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A B S T R A C T

The level of systemic risk in economic and financial systems is strongly determined by the structure of the
underlying networks of interdependent entities that can propagate shocks and stresses. Since changes in
network structure imply changes in risk levels, it is important to identify structural transitions potentially
leading to system-wide crises. Methods have been proposed to assess whether a real-world network is in a
(quasi-)stationary state by checking the consistency of its structural evolution with appropriate maximum-
entropy ensembles of graphs. While previous analyses of this kind have focused on dyadic and triadic motifs,
hence disregarding higher-order structures, here we consider closed walks of any length. Specifically, we study
the ensemble properties of the spectral radius of random graph models calibrated on real-world evolving
networks. Our approach is shown to work remarkably well for directed networks, both binary and weighted.
As illustrative examples, we consider the Electronic Market for Interbank Deposit (e-MID), the Dutch Interbank
Network (DIN) and the International Trade Network (ITN) in their evolution across the 2008 crisis. By
monitoring the deviation of the spectral radius from its ensemble expectation, we find that the ITN remains
in a (quasi-)equilibrium state throughout the period considered, while both the DIN and e-MID exhibit a clear
out-of-equilibrium behaviour. The spectral deviation therefore captures ongoing topological changes, extending
over all length scales, to provide a compact proxy of the resilience of economic and financial networks.
1. Introduction

As witnessed by two major recent crises (i.e. the global financial one
in 2008 and the Covid-19 pandemic in 2020), having a clear under-
standing of the intricate structure of economic and financial systems –
be they interbank [1], interfirm [2,3] or trade networks [4] – is crucial,
especially under stress conditions. The interconnectedness of economic
and financial agents is, in fact, known to play a major role both
during the phase of distress accumulation and after a crisis outbreak in
sustaining and reinforcing shock propagation [5]. Back in 2008, banks
sought to minimise individual risk by diversifying their portfolios:
the simultaneous character of such diversification, however, led to an
unexpected level of mutual dependency whose net consequence was
that of amplifying the effects of individual defaults [6,7].

A particularly relevant question addresses the (quasi-)stationarity
of the temporal evolution of a given, real-world, economic or financial
network, i.e. does the system undergo smooth, structural changes controlled
by few driving parameters? Should this be the case, the behaviour of

∗ Corresponding author at: IMT School for Advanced Studies, P.zza San Francesco 19 55100 Lucca, Italy.
E-mail address: tiziano.squartini@imtlucca.it (T. Squartini).

the network under analysis would be predictable solely in terms of the
dynamics of those parameters; otherwise, the lack of stationarity may
lead to abrupt – hence, uncontrollable – regime shifts.

The problem of the (non) stationarity of real-world, economic and
financial networks has been addressed by studying whether they can
be considered typical members of an evolving, (quasi-)equilibrium
ensemble of graphs with given properties [8]: while such properties are
treated as constraints - hence, assumed to be the ‘independent variables’
undergoing an autonomous evolution - the other network properties
are treated as ‘dependent variables’ - hence, assumed to vary only as
a consequence of the former ones. Broadly speaking, three different
situations can occur:

∙ The observed network properties are systematically found to
agree with what is expected from the evolution of the enforced
constraints. In this case, one can conclude that the real-world
network is (quasi-)stationary — and its evolution is driven by the
dynamics of the constraints;
vailable online 6 February 2025
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∙ The observed network properties slightly deviate from equilib-
rium expectations, but the deviating patterns remain coherent. In
this case, the network can still be considered (quasi-)stationary —
even if its evolution cannot be claimed to be completely driven
by the chosen constraints (very likely, with the addition of other
appropriate constraints, one would go back to the first situation);

∙ The observed network properties significantly deviate from the
(quasi-)equilibrium expectations, showing different deviating pat-
terns at different times. In this case, the network can be consid-
ered non-stationary.

Analyses of this kind have indeed led to individuate early-warning
signals of upcoming, critical events, although the indicators considered
so far have just involved dyadic and triadic ‘debt loops’ with different
evels of reciprocity [6,9,10]. The present paper aims to extend the

study of early-warnings’ emergence by considering closed walks of
any length at once. Such a request can be handled by exploiting the
theorem stating that 𝑎(𝑛)𝑖𝑗 , i.e. the generic entry of the 𝑛th power of the
adjacency matrix 𝐀, counts the total number of closed walks of length
𝑛 connecting node 𝑖 with node 𝑗 [11]: all ‘debt loops’ can be, then,
ompactly accounted for by carrying out a double sum, over 𝑛 and over
he diagonal entries of 𝐀.

From a computational perspective, such a calculation can be greatly
ped up by proxying the trace of the adjacency matrix with its principal
igenvalue 𝜆1, which, then, becomes the only relevant statistics whose
-score needs to be explicitly calculated. Such an appealing simplifi-
ation, however, comes at a price: the expressions of ⟨𝜆1⟩ and Var[𝜆1],
.e. of the expected value of 𝜆1 and its variance, are explicitly known in
ew cases only, i.e. (i) when the random network model is the binary,
ndirected version of the Erdös–Rényi (ER) model [12]; (ii) when the

random network model is the Chung-Lu (CL) model, either in its binary,
undirected version [13–17] or in its binary, directed version [18,19];
(iii) if the edges are treated as i.n.i.d. (independent, non-identically
distributed) random variables, each one obeying a different Poisson
distribution [20]; (iv) if the considered graphs are infinitely large,
ocally tree-like and directed [21].

Let us remark that the existing estimations obtained under hy-
potheses are rarely satisfied by empirical configurations. For instance,
he presence of cycles contradicts the assumption of observing locally
ree-like structures, and the heterogeneity of the (in- and out-) degree
istributions severely limits the applicability of the CL model. On
 more general ground, the vast majority of the approaches above

requires the knowledge of the (in- and out-) degree sequences, i.e. of a
kind of information that data confidentiality issues make often (if not
always) unavailable; moreover, none provides estimations of a network
spectral properties taking its weighted marginals (i.e. in-strengths and
out-strengths) as the sole input.

Motivated by the evidence that general results about the statistical
roperties of a network principal eigenvalue are currently missing, we
ropose an approach to their study that is applicable under any random

network model. The generality of our approach comes at a price: our
results rest upon the validity of several approximations that need to
be explicitly verified whenever a particular configuration is studied.
Still, although our assumptions may appear quite drastic, our approach
works remarkably well for directed networks, be they binary (BDN) or

eighted (WDN).
A BDN is described by an adjacency matrix 𝐀 whose generic entry

satisfies the relationships 𝑎𝑖𝑗 = 1 if a link points from node 𝑖 towards
node 𝑗 and 𝑎𝑖𝑗 = 0 otherwise. Moreover, 𝑎𝑖𝑗 will, in general, differ from
𝑗 𝑖. A WDN is described by an adjacency matrix 𝐖 whose generic entry

satisfies the relationships 𝑤𝑖𝑗 > 0 if a weighted link points from node 𝑖
towards node 𝑗 and 𝑤𝑖𝑗 = 0 otherwise. Moreover, 𝑤𝑖𝑗 will, in general,
differ from 𝑤 .
2

𝑗 𝑖 ‘
2. Detecting structural changes

Structural changes can be spotted by comparing the empirical abun-
dance of a quantity of interest with the corresponding expected value,
alculated under a properly defined benchmark model.1 To this aim, a

very useful indicator is represented by the 𝑧-score

𝑧[𝑋] = 𝑋 − ⟨𝑋⟩

𝜎[𝑋]
(1)

where 𝑋 is the empirical abundance of the quantity 𝑋, ⟨𝑋⟩ is
ts expected occurrence under the chosen null model and 𝜎[𝑋] =
√

⟨𝑋2
⟩ − ⟨𝑋⟩

2 is the standard deviation of 𝑋 under the same null
odel. In words, 𝑧[𝑋] quantifies the number of standard deviations

y which the empirical abundance of 𝑋 differs from the expected one
fter checking for the Gaussianity of 𝑋 under the null model – often
nsured by the fact that 𝑋 is the sum of several random variables – a
esult |𝑋| ≤ 2 (|𝑋| ≤ 3) indicates that the empirical abundance of 𝑋
s compatible with the expected one, at the 5% (1%) level of statistical
ignificance; on the other hand, a value |𝑋| > 2 (|𝑋| > 3) indicates
hat the empirical abundance of 𝑋 is not compatible with the expected
ne, at the same significance level. In the latter case, a value 𝑧[𝑋] > 0
𝑧[𝑋] < 0) indicates the tendency of the pattern to be over-represented
under-represented) in the data with respect to the chosen benchmark.

2.1. Dyadic signature of structural changes

Moving from the observation that
𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑎𝑗 𝑘 = [𝐀2]𝑖𝑘 (2)

we will pose

𝑋 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑎𝑗 𝑖 =

𝑁
∑

𝑖=1
[𝐀2]𝑖𝑖 = Tr

[

𝐀2] , (3)

noticing that the total number of links having a partner pointing in the
pposite direction coincides with the trace of the second power of the

adjacency matrix. The position above leads to

⟨𝑋⟩ =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝𝑖𝑗𝑝𝑗 𝑖 =

𝑁
∑

𝑖=1
[𝐏2]𝑖𝑖 = Tr

[

𝐏2] (4)

and to

𝜎[𝑋] =

√

√

√

√

√Var
[ 𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑎𝑗 𝑖

]

=

√

√

√

√

√Var
[

2 ⋅
𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑎𝑖𝑗𝑎𝑗 𝑖

]

=

√

√

√

√

√4 ⋅
𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
Var[𝑎𝑖𝑗𝑎𝑗 𝑖]

= 2 ⋅

√

√

√

√

√

𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑝𝑖𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑖) (5)

where 𝐏 ≡ {𝑝𝑖𝑗}𝑁𝑖,𝑗=1 is the matrix of probability coefficients induced
y the chosen null model, and the third passage follows from the
vidence that the dyads induce independent random variables (see also

Appendix A).

1 Hereby, the expressions ‘random network model’, ‘benchmark model’ and
null model’ will be used interchangeably.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 193 (2025) 116065V. Macchiati et al.

t
∑

o

t

u
s

w

 C).

s
o
n

i
i

𝑤

f

S

a

2.2. Triadic signature of structural changes

Analogously to the dyadic case, let us move from the observation
hat
𝑁

𝑗=1

𝑁
∑

𝑘=1
𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑙 = [𝐀3]𝑖𝑙 (6)

and pose

𝑋 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 =

𝑁
∑

𝑖=1
[𝐀3]𝑖𝑖 = Tr

[

𝐀3] , (7)

noticing that the total number of triangles is proportional to the trace
f the third power of the adjacency matrix. The position above leads to

⟨𝑋⟩ =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖 =

𝑁
∑

𝑖=1
[𝐏3]𝑖𝑖 = Tr

[

𝐏3] (8)

and to

𝜎[𝑋] =

√

√

√

√

√Var
[ 𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖

]

=

√

√

√

√

√Var
[

3 ⋅
𝑁
∑

𝑖=1

∑

𝑗(>𝑖)

∑

𝑘(>𝑗)
(𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖)

]

=

√

√

√

√

√9 ⋅ Var
[ 𝑁
∑

𝑖=1

∑

𝑗(>𝑖)

∑

𝑘(>𝑗)
(𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖)

]

= 3 ⋅

√

√

√

√

√Var
[ 𝑁
∑

𝑖=1

∑

𝑗(>𝑖)

∑

𝑘(>𝑗)
(𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖)

]

(9)

where 𝐏 ≡ {𝑝𝑖𝑗}𝑁𝑖,𝑗=1 is the matrix of probability coefficients induced by
he chosen null model. Since triads do not induce independent random

variables, the explicit expression of 𝜎[𝑋] is derived in Appendix B. Let
s notice that, in case the considered networks are sparse, one can
implify the expression above upon posing

𝜎[𝑋] ≃ 3 ⋅

√

√

√

√

√

𝑁
∑

𝑖=1

∑

𝑗(>𝑖)

∑

𝑘(>𝑗)
Var[𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖] (10)

with

Var[𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖] ≃ Var[𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖] + Var[𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖] (11)

and

Var[𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖] = 𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖), (12)

Var[𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖] = 𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑗 𝑖). (13)

2.3. Spectral signature of structural changes

Let us now enlarge the set of patterns to be considered for detecting
structural changes by accounting for closed walks of any length.

2.3.1. The trace of the matrix exponential
Let us start by considering the 𝑁 ×𝑁 adjacency matrix 𝐀 of a BDN,

ith 𝑎𝑖𝑖 = 0, ∀ 𝑖: the following relationship

𝐈 + 𝐀 + 𝐀2

2!
+ 𝐀3

3!
+⋯ + 𝐀𝑛

𝑛!
+⋯ =

∞
∑

𝑘=0

𝐀𝑘

𝑘!
≡ 𝑒𝐀, (14)

where 𝐀0 ≡ 𝐈, defines the exponential of 𝐀 [22–27]. Let us, now,
calculate the trace of such a matrix exponential: since it is invariant
under diagonalisation, one obtains that

Tr
[

𝑒𝐀
]

=
∞
∑ Tr

[

𝐀𝑘]

=
∞
∑ Tr

[

Λ𝑘]

= Tr
[

𝑒Λ
]

(15)
3

𝑘=0 𝑘! 𝑘=0 𝑘!
where Λ is the matrix obtained upon diagonalising 𝐀 (see also Appendix
As the number of walks of length 𝑘 starting from and ending at the
ame vertex can be counted by computing the trace of the 𝑘th power
f the adjacency matrix, i.e. Tr

[

𝐀𝑘] =
∑𝑁

𝑖=1
[

𝐀𝑘]
𝑖𝑖, Eq. (15) relates the

umber of walks of any length characterising a binary network 𝐀 with
its spectral properties. Such a quantity, named Estrada index, represents
a graph invariant quantifying the communicability of a given network,
.e. the ‘participation’ of each node to the walks present in the network
tself [23].

Analogously, given the 𝑁 ×𝑁 adjacency matrix 𝐖 of a WDN with
𝑖𝑖 = 0, ∀ 𝑖, the relationships

𝐈 +𝐖 + 𝐖2

2!
+ 𝐖3

3!
+⋯ + 𝐖𝑛

𝑛!
+⋯ =

∞
∑

𝑘=0

𝐖𝑘

𝑘!
≡ 𝑒𝐖 (16)

and

Tr
[

𝑒𝐖
]

=
∞
∑

𝑘=0

Tr
[

𝐖𝑘]

𝑘!
=

∞
∑

𝑘=0

Tr
[

Ω𝑘]

𝑘!
= Tr

[

𝑒Ω
]

, (17)

where Ω is the matrix obtained upon diagonalising 𝐖, hold true. As a
result, concerning the number of walks of length 𝑘 starting and ending
at the same vertex can be extended to weighted networks, Eq. (17)
generalises the Estrada index to weighted configurations.

Let us explicitly notice that

∙ the absence of self-loops, i.e. Tr [𝐀] = Tr [𝐖] = 0, implies that,
whenever present, complex eigenvalues must appear in conjugate
pairs;

∙ Eq. (14) implies that Tr
[

𝑒𝐀
]

≥ 0, i.e. that the trace of the
exponential of 𝐀 is a real, non-negative number. Analogously,
Eq. (16) implies that Tr

[

𝑒𝐖
]

≥ 0, i.e. that the trace of the
exponential of 𝐖 is a real, non-negative number;

∙ When computing the number of closed walks of a certain length,
edges must be counted repeatedly. For example, the closed walks
of length 4 in a binary, directed network are (i) the proper cycles
like 𝑖 → 𝑗 → 𝑘 → 𝑙 → 𝑖; (ii) the pairs of dyads like 𝑖 → 𝑗 → 𝑘 →

𝑗 → 𝑖; (iii) the single dyads like 𝑖 → 𝑗 → 𝑖. Eqs. (15) and (17)
compactly account for all of them.

The third observation has relevant implications for economic and
inancial applications: when studying the propagation of a shock, in

fact, it is extremely important to account for all possible patterns
along which distress can propagate, including the ones leading to
multiple reverberations among the same nodes [28]. As (combinations
of) cycles are supposed to lower the resilience of financial networks by
amplifying external shocks [9], Eqs. (15) and (17) suggest the trace of
the exponential matrix to represent a compact proxy of the stability of
the network itself.

2.3.2. Expected value of the trace of the matrix exponential
Let us now move to analyse the expected value of the quantity

Tr[𝑒𝐀] = Tr[𝑒Λ], under a properly-defined benchmark model. We will
suppose the latter one to be described by an 𝑁 × 𝑁 matrix 𝐏 whose
generic entry 𝑝𝑖𝑗 , with 𝑖 ≠ 𝑗, indicates the probability that nodes 𝑖 and
𝑗 are connected via a directed link. Following the same steps as above,
we find

Tr
[

𝑒𝐏
]

=
∞
∑

𝑘=0

Tr
[

𝐏𝑘]

𝑘!
=

∞
∑

𝑘=0

Tr
[

Π𝑘]

𝑘!
= Tr

[

𝑒Π
]

(18)

where Π is the matrix obtained upon diagonalising 𝐏.
Let us now inspect the relationship between Eqs. (15) and (18).

ince we are considering binary, adjacency matrices, the matrix 𝐏
satisfies the relationship ⟨𝐀⟩ = 𝐏, a compact notation stating for
⟨𝑎𝑖𝑗⟩ = 𝑝𝑖𝑗 , ∀ 𝑖 ≠ 𝑗. To extend this result to higher powers of the
djacency matrix, an explicit expression for the quantity ⟨𝐀𝑛

⟩ = 𝑓 (𝐏),
∀ 𝑛 is needed. Here, we adopt the recipe defining the so-called delta

29,30] and prescribing to identify 𝑓 (𝐏) with 𝐏𝑛. According
method [
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to it, the expected value of the number of closed walks of any length
satisfies the chain of inequalities

⟨Tr
[

𝑒𝐀
]

⟩ =
∞
∑

𝑘=0

⟨Tr
[

𝐀𝑘]
⟩

𝑘!
=

∞
∑

𝑘=0

Tr
[

⟨𝐀𝑘
⟩

]

𝑘!

≥
∞
∑

𝑘=0

Tr
[

⟨𝐀⟩𝑘
]

𝑘!
=

∞
∑

𝑘=0

Tr
[

𝐏𝑘]

𝑘!
= Tr

[

𝑒𝐏
]

; (19)

a relationship leading to ⟨Tr
[

𝑒Λ
]

⟩ ≥ Tr
[

𝑒Π
]

.
The inequality can be understood upon considering a reciprocated

yad and noticing that relationships like ⟨[𝐀4]𝑖𝑖⟩ = ⟨𝑎𝑖𝑗𝑎𝑗 𝑖𝑎𝑖𝑗𝑎𝑗 𝑖⟩ =
⟨𝑎𝑖𝑗𝑎𝑗 𝑖⟩ = ⟨𝑎𝑖𝑗⟩⟨𝑎𝑗 𝑖⟩ = 𝑝𝑖𝑗𝑝𝑗 𝑖 ≥ 𝑝2𝑖𝑗𝑝

2
𝑗 𝑖 = [𝐏4]𝑖𝑖 hold true; in other words,

estimating the number of closed walks of a certain length via the delta
method implies overweighing the edges constituting them, whence the
mismatch between the correct and the approximated expression. Such a
mismatch is absent in case no link is reciprocated: given a square loop,
in fact, ⟨[𝐀4]𝑖𝑖⟩ = ⟨𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑙𝑎𝑙 𝑖⟩ = ⟨𝑎𝑖𝑗⟩⟨𝑎𝑗 𝑘⟩⟨𝑎𝑘𝑙⟩⟨𝑎𝑙 𝑖⟩ = 𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑙𝑝𝑙 𝑖 =
[𝐏4]𝑖𝑖. In other words, the larger the number of reciprocal links,2 the
less accurate the approximation provided by the delta method. Hereby,

e will assume that the symbol ≳ can replace the symbol ≥.
Analogously, upon posing ⟨𝐖⟩ = 𝐐, the expected value of the

quantity Tr[𝑒𝐖] = Tr[𝑒Ω] can be approximated as follows

⟨Tr
[

𝑒𝐖
]

⟩ =
∞
∑

𝑘=0

⟨Tr
[

𝐖𝑘]
⟩

𝑘!
=

∞
∑

𝑘=0

Tr
[

⟨𝐖𝑘
⟩

]

𝑘!

≥
∞
∑

𝑘=0

Tr
[

⟨𝐖⟩

𝑘]

𝑘!
=

∞
∑

𝑘=0

Tr
[

𝐐𝑘]

𝑘!
= Tr

[

𝑒𝐐
]

, (20)

a relationship leading to ⟨Tr
[

𝑒Ω
]

⟩ ≥ Tr
[

𝑒Ψ
]

, where Ψ is the matrix
btained upon diagonalising 𝐐.

The inequality can be understood upon considering a weighted, re-
ciprocated dyad and noticing that relationships like ⟨[𝐖4]𝑖𝑖⟩ = ⟨𝑤𝑖𝑗𝑤𝑗 𝑖

𝑖𝑗𝑤𝑗 𝑖⟩ = ⟨(𝑤𝑖𝑗𝑤𝑗 𝑖)2⟩ = ⟨𝑤𝑖𝑗𝑤𝑗 𝑖⟩2 + Var[𝑤𝑖𝑗𝑤𝑗 𝑖] = ⟨𝑤𝑖𝑗⟩
2
⟨𝑤𝑗 𝑖⟩2 +

Var[𝑤𝑖𝑗𝑤𝑗 𝑖] ≥ ⟨𝑤𝑖𝑗⟩
2
⟨𝑤𝑗 𝑖⟩2 = [𝐐]4𝑖𝑖 hold true; as in the binary case,

estimating the total weight of closed walks of a certain length via
the delta method implies overweighing the edges constituting them.
Such a mismatch is absent if no link is reciprocated, as evident upon
considering a weighted, square loop. Hereby, we will assume that the
symbol ≳ can replace the symbol ≥.

2.3.3. Expected value of the spectral radius
Let us now recall the statement of the generalised Perron–Frobenius

GPF) theorem [31,32].
GPF Theorem. Whenever non-negative, irreducible matrices are con-

idered, a unique, real, positive eigenvalue exists whose modulus is maxi-
mum and (only) the corresponding left and right eigenvectors have positive
components.

Requiring irreducibility, sometimes stated as regularity, implies
equiring the existence of a natural number 𝑛 such that [𝐀𝑛]𝑖𝑗 > 0,
𝑖, 𝑗. In other words, when directed networks are considered, requiring

rreducibility is equivalent to requiring strongly connectedness. In case
uch a requirement is not satisfied, the Perron–Frobenius theorem must
e weakened as follows.
WPF Theorem. Whenever non-negative matrices are considered, a

eal, non-negative eigenvalue exists whose modulus is maximum and with
ssociated, non-negative left and right eigenvectors.

The eigenvalue mentioned in any variant of the Perron–Frobenius
heorem will be referred to as the principal eigenvalue or spectral radius.

The relationship between the matrices 𝐀 and Λ encoded into Eq. (15)
an be further simplified upon noticing that, in case the spectral radius
xists, is unique3 and the spectral gap is (much) larger than zero,4 the

sum Tr
[

𝑒Λ
]

=
∑𝑁

𝑖=1 𝑒
𝜆𝑖 is exponentially dominated by the addendum

2 Let us remind that 𝐿↔ =
∑𝑁 ∑

𝑎 𝑎 .
4

𝑖=1 𝑗(≠𝑖) 𝑖𝑗 𝑗 𝑖
𝑒𝜆1 , an observation allowing us to write

Tr
[

𝑒𝐀
]

≳ 𝑒𝜆1 ; (21)

analogously,

Tr
[

𝑒𝐖
]

≳ 𝑒𝜔1 . (22)

Let us now inspect the relationships between Eqs. (19) and (21) and
between Eqs. (20) and (22). Putting everything together, we obtain

⟨𝑒𝜆1 ⟩ ≲ ⟨Tr
[

𝑒𝐀
]

⟩ =
∞
∑

𝑘=0

⟨Tr
[

𝐀𝑘]
⟩

𝑘!
=

∞
∑

𝑘=0

Tr
[

⟨𝐀𝑘
⟩

]

𝑘!

≳
∞
∑

𝑘=0

Tr
[

𝐏𝑘]

𝑘!
= Tr

[

𝑒𝐏
]

≳ 𝑒𝜋1 , (23)

⟨𝑒𝜔1
⟩ ≲ ⟨Tr

[

𝑒𝐖
]

⟩ =
∞
∑

𝑘=0

⟨Tr
[

𝐖𝑘]
⟩

𝑘!
=

∞
∑

𝑘=0

Tr
[

⟨𝐖𝑘
⟩

]

𝑘!

≳
∞
∑

𝑘=0

Tr
[

𝐐𝑘]

𝑘!
= Tr

[

𝑒𝐐
]

≳ 𝑒𝜙1 . (24)

The two chains of (in-)equalities above motivate us to explore the
ossibility of deriving an (approximated) expression for the expected
alue of the spectral radius. According to the delta method, the ex-
ected value of a function, 𝑓 , of a random variable, 𝑥, can be computed
y Taylor-expanding 𝑓 (𝑥) around ⟨𝑥⟩ = 𝜇, taking the expected value
f the resulting expression and retaining only the lowest order of the
xpansion. Such a prescription allows us to write ⟨𝑒𝜆1 ⟩ ≃ 𝑒⟨𝜆1⟩ and
𝑒𝜔1

⟩ ≃ 𝑒⟨𝜔1⟩, two positions further leading to the results

⟨𝜆1⟩ ≃ 𝜋1 (25)

and

⟨𝜔1⟩ ≃ 𝜙1. (26)

Eqs. (25) and (26) are the main result of our paper, as they establish
 (fundamental, although approximated) relationship between the em-
irical value of the spectral radius of a directed network, be it binary
r weighted, and its expected counterpart: in words, the delta method
uggests us to identify the latter with the spectral radius of the matrix
efining the chosen random network model. Since the calculation of
he expected number, or of the expected weight, of walks boils down
o calculate the spectral radius of a single matrix, i.e. 𝐏 or 𝐐, Eqs. (25)

and (26) have deep implications from a purely computational point of
view as well: in fact, they prevent the network ensemble induced by 𝐏
or 𝐐 from being explicitly sampled.

2.3.4. Variance of the spectral radius
Now, let us focus on the variance of the spectral radius calculation.

o this aim, we will move from the known expressions of ⟨𝜆1⟩, treating
hem as subject to statistical variability. For instance, let us recall that

𝜋1 ≃
⟨𝑘 |𝑘 ⟩
2𝐿

=
𝑁
∑

𝑖=1

𝑘2𝑖
2𝐿

(27)

for binary, undirected networks under the Chung-Lu model, according
o which 𝑝𝑖𝑗 = 𝑘𝑖𝑘𝑗∕2𝐿, ∀ 𝑖, 𝑗; upon considering that all quantities
efining such an expression are random variables themselves, one is

3 A reducible square matrix 𝐌 can be written in a block triangular
form [33], each matrix 𝐁𝑖𝑖 on the diagonal being either irreducible or zero.
As the spectrum of such a matrix is the union of the spectra of the 𝐁𝑖𝑖s, the

PF Theorem can be applied to each 𝐁𝑖𝑖: the Perron–Frobenius eigenvalue of
is, thus, the largest of the Perron–Frobenius eigenvalues of the 𝐁𝑖𝑖s, hence

oinciding with the one of the maximal strongly-connected component of the
etwork under study.

4 Although the condition 𝜆1 −𝜆2 ≫ 0 can be relaxed, the formulas provided
in the present paper hold for this case.
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led to write

Var[𝜆1] = Var
[ 𝑁
∑

𝑖=1

𝑘2𝑖
2𝐿

]

(28)

and evaluate such an expression either analytically or numerically. In
what follows, we will numerically evaluate the spectral radius variance
of our random network models.

2.3.5. Statistical significance of the spectral radius
Let us now define the quantity to be inspected for spotting the

presence of a spectral signature of structural changes: it reads

𝑧[𝜆1] =
𝜆1 − ⟨𝜆1⟩
𝜎[𝜆1]

≃
𝜆1 − 𝜋1
𝜎[𝜆1]

(29)

and is nothing but the 𝑧-score of the spectral radius 𝜆1. As already
stressed, the statistical meaning of such a quantity is guaranteed by
he Gaussianity of the quantity whose 𝑧-score is to be calculated. Such
 property of the spectral radius is guaranteed by the analytical results

obtained in [17] and by the numerical checks carried out in Appendix D
and depicted in Fig. D.11.

3. Random network models

Let us now discuss a set of null models to be employed for the subse-
quent steps of our analysis. To this aim, we will consider some members
of the family of Exponential Random Graph Models (ERGMs), i.e. the
entropy-based benchmarks that preserve a given set of constraints,
otherwise being maximally random. More specifically, we follow the
approach introduced in [34] and further developed in [35], which
rescribes to carry out a constrained maximisation of Shannon entropy

𝑆 = −
∑

𝐆
𝑃 (𝐆) ln𝑃 (𝐆), (30)

the sum running over the ensemble G of 𝑁 ×𝑁 directed networks, be
hey binary (in which case 𝐆 ≡ 𝐀) or weighted (in which case 𝐆 ≡ 𝐖).

3.1. Erdös-Rényi model

The Erdös–Rényi Model [35] is induced by the Hamiltonian

𝐻(𝐀) = 𝛼 𝐿(𝐀), (31)

where 𝐿(𝐀) = ∑𝑁
𝑖=1

∑

𝑗(≠𝑖) 𝑎𝑖𝑗 represents the total number of directed
dges, and 𝛼 is the Lagrange multiplier associated with such a global

constraint. The probability of the generic configuration 𝐀 reads

𝑃ER(𝐀) = 𝑝𝐿(𝐀)(1 − 𝑝)𝑁(𝑁−1)−𝐿(𝐀) (32)

where 𝑝 = 𝑒−𝛼∕(1 + 𝑒−𝛼) is the probability that a link points from node
towards node 𝑗.

In order to tune the unknown parameter defining the Erdös–Rényi
odel to ensure that ⟨𝐿⟩ER = 𝐿(𝐀∗), we maximise the likelihood

function ER = ln𝑃ER(𝐀∗) with respect to it. Such a recipe leads us
to find

𝑝 =
𝐿(𝐀∗)

𝑁(𝑁 − 1) , ∀ 𝑖 ≠ 𝑗 (33)

with obvious meaning of the symbols.

3.1.1. Expected value of the spectral radius
Although Eq. (25) provides a general recipe for estimating the

expected value of the spectral radius of any random network model,
 more explicit expression can be derived for the Erdös–Rényi Model.
pecifically, let us consider the following equation
∞
∑ Tr

[

𝐏𝑘]

𝑘!
= 𝑁 +

∞
∑ (𝑁 𝑝)𝑘

𝑘!
(34)
5

=0 𝑘=2 v
where 𝐏 ≡ 𝐏ER = {𝑝𝑖𝑗}𝑁𝑖,𝑗=1, 𝑝𝑖𝑗 ≡ 𝑝, ∀ 𝑖 ≠ 𝑗 and each addendum
encodes the information about the order of magnitude of the specific
contribution to the total number of cycles — to see this explicitly, let us
onsider that Tr

[

𝐀2] =
∑𝑁

𝑖=1
[

𝐀2]
𝑖𝑖 =

∑𝑁
𝑖=1

∑

𝑗(≠𝑖) 𝑎𝑖𝑗𝑎𝑗 𝑖 whose expected
value reads ⟨Tr

[

𝐀2]
⟩ =

∑𝑁
𝑖=1

∑

𝑗(≠𝑖)⟨𝑎𝑖𝑗𝑎𝑗 𝑖⟩ =
∑𝑁

𝑖=1
∑

𝑗(≠𝑖) 𝑝
2 ≃ (𝑁 𝑝)2

nd analogously for the higher orders of the expansion. As adding and
ubtracting 1 and 𝑁 𝑝 leads to
∞
∑

=0

Tr
[

𝐏𝑘]

𝑘!
=

∞
∑

𝑘=0

(𝑁 𝑝)𝑘
𝑘!

+𝑁(1 − 𝑝) − 1

= 𝑒𝑁 𝑝 +𝑁(1 − 𝑝) − 1 ≳ 𝑒𝑁 𝑝 ≃ 𝑒⟨𝑘⟩, (35)

Eq. (23) can be employed to derive the chain of relationships

𝜋1 ≃ 𝑁 𝑝 ≃ ⟨𝑘⟩, (36)

stating that the spectral radius, 𝜋1, of the 𝑁×𝑁 matrix of i.i.d. Bernoulli
andom variables 𝐏 ≡ 𝐏ER can be accurately approximated by their sum

along any row or any column; in network terms, this can be rephrased
by saying that the expected value of the spectral radius under the
rdös–Rényi Model coincides with the expected value of the degree of

each node.
A second way of identifying 𝜋1 rests upon the following relationship:

𝐏 ⋅ 𝟏 = (𝑁 − 1)𝑝 ⋅ 𝟏 = ⟨𝑘⟩ ⋅ 𝟏; (37)

since 𝐏 obeys the GPF Theorem, the equation above allows us to
identify the value of its spectral radius quite straightforwardly by
posing

𝜋1 = (𝑁 − 1)𝑝 = ⟨𝑘⟩ ≡ 𝜆ER
1 . (38)

Such a result is consistent with the one stating that the spectral
radius of the deterministic matrix 𝑎𝑖𝑖 ≡ 𝜈, ∀ 𝑖 = 𝑗 and 𝑎𝑖𝑗 ≡ 𝜇, ∀ 𝑖 ≠ 𝑗 is
equal to 𝜆1 = (𝑁 − 1)𝜇 + 𝜈.

A third way of identifying the expected value of 𝜆1 rests upon the
results from [12], i.e.

𝜆1 =
𝑁
∑

𝑖=1

∑

𝑗

𝑎𝑖𝑗
𝑁

+ 𝜎2

𝜇
, (39)

where 𝑎𝑖𝑖 ≡ 𝜈, ∀ 𝑖 = 𝑗, ⟨𝑎𝑖𝑗⟩ = 𝜇 and Var[𝑎𝑖𝑗 ] = 𝜎2, ∀ 𝑖 ≠ 𝑗. Since, in our
ase, 𝜈 = 0, 𝜇 = 𝑝 and 𝜎2 = 𝑝(1 − 𝑝), ∀ 𝑖 ≠ 𝑗, such an expression leads to

𝜆1 =
𝑁
∑

𝑖=1

∑

𝑗

𝑝
𝑁

+ 𝜎2

𝜇
= (𝑁 − 1)𝑝 + (1 − 𝑝). (40)

3.1.2. Variance of the spectral radius
Eq. (39) offers a straightforward way to calculate the variance of

the spectral radius. It is, in fact, enough to evaluate the expression

Var[𝜆1] =
𝑁
∑

𝑖=1

∑

𝑗(≠𝑖)

Var[𝑎𝑖𝑗 ]
𝑁2

≃ 𝑝(1 − 𝑝) ≡ Var[𝜆ER
1 ] (41)

with the symbol ≃ replacing the more correct expression lim𝑁→∞ 𝑁(𝑁−
)𝑝(1 − 𝑝)∕𝑁2 = 𝑝(1 − 𝑝), indicating that Var[𝜆1] tends to 𝑝(1 − 𝑝) in the
asymptotic) regime 𝑁 → ∞.

3.2. Binary configuration model

The Binary Configuration Model [35] is induced by the Hamiltonian

𝐻(𝐀) =
𝑁
∑

𝑖=1
[𝛼𝑖𝑘𝑖(𝐀) + 𝛽𝑖ℎ𝑖(𝐀)] (42)

where 𝑘𝑖(𝐀) =
∑

𝑗(≠𝑖) 𝑎𝑖𝑗 represents the out-degree of node 𝑖, i.e. the
umber of nodes pointed by it and ℎ𝑖(𝐀) =

∑

𝑗(≠𝑖) 𝑎𝑗 𝑖 represents the
n-degree of node 𝑖, i.e. the number of nodes it is pointed by; the
ectors {𝛼 }𝑁 and {𝛽 }𝑁
𝑖 𝑖=1 𝑖 𝑖=1 represent the Lagrange multipliers associated
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with those above, local constraints. The probability of the generic
onfiguration 𝐀 reads

𝑃BCM(𝐀) =
𝑁
∏

𝑖=1

∏

𝑗(≠𝑖)
𝑝
𝑎𝑖𝑗
𝑖𝑗 (1 − 𝑝𝑖𝑗 )

1−𝑎𝑖𝑗 (43)

where 𝑝𝑖𝑗 = 𝑒−𝛼𝑖−𝛽𝑗 ∕(1 +𝑒−𝛼𝑖−𝛽𝑗 ) is the probability that a link points from
ode 𝑖 towards node 𝑗.

To tune the unknown parameters defining the Binary Configuration
Model to ensure that ⟨𝑘𝑖⟩BCM = 𝑘𝑖(𝐀∗), ∀ 𝑖 and ⟨ℎ𝑖⟩BCM = ℎ𝑖(𝐀∗), ∀ 𝑖, we
maximise the likelihood function BCM = ln𝑃BCM(𝐀∗) with respect to
hem. Such a recipe leads us to solve

𝑘𝑖(𝐀∗) =
∑

𝑗(≠𝑖)

𝑒−𝛼𝑖−𝛽𝑗

1 + 𝑒−𝛼𝑖−𝛽𝑗
, ∀ 𝑖 (44)

𝑖(𝐀∗) =
∑

𝑗(≠𝑖)

𝑒−𝛼𝑗−𝛽𝑖

1 + 𝑒−𝛼𝑗−𝛽𝑖
, ∀ 𝑖 (45)

with obvious meaning of the symbols.

3.2.1. Expected value of the spectral radius
According to Eq. (25), 𝜋1 is the spectral radius of the 𝑁 ×𝑁 matrix

of i.n.i.d. random variables 𝐏 ≡ 𝐏BCM = {𝑝𝑖𝑗}𝑁𝑖,𝑗=1, with 𝑝𝑖𝑗 = 𝑒−𝛼𝑖−𝛽𝑗 ∕(1 +
𝑒−𝛼𝑖−𝛽𝑗 ), ∀ 𝑖 ≠ 𝑗.

As for the Erdös–Rényi Model, a more explicit expression can also be
derived for the Binary Configuration Model. To this aim, let us consider
that a way to identify 𝜋1 in case 𝑝𝑖𝑗 = 𝑘𝑖ℎ𝑗∕𝐿, ∀ 𝑖, 𝑗 rests upon the
relationship

𝐏 = 𝐤⊗ 𝐡
𝐿

=
|𝑘⟩ ⟨ℎ|

𝐿
, (46)

indicating that the matrix 𝐏 characterising the Binary Configuration
odel can be obtained as the direct product of the vector of out-

egrees, 𝐤, and the vector of in-degrees, 𝐡. Employing the bra-ket
ormalism allows the calculations to be carried out quite easily, as

𝐏 |𝑘⟩ =
|𝑘⟩ ⟨ℎ|

𝐿
|𝑘⟩ =

⟨ℎ |𝑘 ⟩
𝐿

|𝑘⟩ (47)

where ⟨ℎ |𝑘 ⟩ =
∑𝑁

𝑖=1 𝑘𝑖ℎ𝑖. Since 𝐏 obeys the GPF Theorem, the equation
above allows us to identify the value of its spectral radius5 quite
traightforwardly as 𝜋1 = ⟨ℎ |𝑘 ⟩ ∕𝐿 =

∑𝑁
𝑖=1 𝑘𝑖ℎ𝑖∕𝐿. The sparse-case

approximation of the Binary Configuration Model is, however, defined
by the position 𝑝𝑖𝑗 = 𝑘𝑖ℎ𝑗∕𝐿, ∀ 𝑖 ≠ 𝑗, a piece of evidence leading us to
write

𝜋1 ≃
⟨ℎ |𝑘 ⟩
𝐿

=
𝑁
∑

𝑖=1

𝑘𝑖ℎ𝑖
𝐿

≡ 𝜆CL
1 . (48)

3.2.2. Variance of the spectral radius
The expression 𝜋1 = ⟨ℎ |𝑘 ⟩ ∕𝐿 =

∑𝑁
𝑖=1 𝑘𝑖ℎ𝑖∕𝐿 offers a straightforward

way to calculate the variance of the spectral radius. Upon considering
that all quantities defining such an expression are random variables
hemselves, one is led to write

Var[𝜆1] = Var
[ 𝑁
∑

𝑖=1

𝑘𝑖ℎ𝑖
𝐿

]

≡ Var[𝜆CL
1 ] (49)

and evaluate such an expression either analytically or numerically. In
what follows, we will proceed by evaluating it numerically.

3.3. Reciprocal configuration model

The Reciprocal Configuration Model [35] is induced by the Hamil-
tonian

𝐻(𝐀) =
𝑁
∑

𝑖=1
[𝛼𝑖𝑘→𝑖 (𝐀) + 𝛽𝑖𝑘

←
𝑖 (𝐀) + 𝛾𝑖𝑘

↔
𝑖 (𝐀)] (50)

5 Notice that ⟨ℎ 𝐏 = ⟨ℎ |𝑘⟩⟨ℎ| = ⟨ℎ ⟨ℎ|𝑘 ⟩ as well.
6

| |

𝐿
|

𝐿

where 𝑘→𝑖 (𝐀) = ∑

𝑗(≠𝑖) 𝑎
→
𝑖𝑗 represents the non-reciprocated out-degree

f node 𝑖, 𝑘←𝑖 (𝐀) =
∑

𝑗(≠𝑖) 𝑎
←
𝑖𝑗 represents the non-reciprocated in-

egree of node 𝑖 and 𝑘↔𝑖 (𝐀) = ∑

𝑗(≠𝑖) 𝑎
↔
𝑖𝑗 represents the reciprocated

egree of node 𝑖; the vectors {𝛼𝑖}𝑁𝑖=1, {𝛽𝑖}
𝑁
𝑖=1 and {𝛾𝑖}𝑁𝑖=1 represent the

agrange multipliers associated with those above, local constraints. The
robability of the generic configuration 𝐀 reads

𝑃RCM(𝐀) =
𝑁
∏

𝑖=1

∏

𝑗(>𝑖)
(𝑝→𝑖𝑗 )

𝑎→𝑖𝑗 (𝑝←𝑖𝑗 )
𝑎←𝑖𝑗 (𝑝↔𝑖𝑗 )

𝑎↔𝑖𝑗 (𝑝×𝑖𝑗 )
𝑎×𝑖𝑗 (51)

where

𝑝→𝑖𝑗 = 𝑒−𝛼𝑖−𝛽𝑗

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛾𝑖−𝛾𝑗
(52)

is the probability that a non-reciprocated link points from node 𝑖
towards node 𝑗,

𝑝←𝑖𝑗 = 𝑒−𝛼𝑗−𝛽𝑖

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛾𝑖−𝛾𝑗
(53)

is the probability that a non-reciprocated link points from node 𝑗
towards node 𝑖,

𝑝↔𝑖𝑗 = 𝑒−𝛾𝑖−𝛾𝑖

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛾𝑖−𝛾𝑗
(54)

is the probability that nodes 𝑖 and 𝑗 are connected by a reciprocated
link and 𝑝×𝑖𝑗 = 1 − 𝑝→𝑖𝑗 − 𝑝←𝑖𝑗 − 𝑝↔𝑖𝑗 is the probability that 𝑖 and 𝑗 are
disconnected.

To tune the unknown parameters defining the Reciprocal Configu-
ration Model to ensure that ⟨𝑘→𝑖 ⟩RCM = 𝑘→𝑖 (𝐀∗), ∀ 𝑖, ⟨𝑘←𝑖 ⟩RCM = 𝑘←𝑖 (𝐀∗),
𝑖 and ⟨𝑘↔𝑖 ⟩RCM = 𝑘↔𝑖 (𝐀∗), ∀ 𝑖, we maximise the likelihood function
RCM = ln𝑃RCM(𝐀∗) with respect to them. Such a recipe leads us to

olve

𝑘→𝑖 (𝐀∗) =
∑

𝑗(≠𝑖)

𝑒−𝛼𝑖−𝛽𝑗

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛾𝑖−𝛾𝑗
, ∀ 𝑖 (55)

𝑘←𝑖 (𝐀∗) =
∑

𝑗(≠𝑖)

𝑒−𝛼𝑗−𝛽𝑖

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛾𝑖−𝛾𝑗
, ∀ 𝑖 (56)

𝑘↔𝑖 (𝐀∗) =
∑

𝑗(≠𝑖)

𝑒−𝛾𝑖−𝛾𝑖

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛾𝑖−𝛾𝑗
, ∀ 𝑖 (57)

with obvious meaning of the symbols.

3.3.1. Expected value of the spectral radius
According to Eq. (25), 𝜋1 is the spectral radius of the 𝑁 ×𝑁 matrix

of i.n.i.d. random variables 𝐏 ≡ 𝐏RCM = {𝑝𝑖𝑗}𝑁𝑖,𝑗=1, 𝑝𝑖𝑗 = 𝑝→𝑖𝑗 + 𝑝↔𝑖𝑗 =
𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛾𝑖−𝛾𝑖 )∕(1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛾𝑖−𝛾𝑗 ), ∀ 𝑖 ≠ 𝑗.

As for the Binary Configuration Model, more explicit expressions
an also be derived for the Reciprocal Configuration Model. To this aim,

let us consider that, in the sparse case, one can write

𝐏→
|

|

𝑘→⟩ =
|𝑘→⟩ ⟨𝑘←|

𝐿→
|

|

𝑘→⟩ =
⟨𝑘← |𝑘→ ⟩

𝐿→
|

|

𝑘→⟩ , (58)

𝐏↔
|

|

𝑘↔⟩ =
|𝑘↔⟩ ⟨𝑘↔|

2𝐿↔
|

|

𝑘↔⟩ =
⟨𝑘↔ |𝑘↔ ⟩

2𝐿↔
|

|

𝑘↔⟩ (59)

where ⟨𝑘← |𝑘→ ⟩ =
∑𝑁

𝑖=1 𝑘
←
𝑖 𝑘→𝑖 and ⟨𝑘↔ |𝑘↔ ⟩ =

∑𝑁
𝑖=1 𝑘

↔
𝑖 𝑘↔𝑖 . Since 𝐏→

nd 𝐏↔ obey the GPF Theorem, the equations above allow us to identify
he values of their spectral radius6 quite straightforwardly as

𝜋→
1 ≃

⟨𝑘← |𝑘→ ⟩

𝐿→
=

𝑁
∑

𝑖=1

𝑘←𝑖 𝑘→𝑖
𝐿→

≡ 𝜆CL→
1 , (60)

𝜋↔
1 ≃

⟨𝑘↔ |𝑘↔ ⟩

2𝐿↔
=

𝑁
∑

𝑖=1

𝑘↔𝑖 𝑘↔𝑖
2𝐿↔

≡ 𝜆CL↔
1 (61)

(because of the definition of the sparse-case approximation of the
Reciprocal Configuration Model, valid ∀ 𝑖 ≠ 𝑗).

6 An analogous observation to the one in the previous footnote can be made.
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3.3.2. Variance of the spectral radius
The expressions above offer a straightforward way to calculate the

corresponding variances. In fact, one is led to write

Var[𝜆→1 ] = Var
[ 𝑁
∑

𝑖=1

𝑘←𝑖 𝑘→𝑖
𝐿→

]

≡ Var[𝜆CL→
1 ], (62)

Var[𝜆↔1 ] = Var
[ 𝑁
∑

𝑖=1

𝑘↔𝑖 𝑘↔𝑖
2𝐿↔

]

≡ Var[𝜆CL↔
1 ] (63)

and evaluate such expressions either analytically or numerically. In
what follows, we will proceed by evaluating them numerically.

3.4. Global reciprocity model

The Global Reciprocity Model [36] is a special case of the Reciprocal
Configuration Model, induced by the Hamiltonian

𝐻(𝐀) =
𝑁
∑

𝑖=1
[𝛼𝑖𝑘𝑖(𝐀) + 𝛽𝑖ℎ𝑖(𝐀)] + 𝛾 𝐿↔(𝐀) (64)

where 𝐿↔(𝐀) =
∑𝑁

𝑖=1
∑

𝑗(≠𝑖) 𝑎
↔
𝑖𝑗 represents the total number of re-

iprocated links; the parameters {𝛼𝑖}𝑁𝑖=1, {𝛽𝑖}𝑁𝑖=1 and 𝛾 represent the
agrange multipliers associated with the aforementioned constraints.
he probability of the generic configuration 𝐀 reads

𝑃GRM(𝐀) =
𝑁
∏

𝑖=1

∏

𝑗(>𝑖)
(𝑝→𝑖𝑗 )

𝑎→𝑖𝑗 (𝑝←𝑖𝑗 )
𝑎←𝑖𝑗 (𝑝↔𝑖𝑗 )

𝑎↔𝑖𝑗 (𝑝×𝑖𝑗 )
𝑎×𝑖𝑗 (65)

where

𝑝→𝑖𝑗 = 𝑒−𝛼𝑖−𝛽𝑗

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾
(66)

is the probability that a non-reciprocated link points from node 𝑖
towards 𝑗,

𝑝←𝑖𝑗 = 𝑒−𝛼𝑗−𝛽𝑖

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾
(67)

is the probability that a non-reciprocated link points from node 𝑗
towards node 𝑖,

𝑝↔𝑖𝑗 = 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾
(68)

is the probability that nodes 𝑖 and 𝑗 are connected by a reciprocated
link and 𝑝×𝑖𝑗 = 1 − 𝑝→𝑖𝑗 − 𝑝←𝑖𝑗 − 𝑝↔𝑖𝑗 is the probability that 𝑖 and 𝑗 are
disconnected.

To tune the unknown parameters defining the Global Reciprocity
odel to ensure that ⟨𝑘𝑖⟩GRM = 𝑘𝑖(𝐀∗), ∀ 𝑖, ⟨ℎ𝑖⟩GRM = ℎ𝑖(𝐀∗), ∀ 𝑖

and ⟨𝐿↔
⟩GRM = 𝐿↔(𝐀∗), ∀ 𝑖, we maximise the likelihood function

GRM = ln𝑃GRM(𝐀∗) with respect to them. Such a recipe leads us to
solve

𝑘𝑖(𝐀∗) =
∑

𝑗(≠𝑖)

𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾
, ∀ 𝑖 (69)

ℎ𝑖(𝐀∗) =
∑

𝑗(≠𝑖)

𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾
, ∀ 𝑖 (70)

𝐿↔(𝐀∗) =
𝑁
∑

𝑖=1

∑

𝑗(≠𝑖)

𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾

1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾
(71)

with obvious meaning of the symbols.
In the case of the Global Reciprocity Model, 𝜋1 is the spectral radius

f the 𝑁 ×𝑁 matrix of i.n.i.d. random variables 𝐏 ≡ 𝐏GRM = {𝑝𝑖𝑗}𝑁𝑖,𝑗=1,
𝑖𝑗 = 𝑝→𝑖𝑗 + 𝑝↔𝑖𝑗 = (𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾 )∕(1 + 𝑒−𝛼𝑖−𝛽𝑗 + 𝑒−𝛼𝑗−𝛽𝑖 +
−𝛼𝑖−𝛽𝑗−𝛽𝑖−𝛼𝑗−𝛾 ), ∀ 𝑖 ≠ 𝑗.

3.5. Density-corrected gravity model

The density-corrected Gravity Model [37] is a two-step model in-
ducing a probability for the generic configuration 𝐀 reading

𝑃dcGM(𝐀) =
𝑁
∏ ∏

𝑝
𝑎𝑖𝑗
𝑖𝑗 (1 − 𝑝𝑖𝑗 )

1−𝑎𝑖𝑗 (72)
7

𝑖=1 𝑗(≠𝑖)
where

𝑝𝑖𝑗 =
𝑧𝑎𝑖𝑙𝑗

1 + 𝑧𝑎𝑖𝑙𝑗
(73)

is the probability that a link points from node 𝑖 towards node 𝑗 and
𝑖 =

∑

𝑗(≠𝑖) 𝑤𝑖𝑗 is the out-strength of node 𝑖, 𝑙𝑖 =
∑

𝑗(≠𝑖) 𝑤𝑗 𝑖 is the in-
trength of node 𝑖 and 𝑧 is a free parameter, determined by fixing the
alue of the total number of links,7 i.e. by solving the equation

𝐿(𝐀∗) =
𝑁
∑

𝑖=1

∑

𝑗(≠𝑖)

𝑧𝑎𝑖𝑙𝑗
1 + 𝑧𝑎𝑖𝑙𝑗

. (74)

The second step of the density-corrected Gravity Model, instead, is
 conditional one, prescribing loading the link 𝑎𝑖𝑗 = 1 with the value

𝑤𝑖𝑗 =
𝑎𝑖𝑙𝑗
𝑊 𝑝𝑖𝑗

, (75)

where 𝑊 =
∑𝑁

𝑖=1
∑

𝑗(≠𝑖) 𝑤𝑖𝑗 =
∑𝑁

𝑖=1 𝑎𝑖 =
∑𝑁

𝑖=1 𝑙𝑖 is the total network
volume. As a consequence of such a prescription, one recovers the result

⟨𝑤𝑖𝑗⟩ =
𝑎𝑖𝑙𝑗
𝑊

; (76)

in other words, the dcGM ensures that the (financial equivalent of the)
ravity Model prescription is recovered on average.

3.5.1. Expected value of the spectral radius
According to Eq. (25), 𝜙1 is the spectral radius of the 𝑁 ×𝑁 matrix

of i.n.i.d. random variables 𝐐 ≡ 𝐐dcGM = {⟨𝑤𝑖𝑗⟩}𝑁𝑖,𝑗=1, ⟨𝑤𝑖𝑗⟩ = 𝑎𝑖𝑙𝑗∕𝑊 ,
𝑖 ≠ 𝑗.

As for the Binary Configuration Model, a more explicit expression
an also be derived for the density-corrected Gravity Model. To this
im, let us consider that a way to identify 𝜙1 in case ⟨𝑤𝑖𝑗⟩ = 𝑎𝑖𝑙𝑗∕𝑊 ,
𝑖, 𝑗 rests upon the relationship

𝐐 = 𝐚⊗ 𝐥
𝑊

=
|𝑎⟩ ⟨𝑙|
𝑊

, (77)

indicating that the matrix 𝐐 characterising the dcGM can be obtained
as the direct product of the vector of out-strengths, 𝐚, and the vector of
in-strengths, 𝐥. Employing the bra-ket formalism allows the calculations
to be carried out quite easily, as

𝐐 |𝑎⟩ =
|𝑎⟩ ⟨𝑙|
𝑊

|𝑎⟩ =
⟨𝑎 |𝑙 ⟩
𝑊

|𝑎⟩ (78)

where ⟨𝑎 |𝑙 ⟩ =
∑𝑁

𝑖=1 𝑎𝑖𝑙𝑖. Since 𝐐 obeys the GPF Theorem, the equation
above allows us to identify the value of its spectral radius8 quite
straightforwardly as 𝜙1 = ⟨𝑎 |𝑙 ⟩ ∕𝑊 =

∑𝑁
𝑖=1 𝑎𝑖𝑙𝑖∕𝑊 . The density-

orrected Gravity Model is, however, defined by the position ⟨𝑤𝑖𝑗⟩ =
𝑎𝑖𝑙𝑗∕𝑊 , ∀ 𝑖 ≠ 𝑗, a piece of evidence leading us to write

𝜙1 ≃
⟨𝑎 |𝑙 ⟩
𝑊

=
𝑁
∑

𝑖=1

𝑎𝑖𝑙𝑖
𝑊

≡ 𝜔CL
1 . (79)

As the considered matrix is deterministic, the variance of its spectral
adius is, by definition, zero.

4. Data description

4.1. Dutch Interbank Network

The Dutch Interbank Network (DIN) is represented as a binary,
directed network whose nodes are anonymised, Dutch banks and links
represent exposures (from contractual obligations to swaps) up to one
year and larger than 1.5 millions of euros. Data are reported quarterly
from 1998Q1 to 2008Q4, hence consisting of 44 snapshots. Notice that

7 Analogously, one could have fixed the connectance, or link density,
defined as 𝑐 = 𝐿

𝑁(𝑁−1)
.

8 Notice that ⟨𝑙 𝐐 = ⟨𝑙 |𝑎⟩⟨𝑙| = ⟨𝑙 ⟨𝑎|𝑙 ⟩ as well.
| |

𝑊
|

𝑊
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the last four ends of quarters correspond to 2008, i.e. the first year of
the global financial crisis [38]. Given the nature of the available data,
 link pointing from bank 𝑖 to bank 𝑗 at time 𝑡 indicates the existence
f a total exposure of more than 1.5 million euros, directed from 𝑖 to
, registered at the end of the particular quarter 𝑡.

4.2. Electronic Market for Interbank Deposit

The Electronic Market for Interbank Deposit (e-MID) is represented
as a weighted, directed network whose nodes are anonymised, Italian
banks and weights represent exposures in million euros.9 Reported data
cover the period January 1999-December 2014, on a daily frequency: a
ink with weight 𝑤𝑖𝑗 , pointing from bank 𝑖 to bank 𝑗 at time 𝑡 indicates

the existence of the total exposure 𝑤𝑖𝑗 ≥ 50.000 euros, directed from 𝑖
to 𝑗, registered during the particular period 𝑡. Considering that ≃98%
of banks are Italian and that the volume of their transactions covers
≃85% of the total volume (as of 2011), our analysis solely focuses on
the subgraph induced by such a subset of nodes. We also examine all
aggregation periods ranging from daily to yearly — although the figures
will depict e-MID on a quarterly basis.

4.3. International Trade Network

The International Trade Network (ITN) is represented as a weighted,
irected network whose nodes are countries and weights represent
mports/exports in million euros. Data on yearly trade flows during
he period 2000–2020 have been downloaded from the UN-COMTRADE
ebsite.10 To consistently compare data, a panel of 112 countries for
hich trade information was available for the entire period has been

elected [40]. Given the nature of the available data, a link whose
eight is 𝑤𝑖𝑗 , pointing from country 𝑖 to country 𝑗 during the year 𝑦

indicates the existence of an exported amount of commodities whose
value matches 𝑤𝑖𝑗 , directed from 𝑖 to 𝑗, during that year.

5. Results

5.1. Inspecting the accuracy of our approximations

The derivation of our results rests upon several approximations
whose accuracy must be explicitly checked case by case.

The first one concerns the expected value of the trace of the ex-
ponential of 𝐀 - which has been proven to satisfy the relationship
⟨Tr

[

𝑒𝐀
]

⟩ ≥ Tr
[

𝑒𝐏
]

, hence being strictly larger than the trace of the
exponential of 𝐏 for any network with positive reciprocity, i.e. having
𝑟 = 𝐿↔∕𝐿 > 0. In order to check how close the two terms above are,
we have explicitly computed the ratio Tr

[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ for all the snap-
hots of our systems. The results are reported in the seventh column
f Tables E.1 and F.2 in Appendix E. As evident, Tr

[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ≲
1 irrespectively from the structural details of our configurations —
n particular, even for configurations with a non-negligible level of
eciprocity such as those constituting the DIN, for which 𝑟 ≃ 0.3. In
ther words, the trace of the matrix 𝐏 describing a random network

9 e-MID is a centralised interbank market for trading unsecured deposits,
orking as follows: a bank quotes an offer to lend or borrow money (minimum
uote: 1.5 million euros) at a certain maturity and interest rate; a second bank
hooses (at least a part of) the quoted order (minimum quote: 50.000 euros),
nd the trade is registered if and only if both counterparties have agreed on

it. The following information is available for each active bank during the
period: an anonymous ID identifying the bank and the country where it is
legally settled. In [39], Fricke and Lux have highlighted (i) how the number
of active, foreign banks largely varies over the considered period, experiencing
 dramatic drop in correspondence of the Lehman-Brothers bailout; (ii) how
he number of active Italian banks is quite stable over the period, although it
ecreases after the global financial crisis.
10 https://comtradeplus.un.org/.
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model provides a quite accurate approximation of the expected value
f the trace of the adjacency matrix 𝐀 under the same model. As the
008Q1, 2008Q2, 2008Q3 and 2008Q4 snapshots of the DIN confirm,
he accuracy of the approximation above increases as 𝑟 decreases.

Analogously, Tr
[

𝑒𝐐
]

∕⟨Tr
[

𝑒𝐖
]

⟩ ≲ 1, as the seventh column of
Table G.3 in Appendix E shows.

The second one concerns the hypothesis that the trace of the expo-
nential of 𝐀 and the trace of the exponential of 𝐏 are both dominated
by their largest addendum, i.e. Tr[𝑒𝐀] ≳ 𝑒𝜆1 and Tr[𝑒𝐏] ≳ 𝑒𝜋1 . In order
o check how close the two pairs above of terms are, we have explicitly

computed the ratios 𝑒𝜆1∕Tr
[

𝑒𝐀
]

and 𝑒𝜋1∕Tr
[

𝑒𝐏
]

for all the snapshots of
our systems. The results are reported in the fifth and sixth columns
of Tables E.1 and F.2 in Appendix E. As evident, 𝑒𝜆1∕Tr

[

𝑒𝐀
]

≲ 1
and 𝑒𝜋1∕Tr

[

𝑒𝐏
]

≲ 1 irrespectively from the structural details of our
configurations. In words, the trace of the matrix 𝐀 is exponentially
dominated by the addendum 𝑒𝜆1 and the trace of the matrix 𝐏 is
exponentially dominated by the addendum 𝑒𝜋1 . The accuracy of the
pproximation remains steadily high.

Analogously, 𝑒𝜔1∕Tr
[

𝑒𝐖
]

≲ 1 and 𝑒𝜙1∕Tr
[

𝑒𝐐
]

≲ 1, as the fifth and
sixth column of Table G.3 in Appendix E show.

5.2. Expected value and variance of the spectral radius

After having checked the goodness of our approximations, let us
nvestigate the accuracy of the estimations of the expected value and
ariance of the spectral radius of our random network models.

Erdös–rényi model. As the last column of Tables E.1 and F.2 shows, the
expected value of the spectral radius of 𝐀, evaluated numerically as the
verage over |A| = 103 configurations reading

⟨𝜆1⟩ =
∑

𝐀∈A

𝜆1(𝐀)
|A|

, (80)

is always very well approximated by the spectral radius of 𝐏, i.e. 𝜋1.
The accuracy of such an estimation is pictorially confirmed by the
left panels of Fig. 1, showing the related scatter plot for each of the
4 snapshots constituting the DIN and for each of the 64 snapshots

constituting the quarterly e-MID.
The central panels of Fig. 1, instead, provide information about

the explicit functional form of 𝜋1, that matches the estimation reading
ER
1 = (𝑁 − 1)𝑝 = 𝐿∕𝑁 .

The right panels of Fig. 1 provide information about the explicit
functional form of the variance of the spectral radius by comparing

Var[𝜆1] =
∑

𝐀∈A

[𝜆1(𝐀) − ⟨𝜆1⟩]2

|A|
(81)

with Var[𝜆ER
1 ] = 𝑝(1 − 𝑝): as it can be appreciated, such an expression

slightly underestimates the ensemble variance of the spectral radius.

Binary configuration model. As the last column of Tables E.1 and F.2
shows, the expected value of the spectral radius of 𝐀, evaluated nu-

erically as the average over |A| = 103 configurations reading ⟨𝜆1⟩ =
∑

𝐀∈A 𝜆1(𝐀)∕|A|, is always very well approximated by the spectral
radius of 𝐏, i.e. 𝜋1. The accuracy of such an estimation is pictorially
confirmed by the left panels of Fig. 2, showing the related scatter plot
for each of the 44 snapshots constituting the DIN and for each of the
64 snapshots constituting the quarterly e-MID.

The central panels of Fig. 2, instead, provide information about the
explicit functional form of 𝜋1 which is (overall) well approximated by
the Chung-Lu estimation reading 𝜆CL

1 =
∑𝑁

𝑖=1 𝑘𝑖ℎ𝑖∕𝐿 for what concerns
the e-MID and overestimated by the same expression for what concerns
the DIN.

The right panels of Fig. 2 provide information about the explicit
functional form of the variance of the spectral radius, by comparing
Var[𝜆1] =

∑

𝐀∈A[𝜆1(𝐀) − ⟨𝜆1⟩]2∕|A| with

Var[𝜆CL
1 ] =

∑ [𝜆CL
1 (𝐀) − ⟨𝜆CL

1 ⟩]2
; (82)
𝐀∈A |A|
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Fig. 1. Expected value and variance of the spectral radius for each of the quarters of the Dutch Interbank Network (DIN) and of the Electronic Market for Interbank Deposit (e-MID)
according to the Erdös–Rényi Model. Left panels: the expected value of the spectral radius is very well approximated by the spectral radius of the matrix 𝐏 = {𝑝}𝑁𝑖,𝑗=1 characterising
the Erdös–Rényi Model. Central panels: the spectral radius of the matrix 𝐏 = {𝑝}𝑁𝑖,𝑗=1 characterising the Erdös–Rényi Model, in turn, coincides with 𝜆ER

1 = (𝑁 − 1)𝑝 = 𝐿∕𝑁 . Right
panels: the variance of the spectral radius is slightly underestimated by the value Var[𝜆ER

1 ] = 𝑝(1 − 𝑝).
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Fig. 2. Expected value and variance of the spectral radius for each of the quarters of the Dutch Interbank Network (DIN) and of the Electronic Market for Interbank Deposit
(e-MID) according to the Binary Configuration Model. Left panels: the expected value of the spectral radius is very well approximated by the spectral radius of the matrix
𝐏 = {𝑝𝑖𝑗}𝑁𝑖,𝑗=1 characterising the Binary Configuration Model. Central panels: the spectral radius of the matrix 𝐏 = {𝑝𝑖𝑗}𝑁𝑖,𝑗=1 characterising the Binary Configuration Model is, overall,

well approximated by 𝜆CL
1 =

∑𝑁
𝑖=1 𝑘𝑖ℎ𝑖∕𝐿. Right panels: the variance of the spectral radius is either overestimated or underestimated by the value Var[𝜆CL

1 ] = Var
[

∑𝑁
𝑖=1 𝑘𝑖ℎ𝑖∕𝐿

]

.
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Fig. 3. Expected value and variance of the spectral radius for each of the quarters of the Dutch Interbank Network (DIN) and of the Electronic Market for Interbank Deposit
(e-MID) according to the Reciprocal Configuration Model. Left panels: the expected value of the spectral radius is very well approximated by the spectral radius of the matrix
𝐏↔ = {𝑝↔𝑖𝑗 }𝑁𝑖,𝑗=1 characterising the Reciprocal Configuration Model. Central panels: the spectral radius of the matrix 𝐏↔ = {𝑝↔𝑖𝑗 }𝑁𝑖,𝑗=1 characterising the Reciprocal Configuration Model

is, overall, well approximated by 𝜆CL↔

1 =
∑𝑁

𝑖=1 𝑘
↔
𝑖 𝑘↔𝑖 ∕2𝐿. Right panels: the variance of the spectral radius is underestimated by the value Var[𝜆CL↔

1 ] = Var
[

∑𝑁
𝑖=1 𝑘

↔
𝑖 𝑘↔𝑖 ∕2𝐿

]

.
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Fig. 4. Evolution of the number of nodes, links, connectance and reciprocity for all quarters of the DIN. The pre-crisis period (i.e. the years 2005, 2006 and 2007) is highlighted
in light red while the global financial crisis (i.e. the year 2008) is highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
as it can be appreciated, such an expression either underestimates (for
what concerns the e-MID) or overestimates (for what concerns the DIN)
the ensemble variance of the spectral radius. Notice also that such an
expression calculates the variance of the spectral radius by evaluating
𝜆CL
1 (𝐀), i.e. the numerical value of the Chung-Lu approximation, for

each matrix in the sampled ensemble. As Fig. 2 shows, these discrepancies
seem to be due to a systematic mismatch caused by the configuration-
specific values of the spectral radius – the DIN, for instance, obeys
the relationship 𝜆CL

1 (𝐀) > 𝜆1(𝐀), ∀ 𝐀, a result potentially explaining
the differences between 𝜆CL

1 and 𝜋1 and between Var[𝜆CL
1 ] and Var[𝜆1]

– in words, the numbers 𝜆CL
1 s are not only larger than their ensem-

ble counterparts but are also more dispersed (see also Fig. H.13 in
Appendix F).

Reciprocal configuration model. The Reciprocal Configuration Model
performs similarly to the Binary Configuration Model. While the last
column of Tables E.1 and F.2 shows that the expected value of the
spectral radius of 𝐀, evaluated numerically as the average over |A| =
103 configurations reading ⟨𝜆1⟩ =

∑

𝐀∈A 𝜆1(𝐀)∕|A|, is always very well
approximated by the spectral radius of 𝐏, i.e. 𝜋1, the left panels of Fig. 3,
show the scatter plot concerning the two sets of quantities ⟨𝜆↔1 ⟩ and 𝜋↔

1
for each of the 44 snapshots constituting the DIN and for each of the
64 snapshots constituting the quarterly e-MID.

The central panels of Fig. 3, instead, provide information about the
explicit functional form of 𝜋↔

1 which is (overall) well approximated
by the Chung-Lu estimation reading 𝜆CL

1 =
∑𝑁

𝑖=1 𝑘
↔
𝑖 𝑘↔𝑖 ∕2𝐿 for what

concerns the e-MID and overestimated by the same expression for what
concerns the DIN.

The right panels of Fig. 3 provide information about the explicit
functional form of the variance of the spectral radius by comparing
Var[𝜆↔1 ] = ∑

𝐀∈A[𝜆
↔
1 (𝐀) − ⟨𝜆↔1 ⟩]2∕|A| with

Var[𝜆CL↔
1 ] =

∑ [𝜆CL↔
1 (𝐀) − ⟨𝜆CL↔

1 ⟩]2
; (83)
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𝐀∈A |A|
as it can be appreciated, such an expression overestimates the ensemble
variance of the spectral radius. As for the Binary Configuration Model,
such an expression calculates the variance of the spectral radius by
evaluating 𝜆CL↔

1 (𝐀), i.e. the numerical value of the Chung-Lu approx-
imation, for each matrix in the sampled ensemble. These discrepancies
may, thus, be imputable to a systematic mismatch caused by the
configuration-specific values of the spectral radius.

Density-corrected gravity model. The last column of Tables F.2 and G.3
shows that the expected value of the spectral radius of 𝐖, evaluated
numerically as the average over |W| = 103 configurations reading
⟨𝜔1⟩ =

∑

𝐖∈W 𝜔1(𝐖)∕|W|, is always very well approximated by the
spectral radius of 𝐐, i.e. 𝜙1, as the left panels of Fig. G.12 pictorially
confirm. Besides, the right panels of the same figure provide informa-
tion about the explicit functional form of 𝜙1 which is (overall) well
approximated by the Chung-Lu estimation reading 𝜔CL

1 =
∑𝑁

𝑖=1 𝑎𝑖𝑙𝑖∕𝑊
for each of the 16 snapshots constituting the yearly e-MID and for each
of the 21 snapshots constituting the yearly ITN.

5.3. Spectral signature of structural changes in financial networks

Now, let us inspect the presence of structural changes affecting
our networked configurations. To this aim, we will plot the evolution
of 𝑧[𝜆1] across the periods covered by our datasets; we will proceed
numerically by explicitly sampling the network ensemble induced by
each of the benchmarks considered here per snapshot.

5.3.1. Dutch Interbank Network
The structural change undergone by the system in 2008 is signalled

by several quantities: the total number of active Dutch banks sharply
decreases as well as the total number of links, whose number dimin-
ishes in corresponding of the last year covered by our dataset; this, in
turn, causes the connectance to rise (see Fig. 4). As already discussed
in [6], one of the most evident signals of the global financial crisis is
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Fig. 5. Evolution of the number of nodes, links, connectance and reciprocity for all quarters of the e-MID. The pre-crisis period (i.e. the years 2005, 2006 and 2007) is highlighted
in light red, while the global financial crisis (i.e. the year 2008) is highlighted in red. The period covered by the long-term refinancing operation (LTRO), promoted by the European
Central Bank, is highlighted in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
provided by reciprocity: for most of the period, it is characterised by an
essentially constant trend, with small fluctuations around an average
value of ≃0.26; the last, four snapshots are, then, characterised by a
drop of ≃40%, causing the empirical values to lie almost three sigmas
away from the sample average — a trend indicating that the reciprocity
of the DIN is anomalously low during the critical period and imputable
to a decrease of the level of trust characterising the Dutch system.

An additional signal of the global financial crisis is provided by
the empirical value of the spectral radius itself, that decreases in
correspondence with 2008Q1 and remains constant across the last four
snapshots of our dataset (see Fig. 6). As it is related to the number of
closed walks in a network, its decrease may be related to the decline of
reciprocity. However, the latter’s trend appears as (much) less affected
by the statistical fluctuations characterising the evolution of the DIN
throughout its entire history.

Let us now comment on the signal provided by 𝑧[𝜆1]. Even if the
Erdös–Rényi Model is, from a merely financial perspective, an unlikely
benchmark (its homogeneous nature forces the banks to be similar in
size), employing it still allows us to conclude that the DIN is charac-
terised by two structural changes — the first one taking place across
2005 and the second one taking place across 2008. More specifically,
after a (more or less) stationary trend characterising the evolution of
the DIN from 1998 to 2005 – in correspondence of which the number of
closed walks is significantly large – a smooth trend characterising the
pre-crisis phase is recovered; afterwards, an abrupt drop connecting the
last quarter of 2007 with the first quarter of 2008 emerges. Such a result
complements the ones presented in [6] where such behaviour could
have been revealed only by employing a heterogeneous benchmark
(specifically, the Binary Configuration Model).

Employing the heterogeneous benchmarks – preserving the hetero-
geneity of banks by constraining the observed (reciprocal) degrees –
leads to the same qualitative result. More quantitatively, instead, all
such null models reveal that the number of closed walks is perfectly
compatible with their predictions during the stationary phase of the
system. Such a consistency confirms that, in the absence of distress,
the topology of the DIN can be reconstructed quite accurately, solely
13
employing the information provided by the number of (inward, out-
ward and reciprocated) partners of each bank. It is noticed that the
explanatory power of the Reciprocal Configuration Model is larger than
that of the Global Reciprocity Model, which, in turn, is (only slightly)
larger than that of the Binary Configuration Model.

As the build-up phase of the crisis began, a decreasing trend led to
2008, indicating that the local connectivity of banks became less and
less informative about the network as a whole — emerges. Under the
same benchmarks, the second regime shift is preceded by a short, rising
trend. As already noticed in [6], maximum-entropy techniques yield
a realistic guess of the real network only in tranquil times: when the
network is under stress, instead, these models provide a sort of distorted
picture of it, whose differences from the empirical situation constitute
the structural changes we are looking for.

Apart from model-specific differences, however, the degree of infor-
mativeness about the changes affecting the DIN carried by the spectral
radius seems quite independent of the model employed to spot the
differences above.

5.3.2. Electronic Market for Interbank Deposit
For what concerns the e-MID, instead, the evolution of the total

number of active Italian banks steadily decreases, hence not providing
any clear indication about the presence of structural changes (see
Fig. 5). On the contrary, the evolution of the total number of links
provides a quite clear indication of the presence of two regime shifts as
𝐿 drops in correspondence of 2008 and 2012. Overall, the connectance
and the reciprocity provide a very similar indication — the global
financial crisis being characterised by a stronger signal than the one
characterising the long-term refinancing operation (LTRO) promoted by
the European Central Bank at the end of 2011.11

The evolution of the empirical value of the spectral radius is char-
acterised by a drop in correspondence of the first crisis, originating a

11 The two LTRO measures date December the 22nd, 2011 and February the
29th, 2012.
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Fig. 6. Evolution of the spectral radius (top panels) and of its 𝑧-score 𝑧[𝜆1] = (𝜆1 − ⟨𝜆1⟩)∕𝜎[𝜆1] (central and bottom panels) across the quarters of the Dutch Interbank Network
(DIN) and of the Electronic Market for Interbank Deposit (e-MID). While the evolution of the (empirical value of the) spectral radius returns a signal for each of the events captured
by our datasets – typically dropping in correspondence with a crisis – the evolution of its 𝑧-score returns early-signals for the same events. Interestingly, while each benchmark
provides information about the evolution of the two systems considered here, they seem to behave oppositely: for instance, while the global financial crisis induces a statistically
significant signal in the case of the DIN – which evolves from a regime of compatibility towards a regime of incompatibility with our heterogeneous benchmarks – it does not in
the case of the e-MID - which evolves from a regime of incompatibility towards a regime of compatibility with the same null models.
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slightly fluctuating trend that lasts until 2012, the year in correspon-
dence of which a second, decreasing trend can also be observed (see
Fig. 6).

Let us now comment on the signal provided by 𝑧[𝜆1]. Employing a
omogeneous benchmark such as the Erdös–Rényi Model allows us to
onclude that the e-MID is characterised by three structural changes,
he first one taking place across 2000, the second one taking place

between 2007 and 2008 and the third one taking place across 2012.
More specifically, the evolution of the e-MID starts with a drop of

he 𝑧-score of the spectral radius, indicating that the number of closed
walks has become significantly smaller than expected during 2001.
Afterwards, an increasing trend leading to a phase characterised by
several closed walks compatible with the output of the prediction by
the Erdös–Rényi Model becomes visible. Such a period is interrupted
by the so-called pre-crisis phase, during which the trend of 𝜆1 reverts
and becomes again significantly smaller than expected. From 2009 on, a
second, increasing trend lasting until 2012 becomes visible: afterwards,
the system stabilises.

Employing the heterogeneous benchmarks leads to quite different
results: more quantitatively, the first regime shift disappears, replaced
by a stationary trend lasting until 2003; afterwards, a rising trend
leading the system to its (pre-)critical phase appears. Since 2009 on, a
decreasing trend lasting a couple of years emerges to be followed, once
more, by an increasing one. From this perspective, the DIN and the
e-MID behave, somehow, oppositely: while the global financial crisis
induces a statistically significant signal in the case of the DIN, it does
not in the case of the e-MID. In a sense, maximum-entropy techniques
can be used to reconstruct the e-MID when the system is under stress,
while this should be avoided in tranquil times – e.g. the first years of the
dataset – when the picture of it inferred from local constraints departs
the most from the empirical one.

Differently from the DIN, the explanatory power of the Reciprocal
Configuration Model (still larger than the one of the Global Reciprocity

odel, which, however, performs similarly to the Binary Configuration
odel) is so large that the measurements carried out on the e-MID

(practically) always compatible with the predictions. Although such a
iece of evidence speaks against the use of the Reciprocal Configuration
odel to detect deviations from the average behaviour, statistical ten-

encies can still be revealed, confirming once more that a dichotomous
es/no answer to the question is this pattern statistically significant? may
e quite unsatisfactory to gain a sufficiently deep insight into system
ehaviour.

6. Discussion

The so-called stability analysis represents an application of particu-
lar interest in the study of financial networks, a topic whose popularity
as steadily increased since the turmoil due to the mortgage cri-
is [41]. The objective of this kind of analysis is to understand the

relationship(s) between the topological structure of financial networks
nd their resilience to events like shocks, cascading failures, etc., by
mploying real data [42], reconstructed configurations [43] or (simple)
oy models [28]. A direct way to explore this connection is by running
tress tests on several different topological structures by measuring the

effects of a simulated shock and the subsequent propagation of losses
ex post [44]: later works have related these results to the magnitude
of the spectral radius of the so-called leverage matrix [28] although no
lgorithm has been devised to estimate its magnitude from the (partial)
nformation that is usually available in financial contexts.

With the present contribution, we have tackled a more general
challenge, i.e. that of estimating the spectral radius of random network

odels calibrated on real-world evolving networks. To this aim, we
ave adopted several approximations that have led to the surprisingly
imple recipe ⟨𝜆1⟩ ≃ 𝜋1 for estimating the expected value of 𝜆1, with 𝜋1
epresenting the spectral radius of the probabilistic matrix describing
15
the chosen model. Despite our result is based on an approximation,12 it
turns out to be extremely accurate for any directed (binary or weighted)
random network model considered.

Besides the theoretical relevance of such a result, its usefulness lies
n spotting the structural changes separating a (financial) regime from
nother by exploiting the interplay between distress and topological
hanges. As the case studies of the DIN and the e-MID illustrate,
eviations from the average behaviour can happen in both directions,
ither moving away from a less structured configuration (hence becoming
 less typical member of an equilibrium ensemble of graphs) or moving
owards a less structured configuration (hence becoming a more typical
ember of an equilibrium ensemble of graphs): from this perspective,

ach quantity characterising the original network can be straightfor-
ardly assigned a level of significance – which is sensitive to the
irection – by computing the related 𝑧-score, i.e. an index comparing
he measured value with the one expected under a null model pre-

serving some properties of the observed network but, otherwise, being
maximally random.

Although our results become exact in case a perfectly non-reciprocal
network is observed, future research calls for a more accurate evalu-
ation of our approximations — hopefully, in terms of the reciprocity
itself. Besides, extending the results of the present analysis to undi-
rected, binary or weighted networks would enlarge their applicability
beyond the economic and financial domains.
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𝑎
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Appendix A. Dyadic early-warning signals

Upon defining

𝑋 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑎𝑗 𝑖 =

𝑁
∑

𝑖=1
[𝐀2]𝑖𝑖 = Tr

[

𝐀2] , (A.1)

we are left with the task of calculating its expected value and variance. The evidence that the expected value is a linear operator (i.e. ⟨𝑎𝑋 + 𝑏𝑌 ⟩ =
⟨𝑋⟩ + 𝑏⟨𝑌 ⟩) and that the entries of a binary, directed network are treated as independent random variables under any of the random network
odels considered here, makes such a calculation straightforward. In fact,

⟨𝑋⟩ =

⟨ 𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑎𝑗 𝑖

⟩

=
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
⟨𝑎𝑖𝑗𝑎𝑗 𝑖⟩ =

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
⟨𝑎𝑖𝑗⟩⟨𝑎𝑗 𝑖⟩ =

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝𝑖𝑗𝑝𝑗 𝑖. (A.2)

In order to calculate the variance of 𝑋, let us consider that 𝑋 can be re-written as

𝑋 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑎𝑗 𝑖 = 2

𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑎𝑖𝑗𝑎𝑗 𝑖 (A.3)

i.e. as a sum over dyads, treated as independent random variables under any random network models considered here. Since the variance of a sum
f independent random variables coincides with the sum of their variances, one can write

Var[𝑋] = Var
[

2
𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑎𝑖𝑗𝑎𝑗 𝑖

]

= 4 ⋅
𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
Var[𝑎𝑖𝑗𝑎𝑗 𝑖]; (A.4)

then, since 𝑎𝑖𝑗𝑎𝑗 𝑖 ∼ Ber[𝑝𝑖𝑗𝑝𝑗 𝑖], one finds that

Var[𝑋] = 4 ⋅
𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑝𝑖𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑖). (A.5)

It is nevertheless instructive to follow an alternative road and consider that

Var[𝑋] = Var
[ 𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑎𝑖𝑗𝑎𝑗 𝑖

]

=
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
Var[𝑎𝑖𝑗𝑎𝑗 𝑖] + 2 ⋅

𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
Cov[𝑎𝑖𝑗𝑎𝑗 𝑖, 𝑎𝑖𝑗𝑎𝑗 𝑖]

=
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1
𝑝𝑖𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑖) + 2 ⋅

𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑝𝑖𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑖)

= 2 ⋅
𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑝𝑖𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑖) + 2 ⋅

𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑝𝑖𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑖)

= 4 ⋅
𝑁
∑

𝑖=1

∑

𝑗(>𝑖)
𝑝𝑖𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑖). (A.6)

The comparison between the analytical estimations of the expected value and the variance of the number of dyads and the numerical
counterparts, obtained by explicitly sampling the ensembles induced by the Erdös–Rényi Model and the Binary Configuration Model is illustrated
in Figs. A.7 and A.8.
16
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Fig. A.7. Comparison between the analytical estimations of the expected value and variance of the number of dyads and the numerical counterparts, obtained by explicitly
sampling the ensembles induced by the Erdös–Rényi Model (top panels) and the Binary Configuration Model (bottom panels). The numerical simulations have been carried out on
the quarters of the Dutch Interbank Network (DIN); the number of sampled matrices per snapshot is 103.
17
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Fig. A.8. Comparison between the analytical estimations of the expected value and variance of the number of dyads and the numerical counterparts, obtained by explicitly
sampling the ensembles induced by the Erdös–Rényi Model (top panels) and the Binary Configuration Model (bottom panels). The numerical simulations have been carried out on
the quarters of the Electronic Market for Interbank Deposit (e-MID); the number of sampled matrices per snapshot is 103.
18
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a
(

Appendix B. Triadic early-warning signals

Upon defining

𝑋 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 =

𝑁
∑

𝑖=1
[𝐀3]𝑖𝑖 = Tr

[

𝐀3] , (B.1)

we are left with the task of calculating its expected value and variance. Analogously to the dyadic case, calculating the expected value is
traightforward. In fact,

⟨𝑋⟩ =

⟨ 𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖

⟩

=
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
⟨𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖⟩ =

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
⟨𝑎𝑖𝑗⟩⟨𝑎𝑗 𝑘⟩⟨𝑎𝑘𝑖⟩ =

𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖. (B.2)

In order to calculate the variance of 𝑋, let us, first, consider that 𝑋 can be re-written as

𝑋 =
𝑁
∑

𝑖=1

𝑁
∑

𝑗=1

𝑁
∑

𝑘=1
𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 = 3 ⋅

𝑁
∑

𝑖=1

∑

𝑗(>𝑖)

∑

𝑘(>𝑗)
(𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖) ≡ 3 ⋅

∑

𝑖<𝑗 <𝑘
(𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖) (B.3)

i.e. as a sum over triads. Then, let us notice that

Var[𝑋] = 32 ⋅
[

∑

𝐈
Var[𝑎𝐈] + 2 ⋅

∑

𝐈<𝐉
Cov[𝑎𝐈, 𝑎𝐉]

]

(B.4)

where we have employed the multi-index notation, i.e. 𝐈 ≡ (𝑖, 𝑗 , 𝑘) and 𝐉 ≡ (𝑙 , 𝑚, 𝑛). More explicitly,

Var[𝑎𝐈] = Var[𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖] + Var[𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖] + Cov[𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖, 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖]
= 𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖) + 𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑗 𝑖) + Cov[𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖, 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖] (B.5)

with Cov[𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖, 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖] depending on the adopted benchmark: under both the Erdös–Rényi Model and the Binary Configuration Model, it
amounts at zero. Overall, thus,
∑

𝐈
Var[𝑎𝐈] =

∑

𝑖<𝑗 <𝑘
[𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖(1 − 𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖) + 𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑗 𝑖(1 − 𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑗 𝑖)]. (B.6)

Moreover,

Cov[𝑎𝐈, 𝑎𝐉] = ⟨(𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖) ⋅ (𝑎𝑙 𝑚𝑎𝑚𝑛𝑎𝑛𝑙 + 𝑎𝑙 𝑛𝑎𝑛𝑚𝑎𝑚𝑙)⟩ − ⟨𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖⟩ ⋅ ⟨𝑎𝑙 𝑚𝑎𝑚𝑛𝑎𝑛𝑙 + 𝑎𝑙 𝑛𝑎𝑛𝑚𝑎𝑚𝑙⟩
= ⟨(𝑎𝑖𝑗𝑎𝑗 𝑘𝑎𝑘𝑖 + 𝑎𝑖𝑘𝑎𝑘𝑗𝑎𝑗 𝑖) ⋅ (𝑎𝑙 𝑚𝑎𝑚𝑛𝑎𝑛𝑙 + 𝑎𝑙 𝑛𝑎𝑛𝑚𝑎𝑚𝑙)⟩ − (𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖 + 𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑗 𝑖) ⋅ (𝑝𝑙 𝑚𝑝𝑚𝑛𝑝𝑛𝑙 + 𝑝𝑙 𝑛𝑝𝑛𝑚𝑝𝑚𝑙) (B.7)

is different from zero, i.e. any two triads co-variate as long as they share an edge. In this case, they form a diamond whose vertices can be labelled
ither as 𝑖 ≡ 𝑙, 𝑗 ≡ 𝑚, 𝑘, 𝑛 or as 𝑖 ≡ 𝑚, 𝑗 ≡ 𝑙, 𝑘, 𝑛 and induce the expression

Cov[𝑎𝐈, 𝑎𝐉] = 𝑝𝑖𝑗𝑝𝑗 𝑘𝑝𝑘𝑖𝑝𝑗 𝑛𝑝𝑛𝑖 − (𝑝𝑖𝑗 )2𝑝𝑗 𝑘𝑝𝑘𝑖𝑝𝑗 𝑛𝑝𝑛𝑖 + 𝑝𝑗 𝑖𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑖𝑛𝑝𝑛𝑗 − (𝑝𝑗 𝑖)2𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑖𝑛𝑝𝑛𝑗
= 𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 )𝑝𝑗 𝑘𝑝𝑘𝑖𝑝𝑗 𝑛𝑝𝑛𝑖 + 𝑝𝑗 𝑖(1 − 𝑝𝑗 𝑖)𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑖𝑛𝑝𝑛𝑗 . (B.8)

Let us now, calculate the number of times such an expression appears, i.e. the number of triples sharing an edge: since we need to first, choose
the pair of nodes individuating the common edge and, then the pair of nodes individuating the ‘free’ vertices of the two triads, such a number
mounts at

(𝑁
2

)(𝑁−2
2

)

= 𝑁(𝑁 − 1)(𝑁 − 2)(𝑁 − 3)∕4; in case 𝑁 = 4, it amounts at 3! = 6 — indeed, let us concretely focus on the triads (1, 2, 3),
1, 2, 4), (1, 3, 4), (2, 3, 4): (1, 2, 3) co-variates with (1, 2, 4), (1, 3, 4), (2, 3, 4); (1, 2, 4) co-variates with (1, 3, 4), (2, 3, 4); (1, 3, 4) co-variates with (2, 3, 4).

Overall, then,
∑

𝐈<𝐉
Cov[𝑎𝐈, 𝑎𝐉] = 3! ⋅

∑

𝑖<𝑗 <𝑘<𝑛
[𝑝𝑖𝑗 (1 − 𝑝𝑖𝑗 )𝑝𝑗 𝑘𝑝𝑘𝑖𝑝𝑗 𝑛𝑝𝑛𝑖 + 𝑝𝑗 𝑖(1 − 𝑝𝑗 𝑖)𝑝𝑖𝑘𝑝𝑘𝑗𝑝𝑖𝑛𝑝𝑛𝑗 ]. (B.9)

The comparison between the analytical estimations of the expected value and the variance of the number of triads and the numerical
counterparts, obtained by explicitly sampling the ensembles induced by the Erdös–Rényi Model and the Binary Configuration Model is illustrated
in Figs. B.9 and B.10.
19
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Fig. B.9. Comparison between the analytical estimations of the expected value and variance of the number of triads and the numerical counterparts, obtained by explicitly
sampling the ensembles induced by the Erdös–Rényi Model (top panels) and the Binary Configuration Model (bottom panels). The numerical simulations have been carried out on
the quarters of the Dutch Interbank Network (DIN); the number of sampled matrices per snapshot is 103.
20
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Fig. B.10. Comparison between the analytical estimations of the expected value and variance of the number of triads and the numerical counterparts, obtained by explicitly
sampling the ensembles induced by the Erdös–Rényi Model (top panels) and the Binary Configuration Model (bottom panels). The numerical simulations have been carried out on
the quarters of the Electronic Market for Interbank Deposit (e-MID); the number of sampled matrices per snapshot is 103.
21
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Appendix C. Diagonalisation and trace of the matrix exponential

In this Appendix, we will provide a sketch of the proof that

𝑓 (𝐀) = 𝐅𝑓 (Λ)𝐅−1 (C.1)

and that

Tr [𝑓 (𝐀)] = Tr
[

𝐅𝑓 (Λ)𝐅−1] = Tr
[

𝑓 (Λ)𝐅−1𝐅
]

= Tr [𝑓 (Λ)] , (C.2)

i.e. that the trace is invariant under a cyclic permutation of matrices, in the special case 𝑓 (⋅) ≡ 𝑒(⋅) and where 𝐅 is the matrix that diagonalises 𝐀,
i.e. the one ensuring that 𝐅−1𝐀𝐅 = Λ.

Since the function of a matrix is formally identical to its series expansion, one can write that

𝑒𝐀 ≡ 𝐈 + 𝐀 + 𝐀2

2!
+ 𝐀3

3!
+⋯ + 𝐀𝑛

𝑛!
+ … ; (C.3)

let us now diagonalise it:
𝐅−1𝑒𝐀𝐅 ≡ 𝐅−1𝐈𝐅 + 𝐅−1𝐀𝐅 + 𝐅−1𝐀2𝐅

2!
+ 𝐅−1𝐀3𝐅

3!
+⋯ + 𝐅−1𝐀𝑛𝐅

𝑛!
+⋯

= 𝐈 +Λ +

(

𝐅−1𝐀𝐅
) (

𝐅−1𝐀𝐅
)

2!
+

(

𝐅−1𝐀𝐅
) (

𝐅−1𝐀𝐅
) (

𝐅−1𝐀𝐅
)

3!
+⋯

= 𝐈 +Λ +

(

𝐅−1𝐀𝐅
)2

2!
+

(

𝐅−1𝐀𝐅
)3

3!
+⋯ +

(

𝐅−1𝐀𝐅
)𝑛

𝑛!
+⋯

= 𝐈 +Λ + Λ2

2!
+ Λ3

3!
+⋯ + Λ𝑛

𝑛!
+⋯ ≡ 𝑒Λ. (C.4)

Since all matrices appearing in the last row are diagonal, 𝑒Λ also has diagonal entries. As a consequence,

Tr
[

𝑒Λ
]

=
𝑁
∑

𝑖=1

(

𝑒Λ
)

𝑖𝑖 =
𝑁
∑

𝑖=1
𝑒𝜆𝑖 =

𝑁
∑

𝑖=1
1 +

𝑁
∑

𝑖=1
𝜆𝑖 +

𝑁
∑

𝑖=1

𝜆2𝑖
2!

+
𝑁
∑

𝑖=1

𝜆3𝑖
3!

+⋯ +
𝑁
∑

𝑖=1

𝜆𝑛𝑖
𝑛!

+⋯

= Tr [𝐈] + Tr [Λ] +
Tr

[

Λ2]

2!
+

Tr
[

Λ3]

3!
+⋯ + Tr [Λ𝑛]

𝑛!
+⋯

= Tr [𝐈] + Tr
[

𝐅−1𝐀𝐅
]

+
Tr

[

(𝐅−1𝐀𝐅)(𝐅−1𝐀𝐅)
]

2!
+

Tr
[

(𝐅−1𝐀𝐅)(𝐅−1𝐀𝐅)(𝐅−1𝐀𝐅)
]

3!
+⋯

= Tr [𝐈] + Tr
[

𝐅−1𝐀𝐅
]

+
Tr

[

𝐅−1𝐀2𝐅
]

2!
+

Tr
[

𝐅−1𝐀3𝐅
]

3!
+⋯ +

Tr
[

𝐅−1𝐀𝑛𝐅
]

𝑛!
+⋯

= Tr [𝐈] + Tr
[

𝐀𝐅𝐅−1] +
Tr

[

𝐀2𝐅𝐅−1]

2!
+

Tr
[

𝐀3𝐅𝐅−1]

3!
+⋯ +

Tr
[

𝐀𝑛𝐅𝐅−1]

𝑛!
+⋯

= Tr [𝐈] + Tr [𝐀] +
Tr

[

𝐀2]

2!
+

Tr
[

𝐀3]

3!
+⋯ + Tr [𝐀𝑛]

𝑛!
+⋯ = Tr

[

𝑒𝐀
]

, (C.5)

where we have exploited the property of the trace of being invariant under circular shifts.
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Appendix D. Ensemble distribution of the spectral radius

See Fig. D.11.

Fig. D.11. Distribution of the spectral radius on the ensemble induced by the Erdös–Rényi Model (top panels) and the Binary Configuration Model (bottom panels), for the quarters
1999Q4 and 2008Q4 of the Dutch Interbank Network (DIN): the agreement with a Gaussian distribution whose expected value and variance coincide with those computed on the
corresponding ensemble is, overall, very good. Similar results are obtained for the Electronic Market for Interbank Deposit (e-MID).
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Appendix E. Dutch Interbank Network

See Table E.1.

Table E.1
Check of the approximations that lead to the result ⟨𝜆1⟩ ≃ 𝜋1, for the Dutch Interbank Network (DIN).

Erdös–Rényi Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
DIN 1998-Q1 100 0.115 0.270 1.000 0.999 0.974 0.998
DIN 1999-Q1 95 0.102 0.268 1.000 0.994 0.951 1.000
DIN 2000-Q1 98 0.087 0.262 1.000 0.981 0.982 0.997
DIN 2001-Q1 100 0.073 0.264 0.999 0.939 0.975 0.999
DIN 2002-Q1 98 0.067 0.264 0.998 0.880 0.977 0.998
DIN 2003-Q1 98 0.054 0.266 0.985 0.669 0.981 0.998
DIN 2004-Q1 98 0.083 0.261 1.000 0.973 0.976 0.998
DIN 2005-Q1 96 0.072 0.257 0.986 0.911 0.971 0.999
DIN 2006-Q1 94 0.081 0.236 0.987 0.954 0.966 0.999
DIN 2007-Q1 93 0.090 0.252 0.936 0.979 0.970 0.999
DIN 2008-Q1 75 0.120 0.138 0.957 0.991 0.976 0.997

Binary Configuration Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
DIN 1998-Q1 100 0.115 0.270 1.000 1.000 0.890 1.000
DIN 1999-Q1 95 0.102 0.268 1.000 1.000 0.923 0.998
DIN 2000-Q1 98 0.087 0.262 1.000 1.000 0.930 0.998
DIN 2001-Q1 100 0.073 0.264 0.999 1.000 0.908 1.000
DIN 2002-Q1 98 0.067 0.264 0.998 0.999 0.949 0.996
DIN 2003-Q1 98 0.054 0.266 0.985 0.995 0.927 0.998
DIN 2004-Q1 98 0.083 0.261 1.000 1.000 0.924 0.999
DIN 2005-Q1 96 0.072 0.257 0.986 1.000 0.926 0.999
DIN 2006-Q1 94 0.081 0.236 0.987 1.000 0.937 0.997
DIN 2007-Q1 93 0.090 0.252 0.936 1.000 0.939 0.999
DIN 2008-Q1 75 0.120 0.138 0.957 0.998 0.936 1.001

Global Reciprocity Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
DIN 1998-Q1 100 0.115 0.270 1.000 1.000 0.879 1.000
DIN 1999-Q1 95 0.102 0.268 1.000 1.000 0.873 1.002
DIN 2000-Q1 98 0.087 0.262 1.000 1.000 0.889 1.001
DIN 2001-Q1 100 0.073 0.264 0.999 1.000 0.872 1.003
DIN 2002-Q1 98 0.067 0.264 0.998 0.999 0.860 1.005
DIN 2003-Q1 98 0.054 0.266 0.985 0.996 0.858 1.007
DIN 2004-Q1 98 0.083 0.261 1.000 1.000 0.863 1.004
DIN 2005-Q1 96 0.072 0.257 0.986 1.000 0.920 0.999
DIN 2006-Q1 94 0.081 0.236 0.987 1.000 0.925 0.998
DIN 2007-Q1 93 0.090 0.252 0.936 1.000 0.958 0.997
DIN 2008-Q1 75 0.120 0.138 0.957 0.996 1.066 0.988

Reciprocal Configuration Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
DIN 1998-Q1 100 0.115 0.270 1.000 1.000 0.846 1.003
DIN 1999-Q1 95 0.102 0.268 1.000 1.000 0.878 1.003
DIN 2000-Q1 98 0.087 0.262 1.000 1.000 0.881 1.004
DIN 2001-Q1 100 0.073 0.264 0.999 1.000 0.824 1.009
DIN 2002-Q1 98 0.067 0.264 0.998 0.999 0.799 1.014
DIN 2003-Q1 98 0.054 0.266 0.985 0.996 0.821 1.013
DIN 2004-Q1 98 0.083 0.261 1.000 1.000 0.787 1.012
DIN 2005-Q1 96 0.072 0.257 0.986 0.999 0.875 1.003
DIN 2006-Q1 94 0.081 0.236 0.987 0.999 0.852 1.004
DIN 2007-Q1 93 0.090 0.252 0.936 1.000 0.903 1.002
DIN 2008-Q1 75 0.120 0.138 0.957 0.994 1.010 0.992
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Appendix F. Electronic Market for Interbank Deposit

See Table F.2.

Table F.2
Check of the approximations that lead to the results ⟨𝜆1⟩ ≃ 𝜋1 and ⟨𝜔1⟩ ≃ 𝜙1, for the Electronic Market for Interbank Deposit (e-MID). Notice
that the density-corrected Gravity Model has been solved on the yearly e-MID to prevent numerical problems related to the value of the spectral
gap, i.e. 𝜆1 − 𝜆2: let us, in fact, remind that our derivation holds in case 𝜆1 − 𝜆2 is (much) larger than zero.

Erdös–Rényi Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
e-MID 1999-Q1 205 0.181 0.258 1.000 1.000 0.940 1.000
e-MID 2001-Q1 154 0.213 0.256 1.000 1.000 0.927 1.000
e-MID 2003-Q1 124 0.218 0.199 1.000 1.000 0.930 0.999
e-MID 2005-Q1 113 0.209 0.232 1.000 1.000 0.906 1.000
e-MID 2007-Q1 101 0.237 0.225 1.000 1.000 0.908 1.000
e-MID 2009-Q1 95 0.169 0.130 0.999 1.000 0.958 0.998
e-MID 2011-Q1 90 0.189 0.149 1.000 1.000 0.937 0.999
e-MID 2013-Q1 73 0.151 0.116 0.985 0.999 0.934 1.000

Binary Configuration Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
e-MID 1999-Q1 205 0.181 0.258 1.000 1.000 0.886 1.000
e-MID 2001-Q1 154 0.213 0.256 1.000 1.000 0.906 0.999
e-MID 2003-Q1 124 0.218 0.199 1.000 1.000 0.889 0.999
e-MID 2005-Q1 113 0.209 0.232 1.000 1.000 0.871 1.000
e-MID 2007-Q1 101 0.237 0.225 1.000 1.000 0.872 1.000
e-MID 2009-Q1 95 0.169 0.130 0.999 0.999 0.902 0.997
e-MID 2011-Q1 90 0.189 0.149 1.000 1.000 0.890 0.998
e-MID 2013-Q1 73 0.151 0.116 0.985 0.993 0.867 0.999

Global Reciprocity Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
e-MID 1999-Q1 205 0.181 0.258 1.000 1.000 0.896 1.000
e-MID 2001-Q1 154 0.213 0.256 1.000 1.000 0.857 1.001
e-MID 2003-Q1 124 0.218 0.199 1.000 1.000 0.914 0.998
e-MID 2005-Q1 113 0.209 0.232 1.000 1.000 0.856 1.001
e-MID 2007-Q1 101 0.237 0.225 1.000 1.000 0.852 1.001
e-MID 2009-Q1 95 0.169 0.130 0.999 1.000 0.825 1.004
e-MID 2011-Q1 90 0.189 0.149 1.000 1.000 0.876 1.000
e-MID 2013-Q1 73 0.151 0.116 0.985 0.993 0.901 0.995

Reciprocal Configuration Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
e-MID 1999-Q1 205 0.181 0.258 1.000 1.000 0.876 1.000
e-MID 2001-Q1 154 0.213 0.256 1.000 1.000 0.844 1.001
e-MID 2003-Q1 124 0.218 0.199 1.000 1.000 0.891 0.999
e-MID 2005-Q1 113 0.209 0.232 1.000 1.000 0.840 1.001
e-MID 2007-Q1 101 0.237 0.225 1.000 1.000 0.824 1.002
e-MID 2009-Q1 95 0.169 0.130 0.999 1.000 0.821 1.005
e-MID 2011-Q1 90 0.189 0.149 1.000 1.000 0.862 1.001
e-MID 2013-Q1 73 0.151 0.116 0.985 0.992 0.885 0.997

Density-Corrected Gravity Model 𝑁 𝑐 𝑟 𝑒𝜔1∕Tr
[

𝑒𝐖
]

𝑒𝜙1∕Tr
[

𝑒𝐐
]

Tr
[

𝑒𝐐
]

∕⟨Tr
[

𝑒𝐖
]

⟩ ⟨𝜔1⟩∕𝜙1

e-MID 1999 212 0.279 0.440 1.000 1.000 0.987 1.000
e-MID 2001 163 0.312 0.466 0.992 1.000 0.997 1.000
e-MID 2003 128 0.320 0.433 1.000 1.000 0.976 1.000
e-MID 2005 113 0.328 0.458 1.000 1.000 0.971 1.001
e-MID 2007 106 0.369 0.481 0.990 0.997 0.993 1.000
e-MID 2009 99 0.266 0.285 0.479 0.651 0.991 1.000
e-MID 2011 92 0.283 0.336 0.981 0.961 0.986 0.999
e-MID 2013 78 0.230 0.289 1.000 0.241 0.996 1.000
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Appendix G. International Trade Network

See Fig. G.12 and Table G.3.

Table G.3
Check of the approximations that lead to the results ⟨𝜆1⟩ ≃ 𝜋1 and ⟨𝜔1⟩ ≃ 𝜙1, for the International Trade Network (ITN).

Erdös–Rényi Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
ITN 2000 112 0.753 0.887 1.000 1.000 0.899 1.000
ITN 2003 112 0.769 0.884 1.000 1.000 0.900 1.000
ITN 2006 112 0.790 0.890 1.000 1.000 0.921 1.000
ITN 2009 112 0.807 0.903 1.000 1.000 0.939 1.000
ITN 2012 112 0.828 0.914 1.000 1.000 0.910 1.000
ITN 2015 112 0.826 0.912 1.000 1.000 0.926 1.000
ITN 2018 112 0.838 0.917 1.000 1.000 0.919 1.000

Binary Configuration Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
ITN 2000 112 0.753 0.887 1.000 1.000 0.970 1.000
ITN 2003 112 0.769 0.884 1.000 1.000 0.975 1.000
ITN 2006 112 0.790 0.890 1.000 1.000 0.978 1.000
ITN 2009 112 0.807 0.903 1.000 1.000 0.984 1.000
ITN 2012 112 0.828 0.914 1.000 1.000 0.984 1.000
ITN 2015 112 0.826 0.912 1.000 1.000 0.972 1.000
ITN 2018 112 0.838 0.917 1.000 1.000 0.974 1.000

Global Reciprocity Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
ITN 2000 112 0.753 0.887 1.000 1.000 0.945 1.000
ITN 2003 112 0.769 0.884 1.000 1.000 0.964 1.000
ITN 2006 112 0.790 0.890 1.000 1.000 0.967 1.000
ITN 2009 112 0.807 0.903 1.000 1.000 0.961 1.000
ITN 2012 112 0.828 0.914 1.000 1.000 0.965 1.000
ITN 2015 112 0.826 0.912 1.000 1.000 0.962 1.000
ITN 2018 112 0.838 0.917 1.000 1.000 0.979 1.000

Reciprocal Configuration Model 𝑁 𝑐 𝑟 𝑒𝜆1∕Tr
[

𝑒𝐀
]

𝑒𝜋1∕Tr
[

𝑒𝐏
]

Tr
[

𝑒𝐏
]

∕⟨Tr
[

𝑒𝐀
]

⟩ ⟨𝜆1⟩∕𝜋1
ITN 2000 112 0.753 0.887 1.000 1.000 0.943 1.000
ITN 2003 112 0.769 0.884 1.000 1.000 0.960 1.000
ITN 2006 112 0.790 0.890 1.000 1.000 0.966 1.000
ITN 2009 112 0.807 0.903 1.000 1.000 0.966 1.000
ITN 2012 112 0.828 0.914 1.000 1.000 0.968 1.000
ITN 2015 112 0.826 0.912 1.000 1.000 0.959 1.000
ITN 2018 112 0.838 0.917 1.000 1.000 0.978 1.000

Density-Corrected Gravity Model 𝑁 𝑐 𝑟 𝑒𝜔1∕Tr
[

𝑒𝐖
]

𝑒𝜙1∕Tr
[

𝑒𝐐
]

Tr
[

𝑒𝐐
]

∕⟨Tr
[

𝑒𝐖
]

⟩ ⟨𝜔1⟩∕𝜙1

ITN 2000 112 0.753 0.887 1.000 1.000 1.000 1.000
ITN 2003 112 0.769 0.884 1.000 1.000 1.000 1.000
ITN 2006 112 0.790 0.890 1.000 1.000 1.000 1.000
ITN 2009 112 0.807 0.903 1.000 1.000 1.000 1.000
ITN 2012 112 0.828 0.914 1.000 1.000 1.000 1.000
ITN 2015 112 0.826 0.912 1.000 1.000 1.000 1.000
ITN 2018 112 0.838 0.917 1.000 1.000 1.000 1.000
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Fig. G.12. Expected value of the spectral radius for each of the years of the Electronic Market for Interbank Deposit (e-MID) and the International Trade Network (ITN) according
to the density-corrected Gravity Model. Left panels: the expected value of the spectral radius is very well approximated by the spectral radius of the matrix 𝐐 = {⟨𝑤𝑖𝑗 ⟩}𝑁𝑖,𝑗=1
characterising the density-corrected Gravity Model. Right panels: the spectral radius of the matrix 𝐐 = {⟨𝑤𝑖𝑗 ⟩}𝑁𝑖,𝑗=1 characterising the density-corrected Gravity Model is, overall,
well approximated by 𝜙CL

1 =
∑𝑁

𝑖=1 𝑎𝑖𝑙𝑖∕𝑊 .
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Appendix H. Inspecting the accuracy of the Chung-Lu approximation

See Fig. H.13.

Fig. H.13. Scattering the 103 values of the BCM-induced variants of the spectral radius versus the corresponding Chung-Lu approximations may help explain the discrepancies
observed in Fig. 2. For instance, the evidence that 𝜆CL

1 (𝐀) > 𝜆1(𝐀) for all quarters of the Dutch Interbank Network (DIN) in 1999, 2003 and 2008 explains the overestimations
provided by 𝜆CL

1 and Var[𝜆CL
1 ] and depicted in the top central and top right panels of Fig. 2.

Data availability

The data that has been used is confidential.
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