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Parametrized quantum circuits (PQC)
are quantum circuits which consist of both
fixed and parametrized gates. In recent
approaches to quantum machine learning
(QML), PQCs are essentially ubiquitous
and play the role analogous to classical
neural networks. They are used to learn
various types of data, with an underly-
ing expectation that if the PQC is made
sufficiently deep, and the data plentiful,
the generalization error will vanish, and
the model will capture the essential fea-
tures of the distribution. While there ex-
ist results proving the approximability of
square-integrable functions by PQCs un-
der the L? distance, the approximation for
other function spaces and under other dis-
tances has been less explored. In this work
we show that PQCs can approximate the
space of continuous functions, p-integrable
functions and the H* Sobolev spaces under
specific distances. Moreover, we develop
generalization bounds that connect differ-
ent function spaces and distances. These
results provide a theoretical basis for dif-
ferent applications of PQCs, for example
for solving differential equations. Further-
more, they provide us with new insight on
the role of the data normalization in PQCs
and of loss functions which better suit the
specific needs of the users.

Alberto Manzano: alberto.manzano.herrero@udc.es
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Figure 1: Sketch of a hybrid variational algorithm.
U(zx,0) represents a quantum circuit that takes z as
input and with variational parameters 6, fg(x) is the ex-
pected value of some observable and D(f*, fy) is the
expected loss that we want to minimize.

1 Introduction

Machine learning has gained significant attention
in recent years for its practical applications and
transformative impact in various fields. As a
consequence, there has been a rising interest
in exploring the use of quantum circuits as
machine learning models, capitalizing on the
advancements in both fields to unlock new pos-
sibilities and potential breakthroughs. Among
the various possibilities for leveraging quantum
circuits in machine learning, our particular focus
lies on parametrized quantum circuits (PQC).
These quantum circuits consist of both fixed
and adjustable (hence ’parametrized’) gates.
When used for a learning task such as learning a
function [14], a classical optimizer updates the
parameters of the PQC in order to minimize a
cost function depending on measurement results
from this quantum circuit (see Figure 1).
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In this context, a growing line of research stud-
ies the expressivity of PQCs. More precisely, the
capacity of PQCs to approximate any function
belonging to a particular function space defined
in a prescribed domain up to arbitrary precision
with respect to a specific distance. In [21], they
showed that PQCs can be written as a generalized
trigonometric series in the following way:

fo(z) = (0| U (x; 0) MU (x; 6) |0)
= Z o ()€ (1)

wel

We would like to emphasize that although
similar, the form of the PQC in above equation
is more general than a Fourier series. This will
become relevant for the results of this work.
Using this formulation, it was further shown in
[21] that, if the PQC is chosen carefully, the
increase of its depth and number of parameter
can arbitrarily reduce the L? distance between
the expected value fg(x) of the PQC and any
square-integrable function with the domain
[0,27]Y. Throughout the paper we will refer to
the PQC as the one approximating the functions
to make the text more fluent, although techni-
cally it is the expectation value of the PQC that
approximates the function.

This result had a significant impact on the
motivation to study PQC-based QML, analogous
to the impact that the famous Universality
theorem for neural networks of Cybenko [6] had
on the domain of classical machine learning.
Previously, different results on universality for
PQC have been established. In [7], the power
of PQCs in expressing matrix product states
and instantaneous quantum polynomial circuits
was shown. Later, the universal approximation
of PQCs was studied in regression problems,
for single-qubit circuits with multiple layers
[17, 24] and for both single- and multiple-qubit
circuits [5, 11]. However, as it turns out, there
are numerous different notions of universality,
and not all are useful for all applications. For
instance, as will be discussed later, in the context
of Physics-Inspired Neural Networks (PINN) the
"vanilla" universality does not suffice. This raises
the question of whether PQCs can approximate
functions belonging to other function spaces or
in terms of other distances.

In this paper, we present two novel results.
The first result of this paper is that PQCs can

arbitrarily approximate the space of continuous
functions, the space of p-integrable functions and
the H* space, which is the set of functions whose
derivatives up to order k are square integrable.
Furthermore, we explain how these properties
can be easily achieved in practice by a simple
min-max feature rescaling (see (20)) of the input
data. In practice, this leads to an improved
expressivity of PQCs, if the input data is nor-
malized accordingly.

The second result of the paper are general-
ization bounds that connect distances with loss
functions which are not built via the discretiza-
tion of the integrals present in the definition of
the distance. To make it more clear, we recall
that in a machine learning problem one needs to
choose an architecture, which defines the class of
functions that can be approximated, and a target
distance, which is intimately connected with the
generalization error’. However, in general it is
not possible to compute the target distance, as
we would need to have available infinitely many
data points. Instead, one chooses a different
distance function which can be computed from
the available data: a loss function. This loss
function is a different function than the target
distance but it should be chosen in such a way
that we call consistent with the target distance,
i.e., that the minimization of the expectation
value of the loss function, the expected loss,
yields the minimization of the target distance up
to an error which asymptotically tends to zero
when the number of samples and the expressivity
(here meant architecturally, as e.g. depth) of
the PQC increases. For example, the mean
square error (as a loss function) is consistent
with the L? error (as a target distance) but
is inconsistent with the supremum distance.
The usual generalization bounds connect target
distances which are continuous with expected
losses which are their discrete version.

The generalization bounds that we derive give
a mapping across different distances and loss
functions, i.e., they relate distances with loss
functions which are not built via the discretiza-
tion of the integrals present in the definition

In practice we may not explicitly think about the tar-
get distance, i.e. with respect to which distance we wish
to approximate the "true" labeling function. But this de-
cision is implicitly made, once the loss is chosen.
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of the distance. A particular loss function we
shall define, denoted ¢,1, which consists of the
sum of the mean square errors of the values of
the functions and its derivative, is consistent
with the supremum distance in one-dimensional
problems. In the described case, this allows us
to reduce the supremum distance while choosing
a loss function which is differentiable.

Our results apply in many settings. For
example, our first result has a direct consequence
in that it allows one to approximate not most,
but all function values with satisfying quality.
For instance, the minimization of the ubiquitous
L? distance may allow functions to dramatically
differ from the target function in some regions
where we have plenty of data points available,
whereas the minimization of the supremum norm
in Theorem 3 will force the PQC to converge
for any given point in the domain of the target
function. This is of high relevance in cases where
we are interested in having a good approxima-
tion at any given point. For instance, when
learning the shape of a probability distribution
from samples, a good fit in the bulk of the
distribution but not in its tails can lead to
significant underestimation or overestimation of
the probability of extreme events. In real-world
applications, this could have severe consequences
in risk assessment applications, where accurate
estimation of tail probabilities is essential for
developing appropriate contingency measures
against rare but significant events, such as the
COVID-19 pandemic or the 2008 economic
crisis. Our second result has direct applications,
e.g., in settings where we have access to data
of the function and its derivatives. One case
where this is standard is in settings involving
solving differential equations. For example
in physics-informed neural networks (PINN)
problems [18] and differential machine learning
(DML) [13], both function values and derivatives
are accessible and in fact critical.

This paper is organized as follows: in Section
2 we explain the new results on the expressivity
of PQCs. In Section 3 we discuss the proposed
generalization bounds. Then, in Section 4 we il-
lustrate the theoretical result of Sections 2 and 3
by means of some numerical experiments. Lastly,
in Section 5 we wrap up with the conclusions.

During the final stages of our work, we became
aware of the paper [10] which overlaps in some
parts with our own results in Section 2. How-
ever, the results presented here were developed
independently and follow a different line of rea-
soning.

2 PQCs and universal approximation

In this section, we will review the established
result on universality in [21| and then present
our new universality results in Theorems 2, 3
and 4.

Schuld et al. showed in [21|, how a quan-
tum machine learning model of the form
fo(z) = (0| UT(x;0)MU(x;0) |0) can be written

as a univariate generalized trigonometric series:

01U (2;0)MU (2 0) |0) = fn(x;0) (2)
= Z o (0)e™®, (3)
weN

where M is an observable, U(z;0) is a quantum
circuit modeled as a unitary that depends
on input x and the variational parameters
0 = (6p,01,...,0r). In the above, w € Q denotes
the set of available frequencies which always
contain 0. The quantum circuit consists of L
layers each consisting of a trainable circuit block
W;(0),1 € {1,..,L + 1} and a data encoding
block S(z) as shown in Figure 2. The data
encoding blocks determine which frequencies w
are accessible in the sum and are implemented
as Pauli rotations. The blocks W (0) can be
built from single-qubit rotation gates and CNOT
gates and they determine the coefficients c,,(6)
of the sum. It is possible to both implement
this model with L > 1 layers, such as data
re-uploading PQC [9, 16|, where the encoding is
repeated on the same subsystems in sequence, or
with parallel encodings [19] and L = 1, where
the encoding is repeated on several different
subsystems.

For the needs of our discussion, we will briefly
describe a more specific set-up under which the
authors of [21] proved a universality theorem of
these quantum models for the multivariate case
with inputs = (z9, 1, ..., TN).
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Figure 2: parametrized quantum circuit that can be written as a generalized trigonometric series as in (1). It consists
of L layers, each layer is composed by a trainable circuit block W;(0),7 € {1,...,L 4+ 1} and a data encoding block
S(x). The data encoding blocks S(x) are identical for all layers, they determine which frequencies w are accessible
and are implemented as Pauli rotations. The blocks W;(8) can be built from local rotation gates and CNOT gates.

They determine the coefficients c,,(6).

Let us construct a model of the form in (1), with
the measurement M and a quantum circuit of one
layer, L = 1:

fo=(0|U(8,2)MU(,x)|0) , with (4)
U(6,z) =W O@)s@)wh o), (5)

where 81 and 82 are those parameters in 6 that
affect W) and W) respectively. Let us further
make the following two assumptions: Firstly, we
assume that the data-encoding blocks S(x) are
written in the following way:

cnH

Sx)=eH g . . ge

=: SH(:IZ> y

(6)
(7)

where H is a Hamiltonian that we specify later.
Secondly, we assume that the trainable circuit
blocks WM (0M)) and W2 (8?)) are able to rep-
resent arbitrary global unitaries. In practice, this
may require exponential circuit depth. With this
assumption, we drop the dependence on 6 and re-
formulate the assumption as being able to prepare
an arbitrary initial state |I') := W1 (@(1)) |0) and
by absorbing W) (0) into the measurement
M. We can then write the above quantum model
as:

fx) = (| S} (z)MSp(z) L) . (8)

Let us further present the notion of a universal
Hamiltonian family, as defined in |21]:

Definition 1. Let {H,,|m € N} be a Hamilto-
nian family where Hy, acts on m subsystems of
dimension d.

Such a Hamiltonian family gives rise to a family
of models { fm} in the following way:

fn(@) = (T| S}, (@) MSp, () |T) . (9)

Further, we call the set

QHm = {)\j—)\k|j,]€€ {1,...,dm}} (10)
where {\1,...,\gm} are the eigenvalues of Hy,,
the frequency spectrum of H,,.

Remark. We call a Hamiltonian family {Hp,} a
universal Hamiltonian family, if for all K € N,
there exists an m € N, such that:

Zg ={-K,..,0,..,K} CQp, | (11)

hence if the frequency spectrum of {Hp,} asymp-
totically contains any integer frequency.

As shown in [21], a simple example of a uni-
versal Hamiltonian family is one which consists
of tensor products of single-qubit Pauli gates:

Hy, = Za((]i) ,

=1

(12)

with O'(SZ), qg € {X,Y,Z} and d = 2. The scaling
of the frequency spectrum for this example goes
as K =m.

With these definitions, we can give the following
theorem:
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Theorem 1 (Convergence in L?). [21] Let {H, }
be a universal Hamiltonian family, and {fn} the
associated quantum model family, defined via (9).

For all functions f* € L? ([O,QW}N), and for all
€ > 0, there exists some m' € N, some state |I') €
C™ and some observable M such that

[ frmr = Il g2 <€ (13)

Here, we clearly see that there are two con-
ditions on the target function f* that must
be fulfilled in order for the theorem to work
properly. The first condition is that f* belongs
to L?. This is not surprising, we need to assume
certain regularity on the target function to make
the theorem work. The second condition is that
the target function f* needs to be restricted
to the domain [0,27]". However, as suggested
in the original paper [21], if the function f*
does not belong to this domain, we can easily
map [a,b]" to the required domain [0,27]" (or
[—7, 7]V equivalently).

We would like to highlight the fact that the dis-
tance we use to bring the approximator closer to
the target function is the L? distance. Note that
convergence in the L? sense does not imply other
modes of convergence. For example, this does not
give us information about the general case of LP-
distances, with 1 < p < co. We explicitly address
this more general case in the following theorem:

Theorem 2 (Convergence in LP). Let {H,,}
be a universal Hamiltonian family, and {fn}
the associated quantum model family, defined via
(1). For all functions f* € LP <[0,27T]N> where
1 < p < oo, and for all € > 0, there exists some

m’ € N, some state [T) € C™, and some observ-
able M such that:

[ fmr = Ml <€ (14)

The proof of Theorem 2 is given in Appendix
A.

Let us emphasize the difference between Theo-
rems 1 and 2: The target function can belong to
any LP space with 1 < p < 0o in contrast to the
previous requirement of being square-integrable
(L?). This is essentially achieved by the fact that
PQCs are not only able to represent Fourier series
as it is discussed in [21]| but they are also able to
represent more general trigonometric series. This
allow us to identify the expectation value of the

quantum circuit with the Césaro summation of
the partial Fourier series of f* and leverage the
power of Fejér-like theorems [8]. See Appendix A
for more details.

Nevertheless, the ability to approximate func-
tions in LP does not prevent us from having arbi-
trarily big errors in certain points. Intimately
related to this problem is the so-called Gibbs
phenomenon [12]. Namely, the approximation
of a continuous, but non-periodic function by a
Fourier series is increasingly better in the inte-
rior of the domain but increasingly poorer on its
boundaries. That leads to the fundamental ques-
tion if we can approximate f* in a stronger sense,
so that we ensure that the target function f* is
well approximated in any given point. We answer
this question in the next theorem.

Theorem 3 (Convergence in C°). Let {H,,} be
a universal Hamiltonian family, and { f,} the as-
sociated quantum model family, defined via (1).
For all functions f* € C(U) where U is com-
pactly contained in the closed cube (0,27, and
for all € > 0, there ewists some m' € N, some
state |I') € C™, and some observable M such
that fny converges uniformly to f*:

[ for = Frllco <e, (15)
with
[ for (%) = f2 ()| -
(16)

[frmr = f*llgo == sup
x€[0,27]V

The proof of Theorem 3 can be found in
Appendix A.
A set U C RY is compactly contained in another
set V' C R, if the closure of U is compact and
contained in the interior of V.
Simply stated, this theorem means that f,
converges uniformly to f*. In other words, if
we select a given target error € we are always
able to find a finite PQC such that the error
on any point is smaller than the prescribed e.
Let us emphasize again the differences between
Theorems 1 and 3. The first difference is that
the function f* has to be defined in a domain
U which is compactly contained in [0, 27r]N. A

m™ T

simple example of U is the interval ([—5, §}N>

Since f* is defined on a compact domain U, the supre-
mum is equivalent to the maximum in this case.
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(or ([O,ﬂ']N ), equivalently). By restricting
ourselves to half of the original space we can
always find a CY extension of the function f*
in TN. The second difference is that the target
function now belongs to the class of continuous
functions in contrast to the previous requirement

of being square-integrable (L?).

A last result that we will show in this regard is
about the approximation of the function and its
derivatives by the parametrized quantum circuit.
This might seem as a purely synthetic question
but it has many implications in practice. When
we approximate a target function, in many occa-
sions we not only want to recover its value but
also its dynamics. This is particularly relevant
for problems in physics, where we typically have
a differential equation which describes the behav-
ior of the system. As we will see in the follow-
ing theorem, the universality results translate to
functions defined in the Sobolev space H* as well:

Definition 2. The Sobolev space H*(Q) is de-
fined as the space of square integrable functions
on a domain Q@ C RN which derivatives up to
order k are square integrable as well:

f*=D*f, and Hf(o‘)H2 <00, (17)

for all0 < |a| < k and D* := —2°

I 041 (XN .
Oz ~...0T

The Sobolev norm ||-|| g« is defined as

1/2

= S [1072) s

jal<k

Theorem 4 (Convergence in H¥). Let {H,,}
be a universal Hamiltonian family, and {fn}
the associated quantum model family, defined via
(1). For all functions f* € H* (U) where U is
compactly contained in the closed cube [0,2n]V,
and for all € > 0, there exists some m’' € N,
some state |T') € C™, and some observable M
such that fp, converges to f* with respect to the
H*—distance:

[ for = F* e <€ (19)

The proof of Theorem 4 is given in Appendix
A.
As in Theorems 3 and 4, we require that the tar-
get function is defined on a compactly contained

subset of [0,27]", we propose to perform a min-
max feature scaling of the input data:

x = (21,....0,) — &= (F1,....,%n), (20)
T N
where x € [a,b]V, & € {, 2] , and
- (.7 T —a . Ln —a
IB—( 2+'/Tb_a7 ) 2+7rb—a)
(21)

This simple recipe allows the PQC to approx-
imate a much wider set of function spaces as
shown throughout this section. This normaliza-
tion strategy works very well in practice as can
be seen in Section 4. However, we would like to
emphasize that this particular normalization is
not the only choice. The classical strategy in ma-
chine learning of normalizing the input data to lie
in the [—1, 1] domain is also completely valid.
Throughout this section, we have discussed the
expressive power of PQCs, but when we do ma-
chine learning, we have more ingredients that we
need to take into account. In the next section we
will discuss the role that the loss function plays in
accordance with the type of approximation that
our PQC can get.

3 Connections between different gen-
eralization bounds

As we have seen in the previous section, the
notion of approximation depends on a prescribed
distance. This distance is not given by the
problem itself, but instead chosen by the user,
this is why we refer to it as target distance. In
general, it is however not possible to compute
the target distance, which for example is the case
for the LP and H” distances. This is why one
needs to choose a distance function which can be
computed from data, a loss function. It has to
be chosen in such a way that it is consistent with
the target function. To discuss the topic in more
depth, let us formally introduce the continuous
regression problem, which is the problem that
we are most interested in.

In general, we can describe the continuous re-
gression problem in the following way: assume
that there is some target function f* € F C HF
mapping inputs x € X to target labels y € ).
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Moreover, assume that the points in X are sam-
pled according to a bounded”’ density function
p. Our goal is to find the best approximation
f € M C H* of the target function f*.

The notion of what is understood as a “good” ap-
proximation as clarified, allows for some freedom.
For this reason, one has to make a choice by spec-
ifying a functional D : H* x H* — R* U {0}
which defines a distance between the elements of
F and M. The problem can then be stated as:

f:argminD(f*,f). (22)
fem
The most common distance in the literature for

continuous regression problems is the one induced
by the L?(X, P) norm:

Dp2 (f5 1) =" = fllre

L (23)
~ ([ (@ - ryiar).
X

However, in regression we do not typically have
access to the full information (i.e., we cannot
compute the integral). It is for this reason that
instead we work with the empirical risk minimiza-
tion problem, which uses the discrete version 2 of
the L? distance as a loss function. The difference
with the previous setup is that, for the empirical
risk minimization problem, we are given a finite
training set S of I inputs sampled from the same
probability density p, together with their target
labels {(x1,v1), ..., (z1,y7)} with (z,y) € X x Y,
according to the target function f* : X — ),
f € F. Now, instead of minimizing a continuous
functional, we will minimize a discrete one. We
call

I

|
—

((fr@h, fah) (29

~ =

D(f*, f) =

@
Il
o

the expected loss according to a loss function /£ :
Y x Y — R. Similarly to the continuous case,
we are concerned with the expected loss of the 2
distance, which is defined as:

-1 2
* 1 * ] i\ 2
Dl2(f 7f) = (I Z (f (wl) - f(mz)> ) )
=0
(25)
9Tt is possible to have more general density functions.

However, we restrict ourselves with this one since it sim-
plifies the analysis.

with ! denoting the i-th input.

Although we are solving the minimization
problem associated with the expected loss defined
in (25), in general we are interested in the gener-
alization performance, i.e., the distance in terms
of (23). Using generalization bounds [15] we can
relate the performance in terms of the distance
given by (25) with the distance given by (23).
However, these classical results in machine learn-
ing do in general not relate the 12 distance with
other distances, like the C? distance. In other
words, even a solution which, as the model and
the number of points grow larger asymptotically
makes the Dj2 go to zero, does not necessarily
make the Do distance vanish, which is defined
as:

Deo(f*, f) :==sup [f*(x) = fF(x)[.  (26)
XEX

In such cases, we could find points where there
is an arbitrarily large discrepancy between the
solution and the target function.
One possible solution would be to use a different
distance than Dj2. For example one could try the
discrete form of the Dgo distance:

Dy = e = fe), @)

max
i€q{0,...,[—1}

but this distance is not differentiable, making
the optimization process much harder.

Thus, we identify two desirable features for a
distance in order to be able to approximate with
the C° distance. The first requirement is that
the solution of the minimization problem that it
defines, tends uniformly to the target function
f* as we increase the number of given points [
and we increase the size of our PQC. The second
one is that it has to be differentiable in order to
make minimization easier.

The solution that we propose here is to
use a distance motivated by discretizing the
Sobolev distance H* on a fixed finite training set

{ (1, @), AD F* @)}y ) oo (21, (D),

{Do‘f*(acl)}|a|§k) }, (x,y) € X x ), according
to the target function f*: X — Y, f € F. The
sets {Df(x)}|q)<k and {Df*(x)} )< consists
of the M(N,k) := Sk _ (“AV7") different
partial derivatives up to order k evaluated at
point . We write IV for the number of input
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dimensions. Note that for being able to apply
this distance, one needs to have access to training

data containing the required partial derivatives

'11—1 A 9
Du(f* )= |3 2 (F(@) - f(a)

L =0

'1171 . 9
Due(f*, 1) = | 7 2 (£(@") = f(a)

L~ =0

The expected loss as given in (28) was first in-
troduced in [13] and gives rise to a new subfield
of machine learning known in the literature as
differential machine learning (DML). Its gener-
alization, the discretization of the distance HF,
is given in (29), and can be applied when the
required higher-dimensional derivatives are avail-

. . (p) £* (p)
able as well. The derivatives 224" and 2 p(p]; are

8$§.p) 81’].
the p-th order derivative functions in direction x;
of f* and f, respectively. The corresponding loss

function is thus defined as

U : RMVEFL  RMINK)FL R (30)

(F@)AD"F@)}aj<ks £ (@), ADF* (@) Haj<i ) =
) =

(f*(2) = f(2))*
- D°f(x)))”

i (f (), f*(2) (31)
(

+ ) (DYf (=)

|lal<k

With classical neural networks, DML has proven
to yield better generalization results in terms of
the D;2 distance than the solution of the Dj2 it-
self. This means that, if we take the solutions f1
and fj2 of the minimization problems defined by
Equations (28) with the same number of labels
and (25) respectively and evaluate their perfor-
mance in terms of the Dy2, in practice fj1 per-
forms better than fj2:

Dz (f* fur) < D2 (f7, fi2) - (32)

However, to the best of our knowledge there is no
theoretical explanation in the literature on why
this happens or under which condition we might
expect this behavior. In the following theorems
we present generalization bounds that shed some

additionally to the function values.

We show the expected loss of the discretized
version of H' and HF, respectively, in the
following two equations:

N—-11-1 * %
ﬂ;}(ﬁ& il a >)] @

L () Daf(wi))Z% (29)
jal<ki=0 1

lights onto it.
Before stating them, we will define two function
families to which the generalization bounds ap-

ply:

Definition 3. [/] By F&, we denote the function
family defined as

FE = {[0,277] Sx— f(x Z Cw exp(—iwx) :

weN
{ewwen st [[flloo < B and 0] < oo} .

By Hg, we denote the function family defined as

HE = {[0,2W]N Sz N

2
+ Z (ay, cos(wx) + by, sin(we)) :
weN 4

\/a%—|— Z ai,—|—bf,§f3and|9+|<oo},

weNy

where the frequency set 2 is divided into the dis-
joint parts Q = QL UQ_U{0}, where QLNN_ =0
and such that for every w € Q4, it holds that
—weN_.

According to [4], both of these function fami-
lies can be modeled by the quantum model given
in Equation (9). As can be seen by this equation,
the bounds B and B depend on the chosen circuit
and observable, and they determine the scaling
in the following generalization bounds. Note as
well that the truncated Fourier series as defined
in .7-'5 and Hg are differentiable, and their deriva-
tives form truncated Fourier series as well. If one
chooses the frequency set €’ and the bounds B’
and B’ large enough, for a given function family
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F, both the functions and their derivatives are
contained in .7-"5/ and ”Hg/l :

Theorem 5 (Generalization bound for H¥). Let
e F C H*0,27]V) be a target function, and
let there be a B > 0 and a B > 0, such that
FE C HE is a suitable model family. Let us
further assume that Lpx(f1(x), f2a(x)) < ¢ for all
x € (0,27, and for all f1, f» € F§ or F. For
any § € (0,1) and the empirical risk Dyx (f*, f)
trained on an i.i.d. training data S with size I
and containing data of & partial derivatives, the
following holds for all functions f € .7:5 with
probability at least 1 —§:

DH’“ (f*af) Sth (f*,f)+T(|Q‘,£,B,B,C,I,(S),
(33)

where v(|Q,€, B, B, ¢, 1,8) — 0 as I — oo.

Theorem 6 (Generalization bound for LP). Let
e Fc H*0,27]V) be a target function, and
let there be a B > 0 and a B > 0, such that
}"g C ’Hg is a suitable model family. Let us
further assume that Cpx(f1(x), f2a(x)) < ¢ for all
x € (0,27, and for all fi, fo € FE or F. As-
sume that k,p € N satisfy one of the two follow-
ing cases:

1.N(%—%)<k<N/2and1§p<N.

2. k>N/2and 1 <p< 0.

For any 6 € (0,1) and the empirical risk
Dy (f*, f) trained on an i.i.d. training data
S with size I and containing data of £ partial
derivatives, the following holds for all functions
fe ]—"g with probability at least 1 — J:

C
(34)

where ¢ is a constant and
7’(|Q‘,§,B,B7C,I75) — 0 as I — oo.

Theorem 7 (Generalization bound for C°). Let
e FC H*0,27]Y) be a target function, and
let there be a B > 0 and a B > 0, such that
FE C HE is a suitable model family. Let us
further assume that £ (f1(x), f2(x)) < ¢ for all
x € 0,27, and for all f1, f2 € F5 or F and
that ||fllce < B for all f € F5. Assume, that
k € N satisfies k > N/2. For any 6 € (0,1) and
the empirical risk Dyx (f*, f) trained on an i.i.d.

l-DLP (f*af) Sth (f*,f)+T(|Q‘,£,B,B,C,I,5),

training data S with size I and containing data
of & partial derivatives, the following holds for all
functions f € FE with probability at least 1 — §:

1 . . _

GDCO(f,f)Sth(f7f)+T(|Q’,§,B,B,C,I,5),
(35)

where C 18 a constant and

r(|Q,€, B, B,c,1,6) = 0 as I — oo.

The proofs of Theorems 5, 6 and 7 can be
found in Appendix B.
A consequence of Theorem 7 is that, if the
order of the derivatives that we have at our
disposal are higher than half the number of
input dimensions (kK > N/2), our solution of
the Djx problem is also a solution of the Dgo
problem, corresponding to uniform convergence.
It means that training with the £, loss function
(for £ > N/2), which sums the {32 losses of
function and derivative values, is sufficient for
an approximation in C?. This would not be
possible by a training with ¢;2 loss function and
more practical than the training with the £
loss function, as described above.
Note that we face a curse of dimensionality-like
phenomenon as the dimension of the input grows.
In this case, the number of terms that go into
the £« loss function grows exponentially with &,
as we have to take into account mixed deriva-
tives. Hence, for high dimensional problems the
demand on data of partial derivatives is higher
and only if they are available, this generalization
bound holds.
Further, the requirement of quantum resources
for evaluating Dy (f*, f) is higher than for the
evaluation of Dp2(f*, f). If we use the parameter
shift rule for the evaluation of the derivatives,
we need to evaluate I(1 4 2N) different PQCs.
Similar to the demand on training data, this
number of PQCs to evaluate Dyx(f*, f) grows
exponentially in k. However, even if the amount
of training data is the same (and implying an
increase of required PQC evaluations up to
a factor of 2), the training with the ¢, loss
function shows the promised advantages, as
presented in [13].
The last property we wish to highlight is the
fact that the generalization bounds connect
the empirical risk with the full risk, but they
do not give us information of whether they
can both tend to zero. In order to tackle that
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question we need to combine the results of the
theorems present in this section with the ones
present in Section 2. For example, if we try
to fit a one-dimensional function which is not
periodic on [0, 27, using model families 75 and
HE and the f;1 loss function, as we increase
the number of sample points both sides of the
inequality will tend to the same constant but
they will not converge to zero. In this regard,
observe that the fact that the empirical risk
goes to zero is a sufficient but not a necessary
condition for the target distance to also tend to
zero. Following the same example, if instead of
training the model using the ¢;,1 loss function
we trained the model using the £;2 loss function,
then the L? distance will vanish. This idea is
illustrated in Figure 5. The bottom line is that
more information in the training data does not
always equate to a better approximation, if we
are not very careful with the necessary data
normalization.

4 Numerical experiments

In this section we illustrate the theoretical discus-
sion of Sections 2 and 3 with an illustrative exam-
ple: the approximation of function f* = 5-, z €
[—7, ] by the PQC in Figure 3: We conduct two
different numerical experiments and show them
in Figures 4 and 5. We chose a linear function to
show that even in this simple case, the numerical
tests fail utterly if the results of Sections 2 and 3
are not applied.

All simulations have been performed using 10
points (10 for the labels plus 10 for the deriva-
tive values when they are present) uniformly dis-
tributed along the domain for the training phase.
Each experiment has been repeated 100 times and
we depict the 25, 50 and 75 percentiles in colored
solid lines in Figure 4. The legends call the re-
sult of the PQCs as fo(:), where the subscript
denotes under which loss function we have done
the training and in the parentheses we indicate
which normalization we have chosen.

In Figure 4 we compare the performance of our
PQC under different normalizations. We normal-
ize the data to lie in the domains [—7F, T, [—, 7]
and [—27, 2], respectively. When we normalized
our data to lie in the range [—F, 5] we get the
best results, as we expected due to Theorem 3.

In contrast, when the data is normalized to lie in
the range [—2, 27] we obtain very poor approxi-
mation results, because in this case, it is not pos-
sible to approximate with the C?-distance or the
L?-distance. The intermediate regime happens
when we normalize the data to lie in the range
[—7, ], here we obtain a reasonable approxima-
tion except for the boundaries. This is a con-
sequence of approximating with the L2-distance
instead of the CY-distance: we cannot guarantee
that the error will be reduced on any given point.
This behavior remains even when we increase the
size of the circuit and the number of given points.

In Figure 5, we study the impact of the differ-
ent loss functions with different normalizations
in the learning problem. We simulated the
regression using two different loss functions,
ly1 and £z under two different normalizations,
with the domains [—-7%,%] and [—m,7]. The
first noticeable phenomenon that we can see is
that using the h' norm instead of the (> norm
when the data is normalized to lie in the interval
[—7%, %] not only reduces the variance stemming
from repeating the experiments 100 times, but
also has some impact on the bias. What might
be more surprising is the effect of the h! norm
when the data is normalized to lie in the interval
[—7, m]. Instead of getting a better approxima-
tion w.r.t. the I> we worsen it. We explain it
with the fact that, when we normalize the data
to lie in the interval [—m, 7], our PQC is not an
approximator of H' but it is an approximator of
L?, ie., it can approximate the function but it
cannot simultaneously approximate the function
and the derivatives. Thus, in the minimization
process the PQC tries to find a balance between
the error in the function and the error in the
derivatives, worsening the results with respect to
the quality of the function approximation.

5 Conclusions

In this work, we have developed a broader
theory of approximation capacities of PQCs.
We have shown how an appropriate choice of
the data normalization greatly improves the
expressivity of the PQCs. More specifically,
we showed that a min-max feature scaling that
normalizes the input data along each dimension
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Figure 3: Architecture U (z,0) used in the experiments. The parameters §;; are variational parameters. Each qubit

is measured in the Pauli-Z basis.

3 0.5H___ £+ E 0.5H___ £ // E 0.5H___ #* P
& fe (-5,3]) S fre ([=m,7]) = | — fiz ([-2m, 27])
E 0l 1E o0 T 0 \/ﬁ/
[ay] [ay] [ay]
=~ =05 | | [ i —05¢" | | [ i =05 | | [
—2 0 2 -2 0 2 -2 0 2
X xr xr

Figure 4: In this picture we have trained the PQC of Figure 3 to approximate the function f* = 5-. We have used 10
training points, the ¢;2 loss function and 100 epochs with the Adam optimizer. The experiments have been repeated

T T

100 times. In the left panel we have normalized the data to lie in the interval [—f f]. In the central panel we have
normalized the data to lie in the interval [—m, «]. In the right panel we have normalized the data to lie in the interval

[—27, 27].

to lie in the range [, 5] makes PQCs universal
approximators in the LP space with 1 < p < o0,
the continuous function space and the H* space.
Moreover, since with this normalization we are
able to approximate functions in the sense of the
LP, the C° and the H* distance, we discussed
that a loss function which is consistent with those
distances in training the models might be more
appropriate than other choices. In particular,
the natural choice for the C° would be the [*®
distance. However, since the [*° distance is not
differentiable, which makes the optimization of
PQCs harder, we leveraged Sobolev inequalities
to show that the h' distance is consistent with
the C¥ distance in R while being differentiable.
We showed further, that the the h¥ distances are
consistent with the LP and the H* distances.
Lastly, we performed some numerical exper-
iments to illustrate how this simple choice
of normalization and loss function can vastly
improve the results in practice.

The data normalization technique can be
seen as a complementary result to the work of
[21]. Nevertheless, there is still much work to
do in this direction. For example, if instead
of only taking a min-max feature scaling, we

272

can combine it with a mapping of the form
Z = arcsin(x) to end up with a series that closely
resembles Chebyshev polynomials, which are
better suited for certain problems. In analogy
with neural networks, the data encoding strategy
is playing a similar role to that of the activation
functions.

The relation between the /,x loss functions
and the LP generalization bounds can be seen as
a complementary result to differential machine
learning [13] and to generalization bounds for
PQCs as derived in [4]. This is the first work
that gives some insight on why differential ma-
chine learning leads to better generalization re-
sults. From the relations that we derived, one
would expect this technique to fail as we increase
the input dimension. However, in practice it has
demonstrated very good results, as shown in [13],
where a 7-dimensional Basket option was trained
using the ¢;,1 loss function. An interesting line of
research would be to study the threshold at which
differential machine learning starts to fail.

Since a natural application are physical systems
governed by differential equations where data on
the derivatives of a target function are available,
another open question remains regarding how our
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Figure 5: In this picture we have trained the PQC of Figure 3 to approximate the function f* = 5=, using the two
different loss functions £;,1 and ;2. We have used 10 training points (10 for the labels plus 10 for the derivative
values when they are present) and 100 epochs with the Adam optimizer. The experiments have been repeated 100

times. In the upper panel, we have normalized the data to lie in the interval [ T 1] In the lower panel we have

T 272
normalized the data to lie in the interval [—7, 7].
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approach compares to standard differential equa-
tion solvers in these scenarios.
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A Proof of Theorems 2, 3 and 4

For proving Theorems 2, 3 and 4, we need two preliminary results. Firstly, we need to show that a
quantum circuit can realize the ¢!'-Fejér’s mean of C° (’]I‘N ) and LP (TN ) , V1 < p < oo functions.

Secondly, we need to prove that we can define periodic extensions of functions belonging to CY (U) and
H*(U),¥1 <k < oo, where U is compactly contained in TV to functions belonging to C° (TN ) and

H* (’]TN ) , V1 < k < oo respectively . The combination of both results plus Fejér’s theorem in multiple
dimensions naturally yields Theorems 2 and 3. Theorem 4 can be proven by a standard approximation
Theorem of the Fourier series.

A.1 Féjer's mean
We call the function
onNk(fmr) = Z (1 _ ”JH1> fjeix.j ’ (36)
NK
jez
where fJ is the j-th Fourier coefficient of f,,/, the ¢!-Fejér’s mean of f,,.

We will show that our PQC can realize the Fejér’'s mean of any well-defined function. In Appendix
C of |21], the authors showed that the quantum model family f,; can be written as a generalized
trigonometric series of the form

fomr (%) = Z Cjeix.j ) (37)

se7N
JEZy;
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where Z% ={-K,-K+1,...,0,..., K — 1, K} is contained in the Cartesian product of the frequency
spectrum associated with H,,, as defined in Definition 1 and that the coefficients ¢; are completely
determined by the observable freely up to the complex-conjugation symmetry that guarantees that the
model output is a real-valued function. Note that we can choose the coefficients c; as:

¢ = (1 - Mé) fis (38)

which are the coefficients of the ¢!-Fejér’s mean in Equation (36).

A.2 Periodic extension for C functions

By the Tietze extension theorem [20], there exists a function g; € CO(RY) with g1|y = f*. Then, we
define a function g» € CO(R™) with ga|7 = 1 and g2y = 0, where V is defined as U C 'V C (0, 2m).
This set V exists since U is compactly contained in [0, 27]".

We can explicitly construct the function g in the following way: Let § > 0, such that the closure
wag of the 20-neighborhood of w, is contained in [0, 27T]N , which is possible due to U being compactly
contained in [0, 27]Y. We define V := wys and a function 15 € C°(RY), supported on the § Ball in
RY centered around 0 and normalized as [pn 15(z)dz = 1. Then, we define g2 as the convolution of
1y, and ;-

g2(a) = [ Ly (rs(r = a)dr . (39)

With this construction, go satisfies the asked properties. We define the extension fe;; as the product
9192, which yields a function f},, with

xt
feutlo =17, (40)
fewtlrm\y =0, hence (41)
four(®) = fin(y) Va,y € 0TV . (42)

The such defined extension f¥,, is thus an element of C°([0, 27]") with periodic boundary conditions,
so we can map it onto the N-dimensional torus TV .

A.3  Periodic extension for H* functions

By the extension theorems for Sobolev functions [2, Theorem 2.2, Part 2|, there exists a function
g1 € H*(RY) with g1|yy = f*. Then, we define a function g, € H*(RY) with go|;7 = 1 and g2lry\v =0,
where V is defined as U € V C (0,27)". This set V exists since U is compactly contained in [0, 27] V.
We can explicitly construct the function gs in the following way: Let 6 > 0, such that the closure
was of the 20-neighborhood of w, is contained in [0, 27T]N , which is possible due to U being compactly
contained in [0,27]". We define V := wos and a function v5 € H¥(RY), supported on the § Ball in
RY centered around 0 and normalized as [pn 15(z)dz = 1. Then, we define go as the convolution of
1y, and y:

ga(a) = [ Ly (rs(r = a)dr . (43)

With this construction, go satisfies the asked properties. We define the extension f.,; as the product
9192, which yields a function f},, with

fewtlo =17, (44)
f:xt’]RN\V =0, hence (45)
f;;rt(l‘) = fékmt(y) Va,y € oTN . (46)

* ¢ 18 thus an element of H*([0,27]") with periodic boundary conditions,
so we can map it onto the N-dimensional torus TV .

The such defined extension f*
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A.4 Proof of Theorems 2, 3 and 4

The final step leverages the power of Fejér’s theorem in multiple dimensions:

Theorem 8. [22/[Theorem 2] For all functions f* € LP ('JI‘N) with 1 < p < 00, and for all € > 0,
there exists some t € N, such that

low (f) = Il <e (47)

Combining Theorem 8 with the fact that quantum circuits can recover any £'-Fejér’s mean as shown
in Appendix A.1 directly implies Theorem 2.

Similarly, for continuous functions we have another version of Fejér’s theorem for continuous
functions:

Theorem 9. [22][Theorem 2] For all functions f* € C° (TN), and for all € > 0, there exists some
t € N, such that
ot (f) = fllo <€ (48)

Combining Theorem 9 with the fact that quantum circuits can recover any ¢'-Fejér’s mean as shown
in Appendix A.1 and the fact that we can extend any function in C° (U )N, V1 < p < oo where U
is compactly contained in TV to a function in C° (TN ) ,V1 < p < oo as shown in Appendix A.2
directly implies Theorem 3.

We finally prove Theorem 4, which uses the setup in |21] as described in section 2: We note firstly
that the quantum model family f, generates a truncated Fourier series f in the domain [0,27]" of
the form

f) = eI, (49)

ie7 N
J€Zy

where ZJI\([ ={-K,~-K+1,..,0,... K — 1, K}" is contained in the Cartesian product of the frequency
spectrum associated with H,,, as defined in Definition 1. The proof of that is written in Appendix C
of [21].

Secondly, we can extend the function f* defined on U to a periodic function f¥,, on [0,27]" via the
construction shown in Appendix A.3. As written in Theorem 1.1 in [3], the Fourier series of f,,, which

we can write in the form of equation 49, converges in the H*-distance to f,,. As fX,(z) = f*(z) for

all z € U, the Fourier series of f¥,, converges in the H*-distance to f* on U. This implies Theorem 4.

B Proof of Theorems 5, 6 and 7

In this appendix, we prove Theorems 5, 6 and 7, for which we need several preliminary definitions and
results:

Definition 4 (L-Lipschitz loss function). Let (Y, dy) be a metric space with metric dy and let ¢ :
Y xY — R be aloss function. We call it L— Lipschitz with regard to a fixred y € Y, if there exists a
constant L > 0, such that for all z1,z0 € R,

dy (£(y, 21), £(y, 22)) < L|z1 — 29| . (50)

Theorem 10 (Generalization bound for general trigonometric series). [4/[Theorem 11] Let N,I € N.
Let B > 0 and B > 0 be such that ]-"5 C ”Hg, for the function families .7:5 and Hg as defined in
Definition 3. Let £ : RxR — [0, c] be a bounded loss function such that R 3 z + £(y, z) is L- Lipschitz
for all y € R. For any 6 € (0,1) and for any probability measure P on [0,27]N x R, with probability
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at least 1 — § over the choice of i.i.d. training data S € ([0,27]Y x R)! of size I, for every f € F5,
the generalization error can be upper-bounded as

S U@ F@NAP(@), @)~ X I se) (51)
So(BL\/mr(log(mr;Hog(B))+C wogg/a) | )

for a target function f*:[0,27]N — R .

This theorem is written for loss functions that take two real values as an input, which is the case for
most loss functions. We show that the theorem holds as well for the loss function #x:

Lemma 1. Theorem 10 holds as well for the loss function £y : RO+ < RODH [0, ¢] with N,k € N
by choosing the frequency set ) and the bounds B and B large enough, such that both the functions f
of a considered function family F and their derivatives D*f for la| < k are contained in the families

FE CHE.

Proof. The proof goes analogous to the proof of Theorem 11 in [4]. There are two points which require
special care:

Firstly, we need to adapt the application of Talagrand’s lemma which is used to upper bound the
Rademacher complexity. Let us use the £;2 loss function

e (f* (@), (@) = (*(2) = [(@))" , (53)
which is related to the loss function ¢, by
U (f*(@), f(2)) = D e (DVf* (), D*f(x)) . (54)
lal<k

By using the reverse triangle inequality, we can prove the lipschitzness of the loss function ¢;2, for a
fixed f*(x) € L%([0,27]"Y):

le(fil@), f*(@)) — e (fo(@), [ ()| = | 1f* (@) = fi(@)] = |f"(@) - fo())]” (55)
< |1f*(@) = file) = (f*(@) = fo(@))]” (56)
=|1(f*(@) = f*(@)) = (fi(2)) = fa(a))? (57)

=[(fi(z)) = fa(2)))” - (58)

Thus, the loss function ¢j2 is L-Lipschitz with the Lipschitz constant L. = 1. Note that this is the
Lipschitz constant of the loss function ¢;2, which is not related to the Lipschitz constant of functions
of the function space L2([0,2x]Y).

Parallel to the proof of Theorem 11 in [4], we now define the set

G = {10,271 x [0,27)" 5 (@, @) = L (f*(2), (=)

r e HE([0,27)N) and f € F§} (59)
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We can now upper bound the Rademacher complexity 7@5(9) for a training set S with I data points
and a target function f* as

I
Rs() = 7B» | sup S oitys /(w0 (@) (60)
| feFE i=1
[ I
_ %EU sup Y oi 3 (D f(i), D F(x2) (61)
| feFE i=1 o<k

1 I
< =E, sup Y oi > Lp(D*f(w:), D f*(:)) (62)
I | Def@erE lol<ki=t  |alok
1 I
= > 78 sup > ol (D f(w;), D f* () (63)
ol <k Def(x)erd i=1
1 ! )
<& sup -E, sup Zaiﬁlg(Daf(wi),Do‘f (xi))] - (64)
aj<k I | Do f(a)ers i

The i.i.d. random variables o; € {—1,1} are the Rademacher random variables and ¢ is the number
of derivatives D with |a| < k. Here, we first used the relation between the loss functions ¢z and
(. Then, we used the fact that the supremum over functions and derivatives D f(x) € F§,|a| < k
which are independent from each other is larger than the supremum which is only taken over the
functions f € FE, in which case the derivatives that are taken account in the loss functions have to
be the derivatives of these functions. In the last inequality, we used that each of the £ terms in the
sum ngk can be upper bounded by its supremum.

We can now apply Talagrand’s lemma on the quantity %]Eo {SupDaf(m)e]-'g Zle ol (DY f(x;), Daf*(acz))} ,
for a fixed |a| < k in which way we obtain the upper bound

Rs(G) < ERg), (FE) (65)

where we used that the loss function ;> has the Lipschitz constant L = 1 and where S|, := {z;}L_,
is the set of the unlabeled training data points. The supremum SUp|q <k CaN be omitted on the right
hand side of the bound, since the subset S|, of the training set does not include the labels D f*(x;)
and since we assumed the function family J—"g to contain the relevant derivatives as well. This upper
bound corresponds to equation (97) in the proof of Theorem 11 in [4], apart from the additional factor
€.
Secondly, in the last step of the proof in [4], the authors use standard generalization bounds as stated
in Theorem 1.15 in [23]. The formulation of this standard generalization bound theorem allows for
the loss function £, as well. O

Definition 5 (Compact embedding). [1/[Definition 1.25] Let X and Y be normed spaces with the
norms ||-||x and ||-|ly-, respectively, and X a subspace of Y. Let [ : X — Y, Ix = x for allz € X
be the embedding operator from X to Y. We say that X is continuously embedded in Y, and write
X =Y, if there exists a constant C', such that

[elly < C izl Vo € X . (66)

We call the embedding compact, if X is continuously embedded in V and the embedding operator I is
compact.

Definition 6. We write C%(U) for the space of bounded, continuous functions on U.
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Definition 7 (Finite cone and Cone condition). [1]/Definitions 4.4 and 4.6] Let v,z € RN be nonzero
vectors, let Z(x,v) be the angle between vectors x and v. For given such v, a p > 0 and a k such that
0 <k <, the set

Copr =1z € RV :2=00r0< |z|| < p, L(z,v) < K/2} (67)

is called a finite cone of height p, axis direction v and aperture angle k with vertex at the origin.
We say that U C RN satisfies the cone condition, if there exists a finite cone C such that every x € U
is the vertex of a finite cone Cy contained in U and congruent to C.

Theorem 11 (Rellich-Kondrachov). [1][Theorem 6.3, Part I and II] Let U be a domain in RN sat-
isfying the cone condition, let Uy be a bounded subdomain of U, and let UéV be the intersection of Uy
with a N-dimensional plane in RN. Let k > 1 be integers. Let one of the following cases hold:

1. 2k < N and 1 <p < 2N/(N — 2k)
2.2k=Nand1 <p< o0
8. 2k>Nand1 <p<oo
Then, the following embeddings are compact:
HYU) = L(Ug") . (68)
Additionally, in case 3, the following embedding is compact:
HMU) = CR(Uy) - (69)
Remark. The theorem relates to the Rellich-Kondrachov Theorem stated in [1] in the following way:
e Case 1 and Case 2 are the two cases stated in Part 1 of Theorem 6.3 in [1].

e Case 3 corresponds to the first and second case of Part 2 in Theorem 6.3 in [1].

o We use a different notation: The symbols Q,3j,p,q,k,n,m used in [1] are here equal to
U,0,2,p, N, N, k, respectively.

e We formulate the theorem for the special cases W*?% = H*¥ and WOP = LP of the Sobolev spaces.

With these preliminary results, we can prove Theorems 5, 6 and 7, which we restate here:

Theorem 5 (Generalization bound for H¥). Let f* € F C H*([0,27]") be a target function, and let
there be a B > 0 and a B > 0, such that .7:5 C ’Hg is a suitable model family. Let us further assume
that Lpr (f1(), f2(x)) < ¢ for all x € (0,27, and for all fi1, f» € F5 or F. For any § € (0,1) and
the empirical risk Dyx (f*, f) trained on an i.i.d. training data S with size I and containing data of
¢ partial derivatives, the following holds for all functions f € F& with probability at least 1 — §:

DI‘I’C (f*7f> Sl)hk (f*af)+T(|Q‘757B73707[76)7 (70)
where r(|Q|, &, B, B,¢,1,6) = 0 as I — .

Proof. In the work [4], the authors developed generalization bounds for the function family defined
in (9). We restated the theorem in Theorem 10. As we have shown in Corollary 1, the theorem also
holds for the loss function ¢,.

According to the assumption, the function f* is in ]—"g . The choice of the constant B such that
FE C HE is satisfied depends on the encoding strategy. As written in [4], it can for example for
integer valued frequencies be chosen as B = 2B. Thus, Lemma 1 can be applied and the following
bound holds:

Dy (%, far) < Dy (f*, frr) +7(19Q|, B, B, ¢, 1,0) (71)

with a function (||, B, B,e, 1, ) which tends to 0 as I — oo. O
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Theorem 6 (Generalization bound for LP). Let f* € F C H*([0,27]V) be a target function, and let
there be a B > 0 and a B > 0, such that .7:5 C Hg is a suitable model family. Let us further assume
that L (fi(x), f2(x)) < ¢ for all x € [0,27)N, and for all f1, fo € F5 or F. Assume that k,p € N
satisfy one of the two following cases:

LN(3-1)<k<N/2and1<p<N.

2. k>N/2and1<p< 0.

For any ¢ € (0,1) and the empirical risk Dyx (f*, f) trained on an i.i.d. training data S with size I and
containing data of £ partial derivatives, the following holds for all functions f € }“g with probability
at least 1 — 0:

%Dm (F* ) < Dy (f*, £) +7(19.€, B, B, e, 1,6), (72)

where C is a constant and v(|Q|,&, B, B,c,1,6) — 0 as I — .

Proof. We will prove the theorem by proving the following two inequalities:

5D (f%, £) < Dy (f°, ) < Dy (7%, £) + 7192, B, B, 1,6) (73)
The right hand side inequality is following directly from Theorem 5, and the left hand side inequality
is a consequence of Theorem 11. Let us look at case 1 in Theorem 11: We want to rewrite the
bound p < 2N/(N — 2k) as an upper bound for k for a given p. Let us therefore firstly check, which
values p is allowed to reach. Due to k being bound from above by k < N/2, the upper bound on p,
p < 2N/(N — 2k) is maximal for k = % — 1, in which case the upper bound on p becomes p < N.
That means that values for p chosen in 1 < p < N are valid values. With p such chosen, the bound

p < 2N/(N — 2k) is equivalent to bounding k in the following way:
1 1
N(=-= k. 74
(2 p) = )

For case 2 in Theorem 11, we have the inequalities £ > N/2 and 1 < p < 0.

Further, because of the assumptions £,x (f*(x), f(x)) < ¢ for all x € [0,27]", the subdomain U =
[0, 27T]N is equal to Uy, and because an N-dimensional plane in RY is R¥ itself, U is also equal to Uév .
Let C be a cone of height at most 7, angle at most 7/2. Then, for each  in U = [0, 27r]N , wWe can
choose an appropriate axis direction such that C, lies entirely in U, so it satisfies the cone condition.
To sum up, Theorem 11 states that for the cases

1. N(%—%) <k<N/2and1<p<N.
2. k>N/2and 1 <p < o0,
the following embeddings are compact:

H*([0,27])Y) — LP([0, 27]Y) . (75)

According to the definition of a compact embedding (Definition 5), there exists a constant C, such
that

1f* = fller <CUF = Fllas - (76)
O
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Theorem 7 (Generalization bound for C°). Let f* € F C H*([0,27]") be a target function, and let
there be a B > 0 and a B > 0, such that .7:5 C Hg is a suitable model family. Let us further assume
that Ly (f1(z), f2(x)) < ¢ for all x € (0,27, and for all fi,fo» € F5 or F and that ||f||cc < B
for all f € FB. Assume, that k € N satisfies k > N/2. For any § € (0,1) and the empirical risk
Dy (f*, f) trained on an i.i.d. training data S with size I and containing data of £ partial derivatives,
the following holds for all functions f € ]-"g with probability at least 1 — J:

1

Do (755 f) < Dy (7, f) + r(19,€, B, B, ¢, 1,6), (77)

where C is a constant and v(|Q|, &, B, B,c,1,6) — 0 as I — cc.

Proof. The prove of this theorem is equivalent to the proof of Theorem 6 above. We will prove this
theorem as well by proving the following two inequalities:

1 * * *

aDLP (f 7f) < DH’c (f 7f) < th (f 7f) +T(|M|7I76) : (78)
The right hand side inequality is following directly from Theorem 5, and the left hand side inequality
is a consequence of Theorem 11. As written in the proof of Theorem 6, the assumptions of Theorem
11 are satisfied, we can thus also apply it here.

The upper bound on the distance Do (f*, f) in the supremum norm is a direct consequence of the

third case in Theorem 11.
O
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