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Parametrized quantum circuits (PQC)
are quantum circuits which consist of both
fixed and parametrized gates. In recent
approaches to quantum machine learning
(QML), PQCs are essentially ubiquitous
and play the role analogous to classical
neural networks. They are used to learn
various types of data, with an underly-
ing expectation that if the PQC is made
sufficiently deep, and the data plentiful,
the generalization error will vanish, and
the model will capture the essential fea-
tures of the distribution. While there ex-
ist results proving the approximability of
square-integrable functions by PQCs un-
der the L2 distance, the approximation for
other function spaces and under other dis-
tances has been less explored. In this work
we show that PQCs can approximate the
space of continuous functions, p-integrable
functions and the Hk Sobolev spaces under
specific distances. Moreover, we develop
generalization bounds that connect differ-
ent function spaces and distances. These
results provide a theoretical basis for dif-
ferent applications of PQCs, for example
for solving differential equations. Further-
more, they provide us with new insight on
the role of the data normalization in PQCs
and of loss functions which better suit the
specific needs of the users.
Alberto Manzano: alberto.manzano.herrero@udc.es

|0⟩⊗n U(x,θ) fθ(x)

D(f∗, fθ)

Figure 1: Sketch of a hybrid variational algorithm.
U(x, θ) represents a quantum circuit that takes x as
input and with variational parameters θ, fθ(x) is the ex-
pected value of some observable and D(f∗, fθ) is the
expected loss that we want to minimize.

1 Introduction
Machine learning has gained significant attention
in recent years for its practical applications and
transformative impact in various fields. As a
consequence, there has been a rising interest
in exploring the use of quantum circuits as
machine learning models, capitalizing on the
advancements in both fields to unlock new pos-
sibilities and potential breakthroughs. Among
the various possibilities for leveraging quantum
circuits in machine learning, our particular focus
lies on parametrized quantum circuits (PQC).
These quantum circuits consist of both fixed
and adjustable (hence ’parametrized’) gates.
When used for a learning task such as learning a
function [14], a classical optimizer updates the
parameters of the PQC in order to minimize a
cost function depending on measurement results
from this quantum circuit (see Figure 1).
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In this context, a growing line of research stud-
ies the expressivity of PQCs. More precisely, the
capacity of PQCs to approximate any function
belonging to a particular function space defined
in a prescribed domain up to arbitrary precision
with respect to a specific distance. In [21], they
showed that PQCs can be written as a generalized
trigonometric series in the following way:

fθ(x) = ⟨0|U †(x;θ)MU(x;θ) |0⟩

=
∑
ω∈Ω

cω(θ)eiωx . (1)

We would like to emphasize that although
similar, the form of the PQC in above equation
is more general than a Fourier series. This will
become relevant for the results of this work.
Using this formulation, it was further shown in
[21] that, if the PQC is chosen carefully, the
increase of its depth and number of parameter
can arbitrarily reduce the L2 distance between
the expected value fθ(x) of the PQC and any
square-integrable function with the domain
[0, 2π]N . Throughout the paper we will refer to
the PQC as the one approximating the functions
to make the text more fluent, although techni-
cally it is the expectation value of the PQC that
approximates the function.
This result had a significant impact on the
motivation to study PQC-based QML, analogous
to the impact that the famous Universality
theorem for neural networks of Cybenko [6] had
on the domain of classical machine learning.
Previously, different results on universality for
PQC have been established. In [7], the power
of PQCs in expressing matrix product states
and instantaneous quantum polynomial circuits
was shown. Later, the universal approximation
of PQCs was studied in regression problems,
for single-qubit circuits with multiple layers
[17, 24] and for both single- and multiple-qubit
circuits [5, 11]. However, as it turns out, there
are numerous different notions of universality,
and not all are useful for all applications. For
instance, as will be discussed later, in the context
of Physics-Inspired Neural Networks (PINN) the
"vanilla" universality does not suffice. This raises
the question of whether PQCs can approximate
functions belonging to other function spaces or
in terms of other distances.

In this paper, we present two novel results.
The first result of this paper is that PQCs can

arbitrarily approximate the space of continuous
functions, the space of p-integrable functions and
the Hk space, which is the set of functions whose
derivatives up to order k are square integrable.
Furthermore, we explain how these properties
can be easily achieved in practice by a simple
min-max feature rescaling (see (20)) of the input
data. In practice, this leads to an improved
expressivity of PQCs, if the input data is nor-
malized accordingly.

The second result of the paper are general-
ization bounds that connect distances with loss
functions which are not built via the discretiza-
tion of the integrals present in the definition of
the distance. To make it more clear, we recall
that in a machine learning problem one needs to
choose an architecture, which defines the class of
functions that can be approximated, and a target
distance, which is intimately connected with the
generalization error1. However, in general it is
not possible to compute the target distance, as
we would need to have available infinitely many
data points. Instead, one chooses a different
distance function which can be computed from
the available data: a loss function. This loss
function is a different function than the target
distance but it should be chosen in such a way
that we call consistent with the target distance,
i.e., that the minimization of the expectation
value of the loss function, the expected loss,
yields the minimization of the target distance up
to an error which asymptotically tends to zero
when the number of samples and the expressivity
(here meant architecturally, as e.g. depth) of
the PQC increases. For example, the mean
square error (as a loss function) is consistent
with the L2 error (as a target distance) but
is inconsistent with the supremum distance.
The usual generalization bounds connect target
distances which are continuous with expected
losses which are their discrete version.
The generalization bounds that we derive give
a mapping across different distances and loss
functions, i.e., they relate distances with loss
functions which are not built via the discretiza-
tion of the integrals present in the definition

1In practice we may not explicitly think about the tar-
get distance, i.e. with respect to which distance we wish
to approximate the "true" labeling function. But this de-
cision is implicitly made, once the loss is chosen.

Accepted in Quantum 2025-02-12, click title to verify. Published under CC-BY 4.0. 2



of the distance. A particular loss function we
shall define, denoted ℓh1 , which consists of the
sum of the mean square errors of the values of
the functions and its derivative, is consistent
with the supremum distance in one-dimensional
problems. In the described case, this allows us
to reduce the supremum distance while choosing
a loss function which is differentiable.

Our results apply in many settings. For
example, our first result has a direct consequence
in that it allows one to approximate not most,
but all function values with satisfying quality.
For instance, the minimization of the ubiquitous
L2 distance may allow functions to dramatically
differ from the target function in some regions
where we have plenty of data points available,
whereas the minimization of the supremum norm
in Theorem 3 will force the PQC to converge
for any given point in the domain of the target
function. This is of high relevance in cases where
we are interested in having a good approxima-
tion at any given point. For instance, when
learning the shape of a probability distribution
from samples, a good fit in the bulk of the
distribution but not in its tails can lead to
significant underestimation or overestimation of
the probability of extreme events. In real-world
applications, this could have severe consequences
in risk assessment applications, where accurate
estimation of tail probabilities is essential for
developing appropriate contingency measures
against rare but significant events, such as the
COVID-19 pandemic or the 2008 economic
crisis. Our second result has direct applications,
e.g., in settings where we have access to data
of the function and its derivatives. One case
where this is standard is in settings involving
solving differential equations. For example
in physics-informed neural networks (PINN)
problems [18] and differential machine learning
(DML) [13], both function values and derivatives
are accessible and in fact critical.

This paper is organized as follows: in Section
2 we explain the new results on the expressivity
of PQCs. In Section 3 we discuss the proposed
generalization bounds. Then, in Section 4 we il-
lustrate the theoretical result of Sections 2 and 3
by means of some numerical experiments. Lastly,
in Section 5 we wrap up with the conclusions.

During the final stages of our work, we became
aware of the paper [10] which overlaps in some
parts with our own results in Section 2. How-
ever, the results presented here were developed
independently and follow a different line of rea-
soning.

2 PQCs and universal approximation
In this section, we will review the established
result on universality in [21] and then present
our new universality results in Theorems 2, 3
and 4.

Schuld et al. showed in [21], how a quan-
tum machine learning model of the form
fθ(x) = ⟨0|U †(x;θ)MU(x;θ) |0⟩ can be written
as a univariate generalized trigonometric series:

⟨0|U †(x;θ)MU(x;θ) |0⟩ = fm(x;θ) (2)
=
∑
ω∈Ω

cω(θ)eiωx, (3)

where M is an observable, U(x;θ) is a quantum
circuit modeled as a unitary that depends
on input x and the variational parameters
θ = (θ0, θ1, ..., θT ). In the above, ω ∈ Ω denotes
the set of available frequencies which always
contain 0. The quantum circuit consists of L
layers each consisting of a trainable circuit block
Wi(θ), i ∈ {1, ..., L + 1} and a data encoding
block S(x) as shown in Figure 2. The data
encoding blocks determine which frequencies ω
are accessible in the sum and are implemented
as Pauli rotations. The blocks W (θ) can be
built from single-qubit rotation gates and CNOT
gates and they determine the coefficients cω(θ)
of the sum. It is possible to both implement
this model with L > 1 layers, such as data
re-uploading PQC [9, 16], where the encoding is
repeated on the same subsystems in sequence, or
with parallel encodings [19] and L = 1, where
the encoding is repeated on several different
subsystems.

For the needs of our discussion, we will briefly
describe a more specific set-up under which the
authors of [21] proved a universality theorem of
these quantum models for the multivariate case
with inputs x = (x0, x1, ..., xN ).
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Layer 1 Layer 2 Layer L

... . . . ...

|0⟩

S(x) W1(θ) S(x) W2(θ) S(x) WL(θ)
|0⟩

|0⟩

Figure 2: parametrized quantum circuit that can be written as a generalized trigonometric series as in (1). It consists
of L layers, each layer is composed by a trainable circuit block Wi(θ), i ∈ {1, ..., L+ 1} and a data encoding block
S(x). The data encoding blocks S(x) are identical for all layers, they determine which frequencies ω are accessible
and are implemented as Pauli rotations. The blocks Wi(θ) can be built from local rotation gates and CNOT gates.
They determine the coefficients cω(θ).

Let us construct a model of the form in (1), with
the measurement M and a quantum circuit of one
layer, L = 1:

fθ = ⟨0|U †(θ,x)MU(θ,x) |0⟩ , with (4)
U(θ,x) = W (2)(θ(2))S(x)W (1)(θ(1)) , (5)

where θ(1) and θ(2) are those parameters in θ that
affect W (1) and W (2), respectively. Let us further
make the following two assumptions: Firstly, we
assume that the data-encoding blocks S(x) are
written in the following way:

S(x) = e−x1H ⊗ · · · ⊗ e−xN H (6)
=: SH(x) , (7)

where H is a Hamiltonian that we specify later.
Secondly, we assume that the trainable circuit
blocks W (1)(θ(1)) and W (2)(θ(2)) are able to rep-
resent arbitrary global unitaries. In practice, this
may require exponential circuit depth. With this
assumption, we drop the dependence on θ and re-
formulate the assumption as being able to prepare
an arbitrary initial state |Γ⟩ := W (1)(θ(1)) |0⟩ and
by absorbing W (2)(θ(2)) into the measurement
M . We can then write the above quantum model
as:

f(x) = ⟨Γ|S†
H(x)MSH(x) |Γ⟩ . (8)

Let us further present the notion of a universal
Hamiltonian family, as defined in [21]:

Definition 1. Let {Hm|m ∈ N} be a Hamilto-
nian family where Hm acts on m subsystems of
dimension d.
Such a Hamiltonian family gives rise to a family
of models {fm} in the following way:

fm(x) = ⟨Γ|S†
Hm

(x)MSHm(x) |Γ⟩ . (9)

Further, we call the set

ΩHm := {λj − λk|j, k ∈ {1, ..., dm}} (10)

where {λ1, ..., λdm} are the eigenvalues of Hm,
the frequency spectrum of Hm.

Remark. We call a Hamiltonian family {Hm} a
universal Hamiltonian family, if for all K ∈ N,
there exists an m ∈ N, such that:

ZK = {−K, ..., 0, ...,K} ⊆ ΩHm , (11)

hence if the frequency spectrum of {Hm} asymp-
totically contains any integer frequency.

As shown in [21], a simple example of a uni-
versal Hamiltonian family is one which consists
of tensor products of single-qubit Pauli gates:

Hm =
m∑

i=1
σ(i)

q , (12)

with σ
(i)
q , q ∈ {X,Y, Z} and d = 2. The scaling

of the frequency spectrum for this example goes
as K = m.
With these definitions, we can give the following
theorem:
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Theorem 1 (Convergence in L2). [21] Let {Hm}
be a universal Hamiltonian family, and {fm} the
associated quantum model family, defined via (9).
For all functions f∗ ∈ L2

(
[0, 2π]N

)
, and for all

ϵ > 0, there exists some m′ ∈ N, some state |Γ⟩ ∈
Cm′ and some observable M such that

∥fm′ − f∗∥L2 < ϵ. (13)

Here, we clearly see that there are two con-
ditions on the target function f∗ that must
be fulfilled in order for the theorem to work
properly. The first condition is that f∗ belongs
to L2. This is not surprising, we need to assume
certain regularity on the target function to make
the theorem work. The second condition is that
the target function f∗ needs to be restricted
to the domain [0, 2π]N . However, as suggested
in the original paper [21], if the function f∗

does not belong to this domain, we can easily
map [a, b]N to the required domain [0, 2π]N (or
[−π, π]N equivalently).

We would like to highlight the fact that the dis-
tance we use to bring the approximator closer to
the target function is the L2 distance. Note that
convergence in the L2 sense does not imply other
modes of convergence. For example, this does not
give us information about the general case of Lp-
distances, with 1 ≤ p < ∞. We explicitly address
this more general case in the following theorem:

Theorem 2 (Convergence in Lp). Let {Hm}
be a universal Hamiltonian family, and {fm}
the associated quantum model family, defined via
(1). For all functions f∗ ∈ Lp

(
[0, 2π]N

)
where

1 ≤ p < ∞, and for all ϵ > 0, there exists some
m′ ∈ N, some state |Γ⟩ ∈ Cm′, and some observ-
able M such that:

∥fm′ − f∗∥Lp < ϵ. (14)

The proof of Theorem 2 is given in Appendix
A.

Let us emphasize the difference between Theo-
rems 1 and 2: The target function can belong to
any Lp space with 1 ≤ p < ∞ in contrast to the
previous requirement of being square-integrable
(L2). This is essentially achieved by the fact that
PQCs are not only able to represent Fourier series
as it is discussed in [21] but they are also able to
represent more general trigonometric series. This
allow us to identify the expectation value of the

quantum circuit with the Cèsaro summation of
the partial Fourier series of f∗ and leverage the
power of Fejér-like theorems [8]. See Appendix A
for more details.
Nevertheless, the ability to approximate func-
tions in Lp does not prevent us from having arbi-
trarily big errors in certain points. Intimately
related to this problem is the so-called Gibbs
phenomenon [12]. Namely, the approximation
of a continuous, but non-periodic function by a
Fourier series is increasingly better in the inte-
rior of the domain but increasingly poorer on its
boundaries. That leads to the fundamental ques-
tion if we can approximate f∗ in a stronger sense,
so that we ensure that the target function f∗ is
well approximated in any given point. We answer
this question in the next theorem.

Theorem 3 (Convergence in C0). Let {Hm} be
a universal Hamiltonian family, and {fm} the as-
sociated quantum model family, defined via (1).
For all functions f∗ ∈ C0 (U) where U is com-
pactly contained in the closed cube [0, 2π]N , and
for all ϵ > 0, there exists some m′ ∈ N, some
state |Γ⟩ ∈ Cm′, and some observable M such
that fm′ converges uniformly to f∗:

∥fm′ − f∗∥C0 < ϵ, (15)

with 2

∥fm′ − f∗∥C0 := sup
x∈[0,2π]N

∥fm′(x) − f∗(x)∥ .

(16)

The proof of Theorem 3 can be found in
Appendix A.
A set U ⊂ RN is compactly contained in another
set V ⊂ RN , if the closure of U is compact and
contained in the interior of V .
Simply stated, this theorem means that fm′

converges uniformly to f∗. In other words, if
we select a given target error ϵ we are always
able to find a finite PQC such that the error
on any point is smaller than the prescribed ϵ.
Let us emphasize again the differences between
Theorems 1 and 3. The first difference is that
the function f∗ has to be defined in a domain
U which is compactly contained in [0, 2π]N . A
simple example of U is the interval

([
−π

2 ,
π
2
]N)

2Since f∗ is defined on a compact domain U , the supre-
mum is equivalent to the maximum in this case.

Accepted in Quantum 2025-02-12, click title to verify. Published under CC-BY 4.0. 5



(or
(
[0, π]N

)
, equivalently). By restricting

ourselves to half of the original space we can
always find a C0 extension of the function f∗

in TN . The second difference is that the target
function now belongs to the class of continuous
functions in contrast to the previous requirement
of being square-integrable (L2).

A last result that we will show in this regard is
about the approximation of the function and its
derivatives by the parametrized quantum circuit.
This might seem as a purely synthetic question
but it has many implications in practice. When
we approximate a target function, in many occa-
sions we not only want to recover its value but
also its dynamics. This is particularly relevant
for problems in physics, where we typically have
a differential equation which describes the behav-
ior of the system. As we will see in the follow-
ing theorem, the universality results translate to
functions defined in the Sobolev space Hk as well:

Definition 2. The Sobolev space Hk(Ω) is de-
fined as the space of square integrable functions
on a domain Ω ⊆ RN which derivatives up to
order k are square integrable as well:

fα = Dαf , and
∥∥∥f (α)

∥∥∥
2
< ∞ , (17)

for all 0 ≤ |α| ≤ k and Dα := ∂|α|

∂x
α1
1 ...∂x

αN
N

.
The Sobolev norm ∥·∥Hk is defined as

∥f∥Hk :=

 ∑
|α|≤k

∫
Ω

|Dαf |2
1/2

. (18)

Theorem 4 (Convergence in Hk). Let {Hm}
be a universal Hamiltonian family, and {fm}
the associated quantum model family, defined via
(1). For all functions f∗ ∈ Hk (U) where U is
compactly contained in the closed cube [0, 2π]N ,
and for all ϵ > 0, there exists some m′ ∈ N,
some state |Γ⟩ ∈ Cm′, and some observable M
such that fm′ converges to f∗ with respect to the
Hk−distance:

∥fm′ − f∗∥Hk < ϵ. (19)

The proof of Theorem 4 is given in Appendix
A.
As in Theorems 3 and 4, we require that the tar-
get function is defined on a compactly contained

subset of [0, 2π]N , we propose to perform a min-
max feature scaling of the input data:

x = (x1, ..., xn) −→ x̃ = (x̃1, ..., x̃n) , (20)

where x ∈ [a, b]N , x̃ ∈
[
−π

2 ,
π

2

]N

, and

x̃ =
(

−π

2 + π
x1 − a

b− a
, ...,−π

2 + π
xn − a

b− a

)
.

(21)

This simple recipe allows the PQC to approx-
imate a much wider set of function spaces as
shown throughout this section. This normaliza-
tion strategy works very well in practice as can
be seen in Section 4. However, we would like to
emphasize that this particular normalization is
not the only choice. The classical strategy in ma-
chine learning of normalizing the input data to lie
in the [−1, 1]N domain is also completely valid.
Throughout this section, we have discussed the
expressive power of PQCs, but when we do ma-
chine learning, we have more ingredients that we
need to take into account. In the next section we
will discuss the role that the loss function plays in
accordance with the type of approximation that
our PQC can get.

3 Connections between different gen-
eralization bounds
As we have seen in the previous section, the
notion of approximation depends on a prescribed
distance. This distance is not given by the
problem itself, but instead chosen by the user,
this is why we refer to it as target distance. In
general, it is however not possible to compute
the target distance, which for example is the case
for the Lp and Hk distances. This is why one
needs to choose a distance function which can be
computed from data, a loss function. It has to
be chosen in such a way that it is consistent with
the target function. To discuss the topic in more
depth, let us formally introduce the continuous
regression problem, which is the problem that
we are most interested in.

In general, we can describe the continuous re-
gression problem in the following way: assume
that there is some target function f∗ ∈ F ⊆ Hk

mapping inputs x ∈ X to target labels y ∈ Y.
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Moreover, assume that the points in X are sam-
pled according to a bounded3 density function
p. Our goal is to find the best approximation
f ∈ M ⊆ Hk of the target function f∗.
The notion of what is understood as a “good” ap-
proximation as clarified, allows for some freedom.
For this reason, one has to make a choice by spec-
ifying a functional D : Hk × Hk −→ R+ ∪ {0}
which defines a distance between the elements of
F and M. The problem can then be stated as:

f = arg min
f̂∈M

D(f∗, f̂). (22)

The most common distance in the literature for
continuous regression problems is the one induced
by the L2(X , P ) norm:

DL2 (f∗, f) = ||f∗ − f ||L2

=
(∫

X
(f∗(x) − f(x))2dP

) 1
2
.

(23)

However, in regression we do not typically have
access to the full information (i.e., we cannot
compute the integral). It is for this reason that
instead we work with the empirical risk minimiza-
tion problem, which uses the discrete version l2 of
the L2 distance as a loss function. The difference
with the previous setup is that, for the empirical
risk minimization problem, we are given a finite
training set S of I inputs sampled from the same
probability density p, together with their target
labels {(x1, y1), ..., (xI , yI)} with (x, y) ∈ X × Y,
according to the target function f∗ : X → Y,
f ∈ F . Now, instead of minimizing a continuous
functional, we will minimize a discrete one. We
call

Dℓ(f∗, f) = 1
I

I−1∑
i=0

ℓ
(
f∗(xi), f(xi)

)
(24)

the expected loss according to a loss function ℓ :
Y × Y → R. Similarly to the continuous case,
we are concerned with the expected loss of the l2

distance, which is defined as:

Dl2(f∗, f) :=
(

1
I

I−1∑
i=0

(
f∗(xi) − f(xi)

)2
) 1

2

,

(25)

3It is possible to have more general density functions.
However, we restrict ourselves with this one since it sim-
plifies the analysis.

with xi denoting the i-th input.

Although we are solving the minimization
problem associated with the expected loss defined
in (25), in general we are interested in the gener-
alization performance, i.e., the distance in terms
of (23). Using generalization bounds [15] we can
relate the performance in terms of the distance
given by (25) with the distance given by (23).
However, these classical results in machine learn-
ing do in general not relate the l2 distance with
other distances, like the C0 distance. In other
words, even a solution which, as the model and
the number of points grow larger asymptotically
makes the DL2 go to zero, does not necessarily
make the DC0 distance vanish, which is defined
as:

DC0(f∗, f) := sup
x∈X

|f∗(x) − f(x)| . (26)

In such cases, we could find points where there
is an arbitrarily large discrepancy between the
solution and the target function.
One possible solution would be to use a different
distance than Dl2 . For example one could try the
discrete form of the DC0 distance:

Dl∞ = max
i∈{0,...,I−1}

∣∣∣f∗(xi) − f(xi)
∣∣∣ , (27)

but this distance is not differentiable, making
the optimization process much harder.

Thus, we identify two desirable features for a
distance in order to be able to approximate with
the C0 distance. The first requirement is that
the solution of the minimization problem that it
defines, tends uniformly to the target function
f∗ as we increase the number of given points I
and we increase the size of our PQC. The second
one is that it has to be differentiable in order to
make minimization easier.
The solution that we propose here is to
use a distance motivated by discretizing the
Sobolev distance Hk on a fixed finite training set{(

x1, f
∗(x1), {Dαf∗(x1)}|α|≤k

)
, ...,

(
xI , f

∗(xI),

{Dαf∗(xI)}|α|≤k

)}
, (x, y) ∈ X × Y, according

to the target function f∗ : X → Y, f ∈ F . The
sets {Dαf(x)}|α|≤k and {Dαf∗(x)}|α|≤k consists
of the M(N, k) :=

∑k
α=1

(α+N−1
N−1

)
different

partial derivatives up to order k evaluated at
point x. We write N for the number of input
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dimensions. Note that for being able to apply
this distance, one needs to have access to training
data containing the required partial derivatives

additionally to the function values.
We show the expected loss of the discretized
version of H1 and Hk, respectively, in the
following two equations:

Dh1(f∗, f) :=

1
I

I−1∑
i=0

(
f∗(xi) − f(xi)

)2
+

N−1∑
j=0

I−1∑
i=0

1
I

(
∂f∗

∂xj
(xi) − ∂f

∂xj
(xi)

)2
 1

2

, (28)

Dhk(f∗, f) :=

1
I

I−1∑
i=0

(
f∗(xi) − f(xi)

)2
+
∑

|α|≤k

I−1∑
i=0

1
I

(
Dαf∗(xi) −Dαf(xi)

)2
 1

2

. (29)

The expected loss as given in (28) was first in-
troduced in [13] and gives rise to a new subfield
of machine learning known in the literature as
differential machine learning (DML). Its gener-
alization, the discretization of the distance Hk,
is given in (29), and can be applied when the
required higher-dimensional derivatives are avail-
able as well. The derivatives ∂(p)f∗

∂x
(p)
j

and ∂(p)f

∂x
(p)
j

are

the p-th order derivative functions in direction xj

of f∗ and f , respectively. The corresponding loss
function is thus defined as

ℓhk : RM(N,k)+1 × RM(N,k)+1 → R, (30)(
f(x), {Dαf(x)}|α|≤k, f

∗(x), {Dαf∗(x) :}|α|≤k

)
7→

ℓhk(f(x), f∗(x)) = (f∗(x) − f(x)))2 (31)
+
∑

|α|≤k

(Dαf∗(x) −Dαf(x)))2 .

With classical neural networks, DML has proven
to yield better generalization results in terms of
the Dl2 distance than the solution of the Dl2 it-
self. This means that, if we take the solutions fh1

and fl2 of the minimization problems defined by
Equations (28) with the same number of labels
and (25) respectively and evaluate their perfor-
mance in terms of the DL2 , in practice fh1 per-
forms better than fl2 :

DL2 (f∗, fh1) ≤ DL2 (f∗, fl2) . (32)

However, to the best of our knowledge there is no
theoretical explanation in the literature on why
this happens or under which condition we might
expect this behavior. In the following theorems
we present generalization bounds that shed some

lights onto it.
Before stating them, we will define two function
families to which the generalization bounds ap-
ply:

Definition 3. [4] By FB
Ω , we denote the function

family defined as

FB
Ω =

{
[0, 2π]N ∋ x 7→ f(x) =

∑
ω∈Ω

cω exp(−iωx) :

{cω}ω∈Ω s.t. ∥f∥∞ ≤ B and |Ω| < ∞
}
.

By HB̃
Ω , we denote the function family defined as

HB̃
Ω =

{
[0, 2π]N ∋ x 7→ a0

2
+

∑
ω∈Ω+

(aω cos(ωx) + bω sin(ωx)) :

√
a2

0 +
∑

ω∈Ω+

a2
ω + b2

ω ≤ B̃ and |Ω+| < ∞
}
,

where the frequency set Ω is divided into the dis-
joint parts Ω = Ω+∪Ω−∪{0}, where Ω+∩Ω− = ∅
and such that for every ω ∈ Ω+, it holds that
−ω ∈ Ω−.

According to [4], both of these function fami-
lies can be modeled by the quantum model given
in Equation (9). As can be seen by this equation,
the bounds B and B̃ depend on the chosen circuit
and observable, and they determine the scaling
in the following generalization bounds. Note as
well that the truncated Fourier series as defined
in FB

Ω and HB̃
Ω are differentiable, and their deriva-

tives form truncated Fourier series as well. If one
chooses the frequency set Ω′ and the bounds B′

and B̃′ large enough, for a given function family
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F , both the functions and their derivatives are
contained in FB′

Ω′ and HB̃′
Ω′ .

Theorem 5 (Generalization bound for Hk). Let
f∗ ∈ F ⊆ Hk([0, 2π]N ) be a target function, and
let there be a B > 0 and a B̃ > 0, such that
FB

Ω ⊆ HB̃
Ω is a suitable model family. Let us

further assume that ℓhk(f1(x), f2(x)) ≤ c for all
x ∈ [0, 2π]N , and for all f1, f2 ∈ FB

Ω or F . For
any δ ∈ (0, 1) and the empirical risk Dhk (f∗, f)
trained on an i.i.d. training data S with size I
and containing data of ξ partial derivatives, the
following holds for all functions f ∈ FB

Ω with
probability at least 1 − δ:

DHk (f∗, f) ≤ Dhk (f∗, f) + r(|Ω|, ξ, B, B̃, c, I, δ),
(33)

where r(|Ω|, ξ, B, B̃, c, I, δ) → 0 as I → ∞.

Theorem 6 (Generalization bound for Lp). Let
f∗ ∈ F ⊆ Hk([0, 2π]N ) be a target function, and
let there be a B > 0 and a B̃ > 0, such that
FB

Ω ⊆ HB̃
Ω is a suitable model family. Let us

further assume that ℓhk(f1(x), f2(x)) ≤ c for all
x ∈ [0, 2π]N , and for all f1, f2 ∈ FB

Ω or F . As-
sume that k, p ∈ N satisfy one of the two follow-
ing cases:

1. N
(

1
2 − 1

p

)
< k < N/2 and 1 ≤ p < N .

2. k ≥ N/2 and 1 ≤ p < ∞.

For any δ ∈ (0, 1) and the empirical risk
Dhk (f∗, f) trained on an i.i.d. training data
S with size I and containing data of ξ partial
derivatives, the following holds for all functions
f ∈ FB

Ω with probability at least 1 − δ:

1
C
DLp (f∗, f) ≤ Dhk (f∗, f) + r(|Ω|, ξ, B, B̃, c, I, δ),

(34)

where C is a constant and
r(|Ω|, ξ, B, B̃, c, I, δ) → 0 as I → ∞.

Theorem 7 (Generalization bound for C0). Let
f∗ ∈ F ⊆ Hk([0, 2π]N ) be a target function, and
let there be a B > 0 and a B̃ > 0, such that
FB

Ω ⊆ HB̃
Ω is a suitable model family. Let us

further assume that ℓhk(f1(x), f2(x)) ≤ c for all
x ∈ [0, 2π]N , and for all f1, f2 ∈ FB

Ω or F and
that ∥f∥∞ ≤ B for all f ∈ FB

Ω . Assume, that
k ∈ N satisfies k > N/2. For any δ ∈ (0, 1) and
the empirical risk Dhk (f∗, f) trained on an i.i.d.

training data S with size I and containing data
of ξ partial derivatives, the following holds for all
functions f ∈ FB

Ω with probability at least 1 − δ:

1
C
DC0 (f∗, f) ≤ Dhk (f∗, f) + r(|Ω|, ξ, B, B̃, c, I, δ),

(35)

where C is a constant and
r(|Ω|, ξ, B, B̃, c, I, δ) → 0 as I → ∞.

The proofs of Theorems 5, 6 and 7 can be
found in Appendix B.
A consequence of Theorem 7 is that, if the
order of the derivatives that we have at our
disposal are higher than half the number of
input dimensions (k > N/2), our solution of
the Dhk problem is also a solution of the DC0

problem, corresponding to uniform convergence.
It means that training with the ℓhk loss function
(for k > N/2), which sums the ℓl2 losses of
function and derivative values, is sufficient for
an approximation in C0. This would not be
possible by a training with ℓl2 loss function and
more practical than the training with the ℓl∞

loss function, as described above.
Note that we face a curse of dimensionality-like
phenomenon as the dimension of the input grows.
In this case, the number of terms that go into
the ℓhk loss function grows exponentially with k,
as we have to take into account mixed deriva-
tives. Hence, for high dimensional problems the
demand on data of partial derivatives is higher
and only if they are available, this generalization
bound holds.
Further, the requirement of quantum resources
for evaluating Dh1(f∗, f) is higher than for the
evaluation of Dl2(f∗, f). If we use the parameter
shift rule for the evaluation of the derivatives,
we need to evaluate I(1 + 2N) different PQCs.
Similar to the demand on training data, this
number of PQCs to evaluate Dhk(f∗, f) grows
exponentially in k. However, even if the amount
of training data is the same (and implying an
increase of required PQC evaluations up to
a factor of 2), the training with the ℓhk loss
function shows the promised advantages, as
presented in [13].
The last property we wish to highlight is the
fact that the generalization bounds connect
the empirical risk with the full risk, but they
do not give us information of whether they
can both tend to zero. In order to tackle that
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question we need to combine the results of the
theorems present in this section with the ones
present in Section 2. For example, if we try
to fit a one-dimensional function which is not
periodic on [0, 2π], using model families FB

Ω and
HB̃

Ω and the ℓh1 loss function, as we increase
the number of sample points both sides of the
inequality will tend to the same constant but
they will not converge to zero. In this regard,
observe that the fact that the empirical risk
goes to zero is a sufficient but not a necessary
condition for the target distance to also tend to
zero. Following the same example, if instead of
training the model using the ℓh1 loss function
we trained the model using the ℓl2 loss function,
then the L2 distance will vanish. This idea is
illustrated in Figure 5. The bottom line is that
more information in the training data does not
always equate to a better approximation, if we
are not very careful with the necessary data
normalization.

4 Numerical experiments
In this section we illustrate the theoretical discus-
sion of Sections 2 and 3 with an illustrative exam-
ple: the approximation of function f∗ = x

2π , x ∈
[−π, π] by the PQC in Figure 3: We conduct two
different numerical experiments and show them
in Figures 4 and 5. We chose a linear function to
show that even in this simple case, the numerical
tests fail utterly if the results of Sections 2 and 3
are not applied.
All simulations have been performed using 10
points (10 for the labels plus 10 for the deriva-
tive values when they are present) uniformly dis-
tributed along the domain for the training phase.
Each experiment has been repeated 100 times and
we depict the 25, 50 and 75 percentiles in colored
solid lines in Figure 4. The legends call the re-
sult of the PQCs as f•(·), where the subscript
denotes under which loss function we have done
the training and in the parentheses we indicate
which normalization we have chosen.
In Figure 4 we compare the performance of our
PQC under different normalizations. We normal-
ize the data to lie in the domains

[
−π

2 ,
π
2
]
, [−π, π]

and [−2π, 2π], respectively. When we normalized
our data to lie in the range [−π

2 ,
π
2 ] we get the

best results, as we expected due to Theorem 3.

In contrast, when the data is normalized to lie in
the range [−2π, 2π] we obtain very poor approxi-
mation results, because in this case, it is not pos-
sible to approximate with the C0-distance or the
L2-distance. The intermediate regime happens
when we normalize the data to lie in the range
[−π, π], here we obtain a reasonable approxima-
tion except for the boundaries. This is a con-
sequence of approximating with the L2-distance
instead of the C0-distance: we cannot guarantee
that the error will be reduced on any given point.
This behavior remains even when we increase the
size of the circuit and the number of given points.

In Figure 5, we study the impact of the differ-
ent loss functions with different normalizations
in the learning problem. We simulated the
regression using two different loss functions,
ℓh1 and ℓl2 under two different normalizations,
with the domains

[
−π

2 ,
π
2
]

and [−π, π]. The
first noticeable phenomenon that we can see is
that using the h1 norm instead of the l2 norm
when the data is normalized to lie in the interval[
−π

2 ,
π
2
]

not only reduces the variance stemming
from repeating the experiments 100 times, but
also has some impact on the bias. What might
be more surprising is the effect of the h1 norm
when the data is normalized to lie in the interval
[−π, π]. Instead of getting a better approxima-
tion w.r.t. the l2 we worsen it. We explain it
with the fact that, when we normalize the data
to lie in the interval [−π, π], our PQC is not an
approximator of H1 but it is an approximator of
L2, i.e., it can approximate the function but it
cannot simultaneously approximate the function
and the derivatives. Thus, in the minimization
process the PQC tries to find a balance between
the error in the function and the error in the
derivatives, worsening the results with respect to
the quality of the function approximation.

5 Conclusions
In this work, we have developed a broader
theory of approximation capacities of PQCs.
We have shown how an appropriate choice of
the data normalization greatly improves the
expressivity of the PQCs. More specifically,
we showed that a min-max feature scaling that
normalizes the input data along each dimension
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Layer 1 Layer 2 Layer 3

|0⟩ Rx(ω1x) Ry(θ11) Rx(ω1x) Ry(θ12) Rx(ω1x) Ry(θ13)

|0⟩ Rx(ω1x) Ry(θ21) Rx(ω1x) Ry(θ22) Rx(ω1x) Ry(θ23)

Figure 3: Architecture U (x,θ) used in the experiments. The parameters θij are variational parameters. Each qubit
is measured in the Pauli-Z basis.
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Figure 4: In this picture we have trained the PQC of Figure 3 to approximate the function f∗ = x
2π . We have used 10

training points, the ℓl2 loss function and 100 epochs with the Adam optimizer. The experiments have been repeated
100 times. In the left panel we have normalized the data to lie in the interval

[
− π

2 ,
π
2
]
. In the central panel we have

normalized the data to lie in the interval [−π, π]. In the right panel we have normalized the data to lie in the interval
[−2π, 2π].

to lie in the range [−π
2 ,

π
2 ] makes PQCs universal

approximators in the Lp space with 1 ≤ p < ∞,
the continuous function space and the Hk space.
Moreover, since with this normalization we are
able to approximate functions in the sense of the
Lp, the C0 and the Hk distance, we discussed
that a loss function which is consistent with those
distances in training the models might be more
appropriate than other choices. In particular,
the natural choice for the C0 would be the l∞

distance. However, since the l∞ distance is not
differentiable, which makes the optimization of
PQCs harder, we leveraged Sobolev inequalities
to show that the h1 distance is consistent with
the C0 distance in R while being differentiable.
We showed further, that the the hk distances are
consistent with the Lp and the Hk distances.
Lastly, we performed some numerical exper-
iments to illustrate how this simple choice
of normalization and loss function can vastly
improve the results in practice.

The data normalization technique can be
seen as a complementary result to the work of
[21]. Nevertheless, there is still much work to
do in this direction. For example, if instead
of only taking a min-max feature scaling, we

can combine it with a mapping of the form
x̃ = arcsin(x) to end up with a series that closely
resembles Chebyshev polynomials, which are
better suited for certain problems. In analogy
with neural networks, the data encoding strategy
is playing a similar role to that of the activation
functions.

The relation between the ℓhk loss functions
and the Lp generalization bounds can be seen as
a complementary result to differential machine
learning [13] and to generalization bounds for
PQCs as derived in [4]. This is the first work
that gives some insight on why differential ma-
chine learning leads to better generalization re-
sults. From the relations that we derived, one
would expect this technique to fail as we increase
the input dimension. However, in practice it has
demonstrated very good results, as shown in [13],
where a 7-dimensional Basket option was trained
using the ℓh1 loss function. An interesting line of
research would be to study the threshold at which
differential machine learning starts to fail.
Since a natural application are physical systems
governed by differential equations where data on
the derivatives of a target function are available,
another open question remains regarding how our
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Figure 5: In this picture we have trained the PQC of Figure 3 to approximate the function f∗ = x
2π , using the two

different loss functions ℓh1 and ℓl2 . We have used 10 training points (10 for the labels plus 10 for the derivative
values when they are present) and 100 epochs with the Adam optimizer. The experiments have been repeated 100
times. In the upper panel, we have normalized the data to lie in the interval

[
− π

2 ,
π
2
]
. In the lower panel we have

normalized the data to lie in the interval [−π, π].
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approach compares to standard differential equa-
tion solvers in these scenarios.

6 Acknowledgments
The authors would like to thank Adrián Pérez
Salinas for useful feedback on an earlier version
of this paper and Hao Wang and Carlos Vázquez
for helpful discussions.
JT, VD and DD acknowledge the support re-
ceived by the Dutch National Growth Fund
(NGF), as part of the Quantum Delta NL pro-
gramme.
JT acknowledges the support received from the
European Union’s Horizon Europe research and
innovation programme through the ERC StG
FINE-TEA-SQUAD (Grant No. 101040729).’
VD and AM acknowledge the support by the
project NEASQC funded from the European
Union’s Horizon 2020 research and innovation
programme (grant agree- ment No 951821).
VD acknowledges by the Dutch Research Coun-
cil (NWO/OCW), as part of the Quantum Soft-
ware Consortium programme (project number
024.003.037).
AM acknowledges the support received from
the Centro de Investigación de Galicia “CITIC",
funded by Xunta de Galicia and the European
Union (European Regional Development Fund-
Galicia 2014-2020 Program), by grant ED431G
2019/01.
The views and opinions expressed here are solely
those of the authors and do not necessarily re-
flect those of the funding institutions. Neither
of the funding institution can be held responsible
for them.

References
[1] Robert A Adams and John JF Fournier.

Sobolev spaces. Elsevier, 2003.
[2] Victor Burenkov. Extension theorems for

sobolev spaces. In The Maz’ya Anniver-
sary Collection: Volume 1: On Maz’ya’s
work in functional analysis, partial differen-
tial equations and applications, pages 187–
200. Springer, 1999. DOI: 10.1007/978-3-
0348-8675-8_13.

[3] Claudio Canuto and Alfio Quarteroni. Ap-
proximation results for orthogonal polyno-
mials in sobolev spaces. Mathematics of

Computation, 38(157):67–86, 1982. DOI:
10.1090/S0025-5718-1982-0637287-3.

[4] Matthias C. Caro, Elies Gil-Fuster, Jo-
hannes Jakob Meyer, Jens Eisert, and Ryan
Sweke. Encoding-dependent generalization
bounds for parametrized quantum circuits.
Quantum, 5:582, November 2021. ISSN
2521-327X. DOI: 10.22331/q-2021-11-17-
582.

[5] Berta Casas and Alba Cervera-Lierta. Mul-
tidimensional fourier series with quantum
circuits. Physical Review A, 107(6):062612,
2023. DOI: 10.1103/PhysRevA.107.062612.

[6] George Cybenko. Approximation by super-
positions of a sigmoidal function. Mathemat-
ics of control, signals and systems, 2(4):303–
314, 1989. DOI: 10.1007/BF02551274.

[7] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu,
and Dacheng Tao. Expressive power of
parametrized quantum circuits. Physical
Review Research, 2(3):033125, 2020. DOI:
10.1103/PhysRevResearch.2.033125.

[8] Leopold Fejér. Untersuchungen über fouri-
ersche reihen. Mathematische Annalen, 58
(1-2):51–69, 1903.

[9] Francisco Javier Gil Vidal and Dirk Oliver
Theis. Input redundancy for parameterized
quantum circuits. Frontiers in Physics, 8:
297, 2020. DOI: 10.3389/fphy.2020.00297.

[10] Lukas Gonon and Antoine Jacquier. Univer-
sal approximation theorem and error bounds
for quantum neural networks and quantum
reservoirs. arXiv preprint arXiv:2307.12904,
2023. DOI: 10.48550/arXiv.2307.12904.

[11] Takahiro Goto, Quoc Hoan Tran, and Kohei
Nakajima. Universal approximation prop-
erty of quantum machine learning models in
quantum-enhanced feature spaces. Physical
Review Letters, 127(9):090506, 2021. DOI:
10.1103/PhysRevLett.127.090506.

[12] David Gottlieb and Chi-Wang Shu. On
the gibbs phenomenon and its resolution.
SIAM Review, 39(4):644–668, 1997. DOI:
10.1137/S0036144596301390.

[13] Brian Huge and Antoine Savine. Dif-
ferential machine learning. arXiv
preprint arXiv:2005.02347, 2020. DOI:
10.48550/arXiv.2005.02347.

[14] Kosuke Mitarai, Makoto Negoro, Masahiro
Kitagawa, and Keisuke Fujii. Quantum
circuit learning. Physical Review A, 98

Accepted in Quantum 2025-02-12, click title to verify. Published under CC-BY 4.0. 13



(3):032309, 2018. DOI: 10.1103/Phys-
RevA.98.032309.

[15] Mehryar Mohri, Afshin Rostamizadeh, and
Ameet Talwalkar. Foundations of ma-
chine learning. MIT press, 2018. DOI:
10.1007/s00362-019-01124-9.

[16] Adrián Pérez-Salinas, Alba Cervera-Lierta,
Elies Gil-Fuster, and José I Latorre. Data re-
uploading for a universal quantum classifier.
Quantum, 4:226, 2020. DOI: 10.22331/q-
2020-02-06-226.

[17] Adrián Pérez-Salinas, David López-Núñez,
Artur García-Sáez, and José I Latorre. One
qubit as a universal approximant. Physi-
cal Review A, 104(1):012405, 2021. DOI:
10.1103/PhysRevA.104.012405.

[18] Maziar Raissi, Paris Perdikaris, and
George Em Karniadakis. Physics in-
formed deep learning (part i): Data-
driven solutions of nonlinear par-
tial differential equations. arXiv
preprint arXiv:1711.10561, 2017. DOI:
https://doi.org/10.48550/arXiv.1711.10561.

[19] Patrick Rebentrost, Masoud Mohseni, and
Seth Lloyd. Quantum support vector ma-

chine for big data classification. Physical
review letters, 113(13):130503, 2014. DOI:
10.1103/PhysRevLett.113.130503.

[20] Halsey Lawrence Royden and Patrick Fitz-
patrick. Real analysis, volume 2. Macmillan
New York, 1968.

[21] Maria Schuld, Ryan Sweke, and Jo-
hannes Jakob Meyer. Effect of data encod-
ing on the expressive power of variational
quantum-machine-learning models. Physi-
cal Review A, 103(3):032430, 2021. DOI:
10.1103/PhysRevA.103.032430.

[22] Ferenc Weisz. ℓ1-summability of higher-
dimensional fourier series. Journal
of Approximation Theory, 163(2):99–
116, 2011. ISSN 0021-9045. DOI:
https://doi.org/10.1016/j.jat.2010.07.011.

[23] Michael M. Wolf. Mathematical foundations
of supervised learning. Lecture Notes, 2023.

[24] Zhan Yu, Hongshun Yao, Mujin Li, and Xin
Wang. Power and limitations of single-qubit
native quantum neural networks. Advances
in Neural Information Processing Systems,
35:27810–27823, 2022.

A Proof of Theorems 2, 3 and 4
For proving Theorems 2, 3 and 4, we need two preliminary results. Firstly, we need to show that a
quantum circuit can realize the ℓ1-Fejér’s mean of C0

(
TN
)

and Lp
(
TN
)
, ∀ 1 ≤ p < ∞ functions.

Secondly, we need to prove that we can define periodic extensions of functions belonging to C0 (U) and
Hk (U) , ∀ 1 ≤ k < ∞, where U is compactly contained in TN to functions belonging to C0

(
TN
)

and

Hk
(
TN
)
, ∀ 1 ≤ k < ∞ respectively . The combination of both results plus Fejér’s theorem in multiple

dimensions naturally yields Theorems 2 and 3. Theorem 4 can be proven by a standard approximation
Theorem of the Fourier series.

A.1 Féjer’s mean
We call the function

σNK(fm′) =
∑

j∈ZN
K

(
1 − ∥j∥1

NK

)
f̂je

ix·j , (36)

where f̂j is the j-th Fourier coefficient of fm′ , the ℓ1-Fejér’s mean of fm′ .

We will show that our PQC can realize the Fejér’s mean of any well-defined function. In Appendix
C of [21], the authors showed that the quantum model family fm′ can be written as a generalized
trigonometric series of the form

fm′(x) =
∑

j∈ZN
K

cje
ix·j , (37)
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where ZN
K = {−K,−K+ 1, ..., 0, ...,K− 1,K}N is contained in the Cartesian product of the frequency

spectrum associated with Hm, as defined in Definition 1 and that the coefficients cj are completely
determined by the observable freely up to the complex-conjugation symmetry that guarantees that the
model output is a real-valued function. Note that we can choose the coefficients cj as:

cj =
(

1 − ∥j∥1
NK

)
f̂j, (38)

which are the coefficients of the ℓ1-Fejér’s mean in Equation (36).

A.2 Periodic extension for C0 functions
By the Tietze extension theorem [20], there exists a function g1 ∈ C0(RN ) with g1|U = f∗. Then, we
define a function g2 ∈ C0(RN ) with g2|U = 1 and g2|RN \V = 0, where V is defined as U ⊂ V ⊂ (0, 2π)N .
This set V exists since U is compactly contained in [0, 2π]N .
We can explicitly construct the function g2 in the following way: Let δ > 0, such that the closure
ω2δ of the 2δ-neighborhood of ω, is contained in [0, 2π]N , which is possible due to U being compactly
contained in [0, 2π]N . We define V := ω2δ and a function ψδ ∈ C0(RN ), supported on the δ Ball in
RN centered around 0 and normalized as

∫
RN ψδ(x)dx = 1. Then, we define g2 as the convolution of

1Uδ
and ψδ:

g2(x) =
∫
RN

1Uδ
(τ)ψδ(τ − x)dτ . (39)

With this construction, g2 satisfies the asked properties. We define the extension fext as the product
g1g2, which yields a function f∗

ext with

f∗
ext|U = f∗ , (40)

f∗
ext|RN \V = 0 , hence (41)
f∗

ext(x) = f∗
ext(y) ∀x, y ∈ ∂TN . (42)

The such defined extension f∗
ext is thus an element of C0([0, 2π]N ) with periodic boundary conditions,

so we can map it onto the N -dimensional torus TN .

A.3 Periodic extension for Hk functions
By the extension theorems for Sobolev functions [2, Theorem 2.2, Part 2], there exists a function
g1 ∈ Hk(RN ) with g1|U = f∗. Then, we define a function g2 ∈ Hk(RN ) with g2|U = 1 and g2|RN \V = 0,
where V is defined as U ⊂ V ⊂ (0, 2π)N . This set V exists since U is compactly contained in [0, 2π]N .
We can explicitly construct the function g2 in the following way: Let δ > 0, such that the closure
ω2δ of the 2δ-neighborhood of ω, is contained in [0, 2π]N , which is possible due to U being compactly
contained in [0, 2π]N . We define V := ω2δ and a function ψδ ∈ Hk(RN ), supported on the δ Ball in
RN centered around 0 and normalized as

∫
RN ψδ(x)dx = 1. Then, we define g2 as the convolution of

1Uδ
and ψδ:

g2(x) =
∫
RN

1Uδ
(τ)ψδ(τ − x)dτ . (43)

With this construction, g2 satisfies the asked properties. We define the extension fext as the product
g1g2, which yields a function f∗

ext with

f∗
ext|U = f∗ , (44)

f∗
ext|RN \V = 0 , hence (45)
f∗

ext(x) = f∗
ext(y) ∀x, y ∈ ∂TN . (46)

The such defined extension f∗
ext is thus an element of Hk([0, 2π]N ) with periodic boundary conditions,

so we can map it onto the N -dimensional torus TN .
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A.4 Proof of Theorems 2, 3 and 4
The final step leverages the power of Fejèr’s theorem in multiple dimensions:

Theorem 8. [22][Theorem 2] For all functions f∗ ∈ Lp
(
TN
)

with 1 ≤ p < ∞, and for all ϵ > 0,
there exists some t ∈ N, such that

∥σt (f) − f∗∥Lp < ϵ. (47)

Combining Theorem 8 with the fact that quantum circuits can recover any ℓ1-Fejér’s mean as shown
in Appendix A.1 directly implies Theorem 2.

Similarly, for continuous functions we have another version of Fejér’s theorem for continuous
functions:

Theorem 9. [22][Theorem 2] For all functions f∗ ∈ C0
(
TN
)
, and for all ϵ > 0, there exists some

t ∈ N, such that
∥σt (f) − f∗∥∞ < ϵ. (48)

Combining Theorem 9 with the fact that quantum circuits can recover any ℓ1-Fejér’s mean as shown
in Appendix A.1 and the fact that we can extend any function in C0 (U)N , ∀ 1 ≤ p < ∞ where U
is compactly contained in TN to a function in C0

(
TN
)
, ∀ 1 ≤ p < ∞ as shown in Appendix A.2

directly implies Theorem 3.

We finally prove Theorem 4, which uses the setup in [21] as described in section 2: We note firstly
that the quantum model family fm′ generates a truncated Fourier series f̃ in the domain [0, 2π]N of
the form

f̃(x) =
∑

j∈ZN
K

cje
ix·j , (49)

where ZN
K = {−K,−K+ 1, ..., 0, ...,K− 1,K}N is contained in the Cartesian product of the frequency

spectrum associated with Hm, as defined in Definition 1. The proof of that is written in Appendix C
of [21].
Secondly, we can extend the function f∗ defined on U to a periodic function f∗

ext on [0, 2π]N via the
construction shown in Appendix A.3. As written in Theorem 1.1 in [3], the Fourier series of f∗

ext, which
we can write in the form of equation 49, converges in the Hk-distance to f∗

ext. As f∗
ext(x) = f∗(x) for

all x ∈ U , the Fourier series of f∗
ext converges in the Hk-distance to f∗ on U . This implies Theorem 4.

B Proof of Theorems 5, 6 and 7
In this appendix, we prove Theorems 5, 6 and 7, for which we need several preliminary definitions and
results:

Definition 4 (L-Lipschitz loss function). Let (Y, dY) be a metric space with metric dY and let ℓ :
Y × Y → R be a loss function. We call it L− Lipschitz with regard to a fixed y ∈ Y, if there exists a
constant L ≥ 0, such that for all z1, z2 ∈ R,

dY (ℓ(y, z1), ℓ(y, z2)) ≤ L |z1 − z2| . (50)

Theorem 10 (Generalization bound for general trigonometric series). [4][Theorem 11] Let N, I ∈ N.
Let B > 0 and B̃ > 0 be such that FB

Ω ⊆ HB̃
Ω , for the function families FB

Ω and HB̃
Ω as defined in

Definition 3. Let ℓ : R×R → [0, c] be a bounded loss function such that R ∋ z 7→ ℓ(y, z) is L- Lipschitz
for all y ∈ R. For any δ ∈ (0, 1) and for any probability measure P on [0, 2π]N × R, with probability
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at least 1 − δ over the choice of i.i.d. training data S ∈ ([0, 2π]N × R)I of size I, for every f ∈ FB
Ω ,

the generalization error can be upper-bounded as∫
[0,2π]N ×R

ℓ(f∗(x), f(x))dP ((x), f∗(x)) − 1
|I|

∑
xi,f(xi)∈S

ℓ(f∗(xi), f(xi)) (51)

≤ O

BL
√

|Ω|(log(|Ω|) + log(B̃))
I

+ c

√
log(1/δ)

I

 , (52)

for a target function f∗ : [0, 2π]N → R .

This theorem is written for loss functions that take two real values as an input, which is the case for
most loss functions. We show that the theorem holds as well for the loss function ℓhk :

Lemma 1. Theorem 10 holds as well for the loss function ℓhk : R(N
k )+1×R(N

k )+1 → [0, c] with N, k ∈ N
by choosing the frequency set Ω and the bounds B and B̃ large enough, such that both the functions f
of a considered function family F and their derivatives Dαf for |α| ≤ k are contained in the families
FB

Ω ⊆ HB̃
Ω .

Proof. The proof goes analogous to the proof of Theorem 11 in [4]. There are two points which require
special care:
Firstly, we need to adapt the application of Talagrand’s lemma which is used to upper bound the
Rademacher complexity. Let us use the ℓl2 loss function

ℓl2(f∗(x), f(x)) = (f∗(x) − f(x))2 , (53)

which is related to the loss function ℓhk by

ℓhk(f∗(x), f(x)) =
∑

|α|≤k

ℓl2 (Dαf∗(x), Dαf(x)) . (54)

By using the reverse triangle inequality, we can prove the lipschitzness of the loss function ℓl2 , for a
fixed f∗(x) ∈ L2([0, 2π]N ):∣∣∣∣∣ℓl2(f1(x), f∗(x)) − ℓl2(f2(x), f∗(x))

∣∣∣∣∣ =
∣∣∣∣∣ |f∗(x) − f1(x))|2 − |f∗(x) − f2(x))|2

∣∣∣∣∣ (55)

≤
∣∣∣∣∣ |f∗(x) − f1(x) − (f∗(x) − f2(x))|2

∣∣∣∣∣ (56)

=
∣∣∣∣∣ |(f∗(x) − f∗(x)) − (f1(x)) − f2(x)))|2

∣∣∣∣∣ (57)

= |(f1(x)) − f2(x)))|2 . (58)

Thus, the loss function ℓl2 is L-Lipschitz with the Lipschitz constant L = 1. Note that this is the
Lipschitz constant of the loss function ℓl2 , which is not related to the Lipschitz constant of functions
of the function space L2([0, 2π]N ).
Parallel to the proof of Theorem 11 in [4], we now define the set

G =
{

[0, 2π]N × [0, 2π]N ∋ (x,x) 7→ ℓhk(f∗(x), f(x))
∣∣∣f∗ ∈ Hk([0, 2π]N ) and f ∈ FB

Ω

}
(59)
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We can now upper bound the Rademacher complexity R̂S(G) for a training set S with I data points
and a target function f∗ as

R̂S(G) = 1
I
Eσ

 sup
f∈FB

Ω

I∑
i=1

σiℓhk(f(xi), f∗(xi))

 (60)

= 1
I
Eσ

 sup
f∈FB

Ω

I∑
i=1

σi

∑
|α|≤k

ℓl2(Dαf(xi), Dαf∗(xi))

 (61)

≤ 1
I
Eσ

 sup
Dαf(x)∈FB

Ω ,|α|≤k

I∑
i=1

σi

∑
|α|≤k

ℓl2(Dαf(xi), Dαf∗(xi))

 (62)

=
∑

|α|≤k

1
I
Eσ

 sup
Dαf(x)∈FB

Ω

I∑
i=1

σiℓl2(Dαf(xi), Dαf∗(xi))

 (63)

≤ ξ sup
|α|≤k

1
I
Eσ

 sup
Dαf(x)∈FB

Ω

I∑
i=1

σiℓl2(Dαf(xi), Dαf∗(xi))

 . (64)

The i.i.d. random variables σi ∈ {−1, 1} are the Rademacher random variables and ξ is the number
of derivatives Dα with |α| ≤ k. Here, we first used the relation between the loss functions ℓl2 and
ℓhk . Then, we used the fact that the supremum over functions and derivatives Dαf(x) ∈ FB

Ω , |α| ≤ k
which are independent from each other is larger than the supremum which is only taken over the
functions f ∈ FB

Ω , in which case the derivatives that are taken account in the loss functions have to
be the derivatives of these functions. In the last inequality, we used that each of the ξ terms in the
sum

∑
|α|≤k can be upper bounded by its supremum.

We can now apply Talagrand’s lemma on the quantity 1
IEσ

[
supDαf(x)∈FB

Ω

∑I
i=1 σiℓl2(Dαf(xi), Dαf∗(xi))

]
,

for a fixed |α| ≤ k in which way we obtain the upper bound

R̂S(G) ≤ ξR̂S|x(FB
Ω ) , (65)

where we used that the loss function ℓl2 has the Lipschitz constant L = 1 and where S|x := {xi}I
i=0

is the set of the unlabeled training data points. The supremum sup|α|≤k can be omitted on the right
hand side of the bound, since the subset S|x of the training set does not include the labels Dαf∗(xi)
and since we assumed the function family FB

Ω to contain the relevant derivatives as well. This upper
bound corresponds to equation (97) in the proof of Theorem 11 in [4], apart from the additional factor
ξ.
Secondly, in the last step of the proof in [4], the authors use standard generalization bounds as stated
in Theorem 1.15 in [23]. The formulation of this standard generalization bound theorem allows for
the loss function ℓhk as well.

Definition 5 (Compact embedding). [1][Definition 1.25] Let X and Y be normed spaces with the
norms ∥·∥X and ∥·∥Y , respectively, and X a subspace of Y . Let I : X → Y , Ix = x for all x ∈ X
be the embedding operator from X to Y . We say that X is continuously embedded in Y , and write
X → Y , if there exists a constant C, such that

∥Ix∥Y ≤ C ∥x∥X , ∀x ∈ X . (66)

We call the embedding compact, if X is continuously embedded in V and the embedding operator I is
compact.

Definition 6. We write C0
B(U) for the space of bounded, continuous functions on U .
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Definition 7 (Finite cone and Cone condition). [1][Definitions 4.4 and 4.6] Let v, x ∈ RN be nonzero
vectors, let ∠(x, v) be the angle between vectors x and v. For given such v, a ρ > 0 and a κ such that
0 < κ ≤ π, the set

Cv,ρ,κ = {x ∈ RN : x = 0 or 0 < ∥x∥ ≤ ρ,∠(x, v) ≤ κ/2} (67)

is called a finite cone of height ρ, axis direction v and aperture angle κ with vertex at the origin.
We say that U ⊆ RN satisfies the cone condition, if there exists a finite cone C such that every x ∈ U
is the vertex of a finite cone Cx contained in U and congruent to C.

Theorem 11 (Rellich-Kondrachov). [1][Theorem 6.3, Part I and II] Let U be a domain in RN sat-
isfying the cone condition, let U0 be a bounded subdomain of U , and let UN

0 be the intersection of U0
with a N -dimensional plane in RN . Let k ≥ 1 be integers. Let one of the following cases hold:

1. 2k < N and 1 ≤ p < 2N/(N − 2k)

2. 2k = N and 1 ≤ p < ∞

3. 2k > N and 1 ≤ p < ∞

Then, the following embeddings are compact:

Hk(U) → Lp(UN
0 ) . (68)

Additionally, in case 3, the following embedding is compact:

Hk(U) → C0
B(UN

0 ) . (69)

Remark. The theorem relates to the Rellich-Kondrachov Theorem stated in [1] in the following way:

• Case 1 and Case 2 are the two cases stated in Part 1 of Theorem 6.3 in [1].

• Case 3 corresponds to the first and second case of Part 2 in Theorem 6.3 in [1].

• We use a different notation: The symbols Ω, j, p, q, k, n,m used in [1] are here equal to
U, 0, 2, p,N,N, k, respectively.

• We formulate the theorem for the special cases W k,2 = Hk and W 0,p = Lp of the Sobolev spaces.

With these preliminary results, we can prove Theorems 5, 6 and 7, which we restate here:

Theorem 5 (Generalization bound for Hk). Let f∗ ∈ F ⊆ Hk([0, 2π]N ) be a target function, and let
there be a B > 0 and a B̃ > 0, such that FB

Ω ⊆ HB̃
Ω is a suitable model family. Let us further assume

that ℓhk(f1(x), f2(x)) ≤ c for all x ∈ [0, 2π]N , and for all f1, f2 ∈ FB
Ω or F . For any δ ∈ (0, 1) and

the empirical risk Dhk (f∗, f) trained on an i.i.d. training data S with size I and containing data of
ξ partial derivatives, the following holds for all functions f ∈ FB

Ω with probability at least 1 − δ:

DHk (f∗, f) ≤ Dhk (f∗, f) + r(|Ω|, ξ, B, B̃, c, I, δ), (70)

where r(|Ω|, ξ, B, B̃, c, I, δ) → 0 as I → ∞.

Proof. In the work [4], the authors developed generalization bounds for the function family defined
in (9). We restated the theorem in Theorem 10. As we have shown in Corollary 1, the theorem also
holds for the loss function ℓhk .

According to the assumption, the function f∗ is in FB
Ω . The choice of the constant B̃ such that

FB
Ω ⊆ HB̃

Ω is satisfied depends on the encoding strategy. As written in [4], it can for example for
integer valued frequencies be chosen as B̃ = 2B. Thus, Lemma 1 can be applied and the following
bound holds:

DHk (f∗, fhk) ≤ Dhk (f∗, fhk) + r(|Ω|, B, B̃, c, I, δ) , (71)

with a function r(|Ω|, B, B̃, c, I, δ) which tends to 0 as I → ∞.
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Theorem 6 (Generalization bound for Lp). Let f∗ ∈ F ⊆ Hk([0, 2π]N ) be a target function, and let
there be a B > 0 and a B̃ > 0, such that FB

Ω ⊆ HB̃
Ω is a suitable model family. Let us further assume

that ℓhk(f1(x), f2(x)) ≤ c for all x ∈ [0, 2π]N , and for all f1, f2 ∈ FB
Ω or F . Assume that k, p ∈ N

satisfy one of the two following cases:

1. N
(

1
2 − 1

p

)
< k < N/2 and 1 ≤ p < N .

2. k ≥ N/2 and 1 ≤ p < ∞.

For any δ ∈ (0, 1) and the empirical risk Dhk (f∗, f) trained on an i.i.d. training data S with size I and
containing data of ξ partial derivatives, the following holds for all functions f ∈ FB

Ω with probability
at least 1 − δ:

1
C
DLp (f∗, f) ≤ Dhk (f∗, f) + r(|Ω|, ξ, B, B̃, c, I, δ), (72)

where C is a constant and r(|Ω|, ξ, B, B̃, c, I, δ) → 0 as I → ∞.

Proof. We will prove the theorem by proving the following two inequalities:

1
C
DLp (f∗, f) ≤ DHk (f∗, f) ≤ Dhk (f∗, f) + r(|Ω|, B, B̃, c, I, δ) . (73)

The right hand side inequality is following directly from Theorem 5, and the left hand side inequality
is a consequence of Theorem 11. Let us look at case 1 in Theorem 11: We want to rewrite the
bound p < 2N/(N − 2k) as an upper bound for k for a given p. Let us therefore firstly check, which
values p is allowed to reach. Due to k being bound from above by k < N/2, the upper bound on p,
p < 2N/(N − 2k) is maximal for k = N

2 − 1, in which case the upper bound on p becomes p < N .
That means that values for p chosen in 1 ≤ p < N are valid values. With p such chosen, the bound
p < 2N/(N − 2k) is equivalent to bounding k in the following way:

N

(1
2 − 1

p

)
< k . (74)

For case 2 in Theorem 11, we have the inequalities k ≥ N/2 and 1 ≤ p < ∞.
Further, because of the assumptions ℓhk (f∗(x), f(x)) ≤ c for all x ∈ [0, 2π]N , the subdomain U =
[0, 2π]N is equal to U0, and because an N -dimensional plane in RN is RN itself, U is also equal to UN

0 .
Let C be a cone of height at most π, angle at most π/2. Then, for each x in U = [0, 2π]N , we can
choose an appropriate axis direction such that Cx lies entirely in U , so it satisfies the cone condition.
To sum up, Theorem 11 states that for the cases

1. N
(

1
2 − 1

p

)
< k < N/2 and 1 ≤ p < N .

2. k ≥ N/2 and 1 ≤ p < ∞,

the following embeddings are compact:

Hk([0, 2π]N ) → Lp([0, 2π]N ) . (75)

According to the definition of a compact embedding (Definition 5), there exists a constant C, such
that

∥f∗ − f∥Lp ≤ C∥f∗ − f∥Hk . (76)
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Theorem 7 (Generalization bound for C0). Let f∗ ∈ F ⊆ Hk([0, 2π]N ) be a target function, and let
there be a B > 0 and a B̃ > 0, such that FB

Ω ⊆ HB̃
Ω is a suitable model family. Let us further assume

that ℓhk(f1(x), f2(x)) ≤ c for all x ∈ [0, 2π]N , and for all f1, f2 ∈ FB
Ω or F and that ∥f∥∞ ≤ B

for all f ∈ FB
Ω . Assume, that k ∈ N satisfies k > N/2. For any δ ∈ (0, 1) and the empirical risk

Dhk (f∗, f) trained on an i.i.d. training data S with size I and containing data of ξ partial derivatives,
the following holds for all functions f ∈ FB

Ω with probability at least 1 − δ:

1
C
DC0 (f∗, f) ≤ Dhk (f∗, f) + r(|Ω|, ξ, B, B̃, c, I, δ), (77)

where C is a constant and r(|Ω|, ξ, B, B̃, c, I, δ) → 0 as I → ∞.

Proof. The prove of this theorem is equivalent to the proof of Theorem 6 above. We will prove this
theorem as well by proving the following two inequalities:

1
C
DLp (f∗, f) ≤ DHk (f∗, f) ≤ Dhk (f∗, f) + r(|M|, I, δ) . (78)

The right hand side inequality is following directly from Theorem 5, and the left hand side inequality
is a consequence of Theorem 11. As written in the proof of Theorem 6, the assumptions of Theorem
11 are satisfied, we can thus also apply it here.
The upper bound on the distance DC0 (f∗, f) in the supremum norm is a direct consequence of the
third case in Theorem 11.
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