
for the number density of neutrinos, which we show in the
bottom panel of the figure. It demonstrates that for this
setup, the distortions build up because of the suppression of
the νν̄ → eþe− annihilation rate, which keeps the extra
energy stored in the neutrino sector.
Therefore, we conclude that the integrated Boltzmann

approach may provide insufficient accuracy even in cases

where there are no direct distortions of the neutrino
spectrum (see further discussion of this point in Ref. [59]).
The DSMC predictions perfectly agree with the discre-

tization method from [7,59]. Both approaches work rea-
sonably fast—within a minute, but the discretization
approach is Oð2Þ times faster. This is explained by the
smallness of the maximal neutrino energy—the scenario for
which the discretization works well.

B. Instant neutrino injection

Let us proceed to a different scenario in which there are
injections of nonthermal neutrinos with Eν ≫ TEM. For this
setup, the integrated Boltzmann approach is completely
inapplicable, as high-energy neutrinos have a much larger
rate of interactions than their thermal counterparts, severely
influencing the dynamics of the thermalization even if their
amount is low.
We will study the injection of monochromatic neutrinos

with energy Eν;inj at temperature TEM ¼ 3 MeV, and
consider three different values Eν;inj ¼ 20; 70; 500 MeV.
We will analyze both the evolution of δρν and the neutrino
spectrum shape.
The option Eν;inj ¼ 20 MeV primarily serves to demon-

strate the necessity of using the unintegrated Boltzmann
approach in case of nonthermal distortions. The second
setup Eν;inj ¼ 70 MeV is central—it will show the quali-
tative impact of large neutrino energies on Neff . We will use
it to compare with the discretization codes from [7,40,41],
predicting contradictive behavior of the sign of Neff −
NΛCDM

eff in the presence of high-energy neutrinos. Finally,
the highest energy case Eν;inj ¼ 500 MeV highlights the
performance of our setup—the running time and precision
are almost independent of the neutrino energy.

1. Injection of 20 MeV neutrinos

Consider the injection of 20 MeV neutrinos. We assume
equal injection among the three neutrino flavors, with the
total injected energy density ρν;inj=ρν;total ¼ 5%. Here and
below, we include the Hubble expansion of the Universe,
but turn off the neutrino oscillations.
The evolution of the resulting δρν is shown in Fig. 3,

where we, as usual, also include the prediction of the
integrated Boltzmann approach. Both approaches predict a
monotonic decrease of δρν. In particular, at late temper-
atures, when the expansion prevents equilibrating, we end
up with the value of δρν close to 0. However, the rate of
decrease of δρν predicted the neutrino DSMC is much
faster. This is explained by the fact that, compared to
thermal particles, the injected high-energy neutrinos have a
larger probability of interacting with the EM sector and,
hence, transporting their energy.

FIG. 2. The evolution of neutrinos and the EM plasma energy
densities ratio under the scenario where the neutrino distribution
shape is thermal [Eq. (19)], but has temperature Tν different
from the EM plasma TEM. For the initial setup, we consider
Tν ¼ 3.5 MeV and TEM ¼ 3 MeV. Top panel: the energy den-
sities ratio δρν, given by Eq. (35). The blue line shows the result
of our DSMC approach, the green line denotes the prediction of
the modified code from [7,59], whereas the orange line is
obtained using the method of integrated neutrino Boltzmann
equations from [28], which assumes that the shape of the neutrino
distribution is perfectly thermal throughout the whole evolution.
Bottom panel: the analog of δρν but for the number densities of
neutrinos and the EM particles, highlighting the deviation from
the thermality of the neutrino spectrum throughout the evolution.
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2. Injection of 70 MeV neutrinos

Let us now proceed with the 70 MeV injection. We will
consider several setups here. The first one is with equal
injection among the neutrino flavors and a large
ρν;inj=ρν;total ¼ 30%. It serves as a very illustrative demon-
stration of the qualitative features of the evolution of δρν.
The two others are with the smaller injected energy
ρν;inj=ρν;total ¼ 5% and two different injection patterns:
equal energy distribution among the flavors, and the
injection solely into the sector of electron neutrinos. We
will use them to compare with the predictions of different
discretization codes from the literature.
Figure 4, upper panel, shows the evolution of δρν for the

30% injection setup. Now, there is a qualitative difference
in its behavior between the integrated and DSMC
approaches. The former results in the naively expected
monotonic decrease of δρν, whereas according to the latter,
it first rapidly drops below zero, where it then freezes out.
Without the expansion of the Universe, it would have been
a decrease of δρν to negative values, and then a slow
monotonic reaching δρν → 0 from below.
To understand this counterintuitive result, let us remind

of Sec. II and highlight two important properties of the
plasma: (i) EM particles instantly equilibrate between
themselves, and (ii) weak interaction rates grow with the
invariant mass of colliding particles. Because of this, the
injected nonthermal neutrinos quickly “knock out” thermal
neutrinos by the interactions

νinjν̄thermal→ eþe−; νinjνthermal→ νν: ð36Þ

The first process pumps the injected energy and a fraction
of the energy of the thermal population to the EM sector.

The rate of these processes is much higher than the rate
of the same processes when only thermal particles are
involved. Knocking out thermal neutrinos determines the
shape of the neutrino spectrum during these interactions:
compared to the equilibrium spectrum fFD, it is under-
abundant in small energies and overabundant in large
energies.
The snapshot of the neutrino spectrum at the moment

when δρν ¼ 0 is shown in the lower panel of Fig. 4. Then,
we have equilibrium amounts of energies in the EM and
neutrino sectors. However, while the EM plasma has a
perfect thermal spectrum, the neutrino spectrum has a shift
to higher energies.
The further dynamics of δρν depends on the balance

between the energy transfer rates ν → EM and EM → ν.
Because of the energy dependence of the weak processes’
rate, the overabundance of the high-energy neutrino leads

FIG. 3. The behavior of the ratio (35) under the injection of
20 MeV neutrinos equally to all neutrino flavors at the temper-
ature TEM ¼ 3 MeV. The total injected energy density is
ρν;inj=ρν;total ¼ 5%. The blue line shows the prediction of the
DSMC method, whereas the orange one corresponds to the
integrated Boltzmann approach from [28].

FIG. 4. The temporal evolution of the plasma after the injection
of neutrinos with energies Eν ¼ 70 MeV and the overall energy
density ρν;inj=ρν;total ¼ 30%. The other parameters of the setup are
similar to the one considered in Fig. 3. Top panel: the behavior of
δρν with temperature, where we show the predictions of the
DSMC (the blue curve) and the integrated approach from
Ref. [28] (the orange curve). Bottom panel: comparison of the
shape of the neutrino energy distribution for the system from
Fig. 4 at the moment when δρν ¼ 0 during the equilibration, as
obtained with the DSMC simulation (the blue curve) and
assuming the equilibrium neutrino spectrum (the red curve).
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to the faster transfer ν → EM than EM → ν, where we have
thermal electrons. As a result, δρν continues falling below
zero until neutrino-induced heating of the EM plasma
temperature and/or the expansion of the Universe turn
the negative energy transfer from the neutrino sector
to zero.
Since the sign of δρν is associated with the sign of the

correction ΔNeff , we conclude that the injection of such
high-energy neutrinos is associated with a decrease in Neff
below its ΛCDM value. This conclusion holds in the case
when the EM plasma temperature is high enough during the
neutrino injection, such that the interactions between the
neutrinos and the EM plasma are possible.
A similar result has been obtained in our previous work

[40], which considered a setup with the injection of 70 MeV
neutrinos but with a smaller amount within the discretization
approach. The same behavior has been observed when
considering the cosmological impact of HNLs decaying
mainly into neutrinos (see also Refs. [35,42]). These results,
however, contradicted Ref. [41] (see also [33]), which
studied the same setup with HNLs with masses below the
pion mass and found thatNeff may only increase. Given that

all of these studies are based on the discretizationmethod, the
discrepancy became an open question. Our approach is
completely independent and, therefore, resolves it.
We finish this discussion by directly comparing our

method with the discretization codes. Let us consider the
setup when we inject 70 MeV neutrinos with the amount
ρν;inj=ρν;tot ¼ 5%. Figure 5 shows the evolution of δρν and
neutrino spectra snapshot according to DSMC and the
discretization codes from [7,40], where for the latter we
take the results shown in Fig. 7 from Appendix A. In
the discretization codes, the electron mass effects are
included.
We see a very similar behavior of the evolution predicted

by DSMC and the discretization method from [59], both in
terms of δρν and the spectrum. The tiny discrepancy may be
explained by the fact that we have neglected the electron
mass in the DSMC calculations. On the other hand, the
discrepancy between DSMC and Ref. [40] is somewhat
larger. This is explained by the fact that the caption of Fig. 7
in Ref. [40] wrongly mentions the setup other than the one
actually used to make the plot. Unfortunately, the infor-
mation about the true setup has been lost.

FIG. 5. Comparison of the DSMC approach with the discretization codes for the setup of injection of 70 MeV neutrinos at
TEM ¼ 3 MeV. Two configurations are considered: equal injection among the flavors (the top panels) and the injection solely into νe
(the bottom panels). In both cases, the injected energy fraction is ρν;inj=ρν;total ¼ 5%. The left plots show the evolution of δρν, given
by Eq. (35). In the plots, the blue lines are the DSMC predictions, the green lines denote the calculation by the discretization approach
from [7] (see also [80]), and the dashed blue line is the result obtained in [40] (see text for discussions). The right plots are snapshots of
the electron neutrino distribution spectrum at the temperature when δρν ¼ 0. In addition to the results from the DSMC and Ref. [59], we
include the plot of the equilibrium neutrino distribution given by E2

νfFDðEν; TEMÞ (solid red lines).
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The running time of the DSMC simulation required to
obtain Fig. 5 is within a minute. In contrast, the discretiza-
tion approach we used required ≃10 min.

3. Injection of 500 MeV neutrinos

Let us finalize this case study by considering the
injection of 500 MeV neutrinos. The behavior of δρν is
shown in Fig. 6; it resembles the features shown in the case
of the injection of 70 MeV neutrinos.
The more important point is the performance of the

DSMC setup. The running time required to simulate this
setup was roughly the same as that for simulating 20 and
70 MeV neutrinos. The 500 MeV case is already unrealistic
to study using the discretization codes, as the running time
would grow by a factor of > ð500=70Þ3 ≃ 400. On the
other hand, the running time of DSMC is roughly the same
as for the 70 MeV scenario.

C. Decays of long-lived SM particles

Let us now proceed with a more complicated case, when
neutrinos are not injected directly in the decay chain but
emerge via the evolution of heavy primary decay products
Y, which may be muons or long-lived mesons such
as π�; K�; KL.
In the primordial plasma, Ys experience a nontrivial

evolution once being injected. The interactions they are
involved in include kinetic energy loss, interactions with
nucleons, annihilationwith themselves, and decays, see [80]
for more details. The decay products generically involve
neutrinos. This evolution influences their energy distribu-
tion among the neutrino and EM sectors.
Our approach for simulating this redistribution is the

following. We first inject these particles into the plasma and
then decay them using Monte Carlo techniques. For the
case of charged decay products, we transfer all of the
kinetic energy to the EM plasma and then decay them at
rest. This is because the energy loss rate is much faster than

any other relevant process in the MeV plasma. This
simplified description follows the state-of-the-art studies
[36,39]; the rest of the interactions discussed above will be
added in the future. To simulate the phase space of the
decay chain, we use SensCalc [83], a tool calculating the
event rate with the decaying LLPs at various laboratory
experiments. It contains a module handling LLP decay
chains and, in particular, the decays of different SM
particles. We have modified it to incorporate the evolution
of mesons and muons in the primordial plasma. In
absolutely the same way, it may be used to simulate decays
of the LLPs, with these mesons appearing among the final
states.

FIG. 6. The same setup as in Fig. 3 but under an injection of
500 MeV neutrinos.

FIG. 7. Impact of injection of heavy SM particles in the
primordial plasma. Top panel: the distribution of electron and
muon neutrinos produced by decays of KLKS pairs. When
simulating their decay, we used the module of SensCalc tool [83].
For the chain of the decay products, we account for instant kinetic
energy loss by charged particles. The continuous extension of the
spectrum to≃200 MeV is caused by the direct decay of kaons into
neutrinos. The increase at Eν ¼ 50 MeV follows from decays of
secondarymuons stopped in the plasma,whereas the sharp increase
at Eν ≈ 34 MeV originates from decays of secondary pions.
Bottom panel: the evolution of the quantity δρν under the injection
of μþμ− (the blue curve) and KLKS (the green curve) in the
primordial plasma at temperature TEM ¼ 3 MeV. The curves start
at different temperatures TEM ≠ 3 MeV because EM decays of
these particles reheat the EM plasma.
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The neutrinos from Y decays have a nontrivial spectrum.
For instance, the neutrino distribution from decays of
neutral kaons KL þ KS is shown in Fig. 7. They have
the following main decay modes:

KS→ 2π0; KS → πþπ−; ð37Þ

KL → 3π0; KL → πþπ−π0; KL → π�l∓νl: ð38Þ

The neutral pions instantly decay into photons, just heating
the EM plasma, whereas π�; μ� particles lose kinetic
energy before decaying:

πþ → μþνμ; μþ→ eþνeν̄μ: ð39Þ

The spectrum of neutrinos from all of these particles has
the high-energy part with Eν ≫ TEM ¼ Oð1MeVÞ, and we
expect the same behavior of δρν as in the case of the
injections of high-energy neutrinos. Clarifying this ques-
tion is important since many past studies [29,36,37] treated
these injections using the semianalytic integrated
Boltzmann approach (see, however, Refs. [39,42,59]).
The evolution of δρν under the injection of μþμ− and

KLKS is shown in Fig. 7. Let us start with the case of the
muons. They inject 1=3 of their energy into the EM plasma,
with the rest going to the nonthermal neutrino population.
Completely similar to the instant neutrino injection case,
δρν, being initially positive, instantly decreases below the
ΛCDM value. This finding contradicts the studies [36,37],
which considered the scenario of decays of Higgs-like
scalars into two muons and found that it increasesNeff even
in the regime of small scalar lifetimes Oð0.1 sÞ.
The KLKS case is also interesting. Decaying, they put

most of their energy into the EM plasma sector, so we start
with a negative δρν. However, the presence of very high-
energy neutrinos with Eν ¼ 100–200 MeV leads to a
further slight drop of δρν, and then it tries to approach
the equilibrium.

VIII. CONCLUSIONS

Upcoming CMB observations will reach unprecedented
precision, which may be used to discover or constrain new
physics that was present in the primordial plasma at
temperatures as large as a few MeV. To reach this goal,
we have to understand the dynamics of the Early Universe
in the presence of new physics. It requires solving the
neutrino Boltzmann equation across a variety of scenarios,
including long-lived relics, nonstandard neutrino inter-
actions, and lepton asymmetry in the neutrino sector.
Current state-of-the-art methods are limited in scope and

face computational challenges when neutrino evolution
deviates significantly from the standard scenario. These
limitations arise from the complex phase space of inter-
actions, the presence of high-energy neutrinos, and the lack
of analytic matrix elements—features that are common in

systems with new physics. Furthermore, the complexity of
implementing these methods makes it difficult to extend
them to include various new physics models, even within
the range of applicability.
In this paper, we have presented an approach that is

potentially free from all these limitations. It is based on the
direct simulation Monte Carlo method to solve the
Boltzmann equation, see Sec. IV. The traditional version
of the DSMC approach is applied to rarefied gases and
cannot be used to study the Early Universe. Fundamental
modifications are required, such as including the Universe
expansion, the hierarchy between weak and electromag-
netic interaction rates, the Pauli principle, neutrino oscil-
lations, and the presence of decaying particles. We have
discussed these features and how to include them in the
DSMC in Sec. V.
In Sec. VI, we have described our current proof-

of-principle implementation of the DSMC approach for
neutrinos that incorporates these modifications. We have
validated it by conducting cross-checks within well-
understood physics scenarios (see also Appendix D). In
Sec. VII, we have demonstrated the performance and
flexibility of DSMC by applying its prototype to several
toy scenarios that mimic real scenarios: the equilibration of
the neutrinos and EM plasma initially having different
temperatures (Sec. VII A), injection of high-energy neu-
trinos (Sec. VII B), and injection of metastable particles
including muons, pions, and kaons, which have a compli-
cated decay chain including neutrinos (Sec. VII C).
Using these simple scenarios, we have found that the

instant injection of high-energy neutrinos into a plasma
with temperature TEM ≳ 1 MeV always decreases the
neutrino-to-electromagnetic energy densities ratio, which
leads to a negative change in Neff compared to the standard
cosmological scenario (see, in particular, Figs. 5 and 7).
Being extended to the case of continuous neutrino injec-
tions in our companion Letter [56], this finding resolves the
previously existing discrepancy between different state-of-
the-art approaches in predictions about the dynamics of
Neff in the presence of high-energy neutrinos.
Our current neutrino DSMC code is rather proof of

principle, limited by the efficiency of the implementation
and some approximations. Once these problems are over-
come, it will result in a powerful independent method of
solving neutrino Boltzmann equations. We leave this for
future work.
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APPENDIX A: SCALING
OF THE COMPUTATIONAL TIME

OF THE DISCRETIZATION APPROACH

Let us first repeat the formula (20) for the scaling of the
computational time of the discretization approach. We are
interested in the domain from tðT iniÞ to tðTfinÞ, when
neutrinos with the energy Eν;max are injected. The time is

tcomputation ∝ Nkþ1
y × Ntime step; ðA1Þ

where Ny is the number of comoving momentum bins, and
Ntime step is the number of time steps covering the time
domain. k is the minimal possible dimensionality of the
collision integral under analytic reduction, Eq. (21).
The power Nkþ1

y follows from the following consider-
ations. Given Ny bins, we have Ny equations governing the
evolution of the corresponding distribution modes. Next,
each of the equations contains the collision integral, which,
under the discretization, is represented as the product of k
connected summations over momentum modes:

I coll;να ¼
Z Yk

i¼1

dξiFðfξgÞ¼
Yk
i¼1

XNy

yi

ΔξiFðfξgÞ: ðA2Þ

To obtain the scaling tcomputationðEν;maxÞ, we need to
relate Ny and Ntime step to Eν;max.

(i) In practice, for an arbitrary newphysicsmodel, the only
robust choice of the binning is linear:Ny ¼Eν;max=ΔE,
with ΔE being the bin width (see a discussion below).
ΔE must be kept constant to preserve the accuracy
throughout the neutrino evolution.

(ii) Next, the time step must be sufficiently small to
resolve the neutrino equilibration rate. Consider the
neutrino with the highest possible energy Eν;max. Its
thermalization rate may be estimated using the
Fermi theory as Γ ∼ nν · G2

Fhsi ∼G2
FT

4Eν;max,
where T is the plasma temperature. Therefore, as
far as high-energy neutrinos are present in the
plasma, the corresponding time step scales as
Δt ∼ Γ−1 ∝ E−1

ν;max. It means that to cover some
fixed domain of time from tðT inÞ and down to some
moment tðTfinÞ, one would need Ntime step ∝ Eν;max

time steps.

Therefore, the complexity grows as

tcomputation ∝ Ekþ2
ν;max: ðA3Þ

Let us now briefly return to the choice of the binning. In
principle, one may consider a different grid structure other
than linear, e.g., logarithmic, or more exotic choices, see,
e.g., [47]. However, they would generically cause problems
with energy conservation, accuracy, and stability for any
beyond-the-standard scenario [39,59]. This is because,
throughout the evolution, different comoving modes are
populated mostly. The reason is that the spectrum of
decaying LLPs is fixed in terms of physical momentum
p, but varies in time if switching to the comoving momenta
y ¼ aðtÞ · p. It is very unrealistic in practice to find an
adjustment for a generic LLP: it would arbitrarily modify
the dependence aðtÞ and also decay into neutrinos with
different energy distributions.
Another issue of the logarithmic grid is when there are

two-body decays into neutrinos. Their energy distribution
is just a δ function. In the comoving space, its argument
moves towards different momenta y. Any binning other
than linear would harm the accuracy when trying to resolve
this peak.

APPENDIX B: DETAILS ON THE
DISCRETIZATION APPROACH

The discretization approach we use to compare with
DSMC is discussed in Ref. [59] (see also Ref. [7]). It
utilizes NLO QED corrections and includes three-flavor
neutrino oscillations following Ref. [39].
Within the solver, we first introduce the following

dimensionless variables:

x¼mea; y¼pa; z¼TEMa; ðB1Þ

normalizing z → 1ða → 1=TEMÞ at the high-temperature
limit. The quantities x, y, z characterize time, momentum,
and photon temperature, respectively. Then, we discretize
the comoving momentum. The discretization is linear:
for the neutrino (electromagnetic) momentum grid yi,
we use 200 (80) grid points with ymin ¼ 0.01ð0.01Þ and
ymax ¼ max½astopmX=2; 40�ð40Þ, where astop is the estimate
of the final scale factor, and mX is the LLP’s mass.
The Boltzmann solver is written in Python with SciPy,

NumPy, and Numba libraries as in [8]. To solve the ordinary
differential equations on the discretized neutrino modes, we
use the LSODA method in SOLVE_IVP distributed in SciPy. By
considering the setups with continuous injections of neu-
trinos of energy Eν;max, we have recovered the approximate
scaling (20).12

12The scaling is slightly worse because of the need for
computing the Jacobian of the system of ordinary differential
equations computed within LSODA.
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APPENDIX C: CONVERGENCE
OF THE DSMC ALGORITHM

In order to have robust DSMC simulations, we have to
use large enough numbers of simulated particles N and
particles per cell, Ncell (here and below, we assume that the
computational particles match the physical particles). The
former is needed to overcome the Monte Carlo noise—
random fluctuations of macroscopic observables around
their expected values. The latter is crucial because the
simulation in each cell involves the calculation of temper-
atures of the EM plasma and effective neutrino temper-
atures. If the number of particles of the given type (EM
particles, or neutrinos να) per cell is too small, the temper-
ature may have large statistical fluctuations, adding noise
on top.
In Fig. 8, we test the system’s behavior with neutrinos

and EM particles that are initially in perfect equilibrium.
We consider two setups:
(1) The one with Ncell ¼ 400 and N varying from

N ¼ 6 × 104 to N ¼ 3 × 107.
(2) Another one with N ¼ 5 × 103 and the number of

neutrinos per cell Nν;per cell ranging from 30 to 400.
Our goal is to define the setup with the noise at the
subpercent level, which keeps the system in the dynamic
equilibrium.
For the first setup, we observe the random fluctuations

of the quantity δρν, defined by Eq. (35), within 2%–3%
around zero. The simulation with N ¼ 3 × 107 has fluc-
tuations at the level Oð0.1%Þ, which roughly corresponds
to the scaling of the fluctuations as 1=

ffiffiffiffi
N

p
. It is well enough

for our purposes.
We can reach large N either considering a single DSMC

simulation with this N, or, equivalently, averaging over n
simulations with the number of particles N=n. This
flexibility allows using DSMC even on laptops without
large RAM and simultaneously accumulating large N.

For the second setup, considering small values of Ncell,
we not only gain additional fluctuations but constantly
drive δρν towards negative values. Its origin is rounding the
number of the EM particles after updating the local EM cell
temperature. If this number is tiny (which is the case when
Ncell is small), rounding causes a statistically significant
effect. The problem gradually disappears once Ncell ≳ 100.
We will consider Ncell ¼ 400, because it provides a balance
between the performance of the code and the quality of
statistical sampling.
Having defined the stable setup in the perfect equilib-

rium case, we can now pose the question of whether it is
stable if injecting high-energy neutrinos. Let us assume that
these neutrinos have the energy Eν;inj carry the fractionΔ of
the energy density of the thermal plasma; in practice, Δ is
fixed by the initial energy density of the decaying LLP.
Fixing the number of thermal particles N and estimating
their mean energy as hEi ¼ 3.15 · TEM, we can derive the
number of injected neutrinos Ninjected:

Ninjected ¼
3.15 · Δ · N · TEM

Eν;inj
: ðC1Þ

For the givenN; TEM; Eν;inj,Ninjected has to be large enough.
Otherwise, fluctuations are possible: if the number of
injected neutrinos is too small, they may all annihilate
into the EM plasma particles during the first interaction.
In practice, we have found that for N ≳ 106, the number

Ninj for which the fluctuations are manageable is
Ninj ≳ 100. For instance, for TEM ¼ 3 MeV and Δ ¼ 0.05,
we satisfy this requirement as far as Eν;inj ≲ 10 GeV.
Even if we cross this extreme limit, we may overcome

fluctuations if increasing N linearly with Eν;inj. In this case,
the scaling of the computational time of the DSMC
algorithm would be tcomputation ∝ E2

ν;inj, where one power
comes from the number of time steps and another from

FIG. 8. The temporal evolution of the quantity δρν when varying numbers of neutrinos per cell Ncell;ν and particles in the system N.
Left panel: fixing Ncell;ν ¼ 400 and varying N. Right panel: fixing N ¼ 3 × 106 and varying Ncell;ν.
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increasing N. This is still way better than the scaling (A3)
of the discretization approach, which is at least ∝ E4

ν;inj.

APPENDIX D: CROSS-CHECKS

1. Approaching thermal equilibrium

To test whether the DSMC simulation brings the system
of neutrinos and EM particles to the dynamical equilibrium
defined by Eqs. (33) and (34), we will use the follow-
ing setup:

(i) The Universe contains neutrinos and antineutrinos
of all flavors together with electrons, positrons, and
photons.

(ii) The expansion of the Universe is absent. Therefore,
the total energy density of the system is constant, the
particles’ momenta do not experience redshift and
are subject only to their interactions. Such an
assumption is needed to allow neutrinos to thermal-
ize fully, making interpreting the results more trans-
parent.

(iii) The initial distribution function of neutrinos consists
of two components that are the same for all flavors:
(1) The equilibrium component, which has Fermi-

Dirac distribution with the temperature
T ini
ν ¼ 3 MeV.

(2) The nonequilibrium component—neutrinos with
an arbitrary energy distribution, with the energy
density constituting some fraction ≪ 1 of the
equilibrium energy density.

The first subscenario we consider is where there are no
nonequilibrium neutrinos, so the system is initially in the
equilibrium state. If at least one component of the DSMC
simulation is implemented incorrectly, the system will
escape the equilibrium, tending to the false ground state.
A prominent example is when the cross sections are taken
to be velocity independent; then, the distribution of the
system tends to the fake-equilibrium spectrum dρν=dEν ∼
E2
ν × fFD instead of the correct E3

νfFD (for relativistic
particles with Boltzmann statistics, such an issue has
been encountered and explained in [77]). Another issue
may be if the maximal interaction weight ωmax in the
acceptance criterion of the pair’s interaction (25) is not
actually the maximal one. Then, the system falls into the
state with δρν < 0.
Our DSMC implementation passes this test, see Fig. 9.
Next, we consider two nontrivial initial conditions:

different temperatures of neutrinos and EM particles, and
the addition of nonequilibrium neutrinos. The relaxation
of the neutrino distribution to the equilibrium one for such
scenarios is shown in Fig. 10. Its results are in perfect
agreement with the theoretical expectations.

2. Energy transition rates

In this scenario, we will reproduce the semianalytical
result of [28,63], where the evolution of neutrinos in the

Early Universe was studied under an assumption that every
moment of time, the shape of their energy distribution is
thermal. The energy transition rates were calculated ana-
lytically in terms of the temperatures of neutrinos and EM
plasma Tνα ; T. The Boltzmann equations are reduced to the
simple system of differential equations on Tνα ; T. For our
simulation, the following setup will be used:

(i) The Universe’s content is neutrinos and antineutri-
nos of all flavors together with electrons, positrons,
and photons.

(ii) The simulation is altered such that neutrino distri-
butions always have the shape (33) at each simu-
lation step. Basically, we treat neutrinos in exactly
the same way as the EM particles in the full DSMC
simulation.

(iii) The expansion of the Universe is not included to
concentrate on the energy exchange rates.

(iv) As in the whole study, the electron mass is set
to zero.

The example of the resulting evolution of the energy
density of the neutrino plasma is presented in Fig. 11,
where the almost perfect correspondence between theo-
retical predictions and simulation can be seen. Such
reproduction of the energy evolution behavior confirms
that averaged energy transition rates are computed
correctly.

3. Expansion and decoupling

In the third cross-check, we will follow the previous
setup, but with the expansion of the Universe included.
Because of initial difference between temperatures of
neutrino and EM plasma, we expect some remaining

FIG. 9. The evolution of the neutrino distribution dnν=dEν

averaged over all flavors under the assumption of fully equilib-
rium initial conditions (33) and (34). The “Iter no.” curves
correspond to the number of the iteration. No significant changes
are developed throughout the simulation. The minor changes are
related to the quality of the sampler of the kinematics of the
electrons via the Fermi-Dirac distribution. The dashed green line
shows the analytic Fermi-Dirac distribution with the temperature
equal to the temperature of the electromagnetic plasma TEM.
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inequality between them, since the start of the simulation occurs close to the temperature of the neutrino decoupling. In
similar terms, we present the example of such comparison in Fig. 11.

FIG. 10. Evolution of the neutrino distribution function dnν=dEν averaged over all flavors under different initial setups, showing how
DSMC drives it towards thermal equilibrium with the EM sector. Left panel: with equilibrium neutrinos and EM plasma at temperature
TEM ¼ 3 MeV and nonequilibrium neutrinos with energies randomly distributed in the range 300 MeV < Eν < 450 MeV. Their total
energy density is related to the total energy of the equilibrium part as ρnon−eqνα =ρeqν ¼ 0.15. The nonequilibrium part of the spectra rapidly
loses its energy in the first steps of simulation, leading to the distortions of the spectra at high energies, which are eventually equilibrated.
The plot shows the snapshots of the binned neutrino distribution function as obtained at different iterations of the DSMC simulation. The
iteration 0 corresponds to the initial setup, while the iteration 400 is the final state. For comparison, the long-dashed green line shows the
Fermi-Dirac distribution dnν=dEν ¼ E2

νfFDðEν; TEM;finalÞ, being the thermal equilibrium of neutrinos with the EM plasma with the final
temperature TEM;final ≈ 3.15 MeV. Right panel: with equilibrium neutrinos having temperature Tνα ¼ 3.5 MeV and EM plasma at
temperature TEM ¼ 3 MeV. The meaning of the lines is the same, while the number of iterations is 250.

FIG. 11. The evolution of the ratio of the neutrino energy density to the EM energy density in DSMC simulation compared to the
theoretical prediction from [28], under an assumption that the shape of the neutrino distribution function is always thermal at each step of
the simulation. The initial conditions for the setup are Tνi ¼ 3.2 MeV for every flavor and the temperature of the EM plasma is
TEM ¼ 3 MeV. Left panel: not including the expansion of the Universe. Because of the absence of expansion, the ratio approaches to the
exact SM value. Right panel: expansion included.
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