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Hadamard regularization of the graviton stress tensor
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We present the details for the covariant renormalization of the stress tensor for vacuum tensor
perturbations at the level of the effective action, adopting Hadamard regularization techniques to isolate
short distance divergences and gauge fixing via the Faddeev-Popov procedure. The subsequently derived
renormalized stress tensor can be related to more familiar forms reliant upon an averaging prescription,
such as the Isaacson or Misner-Thorne-Wheeler forms. The latter, however, are premised on a prior scale
separation (beyond which the averaging is invoked) and therefore unsuited for the purposes of
renormalization. This can lead to potentially unphysical conclusions when taken as a starting point for
the computation of any observable that needs regularization, such as the energy density associated to a
stochastic background. Any averaging prescription, if needed, should only be invoked at the end of the
renormalization procedure. The latter necessarily involves the imposition of renormalization conditions via
a physical measurement at some fixed scale, which we retrace for primordial gravitational waves sourced
from vacuum fluctuations through direct or indirect observation.
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I. INTRODUCTORY REMARKS

Primordial gravitational waves offer an almost unim-
peded view of the early universe.1 They inevitably come in
the form of stochastic backgrounds, with readily inferred
spectral dependences and characteristic frequencies that
provide insight into the physical mechanisms that sourced
them [6,7]. There is a key distinction to be drawn, however,
from primordial gravitational waves sourced by dynamical
processes involving energy and momentum transfer—
phase transitions, particle production, decay of topological
defects, among others [8]—and those corresponding to
zero point fluctuations around some expanding back-
ground. Whereas the former involve propagating gravitons
sourced by some physical process, the latter by definition
represent vacuum polarization effects whose imprint on
various observables is no less real, but with important
distinctions worth qualifying. We elaborate further on these

distinctions and their consequences for what can be mean-
ingfully inferred from cosmological observations in a
separate investigation [9].
The purpose of this article is to address the regularization

and renormalization of the graviton stress tensor in a fully
covariant formalism.2 We revisit the treatment of [11]
which works directly from the effective action, extending
the approach to explicitly compute the divergences and the
counterterms required to subtract them on a cosmological
background, obviating the need to explicitly compute finite
contributions to the effective action as these are absorbed in
the process of imposing renormalization conditions at some
scale with certain caveats. The latter is worth stressing, as
although this may seem like an old problem for which a
corpus of literature exists, the majority of references focus
on formal aspects of regularization, and are notably sparse
on detail when it comes to the second, most consequential
part of the renormalization procedure.
In a nutshell, the renormalized stress-energy tensor for

gravitational waves can be obtained from the variation of
the effective action with respect to the background metric.
As straightforward a prescription as this is to state,
determining the effective action and background metric
that minimizes it is not trivial. In fact, on backgrounds that
are not asymptotically flat nor corresponding to vacuum
spacetimes, a number of caveats and distinctions apply to

*Contact author: annahnegro@gmail.com
†Contact author: patil@lorentz.leidenuniv.nl

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Subject to convolution with a nontrivial transfer function.
Within the standard thermal history, the QCD crossover, changes
in the number of relativistic species, and damping by free
streaming neutrinos process different wavelengths in a calculable
manner during radiation domination [1–3] with subsequently
negligible effects at later times [4,5].

2An expanded discussion on the regularization and renorm-
alization of the stress tensor for vacuum tensor perturbations in a
foliation specific formulation mirroring the discussion here can
be found in [10].
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the very definition of these objects that warrant further
elaboration.

A. Effective action and background field
method preliminaries

The one-loop effective action can in principle be
determined through a number of means. Functional
techniques such as the heat kernel method (through which
the DeWitt-Schwinger formalism can be implemented
[12–16]) have the advantage of being fully covariant
and therefore particularly suited for computation on
arbitrary backgrounds, albeit in Euclidean signature
[17]. The effective action consists of contributions that
can be classed according to whether they arise from the
ultraviolet (UV) or the infrared (IR) asymptotics of the
proper time integral over the relevant kernel. The UV
asymptotics correspond to well-understood and straight-
forwardly calculable short distance divergences that are
subtracted and renormalized in the usual way. The IR
contributions—to be distinguished from IR divergences3

—correspond to state and boundary condition depend-
ence, as well as capturing physical effects like vacuum
polarization and particle creation. They are generally
nonlocal even in theories with a mass gap [18], which
the usual DeWitt-Schwinger expansion fails to capture.
Nevertheless, some of these contributions can be reliably
computed with heat kernel methods via an extension of
the DeWitt-Schwinger method when restricted to asymp-
totically flat geometries [19–22]. Their status more gen-
erally is not known, nor in the case of boundary and state
dependence, operationally knowable in completeness to a
local observer.4 Related to this issue, is another important
distinction worth stressing.
In going from the Euclidean to Lorentzian signature for

cosmological applications, one must take care to distin-
guish and extract quantities relevant to the Cauchy prob-
lem, namely, in-in currents and expectation values as
opposed to the corresponding in-out quantities, both of
which can be extracted from the Euclidean effective action
through different choices of boundary conditions [20–22].
Following the notation of the former references, we first

consider the following definitions for the effective back-
ground5:

φa
F ¼ hout; vacjφajin; vaci

hout; vacjin; vaci ; ð1Þ

which is of interest in applications when in and out states
can be defined (e.g. scattering problems), and

φa
IN ¼ hin; vacjφajin; vaci; ð2Þ

which is of primary relevance to problems where only the
initial state is specified. Both fields can be obtained from
the effective equations of motion, which can be brought
into the form

δScl
δφa

F
þ JFa ¼ 0;

δScl
δφa

IN
þ JINa ¼ 0; ð3Þ

where Scl is the “classical action” and the Ja are the so-
called radiation currents which can be calculated to any
order in ℏ as we indicate shortly, and will correspond to
renormalized energy momentum tensors. We note that
Eq. (3) has implicit contributions coming from the measure,
which will be addressed in more detail in the following
sections.
Both the classical action and the respective radiation

currents are functions of the corresponding background
fields φa

F or φa
IN, where the background field method has

been implicitly adopted (see [23] for a very clear and
readable review). Through this method, one can efficiently
compute the effective action as the sum of all 1PI vacuum
graphs in the presence of a given background, with all
internal lines corresponding to fluctuations around this
background. Derivatives of the effective action with respect
to the background field can then be used to construct all
observables of interest, whether S-matrix elements or
correlation functions depending on the context.
In spite of the label, Scl appearing in Eq. (3) can also

be thought of as incorporating an ℏ expansion when
expressed as

Scl ≔ S0 þ Sct; ð4Þ

where S0 represents the tree-level action for the classical
background

S0 ¼ SEH þ SM; ð5Þ

and where Sct represents the counterterms needed to
subtract the UV divergences that arise at any given loop

3Unlike UV divergences, IR divergences admit multiple
interpretations with implications ranging from harmless to severe.
In all cases, their presence indicates that one has yet to arrive at a
reliable computation of a well-defined observable. If background
field quantization remains valid (in that any putative IR diver-
gences are not indicating an unstable background) and the
perturbative scheme is under control, they should cancel in all
physically well-defined observables. At one loop for example, IR
divergences for the graviton two-point function and quantities
derived from it can be shown to be an artifact of assuming a past
infinite de Sitter phase, canceling on backgrounds corresponding
to finite duration inflation [10] (ibid. for an expanded discussion
of the points raised in this footnote).

4To invert a quote attributed to Alan Turing: differential
equations are science, boundary conditions are religion.

5Where we also adopt DeWitt’s condensed notation, and to
avoid a proliferation of indices, the composite index a can also be
taken to denote a pair of spacetime indices a ≔ fμ; νg.
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order, with finite remainders that are to be fixed through
renormalization conditions. In the above, SEH is the
Einstein-Hilbert action and SM represents the matter con-
tent that sources the background expansion. The solution to
Eq. (3) defines a shifted tadpole condition, which is to say
that the relevant background field gets corrected as6

φa ¼ φa
0 þ ℏφa

1 þ � � � ð6Þ

where φa
0 minimizes S0 in isolation, and where we have

restored ℏ to emphasize the nature of the expansion.7 We
elaborate in more detail on the relevance of the shifted
tadpole condition when fixing renormalization conditions
at the end of the computation, in Sec. IV.
Different diagrammatic rules apply when attempting to

determine JFa or JINa . The radiation current JFa can be obtained
via techniques relevant to the computation of transition
amplitudes, and is given to one loop given by [20]

JFa ¼ −
i
2

δ3Scl
δφa

Fδφ
b
Fδφ

c
F

Gcb
F ;

Gcb
F ¼ i

hout; vacjT½φcφb�jin; vaci
hout; vacjin; vaci ; ð7Þ

whereGcb
F is the Feynman propagator. Similarly, the current

JINa is given to one loop by

JINa ¼ −
i
2

δ3Scl
δφa

INδφ
b
INδφ

c
IN

Gcb
IN;

Gcb
IN ¼ ihin; vacjT½φcφb�jin; vaci; ð8Þ

where the latter can be evaluated as it appears, or with the
full regalia of the Schwinger-Keldysh formalism. The two
Green’s functions differ in terms of their boundary con-
ditions, although in the specific case of future and past
asymptotic flatness, one has jout; vaci ¼ jin; vaci so
that Gcb

F ≡Gcb
IN.

Cosmological backgrounds, however, are not asymptoti-
cally flat in the past, nor in the future depending on the
matter content. Nevertheless, for the purposes of regulari-
zation, only the short distance divergence structure of Gcb

IN
is relevant, which is identical to that of Gcb

F . The reason for
this can be inferred from the fact that if the two Green’s
functions differ only in their boundary conditions, com-
pleteness dictates that the short distance modes of the two

vacua must be related to each other by a Bogoliubov
rotation that tends to zero for short wavelengths, otherwise
one would represent an infinite energy excitation relative to
the other (see also [15] for an expanded discussion on this
point). We stress this point as it offers us the possibility to
adapt computations that make use of Feynman Green’s
functions for the purposes of identifying the local counter-
terms necessitated by the subtraction procedure [11]. On
the other hand, the long wavelength behavior of Gcb

IN will
certainly differ from that of Gcb

F . However, the difference
will manifest as finite and nonlocal terms whose precise
forms one need not calculate beyond the scale factor
dependence of the various contributions, as these will be
absorbed in the process of fixing renormalization condi-
tions, which we detail further.
A final and no less consequential clarification is neces-

sitated by the question of whether we are obliged to work
with the on- or off-shell formulation of the effective action
in our computations. To one loop, the former can be
obtained by expanding the action to quadratic order in
fluctuations and evaluating the resulting functional deter-
minant as a function of the background:

Γ1 ¼
i
2
ln det

�
δ2Scl½φa�
δφb

1δφ
c
1

�
; ð9Þ

where φa is the relevant background field, and φa
1 denote

fluctuations around it. The result of differentiating the
above with respect to the background yields the radiation
currents Eqs. (7) and (8), whose contractions make explicit
that we are differentiating the one-loop 1PI vacuum graph
[23]. Unlike the classical action, however, Eq. (9) is not a
scalar and is dependent on how one parametrizes field
space in addition to also depending on the background field
gauge in the presence of gauge symmetries.
Instead, an effective action that does not suffer from

these drawbacks was arrived at by Vilkovisky and DeWitt
by working covariantly in field space and writing down the
equivalent of the functional determinant of the field
covariant second variational derivative of the action:

ΓVdW
1 ¼ i

2
ln det

�
δ2Scl½φa�
δφb

1δφ
c
1

− Γd
bc½φa� δScl½φ

a�
δφd

1

�
; ð10Þ

where Γd
bc is the connection on field space. When the

background field φa minimizes Scl (i.e. one is working on
shell) the two forms are equivalent. However, the two forms
will in general differ for any quantity obtained from
differentiating the effective action when the field space
connection is nonvanishing even when evaluated on shell.
Therefore the renormalized stress tensor obtained from the
Vilkovisky-DeWitt effective action will have additional
contributions relative to the stress tensor obtained from the
“standard theory.” However, the difference is only in terms
of additional finite contributions, which moreover vanish

6One of the advantages of the background field method is that
it is possible to work perturbatively so that the background can
remain unspecified until the very end, where one must eventually
evaluate all physical quantities on-shell (and in the background
gauge that defined the gauge fixing and ghost terms) [23].

7In the context of inflationary cosmology, one shows that the
shifted background simplifies calculations of logarithmic correc-
tions to inflationary correlators from the UV asymptotics of the
effective action alone [24].
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for vacuum contributions on maximally symmetric space-
times and for one-particle states on Minkowski space [11].
On a general Friedman-Robertson-Lemaître-Walker
(FRLW) background, with a homogeneous and isotropic
fluid sourcing the background expansion, these are non-
vanishing and contribute additional finite contributions that
depend on the quantum state.
Nevertheless, the procedure we follow allows us to work

with the standard form of the effective action, as the
divergences that need to be regularized are unaffected by
the Vilkovisky-DeWitt correction term, and any finite
contributions are absorbed by the process of fixing renorm-
alization conditions. What is crucial for the subtraction
process, however, is the identification of the scale factor
dependence of the various finite and state-dependent terms,
for which we determine recursion relations with initial
coefficients that can be fixed with a sufficient number of
measurements at the renormalization scale.

B. Outline, scope, and synopsis

Having informed ourselves of the necessary caveats, we
can now outline the treatment to follow. We begin in
Sec. II with a discussion of the procedure by which the
stress tensor associated with vacuum tensor perturbations
can be derived directly from the standard effective action,
addressing how the more familiar forms can be obtained
from direct variation of the tree-level contributions and
then Brill-Hartle averaging. Sections III and IV are
concerned with the Hadamard regularization procedure
and subsequent renormalization, in which we subtract
divergences and discuss the procedure by which physical
observations can be used to fix renormalization condi-
tions, absorbing finite contributions whose explicit forms
are not needed beyond their scale factor dependence in an
FRLW foliation. We revisit all the important caveats and
distinctions detailed above as we encounter them, and
offer our summarizing thoughts in the conclusions with
technical details deferred to the Appendixes.
What follows adopts established techniques towards

the specific problem of computing the renormalized stress
tensor associated with the stochastic background of
primordial gravitational waves on an FLRW background.
One does not have the luxury of not following through t
his process to completion if one is interested in making
contact with cosmological observations. As we recap in
the conclusions, the literature is replete with computations
for the energy density associated with the stochastic back-
ground of vacuum tensor perturbations that exhibit cutoff
dependences. Moreover, these have regularized forms of
the stress tensor with an intrinsic (time-dependent) scale
separation invoked for an averaging prescription, and
therefore unsuited for the purposes of renormalization
and leading to potentially unphysical conclusions when
taken on face value. We refer the reader to [10] for a
discussion of how this process resolves in a foliation

specific formulation,8 where it is stressed that any
attempts to infer bounds on the number of relativistic
species in the early universe from primordial gravitational
waves is inextricable from the process of renormalization.
What follows is an reexamination of this procedure in a
fully covariant formalism, with a more detailed explora-
tion of its implication for cosmological and astrophysical
implications deferred to a separate investigation [9].

II. VACUUM STRESS ENERGY
FROM THE EFFECTIVE ACTION

Our treatment proceeds from the standard effective
action via the background field method. We expand the
classical Einstein-Hilbert action to quadratic order in
perturbations hμν around some background, defined as

ḡμν ¼ gμν þ hμν; ð11Þ

where gμν is the background metric which we leave
unspecified for the time being. To second order, one can
show that [11,25]

Sð2Þ ¼ κ2

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
hρσ□hρσ þ h∇ρ∇σhσρþ

∇αhαρ∇σhσρ −
1

2
h□hþ Rβ

ρασhβαhρσ þ hαρhασRρσ

− hhρσRρσ −
1

2
hρσhρσRþ 1

4
hhR

�
; ð12Þ

where we have defined κ2 ≡ 1
8πGN

. The stress tensor for
gravitational waves is obtained by variation with respect to
the background metric—a process that is equivalent to
perturbing the Einstein equations to second order and
bringing the quadratic terms over to the other side to act
as a source for the background.
If one is only interested in backgrounds of gravitational

waves with a spectrum of bounded support and comprised
wavelengths and periods much shorter than the back-
ground curvature scale9—as with most astrophysical
applications—a number of approximations and simplifica-
tions are possible. Firstly, one can neglect terms containing
derivatives of the background relative to derivatives of
the tensor perturbations, and as a result, discard terms

8Where it can be shown that the a stress tensor for gravitational
waves not reliant on an averaging prescription and valid for all
wavelengths can be regularized, the necessary counterterms
identified—the step at which previous treatments would have
identified their computations going off course—and IR diver-
gences canceled on backgrounds that transitioned into radiation
domination from a period of finite duration (as opposed to past
infinite) inflation.

9That is, when λ;ω−1 ≪ 2πR, where R−2 is the typical
magnitude of the nonvanishing components of the background
Riemann tensor.
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proportional to the curvature scalar and Ricci tensor
and freely commute covariant derivatives. Moreover, one
can invoke a spatial averaging over all physical wave
numbers greater than the inverse radius of background
curvature (itself, a time-dependent criterion on cosmologi-
cal backgrounds) and integrate by parts within the averag-
ing integral [30,31]. Doing so results in the simplified
expression [26]

Tgw
μν ¼ 1

32πGN

×

�
h̄αβ;μh̄

αβ
;ν −

1

2
h̄;μh̄;ν − h̄αβ ;βh̄αμ;ν − h̄αβ ;βh̄αν;μ

�
BH

ð13Þ

where subscript on the angled brackets denotes spatial
averaging, semicolons denote covariant derivatives with
respect to the background metric, and where we have
defined

h̄μν ¼ hμν −
1

2
gμνh: ð14Þ

Equation (13) is covariantly conserved and gauge invariant
up to correction terms that are negligible for all wave-
lengths shorter than the averaging scale. Further specifying
transverse-traceless gauge results in the Isaacson form of
the stress tensor [32] (see also [28,29]):

Tgw;Isc
μν ¼ 1

32πGN
hhρσ;μhρσ ;νiBH: ð15Þ

The expression above is widely taken as the starting point
for determining the energy density associated with sto-
chastic backgrounds of primordial origin (see e.g. [8]).
While this is certainly valid for spectra of bounded support
sourced by some physical production mechanism (and
hence subhorizon), taking this formula on face value for
modes with wavelengths greater than the domain of validity
defined by the averaging scale ought to be treated with
caution. This caution should be amplified when one
encounters divergences that need to be regularized, as is
the case for stochastic backgrounds associated with vacuum
tensor perturbations given the prior scale separation inher-
ent in the definition of Eqs. (13) and (14). Reverting back to
the approximately gauge invariant form Eq. (13) will not
help matters either, as any computation at any loop order
implicit integrates over all scales and will eventually run
afoul of this approximation. Appeals to ad hoc IR cutoffs
should be viewed through the lens that if one recovers
divergences and gauge dependence in one’s answer as this
cutoff is removed, one has not arrived at a physically
reliable answer. So how does one proceed instead?
At this point, an important aside is due: although one

might find statements in the literature that questions the

utility of even defining gravitational waves with wave-
lengths grater than the background curvature scale,10 this
would nominally be at odds with the premise of many
computations. It is also at odds with observations: gravi-
tational waves from mergers of binary black hole systems
have been observed [33–35]. Moreover, the search for
primordial gravitational waves is premised on the fact that
they induce local quadrupolar anisotropies in the density
field of the primordial plasma at all scales, resulting in a
signature B-mode polarization pattern [36,37]. Both sit-
uations feature gravitational waves with wavelengths com-
parable to or greater than the background curvature radius
at some point—the peak frequency emitted from a merger
corresponding to wavelengths commensurate to the
Schwarzschild radius, and primordial tensor fluctuations
having crossed the Hubble radius before sourcing local
anisotropies.
Clearly, nature tells us that the notion of tensor pertur-

bations with wavelengths longer than the background
curvature radius has to make sense. By general covariance
and the Bianchi identities that follow as a corollary, one
must also be able to identify a conserved rank-two tensor
that plays the role of a stress tensor from direct perturbation
of the equations of motion. That one can do so with
minimal fuss by simply undoing the averaging prescription
and avoiding neglecting any terms arising from the direct
variation of Eq. (12) can be found in [10].11 It is also the
premise of the computation in [11] that is retraced in what
follows, which stresses that Eq. (12) is to be viewed as the
action for a massless spin-two degree of freedom on a
curved background, whose regularization and renormaliza-
tion proceeds via established prescriptions.
We proceed from the unadulterated definition for the

stress tensor for gravitational waves:

Tgw
μν ¼ −

2ffiffiffiffiffiffi−gp
�
δð−SgwÞ
δgμν

�
in;in

ð16Þ

where the in-in expectation value implicitly traces over
some initial density matrix. When this state is taken as the
adiabatic vacuum, one obtains the stress tensor for vacuum
tensor perturbations.

10In Sec. 35.7 of [26] for example, one finds the statement that
“one must always haveA ≪ 1 as well as λ ≪ 2πR if the concept
of gravitational wave is to make any sense,” where A is the
dimensionless amplitude of the gravitational wave and R−2 is as
defined in footnote 9 (see also [8,27–29] for more detailed
discussions of this point).

11Although the notion of long wavelength tensor perturbations
certainly makes sense, assigning an energy density to sufficiently
long wavelength perturbations does come with caveats, although
essentially semantic in Nature and rendered moot in the extrac-
tion of quantities that imprint on observables—see Sec. IVof [10]
for an expanded discussion.
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In order to define Sgw we must first consider the process
of gauge fixing, for which de Donder gauge presents a
particularly efficient choice. We proceed via the Faddeev-
Popov method [38] and add a gauge breaking term which
fixes the chosen gauge condition to Eq. (12), defined as
∇μhμν ¼ 1

2
∇νh, along with a ghost term that accounts for

the measure factor induced by gauge fixing:

Sgb¼−
κ2

2

Z
d4x

ffiffiffiffiffiffi
−g

p 	
∇μhμν−

1

2
∇νh


	
∇αhαν−

1

2
∇νh



;

ð17Þ

Sgh ¼
κ2

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½η̄μðgμν□ − RμνÞην�: ð18Þ

In the above, ηρ represents the ghost field that accounts for
the residual gauge freedom by subtracting the spurious
degrees of freedom from the action Sð2Þ. Consequently, the
gauge fixed action for the gravitational sector is given by

Sgw ¼ Sð2Þ þ Sgb þ Sgh

¼ κ2

2

Z
d4x

ffiffiffiffiffiffi
−g

p �
1

2
hρσ□hρσ −

1

4
h□hþ Rβ

ρασhβαhρσ

þ hαρhασRρσ − hhρσRρσ −
1

2
hρσhρσR

þ 1

4
hhRþ η̄μðgμν□ − RμνÞην

�
: ð19Þ

In this way, starting with the action Eq. (12) for a rank-two
symmetric tensor field nominally consisting of ten degrees
of freedom, we obtain the action of a massless spin-two
particle Sgw with only two propagating degrees of freedom.
From Eq. (16), the stress-energy tensor of vacuum tensor
perturbations is given by the sum of contributions

Tgw
μν ¼ −

2ffiffiffiffiffiffi−gp
�

δ

δgμν
ð−Sgr − SghÞ

�
in;in

¼ Tgr
μν þ Tgh

μν; ð20Þ

where we have defined Sgr ≡ Sð2Þ þ Sgb. The angled
brackets above denote the time ordered in-in correlation
function h…i ≔ hin; vacjT½…�jin; vaci, which inevitably
exhibits divergences for field bilinears in the coincident
limit, the regularization of which we turn to next.

III. REGULARIZATION

The regularization of the stress tensor for any propagat-
ing degree of freedom on a general background must
proceed with care, all the more so when gauge redundan-
cies are present. Although we proceed to do so in a
covariant manner, one can also contemplate working
directly at the level of the stress tensor obtained by variation
of Eq. (12), gauge fixing by hand, and then imposing the
scalar vector tensor decomposition to extract the stress
tensor for the propagating spin-two polarizations when

evaluated as an expectation value [10]. This procedure can
be related to the covariant method detailed below by a
series of Ward identities that we return to further on. In
what follows, we proceed to regularize the divergences
encountered in the evaluation of Eq. (20) by adopting
Hadamard regularization techniques [11,39,40], which are
an extension of the covariant point-splitting method.12

A. Hadamard point splitting

The point-split version of a tensor UμνðxÞ is defined as
the coincidence limit of the bitensor Uμν0 ðx; x0Þ defined in a
neighborhood of xμ

UμνðxÞ ¼ lim
σμ→0

Uμν0 ðx; x0Þ; ð21Þ

where primed indices refer to the point xμ
0
and σμ is the

geodesic distance between xμ and xμ
0
. Doing so allows us to

isolate the divergent from finite contributions to Eq. (20)
with σμ as the UV regulator. Hadamard regularization of the
effective action proceeds through the intermediary of the
Feynman propagators (in the notation of [11]):

Gμνα0β0 ðx; x0Þ ¼ i
32πGN

hψ jTðhμνðxÞhα0β0 ðx0ÞÞjψi
hψ jψi

¼ i
8π2

�
Δ1=2

σ þ iε
ðgα0ðμgνÞβ0 Þ

þ Vμνα0β0 lnðΛ2ðσ þ iεÞÞ þWμνα0β0
�

G̃μα0 ðx; x0Þ ¼ i
32πGN

hψ jTðη̄μðxÞηα0 ðx0ÞÞjψi
hψ jψi

¼ i
8π2

�
Δ1=2

σ þ iε
gμα

0 þ Ṽμα0 lnðΛ2ðσ þ iεÞÞ

þ W̃μα0
�
; ð22Þ

where Λ is some arbitrary mass scale so that the argument
of the logarithms are dimensionless, and primed indices
are geodesically transported from xμ

0
to xμ by using the

bivector of parallel displacement gα
0
α, defined by the

differential equation [14,47]

∇ρgα0β∇ρσ ¼ 0; ð23Þ

with the boundary condition

lim
x→x0

gα0βðx; x0Þ ¼ gαβðxÞ: ð24Þ

12Cf. [12,41] for applications of point splitting to gauge
theories on flat space, and [42–46] for applications of Hadamard
techniques to scalar, vector, and fermionic degrees of freedom on
curved backgrounds.
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The iε appearing above is characteristic of the Feynman
propagator. Within the present context it is more convenient
to work with the Hadamard Green’s functions, for which
we follow [45] in deriving their representations from the
Hadamard form of the Feynman propagator. By using the
identities

1

σ þ iε
¼ P

1

σ
− iπδðσÞ; lnðσ þ iεÞ ¼ ln jσj þ iπΘð−σÞ;

ð25Þ

where P and Θ denote the Cauchy principal value and the
Heaviside theta function respectively, we can rewrite
Eq. (22) as

Gab
F ðx; x0Þ ¼ Gab

A ðx; x0Þ þ i
2
Gabðx; x0Þ; ð26Þ

where

Gμνα0β0
A ðx; x0Þ ¼ 1

8π
½Δ1=2ðgα0ðμgνÞβ0 ÞδðσÞ − Vμνα0β0Θð−σÞ�;

G̃μα0
A ðx; x0Þ ¼ 1

8π
½Δ1=2gμα

0
δðσÞ − Ṽμα0Θð−σÞ� ð27Þ

is the average of the advanced and retarded Green’s
functions, and

Gμνα0β0 ðx; x0Þ ¼ 1

4π2

�
Δ1=2

σ
ðgα0ðμgνÞβ0 Þ þ Vμνα0β0 lnðΛ2σÞ

þWμνα0β0
�
;

G̃μα0 ðx; x0Þ ¼ 1

4π2

�
Δ1=2

σ
gμα

0 þ Ṽμα0 lnðΛ2σÞ þ W̃μα0
�

ð28Þ

is the Hadamard Green’s function.13

The state jψi appearing in Eq. (28), that in this work is
the standard Bunch-Davies vacuum, is in general somewhat
circularly defined as any quantum state—the Hadamard
state—such that the short distance divergence structure is of
the forms indicated in the square brackets, where σ ¼
1
2
σμσ

μ denotes the square of the geodesic distance between
xμ and xμ

0
, Δ is the Van Vleck-Morette determinant and

the bitensors Vμνα0β0 , Wμνα0β0 , Ṽμα0 , and W̃μα0 are smooth
functions in the limit σ → 0 of the form

Vμνα0β0 ¼
X∞
n¼0

Vμνα0β0
n σn; Wμνα0β0 ¼

X∞
n¼0

Wμνα0β0
n σn;

Ṽμα0 ¼
X∞
n¼0

Ṽμα0
n σn; W̃μα0 ¼

X∞
n¼0

W̃μα0
n σn: ð29Þ

It is to be stressed that the bitensors Vμνα0β0
n and Ṽμα0

n depend

only on the local geometry, whereas the bitensors Wμνα0β0
n

and W̃μα0
n depend on the boundary conditions and the

precise choice of the state jψi. Therefore, any difference
between evaluating Eq. (20) with in-in expectation values
as opposed to their in-out counterparts as encoded in the
Feynman propagators of Eq. (28) will manifest only in

differences in the finite contributionsWμνα0β0
n and W̃μα0

n . It is
precisely these finite contributions that are moot to any
local observer, being absorbed by renormalized couplings
in the effective action through the process of imposing
renormalization conditions.
Each of the Vμνα0β0

n , Wμνα0β0
n , Ṽμα0

n , and W̃μα0
n bitensors can

be rewritten in the form of a covariant Taylor expansion for
xμ in the neighbourhood of xμ

0
:

Vμνα0β0
n ¼ gα

0
αgβ

0
β

�
vμναβn þ vμναβn γσ

γ þ 1

2
vμναβn γτσ

γστ þ � � �
�
;

Ṽμα0
n ¼ gα

0
α

�
ṽμαn þ ṽμαn γσ

γ þ 1

2
ṽμαn γτσ

γστ þ � � �
�
; ð30Þ

and similarly for Wμνα0β0
n and W̃μα0

n .
The Hadamard Green’s functions as expressed in

Eq. (28) facilitate the regularization of Eq. (19) in that
the latter can be viewed as the point split expression:

hSgri ¼ lim
σμ→0

�Z
d4x

ffiffiffiffiffiffi
−g

p �	
−
1

2
gρα0gσβ0 þ

1

4
gρσgα0β0




×∇τ∇τ0Gρσα0β0 þ
	
Rα0ρβ0σ þ gβ0σRρα0 − gα0β0Rρσ

−
1

2
Rgρα0gσβ0 þ

1

4
Rgρσgα0β0



Gρσα0β0

��
; ð31Þ

hSghi ¼ lim
σμ→0

�Z
d4x

ffiffiffiffiffiffi
−g

p ½−gμα0∇τ∇τ0G̃μα0 − Rμα0G̃
μα0 �

�
:

ð32Þ

Recalling that the divergence structure of the Hadamard
Green’s functions is completely captured by the terms
containing the Van Vleck-Morette determinant Δ, and the
bitensors Vμνα0β0 and Ṽμα0 , the divergent part of the
gravitational sector of the effective action Eq. (19) must
be of the form

13In the context of Schwarzschild spacetimes for example, the
Hartle-Hawking-Israel and Unruh vacua are examples of vacuum
states that can be shown to satisfy the Hadamard property [48–50].
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hSgwidiv ∼ lim
σμ→0

Z
d4x

ffiffiffiffiffiffi
−g

p ½γ1ðσÞRþ γ2ðσÞR2

þ γ3ðσÞRμνRμν þ γ4ðσÞ□R�: ð33Þ

We compute the coefficients γ1ðσÞ, γ2ðσÞ, γ3ðσÞ, and γ4ðσÞ
in the next subsection, from which one can immediately
identify the counterterms required to subtract them.

B. Counterterms

The process of determining the counterterms needed to
regularize the effective action begins with rewriting the
coincidence limits as

lim
σμ→0

Rμα0G̃
μα0 ¼ Rμα lim

σμ→0
gα0αG̃

μα0 ð34Þ

so that the tensors contracted with the Hadamard Green’s
functions are tensors in xμ and scalars in xμ

0
. Furthermore,

as the coincidence limit depends on the path by which σμ

approaches zero, it is necessary to specify a path-averaging
procedure. Following Ref. [51], we use the so-called
elementary averaging procedure, whereby one makes
the replacements:

σλσμ →
1

4
gλμσρσρ ¼1

2 gλμσ;

σλσμσγσδ →
1

6
σ2ðgγδgλμ þ gγλgδμ þ gγμgδλÞ;

σασβσλσμσγσδ → ð1=24Þσ3½gαβðgλμgνδ þ gλγgμδ þ gλδgμνÞ
þ gαλðgβμgγδ þ gβγgμδ þ gβδgμγÞ
þ gαμðgβλgγδ þ gβνgλδ þ gβδgλγÞ
þ gαγðgβλgμδ þ gβμgλδ þ gβδgλμÞ
þ gαδðgβλgμν þ gβμgλγ þ gβγgλμÞ�: ð35Þ

The singularity structure is then extracted by expanding at
the endpoints and iteratively solving the equation of motion
of the propagator to find the Taylor coefficients of Vμνα0β0

and Ṽμα0 (see Appendix A for more details). From this, the
divergent contributions to Sgh are found to be

hSghidiv ¼
1

4π2
lim
σμ→0

Z
d4x

ffiffiffiffiffiffi
−g

p �
−
3

σ
Rþ lnðΛ2σÞ

	
RμνRμν

þ 1

6
R2 −

1

24
RμνρσRμνρσ þ 5

12
□R


�
; ð36Þ

whereas the divergent contributions to Sgw are given by

hSgridiv ¼
1

4π2
lim
σμ→0

Z
d4x

ffiffiffiffiffiffi
−g

p �
−

7

6σ
R

þ lnðΛ2σÞ
	
RμνRμν −

1

4
R2 −

13

24
□R


�
: ð37Þ

By use of the Bianchi identity and the Gauss-Bonnet
theorem, the divergent contribution of the action of vacuum
tensor fluctuations results from the difference of Eqs. (37)
and (36) (accounting for the statistics of the ghost con-
tributions), and is given by14

hSgwidiv ¼
1

4π2
lim
σμ→0

Z
d4x

ffiffiffiffiffiffi
−g

p �
11

6σ
Rþ lnðΛ2σÞ

	
1

6
RμνRμν

−
11

24
R2 −

23

24
□R


�
; ð38Þ

which is of the form of Eq. (33), with the γiðσÞ coefficients
straightforwardly read off from the above.

IV. RENORMALIZATION

Having identified the divergent contributions to the
gravitational sector of the effective action, we can now
proceed to subtract them with the appropriate counter-
terms and absorb finite contributions through the imposi-
tion of renormalization conditions. We begin by con-
sidering all contributions to the action [cf. Eqs. (4), (5),
and (19)]:

hSi ¼ SEH þ SRD þ Sct þ hSgwi; ð39Þ

where the matter content that sources the background
expansion SM is now specified by SRD to denote radiation
domination, although the treatment that follows generalizes
to any background. For concreteness, we work with the
action formulation for a barotropic fluid expressed in terms
of a derivatively coupled scalar [53,54], so that

SRD ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PbgðXÞ; ð40Þ

where PbgðXÞ ¼ X2, with X ≔ − 1
2
gμν∂μψ∂νψ reproduces

the stress tensor for the background radiation fluid,15 and
where we have defined

Sct ¼
1

4π2
lim
σμ→0

Z
d4x

ffiffiffiffiffiffi
−g

p ½α1ðσ; μÞRþ α2ðσ; μÞRμνRμν

þ α3ðσ; μÞR2 þ α4ðσ; μÞ□R�; ð41Þ

where μ is an arbitrary mass scale whose meaning will
become clear shortly. The divergent contributions in

14Note that although different regularization schemes may
result in different results for intermediate expressions (see e.g.
[52] for a study of adiabatic regularization), scheme dependence
must drop out of all well-defined physical observables. Moreover,
the nature of divergences that require subtraction can further
depend on the precise background one is background field
quantizing around (see [15] for more details).

15A feature that remains true to all orders in perturbation
theory [54].
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Eq. (38) can be subtracted with the following choices for
the αi:

α1ðμ; σÞ ¼ −
11

6

1

σ
þ αF1ðμÞ;

α2ðμ; σÞ ¼ −
1

6
logðμ2σÞ þ αF2ðμÞ;

α3ðμ; σÞ ¼
11

24
logðμ2σÞ þ αF3ðμÞ;

α4ðμ; σÞ ¼
23

24
logðμ2σÞ þ αF4ðμÞ; ð42Þ

where the αFi are finite contributions that we leave unspeci-
fied for now. With this, the regularized, but yet to be
renormalized action can be expressed as

hSi ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πGðμÞRþ ᾱ2ðμÞRμνRμν þ ᾱ3ðμÞR2

þ ᾱ4ðμÞ□Rþ PbgðXBÞ
�
þ hSgwifin; ð43Þ

where hSgwifin ≔ hSgwi − hSgwidiv (cf. Appendix B), and
where

1

16πGðμÞ ¼
1

16πGB
þ αF1ðμÞ

4π2
;

ᾱ2ðμÞ ¼
1

4π2

�
1

6
log

Λ2

μ2
þ αF2ðμÞ

�
;

ᾱ3ðμÞ ¼
1

4π2

�
−
11

24
log

Λ2

μ2
þ αF3ðμÞ

�
;

ᾱ4ðμÞ ¼
1

4π2

�
−
23

24
log

Λ2

μ2
þ αF4ðμÞ

�
: ð44Þ

The subscripts B appearing above are to denote bare
quantities.
In order to proceed, we are obliged to make use of

leading order field equations to eliminate redundant higher
order correction terms containing second derivatives and
time derivatives of what were auxiliary fields in the tree-
level action [55,56]. That is, one can substitute the tree-
level equations of motion R ¼ −8πGðμÞTbg and Rμν ¼
8πGðμÞ½Tbg

μν − 1
2
gμνTbg� into the above, where

Tbg μ
ν ðXBÞ ¼ δμνPbg − Pbg

;X∂
μψB∂νψB ð45Þ

is obtained from Eq. (40) through variation with the
background metric. The functional form PbgðXBÞ ¼ X2

B
ensures that Tbg ≡ 0, so that the regularized action takes
the form

hSi ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2ðμÞRþ P̃bgðXB; μÞ

�
þ hSgwifin;

ð46Þ

where we have dropped total derivatives and defined
M−2ðμÞ ≔ 8πGðμÞ, which we use interchangeably in what
follows, and where

P̃bgðXB; μÞ ≔ X2
B þ 12X4

B
ᾱ2ðμÞ
M4ðμÞ ; ð47Þ

with ᾱ2 defined as in Eq. (44). We immediately notice that
in adding the contribution of vacuum gravitational waves,
the stress tensor associated with the shifted matter sector
P̃ðXB; μÞ is no longer traceless, hence the renormalized
stress-energy tensor does not appear as a radiationlike
stress-energy tensor:

T̃bg μ
μ ¼ −48X4

B
ᾱ2ðμÞ
M4ðμÞ : ð48Þ

This is because Einstein gravity is not conformally invari-
ant, and therefore neither are the field equations governing
gravitational waves even if the background is conformally
flat [57]. Hence the stress tensor for gravitational waves
will not be exactly traceless unless ᾱ2 ≡ 0, and this feature
gets imported into the matter sector via operator redun-
dancy at one loop, a point which we will return to shortly.
We now proceed to fix the finite parts of the relevant

couplings via renormalization conditions. We recall the
shifted tadpole condition, which is defined by the require-
ment that the background effective field gμν must be put on
shell in all final expressions. That is, we demand that

1

8πGðμÞ
	
Rμν −

1

2
Rgμν



¼ T̃bg

μν þ hTgw;fin
μν i: ð49Þ

We first note that Newton’s constant can only be fixed via a
Cavendish type experiment, where we have knowledge of
the masses whose strength of gravitational interactions we
are attempting to fix. Let us say we do this at laboratory,
i.e. mm scales, and impose the renormalization condition
that ½8πGðμÞ�−1 ≡M2ðμ�Þ≡M2

pl where the latter is given
by the reduced Planck mass M2

pl ¼ 2.435 × 1018 GeV.
From Eq. (44) it therefore follows that

8πGNðμÞ ¼
1

M2
pl

�
1þ αF1ðμÞ − αF1ðμ�Þ

2π2M2
pl

�−1
; ð50Þ

which can be used to express Eq. (49) in covariant form as

Gμν ¼
1

M2
pl

h
T̃bg
μνþhTgw;fin

μν i
i�
1þαF1ðμÞ−αF1ðμ�Þ

2π2M2
pl

�−1
: ð51Þ
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We see from the above how additive renormalization of
Newton’s constant (i.e. renormalization of the graviton
wave function) is equivalent to the multiplicative renorm-
alization of the matter sector via the tadpole condition.16 In
the context of cosmology, however, this is a moot point
as the factor in the square brackets above is precisely unity
in the absence of any new light species. The reason for this
is that at energy scales smaller than μ�—i.e. at scales bigger
than laboratory scales, as with all cosmological observa-
tions—the Newton’s constant will no longer run17 unless
some new particle starts to propagate at a mass threshold
lighter than the scale of the experiment. Given that the
neutrino is the lightest massive particle that we know of, we
can take the factor in the square brackets of Eq. (51) to be
unity, although we leave it present in proceeding (see [10]
for further elaboration on this point).
In order to fix the remaining finite contribution appear-

ing in ᾱ2 in combination with those coming from hTgw;fin
μν i,

we have to appeal to additional observations. Before we do
so, we note that hTgw;fin

μν i has a series of contributions that
can be split into the background-dependent part and the
state-dependent part. The background-dependent part,
which corresponds to the finite leftover from the renor-
malized coupling constants, is fixed by imposing renorm-
alization conditions discussed in what follows. The state-
dependent part can be recursively obtained and it is not
uniquely determined as it depends on the initial conditions
of the quantum state (cf. Appendix B). These contributions
can be classed according to their scale factor dependence.
We also note that the results of a mass independent
regularization imply that the contribution Eq. (48) is
evidently canceled by a compensating term from the
state-dependent part of hTgw;fin

μν i in the adiabatic vacuum
[10]. Regardless of this fact, in addition to admitting the
possibility of other operators in the effective action from the
presence of additional degrees of freedom, one simply
extracts that part of the renormalized expression that scales
as radiation and proceeds accordingly.
Consider for example the measurement of the equation

of state parameter w during what we presume to be
radiation domination. In principle, any other measurement
of a dimensionless ratio will do (e.g. H2=M2

pl) as what
follows transcribes straightforwardly. Making such a meas-
urement at the scale μR results in the renormalization
condition:

3H2
Rð3ωR − 1Þ ¼ −48X4

B
ᾱ2ðμRÞ
M6

pl

þ βFðμRÞ
M2

pl

; ð52Þ

where βFðμRÞ ≔ hTgw;fini. Regardless of how suppressed
the right-hand side may appear, it in principle fixes the
remaining finite remainder in ᾱ2 defined in Eq. (44), up to
the state dependence of the terms that appear in βFðμRÞ. If
the right-hand side cancels exactly, the effective back-
ground corresponds to radiation dominated expansion. If
the right-hand does not cancel, it would still correspond to
radiation dominated expansion up to suppressed slow
quenching terms which are Mpl-suppressed,

18 which more-
over, dilute much faster than radiation.
Hence, the most one can conclude from the shifted

tadpole condition Eq. (51) is

3H2 ¼ 1

M2
pl

ðρ̃bg þ ρrdgw;finÞ
�
1þ αF1ðμÞ − αF1ðμ�Þ

2π2M2
pl

�−1

≈
ρ̃bg
M2

pl

ð1þ δZÞ: ð53Þ

ρ̃bg corresponds to the time-time component of T̃bg
μν,

and with ρrdgw;fin denoting any (possibly vanishing) state-

dependent contributions from hTgw;fin
μν i that scales as

radiation. δZ which is some constant by this definition,
defines the wave function renormalization of the otherwise
unobservable bare thermal potential ψB:

ψ ≔ ð1þ δZÞ1=4ψB; ð54Þ
where now ψ denotes a dressed quantity. Therefore, even if
we do not uniquely determine the state-dependent part of
ρ̃bg, one concludes that independently on the explicit form
of the finite leftover, the net effect of the renormalization
procedure is to simply mimic shifts in the definition of
otherwise unaccessible quantities, a conclusion that can
also be arrived at through dimensional regularization in the
foliation specific formalism [10].

V. SUMMARIZING REMARKS

Whether one can meaningfully constrain vacuum tensor
perturbations from cosmological observations such as Neff
bounds is intrinsically bound to the question of how one
assigns a stress tensor to them, and how one regularizes the
divergences that inevitably arise from the coincident limit
of field bilinears that it samples. A typical expression that
one can find in the literature (see e.g. [58–71]) chooses to
impose hard cutoffs on the energy density of gravitational

16This is simply the effect of operator redundancy where one
uses the background equations of motion, operationally deter-
mined by the tadpole condition. Although Eq. (51) was derived
for the specific background given by Eqs. (46) and (47), the
formalism can be applied to a background sourced by an arbitrary
matter sector.

17Even logarthmically, a fact that is immediately apparent
with Pauli-Villars regularization, but obscured in dimensional
and point-split regularization unless one performs threshold
matching.

18In practice, this has to be fixed by renormalization con-
ditions. The best accuracy with which we can ever hope to
constrain the left-hand side of Eq. (52) means that the right-hand
side can only be taken to be consistent with zero. This implies that
the stress-energy tensor of the shifted matter sector in Eq. (48) can
be considered traceless.
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waves obtained from the Isaacson form of the stress tensor.
The result is expressions of the form

ρGW ≃
At

32πGN

	
kUV
k�



nt 1

2nt

1

a4
∝

1

a4

�
1

nt
þ log

kUV
k�

�
; ð55Þ

where k� is some reference IR scale, and the approximation is
only valid when nt → 0. It should be immediately apparent
that no physical answer should depend on cutoffs, nor should
one renormalize any quantity that presumes a prior scale
separation in its definition. In a separate investigation [10]we
have shown how any attempts to extract Neff bounds from
vacuum tensor perturbations is inextricable from the process
of background renormalization in a foliation specific for-
mulation. Here, we have repeated this process in a covariant
formalism, arriving at similar conclusions. We elaborate
further on the consequences for cosmological observations,
and what can meaningfully be interpreted from them in a
follow-up investigation [9].

APPENDIX A: DETAILS OF HADAMARD
REGULARIZATION

In this appendix, we present further details as to how one
can obtain the divergent contributions in Eq. (33).

Regularizing the contributions of Eqs. (31) and (32) in
order to obtain Eqs. (36) and (37) boils down to regulating
the following four terms:

ðIÞ∶ Rμα lim
σμ→0

gα0αG̃
μα0 ; ðA1Þ

ðIIÞ∶ gργ lim
σμ→0

gτ0 τgα0γ∇τ∇τ0G̃ρα0 ; ðA2Þ

ðIIIÞ∶ Pμναβ lim
σμ→0

gα0αgβ0βGμνα0β0 ; ðA3Þ

ðIVÞ∶ Qμν
γδ lim
σμ→0

gτ0 τgα0γgβ0δ∇τ∇τ0Gμνα0β0 ; ðA4Þ

where we have defined

Pμνγδ ≡ Rγμδν þ gδνRμγ − gγδRμν −
1

2
Rgμγgνδ þ

1

4
Rgμνgγδ;

Qμνγδ ≡ −
1

2
gμγgνδ þ

1

4
gμνgγδ: ðA5Þ

By expanding the Hadamard Green’s function of Eq. (28)
using the Taylor expansions in Eq. (30), we obtain

Gρσα0β0 ðx; x0Þ ¼ 1

4π2

�
Δ1=2

σ
ðgα0ðρgσÞβ0 Þ þ Vρσα0β0 lnðμ2σÞ þWρσα0β0

�

¼ 1

4π2

�
Δ1=2

2σ
ðgα0ρgσβ0 þ gα

0σgρβ
0 Þ þ gα

0
αgβ

0
βv

ρσαβ
0 lnðμ2σÞ þ gα

0
αgβ

0
βv

ρσαβ
0 γσ

γ lnðμ2σÞ

þ 1

2
gα

0
αgβ

0
βv

ρσαβ
0 γεσ

γσε lnðμ2σÞ þ 1

2
gα

0
αgβ

0
βv

ρσαβ
1 σγσ

γ lnðμ2σÞ þ gα
0
αgβ

0
βw

ρσαβ
0

þ gα
0
αgβ

0
βw

ρσαβ
0 γσ

γ þ 1

2
gα

0
αgβ

0
βw

ρσαβ
0 γτσ

γστ þ 1

2
gα

0
αgβ

0
βw

ρσαβ
1 σγσγ

�
; ðA6Þ

G̃μα0 ðx; x0Þ ¼ 1

4π2

�
Δ1=2

σ
gμα

0 þ Ṽμα0 lnðμ2σÞ þ W̃μα0
�

¼ 1

4π2

�
Δ1=2

σ
gμα

0 þ gα
0
αṽ

μα
0 lnðμ2σÞ þ gα

0
αṽ

μα
0 γσ

γ lnðμ2σÞ þ 1

2
gα

0
αṽ

μα
0 γεσ

γσε lnðμ2σÞ

þ 1

2
gα

0
ασγσ

γṽμα1 lnðμ2σÞ þ gα
0
αw̃

μα
0 þ gα

0
αw̃

μα
0 γσ

γ þ 1

2
gα

0
αw̃

μα
0 γτσ

γστ þ 1

2
gα

0
αw̃

μα
1 σγσγ

�
; ðA7Þ

where higher orders in powers of σ vanish in the limit σμ → 0, and the tensors contributing to the divergent part
fvρσαβ0 ; vρσαβ0 γ; v

ρσαβ
0 γε; v

ρσαβ
1 ; ṽρα0 ; ṽρα0 γ; ṽ

ρα
0 γε and ṽ

ρα
1 g are found by iteratively solving the equations of motion for the

propagators and are given in Sec. A.3 of [11].
Equations (A1) and (A3) are then regularized by subtracting the divergent terms of the expansions in Eq. (A6) with the

appropriate counterterms. These divergences are given by

ðIÞdiv∶ −
1

16π2
lim
σμ→0

�
1

σ
Rþ lnðμ2σÞ

	
−

1

12
R2 −

1

2
RμνRμν


�
;

ðIIIÞdiv∶ −
1

16π2
lim
σμ→0

�
−3

1

σ
Rþ lnðμ2σÞ

	
3

2
RμνRμν − R2 −

1

2
RμνρσRμνρσ −

1

2
RμρνσRμνρσ


�
; ðA8Þ
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and the requisite counterterms are readily identified.
Regularizing Eqs. (A2) and (A4) is less straightforward,
as in order to regularize ∇τ∇τ0G̃ρα0 and ∇τ∇τ0Gμνα0β0 we
need to sequentially:
(1) Compute the derivative of the Hadamard

Green’s functions using the expansions in (A6)

and keeping the terms that are divergent in the
limit σμ → 0.

(2) Expand the result in powers of σμ using the endpoint
expansions in Ref. [51].

(3) Use the averages in Eq. (35) to obtain a direction
independent result.

Following these steps, one obtains

ðIIÞdiv∶ −
1

16π2
lim
σμ→0

�
2

σ
Rþ lnðμ2σÞ

	
−
1

2
RμνRμν −

1

12
R2 þ 1

12
RμνρσRμνρσ −

1

12
RμρνσRμνρσ −

5

12
□R


�
;

ðIVÞdiv∶ −
1

16π2
lim
σμ→0

�
11

6

1

σ
Rþ lnðμ2σÞ

	
−
1

2
RμνRμν þ 3

4
R2 þ 1

2
RμνρσRμνρσ þ 1

2
RμρνσRμνρσ −

13

24
□R


�
: ðA9Þ

In summary, the divergent contributions in Eq. (38) are given by19

hSidiv ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ððIIIÞdiv þ ðIVÞdivÞ − ð−ðIÞdiv − ðIIÞdivÞ�

¼ 1

4π2
lim
σμ→0

Z
d4x

ffiffiffiffiffiffi
−g

p �
11

6

1

σ
Rþ lnðμ2σÞ

	
1

6
RμνRμν −

11

24
R2 −

23

24
□R


�
ðA10Þ

where we have used the relevant Bianchi identity to obtain
2RμνρσRμρνσ ¼ RμνρσRμνρσ and the Gauss-Bonnet theorem
to rewrite the Riemann squared terms in terms of the Ricci
tensor and scalar.

APPENDIX B: FINITE CONTRIBUTIONS

In this appendix, we detail the recursion relations that
determine the finite remainder given by hSgwifin ≔ hSgwi −
hSgwidiv as it appears in Eq. (43) for completeness. We first
note that we can separate the finite contribution of the
Hadamard regularized action into parts that are uniquely
determined by the background geometry—i.e. the terms
determined by the bitensorsVμνα0β0 and Ṽμα0 whichwedenote
as hSgwibgfin—and those that depend on the state, determined
by the bitensors Wμνα0β0 and W̃μα0 , which we denote
as hSgwisdfin.
In order to compute hSgwisdfin, we follow the procedure of

Appendix A by considering the state-dependent terms of
the Taylor expansions of Eq. (A6)—wρσαβ

0 , wρσαβ
0 γ , w

ρσαβ
0 γε,

wρσαβ
1 , w̃ρα

0 , w̃ρα
0 γ , w̃

ρα
0 γε, and w̃ρα

1 . We find that the finite
contribution to the terms (I), (II), (III), and (IV) defined in
Eqs. (A1)–(A4) are given by

ðIÞsdfin∶
i

8π2
Rμαw̃

μα
0 ;

ðIIÞsdfin∶
i

8π2
½−∇τw̃

μ
0
τ − w̃μ

0μ
τ
τ
− 4w̃μ

1μ�;

ðIIÞsdfin∶
i

8π2
Pμναβw

μναβ
0 ;

ðIVÞsdfin∶
i

8π2
½Qμν

γδð−∇τw
μν
0 γδ

τ − wμν
0 γδ

τ
τ
− 4wμν

1 γδÞ� ðB1Þ

so that hSgwisdfin can be expressed as

hSisdfin ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ððIIIÞsdfin þ ðIVÞsdfinÞ− ð−ðIÞsdfin − ðIIÞsdfinÞ�

¼ 1

4π2

Z
d4x

ffiffiffiffiffiffi
−g

p ½Qμν
γδð−∇τw

μν
0 γδ

τ

−wμν
0 γδ

τ
τ
− 4wμν

1 γδÞ þPμναβw
μναβ
0 þRμαw̃

μα
0

−∇τw̃
μ
0μ

τ − w̃μ
0μ

τ
τ
− 4w̃μ

1μ�: ðB2Þ

We note that we can obtain the Taylor coefficients of

Wμνα0β0
1 in terms of the Taylor coefficients of Wμνα0β0

0 (we
focus on the graviton contribution, but a similar procedure
will give us the analogous Taylor coefficients for the ghost
contributions). By iteratively solving order by order in σμ in
the equation of motion for the propagator, we find (cf. [11]
for more details)

19The extra minus in front of the ghost terms accounts for the
different statistics.
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nðnþ 1ÞWμν
n α0β0 þ nWμν

n α0β0;ρσ
ρ − nWμν

n α0β0Δ−1=2Δ1=2
;ρ σρ

þ ð2nþ 1ÞVμν
n α0β0 þ Vμν

n α0β0;ρσ
ρ − Vμν

n α0β0Δ−1=2Δ1=2
;ρ σρ

þ 1

2
Dρσ

μνWρσ
n−1α0β0 ¼ 0; ðB3Þ

where

Dμν
αβ ¼ □gðαμ gβÞν − Pμν

αβ;

Pμν
αβ ¼ −2RðμανÞ

β þ 1

2
gμνRαβ þ 1

2
gαβRμν −

1

4
Rgμνgαβ

þ 1

2
RgðμαgνÞβ: ðB4Þ

By specifying the recursion relation Eq. (B3) for n ¼ 1 and
expanding at the 0th order in σ we obtain wμν

1 αβ as a

function of the Taylor coefficients of Wμνα0β0
0

2wμν
1 αβ ¼ −3vμν1 αβ −

1

2
gðμρ gνÞσ

�
□wρσ

0 αβ þ∇τw
ρσ
0 αβ

τ

þ 1

2
wρσ
0 αβ

τ
τ

�
þ 1

2
Pμν

ρσ w
ρσ
0 αβ: ðB5Þ

In the above wρσαβ
0 , wρσαβ

0 γ and wρσαβ
0 γε are the “initial”

inputs for the recursion relations corresponding to the
specifics of the state. The adiabatic vacuum by definition
is invariant under the symmetries of the background
geometry, and so all the initial state-dependent inputs must
themselves be constructed out of geometric invariants. By
scanning through possibilities by rank, one concludes that
the latter will also result in the generation of a handful of

terms that redshift as radiation (if not vanish outright [10]20)
along with a series of additional slow quenching terms that
decay much faster.
We close by addressing how one can compare the results

of this investigation with the gauge fixed, foliation specific
treatment of [10]. We note that in fixing de Donder gauge
with the Faddeev Popov method, we began with the action
for a rank-two symmetric tensor field and gauge fixed via
the gauge breaking term (∇μh

μ
ν ¼ 1

2
∇νh, thus eliminating

four degrees of freedom with residual gauge symmetry left
over) with the vector ghosts subtracting the remaining four
spurious degrees of freedom. The ghost and gauge fixing
terms in Eq. (19) possess the same properties as the eight
spurious degrees of freedom present in the fully diffeo-
morphism invariant action for a rank-two symmetric tensor
field, but with fermionic statistics that subtract them from
all on shell quantities. In order to arrive at a fully gauge
fixed action in terms of only the transverse traceless
polarizations of the graviton, one would have to determine
the ghost propagator in terms of the graviton propagator
using the generalization of the Ward identities discussed in
[11], but now evaluated on a background that does not
correspond to a vacuum spacetime. Finding the explicit
form of the finite state-dependent leftover in terms of the
graviton alone would be a practical and important compu-
tation to follow up on. However, this falls beyond the scope
of the present investigation, as our conclusion holds
independently of the explicit form of the finite state-
dependent leftover.
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