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Hadamard regularization of the graviton stress tensor

Anna Negro®  and Subodh P. Patil®’
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® (Received 4 June 2024; accepted 19 December 2024; published 10 February 2025)

We present the details for the covariant renormalization of the stress tensor for vacuum tensor
perturbations at the level of the effective action, adopting Hadamard regularization techniques to isolate
short distance divergences and gauge fixing via the Faddeev-Popov procedure. The subsequently derived
renormalized stress tensor can be related to more familiar forms reliant upon an averaging prescription,
such as the Isaacson or Misner-Thorne-Wheeler forms. The latter, however, are premised on a prior scale
separation (beyond which the averaging is invoked) and therefore unsuited for the purposes of
renormalization. This can lead to potentially unphysical conclusions when taken as a starting point for
the computation of any observable that needs regularization, such as the energy density associated to a
stochastic background. Any averaging prescription, if needed, should only be invoked at the end of the
renormalization procedure. The latter necessarily involves the imposition of renormalization conditions via
a physical measurement at some fixed scale, which we retrace for primordial gravitational waves sourced
from vacuum fluctuations through direct or indirect observation.

DOI: 10.1103/PhysRevD.111.045009

I. INTRODUCTORY REMARKS

Primordial gravitational waves offer an almost unim-
peded view of the early universe.' They inevitably come in
the form of stochastic backgrounds, with readily inferred
spectral dependences and characteristic frequencies that
provide insight into the physical mechanisms that sourced
them [6,7]. There is a key distinction to be drawn, however,
from primordial gravitational waves sourced by dynamical
processes involving energy and momentum transfer—
phase transitions, particle production, decay of topological
defects, among others [§]—and those corresponding to
zero point fluctuations around some expanding back-
ground. Whereas the former involve propagating gravitons
sourced by some physical process, the latter by definition
represent vacuum polarization effects whose imprint on
various observables is no less real, but with important
distinctions worth qualifying. We elaborate further on these

“Contact author: annahnegro@gmail.com
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'Subject to convolution with a nontrivial transfer function.
Within the standard thermal history, the QCD crossover, changes
in the number of relativistic species, and damping by free
streaming neutrinos process different wavelengths in a calculable
manner during radiation domination [1-3] with subsequently
negligible effects at later times [4,5].
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distinctions and their consequences for what can be mean-
ingfully inferred from cosmological observations in a
separate investigation [9].

The purpose of this article is to address the regularization
and renormalization of the graviton stress tensor in a fully
covariant formalism.> We revisit the treatment of [11]
which works directly from the effective action, extending
the approach to explicitly compute the divergences and the
counterterms required to subtract them on a cosmological
background, obviating the need to explicitly compute finite
contributions to the effective action as these are absorbed in
the process of imposing renormalization conditions at some
scale with certain caveats. The latter is worth stressing, as
although this may seem like an old problem for which a
corpus of literature exists, the majority of references focus
on formal aspects of regularization, and are notably sparse
on detail when it comes to the second, most consequential
part of the renormalization procedure.

In a nutshell, the renormalized stress-energy tensor for
gravitational waves can be obtained from the variation of
the effective action with respect to the background metric.
As straightforward a prescription as this is to state,
determining the effective action and background metric
that minimizes it is not trivial. In fact, on backgrounds that
are not asymptotically flat nor corresponding to vacuum
spacetimes, a number of caveats and distinctions apply to

An expanded discussion on the regularization and renorm-
alization of the stress tensor for vacuum tensor perturbations in a
foliation specific formulation mirroring the discussion here can
be found in [10].

Published by the American Physical Society
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the very definition of these objects that warrant further
elaboration.

A. Effective action and background field
method preliminaries

The one-loop effective action can in principle be
determined through a number of means. Functional
techniques such as the heat kernel method (through which
the DeWitt-Schwinger formalism can be implemented
[12-16]) have the advantage of being fully covariant
and therefore particularly suited for computation on
arbitrary backgrounds, albeit in Euclidean signature
[17]. The effective action consists of contributions that
can be classed according to whether they arise from the
ultraviolet (UV) or the infrared (IR) asymptotics of the
proper time integral over the relevant kernel. The UV
asymptotics correspond to well-understood and straight-
forwardly calculable short distance divergences that are
subtracted and renormalized in the usual way. The IR
contributions—to be distinguished from IR divergences3
——correspond to state and boundary condition depend-
ence, as well as capturing physical effects like vacuum
polarization and particle creation. They are generally
nonlocal even in theories with a mass gap [18], which
the usual DeWitt-Schwinger expansion fails to capture.
Nevertheless, some of these contributions can be reliably
computed with heat kernel methods via an extension of
the DeWitt-Schwinger method when restricted to asymp-
totically flat geometries [19-22]. Their status more gen-
erally is not known, nor in the case of boundary and state
dependence, operationally knowable in completeness to a
local observer.* Related to this issue, is another important
distinction worth stressing.

In going from the Euclidean to Lorentzian signature for
cosmological applications, one must take care to distin-
guish and extract quantities relevant to the Cauchy prob-
lem, namely, in-in currents and expectation values as
opposed to the corresponding in-out quantities, both of
which can be extracted from the Euclidean effective action
through different choices of boundary conditions [20-22].
Following the notation of the former references, we first

*Unlike UV divergences, IR divergences admit multiple
interpretations with implications ranging from harmless to severe.
In all cases, their presence indicates that one has yet to arrive at a
reliable computation of a well-defined observable. If background
field quantization remains valid (in that any putative IR diver-
gences are not indicating an unstable background) and the
perturbative scheme is under control, they should cancel in all
physically well-defined observables. At one loop for example, IR
divergences for the graviton two-point function and quantities
derived from it can be shown to be an artifact of assuming a past
infinite de Sitter phase, canceling on backgrounds corresponding
to finite duration inflation [10] (ibid. for an expanded discussion
of the points raised in this footnote).

To invert a quote attributed to Alan Turing: differential
equations are science, boundary conditions are religion.

consider the following definitions for the effective back-
grounds:

(out, vac|p”|in, vac)

Pf = (1)

(out, vac|in, vac)

which is of interest in applications when in and out states
can be defined (e.g. scattering problems), and

@ = (in, vac|p|in, vac), (2)

which is of primary relevance to problems where only the
initial state is specified. Both fields can be obtained from
the effective equations of motion, which can be brought
into the form

58, 58,
—<4+Jh=0, S +JN=0, 3
5(01“: 5¢le ( )

where S is the “classical action” and the J, are the so-
called radiation currents which can be calculated to any
order in A as we indicate shortly, and will correspond to
renormalized energy momentum tensors. We note that
Eq. (3) has implicit contributions coming from the measure,
which will be addressed in more detail in the following
sections.

Both the classical action and the respective radiation
currents are functions of the corresponding background
fields ¢f: or @fy, where the background field method has
been implicitly adopted (see [23] for a very clear and
readable review). Through this method, one can efficiently
compute the effective action as the sum of all 1PI vacuum
graphs in the presence of a given background, with all
internal lines corresponding to fluctuations around this
background. Derivatives of the effective action with respect
to the background field can then be used to construct all
observables of interest, whether S-matrix elements or
correlation functions depending on the context.

In spite of the label, S, appearing in Eq. (3) can also
be thought of as incorporating an # expansion when
expressed as

Se1 = 8o + Seis (4)

where S, represents the tree-level action for the classical
background

S() - SEH + SM, (5)

and where S, represents the counterterms needed to
subtract the UV divergences that arise at any given loop

*Where we also adopt DeWitt’s condensed notation, and to
avoid a proliferation of indices, the composite index a can also be
taken to denote a pair of spacetime indices a := {u,v}.
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order, with finite remainders that are to be fixed through
renormalization conditions. In the above, Sgy is the
Einstein-Hilbert action and Sy, represents the matter con-
tent that sources the background expansion. The solution to
Eq. (3) defines a shifted tadpole condition, which is to say
that the relevant background field gets corrected as’

¢ = @+ hef + - (6)

where @f minimizes S in isolation, and where we have
restored 7 to emphasize the nature of the expansion.7 We
elaborate in more detail on the relevance of the shifted
tadpole condition when fixing renormalization conditions
at the end of the computation, in Sec. IV.

Different diagrammatic rules apply when attempting to
determine J% or JIN. The radiation current J¥, can be obtained
via techniques relevant to the computation of transition
amplitudes, and is given to one loop given by [20]

F _ _i 53S01 cb
26p85p0pE T

a
{out, vac|T[p¢¢”]in, vac)

G =i

(7)

(out, vacin, vac)

where G§? is the Feynman propagator. Similarly, the current
JIN is given to one loop by

IN i 53Scl ch
J“ = _5 a b c N>
SPINOPINOPIN
G¢h = i(in, vac|T[¢p¢"]|in, vac), (8)

where the latter can be evaluated as it appears, or with the
full regalia of the Schwinger-Keldysh formalism. The two
Green’s functions differ in terms of their boundary con-
ditions, although in the specific case of future and past
asymptotic flatness, one has |out,vac) = |in,vac) so
that G&¥ = G§3.

Cosmological backgrounds, however, are not asymptoti-
cally flat in the past, nor in the future depending on the
matter content. Nevertheless, for the purposes of regulari-
zation, only the short distance divergence structure of G¢j
is relevant, which is identical to that of Gg” . The reason for
this can be inferred from the fact that if the two Green’s
functions differ only in their boundary conditions, com-
pleteness dictates that the short distance modes of the two

®0One of the advantages of the background field method is that
it is possible to work perturbatively so that the background can
remain unspecified until the very end, where one must eventually
evaluate all physical quantities on-shell (and in the background
gauge that defined the gauge fixing and ghost terms) [23].

In the context of inflationary cosmology, one shows that the
shifted background simplifies calculations of logarithmic correc-
tions to inflationary correlators from the UV asymptotics of the
effective action alone [24].

vacua must be related to each other by a Bogoliubov
rotation that tends to zero for short wavelengths, otherwise
one would represent an infinite energy excitation relative to
the other (see also [15] for an expanded discussion on this
point). We stress this point as it offers us the possibility to
adapt computations that make use of Feynman Green’s
functions for the purposes of identifying the local counter-
terms necessitated by the subtraction procedure [11]. On
the other hand, the long wavelength behavior of G&& will
certainly differ from that of G§*. However, the difference
will manifest as finite and nonlocal terms whose precise
forms one need not calculate beyond the scale factor
dependence of the various contributions, as these will be
absorbed in the process of fixing renormalization condi-
tions, which we detail further.

A final and no less consequential clarification is neces-
sitated by the question of whether we are obliged to work
with the on- or off-shell formulation of the effective action
in our computations. To one loop, the former can be
obtained by expanding the action to quadratic order in
fluctuations and evaluating the resulting functional deter-
minant as a function of the background:

r = ilndet{w}, 9)

‘T2 St 5

where ¢“ is the relevant background field, and ¢ denote
fluctuations around it. The result of differentiating the
above with respect to the background yields the radiation
currents Egs. (7) and (8), whose contractions make explicit
that we are differentiating the one-loop 1PI vacuum graph
[23]. Unlike the classical action, however, Eq. (9) is not a
scalar and is dependent on how one parametrizes field
space in addition to also depending on the background field
gauge in the presence of gauge symmetries.

Instead, an effective action that does not suffer from
these drawbacks was arrived at by Vilkovisky and DeWitt
by working covariantly in field space and writing down the
equivalent of the functional determinant of the field
covariant second variational derivative of the action:

i &S [p* RIS
e = ginder {2509y g P49 o)
P09 @1

where FZC is the connection on field space. When the
background field ¢ minimizes S (i.e. one is working on
shell) the two forms are equivalent. However, the two forms
will in general differ for any quantity obtained from
differentiating the effective action when the field space
connection is nonvanishing even when evaluated on shell.
Therefore the renormalized stress tensor obtained from the
Vilkovisky-DeWitt effective action will have additional
contributions relative to the stress tensor obtained from the
“standard theory.” However, the difference is only in terms
of additional finite contributions, which moreover vanish

045009-3
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for vacuum contributions on maximally symmetric space-
times and for one-particle states on Minkowski space [11].
On a general Friedman-Robertson-Lemaitre-Walker
(FRLW) background, with a homogeneous and isotropic
fluid sourcing the background expansion, these are non-
vanishing and contribute additional finite contributions that
depend on the quantum state.

Nevertheless, the procedure we follow allows us to work
with the standard form of the effective action, as the
divergences that need to be regularized are unaffected by
the Vilkovisky-DeWitt correction term, and any finite
contributions are absorbed by the process of fixing renorm-
alization conditions. What is crucial for the subtraction
process, however, is the identification of the scale factor
dependence of the various finite and state-dependent terms,
for which we determine recursion relations with initial
coefficients that can be fixed with a sufficient number of
measurements at the renormalization scale.

B. Outline, scope, and synopsis

Having informed ourselves of the necessary caveats, we
can now outline the treatment to follow. We begin in
Sec. II with a discussion of the procedure by which the
stress tensor associated with vacuum tensor perturbations
can be derived directly from the standard effective action,
addressing how the more familiar forms can be obtained
from direct variation of the tree-level contributions and
then Brill-Hartle averaging. Sections III and IV are
concerned with the Hadamard regularization procedure
and subsequent renormalization, in which we subtract
divergences and discuss the procedure by which physical
observations can be used to fix renormalization condi-
tions, absorbing finite contributions whose explicit forms
are not needed beyond their scale factor dependence in an
FRLW foliation. We revisit all the important caveats and
distinctions detailed above as we encounter them, and
offer our summarizing thoughts in the conclusions with
technical details deferred to the Appendixes.

What follows adopts established techniques towards
the specific problem of computing the renormalized stress
tensor associated with the stochastic background of
primordial gravitational waves on an FLRW background.
One does not have the luxury of not following through t
his process to completion if one is interested in making
contact with cosmological observations. As we recap in
the conclusions, the literature is replete with computations
for the energy density associated with the stochastic back-
ground of vacuum tensor perturbations that exhibit cutoff
dependences. Moreover, these have regularized forms of
the stress tensor with an intrinsic (time-dependent) scale
separation invoked for an averaging prescription, and
therefore unsuited for the purposes of renormalization
and leading to potentially unphysical conclusions when
taken on face value. We refer the reader to [10] for a
discussion of how this process resolves in a foliation

specific formulation,® where it is stressed that any
attempts to infer bounds on the number of relativistic
species in the early universe from primordial gravitational
waves is inextricable from the process of renormalization.
What follows is an reexamination of this procedure in a
fully covariant formalism, with a more detailed explora-
tion of its implication for cosmological and astrophysical
implications deferred to a separate investigation [9].

II. VACUUM STRESS ENERGY
FROM THE EFFECTIVE ACTION

Our treatment proceeds from the standard effective
action via the background field method. We expand the
classical Einstein-Hilbert action to quadratic order in
perturbations £, around some background, defined as

gﬂl/ :gﬂl/+h[ll/7 (11)

where g,, is the background metric which we leave

unspecified for the time being. To second order, one can
show that [11,25]

K2 1
s@ -3 / d*x\/—g {5 h,, O + hVPV°h, ,+

1
Vh Vo hoy =5 WO+ R oW + hf HR

1 1
— hIP Ry = 5 W7o R + Zth] , (12)
where we have defined «? = ﬁ The stress tensor for

gravitational waves is obtained by variation with respect to
the background metric—a process that is equivalent to
perturbing the Einstein equations to second order and
bringing the quadratic terms over to the other side to act
as a source for the background.

If one is only interested in backgrounds of gravitational
waves with a spectrum of bounded support and comprised
wavelengths and periods much shorter than the back-
ground curvature scale’—as with most astrophysical
applications—a number of approximations and simplifica-
tions are possible. Firstly, one can neglect terms containing
derivatives of the background relative to derivatives of
the tensor perturbations, and as a result, discard terms

$Where it can be shown that the a stress tensor for gravitational
waves not reliant on an averaging prescription and valid for all
wavelengths can be regularized, the necessary counterterms
identified—the step at which previous treatments would have
identified their computations going off course—and IR diver-
gences canceled on backgrounds that transitioned into radiation
domination from a period of finite duration (as opposed to past
infinite) inflation.

°That is, when A,w™! < 27%, where %2 is the typical
magnitude of the nonvanishing components of the background
Riemann tensor.
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proportional to the curvature scalar and Ricci tensor
and freely commute covariant derivatives. Moreover, one
can invoke a spatial averaging over all physical wave
numbers greater than the inverse radius of background
curvature (itself, a time-dependent criterion on cosmologi-
cal backgrounds) and integrate by parts within the averag-
ing integral [30,31]. Doing so results in the simplified
expression [26]

TS = !
" 327Gy
_ - 1- - _ - _ _
af a ap
X <ha/3;uh w Eh;uh;v —h ﬂ;ﬂhau;v —h ;ﬂhav;ﬂ>BH

(13)

where subscript on the angled brackets denotes spatial
averaging, semicolons denote covariant derivatives with
respect to the background metric, and where we have
defined

- 1
hyy, = hy — Eg’”“h' (14)
Equation (13) is covariantly conserved and gauge invariant
up to correction terms that are negligible for all wave-
lengths shorter than the averaging scale. Further specifying
transverse-traceless gauge results in the Isaacson form of
the stress tensor [32] (see also [28,29]):
Tgw.lsc . # <h hpo‘ > (15)
124 - 3277:GN POU WW/BH*

The expression above is widely taken as the starting point
for determining the energy density associated with sto-
chastic backgrounds of primordial origin (see e.g. [8]).
While this is certainly valid for spectra of bounded support
sourced by some physical production mechanism (and
hence subhorizon), taking this formula on face value for
modes with wavelengths greater than the domain of validity
defined by the averaging scale ought to be treated with
caution. This caution should be amplified when one
encounters divergences that need to be regularized, as is
the case for stochastic backgrounds associated with vacuum
tensor perturbations given the prior scale separation inher-
ent in the definition of Egs. (13) and (14). Reverting back to
the approximately gauge invariant form Eq. (13) will not
help matters either, as any computation at any loop order
implicit integrates over all scales and will eventually run
afoul of this approximation. Appeals to ad hoc IR cutoffs
should be viewed through the lens that if one recovers
divergences and gauge dependence in one’s answer as this
cutoff is removed, one has not arrived at a physically

reliable answer. So how does one proceed instead?
At this point, an important aside is due: although one
might find statements in the literature that questions the

utility of even defining gravitational waves with wave-
lengths grater than the background curvature scale,' this
would nominally be at odds with the premise of many
computations. It is also at odds with observations: gravi-
tational waves from mergers of binary black hole systems
have been observed [33-35]. Moreover, the search for
primordial gravitational waves is premised on the fact that
they induce local quadrupolar anisotropies in the density
field of the primordial plasma at all scales, resulting in a
signature B-mode polarization pattern [36,37]. Both sit-
uations feature gravitational waves with wavelengths com-
parable to or greater than the background curvature radius
at some point—the peak frequency emitted from a merger
corresponding to wavelengths commensurate to the
Schwarzschild radius, and primordial tensor fluctuations
having crossed the Hubble radius before sourcing local
anisotropies.

Clearly, nature tells us that the notion of tensor pertur-
bations with wavelengths longer than the background
curvature radius has to make sense. By general covariance
and the Bianchi identities that follow as a corollary, one
must also be able to identify a conserved rank-two tensor
that plays the role of a stress tensor from direct perturbation
of the equations of motion. That one can do so with
minimal fuss by simply undoing the averaging prescription
and avoiding neglecting any terms arising from the direct
variation of Eq. (12) can be found in [10].11 It is also the
premise of the computation in [11] that is retraced in what
follows, which stresses that Eq. (12) is to be viewed as the
action for a massless spin-two degree of freedom on a
curved background, whose regularization and renormaliza-
tion proceeds via established prescriptions.

We proceed from the unadulterated definition for the
stress tensor for gravitational waves:

B \/L__g <5(%;iw>>m,m 16)

oW
T, =

where the in-in expectation value implicitly traces over
some initial density matrix. When this state is taken as the
adiabatic vacuum, one obtains the stress tensor for vacuum
tensor perturbations.

n Sec. 35.7 of [26] for example, one finds the statement that
“one must always have of < 1 as well as 1 < 2z if the concept
of gravitational wave is to make any sense,” where </ is the
dimensionless amplitude of the gravitational wave and %72 is as
defined in footnote 9 (see also [8,27-29] for more detailed
discussions of this point).

" Although the notion of long wavelength tensor perturbations
certainly makes sense, assigning an energy density to sufficiently
long wavelength perturbations does come with caveats, although
essentially semantic in Nature and rendered moot in the extrac-
tion of quantities that imprint on observables—see Sec. [V of [10]
for an expanded discussion.

045009-5



ANNA NEGRO and SUBODH P. PATIL

PHYS. REV. D 111, 045009 (2025)

In order to define S,,, we must first consider the process
of gauge fixing, for which de Donder gauge presents a
particularly efficient choice. We proceed via the Faddeev-
Popov method [38] and add a gauge breaking term which
fixes the chosen gauge condition to Eq. (12), defined as
vV, = %Vyh, along with a ghost term that accounts for
the measure factor induced by gauge fixing:

K

2
Sp="" / d*x\/=g (V”h,w —%V,,h) (V“hab —%V”h) ,
(17)

K2
Sgh = 5/ d4x\/__g[ﬁ”(gﬂy|:| - R;w)rlb]' (18)

In the above, n” represents the ghost field that accounts for
the residual gauge freedom by subtracting the spurious
degrees of freedom from the action ). Consequently, the
gauge fixed action for the gravitational sector is given by

Sew = S@ + S + Sgn
K2 4 1 po 1 p ap,po
:E d )C\/—g Ehﬂo'l:lh —ZhDh+R pao‘h/} h
1
+ 1 h Ry = WP Ry == W7h,o R
1 _
+1th+11"(gw,D —Rw)n“]. (19)

In this way, starting with the action Eq. (12) for a rank-two
symmetric tensor field nominally consisting of ten degrees
of freedom, we obtain the action of a massless spin-two
particle S,,, with only two propagating degrees of freedom.
From Eq. (16), the stress-energy tensor of vacuum tensor
perturbations is given by the sum of contributions

W 2 o T h

where we have defined S, = S 4 Sgp- The angled
brackets above denote the time ordered in-in correlation
function (...) = (in, vac|T[...][in, vac), which inevitably
exhibits divergences for field bilinears in the coincident
limit, the regularization of which we turn to next.

III. REGULARIZATION

The regularization of the stress tensor for any propagat-
ing degree of freedom on a general background must
proceed with care, all the more so when gauge redundan-
cies are present. Although we proceed to do so in a
covariant manner, one can also contemplate working
directly at the level of the stress tensor obtained by variation
of Eq. (12), gauge fixing by hand, and then imposing the
scalar vector tensor decomposition to extract the stress
tensor for the propagating spin-two polarizations when

evaluated as an expectation value [10]. This procedure can
be related to the covariant method detailed below by a
series of Ward identities that we return to further on. In
what follows, we proceed to regularize the divergences
encountered in the evaluation of Eq. (20) by adopting
Hadamard regularization techniques [11,39,40], which are
an extension of the covariant point-splitting method."

A. Hadamard point splitting

The point-split version of a tensor U**(x) is defined as

the coincidence limit of the bitensor U* (x, x") defined in a
neighborhood of x*

U (x) = lim U™ (x, x'), (21)

=0
where primed indices refer to the point x* and ¢ is the
geodesic distance between x* and x*'. Doing so allows us to
isolate the divergent from finite contributions to Eq. (20)
with ¢* as the UV regulator. Hadamard regularization of the

effective action proceeds through the intermediary of the
Feynman propagators (in the notation of [11]):

wap o o (T ()™ (X)) |y)
¢ ﬁ(x’x)_32ﬂGN (wlw)

i [av?r ,
:8712{ (ga(#gw/f)

o+ i€

+ VB In(A2 (o + ie)) + Wreal

o WAT @ n” () lw)
) = 3326, (i)
i {AW

= | T (N0 + i)

o+ ie
+ Wﬂa’] , (22)

where A is some arbitrary mass scale so that the argument
of the logarithms are dimensionless, and primed indices

are geodesically transported from x* to x* by using the

bivector of parallel displacement ¢%,, defined by the
differential equation [14,47]

vl)g(z//fv/)a =0, (23)
with the boundary condition

lim gyp(x, x') = Gap(x). (24)

X=X

2Cf. [12,41] for applications of point splitting to gauge
theories on flat space, and [42—46] for applications of Hadamard
techniques to scalar, vector, and fermionic degrees of freedom on
curved backgrounds.
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The ie appearing above is characteristic of the Feynman
propagator. Within the present context it is more convenient
to work with the Hadamard Green’s functions, for which
we follow [45] in deriving their representations from the
Hadamard form of the Feynman propagator. By using the
identities

1
o+ ie

=P —ind(o). Ino+ie) = In|o| + ir6(~o0).
o
(25)

where P and © denote the Cauchy principal value and the
Heaviside theta function respectively, we can rewrite
Eq. (22) as

G (x,x') = G (x, x') + %G"”(x, X), (26
where

G/;‘ua’ﬁ/(x,x/) _ é [Al/Z(ga’(ﬂgl/)/’")a(o-) _ Vﬂva’/”/(a(_o-)},
1 [AV2g0 §(5) — V1 ©(=0)] (27)

Gﬁ(l’ (x, x/) = —ﬂ

is the average of the advanced and retarded Green’s
functions, and

1ot 1 Al/z / ! ! 3
G (x7xl) _ @ {T (¢* (ﬂgv)ﬂ) 4 ymdp ln(Azo-)
+ W””“’ﬁl :
~ 1 AI/Z / ~ ) T /
G (xx) =15 {T g + Vi In(A’o) + W

(28)

is the Hadamard Green’s function."

The state |w) appearing in Eq. (28), that in this work is
the standard Bunch-Davies vacuum, is in general somewhat
circularly defined as any quantum state—the Hadamard
state—such that the short distance divergence structure is of
the forms indicated in the square brackets, where o =
%aﬂoﬂ denotes the square of the geodesic distance between
x* and x*, A is the Van Vleck-Morette determinant and
the bitensors V/a@F WP yud and WHC are smooth
functions in the limit ¢ — 0 of the form

“In the context of Schwarzschild spacetimes for example, the
Hartle-Hawking-Israel and Unruh vacua are examples of vacuum
states that can be shown to satisfy the Hadamard property [48-50].

[Se] [Se]

V/wa’ﬂ’ _ z V;;va’/}’o_n Wﬂyajﬂl _ z Wﬁya/ﬂ/dn
n=0 n=0
(s aj o0 ,
~ ~ ~ ~
Ve =N Ve, W =) W, (29)
n=0 n=0

It is to be stressed that the bitensors V**# and V% depend

only on the local geometry, whereas the bitensors wer

and W“” depend on the boundary conditions and the
precise choice of the state |y). Therefore, any difference
between evaluating Eq. (20) with in-in expectation values
as opposed to their in-out counterparts as encoded in the
Feynman propagators of Eq. (28) will manifest only in
differences in the finite contributions W*““? and W** . It is
precisely these finite contributions that are moot to any
local observer, being absorbed by renormalized couplings
in the effective action through the process of imposing
renormalization conditions.

Each of the V***# /, wrvel V4 and W*® bitensors can
be rewritten in the form of a covariant Taylor expansion for
x* in the neighbourhood of x*:

/al , / 1
Vﬁyaﬁ = ga (xgﬂﬂ |:Uﬁyaﬂ + Uﬁyaﬁyay + E Uﬁuaﬁ}’raydr + - :| ’

T 7HC / ~ U ~pa 1~a
Vﬁ’:g”a[v’fz + T yay+§vﬁ y,ayaf+~~~], (30)

and similarly for WP and W .

The Hadamard Green’s functions as expressed in
Eq. (28) facilitate the regularization of Eq. (19) in that
the latter can be viewed as the point split expression:

. 1 1
<Sgr> = (}/‘ITO{/ d4x V=9 |: <_§gp(l’gﬂf)” + ngo’ga//)”>
X var’ oot (Rll’/?ﬂ’a + 9poRpw = GupRpo

1 1 "
- 5 R 9pa Yop + Z R g/)o'g(l’/}’> Groep :| }’ (3 1)

<Sgh> - (}ulglo{/ d4x\/ _g[_g;ta’vrvr/é’lm/ - RMdGﬂd]}.

(32)

Recalling that the divergence structure of the Hadamard
Green’s functions is completely captured by the terms
containing the Van Vleck-Morette determinant A, and the
bitensors V#“F and V¢, the divergent part of the
gravitational sector of the effective action Eq. (19) must
be of the form
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<Sgw>div ~ 51}% d4x\/ _9[71 (G)R + }’2(6>R2
+ 73 (U)R’MR/U/ + 7/4(6)DR] (33)

We compute the coefficients y,(¢), y»(6), y3(0), and y4(c)
in the next subsection, from which one can immediately
identify the counterterms required to subtract them.

B. Counterterms

The process of determining the counterterms needed to
regularize the effective action begins with rewriting the
coincidence limits as

LmR,; G" =R 1@09,,“@#"/ (34)

Hat i

so that the tensors contracted with the Hadamard Green’s
functions are tensors in x* and scalars in x* . Furthermore,
as the coincidence limit depends on the path by which ¢#
approaches zero, it is necessary to specify a path-averaging
procedure. Following Ref. [51], we use the so-called
elementary averaging procedure, whereby one makes
the replacements:

_1
6,0, — Zg,maf,o—” =5 J1u0,

0,0,0,05 = — 0 (969 + 992950 + Gyulsi)-

0,05 = (1/ 24)6° [9up (920905 + G2y 95 + 9269u)
+ 9ar(9pu9ys + 9py9us + 9psGyy)
+ Yo (9p29y5 + 9pui5 + IpsTiy)

+ 9oy (9pi95 + 9pu9is + 9ps9in)

+ 905919 + iy + 9pr9a)l- - (35)

GaGﬁU}LUM

The singularity structure is then extracted by expanding at
the endpoints and iteratively solving the equation of motion

of the propagator to find the Taylor coefficients of V# /'
and V#? (see Appendix A for more details). From this, the
divergent contributions to Sy, are found to be

1
<Sgh>div = lim

3
d*x\/—g [— =R +In(A%0) <RWR’”’
c

471' o' —0
I, 1 oo D
+ e R = 5 Rupo R + S OR | (36)

whereas the divergent contributions to S, are given by

gw

1
<Sg">d1v 4” 61,4190

+In(A%0) <

7
d*x\/=g|——R
* g{ 60
1 13

R ——R*>— (IR
4 24 )] (37)

By use of the Bianchi identity and the Gauss-Bonnet
theorem, the divergent contribution of the action of vacuum
tensor fluctuations results from the difference of Egs. (37)
and (36) (accounting for the statistics of the ghost con-
tributions), and is given by'*

1
<SgW>d1v 4” UI;«ITO

—%RZ ——3|jR>] (38)

d4x\/_{ R+ln(A26)< R, R

which is of the form of Eq. (33), with the y;(o) coefficients
straightforwardly read off from the above.

IV. RENORMALIZATION

Having identified the divergent contributions to the
gravitational sector of the effective action, we can now
proceed to subtract them with the appropriate counter-
terms and absorb finite contributions through the imposi-
tion of renormalization conditions. We begin by con-
sidering all contributions to the action [cf. Egs. (4), (5),
and (19)]:

<S> = Sgn + Srp + St + <Sgw>v (39)

where the matter content that sources the background
expansion Sy is now specified by Sgp to denote radiation
domination, although the treatment that follows generalizes
to any background. For concreteness, we work with the
action formulation for a barotropic fluid expressed in terms
of a derivatively coupled scalar [53,54], so that

SRD = /d4x\/—ngg(X), (40)
where P*¢(X) = X%, with X = —1 g0, w0,y reproduces
the stress tensor for the background radiation fluid," and

where we have defined

1
Sa =32 7 lim d*x/=gla, (0, p)R + ay (o, )R, R*
T° ot'—
+ a3(0, u)R* + ay (o, )R], (41)

where p is an arbitrary mass scale whose meaning will
become clear shortly. The divergent contributions in

“Note that although different regularization schemes may
result in different results for intermediate expressions (see e.g.
[52] for a study of adiabatic regularization), scheme dependence
must drop out of all well-defined physical observables. Moreover,
the nature of divergences that require subtraction can further
depend on the precise background one is background field
quantizing around (see [15] for more details).

A feature that remains true to all orders in perturbation
theory [54].
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Eq. (38) can be subtracted with the following choices for
the a;:

11

1
ay(u.0) = "6 o o (u),

1
a(u,0) = — glog(ﬂzﬁ) + a5 (),
a3(u.0) = ﬂlog(u o) + ok (u),

@) = 5 108(%0) + (), )

where the of' are finite contributions that we leave unspeci-
fied for now. With this, the regularized, but yet to be
renormalized action can be expressed as

()= [ atx=a | rorgr R+ B URLRS + a0k

(43)

fin’

+ aty ()R + Pbg(XB)} + (Sew)

where (Sow) s, = (Sew) = (Sew)q;y (cf- Appendix B), and

where
L _ 1 e
162G(4) 162G | 4m2
@ (p) = 4%2 _%10gA—22+a§(ﬂ)},
s(0) = 713 |~ pylog s + 00
i) = 1z :_glogg—j ra] @)

The subscripts B appearing above are to denote bare
quantities.

In order to proceed, we are obliged to make use of
leading order field equations to eliminate redundant higher
order correction terms containing second derivatives and
time derivatives of what were auxiliary fields in the tree-
level action [55,56]. That is, one can substitute the tree-
level equations of motion R = —8zG(u)T*¢ and R,, =

872G (u)[Tps — 1 g, T*8] into the above, where

T (Xp) = 8PPt — PP x%wpo g (45)
is obtained from Eq. (40) through variation with the
background metric. The functional form PP2(Xj) = X3
ensures that 7°2 = 0, so that the regularized action takes
the form

(8) = /d“x\/—[ M ()R + P*(X 5, 1) | + (Sgw) in:
(46)

where we have dropped total derivatives and defined
M~2(u) := 82G(u), which we use interchangeably in what
follows, and where

- a

PP2(Xp, p) = X3 + 12X5 Mz4<( >> (47)
with @, defined as in Eq. (44). We immediately notice that
in adding the contribution of vacuum gravitational waves,
the stress tensor associated with the shifted matter sector
P(Xp.u) is no longer traceless, hence the renormalized
stress-energy tensor does not appear as a radiationlike
stress-energy tensor:

7o — _qgxy 20 (48)
M ()
This is because Einstein gravity is not conformally invari-
ant, and therefore neither are the field equations governing
gravitational waves even if the background is conformally
flat [57]. Hence the stress tensor for gravitational waves
will not be exactly traceless unless &, = 0, and this feature
gets imported into the matter sector via operator redun-
dancy at one loop, a point which we will return to shortly.
We now proceed to fix the finite parts of the relevant
couplings via renormalization conditions. We recall the
shifted tadpole condition, which is defined by the require-
ment that the background effective field g, must be put on
shell in all final expressions. That is, we demand that

1 1 b f
R, —=R = T 4 (T8, (49
SﬂG(lLl) < U 2 g/uz) H + < H > ( )

We first note that Newton’s constant can only be fixed via a
Cavendish type experiment, where we have knowledge of
the masses whose strength of gravitational interactions we
are attempting to fix. Let us say we do this at laboratory,
i.e. mm scales, and impose the renormalization condition
that [82G (u)]™" = M?(u,) = M}, where the latter is given
by the reduced Planck mass M} = 2.435x 10" GeV.
From Eq. (44) it therefore follows that

I {Haf(ﬂ)—a‘fw]‘l, (50)

872Gy (u) = 271_2le
p

which can be used to express Eq. (49) in covariant form as

G

» M2 [TB%‘F(T;%E/J]“)} {1_‘_0‘11:(/4)_0‘?(/4*)]_1_ (51)

2m*M 12)1
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We see from the above how additive renormalization of
Newton’s constant (i.e. renormalization of the graviton
wave function) is equivalent to the multiplicative renorm-
alization of the matter sector via the tadpole condition.'® In
the context of cosmology, however, this is a moot point
as the factor in the square brackets above is precisely unity
in the absence of any new light species. The reason for this
is that at energy scales smaller than p,—i.e. at scales bigger
than laboratory scales, as with all cosmological observa-
tions—the Newton’s constant will no longer run'’ unless
some new particle starts to propagate at a mass threshold
lighter than the scale of the experiment. Given that the
neutrino is the lightest massive particle that we know of, we
can take the factor in the square brackets of Eq. (51) to be
unity, although we leave it present in proceeding (see [10]
for further elaboration on this point).

In order to fix the remaining finite contribution appear-

. o . . i
ing in @, in combination with those coming from (75",

we have to appeal to additional observations. Before we do

s0, we note that (T5 ™) has a series of contributions that
can be split into the background-dependent part and the
state-dependent part. The background-dependent part,
which corresponds to the finite leftover from the renor-
malized coupling constants, is fixed by imposing renorm-
alization conditions discussed in what follows. The state-
dependent part can be recursively obtained and it is not
uniquely determined as it depends on the initial conditions
of the quantum state (cf. Appendix B). These contributions
can be classed according to their scale factor dependence.
We also note that the results of a mass independent
regularization imply that the contribution Eq. (48) is

evidently canceled by a compensating term from the

state-dependent part of (T% ™) in the adiabatic vacuum

[10]. Regardless of this fact, in addition to admitting the
possibility of other operators in the effective action from the
presence of additional degrees of freedom, one simply
extracts that part of the renormalized expression that scales
as radiation and proceeds accordingly.

Consider for example the measurement of the equation
of state parameter w during what we presume to be
radiation domination. In principle, any other measurement
of a dimensionless ratio will do (e.g. H>/Mj)) as what

follows transcribes straightforwardly. Making such a meas-
urement at the scale ug results in the renormalization
condition:

"This is simply the effect of operator redundancy where one
uses the background equations of motion, operationally deter-
mined by the tadpole condition. Although Eq. (51) was derived
for the specific background given by Eqs. (46) and (47), the
formalism can be applied to a background sourced by an arbitrary
matter sector.

Even logarthmically, a fact that is immediately apparent
with Pauli-Villars regularization, but obscured in dimensional
and point-split regularization unless one performs threshold
matching.

a(pur) | B (ur)
3HL(Bwg — 1) = —48X% 7 + 2, (52)

where fF(ug) := (T2%"), Regardless of how suppressed
the right-hand side may appear, it in principle fixes the
remaining finite remainder in @&, defined in Eq. (44), up to
the state dependence of the terms that appear in " (ug ). If
the right-hand side cancels exactly, the effective back-
ground corresponds to radiation dominated expansion. If
the right-hand does not cancel, it would still correspond to
radiation dominated expansion up to sngpressed slow
quenching terms which are M,-suppressed, = which more-
over, dilute much faster than radiation.

Hence, the most one can conclude from the shifted
tadpole condition Eq. (51) is

1 oy (u) = oy (u)] ™!
3H? = — (p o) |1+ L
Mgl (pbg + pgw,ﬁn) + ZHZMI%I
M2,

Py corresponds to the time-time component of TE,%,

and with ng,ﬁn denoting any (possibly vanishing) state-

dependent contributions from (T%™) that scales as
radiation. 6; which is some constant by this definition,
defines the wave function renormalization of the otherwise

unobservable bare thermal potential yp:

w o= (1 +6,) g, (54)

where now y denotes a dressed quantity. Therefore, even if
we do not uniquely determine the state-dependent part of
Prvg» one concludes that independently on the explicit form
of the finite leftover, the net effect of the renormalization
procedure is to simply mimic shifts in the definition of
otherwise unaccessible quantities, a conclusion that can
also be arrived at through dimensional regularization in the
foliation specific formalism [10].

V. SUMMARIZING REMARKS

Whether one can meaningfully constrain vacuum tensor
perturbations from cosmological observations such as N
bounds is intrinsically bound to the question of how one
assigns a stress tensor to them, and how one regularizes the
divergences that inevitably arise from the coincident limit
of field bilinears that it samples. A typical expression that
one can find in the literature (see e.g. [58—71]) chooses to
impose hard cutoffs on the energy density of gravitational

"®In practice, this has to be fixed by renormalization con-
ditions. The best accuracy with which we can ever hope to
constrain the left-hand side of Eq. (52) means that the right-hand
side can only be taken to be consistent with zero. This implies that
the stress-energy tensor of the shifted matter sector in Eq. (48) can
be considered traceless.
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waves obtained from the Isaacson form of the stress tensor.
The result is expressions of the form

n
N A, <kuv) ‘Lio(i [l+log kUV:|’ (55)
322Gy \ k, 2n,a*  a* |n, k.

where k, is some reference IR scale, and the approximation is
only valid when 7, — 0. It should be immediately apparent
that no physical answer should depend on cutoffs, nor should
one renormalize any quantity that presumes a prior scale
separation in its definition. In a separate investigation [10] we
have shown how any attempts to extract Nz bounds from
vacuum tensor perturbations is inextricable from the process
of background renormalization in a foliation specific for-
mulation. Here, we have repeated this process in a covariant
formalism, arriving at similar conclusions. We elaborate
further on the consequences for cosmological observations,
and what can meaningfully be interpreted from them in a
follow-up investigation [9].

PGwW

APPENDIX A: DETAILS OF HADAMARD
REGULARIZATION

In this appendix, we present further details as to how one
can obtain the divergent contributions in Eq. (33).
|

o A1/2
Gt (x,) = 11
T

472 | 26

1 / /
+ Ega {Igﬁ /31]86

+ ga’agﬂ’ﬂwgaaﬂ}’dy + Ega,agﬂ/ﬂwggaﬂy‘rd}/dr + Egalagﬁ/ﬁwllmaﬂaya}’} s

. 1 [Al/2
G”“(x,X’)—ﬁ{ —g +
TT

A1/2

47

1 ) o 1
+ 59“ 0,0 T In(u0) + ¢* " + ¢* 0+ 5

yud In(y?0) + W

Regularizing the contributions of Egs. (31) and (32) in
order to obtain Egs. (36) and (37) boils down to regulating
the following four terms:

(I): R pa} hm ga aGHe (A1)
(I): g7 lim g g, V. V7 G, (A2)
(1) : Pﬂuaﬁ(}}%ga’“gﬂfﬂ(;”m’ﬂ/’ (A3)
(IV): Qur° lim g7 gw, g5V V7 GV, (Ad)
where we have defined
1 1
P/wyé = Ry,u&/ + g&uR,uy - gyﬁR/w - ER 9uy9us + ZR 9uwys»
1 1
Q/u/yé = - E 9y 9vs =+ Z 9w Yys- (AS)

By expanding the Hadamard Green’s function of Eq. (28)
using the Taylor expansions in Eq. (30), we obtain

L {_ (ga’(pga)ﬁ’) 4 ypodf ln(,uza) 4 W/wa’ﬁ’}
c
L A2 ap off o ppf poafp poaf 2
= (g g + g ) + ¢ o g0 M(WP0) + o7 o’ 0" 07 In(p?o)

ye o7 c¢ 111(/4 6) +3 gajagﬁ /ﬂ}pdaﬁg o’ 111(/,[20') + ga/agﬁlﬂwgoaﬁ

1 . 1 .
= {—g’”’ + ¢ a0 In(Wo) + g 04,07 n(WPo) + 5 ¢ o7y 070" In(p?o)

2

/ 1
i aw/(;aﬂgyar + 3 g(i awllmargy:| , (A7)

where higher orders in powers of ¢ vanish in the limit 6# — 0, and the tensors contributing to the divergent part

poaf paaﬁ poaf  poap ~pa ~pa
{v SV e

propagators and are given in Sec. A.3 of [11].

W, 1y, 7. and 97} are found by iteratively solving the equations of motion for the

Equations (A1) and (A3) are then regularized by subtracting the divergent terms of the expansions in Eq. (A6) with the

appropriate counterterms. These divergences are given by

1 1 1
(D giv - lim { R + In(u? 6)( 12R

1677,' o'—=0

(I0) gy - Tlem2 oo

1
3]

1 3 1 1
lim { 3-R+ In(0) <5 R, R" —R* - 5 Rurpo R =R R"”’”’)] :

(A8)

Hvpo ) Hpvo
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and the requisite counterterms are readily identified.
Regularizing Eqs. (A2) and (A4) is less straightforward,
as in order to regularize V,V*G*? and V,V7G*F we
need to sequentially:

(1) Compute the derivative of the Hadamard

Green’s functions using the expansions in (A6)

Following these steps, one obtains

and keeping the terms that are divergent in the
limit ¢# — 0.

(2) Expand the result in powers of ¢# using the endpoint
expansions in Ref. [51].

(3) Use the averages in Eq. (35) to obtain a direction
independent result.

1 2 1 . 1 | o 5
(Mg : = 1622 (}}r_}r}){ R+ ln(ﬂ o) < zRﬂbRﬂ — R+ ERﬂu/mRﬂ = ERW’WFR 15 DR)} )
1 111 1 3 1 1
A I _ U 2 UUpo uvpe _
(IV) gy - 62 51’41_)0 { > R + In(y? 0')( 2R RHY + 4R + 2RWPGR + 2RM,M,R DR)] (A9)
In summary, the divergent contributions in Eq. (38) are given by19
(Sha = [ =M + (1V)) = (=D = ()]
lim [ d*x\/ 11 R + In(y?0) ! —R, R a R? DR (A10)
= — —q|—— o _— _—
472 20 N6 o o\ ™ T2

where we have used the relevant Bianchi identity to obtain

2R, R = R,,,,R*""° and the Gauss-Bonnet theorem

to rewrite the Riemann squared terms in terms of the Ricci
tensor and scalar.

APPENDIX B: FINITE CONTRIBUTIONS

In this appendix, we detail the recursion relations that
determine the finite remainder given by (Sgy), = (Sew) —
(Sow)q;y @s it appears in Eq. (43) for completeness. We first
note that we can separate the finite contribution of the
Hadamard regularized action into parts that are uniquely
determined by the background geometry—i.e. the terms
determined by the bitensors V#*¢#" and V** which we denote
as (Sgw)zn and those that depend on the state, determined
by the bitensors Wil and WHY, which we denote
as (Sgy)i2.

In order to compute (S,,)5l , we follow the procedure of
Appendix A by considering the state-dependent terms of
the Taylor expansions of Eq. (A6)—w/", wh** , v Jes
w’l'""ﬁ . Wy, Vvﬁay, va"ye, and W{)”. We find that the finite
contribution to the terms (I), (II), (IIT), and (IV) defined in
Egs. (A1)—-(A4) are given by

The extra minus in front of the ghost terms accounts for the
different statistics.

i -
(I)%C:l : ) Rﬂaw’(;a,
i
el

i
(I, : 8 <2 Puvap

(i 5 [=Vaitg” — g, 7, — 4%

-

W;u/aﬂ

(IV);ﬂl : Q [Qﬂvy{s(_v‘rwgyy ! Wﬂyyﬁff 4‘4/1“/75)] (Bl)

so that <Sgw>;‘f1 can be expressed as

()= [ /=gl + (V)3 - (3%~ (D)

1 v
— 2 | VTVl
Wg 7 4W11w76 )+ Pﬂvaﬂwﬂmﬂ + le%a

wg — T A, (B2)

We note that we can obtain the Taylor coefficients of

W*“? in terms of the Taylor coefficients of W**”" (we
focus on the graviton contribution, but a similar procedure
will give us the analogous Taylor coefficients for the ghost
contributions). By iteratively solving order by order in ¢* in
the equation of motion for the propagator, we find (cf. [11]
for more details)
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n(n + I)Wgya’ﬂ/ + ”Wﬁya’ﬂ’;po'p - "W%ya’ﬂ’A_l/zA;lp/zaf’
+(2n + I)Vﬁya’ﬂ’ + Vﬁya’ﬂ/;ﬂap - Vﬁya’ﬁ'A_l/zA;lﬂ/sz

1 NC
+ EDpo'lu/ W/n—l(x’[f’ - 0, <B3)
where

Dﬂuaﬁ — Dg;l” gl/j> _ P/waﬁ,

1 1 1
Pﬂyaﬁ _ _2R(ﬂay)/3 + 5gm/Rnt/f 4 EgdﬁR/“’ _ ZRgﬂvgaﬁ

1
By specifying the recursion relation Eq. (B3) for n = 1 and
expanding at the Oth order in ¢ we obtain wi* ; as a

function of the Taylor coefficients of Wl(l)va’/;’/

1 NG 6 1
W gy = =3 gy =2 ol ) {Dw/o PR AT

1

1 c c
AR ®s)

In the above wi™™, wgmﬁy and w{? e

inputs for the recursion relations corresponding to the
specifics of the state. The adiabatic vacuum by definition
is invariant under the symmetries of the background
geometry, and so all the initial state-dependent inputs must
themselves be constructed out of geometric invariants. By
scanning through possibilities by rank, one concludes that
the latter will also result in the generation of a handful of

are the “initial”

terms that redshift as radiation (if not vanish outright [10] 2O)

along with a series of additional slow quenching terms that
decay much faster.

We close by addressing how one can compare the results
of this investigation with the gauge fixed, foliation specific
treatment of [10]. We note that in fixing de Donder gauge
with the Faddeev Popov method, we began with the action
for a rank-two symmetric tensor field and gauge fixed via
the gauge breaking term (V, i} = %V,,h, thus eliminating
four degrees of freedom with residual gauge symmetry left
over) with the vector ghosts subtracting the remaining four
spurious degrees of freedom. The ghost and gauge fixing
terms in Eq. (19) possess the same properties as the eight
spurious degrees of freedom present in the fully diffeo-
morphism invariant action for a rank-two symmetric tensor
field, but with fermionic statistics that subtract them from
all on shell quantities. In order to arrive at a fully gauge
fixed action in terms of only the transverse traceless
polarizations of the graviton, one would have to determine
the ghost propagator in terms of the graviton propagator
using the generalization of the Ward identities discussed in
[11], but now evaluated on a background that does not
correspond to a vacuum spacetime. Finding the explicit
form of the finite state-dependent leftover in terms of the
graviton alone would be a practical and important compu-
tation to follow up on. However, this falls beyond the scope
of the present investigation, as our conclusion holds
independently of the explicit form of the finite state-
dependent leftover.

20ne can proceed similarly for the finite background-depen-
dent contributions.
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