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Owidiusz Makuta1,2,3 & Remigiusz Augusiak3

Understanding which entangled states give rise to Bell nonlocality and thus are resourceful in the
device-independent framework is a long-standing unresolved problem. Here, we establish the
equivalence between genuine entanglement and genuine nonlocality for a broad class of multipartite
(pure and mixed) states originating from the stabilizer formalism. In fact, we prove that any (mixed)
stabilizer state definedon agenuinely entangled subspace ismultipartite fully nonlocal,meaning that it
gives rise to correlations with no contribution from local hidden variable models of any type.
Importantly, we also derive a lower bound on genuine nonlocality content of arbitrary multipartite
states, opening the door to its experimental estimation.

Quantum entanglement and Bell nonlocality are some of the most char-
acteristic features of quantum theory. Moreover, they are a cornerstone of
quantum information science enabling several applications unachievable in
classical physics such as quantum teleportation1, quantum cryptography2,3

or certification of random numbers4. In some of these applications such as
the latter two, Bell nonlocality proves to be a stronger resource as it allows to
process information in the device-independent framework4,5 where no
assumptions are made on the internal working on the devices except that
they obey the rules of quantum theory.

It is well-known that both these resources are deeply related as Bell
nonlocality can only be obtained from entangled states; yet they are not fully
equivalent. Indeed, already in the bipartite case there exist mixed entangled
states which do not violate any Bell inequality such as e.g. the well-known
Werner states6,7, despite the fact that in the case of pure states, entanglement
implies Bell non-locality8,9. In fact, understanding which entangled states
can give rise to Bell violations and thus be a resource in the device-
independent framework remains an unsolved and highly nontrivial
problem.

While being already difficult to tackle in the bipartite case, the question
which entangled states are nonlocal gets even more complicated when one
enters the realm of multipartite quantum systems which are far more
complex to handle. It was proved in refs. 10,11 as a generalization of the
results of refs. 8,9 that all pure multipartite entangled states exhibit some
formof nonlocality. However, an arguablymoremeaningful question in the
multipartite scenario, i.e., whether all genuinely multipartite entangled
(GME) states are genuinely multipartite nonlocal (GMNL)12 remains
unresolved even for the pure states. While nothing is known in the most
general case, for some particular multipartite systems such as pure three-
qubit13 orN-qubit symmetric14 states this equivalencewas established.At the
same time, there exist mixed GME states that are not GMNL12. In fact, it is

even possible to construct GMEmixed states that are fully local and thus do
not exhibit any form of nonlocality15.

Here we establish the equivalence between genuine multipartite
entanglement and nonlocality for a large class of pure and mixed states
originating from the stabilizer formalism16. The latter provides a very
convenient representation of multipartite states that encompass not only
the well-known graph states, but also a broad class of genuinely entan-
gled mixed states. This includes for instance mixed states corresponding
to stabilizer quantum error correction codes16 such as the five-qubit17 or
toric ones18. In this work, we exploit this representation to show that
every genuinely entangled stabilizer subspace of the N-qubit Hilbert
space is also genuinely nonlocal in the sense that every pure state
belonging to it gives rise to genuinely nonlocal correlations. We thus
introduce the first examples of multi-qubit Hilbert spaces composed of
only genuine multipartite nonlocal pure states; see refs. 19,20 for con-
structions of genuinely entangled subspaces. We actually prove a much
stronger result that any state (pure or mixed) belonging to a genuinely
entangled stabilizer subspace is multipartite fully nonlocal (MFNL)
which means that it gives rise to nonlocal correlations that are genuinely
nonlocal in the strongest sense, i.e., they have no contribution coming
from a local hidden variable model of any type (see refs. 21–24 for
previous examples of fully nonlocal correlations). Importantly, this
implication generalizes to mixed stabilizer states: any mixed state defined
on a GME stabilizer subspace is also multipartite full nonlocal. We thus
introduce here a broad class of mixed states that give rise to multipartite
fully nonlocal correlations. Lastly, we derive a general lower bound on the
genuine nonlocality content of any multipartite state or subspace (not
necessarily stabilizer), based on the nonlocality contents of bipartite
states obtained from local measurements performed by the remaining
parties on the multipartite state and subspace respectively.
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Results
Preliminaries
Let us first provide some background information.

Stabilizer formalism. We begin with the stabilizer formalism and define
the N-qubit Pauli group PN to be one containing all N-fold tensor pro-
duct of Pauli matrices 1;X;Y ;Z multiplied by ±1 or ± i. Let us then
consider a subgroup S of PN . We call it a stabilizer if it is abelian and
satisfies �1=2S. The most interesting property of S is that, as the name
suggests, its elements stabilize a non-empty subspace in the N-qubit
Hilbert spaceHN ¼ ðC2Þ�N

. Precisely, for any stabilizer S there exists a
subspace V � HN such that s∣ψi ¼ ∣ψi for any ∣ψi 2 V and any s 2 S.
The largest subspace satisfying this condition is called a stabilizer sub-
space ofS and is denotedVS. Clearly, this stabilizing property extends to
allmixed states acting on a subspaceVS, that is, for any ρ : VS ! VS one
has that sρ = ρs = ρ for any s 2 S. Thus, the most basic function of a
stabilizer S, which we extensively use here, is to uniquely define a sub-
space in terms of a few algebraic relations that are convenient to handle.

Here we often need to consider matrices forming operators s 2 S that
correspondonly to subsets of [N] = {1,…,N}.Hence,wedenote by s(Q) a ∣Q∣-
fold tensor product of the Pauli matrices from s that act on qubits belonging
to the setQ⊂ [N]. For instance, for s ¼ X � Z � 1� XZ, the sub-operator
s(Q) corresponding to Q = {1, 3} is sðQÞ ¼ X � 1.

Lastly, since for larger N the cardinality of S could substantially
increase, it is convenient to represent S in terms of the minimal set of
operators, called generators, that enable reproducing the other elements of
S. BywritingS ¼ hg1; . . . ; gkiwemean that fgigki¼1 is a generating set ofS.
For instance, the stabilizer S ¼ f1� 1;X � X;Z � Z;�Y � Yg can be
represented in this way as S ¼ hX � X;Z � Zi.

Genuine multipartite entanglement. We can now move on to the
definition of genuine entanglement in the multipartite setting. We con-
sider an arbitrary N-partite Hilbert space H ¼ H1 � � � � �HN and
denote byBðHÞ the operator space overH. Let us then divide the set [N]≡
{1, …, N} into two disjoint and non-empty sets Q and Q and call it a
bipartition QjQ. A state ∣ψi 2 H is called genuinely multipartite entan-
gled if for all bipartitions, ∣ψi≠∣ψQi � ∣ϕQi for any two pure states ∣ψQi
and ∣ϕQi corresponding to the sets Q and Q.

Moving to the mixed-state case, we say that a mixed state ρ 2 BðHÞ is
genuinely multipartite entangled (GME)25 if it does not admit a biseparable
model, meaning that it cannot be written as a convex combination,

ρ ¼
X
Q�½N�

pQ
X
i

qi;Q ρiQ � ρi
Q
; ð1Þ

of states which are separable across various bipartitions QjQ. In an analo-
gous manner, one can also define genuine entanglement for subspaces: we
say that a subspaceV � H isGME if all pure states belonging to it areGME1

9. Let us stress here that for a genuinely entangled subspace V, every mixed
state defined on it is genuinely entangled too.

Our focus in thiswork is the stabilizer subspaces, and thereforeweneed
a criterion that allows us to easily decide whether a given stabilizer subspace
VS isGME. Such a criterionwas recently introduced in ref. 26 (seeTheorem
1 therein), and for further purposes we recall it here as the following lemma.

Lemma 1. Given a stabilizer S ¼ hg1; . . . ; gki, the corresponding stabi-
lizer subspaceVS is GME iff for each bipartitionQjQ there exists a pair i, j∈
[k] for which:

gðQÞi ; gðQÞj

h i
≠0: ð2Þ

Genuine multipartite nonlocality. Let us now consider a typical Bell
scenario with N parties sharing a state ρ 2 BðHÞ and performing

measurements on their shares of this state. Party i can freely choose to
perform one of xi = 1,…,mmeasurements which yields an outcome ai =
0, …, d − 1. By repeating these measurements many times, the parties
create correlations that are described by a collection of joint probabilities
P ¼ fPðajxÞg, often referred to as behavior, where P(a∣x) is a probability
of obtaining outcomes a1, …, aN = : a after performing measurements
x1,…, xN = : x.

In order to formulate the notion of genuinemultipartite nonlocalitywe
need the concept of non-signaling behaviors. Let us for a moment abstract
from quantum behaviors and introduce a broader class of behaviors for
which a measurement choice made by parties belonging to a subsetQ does
not have an influence over themeasurement result of the remaining parties.
Formally, this is represented by a set of linear constraints,

PðaQjxQÞ ¼
X
i2Q

X
ai

PðajxÞ ð3Þ

for allQ⊂ [N], all aQ, and all x, where aQ ¼ faigi2Q, xQ ¼ fxigi2Q, and the
sum

P
ai
is over all possible measurement results. We call behaviors satis-

fying the above constraints non-signaling. Note that all behaviors
originating from quantum theory are non-signaling; yet there exist non-
signaling correlations that are not quantum.

Let usnowconsider a behaviorP.Wecall it localwith respect to a given
bipartition QjQ if

PðajxÞ ¼
X
λ

qλPðaQjxQ; λÞPðaQjxQ; λÞ ð4Þ

for all PðajxÞ 2 P, where λ is the hidden variable with a distribution qλ, and
P(aQ∣xQ, λ) and PðaQjxQ; λÞ are some non-signaling (in general non-
quantum) behaviors corresponding to the disjoint setsQ andQ that satisfy
the non-signaling conditions. Similarly to the case of entanglement, we call
P genuinely multipartite non-local (GMNL)27,28 if it cannot be written as a
convex combination of behaviors that are local with respect to various
bipartitions.

While the above notion allows us to describe nonlocality in a quanti-
tative way, it does not tell us much about how strong this nonlocality is. A
possible approach to quantify GMNL in P, put forward in ref. 29 as a
multipartite generalization of the Elitzur-Popescu-Rohrlich (EPR-2)
decomposition30, is through the following convex decomposition

PðajxÞ ¼
X
Q2½N�

pQjQPQjQðajxÞ þ pNLPNLðajxÞ; ð5Þ

where PQjQðajxÞ is a behavior that admits the decomposition (4) for a given
bipartition QjQ, whereas PNL(a∣x) is one that is nonlocal across any
bipartition, and, finally, pQjQ for all Q and pNL form a probability dis-
tribution; in particular

P
Q2½N� pQjQ þ pNL ¼ 1.

Now, the minimal pNL for which (5) holds true, denoted ~pNL, is called
genuine entanglement content of P. A behavior P for which ~pNL > 0 is
genuinely entangled, and in the extreme case of ~pNL ¼ 1 we call it multi-
partite fully non-local29. Thus, correlations that are MFNL are also GMNL,
meaning that the former is a stronger form of multipartite nonlocality than
the latter.

Notably, both these notions can also be applied to quantum states: we
say that a state ρ isMFNLorGMNL if there exists a Bell scenario and a set of
measurements such that the resulting behavior P is MFNL or GMNL,
respectively.

Lastly, in order to detectMFNL (and thus also GMNL) of a given ρ, we
will make use of Theorems 1 and 2 from ref. 29 which we below combine
into a single lemma.

https://doi.org/10.1038/s41534-025-01080-3 Article
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Lemma 2. A state ρ is said to be MFNL if for every bipartition QjQ it is
possible to create a maximally entangled state

∣ϕþ
�
i;j ¼

1ffiffiffi
d

p
Xq�1

l¼0

∣llii;j ð6Þ

for some positive integer q ⩾ 2, between i ∈ Q and j 2 Q for all possible
outcomes of local measurements on the parties from [N]⧹{i, j}.

Main result
Here, we present our main result that all genuinely entangled stabilizer
subspaces are multipartite fully nonlocal. We thus establish, in particular,
the equivalence between GME and GMNL for a large class of stabilizer
states.

Our strategy to prove this statement is quite simple: we aim to show
that for any genuinely entangled stabilizer subspace, it follows from Lemma
1 that the conditions of Lemma 2 are satisfied, that is, that one can create a
maximally entangled state across any nontrivial bipartition Qj�Q by local
measurements onN− 2 parties. To achieve this we consider an interesting
property of genuinely entangled stabilizer subspaces.

Lemma3. LetS be a stabilizer. The corresponding subspaceVS is GME iff
for every pair of qubitsα1,α2∈ [N] there exists a pair of stabilizing operators
si; sj 2 S such that

sðαl Þi ; sðαlÞj

h i
≠0; sðαÞi ; sðαÞj

h i
¼ 0 ð7Þ

for all α ∈ [N]⧹{α1, α2} and all l ∈ {1, 2}.
A proof of this lemma can be found in SupplementaryNote 1. It is easy

to notice that Lemmas 1 and 3 are quite similar; in fact, the implication “⇐”
in Lemma 3 follows directly from Lemma 1. One important difference,
however, is that Lemma3 involves all operators fromS, whereas Lemma1 is
formulated only in terms of generators of S. Still, the main advantage of
Lemma 3 over Lemma 1 is that it tells us that for any pair of qubits one can
always find two operators in S in which the local Pauli matrices antic-
ommute exactly for those qubits, whereas they commute for the
remaining ones.

Utilizing Lemma 3 we can now formulate our main result.

Theorem1. A qubit stabilizer subspaceVS ismultipartite fully nonlocal iff
it is genuinely multipartite entangled.

Since the proof is quite technical, we have deferred it to Supplementary
Note 2. Instead, here we provide a simple example illustrating its main idea.
We consider the two-dimensional stabilizer subspace, denoted V5, corre-
sponding to the five-qubit code17,31, i.e., one stabilized by
S5 ¼ hg1; g2; g3; g4i, where

g1 ¼ X1Z2Z3X4; g2 ¼ X2Z3Z4X5;

g3 ¼ X1X3Z4Z5; g4 ¼ Z1X2X4Z5

ð8Þ

with Xi, Zi denoting the Pauli matrices that act on the party i.
Let us then consider a bipartition {1, 2}∣{3, 4, 5}. The conditions of

Lemma 3 for this bipartition are fulfilled with α1 = 1, α2 = 4, and i= 3 and
j = 4, that is, the Pauli matrices at sites 1 and 4 of the stabilizing
operators g3 and g4 anticommute, whereas those appearing at the
remaining sites commute. This fact can be used to construct a maxi-
mally entangled state between parties 1 and 4 from any mixed state ρ
defined onV5 by performing suitable measurements on sites 2, 3, and 5.
These measurements can be constructed from the joint eigenbases of
the commuting Pauli operators appearing at those sites. For instance,

for party 2 we have gð2Þ3 ¼ 1 and gð2Þ4 ¼ X, and so we pick the mea-
surement for this party in the common eigenbasis of these operators,

i.e., f∣þi; ∣�ig, where ∣± i ¼ ð1= ffiffiffi
2

p Þð∣0i± ∣1iÞ. Analogously, for parties
3 and 5 we take the measurement bases f∣þi; ∣�ig and f∣0i; ∣1ig,
respectively.

Let us then consider amixed stateρdefinedonV5 andassume that after
performing the above measurements on it, the parties observe outcomes
corresponding to ∣þi state for qubits 2 and 3, and ∣0i for qubit 5. Then, the
post-measurement state corresponding to parties 1 and 4 reads

σ1;4 ¼
1
n
Tr2;3;5 ∣þþ0i2;3;5 þþ 0h ∣ρ

� �
; ð9Þ

where n is the normalization constant. Using the stabilizing relation ρ = g3ρ,
we further obtain

σ1;4 ¼ 1
nTr2;3;5½∣þþ0i2;3;5 þþ 0h ∣X1X3Z4Z5ρ�

¼ X1Z4
1
nTr2;3;5½∣þþ0i2;3;5 þþ 0h ∣ρ� ¼ X1Z4σ1;4:

In a similar way, one can use the other stabilizing relation ρ = g4ρ to show
that σ1,4 = Z1X4σ1,4. These two relations directly imply that, up to a local
unitary, σ1,4 = Z1X4σ1,4 is the maximally entangled state of two qubits
∣ϕþi ¼ ð∣00i þ ∣11iÞ= ffiffiffi

2
p

; recall that the latter is stabilized by X1X4, Z1Z4.
One can verify that for any other choice of the outcomes obtained by

parties 2, 3, and 5, the post-measurement state σ1,4 is stabilized by the same
(up to the sign) operators, and thus, it is also the two-qubit maximally
entangled state. Furthermore, the same algorithm can be repeated for all
bipartitions, and therefore, the conditions of Lemma 2 are satisfied in this
case. Consequently, the stabilizer subspace corresponding to the five-qubit
code is multipartite fully nonlocal.

This theorem thus establishes an equivalence between genuine
entanglement and nonlocality in the stabilizer formalism, generalizing
results of ref. 29 derived for qubit graph states. Moreover, it also provides
a convenient tool for constructing broad classes of mixed MFNL states
for N ⩾ 4, as in fact any mixed state supported on a GME stabilizer
subspace is MFNL. The above constraint follows from the fact that GME
stabilizer subspaces of the smallest nontrivial dimension dimðVSÞ⩾2
exist in systems consisting of at least four qubits [cf. Theorem 3 in
ref. 26]. Simultaneously, it is worth pointing out that in the qubit case, the
maximal dimension of a GME stabilizer subspace for a given N is 2N−k(N),
where kðNÞ ¼ dð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8N � 7
p Þ=2e26.

For example, one of the GME stabilizer spaces of maximal dimension
forN= 726 is stabilized byS7 ¼ h~g1; ~g2; ~g3; ~g4iwith the generators given by

~g1 ¼ X1X2Z3Z4X6X7; ~g2 ¼ Z1Z2Z3X5X6;

~g3 ¼ X3X4X5; ~g4 ¼ Z4Z5Z6Z7:
ð10Þ

The corresponding stabilizer subspace VS7
is eight-dimensional, meaning

that, by Theorem 1, all of the states spanning VS7
, as well as every super-

position of these states and their probabilistic mixtures, are MFNL. As an
example of an MFNL mixed state, we can simply consider a normalized
projection onto VS7

, which is the state given by

ρS7
¼

Y4
i¼1

1þ ~gi
2

: ð11Þ

However, there are also more well-known examples of stabilizer
subspaces, which, by Theorem 1 can now be identified as MFNL. One of
which we have already discussed above: the five-qubit code. Another
example is the toric code18, which has been proven to be GME in ref. 32.
In addition, the Steane33 and the surface codes34,35 were long suspected to
be GME based on their similarities to the five-qubit and toric codes. For
completeness, we provide a proof that they are genuinely multipartite
entangled in Supplementary Note 4. Our work thus demonstrates that
the particular subspaces corresponding to the toric, Steane, and surface
codes are all MFNL.

https://doi.org/10.1038/s41534-025-01080-3 Article
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Thus, Theorem 1 establishes that GME and GMNL are equivalent
notions for a large class of multipartite (mixed) states, and, moreover, it
identifies a large class of states that are fully nonlocal. This is significant, as
the only known example of a multipartite fully nonlocal mixed state is one
composed of five copies of the Smolin state36, provided in ref. 29.

Bounding the genuine nonlocality content. Lemma 2 relies on the
proof of full nonlocality of the bipartitemaximally entangled states which
is achieved from violation of the chained Bell inequalities37,38 in the limit
of the number of local measurements taken to infinity. What is more, it
does not account for noises and experimental imperfections. All this
makes our results hardly testable in experiments. Here, we address this
issue by deriving a general bound on the genuine nonlocality content ~pNL
of any behavior that tolerates noises and applies to scenarios with a finite
number of local measurements.

Theorem 2. Given a state ρ and two parties α and �α, let us denote
~pαjαNL ¼ max

xR
min
aR

~pαjαNL ðaR; xRÞ, where ~pαjαNL ðaR; xRÞ is the minimal non-
locality content pNL of a bipartite state shared by α; α that was created by
performing local measurements xR by the remaining parties R ¼ ½N� n
fα; αg and corresponding to the outcomes aR. Then, ~pNL of P is lower-
bounded as

~pNL⩾1�
1

N � 1

XN
α¼1

X
α > α

1� ~pαjαNL

� �
: ð12Þ

We present the proof in Supplementary Note 3. Note, that the above
can also be used to lower bound ~pNL of a state or a subspace V � H; in the
latter case one needs to minimize ~pαjαNL over all ρ 2 BðVÞ.

There are multiple of ways in which Theorem 2 can be used. First,
together with the results of ref. 38, it enables determining the minimal
number of measurements necessary to detect GMNL of N-partite sys-
tems by violating the chained Bell inequality between every pair of
parties. Let us consider for instance the two-dimensional subspace V5

corresponding to the five-qubit code. If all ~pαjαNL are equal for all pairs
α > α, it follows that to detect GMNL (~pNL > 0) of this subspace one needs
pαjαNL > 3=5. This can be achieved from violation of the chained Bell
inequality with at least four measurements per observer (see Supple-
mentary Note 3 for more details).

On the other hand, Theorem 2 allows for an estimation of genuine
nonlocality content~pNL from the experimentally observed bipartite~pαjαNL . For
instance, in ref. 39 the value of ~pαjαNL ¼ 0:874 ± 0:001 has been achieved
experimentally for the two-qubit maximally entangled state. Assuming that
such~pαjαNL could be achieved for every pair of qubits, thiswould imply that the
genuine nonlocality content of V5 is ~pNL≳0:685.

However, this rases an important question: why estimate ~pNL from
bipartite ~pαjαNL , rather than compute ~pNL directly from Eq. (5)? The utility of
Theorem 2 in this case can be appreciated fully when considering the
complexity of the computation of ~pNL. First, the number of terms PQjQðajxÞ
scales exponentially withN (as 2N−1− 1 to be exact). Second, the dimension
of the non-signaling set containing all PQjQðajxÞ also scales exponentially:
for N parties, m measurement settings, and Δ measurement outcomes its
dimension equals [m(d−1)+1]N − 140. From this perspective, estimating
~pNL by ~p

αjα
NL is highly benefical.

Qudit graph states. A natural extension of Theorem 1 would be to
consider the stabilizer formalism with all local systems being d-dimen-
sional. Unfortunately, it turns out that one cannot directly generalize
Lemma 3 to higher d > 2. Nevertheless, using our approach we can still
prove that simplest one-dimensional qudit stabilizer subspaces, which
are in fact local-unitarily equivalent to multiqudit graph states, we can
conclude that they are allMFNL; the same conclusion for graph states d=
2 was derived before in ref. 29.

The qudit graph states are defined as follows: let G be a multigraph.
Then a graph state ∣Gi associated to G is one that is stabilized by
SG ¼ hg1; . . . ; gNi with

gj ¼ Xj

YN

l¼1
Z
Γj;l
l ; ð13Þ

where Γj,l denotes the number of edges connecting vertices j and l in the
graph G and

X ¼
Xd�1

j¼0

∣jþ 1
�

j
�
∣; Z ¼

Xd�1

j¼0

expð2πij=dÞ ∣j� j
�
∣ ð14Þ

are the generalized Paulimatrices.Notice that eachqudit of ∣Gi is associated
with a vertex in G.

It is known that a graph state ∣Gi is GME iff the graphG is connected41.
This implies that for every bipartitionQjQ, there exists a pair of vertices i, j
such that i ∈ Q, j 2 Q and Γi,j ≠ 0. To show that each GME graph state is
MFNL, we begin by performing measurements in the computational basis
f∣jigd�1

j¼0 on every qudit apart from i and j. One then finds that the post-

measurement state ∣ψi;ji shared by parties i and j is stabilized byXiZ
Γi;j
j and

Z
Γi;j
i Xj. One checks that these operators uniquely identify the state ∣ψi as a

maximally entangled state ∣ϕþi(6) (again up to local unitaries) for q = d/r,
where r is the greatest commondivisor of d and Γi,j. Since this procedure can
be performed for any bipartition, Lemma 2 allows us to conclude that every
qudit graph state is MFNL.

Discussion
There are still a few open questions to be explored. Themost obvious one is
whether qudit stabilizer subspaces that are genuinelymultipartite entangled,
are also multipartite fully nonlocal. As we discussed above, the approach
used here which makes use of Lemma 3 is not suitable for that purpose,
however, it is likely that this relationship between genuine multipartite
entanglement and multipartite full nonlocality persists for any local
dimension.

Alternatively, if one were interested only in testing genuine multi-
partite nonlocality, then a possibly better strategy would be to directly
construct suitable Bell inequalities detecting it, such as those provided in
refs. 22,42,43.

Another question to explore is whether it is possible to experimentally
determine the genuine nonlocality content of multipartite stabilizer mixed
states, building on our results. Multiple experiments aiming to determine
the nonlocality content of bipartite states have already been performed (see,
e.g., refs. 21,39,44,45 and references therein). The question is thus whether
they can be combined with our Theorem 2 to provide results for the mul-
tipartite scenario.

One canfinally askwhether a tighter bound on the genuine nonlocality
content than that in Eq. (12) can be obtained, for instance throughout
including genuine nonlocality contents of m-partite states (m < N) created
by the remaining parties.

Lastly, let us note here that while finishing this manuscript, we became
aware of ref. 46, in which a related problem has been studied but from the
perspective of genuine multipartite entanglement.
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