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Correlation is the basic mechanism of every measurement model, as one never accesses the measured
system directly. Instead, correlations are created, codifying information about the measurable property into
the environment. Here, we address the problem of the emergence of physical reality from the quantum world
by introducing a model that interpolates between weak and strong nonselective measurements for qudits. By
utilizing Heisenberg-Weyl operators, our model suggests that independently of the interaction intensity between
the system and the environment, full information about the observable of interest can always be obtained by
making the system interact with many environmental qudits, following a quantum Darwinism framework.
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I. INTRODUCTION

Quantum theory gives a prominent role to the notion
of measurements. They are the basic ingredients in several
quantum technologies such as measurement-based quantum
computation [1,2], thermal devices fueled by measurements
[3–7], measurement-based quantum communication [8], as
well as in foundational discussions regarding the mea-
surement problem [9,10] and on the understanding of the
quantum-to-classical transition [11,12]. In particular, the
emergence of objective reality has been investigated with
the framework of quantum Darwinism (QD) [12,13] through
the process of redundancy, where multiple copies of in-
formation about the quantum system are created in its
environment, and from the closely related spectrum broadcast
structure [14–16].

Generalized measurements that can interpolate between
weak and strong (projective) nonselective regimes were
employed to investigate the role of measurements in the
emergence of realism from the quantum substratum [10],
as quantified by the informational measure known as quan-
tum irrealism [10,17,18]. The quantum irrealism measure
is based on the contextual realism hypothesis introduced in
Ref. [17], which generalizes the notion of EPR elements of
reality [19] by stating that for quantum systems, a measured
property becomes well defined after a projective measure-
ment of some discrete spectrum observable, even when one
does not have access to the specific measurement result
[10,17,20]. In other words, incoherent mixtures of all pos-
sible outcomes have realism for the measured observable.
Realism was investigated employing monitoring with contin-
uous variable measurement systems [10], which showed to
have a complementary relation with the available information
of a quantum system [10]. The information-realism com-
plementarity suggests that the establishment of realism for
some observable is grounded on the encoding of information
about it.

Here, we investigate the emergence of realism via mon-
itoring modeled by discrete quantum systems with higher
dimensions. We identify that a large qudit-environmental sys-
tem is sufficient for the establishment of realism for all the
range of measurement strengths, corroborating the results
obtained with continuous variable monitoring [10]. More-
over, we introduce a consistent interpolation model for weak
to strong measurements within high-dimensional systems.
First, we discuss the qubit regime and address its limita-
tions and direct generalizations. To address the qudit regime,
we model the interaction between the system and the en-
vironment through generalized observables [21], described
by the Fourier transform of POVMs. Our model allows for
the control of the disturbance on the measured quantum
system, therefore, allowing an interpolation from a weak to
strong projective action [10,22]. This interpolation regime was
experimentally investigated for qubits employing a trapped-
ion platform [23], and with photonic weak measurements
to investigate the information-realism complementarity [18].
In the noiseless regime, our model reproduces the “perfect
record” case from Zurek’s work [12]. In Fig. 1 we depict the
scenario we are modeling.

The paper is organized as follows. In Sec. II A we re-
view the concept of irrealism of observables introduced in
Ref. [17]. In Sec. II B we revisit the information-realism com-
plementarity introduced by Ref. [10]. In Sec. II C we show
how our problem can be solved for qubit systems. In Sec. II D
we review generalized observables in order to expand the
solution for qubits to the qudit case. In Sec. III we present
the main results and final considerations are left for Sec. IV.

II. PRELIMINARIES

A. Irrealism of observables

The quantum realism argument can be formalized as fol-
lows. Let A = ∑

a aAa be a d-output observable acting on
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FIG. 1. A bipartite system ρAB with arbitrary dimension is mon-
itored by a collection of environmental subsystems {Ei}n

i=1, with
each interaction represented by a unitary evolution acting on the
joint system. The interaction with the environment establishes not
just the realism associated with the context {A, ρAB}, but also the
proliferation of redundant information about the system in small
portions of the environment; a key process in QD. This prolifera-
tion of redundant information is associated with the emergence of
objective reality as several observers will agree on their outcomes
after accessing the information about the system that is encoded in
the environment.

HA, where Aa = |a〉〈a| are projectors satisfying
∑

a Aa =
1A. Also, let

�A(�) =
∑

a

(Aa ⊗ 1B)�(Aa ⊗ 1B) (1)

be the nonselective projective mea-
surement of the observable A.
Let us consider a bipartite system ρAB acting over HAB
and an observable A acting on HA. We say that ρAB has a
realism defined for A iff

�A(ρAB) = ρAB. (2)

States that already have realism defined for some observable
are invariant to a nonselective (or nonrevealed) projective
measurement of the same observable, i.e., �A[�A(ρ)] =
�A(ρ). Subsequently, the irreality of A given ρ

IA(ρ) := min
�

S[ρ||�A(�)] = S[�A(ρ)] − S(ρ) (3)

proved to be a faithful quantifier of A-realism viola-
tions for a given state ρ [10,17,20], where S(ρ||σ ) =
Tr[ρ(log2 ρ − log2 σ )] stands for the relative entropy and
S(ρ) := −Tr(ρ log2 ρ) is the von Neumann entropy. In ad-
dition, we can decompose irreality as local coherence plus
nonoptimized quantum discord, i.e.,

IA(ρ) = C(ρA) + DA(ρ), (4)

where C(ρA) = IA(TrBρ), DA(ρ) = IA:B(ρ) − IA:B[�A(ρ)],
and IA:B = S(ρA) + S(ρB) − S(ρAB) is the quantum mutual
information. Consequently, correlations between parties A
and B prevent the existence of elements of physical reality

for observables on both parties, that is, any positive value for
DA(B)(ρ) implies non-null irrealism IA(B)(ρ).

The irrealism measure was theoretically employed to study
a series of foundational problems [20,24–36]. Moreover, some
experimental reports include: a nuclear magnetic resonance
experiment to probe the robustness of the wave-particle dual-
ity in a quantum-controlled interferometer [37], photonic [18]
and superconducting qubits [38] to investigate the emergence
of realism upon monitoring maps [10,39], and the role of dis-
tant operations in the erasure of physical reality in an optical
quantum eraser experiment [40]. Monitoring maps [10] are
defined as

Mε
A(�) := (1 − ε)ρ + ε�A(�), (5)

that is, they describe an interaction that produces as an out-
put the interpolation between weak and strong nonselective
measurement regimes for the measured system. Noteworthy,
Ref. [41] analyzes the implementation of monitoring maps for
incompatible observables in superpositions of causal orders,
employing a quantum switch influenced by an environment
modeled through a collisional approach.

B. Information-realism complementarity

Consider the amount of quantum accessible information
of a generic quantum state ρ in a Hilbert space HS with
dimension d as

I (ρ) := ln d − S(ρ). (6)

Following Ref. [10], wherein a complementarity relation
between information and the degree of irrealism for some
discrete observable was introduced, we can check that the
subsequent application of n monitoring maps over a state that
is already a state of reality for A does not change the state of
affairs, that is[
Mε

A

]n
[�A(ρ)] = (1 − ε)n�A(ρ) + [1 − (1 − ε)n]�A(ρ)

= �A(ρ) = �A
(
[Mε

A]n(ρ)
)
. (7)

The above also proves the hierarchy of the map �A over
[Mε

A]n. Interestingly, this shows that the mapMε
A commutes

with the map �A for all intensities ε. Employing entropy
concavity and the non-negativity of the irrealism measure
IA(ρ), we can evaluate the difference in the irrealism given
monitoring of the same observable

�IA := IA(ρ) − IA
[
Mε

A(ρ)
]

= S(Mε
A(ρ)) − S(ρ) � εIA(ρ), (8)

with equality for ε = 0. Introducing the amount of remaining
accessible information after some monitoring of a generic
observable A as

�IS := I (ρ) − I
[
Mε

A(ρ)
]
, (9)

we see that

�IS = S
(
Mε

A(ρ)
) − S(ρ) = �IA, (10)

which means that the irrealism of the observable A for the
preparation ρ quantifies the amount of remaining accessible
information that still can be extracted after a weak nonselec-
tive measurement of A. It is important to note that either when
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ε = 1 or when limn→+∞[Mε
A]n for infinitely successive ap-

plications, IA(ρ) = �IS, which implies emergence of realism
for this observable.

Moreover, one can prove that the information flow between
the systemHS and the total environmentHE when we impose
a global unitary dynamics that reproduces the monitoring of A
is

�IA = �(IS:E + IE), (11)

where IS:E(ρ) = S(ρS) + S(ρE) − S(ρ) stands for the quan-
tum mutual information. In other words, because the environ-
ment E gets information about A, this observable increases
its realism degree. In the limit of strong nonselective mea-
surements, irrealism goes to zero as well as the accessible
information about this observable.

C. Qubit case

Let us describe the monitoring map from the point of
view of the global interaction between the system and the
environment. The simplest model describing a measurement
procedure is constituted by a single CNOT gate. Suppose that
our system of interest S is composed of only one arbitrary
qubit in the state ρS, but the environment E is known to be
ρE = |0〉〈0|. A CNOT gate [42]

UCNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σx (12)

keeps the qubit in the environment in the same state if the state
of the system is |0〉 and flips it if the state is |1〉. If the system
lies in a superposition, such a superposition will be extended
to the environment in the form of entanglement. Indeed, the
global state � := ρS ⊗ |0〉〈0| evolves to

�′ := U�U † =
1∑

i, j=0

〈i|ρS| j〉 |i〉〈 j| ⊗ |i〉〈 j|. (13)

If we discard the information in the environment by tracing it
out, the resulting operation over the system is a nonselective
measurement in the form of

TrE�
′ =

1∑
i = 0

〈i|ρS|i〉 |i〉〈i| = �σz (ρS), (14)

where σz = |0〉〈0| − |1〉〈1|. The map �σz means that a mea-
surement in the z direction was realized, but the outcome was
not recorded; a sufficient condition for the establishment of re-
alism for observable σz. Since (13) is symmetric, we have that
TrS�′ = TrE�′, and thus the probability pi = Tr(|i〉〈i|ρS) is
now encoded in the environment. In a practical situation, this
is not always the case, as the CNOT gate cannot be perfectly
implemented due to operational errors. Thus, only partial in-
formation regarding the observable can be retrieved; which,
however, can be circumvented by interacting the system with
more qubits in the environment to create redundant accessible
information, following the QD framework.

One way to model a noisy CNOT gate for qubits was
explored in Ref. [13] by simply replacing σx operator in UCNOT

with the unitary σθ , which is defined as a linear combination
σθ := cos θσx + sin θσz. In this work, we also show that by
controlling the interaction intensity between the system and
the single environmental qubit through the parameter θ , we

can interpolate between weak and strong projective nonselec-
tive measurements. In detail, a noisy UCNOT with σθ results in
a monitoring mapMε

A after tracing out the environment (see
Appendix A). However, since this procedure only applies to
qubit systems, it is likely to be not a good model for more
complex systems. By restricting ourselves to only two di-
mensions we may miss certain effects, which appear only for
high-dimensional systems. Therefore, our motivation is to find
such a model for arbitrary local dimensions. Consequently, we
need to find a unitary operation acting on qudits that can be
adjusted to interpolate between weak and strong nonselective
measurement regimes.

D. Generalized observables

One way to generalize UCNOT for qudits (including the
noisy regime) is to replace the Pauli operators with the
Heisenberg-Weyl operators

Z =
d−1∑
k = 0

ωk|k〉〈k|, X =
d−1∑
k = 0

|k + 1〉〈k|, (15)

where |d〉 ≡ |0〉, ω = e2πi/d is the complex root of unity, and
d = dimH is the dimension of the Hilbert space. It can be
verified that X †X = Z†Z = 1H , X d = Zd = 1H , and ZlX k =
ωlkX kZl . Also, when d = 2, then Z and X are the usual σz and
σx Pauli matrices, respectively. Thus, σθ becomes cos θX +
sin θZ =: σ θ . Because we have d outcomes, we need to take
the powers of σ θ to codify the information about the outcome
in different states of the environment:

Unoisy CNOT = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σ θ + |2〉〈2| ⊗ σ 2
θ + . . .

(16)

However, the above operator cannot always be used because it
does not represent a unitary evolution in general. The reason
why is because σ θ is not unitary for d � 3. In fact, it is
impossible to obtain a unitary operator as a linear combination
of only X and Z for d � 3 [21,43]. Nonetheless, it is known
that one can always find a linear combination of operators in
the form {XZk} or {ZX k} for k = 0, . . . , d − 1 that results in
a unitary operator [44].

Although Z contains complex eigenvalues, it can fully
characterize a valid observable. More generally, consider a
d-outcome quantum measurement M = {Ma}, which is de-
fined by positive-semidefinite operators Ma acting on a Hilbert
space H , such that dimH = d and

∑
a Ma = 1H . The mea-

surement M is simply a POVM, but if MaMa′ = δaa′Ma, then
M is a projective measurement. For qudits, it is convenient
to use generalized observables by taking a discrete Fourier
transform of M given by

T (i) =
d−1∑
a = 0

ωiaMa. (17)

Immediately, T (0) = 1H . By performing the inverse Fourier
transform on the generalized observables T (i), one can recover
the measurement M with

Ma = 1

d

d−1∑
i = 0

ω−iaT (i). (18)
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Therefore, the generalized observables T (i) fully characterize
the measurement M. Also, the POVM {Ma} is a projective
measurement iff T := T (1) is a unitary matrix. In that case,
T is called the unitary observable of {Ma} and T (i) = T i [21].

The goal now is to find a unitary observable T , in re-
placement to σ θ , that appropriately codifies the information
regarding a given observable of interest into the environment,
such that the resulting operation over the system is a monitor-
ing map (5).

III. RESULTS

Let H = HS ⊗HE, where S and E stand for system and
environment, respectively, such that HS = HA ⊗HB and
HE = ⊗n

k=1HEk , with party A containing one qudit and
party E containing n qudits (see Fig. 1). The fragment Fm of
the environment E is constituted by HFm = ⊗m

k=1HEk , with
m � n. For our purposes, dimHA = dimHEi =: d for all i.

We propose a noisy CNOT gate USEi that acts over HAEi ,
which correlates one qudit of the system with qudit i in the
environment, and it is defined as

USEi
:=

d−1∑
j = 0

Pj ⊗ T j, (19)

where Pj = Aj ⊗ 1B is the projector acting on subspace HS
and T is an operator given by

T :=
d−1∑
k = 0

αkZX k, (20)

where αk are coefficients such that
∑d−1

k=0 |αk|2 = 1. For T to
be a unitary observable (see previous section), the following
conditions must hold

αk = 1

d

d−1∑
l = 0

ωlkeiφl , and
d−1∑
l=0

φl = 0, (21)

where, now, T is specified by a set of d − 1 phases {φl} (see
Appendix B). Operator T does not depend on the choice of
A since A is an arbitrary measurement and T is just a way to
encode information about the system in the environment. We
have chosen the set {ZX k} instead of {XZk} because we need
nonzero terms in the main diagonal of our operator.

Without loss of generality, we can suppose that every qudit
in the environment is in the state |0〉Ei . If one chooses to use
operators {XZk}, it would require us to prepare every environ-
mental qudit in a Fourier transform of |0〉 in order to obtain
the monitoring map. Therefore, we proceed with {ZX k}. Let
us begin with the interaction between the system and the
first qudit in the environment given by ρ ′

SE1
:= USE1ρSE1U

†
SE1

,
where ρSE1 = ρAB ⊗ |0〉〈0|E1 . From (19), we get

TrE1ρ
′
SE1

=
d−1∑

i, j = 0

Pi ρAB Pj 〈0|(T j )†T i|0〉E1 . (22)

After some algebra (see Appendix B), it is possible to verify
that

〈0|(T j )†T i|0〉E1 = 1

d

d−1∑
q=0

exp

⎛
⎝i

[i− j]d −1∑
m=0

φ[q+m]d

⎞
⎠, (23)

where [a]d := a mod d , for any a ∈ Z. In particular, if [i −
j]d = 0 in (23), then 〈0|(T j )†T i|0〉E1 = 1.

A closer look at the monitoring map (5) allows us to write

Mε=1−η
A (ρAB) =

d−1∑
i, j=0

Pi ρAB Pj[η + (1 − η)δi, j], (24)

where η ∈ [0, 1] acts as the noise of the monitoring, i.e., the
complement of the monitoring intensity. Since we require that

TrE1ρ
′
SE1

=Mε=1−η
A (ρAB), (25)

we can conclude from Eqs. (22)–(25) that

η = 1

d

d−1∑
q=0

cos φq, (26)

such that, the phases {φq}d−1
q=0 must satisfy:

η � 0; (27a)
d−1∑
q=0

sin

(
p∑

m=0

φ[q+m]d

)
= 0, (27b)

d−1∑
q=0

cos

(
p∑

m=0

φ[q+m]d

)
=

d−1∑
q=0

cos

⎛
⎝ p′∑

m=0

φ[q+m]d

⎞
⎠, (27c)

for every p, p′ satisfying 0 � p < p′ � d − 2 (see Ap-
pendix B). Although solving the above transcendental equa-
tions in full generality turns out to be difficult, it is possible to
find a particular analytical solution for any d given by φ0 = θ ,
φ1 = −θ , and φk�2 = 0. This solution for the particular case
of d = 3 gives rise to a noise intensity η = (1 + 2 cos θ )/3.
In order to find other and more nontrivial solutions, one can
employ numerics. In fact, in our numerical exploration for
dimensions d = 4, 5, 6, 7 such solutions exist for any noise
rate η ∈ [0, 1], which are distinct from the analytical one we
just mentioned.

Operator (19) is indeed quite general. Because of the
Stinespring dilation theorem [42,45], the unitary operator that
provides the monitoring mapMε

A, after the partial trace, must
be unique, up to local isometries. For all practical purposes,
we have η > 0, since we are always going to find the presence
of noise in any interaction. Therefore, even if the access to the
information present in the environment by a macroscopic ob-
server occurs through a strong projective measurement, such
an act does not extract the complete information regarding the
observable of interest in the system. However, in the noiseless
regime when η = 0, our model reproduces the perfect record
case |k〉S ⊗ |0〉Ei → |k〉S ⊗ |k〉Ei from Zurek’s work [12], as
we are going to see further.

The natural question to ask now is how to codify full infor-
mation about an observable (ε → 1) into the environmental
qudits by using gate (19)? We are going to show that to obtain
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full information about the observable we need a bigger en-
vironment, i.e., more qudits. Consider the global unitary that
performs the interaction between the system with the entire
environment U := USEn . . .USE1 . The initial global state of the
system+environment is given by � := ρAB ⊗ ⊗n

i=1 |0〉〈0|Ei .
After the unitary evolution �′ := U�U †, we can write

�′ =
d−1∑

i, j = 0

Pi ρ Pj ⊗
n⊗

k=1

Ti|0〉〈0|Ek (Tj )
†. (28)

If we trace out the whole environment, the remaining state of
the system will be given by (see Appendix C)

TrE�
′ =M1−ηn

A (ρAB). (29)

Now, we can apply Eq. (18) from Ref. [10], i.e.,

[Mε
A]n(ρAB) =M1−(1−ε)n

A (ρAB) (30)

to Eq. (29) to obtain

TrE�
′ = [
Mε=1−η

A

]n
(ρAB). (31)

Equation (29) shows that subsequent interactions between the
system and n environmental qudits through the noisy CNOT
gate (19) result in a monitoring map of intensity 1 − ηn, which
allows us to interpret ηn as the effective noise. From (31), we
can see that each weak interaction with some part of the envi-
ronment produces one more monitoring over the system. This
process clearly decreases the degree of irreality (3) and makes
the system more classical regarding observable A [20,30].

Immediately, from (29) and the definition of a monitoring,
we have

lim
n→+∞(TrE�

′) = �A(ρAB), (32)

for any solution of system (27), apart from the trivial solutions
that result in η = 1 (full noise). The above relation holds for
every dimension d � 2, every state ρS, and every observable
A, which means that the whole effective environment has now
access to the full information about the observable A regarding
ρS, as demonstrated by

I (�) − I[�A(�)] = IA(�). (33)

Thus, (32) means that to guarantee the codification of the total
accessible quantum information regarding observable A of any
system into the environment, it is sufficient for the system to
be monitored by a large environment. In other words, our work
demonstrates that for high-dimensional monitoring, redundant
information spread in a large environment is a sufficient crite-
rion for the emergence of realism, as we highlighted in (9) by
employing the information-realism complementarity.

Indeed, when the system reaches a reality state for A [states
s.t. IA(ρ) = 0], all the quantum informational content that one
could extract about A has already been extracted. However,
if the initial state is already a state of reality for A, then no
quantum information can be acquired, since �A[�A(�)] =
�A(�). In that case, a measurement of A is just a revelation
of a predefined quantity. Moreover, when 〈0|(T j )†T i|0〉 = δi j ,
this is, in the noiseless case, it is possible to relabel the state
T i|0〉 = |i〉, and the states |i〉 form a basis. As such, we find
that the interaction chosen is typical of what one expects from

Żurek’s works [12]

|k〉S ⊗ |0〉Ei → |k〉S ⊗ |k〉Ei . (34)

In what follows we provide an explicit example for d = 3 of
how our model results in (34). In the qutrit case, Eqs. (27) give
φ0 = θ , φ1 = −θ , and φ2 = 0, such that η = (1 + 2 cos θ )/3.
The noiseless case η = 0 requires θ = 2π/3, which gives T =
ωZX 2. We can use the fact that ZlX k = ωlkX kZl to obtain

USE = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ ωZX 2 + |2〉〈2| ⊗ Z2X, (35)

where T 0 = 1, T 1 = ωZX 2, and T 2 = Z2X . Immediately,

USE|k〉 ⊗ |e0〉 = |k〉 ⊗ T k|e0〉 = |k〉 ⊗ |ek〉, (36)

where 〈ek|ek′ 〉 = δkk′ , which represents the perfect record case
from Ref. [12]. It is important to mention that the POVMs
to be implemented in the laboratory are given by the inverse
Fourier transform of T given by Eq. (20).

IV. CONCLUSION

Irrealism can be framed as a resource [30] and has an
intimate connection with the concept of information [10,20].
Monitoring is identified as a realistic operation, meaning that
in general the irrealism of the context {A, ρAB} is destroyed
by A monitorings [10] via the flow of information between
the system and the auxiliary system (that we called envi-
ronment). We filled a gap in such connections by providing
an explicit unitary interaction between qudits to derive in-
terpolations from weak to strong nonselective measurements.
The most important conclusion of our analysis is that, for
high-dimensional discrete monitoring, a state of reality for a
given observable can be reached regardless of the intensity of
the interaction between the system and the environment, as
long as the latter is composed of a sufficiently large number
of particles. In addition, from (26), the noise rate η is still
highly dependent on parameters {φq} even when d → ∞. For
instance, if minq cos φq = Q, for some Q > 0, then η > Q.

Following the QD framework, if the system manages to
disseminate redundant information about an observable to
many particles in the environment, such a system will move
towards a state of objectivity. In a nutshell, Eq. (32) means that
objectivity from QD implies A-reality states from quantum
realism for discrete and high-dimensional monitoring. Other
connections can be made by exploring this new relation, for
instance, it would be worth analyzing the volume of system
solutions (27) for different values of η. That could allow us
to determine whether it is easier to find unitaries that lead
to weak or, instead, strong monitoring maps, and how the
dimension of the system influences that process. Still another
possibility for further research is the time needed to probe
the system via interaction with the environment. In addition,
one could also explore the continuous limit of our model and
investigate the connection between quantum Darwinism and
non-Markovianity similarly to what is done in Ref. [46].

ACKNOWLEDGMENTS

We are grateful to Jarosław Korbicz for useful dis-
cussions. A.C.O and R.A acknowledge the QuantERA II
Programme (VERIqTAS project) that has received funding

012220-5



ORTHEY JR., DIEGUEZ, MAKUTA, AND AUGUSIAK PHYSICAL REVIEW A 111, 012220 (2025)

from the European Union’s Horizon 2020 research and in-
novation programme under Grant Agreement No. 101017733
and from the Polish National Science Center (Projects
No. 2021/03/Y/ST2/00175 and No. 2022/46/E/ST2/00115).
P.R.D. acknowledges support from the NCN Poland,
ChistEra-2023/05/Y/ST2/00005 under the project Modern
Device Independent Cryptography (MoDIC). O.M. and R.A.
acknowledge the Polish NSC through the SONATA BIS
(Grant No. 2019/34/E/ST2/00369).

APPENDIX A: QUBIT CASE: THE C-MAYBE GATE

Let us consider the c-maybe gate [13]

U
 := |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ σθ =
1∑

k=0

Pk ⊗ σ k
θ , (A1)

where σθ := cos θσx + sin θσz acts over HE1 and Pk = Ak ⊗
1B are projectors in HS=AB s.t. A = ∑

k akAk is the observ-
able of interest in HA, AkAk′ = δkk′Ak , and

∑
k Ak = 1A. It

can be checked that

〈0|σ i
θσ

j
θ |0〉 = sin θ + δi, j (1 − sin θ ), (A2)

for i, j = 0, 1. If the initial state of the global system is given
by two qubits in the state ρSE1 = ρAB ⊗ |0〉〈0|E1 , then the
evolved state is

ρ ′
SE1

:= U
ρSE1U
†

 =

1∑
i, j=0

PiρABPj ⊗ σ i
θ |0〉〈0|E1 (σ j

θ )†.

(A3)

If we trace out the environmental qubit, we obtain

TrE1 (ρ ′
SE1

) =
1∑

i, j=0

PiρABPj〈0|(σ j
θ

)†
σ i

θ |0〉E1

=
1∑

i, j=0

PiρABPj[sin θ + δi, j (1 − sin θ )], (A4)

which can be written as

TrE1

(
ρ ′
SE1

) = sin θ

1∑
i, j=0

PiρABPj + (1 − sin θ )
1∑

i=0

PiρABPi

(A5)

= sin θρAB + (1 − sin θ )�A(ρAB).

By the definition of a monitoring map

Mε
A(�) := (1 − ε)ρ + ε�A(�), (A6)

we have that

TrE1 (ρ ′
SE1

) =M1−sin θ
A (ρAB). (A7)

As we can see here, the c-maybe operator written in the
eigenbasis of A is precisely the unitary evolution, up to local
isometries, that results in a monitoring of A with intensity
ε = 1 − sin θ after we trace out the environment.

For comparison, let us consider the noisy CNOT gate USEi

given by Eq. (19) for dimension d = 2, i.e., USEi = |0〉〈0| ⊗
1 + |1〉〈1| ⊗ T , where T = − sin θσy + cos θσz is obtained

from Eq. (20). The resulting monitoring map will have in-
tensity ε = 1 − cos θ , reproducing the effects of the c-maybe
gate from the work of Touil et al. [13], up to a π/2 phase
on θ .

APPENDIX B: PROPERTIES OF OPERATOR T

One identity of great importance is the following:

d−1∑
k = 0

ω(a−b)k = dδa,b, (B1)

where a and b are any integers and

δa,b :=
{

1 for a = b mod d;
0 for a �= b mod d.

(B2)

Now, consider the unitary observable T given by

T :=
d−1∑
k = 0

αkZX k, αk = 1

d

d−1∑
l = 0

ωlkeiφl , (B3)

with condition
∑d−1

l=0 φl = 0. Let us prove three essential
properties of the operator T .

Proposition 1. The operator T is unitary.
Proof. To make the calculations simpler, we can apply a

unitary transformation

V := 1√
d

∑
i, j

ωi j |i〉〈 j| (B4)

to T such that V TV † =: T . Indeed, T is unitary iff

T =
d−1∑
k=0

αkXZ−k (B5)

is unitary.
Explicitly,

T T
† =

(
d−1∑
k = 0

αkZX k

)⎛
⎝d−1∑

q = 0

α∗
qX −qZ−1

⎞
⎠. (B6)

By performing the products, we obtain

T T
† =

d−1∑
k = 0

|αk|21 +
d−1∑

k,q = 0
k �=q

αkα
∗
qXZq−kX −1. (B7)

Let us start by developing the first sum in the right-hand side
(r.h.s.) of the above expression by using identity (B1):

d−1∑
k = 0

|αk|2 =
d−1∑
k = 0

1

d2

d−1∑
k=0

d−1∑
l,l ′=0

ωk(l ′−l )ei(φl −φl′ )

= 1

d

d−1∑
l,l ′=0

δll ′e
i(φl −φl′ ) = 1.

(B8)

For simplicity, let us denote n := q − k and rewrite (B7) in the
following form:

T T
† = 1 +

d−1∑
n=1

d−1∑
q = 0

αq−nα
∗
qXZnX −1. (B9)
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The remaining sum in the r.h.s. of (B9) will vanish. Indeed, by
implementing identity (B1) multiple times, we obtain

d−1∑
q = 0

αq−nα
∗
q = 1

d2

d−1∑
q = 0

d−1∑
m1,m2=0

ωq(m2−m1 )em1nei(φm1 −φm2 ) = 0.

(B10)

Proposition 2. Given an integer j, the operator T satisfies

〈0|T j |0〉Ei = 1

d

d−1∑
q=0

exp

⎛
⎝i

[ j]d −1∑
m=0

φ[q+m]d

⎞
⎠, (B11)

where [ j]d represents j mod d . In particular, if j = 0 or j =
d , then 〈0|T j |0〉Ei = 1.

Proof. From definition (B3), we have

T j =
(

d−1∑
k = 0

αkZX k

) j

. (B12)

Since X kZ = ω−kZX k , we can rewrite the r.h.s. of the above
equation as

T j = Z j
j−1∏

l = 0

⎛
⎝ d−1∑

kl = 0

αkl ω
−lkl X kl

⎞
⎠. (B13)

Now, we can suppose that j > 1 and take expected value
〈0|T j |0〉Ei . After taking the sum and the product, the r.h.s will
be a sum of terms consisting of a complex number multiplying
X κ , where

κ :=
j−1∑

l = 0

kl . (B14)

The only terms that will have a contribution to 〈0|T j |0〉Ei are
the terms for which

κ = 0, (B15)

which results in

〈0|T j |0〉Ei =
d−1∑

k0,...,k j−1 = 0
κ = 0

⎛
⎝ j−1∏

l = 0

ω−lkl αkl

⎞
⎠. (B16)

By condition (B15), we can write

〈0|T j |0〉Ei =
d−1∑

k1,...,k j−1 = 0

⎛
⎝α−(k1+...+k j−1 )

j−1∏
l=1

ω−lkl αkl

⎞
⎠.

(B17)

From (B3), we have:

αkl = 1

d

d−1∑
q′=0

ωq′kl eiφq′ ; (B18)

α−(k1+...+k j−1 ) = 1

d

d−1∑
q=0

ω−q(k1+...+k j−1 )eiφq . (B19)

By implementing the above equations to (B17) we obtain

〈0|T j |0〉Ei

=
d−1∑

k1,...,k j−1=0

1

d

d−1∑
q=0

[
ω−q(k1+...+k j−1 )eiφq

×
j−1∏
l=1

⎛
⎝ 1

d

d−1∑
q′=0

ωkl (q′−l )eiφq′

⎞
⎠

]

= 1

d j

d−1∑
k1,...,k j−1=0

d−1∑
q=0

⎡
⎣eiφq

j−1∏
l=1

⎛
⎝d−1∑

q′=0

ωkl (q′−q−l )eiφq′

⎞
⎠

⎤
⎦.

(B20)

From identity (B1), we obtain

〈0|T j |0〉Ei = 1

d

d−1∑
q=0

eiφq

j−1∏
l=1

d−1∑
q′=0

δ0,q′−q−l e
iφq′ ,

= 1

d

d−1∑
q=0

eiφq

j−1∏
l=1

eiφq+l . (B21)

After we develop the product in the above equation, we obtain
the desired result

〈0|T j |0〉Ei = 1

d

d−1∑
q=0

exp

⎛
⎝i

[ j]d −1∑
m=0

φ[q+m]d

⎞
⎠. (B22)

Proposition 3. The operator T satisfies T d = 1.
Proof. Analogously to the proof of Proposition 1, we can

first prove that T
d = 1. Indeed, T

d = 1 iff T d = 1.
Analogously to the previous proof, we can take the power

of (B5) by doing

T
j =

(∑
k=0

αkXZ−k

) j

= X j
j−1∏
l=0

⎛
⎝d−1∑

kl =0

αkl ω
−lkl Zkl

⎞
⎠. (B23)

If we apply j = d to the above equation and express Z explic-
itly, we obtain

T
d =

d−1∏
l=0

d−1∑
kl =0

1

d

d−1∑
q=0

d−1∑
m=0

ωkl (q+m−l )eiφq |m〉〈m|. (B24)

From identity (B1), we have

T
d =

d−1∏
l=0

d−1∑
m=0

eiφl−m |m〉〈m|

=
d−1∑
m=0

exp

(
i

d−1∑
l=0

φ[l−m]d

)
|m〉〈m| =

d−1∑
m=0

|m〉〈m| = 1,

(B25)

where we have used the fact that
∑d−1

l=0 φl = 0.

APPENDIX C: UNITARY EVOLUTION
AND PARTIAL TRACES

Let us prove the following results.
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Proposition 4. Let ρSE1
:= ρAB ⊗ |0〉〈0|E1 be the initial

state of the system+environment, USEi be the noisy CNOT
gate defined as

USEi
:=

d−1∑
j = 0

Pj ⊗ T j, (C1)

where Pj = Aj ⊗ 1B is the projector acting on subspace HS
and T is the unitary observable given by (B3). Also, let
Mε

A be the monitoring map (A6) and the evolved state be
ρ ′
SE1

= USE1ρSE1U
†
SE1

. If the unitary USEi must result in the
monitoring map, i.e.,

TrE1 (ρ ′
SE1

) =Mε=1−η
A (ρAB), (C2)

then

η = 1

d

d−1∑
q=0

cos φq, (C3)

such that

η ∈ [0, 1], (C4a)
d−1∑
q=0

sin

(
p∑

m=0

φ[q+m]d

)
= 0, (C4b)

d−1∑
q=0

cos

(
p∑

m=0

φ[q+m]d

)
=

d−1∑
q=0

cos

⎛
⎝ p′∑

m=0

φ[q+m]d

⎞
⎠, ∀p �= p′.

(C4c)

for every p, p′ satisfying 0 � p < p′ � d − 2.
Proof. From Eq. (C1), we can write

ρ ′
SE1

=
d−1∑

i, j = 0

PiρABPj ⊗ T i|0〉〈0|E1 (T j )†. (C5)

By tracing out the fragment E1 of the environment (which, in
this case, comprises the whole environment), we obtain

TrE1 (ρ ′
SE1

) =
d−1∑

i, j = 0

PiρABPj〈0|(T j )†T i|0〉E1 . (C6)

A closer look at the monitoring map (A6) allows us to write
it in the following way:

Mε=1−η
A =

d−1∑
i, j=0

PiρABPj[η + (1 − η)δi, j], (C7)

where η ∈ [0, 1] acts as the noise of the monitoring, i.e., the
complement of the monitoring intensity. Because we require
that

TrE1ρ
′
SE1

=Mε=1−η
A (ρAB), (C8)

then we must have

〈0|(T j )†T i|0〉E1 = η + (1 − η)δi, j . (C9)

The above constraint implies that the braket on its left-hand
side (l.h.s.) must be a real non-negative number. Therefore,
from Proposition 2, the set of phases {φ j}d−1

j=0 must satisfy

d−1∑
q=0

sin

(
p∑

m=0

φ[q+m]d

)
= 0, ∀p ∈ {0, . . . , d − 2}, (C10)

to make 〈0|(T j )†T i|0〉E1 a real number. In addition, if [i −
j]d �= 0, then the braket in (C9) must always result in the same
number η, independently of i and j. Thus, from Proposition 2,
we also must have that

d−1∑
q=0

cos

(
p∑

m=0

φ[q+m]d

)
=

d−1∑
q=0

cos

⎛
⎝ p′∑

m=0

φ[q+m]d

⎞
⎠, ∀p �= p′,

(C11)

which implies that

η = 1

d

d−1∑
q=0

cos φq, (C12)

where the phases must be s.t.
∑d−1

q=0 φq = 0 and η ∈ [0, 1].
Now, let us see what happens when we make the system

interact with n environmental qudits.
Proposition 5. Let � = ρAB ⊗ ⊗n

k=1 |0〉〈0|Ek be the initial
state of the system+environment, USEi be the noisy CNOT
gate defined in Eq. (C1), U := USEn . . .USE1 be the global
unitary, andMε

A be the monitoring map defined in Eq. (A6).
If �′ = U�0U †, then

TrE
(
�′) =Mε=1−ηn

A (ρAB). (C13)

Proof. First, let us use definition (C1) and rewrite the
evolved global state in the following way:

�′ = USEn . . .USE1

(
ρAB

n⊗
k=1

|0〉〈0|Ek

)
U †
SE1

. . .U †
SEn

(C14)

= USEn . . .USE2

⎡
⎣ d−1∑

i, j = 0

(
PiρABPj ⊗ T i

E1
|0〉〈0|E1 (T j

E1
)†

) n⊗
k=2

|0〉〈0|Ek

⎤
⎦U †
SE2

. . .U †
SEn

. (C15)

Note that, in the above, we explicitly specified the space where each operator T is going to act. Since Pi are projectors, we can
do the following:
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�′ = USEn . . .USE3

⎡
⎣ d−1∑

i, j,i′, j′ = 0

(
Pi′PiρABPjPj′ ⊗ T i

E1
|0〉〈0|E1

(
T j
E1

)† ⊗ T i′
E2

|0〉〈0|E2 (T j′
E2

)†
) n⊗

k=3

|0〉〈0|Ek

⎤
⎦U †
SE3

. . .U †
SEn

(C16)

= USEn . . .USE3

⎡
⎣ d−1∑

i, j = 0

(
PiρABPj ⊗ T i

E1
|0〉〈0|E1

(
T j
E1

)† ⊗ T i
E2

|0〉〈0|E2 (T j
E2

)†
) n⊗

k=3

|0〉〈0|Ek

⎤
⎦U †
SE3

. . .U †
SEn

. (C17)

By applying this procedure to all the unitaries, we can obtain

�′ =
d−1∑

i, j = 0

(
PiρABPj ⊗

n⊗
k=1

T i
Ek

|0〉〈0|Ek

(
T j
Ek

)†

)
. (C18)

The above equation is the global (possibly entangled) state
that represents the situation found at the end of the experiment
depicted in Fig. 1. By tracing out all the n environmental
qudits E, we can use Eq. (C9) to obtain

TrE�
′ =

d−1∑
i, j = 0

PiρABPj[η + δi, j (1 − η)]n. (C19)

Now, let us separate the above sum into two parts:

TrE�
′ =

d−1∑
i = 0

PiρABPi + ηn
d−1∑

i, j = 0
i �= j

PiρABPj . (C20)

Now, let us sum and subtract the term ηn
∑d−1

i = 0 PiρABPi to
write the expression as a combination of �A maps

TrE�
′ =

d−1∑
i = 0

PiρABPi + ηn
d−1∑
i = 0

PiρABPi − ηn
d−1∑
i = 0

PiρABPi

+ ηn
d−1∑

i, j = 0
i �= j

PiρABPj (C21)

= (1 − ηn)
d−1∑
i = 0

PiρABPi + ηn
d−1∑

i, j=0

PiρABPj (C22)

= (1 − ηn)�A(ρAB) + ηnρAB. (C23)

From the definition of a monitoring map (A6), we see that
the above expression is indeed a monitoring of intensity ε =
1 − ηn,

TrE(�′) =Mε=1−ηn

A (ρAB). (C24)
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