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The estimation of many-qubit observ-
ables is an essential task of quantum in-
formation processing. The generally ap-
plicable approach is to decompose the ob-
servables into weighted sums of multi-
qubit Pauli strings, i.e., tensor products
of single-qubit Pauli matrices, which can
readily be measured with low-depth Clif-
ford circuits. The accumulation of shot
noise in this approach, however, severely
limits the achievable variance for a finite
number of measurements. We introduce
a novel method, dubbed coherent Pauli
summation (CPS), that circumvents this
limitation by exploiting access to a single-
qubit quantum memory in which measure-
ment information can be stored and accu-
mulated. CPS offers a reduction in the
required number of measurements for a
given variance that scales linearly with the
number of Pauli strings in the decomposed
observable. Our work demonstrates how
a single long-coherence qubit memory can
assist the operation of many-qubit quan-
tum devices in a cardinal task.

1 Introduction

Quantum devices with on the order of hundreds
of qubits have been realized with superconduct-
ing hardware [17, 20|, neutral atoms [12, 22],
and trapped ions [5, 38, 35|. These advance-
ments stimulated interest in simulating many-
body systems such as the electronic structure of
molecules |2, studying non-equilibrium quantum
statistical mechanics [46], and performing com-
binatorial optimization [9] on such devices. A
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cardinal task for many of these applications is
to estimate the expectation values of many-qubit
observables, such as the energy of the system.
The direct estimation of such observables can be
highly non-trivial for, e.g., fermionic observables
simulated on qubit systems [26] and poses a sig-
nificant challenge due to large measurement cir-
cuit depths and overall sampling complexity, i.e.,
the total number of measurements for a required
estimation variance.

One approach for observable estimation with
minimal sampling complexity is the quantum
phase estimation (QPE) algorithm [19, 18, 40,
29, 45, 32]. Its implementation, however, requires
qubit systems with low noise and long coherence
times for high precision estimation since the mea-
surement circuit depth is inversely proportional
to the square root of the achievable estimation
variance. In addition, the observable of interest
has to be encoded as a unitary transformation
which is, in general, a non-trivial requirement.

As an alternative, the quantum energy (ex-
pectation) estimation (QEE) approach of decom-
posing the observable into a weighted sum of N
multi-qubit Pauli strings is commonly used in the
variational quantum eigensolver [34]. While QEE
minimizes the measurement circuit depth by re-
quiring only a single layer of single-qubit rota-
tions, it also suffers from increased sample com-
plexity due to the accumulation of shot noise in
the estimation procedure. Specifically, the expec-
tation values of Pauli strings are estimated inde-
pendently, and the observable is then calculated
as a linear combination of these. Consequently,
to estimate an observable comprised of N Pauli
stings to a variance 7, each Pauli string should
be estimated to a variance O(n/N) resulting in
an overall sample complexity scaling as O(N?).
This accumulation of noise poses a “shot noise
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Figure 1: The comparison of the standard QEE method
and the proposed CPS method. On the left, the QEE,
where the expectation value of each Pauli string (<I3j),
j=1,...,N)is estimated by a series of projective mea-
surements. Finally, an estimate of the observable (O)

A

is obtained by a weighted summation of all (P;). On
the right, the CPS, where <If’]) is encoded in the single
qubit quantum memory (QM) such that a direct encod-

~

ing of (O) is obtained. To ensure the right summation
of the Pauli strings in the phase of the memory qubit,
quantum signal processing (QSP) is used for efficient ap-
proximation of the required function. In addition, a small
amount of projective measurements of each Pauli string
is also being performed for Pauli strings sign estimation
(7j) purposes. After the encoding process is done, a
final projective measurement on the quantum memory
qubit is performed. The procedure is then iterated to

N

obtain an estimate of (O) to the desired variance.

bottleneck" since the amount of measurements
will ultimately be limited by the available run-
time of the device before, e.g., re-calibration of
the device is needed. The measurement process
itself is also often one of the most time consuming
operations in current quantum devices [17, 5, 38].

To tackle the shot noise bottleneck, recent
works have considered intermediate approaches
between QPE and QEE to obtain better vari-
ance in the estimation of the individual Pauli
strings [43] or methods for grouping Pauli strings
in commuting sets to reduce the sample com-
plexity [11, 6]. While both approaches have the
potential to reduce the overall sample complex-
ity, neither improves the fundamental scaling of
the noise accumulation with the number of Pauli
strings in the observable decomposition.

Here, we propose a novel approach dubbed co-
herent Pauli summation (CPS) that overcomes
the shot-noise bottleneck through the use of a
single-qubit quantum memory (QM) and Quan-

tum Signal Processing (QSP) techniques [24, 10].
Our method allows for a direct measurement
of the multi-qubit observable by estimating the
phase of the memory qubit at the end of the pro-
tocol. Hence, the accumulation of shot noise,
originating from the summation of individually
estimated mean values of Pauli strings in the
QEE approach, is prevented. Importantly, the
properties of the QSP-based encoding allow this
task to be completed with processing qubits
whose coherence time scales only logarithmically
with the required estimation variance, in contrast
to the linear scaling of the QPE algorithm.

The performance of the QPE algorithm for ob-
servable estimation can significantly vary depend-
ing on the method. For example, in Refs. [8, 13,
18, 45|, Heisenberg limited scaling is achieved as-
suming the observable can be encoded with a uni-
tary evolution. This assumption is difficult to sat-
isfy in practice and limits the applicability of the
result especially for current stage of technological
development. Other types of QPE algorithms re-
lax this restrictive assumption but result in worse
performance [32, 43].

The critical point of the CPS method is to em-
ploy QSP techniques to encode the mean value of
Pauli strings in the phase of a single qubit’s quan-
tum memory, enabling us to artificially rescale
the phase between 0 and 27w without additional
cost [24]. Furthermore, this allows us to ob-
tain Heisenberg scaling of the estimation vari-
ance with circuit depths on the many-qubit device
that increase only logarithmically with the in-
verse of the achievable estimation variance. This
is because the many-qubit device can be readout
and reset after each encoding into the memory
qubit. The total circuit depth of the memory
qubit is inversely proportional to the square root
of the achievable estimation variance as in stan-
dard QPE. From this perspective, one can think
of CPS as a new variation of QPE, using QSP
and the single qubit QM to achieve the Heisen-
berg scaling without paying a high price of a uni-
tary preparation or long circuits depths on the
many-qubit device. Thus, CPS outlines how a
single error corrected qubit memory can advance
the performance of larger scale quantum devices.
The lack of shot noise accumulation results in a
gain in the variance of the estimate of O(1/v/N)
compared to performing QPE of individual Pauli
strings which are summed classically [43] and the
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QPE scaling results in a gain of O(1/T") where T'
is the amount of state preparations compared to
QEE.

2 CPS method

In order to set the stage of our algorithm, we first
review the basic steps of the standard QEE ap-
proach (see also Fig. 1). The first step of the QEE
approach for estimating the expectation value of
an observable O for a given quantum state |¥),
is to decompose it into a weighted sum of Pauli
strings

0 =3 a;P, (1)

where a; are the (real) decomposition coefficients
and ]3], are the Pauli strings composed as ten-
sor products of single qubit Pauli matrices and
the identity. This decomposition is always possi-
ble since a collection of d? Pauli strings forms
a complete operator basis for a d dimensional
Hilbert space. However, the number of Pauli
strings, IV, in the decomposition can be very large
for a general multi-qubit observable. For exam-
ple, when mapping fermionic systems onto qubit
quantum devices, local fermionic observables can
map to multi-qubit observables spanning the de-
vice |7, 31, 42].

In general, the state |¥) is repeatedly prepared,
and the Pauli strings are measured sequentially
via projective measurements to obtain estimates
of every Pauli string: (P;) = (U|P;|¥) [34, 27].
The mean value of the observable O can be cal-
culated classically after estimating all (P;), j =
[1, N]. This approach, however, suffers from the
accumulation of shot noise from the individually
estimated mean values of the Pauli strings, as de-
scribed above. If each estimate (P;) is estimated
with a variance 02(<]5j>) = 1), the variance of
the final estimate is 02(<O>) ~ N, assuming
roughly equal weights of the ]Sj’s in (1).

We now outline the CPS method that circum-
vents this accumulation of shot noise (see Fig. 1).
Let |¥o) = V|0) be a quantum state of the multi-
qubit device, where V is an invertible preparation
circuit. The state |0) denotes the state where all
qubits are prepared in their ground state |0). Let
(To|O|Tg) = (O) be the expectation value we
want to estimate within a variance of n. The
three steps of the CPS are:

1. Obtain rough estimates of the mean values
of every Pauli string (Uo|P;|Vo) = (),
j = [1, N] by performing O (log (%

N———
N———

pro-
jective measurements similar to the QEE
approach. This step estimates s; =
sign(a;(P;)) i.e. the sign information of the
Pauli strings.

2. In the second step, 7;|(P;)], 7; = sjelajl
is directly encoded in the phase of the sin-
gle qubit memory using a modified phase-
kickback algorithm [21] together with QSP
techniques. Here, ¢ is a tuning parame-
ter that is used to circumvent the general
"modulo 27" ambiguity of phase estimation,
without a substantial scaling of the QSP cir-
cuit depth, which we will detail below. The
encoding is done sequentially for all Pauli
strings in the decomposition, resulting in a
final phase of ~ (O) followed by a projective
measurement of the single qubit state.

3. The previous step is repeated a number of
times with a varying parameter € to obtain
the final estimate of (O).

At the end of these three steps, (O) can be esti-
mated up to a variance of  with an overall sample

complexity of T'= O (N/f(%)). We
have counted this scaling as the number of state
preparation circuits V' required in the method,
which also includes the extra state preparation
circuits that are part of the QSP step as detailed
below.

The second step, as defined above, is the main
step of CPS, which we will now describe in detail.
Let us define the state |¥;) = P;|¥). Following
the arguments of Ref. [43], we con51der the uni-
tary Up = VI V1P, where Iy = I — 2/0)(0|
is a multl-qublt reflection operator and I is the
identity operator. It is seen that the action of
I1y is to provide a 7 phase only to the |0) state.
The action of U p; 1s a rotation by a principal an-
gle 6; = arccos (|(¥o|¥;)|) = arccos (|(P;)]) in
the subspace spanned by |¥g) and [¥;). Con-
sequently, the state |¥o) can be written as an
equal superposition of eigenstates |9]i> of Upj
with eigenvalues et respectively. If it is pos-
sible to project onto one of these eigenstates, the
standard phase kickback method could be used to
encode the phase 6; into a single auxiliary qubit.
A similar approach was considered in Ref. [43] to
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have a better estimation of each individual Pauli
string. Such an approach, however, still suffers
from the same accumulation of shot noise as the
QEE method from the classical summation of the
Pauli string estimates. In addition, efficient pro-
jection onto the eigenstates is only possible if the
mean values are bounded away from zero.

The CPS method follows a different approach
that allows for a direct encoding of the full observ-
able O in order to circumvent the shot noise bot-
tleneck. In addition, projection onto the eigen-
states ]9i> is not required for the CPS method.
To encode 7;j cos(#;) (rather than 6;) in the phase
of the memory qubit, we nnplement a unitary
Z/A{pj, which transforms Upj through QSP [23],
such that L?pj |9Ji> = ¢imicos(0;) |01i> By iterat-
ing the basic building block depicted in Fig. 2
only n = O(log (1/egsp)/loglog (1/egsp)) times
with the right choice of QSP phases ¢1 - ¢n,
we compile a polynomial approximation of Z;lpj
with 7; = O(1), up to an error of egsp (see Ap-
pendix A). The ability to adjust 7; without incur-
ring additional cost in terms of extra state prepa-
rations is essential for efficiently estimating an
observable that scales with N and for addressing
the phase wrapping problem, which we discuss
further below. We note that the implementation
of the controlled version of U, P (cU p;) does not
require controlled versions of the preparation cir-
cuit V but only controlled versions of the Pauli
string P and Il operators. The control qubit
for both operators will be the quantum memory
qubit, |¢),., such that if |[¢), = |0),, no op-
eration is applied on the target qubits, while if
|4),, = |1),,, the operation is applied.

Applying the QSP sequence on a (normalized)
input state (a|+),, +58|-),,) ® [¥Yo) gives the
(unnormalized) state

( . /86—2i7j cos (0j)|_>m)
+

07) +e % 107)) +eqsp(n) [€), (2)

235

where |€) is a general (normalized) error state,
which can be an entangled state between the
memory qubit and the qubits of the multi-qubit
device.

Repeating the above procedure for all Pauli
strings in the decomposition of O in a sequential
manner, we prepare the single quantum memory

QSP

Figure 2: Quantum circuit realizing the QSP to encode
one Pauli by a sequence of controlled unitaries (A]q,i 0;),
i = [1,n], built from Hadamard gates, R¢ = ewz?z,
and controlled Up,. [¢),, = a|+),, + B|—),, denotes
the state of a single memory qubit. The state of the
mutli-qubit device is reset after each encoding, resulting
in modest requirements on the coherence time of the
qubits.

(QM) qubit in a state

N
~ a|+>m+667222j:1 T cos(9j)|_>m
al+)m + e~ =), (3)

Q

up to an error of ~ Neggp(n) assuming roughly
the same approximation error for each Pauli
string. Consequently, (O) is encoded in the phase
of the QM qubit.

2.1 Phase wrapping

Measuring the phase in Eq. (3) by a series of
projective measurements would result in an es-
timation variance scaling as the standard quan-
tum limit instead of the Heisenberg limit (see Ap-
pendix A). Moreover, since the phase encoding
only provides an estimate of (O) mod 27, we are
facing a phase wrapping problem. The observable
we want to estimate can be written as 27C + B,
where C € Z, B € R. So direct measurement will
provide us with a precise estimate of B, losing the
information about the amount of phase wraps C.
To mitigate this issue and to achieve the Heisen-
berg scaling, we have included the factor of € in
the encoding. This brings us to the third and
final step of the CPS. To control the phase wrap-
ping, we use the sampling approach introduced
in Refs. |13, 18] to estimate C' and B separately.
Instead of using fixed € to encode 6;, we sample
at multiple orders ¢(ep) = 2 eg, I = 1,2,... to
gradually enclose on (O). This trick can be seen
as sequentially estimating the digits of (O>
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Method | Number of state preparations

Qubits Coherence time

QEE O(N?/n) Processing qubits torep
QPEh O(N3/2/,/n) Processing qubits torepO(VN /7))
Tog (N//n) . . Tog (N//n)
CPS O (%%) Processing qubits |  tprepO (M)

Memory qubit

N _log(N/y/m)
tP"’ePO (\/ﬁ log log (N/\/ﬁ))

Table 1: Comparison of resources for the QEE, QPE with the Heisenberg scaling per Pauli and CPS methods for a
fixed target variance 1. We have quantified the necessary coherent time of the processing qubits of quantum device
and the memory qubit in terms of the time required for a single state preparation t,,¢,, which is assumed to be the
dominant scale. The observable is assumed to be decomposed into a summation of N Pauli strings (1). We refer to

the main text and Appendix C for further details)

For estimating C', the parameter ey ~ 1/N is
chosen such that the condition Z;-V:l Tjcosf; <
27 is satisfied. The QSP procedure with dif-
ferent €;(ep) is repeated for [ € [1,L], where
L = O(log(1/,/1)). The estimation of B is per-
formed in a similar way, but with ¢g = 1. Note
that naively scaling the variable down by a fac-
tor of g ~ 1/N and conducting standard phase
estimation would require number of state prepa-
rations that scale with N2. However, because
we encode each Pauli string as a phase e with
0 € {0,27} and QSP techniques allow us to re-
alize maps between {0,27} — {0,27} with a
nearly constant number of QSP iterations, we can
estimate the observable O up to O(1) variance
using only log(V) state preparations for each
Pauli string. Consequently, we find that with
a total number of state preparations scaling as

log (N//m) ;
@) (%M), the CPS method results in

an estimate of O with a variance of 7).

3 Resources comparison

In Tab. 1, we compare the required resources for
the QEE, QPEh, and CPS methods: the required
coherence time of the processing qubits and the
number of state preparation circuits. Here QPEh
referes to estimating each Pauli string with QPE
and then sum the estimates classically to obtain
(O) [8, 18, 43]. The coherence time is quanti-
fied by the time required for the state prepara-
tion circuit, tprep. The scaling of the number of
state preparations is the proper indicator for the
complexity of the CPS method when the cost of
implementing controlled reflection and Pauli op-
erations does not scale faster than that of state
preparation. This requirement is satisfied eas-
ily for the controlled Pauli operation when the

Pj are k-local. On the other hand, the con-
trolled reflection operation can be implemented
using resources that scales linearly in the number
of qubits on the hardware that supports native
multi-qubit gates [28, 15, 47, 41].

The QEE method only requires a coherence
time of the multi-qubit device of ~ t,.¢, since
after each state preparation the qubits are mea-
sured. The QPEh method requires a coherence
time scaling as t,¢,O(VN/,/1)) since each Pauli
string is estimated using standard QPE. In com-
parison, the CPS method comes with different
requirements on coherence time for the multi-
qubit device and the single qubit memory. For
the multi-qubit device, a modest increase in the
coherence time compared to QEE which scales as
0] (%) is required. This comes from the
requirement of encoding each Pauli string using a
logarithmically scaling number of QSP steps. On
the other hand, the coherence time of the mem-
ory qubit has a similar scaling as QPEh up to a
logarithmic factor. In return, the CPS provides a
much better estimate of (O) than the QEE for a
fixed number of state preparations. We find that

JZ(OCPS) ~ l (4)
02(Ogee) T’

which shows that the CPS achieves a Heisenberg-
like scaling of the variance in the number of state
preparations compared to the standard quantum
limit scaling of the QEE. CPS outperforms the
QPEh too:

02(OCPS) Ni (5)
o2(Oqpen) N’

which is because CPS circumvents the accumula-
tion of noise in the classical summation in QPEh.

Accepted in {Yuantum 2025-02-28, click title to verify. Published under CC-BY 4.0. 5



The limiting factor of both QEE and CPS will
be the accumulation of operational errors in the
final estimate of the observable. For both ap-
proaches, gate errors will reduce the accuracy of
the final estimate. This reduction will have the
same linear dependence on the number of Pauli
strings in the observable decomposition for both
approaches (see Appendix D). For the estimation
of observable such as the energy of a H;f molecule,
which can be decomposed into N = 59 Pauli
strings [6] on 4 qubits, an estimate of the energy
with a variance of = 1 could be obtained for
gate error probabilities ~ 4.5 - 107> and at least
1.1 x 10* state preparations using CPS. In com-
parison, QEE would require ~ 3.48 x 103 state
preparations and QPEh ~ 4.85 x 10% to reach
a similar variance. We do note, however, that
the QEE approach would only require gate er-
ror probabilities on the order of 4.2 x 1073, while
QPEh 1.8 x 10~ (we refer to Appendix E for
more details). To simulate larger molecules, the
performance of current hardware needs to be im-
proved for both our method and QEE. For exam-
ple, the CPS simulation of a LiH molecule with
a decomposition of ~ 630 Pauli strings on 10
qubits, requires ~ 1.4x10° state preparations and
gate error probabilities ~ 1.43 x 1079, while the
QEE method requires ~ 3.96 x 10° state prepara-
tions and gate error probabilities ~ 1.6 x 1074 to
achieve the same variance of n = 1. The QPEh
requires 1.69 x 10% state preparations and gate
error probabilities of a rate ~ 2.1 x 1076, Note,
however, that the estimates for the required gate
error probabilities are conservative since we as-
sume that just a single error corrupts the estima-
tion. For specific implementations and hardware
models better bounds can likely be obtained.

4 Summary

In summary, we propose a new method (CPS)
to estimate the expectation values of multi-qubit
The method uses the QSP tech-
nique to encode information from a multi-qubit
processor into a single qubit quantum memory,
which allows to overcome the shot noise bottle-
neck classically summing individually estimated
Pauli strings. Compared to the QEE, the CPS
obtains an Heisenberg limited scaling of the esti-
mation variance with the number of state prepa-
rations. This scaling represents an improvement

observables.

of 1/T. In addition, CPS achieves an improve-
ment scaling as VN compared to estimating each
Pauli string with standard QPE followed by clas-
sical summation. We note that this improvement
has been estimated assuming that there is on
the order of N non-commuting Pauli strings in
the observable decomposition. If there are com-
muting sets of Pauli strings they can in principle
be measured in parallel using the QEE method
while the CPS method does not straightforwardly
support parallel encoding of commuting Pauli
strings. Thus, we imagine that potential trade-
offs between commuting sets and non-commuting
set of Pauli strings can be made, resulting in op-
timal strategies consisting of both methods de-
pending on the specific observable. CPS can be
considered as a new variation of QPE for complex
observables where direct encoding of the observ-
able as a unitary is not possible.

While the CPS is designed for the estimation
of a general observable, we believe that it will,
in particular, be relevant for algorithms such as
the variational quantum eigensolver where the
observable is the energy of the system. In par-
ticular, for estimating molecular energies where
the mapping from a fermionic system to a qubit
system often introduces highly non-local terms
and large Pauli string representations. We believe
that platforms with native multi-qubit controlled
gates such as Rydberg atoms [47, 41, 33| or sys-
tems with coupling to a common bus mode such
as a cavity [4, 39] would be particularly suited due
to their potential for implementing the controlled
unitaries required for the CPS.

Finally, we note that another algorithm, which
also uses QSP techniques to tackle the shot-noise
bottleneck was recently proposed in Ref. [14].
Here O(y/N/n) (where O(-) is used to hide the
logarithmic factors) state preparations are needed
to obtain an estimate within a variance of 7
but O(Nlog (N/y/n) + N) ancillary qubits and
a circuit depth of O(1/,/n) are required. Re-
ducing the amount of ancillary qubits to O(N +
log (1/,/7)), the same variance can be achieved
with O(N/ /M) state preparation queries, which
is similar to the CPS method. However, the
CPS method requires only one auxiliary memory
qubit.
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A CPS method

In this section, we first provide an overview of the basic notion of Quantum Signal Processing (QSP)
[23] for the introduction of the Coherent Pauli Summation (CPS) method.
Let us consider a single qubit rotation of the form

]%qﬁ(e) _ e—ig(&x cos ¢+6y sin ¢) (6)

with an angle 6. This rotation can be considered as a computational module that computes a unitary
function that depends on the selected parameter 6, the input state and the measurement basis. A
sequence of such n single qubit rotations can be expressed as

Ry, (0)... Ry, (0)Ry, () = A(O)] +iB(0)6, +iC(0)6, +iD(0)5,. (7)

With a specific choice of different parameters gg, it is possible to compute more general functions of 6
in terms of A(0), B(#), C(6), and D(6) being polynomials of, at most, degree n. Often it is enough to
use a partial set of (4, B,C, D), for example (A, C) (see Ref. [24] for more details). For this operation,
the following theorem holds

Theorem 1 /23] For any even n > 0, a choice of real functions A(0), C(0) can be implemented by some
¢ € R" if and only if all these are true:

o Forany 0 € R,

A%2(0)+C%*(0) > 1, and A(0) =1, (8)
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n/2 n/2
o A(0) = ;ank cos (kf), {ax} € RV*T1, C(h) = ;;o ey cos (k), {cr} € R"/2.

Moreover, ¢ can be efficiently computed from A(0), C(6).

Furthermore, given a unitary U with eigenstates U |Wo) = % S e™]0L), a quantum circuit U=

>4 eF9)10.) (A1 | can be constructed, where h(6) is a real function. To this end we need a ¢ dependent
version of U, namely

Uy = (2% @ 1)Uy (€127 @ 1), 9)
Uo =" X2 Ro(£0) ® [01) (04].
+

An operator V= (7%[7%71 . ﬁdm approximating U is introduced. Applying it to the input state
|+) ]6+) and post selecting on measuring (+|, we get (+|V|+)|0+) = (A(6+) + iC(A1)) |0+) with
the worst case success probability p = mein [(+V|+)]? = n%n |A(0+) +iC(0+)]>. The second theorem
holds:

Theorem 2 (quantum signal processing)[23] Any real odd periodic function h : (—mw, 7] — (—m, 7| and
evenn > 0, let A(6),C(0) be real Fourier series in cos (k#), sin (k@), k = 0,...,n/2, that approzimate

max |A(0) +iC(6) - 0| < eggp. (10)

Given A(0),C(0), one can efficiently compute ¢ such that (+|V|+) applies Uy a number n times to
approzimate U with success probability p > 1 — 16egsp and the distance H‘I\I%X |((+V+) =) [T || <

SEQSP.

At this point, we note that we are not conditioning on a projection onto the |+) state in the CPS
method. Consequently, the notion of a success probability p is not really valid in the CPS method and
p instead turns into an error of the approximation of the unitary by the QSP method, as we will show
below. For now, we, however, keep the notion of success probability to relate to existing literature.

The query complexity of the methodology is exactly the degree n of optimal trigonometric polynomial
approximations to ¢”®) with error egsp. It is mentioned, that A(f), C(6) satisfying the second
theorem, in general, do not satisfy (8). Thus the rescaling is provided

A1(0) = A(0)/(1 +eqgsp), Ci(0) = C(0)/(1 +eqsp), (11)

|A1(0) +iC1(0) — 6ih(6)| <eqsp/(1+eqgsp)+egsp < 2eQsp.

Hence, the success probability of the method is at least 1 — 2eggp.

In this paper, we are using the QSP technique to approximate exp (zz _, 7j cos [arccos (|(P;)])]),
where we denote 7; = sje|aj|, s; = sign(a;(Pj)) and a; are the Coefﬁments of (1). To this end, we
select h(6;) = 7; cos (£6;), where the input is 6; = arccos (|(P;)]). Then for every 6;, we can write

A(0) = cos(Tcos(0)), C(0)=sin(7cos(6)). (12)

We can use the real-valued Jacobi-Anger expansion [1]| to rewrite the later functions as series:

cos(Tcos (0)) = )+ 2 Z ™ Jom (T) cos(2mB), (13)
sin(7 cos (0)) = -2 i ™ Jam—1(7) cos[(2m — 1) 6],
m=1
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where J,,,(7) is the m-th Bessel function of the first kind. The Bessel function .J,,(7) is bounded, for
real 7 and integer m as
L

(ol < Tl (14)

For m > k the factorial m! grows faster then the exponential |7|™. As the latter decays with m, good
approximations are obtained (13) at m > n/2. The sum from m = k can be bounded by the first term:

> () <5 (D) G <w () 15
= m! \ 2 El\ 2 0 2k kl'\ 2 ’

where we used that since

|T‘ < anp/2 =k, (16)

the ratio is |7]/2k < k/2k < 1, so the geometric series converges and is less than one. Then the upper
bound is [3]:

0 i | m 4 k k
casp <23 Il <42 Ll < l7 <o (50) ()

The last inequity is due to the Stirling’s approximation ! > (I/e)!, for I > 1. Then we can deduce

o (1 Weasr)) 1

The logarithm in the denominator complicates direct solving. However, this suggests an iterative
relation, that is a characteristic of the Lambert W (z) function:

W(2)eV® = 2. (19)

We attempt to rewrite our expression into the latter form. Let us introduce the notation £ = 1/eqgsp.
Then, we can rewrite (18) as klnk = O(FE). Changing the variables y = Ink, £k = e, we get
ye¥ = O(FE). This is similar to the defining equation (19) of the Lambert W(E) = y function. Then
k ~ "W () holds. For large values of F, the Lambert W (z) function can be approximated as:

W(E)=InE—Inln E+ O(1). (20)

Then we can write

_ E E log (1/egsp)
_ JnE-lmlmE+O(1) _ _ & _0(1) _ i N g QSP
h=c mE® © (lnE’> © <loglog (1/5Qsp)> ' (21)

The error of the approximation of every exp (i7; cos (0;)), j = [1, N] is scaled super-exponentially

e min ]Tj|)k
€QsSp < O << 2k ) (22)

and the amount of quarries, taking into account (16) and (21), is [23]:

log (1/egsp)
loglog (1/aQ5p>> ' (23)

nQsp = 0] (mjax ‘Tj| =+

This is the number of times the QSP circuit must repeat to approximate the target function with an
error egsp. We demand the standard deviation /7 of the estimate O to be greater than the QSP
€rTors:

V1

EQSP S W, (24)

Accepted in {Yuantum 2025-02-28, click title to verify. Published under CC-BY 4.0. 12



which require the number of steps in each QSP protocol to be

log (J5)
ngsp = O | max |7;| + 7\/77]\, . (25)
j loglog(ﬁ)

If we select |+),, ® |¥o) as the initial state, the action of the ideal QSP unitary Ll}%ijeal on this state
is the following:

Z;{}i%eal H_>m Q |\Ifo> _ |+>m ® Zei’rj cos (6;) |9:|:> . (26)
+

Note that |¥g) is an equal superposition of two eigenstates |«9Ji> of Up,, with the eigenvalues +0;,
respectively. However, since Z/l}%eal has eigenvalues that are cosine transforms of the eigenvalues of
Up;, the initial state |¥p) is invariant under the action of Z/lli%eal. Moreover, according the Theorem

2, choosing the initial state of the ancilla as |+)
A(0) +iC(0).
On the other hand, selecting the initial state of the ancillary qubit as |—), , we obtain

u]igljeal |_>m ® |\I’0> _ |_>m ® Ze—iTj cos (£6;) |0i> . (27)
+

ms We select the functional transformation given by

In this case, the functional transformation we select is A() —iC(0). Hence, setting the initial state of
the memory ancilla as

) = @) + B =) (28)
we have the following action:
U [0),, © [Wo) = )y, © 306D 590 62) 4 §1-),, 0 3 =0 o) (29)
+ +

Repeating the QSP encoding for each Pauli string P;, we encode the observable mean (O) in the phase
of the memory qubit.

Since the QSP method is just approximating the function from the random variable, we have to take
into account the error accumulation in the QSP approximation. If we apply the QSP sequence on a
(normalized) input state [¢), ® |¥g) we get the (unnormalized) state

~ (eirj cos (ej)@“i‘)m + ﬂe_iTj cos(Gj)’_>m) ® (eian/2 ’9]—&-> + e—inGj/Q ‘9]_» + 5QSP(”) |§>’ (30)

where [€) is a general (normalised) error state, which can be an entangled state between the memory
qubit and the qubits of the multi-qubit device. We reinitialize the computational qubit by tracing it
out. After N rounds of such QSP encoding, with probability (1 —eqgsp(n))Y, egsp(n) << 1 the state
encoded in the memory qubit is:

’(I)N> ~ aeizj\]:l T]' COs (93)’+>m +/86—izj.\’:1 Tj COS(Qj)’_>m' (31)

With probability (1 — (1 — egsp(n))¥) ~ Negsp(n) we assume that don’t encode any reasonable
information i.e. that the memory qubit is depolarized due to erroneous QSP encoding of the Pauli
strings.

Selecting a = 3, we can rewrite the latter state as follows:

|Px) ~ cos Pn|0)y, + isin P y|1),, (32)

where the phase & = Z;V:1 7jcos (0;) = (O) is a target mean value. Hence, we need to estimate @y
which will provide (O). The probabilities to measure |0) and |1) are the following:

P(X = 0fy) = (1 +cos (22n)),  P(X = 1[dx) = £ (1 - cos (26)), (33)
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that gives a precise estimates of the modulus of the phase for a sufficient number of iterations. Mea-
suring in the y-basis, we get the probabilities:

P(Y =0|®y) = %(1 —sin (2®y)), P(Y =1|®y) = %(1 +sin (2@ )). (34)

Since we don’t know the preparation circuit of the state |®y), we can’t use QPE to estimate the
phase directly. To estimate P(X = 0|®x), P(Y = 0|®y) and then to estimate the total accumulated
phase, we need to repeat all the procedure of encoding |®x) in the QM M, times, every time doing
the projective measurement on |®x). Using the probability estimates, we can obtain the estimates of
sine and cosine functions of ®y.

Using these estimates, we can estimate ®p. This can be done, for example, by introducing the
notation
1 -2P(Y =0|®y)
T 2P(X =0|®y) — 1

Q = tan(2®y). (35)

The estimate of @ is denoted by P ~. Then the variance of ) n is the following:

PN 6<I>N 2 A 1 2 A
2 2 2
0} ~ —_— =\ ———————=¢ .
o DN < 90 > o Q (2(1 Q2)> o°Q (36)
The variance of Q can be written as follows

A

27 2By 21 -2P(Y =0[@n)\* | 2pns 2 ’
O‘QNO'P(X—O|<I>N)((2p(X:0|q)N)_1)2> +oP(Y_O|<I>N)<2P(X:0’(I)N)_1) . (37)

Since we have a Bernoulli distributed random variables, the variances are

P(X =0]0n)P(X =1[D - P(Y =0|0y)P(Y = 1|®
(X =000PX =10 op g ) PO = 000)PE = 1108)
M, M,
(38)
where M, is the amount of repreparations of the state |®y). Finally, the variance (36) can be written
as follows:

o’P(X =1|®y) =

A 3+ cos (8P y) 1
2
Py) ~ < .
o (@) 16M,  — 4M,
Note that this this variance is calculated for a fixed € parameter. Then the variance of the estimate of
the target observable is

(39)

A A 1
2 2 -2
0)) =0°(® ~ = 40
P(0) = (@) ~ gyp (10)
One can see that estimating the observable in this way we only achieve the standard quantum limit.
Moreover, there is a problem of phase wrapping since we can only resolve phases mod 27. To resolve
these issues, we adopt the technique of robust phase estimation from Refs. [13, 18| as detailed below.

B Phase Wrapping Control and Heisenberg Scaling

The state encoded in the memory qubit contains the phase
d=2rC+B, CeN, BEeR, (41)

accumulated over N rounds of encoding. In our method, since (O) is directly encoded as the rotation
angle of a single qubit, expectation values differing in C' would be equivalent. An initial attempt to
resolve this difficulty is to artificially scale (O) during the QSP step and rescale the estimate at the
end of the protocol, using the phase estimation methods proposed by Higgins et al. [13] and later
generalized by Kimmel et al. [18].
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We introduce the notation
al l
Dy(eg) = Z T]( )(eo) cos (0;), (42)

Jj=1

where we denote T;”(EQ) = 2= 1¢ys;]a | such that ®o(ep) < 2r holds. In [18] the estimates ®;(ep),
I =[1,d] of (42) are obtained from M; = a+ y(d — 1), v > 2, a > 0 repetitions of the measurement
circuits described in the previous section. The probability of making an error on every step is

Pe(®i(e0)) = P[Bi(e0) = Bi(co) = 5V Buleo) = Do) < — ], (43)

and it is upper bounded by:
1
V4 27TM12Ml .

On the last step d = [logy 1/,/7] one obtains m as an estimate of €9(O) with a target variance 7.

pe(Pi(e0)) < (44)

For the total amount of state preparations 7' the variance is o2 (m) =n~O(T72).

In contrast to the original method, where the initial encoded phase was assumed to be less than 27,
we introduce a parameter ¢y that is sufficiently small to confine the phase within the desired range.
However, this modification prevents direct application of the original algorithm, as the variance of the
estimate (O) would then scale as O(ey>T~2) = O(N?/T?), preventing the attainment of Heisenberg
scaling. To overcome this difficulty, we implement the described method in two stages, estimating C'
and B in (41) separately as it is shown below. Importantly, since QSP techniques allow us to encode
each Pauli string as a phases between {0,27} with a nearly constant number of QSP iterations, we
can estimate the observable O up to O(1) variance using only log(NV) state preparations for each Pauli
string.

As we discussed in the introduction, we demand the overall QSP approximation error smaller than
the target variance variance 7 (i.e., egsp < /7/N), so the number of steps ngsp in each QSP protocol
is approximately constant with N (see Eq. (25)). However, encoding each ®;(eg) requires a different
number of QSP steps to achieve a target error of eggp. From condition (16), we derive the following
constraint:

ngsp/2 > In(eo)| =27 tey max lag, 1e€N. (45)
J=[1,N]
This is the minimal amount of the QSP steps needed to guarantee (22) and (23) to hold. Thus, for
each ®;(¢ep), the number of required QSP steps scales with N as follows:

log (25)
nsp =0 <|Tz(60)| i ig("zv)) ~ (40)
Vv

In the first step of our procedure, we aim to estimate C, which represents the number of phase
wraps in (41), with a target variance 7.. We assume that we wish to obtain an estimate of (O) with
a variance 77 < 1 which means that 7, < 1. To estimate C, we perform L = [logy 1/,/7c| steps of the
algorithm above and estimate C as:

| ®r(e
¢ = { L O)J. (47)

2T

If no errors occur in the principal range estimates for all ®;(¢g), [ € [1, L], then the maximum error in
the estimate of C' is 2m/2%. We bound the variance of the estimate C' of C' as:

() £ (1~ pmasMe)) (57) + zijl (2 prastty (45)
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Doing the calculations, we get

A 2 1 16
70 < 4L ( V2ma2e 27 — 22> (49)

Note that the condition v > 2 prevents the sum growing faster then 4=%. The total number of estimates
required for this stage is
" ) < 1
T.=2NY nlkpM; < 2Nnb), 3" 2'M; < 287 NnG ) p (o + 7). (50)
=1 =1

Finally, the variance of the estimate C is

N2l )2 1 16
2 < QSP 2 2 < )
o?(C) < T2 A (o + ) Vora 3 — 2 (51)

This approach ensures that the variance of the estimate is independent of €.

Now, we can apply the above algorithm to estimate B € (—m, ) with the target variance of 7, < 1.

We directly encode ®;(1) = 2! Py, by choosing ¢y = 1. The amount of QSP steps flg)sp is given by

(46) where €y = 1 holds. We perform K = [logy 1/,/mp] steps of the algorithm, and the estimate of B
is given by:

B =®g(1) mod 2r. (52)

The difference to the previous step is that even if all the steps of the algorithms provide no error, our
final estimate can still differ from B by at most 27/25+!. Then we bound the variance of the estimate
B of B as:

0%(B) < (1 = pimas(Mg)) <2K+1>2+g< >2pmw (M)). (53)

Similarly to the previous step, we get

2B < (1 \/mw (3+m1f22)> (54)

The total amount of estimates required for this stage is
K ) = 1
Ty =2N Y filepM < 2Nabkp 3 20M; < 28KFINAD) b (0 + ), (55)
=1 I=1

and the variance scales as
N2(70) )2 1 16
QSP 2 2
— =27 4 14+ —(3+— ). 56
T3 (et ) ( +\/27ra20‘ ( +27—22>) (56)

The total amount of state preparations needed for the CPS method is given by:

02(3) <

T = Nm+1.+1T. (57)

Here, Nnq represents the small number of projective measurements performed beforehand to roughly
estimate the mean values of each Pauli string, where Nn; << T,,T,. As we write in the main text,
this procedure is needed for the Pauli sign estimation. Then, using (50) and (55), we can write

T 2 2N(a +7)(25n5%p + 25704 ). (58)
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The scaling of the QSP trials is the following

log () 1 log ()
ngép =0 ‘7'1(60)’ + 1017@ =0 N + 117@ s (59)
g0g<\/ﬁ) og Og(\/ﬁ)
N N
fosp = O\ I+ 0m0 0 | =1 ogion (2
gOg(\/ﬁ) og Og(\/ﬁ)

Then substituting L and K, we get

1 1
T ~2N(a+7) (7](;”8‘)91’ +— 5 ) _ (60)

Since C and B are estimated independently, we can write
o}(®) = 4n20%(C) + o(B). (61)

The target variance is 7, so we can require equal contribution of variances: 7. = n/(872), n, = n/2.
Then the variance of the target estimate is scaling as follows

8N (), ()

N~ g (27 nQSP—I—nQSP)Q(a—i—fy)Q. (62)

Hence, we can conclude that the variance of the estimate for (O) is

8(a+7)*N?Nggp _0 <N2NC225P>

o?(Ocps) = (63)

T2 T2

1 N
where we used the notation Nggsp = 27m8?§P + ﬁggp =0 (logoi(g\(/ﬁ\];n))'

It is possible to include additive errors into analyses. For example, the state preparation and mea-
surement errors are of this type. Then performing two families of experiments, the probabilities of
measuring X =0, Y =0 are

PX = 0o P 2) = 51+ €05 (210, ) + 5220, (64)

1 :
P(Y = 0leoPyym; 2') = 5(1 = sin (2'eoPyypn)) + 0(2),

respectively, where §,(2!) and d,(2!) are the additive errors. following [18] (Theorem 1.1.), if §; =
sup {[0,(2")], 16,(2))|} < 1/v/8 the same Heisenberg scaling holds.
2

C Comparison of CPS Method with Other Methods

To our best knowledge, the papers dedicated to the estimation of the mean of the complicated observ-
able O always use some variations of QEE or QPE methods [18, 32, 43]. That means, that every (F;)
is estimated individually, using one of these methods, and then summed classically. As we mentioned
in the text, if each (P;) is estimated with a variance o2((P;)) = - 7)p, the variance of the final estimate
scales as 02(0) Nnp, assuming roughly equal weights of the P in the decomposition of O. That is
why the only thing that can change from the method selection in the existing papers is the variance
Tp-

In QEE every Pauli string is measured independently and then all the results are summed up. Hence,
the variance of the estimate of O is the following:
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2 2 2

200 —Z‘W b Nia (1= (wo| P Wp)?) N (65)
EE) = =— —(¥o 0)°) ~ =
¢ =1 M i=1 Mc

where M, = Nn, is the amount of projective measurements done in QEE. In QEE the amount of
state preparations is equal to amount of measurements T' = M,.. By comparing the variances of the
estimated observable by both methods, we get

A

o?(Ocps) N Njsp
o*(OqER) T

(66)

The QPE scaling can significantly vary from the method. In [13, 18| the Heisenberg scaling is
achieved, where the variance of one Pauli mean scales as 02(]5@ pE,) ~ ¢2/T3. Then the total variance
is 02(Ogpr,) ~ N2 /T3 = N3¢2/T?. Here T = NTp denotes the total amount of controlled-U used
to estimate one Pauli. CPS beats this method

a*(Ocps) N Njsp
0%(Oqrr,) N

The Heisenberg QPE requires implementation of the observable as a unitary (in contrast to CPS) and
enough circuit depth of the device. If one is able to implement the whole observable O, then the
Heisenberg scaling for its estimate is achieved.

In [44] a special coefficient a € [0, 1] is introduced to weight both methods. When o = 0 the method
is nothing else as QEE, when a = 1 the method is QPE. When « € (0,1) some mean Pauli values
are estimated according to QEE, some to QPE with o weights. One can see that if one have enough
coherence time the variance of the method can’t be better then QPE’s, even if multiplied on some «
dependent coefficient. Also, the result is again obtained for one Pauli, so in the end the total variance
is formed by direct summation of N variances for each Pauli estimate.

Knowing the standard deviation or the variance allows an immediate estimate of the accuracy of the
estimated value. The Chebyshev’s inequality can be written

P(|0- 0| > v)< ‘72(0), (68)

2

(67)

where v > 0. We use the Chebyshev’s inequality, since it does not require any assumptions on the
probability distribution of the observable to be on a bounded support, but only existence of the finite
variance. One can deduce that the amount of state preparations that guarantee the probability on the
left hand side to be py € (0, 1) if one uses different methods:

NNgs N? N3/2
Topg ~ —238 Tore ~ ——, TqprE, ~ : (69)
v\/Po ) v\/Po

The CPS outperforms all methods without paying a price of possibility to implement O as a unitary
that in general is not realistic for big N.

D Cost of implementing CPS

If we want the CPS method for observable estimation to be as generally applicable to the results of
quantum algorithms, we need to satisfy the following two requirements. First requirement is that
the controlled reflection and controlled Pauli operations required for U, p; are not more error-prone
than the uncontrolled state preparation unitary V. Second, we need to take into account the effect of
applying the state preparation unitaries sequentially for the CPS method, as opposed to a shot-noise
limited multi-shot estimation scheme where the system is measured after each application of V. The
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difference between the sequential and multi-shot estimation protocols with respect to the accumulation
of errors will be discussed in Appendix E below. In this section, we will focus on the implementation
of controlled reflection and Pauli operations.

Ideally, the implementation of the controlled operations should be as simple as possible, such that
the state preparation step remains the main source of errors. The state preparation unitaries that are
feasible on current platforms are of constant depth, and the circuit size is linear in the system’s size
n, leading to an error probability that scales with O(n). At the first sight, implementing a controlled
reflection with error probability scaling as O(n) is problematic. The conventional implementation of a
controlled reflection operation without the use of any ancillary qubits requires O(n?) Toffoli and CNOT
gates, while a O(n) Toffoli implementation of the controlled reflection operation is possible with an
additional O(n) ancillary qubits [30]. Hence, a conventional implementation of controlled reflection
operator would be more resource-intensive than the state preparation unitary V', implying that the
advantage of the CPS scheme comes at the cost of a significantly increased gate-count, compared to
simply preparing the state of interest and measuring each Pauli separately.

Luckily, the Rydberg atom array platform allows for the implementation of the controlled reflection
operator using a number of gates that grows linearly in the system size [28, 15]. The scheme relies on
the three-level structure of neutral atoms to eliminate the need for the O(n) ancillary qubits in the
conventional implementation. Here, the long-lived hyperfine subspace encodes the qubit states, while
the highly-excited Rydberg state mediates strong and long-ranged dipolar interactions [37, 36].

As first proposed in Refs. [28, 15], a multiple control C,,Z gate can be implemented by choosing
different Rydberg states for the control and target qubits. This strategy has two favorable features.
First, the control atoms, which are excited to the same Rydberg state, interact via shorter range van
der Waals interactions and can therefore be trapped in close proximity. Second, the long-range nature
of resonant dipolar interactions between Rydberg states with different symmetries allow any of the
control atoms to blockade the dynamics of the target atom independently. Using such a configuration
of the control and target registers, the implementation of the C),Z gate proceeds in an analogous way
to the conventional CNOT gate implementation proposed in Ref. [25, 16]. First, each control atom
not in the |0) state is simultaneously transferred to the Rydberg state |R). Then, the target state goes
through a 27 rotation within the associated |0) and |R) subspace. The 27 rotation is blockaded unless
the control atoms are all in the corresponding |0) state. Finally, the control atoms are transferred back
from the Rydberg state to the logical subspace. Thus, the state of the system acquires a —m phase
only if all control atoms are in the zero state. The error probability of the protocol depends on the
state of the control register, which determines the number of control atoms that are transferred to the
short-lived Rydberg state. Since on average n/2 control qubits are excited to the Rydberg state, the
error probability of the gate grows approximately linearly with n.

E Gate Errors

In the previous deductions, we assumed perfect quantum gates. However, any quantum device will
have non-negligible gate errors and it is therefore important to estimate the effect of these on the
performance of the observable estimation.

The cardinal task of the QSP method is to encode an estimate of the observable into the phase
of the memory qubit. Therefore, we can simplify the discussion of gate errors by looking at the
scenario of a faulty encoding of a phase into a single qubit. Let us assume that with probability 1 — p,
p € [0, 1] no error happens in the phase encoding and the true phase @y is encoded in the single qubit.
With the probability p some gate errors happened, and the phase encoded in the memory qubit is an
unpredictable value € [0, 27].

The process is repeated many times in order to achieve an estimate of ®, similar to the description
following Eq. (32) in Appendix A above. However, instead of sampling from the true probability
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distribution corresponding to ®, we are instead sampling from the distributions

P(x = 0@x) = 1P (14 cos 20)) +

Py = 0jdy) = L= . P) (1 — sin (20y)) +

(70)

1\9'@ 1\3\%

where @ is the phase encoded when no gate errors were acquired, while the second term corresponds
to the case when a gate error happened, and we assume the memory qubit is left in a completely
depolarised state. We can follow the procedure of the previous section to introduce (35) with the
updated probabilities from Eqs. (70). All the derivations are similar in this case, and we again arrive
at a variance of the estimate, which scales as 02y ~ 1 /M,. Note, however, that the estimated value
with gate errors (Qg) will deviate from the true value without gate errors Q as

Q- Qyl <. (71)

in the limit of p <« 1. The effect of gate errors will thus lead to an inaccuracy in the estimate. This
inaccuracy should be smaller than the targeted standard deviation (,/7) of the estimation in order to
be negligible.

We assume that the errors arising in our protocol are dominated by the errors emerging in the state
preparation circuits. As we state in Appendix D, we suppose that the number of gate operations in
the state preparation circuit is roughly set by the number of qubits n. We then approximate the total
probability of an error happening during the state preparation circuit as ~ npi, where p; < 1 is the
average probability of making an error during a single gate operation (one-qubit or two-qubit gate).
The probability of a gate error happening during one QSP round is then p ~ 3pin, since it involves
three state preparation circuits. From this, we can estimate that the required gate error probability
should be low enough such that

n 2 3vV2Nnp1 Nosp (72)

holds.

In the QEE method, we perform one state preparation per Pauli string. Following the arguments
above, the total gate error probability is thus p ~ mp; while sampling on one Pauli string. The
measurement of the Pauli string can either yield outcome X = 0,1 and we can express the probability
to get outcome X =1 as

P(X =1)= (1 -p)P(Pj=1) + pP(FPerror = 1), (73)

where P(P; = 1) is the probability from measuring on the correct state, while P(Pepror = 1) is the
probability from measuring on state with gate errors. The mean value of any Pauli string can be
expressed as a mathematical expectation of a Bernoulli variable. Then the variance is

2P = P(X = 1)(1 - P(X = 1)), (75)
and the variance of a random variable O estimated by M. rounds of the QEE method is
N I N I

As with the QCP method, gate errors will lead to an inaccuracy of the estimate on the order of ~ Nnp;
assuming roughly equal weights of all Pauli strings in the decomposition. For this inaccuracy to be
negligible for a target variance of 7, we thus require that

Vi Z Nnps. (77)
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Similarly to the CPS, we assume that for the QPEh the probability of error is dominated by the
errors of the state preparation circuit. The probability of a gate errors during QPEh for a single Pauli
estimation is ~ 3np;. Then we demand /7 > 3Nnp1/,/n1 to hold, where 7, is a variance of a single
Pauli estimate. Let 71 = n/N, then we get

n > 3N 2np,. (78)

To estimate an observable, such as the energy of molecules like HY, LiH, H,O, and CHy, which can
be decomposed into N = {59,630, 1085, 3887} Pauli strings [6] and require n = {4,10,12,16} qubits
respectively, with a target variance of 7 = 1, the corresponding single-gate error probabilities are
summarized in Table 2. The upper bounds of the amount of state preparations required for CPS

N n P1,CPS P1,Heisenberg P1,QEE

59 4 449x107° 1.839x10~* 4.24 x 1073
630 10 1.43x107% 211x106 1.59x10°*
1085 12 6.66 x 1077  7.77x 1077 7.68 x 107°
3887 16 1.28x 1077 850x10~% 1.61x 107°

Table 2: The average probability of making an error during a single gate operation p; to achieve a fixed variance for
CPS, QPE}, and QEE methods.

method to the Heisenberg QPE given in Ref. [18] with o = 1/2, v = 5/2 constants that is stated to
provide the best scaling and the QEE method are

6V2N (215 % p + Rk p) 10.7N3/2 N2
Teps = . Tope, = ——=—, Tgpe=—. (79)
Vi Vi Vi

(1)

The values of nggp and ﬁgé p are calculated numerically, solving (17) for k for different values of €.
The numerical comparison of (79) for the Hy , LiH, H»O, C H; molecules is provided in Table 3. One

Molecule N TC’PS TQth TQEE

Hf 59 1.11x10* 4.85 x 10>  3.48 x 103
LiH 630 1.40 x 10° 1.69 x 10°  3.97 x 10°
H>0 1085 2.50 x 10° 3.82 x 10° 1.177 x 106
CH, 3887 9.73x10° 2.593 x 106 1.511 x 107

Table 3: The amount of state preparations Tcps, Topre,. Torr for different molecules.

can conclude that as expected QEE is the most tolerant to the gate errors, however paying a high
price of the amount of state preparations for estimating the energies of the molecules with the bigger
amount of Paulis. The CPS outperforms both methods in the amount of state preparations already
on the LiH molecule.
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