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Quantum computers are a highly
promising tool for efficiently simulating
quantum many-body systems. The
preparation of their eigenstates is of
particular interest and can be addressed,
e.g., by quantum phase estimation
algorithms. The routine then acts as
an effective filtering operation, reducing
the energy variance of the initial state.
In this work, we present a distributed
quantum algorithm inspired by iterative
phase estimation to prepare low-variance
states. Our method uses a single auxiliary
qubit per quantum device, which controls
its dynamics, and a postselection strategy
for a joint quantum measurement on such
auxiliary qubits. In the multi-device case,
the result of this measurement heralds
the successful runs of the protocol.
This allows us to demonstrate that our
distributed algorithm reduces the energy
variance faster compared to single-device
implementations, thereby highlighting
the potential of distributed algorithms
for near-term and early fault-tolerant
devices.

1 Introduction

Preparing eigenstates of Hamiltonians plays an
essential role in quantum simulation to inves-
tigate the properties of quantum many-body
systems. Quantum computers are naturally well-
suited for this task, with quantum phase esti-
mation being the canonical method for eigen-
state preparation [1, 2, 3, 4]. Obtaining precise
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eigenstates then allows one to accurately compute
their energies and measure other observables that
provide insights into the behavior of complex
many-body systems.

Quantum phase estimation (QPE) [1, 6] and
filtering [7, 8] are closely related methods to pre-
pare low-variance states on quantum computers.
For a Hamiltonian of interest H, the algorithm
relies on conditional dynamics e−iHt that realizes
phase kick-back to the controlling auxiliary qubit.
Another interesting approach is to prepare the
filtered state virtually by measuring Loschmidt
echoes [9], or adiabatically by a parent Hamil-
tonian construction [10]. All approaches have
in common that the system is initialized in a
state that can be efficiently prepared. Typically,
this initial state is a product state that will
generally exhibit a Gaussian-like distribution in
the eigenbasis of a local Hamiltonian [11]. A filter
algorithm acts on the initial state by sharpening
the energy distribution towards a delta function,
as shown in Fig. 1(a). In the limit of an arbitrar-
ily precise filter centered at an eigenenergy of the
Hamiltonian, the operation prepares the micro-
canonical ensemble by isolating the eigenstate(s)
at that energy.

A particularly simple quantum routine for fil-
tering is inspired by iterative quantum phase esti-
mation (IQPE) [6, 12, 13, 14, 15, 16, 17, 18]. This
algorithm applies a Hadamard-test circuit [19] for
each iteration by implementing a time evolution
operator controlled on a single auxiliary qubit.
The auxiliary qubit can then be reused for the
next iteration. Conversely, textbook QPE relies
on a sequence of conditional dynamics (controlled
unitary evolutions) with evolution times chosen
such that one may obtain one additional digit
of the phase with each auxiliary qubit. This
precision requirement can be relaxed by choosing
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Figure 1: (a) Illustration of a filtering operation. Consider a local Hamiltonian H, which has an approximate
Gaussian-shaped density of states centered at Tr(H) [5]. The devices Alice (A) and Bob (B) start by preparing an
initial state, with respective populations |cA|2 and |cB |2. After multiple iterations of the protocol, the state becomes
increasingly concentrated. The distributed version of this algorithm uses an entanglement link between A and B
to enhance the filtering process, resulting in an output state with a lower energy variance on average for the same
number of iterations. Note that an energy bias may be introduced during the postselection routine. (b) Circuit
for the distributed filtering algorithm. Both A and B are initialized in the same state |Ψ(0)⟩ = |ψ(0)⟩⊗2. In each
iteration k, a random time evolution for a sufficiently large tk is applied to both controlled unitaries, followed by a
control-SWAP gate, realizing the entanglement link. We analyze two cases (weak and strong) for postselecting the
measurement results of the auxiliary qubits.

the evolution times randomly from a sufficiently
large time interval to shuffle the eigenphases,
as we explain further below. For this protocol,
it is known that the energy variance of the
output state decreases with each iteration on
average, generically converging to an eigenstate.
However, reaching low-variance states may still
require many iterations, demanding qubits with
long coherence times.

A promising strategy to reduce the number of
rounds — and consequently, the circuit depth
— in this IQPE-based protocol is to leverage
distributed quantum computing. Distributed
quantum algorithms can address large-scale prob-
lems with shallower circuits by utilizing intercon-
nected quantum devices that can share entangle-
ment [20, 21, 22, 23]. In fact, such a distributed
approach has been applied to eigenstate prepara-
tion, as demonstrated in [16]. In that work, an
eigenstate broadcasting scenario was investigated
with two quantum devices: a first device Alice,
with an almost perfect eigenstate, and a second
device Bob, with a rougher approximation to the
target ground state. The distributed circuit al-
lows Bob to speed up his preparation via implicit
knowledge of the target state through a shared
entanglement link with Alice.

In this work, we analyze a similar setup,
focusing on its application to quantum state
filtering: both Alice and Bob start with the same
product state and iteratively converge to states

with a lower energy variance. We first propose a
two-device distributed filtering algorithm where
joint quantum measurements between the devices
enable Alice and Bob to control the moments of
the energy distribution of the initial state. We
focus on the first and second moments, i.e. the
energy and variance of the state. Concretely,
we show that the distributed filtering algorithm
reaches a low-variance state more rapidly on
average than the single-device case. Postselection
on the measurement outcome is an essential
ingredient in the protocol and careful engineering
of the postselection allows one to further optimize
the state preparation process. The postselection
introduces either a positive or negative energy
bias. We provide a bound on the maximum bias
introduced in the protocol. Finally, we generalize
our algorithm to a larger number of connected
quantum devices that jointly perform the fil-
tering operation. Numerical evidence shows an
enhanced eigenstate preparation as the number
of devices is increased.

This paper is structured as follows: in Sec-
tion 2, we introduce the filtering algorithm and
provide a detailed explanation of the distributed
algorithm, including its pseudocode. We ana-
lyze the performance of the two-device algorithm
through numerical experiments on several prod-
uct state instances, focusing on the behavior of
the average variance and energy over iterations.
The extension of the distributed architecture to
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a setup with more than two devices is found
in Section 3, including numerical experiments
benchmarking the performance of two and three
devices against a single device. Finally, in Sec-
tion 4, we summarize and discuss our findings.

2 Distributed filtering with auxiliary
qubits
The single-device setup was previously intro-
duced under different names in [6, 13, 15, 14, 16],
where Hadamard tests [19] are applied iteratively
using the unitary evolution operator U = e−iHtk

for each iteration k. In each iteration, this
unitary is controlled by a single local auxiliary
qubit, which is initialized in |+⟩ and measured
in the |±⟩ basis. The details of the single-device
algorithm are restated in Appendix A.

To extend this setup to two devices, we use
the configuration shown in Fig. 1(b). Here, two
identical Hadamard test circuits are executed in
parallel on both devices Alice and Bob. The
two devices are connected through their respec-
tive control qubits to a single additional helper
qubit “aux”. This allows quantum communica-
tion between the devices using a circuit that is
effectively a swap test circuit on the two control
qubits [24, 25], where the control-SWAP gate acts
as the entanglement link, acting non-locally only
on the spatially separated auxiliary qubits. For
simplicity, we assume that Alice possesses the top
auxiliary qubit (“aux” in Fig. 1). Then, for each
iteration, only one Bell pair generated between
Alice and Bob is required to teleport Bob’s single
local auxiliary qubit and the control-SWAP gate
can be applied locally. The three qubits are
finally measured in the |±⟩-basis. We detail the
realization of the distributed circuit with shared
Bell pairs between the two devices in Appendix
D.

In the following sections, we present a detailed
description of the distributed filtering algorithm
and demonstrate its ability to control the mo-
ments of quantum states. We focus our analysis
on the first and second moment — energy E and
variance σ2 — defined as

E = ⟨ψ|H |ψ⟩ , (1)
σ2 = ⟨ψ| (H − E)2 |ψ⟩ = ⟨ψ|H2 |ψ⟩ − E2, (2)

for a pure state |ψ⟩. Note that for eigenstates of
H we have σ2 = 0.

2.1 Algorithm outline

Recall that the objective of the filtering algorithm
is to prepare a state with lower variance in the
eigenbasis of a given Hamiltonian H than the
initial (product) state. In the distributed setup,
both Alice and Bob start with identical product
states: |ψA⟩ ⊗ |ψB⟩ =

∣∣∣ψ(0)
〉⊗2

. They each
input their state locally into the circuit shown in
Fig. 1(b) and run the circuit iteratively. At each
iteration, two identical controlled unitaries e−iHtk

are applied locally. The time tk for each iteration
is randomly chosen from (0, T ], such that φ(k)

j =
−tkλj (mod 2π) ∼ Uniform(0, 2π) for every j,
to effectively separate the eigenstates. Here λj is
the jth eigenvalue of the Hamiltonian H. This
randomization is needed because, without prior
knowledge of the initial product state’s popula-
tions in the eigenbasis, each iteration requires a
sufficiently large time evolution tk to effectively
separate the eigenstates from each other by ran-
domizing the eigenphases φ(k)

j = −tkλj . Note
that both Alice and Bob use the same tk in each
iteration to ensure that the output state remains
symmetric across Alice and Bob. This condition
is necessary for both parties to converge to the
same eigenstate, heralded by postselection. This
synchronization can be efficiently achieved by
pre-sharing a list of random tk values generated
from a common random seed. Further details on
this randomization of the phases are provided in
Appendix A.2.

Additionally, the distributed filtering algo-
rithm depends on postselection of the measured
auxiliary qubits, which can be performed using
either a weak postselection criterion (where we
continue to the next iteration only when top
auxiliary qubit outcome is |0⟩), or a strong cri-
terion (where we continue to the next iteration
only when the outcome of the three auxiliary
qubits is |000⟩ or |011⟩). These two types
of postselection exhibit different properties and
performance, which we explore later. If any
iteration yields measurement outcomes that fall
outside the postselection criteria, the protocol is
restarted, as such outcomes on average broaden
the state distribution, preventing the operation
from effectively working as a filter. The pseu-
docode for the distributed filtering algorithm is
shown in Algorithm 1.

For the strong postselection,
∣∣∣Ψ(K)

AB

〉
will have
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Figure 2: (a) Average variance of the pure state ensemble per iteration k up to 25. Three cases (n = 4, 5, 6,∣∣ψ(0)〉 = |+⟩⊗n) are shown. For cases requiring postselection, only states meeting the postselection criteria are
retained at each iteration k. The cumulative success rate after postselection at each iteration are shown in (b). Note
that the single-device algorithm does not require postselection, thus resulting in a 100% success rate. We use 108

trials from the beginning for strong postselection cases and 106 for the rest to acquire accurate enough expectation
values. More numerical results starting with a fixed number of repetitions of the algorithm with complete error bars
are shown in the Appendix E.

a tensor product structure across Alice and Bob.
If we start with two copies of the same state,
both Alice and Bob will hold the same final state.
On the other hand, for the weak postselection,
the state will be entangled in general, but for
large values of K, it will approximate a prod-
uct of identical states. This is because both
postselection criteria select the top qubit to be
measured in the |0⟩ state, the state registers of
both Alice and Bob are projected to their joint
symmetric subspace in every iteration. As a
result, tracing out either Alice or Bob’s systems
will result in the same states on both devices. If
the minimal distance between eigenvalues of the
Hamiltonian H is Ω(1/tk), then the final states
will be eigenstates ofH. Our distributed protocol
therefore allows one to prepare multiple identical
copies of (approximate) eigenstates in a heralded
way, and we include the details in Appendix B.2.

2.2 Faster reduction of the variance

We now analyze the performance of the dis-
tributed filtering algorithm. The variance of the

pure state is defined in Eq. (1). Due to the
inherent randomness of the algorithm (random
tk and the measurement process), the output
state after a fixed number of iterations can differ.
Consequently, we compute the average variance
of the pure state ensemble at iteration k, denoted
E
[
(σ2)(k)

]
, over a sufficiently large number of

repeated runs. Analytically, we write

E
[
(σ2)(k)

]
=E

[〈
ψ(k)

∣∣∣H2
∣∣∣ψ(k)

〉]
− E

[(〈
ψ(k)

∣∣∣H ∣∣∣ψ(k)
〉)2

]
= Tr

(
ρ(k)H2

)
− E

[(〈
ψ(k)

∣∣∣H ∣∣∣ψ(k)
〉)2

]
, (3)

where
∣∣∣ψ(k)

〉
denotes the output state at iter-

ation k, and ρ(k) represents the density matrix
describing a mixture of states {

∣∣∣ψ(k)
〉
} with the

corresponding probabilities.
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Algorithm 1 Two-device distributed filtering
algorithm
Require: Two product states |ψ⟩ ⊗ |ψ⟩ =∣∣∣ψ(0)

〉⊗2
; target iteration K; postselection

type P; Hamiltonian H with a generic spec-
trum

Ensure: State
∣∣∣Ψ(K)

AB

〉
.

1: Initialize:
∣∣∣Ψ(0)

AB

〉
←
∣∣∣ψ(0)

〉⊗2
;

2: for k = 1 : K do
3: Generate random time tk such that φ(k)

j =
−tkλj mod 2π ∼ Uniform(0, 2π) for every
j;

4: Input
∣∣∣Ψ(k−1)

AB

〉
and tk to the circuit in

Fig. 1(b);
5: Measure and get the result |mk⟩ =∣∣∣m(k)

0 m
(k)
A m

(k)
B

〉
;

6: if P = weak and m
(k)
0 = 0 then

7: Output
∣∣∣Ψ(k)

AB

〉
and continue;

8: else if P = strong and (mk =
000 or mk = 011) then

9: Output
∣∣∣Ψ(k)

AB

〉
and continue;

10: else
11: break and start over from initialization;
12: end if
13: end for
14: return

∣∣∣Ψ(K)
AB

〉
.

We numerically compute the variance of the
pure state ensemble and consider the n-qubit
initial input state

∣∣∣ψ(0)
〉

=
∑

j c
(0)
j |ϕj⟩, where the

quantities |ϕj⟩ and c(0)
j denote the jth eigenstate

of the Hamiltonian H and its corresponding
amplitude, respectively. Throughout this paper,
we shall use the non-integrable, one-dimensional
Ising model with both a longitudinal and a
transverse field as a running example:

H =
n−1∑
j=1

σz
jσ

z
j+1 +

n∑
j=1

(σx
j + σz

j ). (4)

In Fig. 2 we present numerical results for n =
4, 5, 6 and

∣∣∣ψ(0)
〉

= |+⟩⊗n. We compare the
performance of the distributed filter with the
single-device filter. For scenarios requiring posts-
election, states that do not meet the postselection
criterion are discarded. The results show that
the distributed filter with postselection achieves a
lower average energy variance, outperforming the

single-device filter. In contrast, the distributed
filter without postselection, where the algorithm
continues regardless of measurement outcomes,
performs worse than the single-device case. The
strong criterion for postselection yields the fastest
decrease in the average energy variance.

Nevertheless, the distributed filter incurs an
overhead due to postselection. Fig. 2(b) illus-
trates how this overhead scales with the num-
ber of iterations k for both weak and strong
postselection types. We calculate the cumula-
tive success rate after each postselection, i.e.,
the average probability of the auxiliary qubit(s)
result meeting the corresponding postselection
criterion at each k. Notably, in the case of
weak postselection, the cumulative success rate
tends to stabilize after a few iterations. This
implies that once the protocol succeeds in several
consecutive rounds, it is highly likely to continue
succeeding. Specifically, the average cumulative
success rate of the weak postselection is lower
bounded:

Pw =
∑

j

|c(0)
j |

4 +
(3

4

)k ∑
j ̸=j′

|c(0)
j |

2|c(0)
j′ |2

≥
∑

j

|c(0)
j |

4. (5)

Although this lower bound depends only on the
the eigenbasis amplitudes of

∣∣∣ψ(0)
〉

which in
principle can be any state, for n-qubit product
state this lower bound indeed has a scaling of
the form A exp(B/n) with A and B coefficients
independent of n, when the Hamiltonian H is
local. This lower bound decreases mildly with
increasing n, which supports the practicality of
the weak postselection protocol for larger system
sizes. For strong postselection, however, this
quantity decreases exponentially as:

Ps =
(3

4

)k ∑
j

|c(0)
j |

4 +
(1

2

)k ∑
j ̸=j′

|c(0)
j |

2|c(0)
j′ |2.

(6)
Both derivations are included in Appendix B.2.
Due to the overhead introduced by postselection,
additional resource costs will be incurred, such
as an increased number of time evolutions and
greater consumption of Bell pairs. These costs
can be evaluated from the cumulative success
rate, and for weak postselection they scale lin-
early with k when the cumulative success rate
plateaus, but the ones for strong postselection

Accepted in Quantum 2025-08-12, click title to verify. Published under CC-BY 4.0. 5



scale exponentially. Thus, there is a trade-
off between the two postselection types: strong
postselection reduces the energy variance more
quickly than weak postselection but suffers from
an exponential postselection overhead.

2.3 Spreading of eigenstates

In the previous section, we considered the average
energy variance of the pure state prepared in the
algorithms, which asymptotically goes to zero in
the limit of many iterations. The probability
with which we converge to a specific eigenstate,
though, is related to the initial populations
{|c(0)

j |2}. This is another variance and can be
interpreted as the variance of the mixed state
ρ(k) that describes the expected physical system
after k iterations. To avoid confusion between
the two types of variances, we denote it as the
eigenstate spread. Effectively, it is a measure over
what energy range the eigenstates prepared in
the algorithm are distributed. We can also see
the difference between the variance of the pure
states and the eigenstate spread, by looking at
the analytic description of the eigenstate spread

V (k) = Tr
(
ρ(k)H2

)
− E

[
E(k)2]

= Tr
(
ρ(k)H2

)
−
(
Tr
(
ρ(k)H

))2
, (7)

where the second term differs from Eq. (3).
We show the eigenvalue spread in Fig. 3 and

observe that the over several iterations of the
protocol the spread decreases. For both of
the postselection scenarios, the eigenvalue spread
converges to a fixed value:

V
(k)

k→∞ =
∑

j λ
2
j |c

(0)
j |4∑

j |c
(0)
j |4

−

∑j λj |c(0)
j |4∑

j |c
(0)
j |4

2

. (8)

This corresponds to the smallest populations hav-
ing been suppressed. We observe the eigenvalue
spread converge faster towards this value for the
strong postselection criterion.

We can find an analytical expression for the
asymptotic behavior of the eigenstate spread by
considering a smooth distribution for the ampli-
tudes of the Hamiltonian eigenvalues and also
for the initial populations of the state. Con-
cretely, we assume H is traceless, local and has a
Gaussian density of states centered at zero with
variance σ2 (cf. [5]). The input product state

Figure 3: Eigenvalue spread V (k) for n = 6 and
∣∣ψ(0)〉 =

|+⟩⊗n. Note that the eigenvalue spread goes to a fixed
lower bound under the postselection circumstances.∣∣∣ψ(0)

〉
is assumed to have eigenstate populations

with Gaussian shape centered at energy µ and
with variance ξ2 (cf. [11]). The eigenstate spread
is a function of the initial distributions, the
difference in the limit of many iterations k →∞
from the initial eigenvalue spread is described by
the expression

V (0) − V (k)
k→∞ = 1(

ξ2

σ2 + 1
) (

ξ2

σ2 + 2
)ξ2. (9)

In the limit of an extremely narrow energy dis-
tribution of the eigenstates (ξ → 0), the eigen-
value spread does not change anymore during
the protocol. We provide a rigorous derivation
of the expressions Eq. (8) and Eq. (9) in the
Appendix B.3 for the weak postselection crite-
rion. For the strong postselection criterion, we
numerically observe that the same expression
holds.

We remark that the ensemble ρ(k) is special
in the sense that we know, in the large number
of rounds limit, it is generated as a mixture of
eigenstates of the Hamiltonian, but in a smaller
energy window than that of the initial product
state. The smaller window is a structural prop-
erty that depends on the density of states and the
initial state distribution.

2.4 Energy bias analysis
We now turn to the energy behavior of the
resulting states, focusing on the ensemble average
of the pure state energy at iteration k, given by

E
[
E(k)

]
= E

[〈
ψ(k)

∣∣∣H ∣∣∣ψ(k)
〉]

= Tr
(
ρ(k)H

)
.

(10)
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Using the same setup as above, we have shown the
average energy obtained in numerical simulations
in Fig. 4. It follows from the Born rule [26],
that for both the single-device and two-device
algorithms without postselection, the average
energy remains constant, matching the energy of
the input state

∣∣∣ψ(0)
〉
:

E
[
E(k)

]
=
∑

j

λj

∣∣∣c(0)
j

∣∣∣2 , (11)

where λj is the energy of the jth eigenstate of
H. However, for the two distributed cases with
postselection, energy biases are introduced in this
process. Specifically, with the postselection, one
can show that in the limit of many iterations k

E
[
E(k)

]
k→∞

→
(∑

j

λj

∣∣∣c(0)
j

∣∣∣4 )/(∑
j

∣∣∣c(0)
j

∣∣∣4 ),
(12)

effectively bounding the energy bias introduced.
Hence, the eigenenergies of the Hamiltonian and
the initial state distribution fully determine the
expected converged energy. The effective effect
can either drive the system towards an effective
higher or lower average energy. Again, similar
to the energy spread, E

[
E(k)

]
with the strong

postselection criterion shows faster convergence.
We provide an additional analysis of the energy

bias for the continuous case in Appendix B.1,
where both the density of states of the local
H and the populations of

∣∣∣ψ(0)
〉

have Gaussian
shapes. Again, we assume H is traceless, local
and has a Gaussian density of states centered at
zero with variance σ2. As in the previous section,
the input product state

∣∣∣ψ(0)
〉

is assumed to
have eigenstate populations with Gaussian shape
centered at energy µ and with variance ξ2. Then,
we show that the largest bias we can introduce is

∣∣∣E(0) − E
[
E(k)

]
k→∞

∣∣∣ =
∣∣∣∣∣ µ

ξ2

2σ2 + 1
− µ

ξ2

σ2 + 1

∣∣∣∣∣
= |µ|

(
1

ξ2

2σ2 + 1
− 1

ξ2

σ2 + 1

)

≤ |µ| 1
2
√

2 + 3
(13)

The full derivation is included in Appendix B.1.2.

Figure 4: Average energy of the pure state ensemble
per iteration k for n = 6,

∣∣ψ(0)〉 = |+⟩⊗n and |−⟩⊗n.
Energy biases are introduced in cases with postselection.
Note that the energy bias can be either positive or
negative, depending on the sign of E[E(k)]k→∞. Ad-
ditional numerical simulations with complete error bars
are shown in the Appendix E.

3 Multi-device extension

We now show how to extend the distributed
filter method to an arbitrary number of devices.
A natural approach is to generalize the swap
operator S to a derangement operator D. One
way to achieve this is shown by the following
circuit:

1

D

2
2 3
3 4
...

...
s 1

=

1 2
2 3
3 4
...

...
s 1

.

(14)
However, this generalization does not act as an

effective filtering operation, as briefly mentioned
in [16]. Instead, we consider generalizing the
swap test circuit to a cyclic permutation test [27,
28, 29], depicted in Fig. 5(a). To apply the filter
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across s (s ≥ 2) devices, the top auxiliary qudit
must have s levels. The operator F performs
the discrete Fourier transform, defined as: |z⟩ →

1√
s

∑s−1
q=0 ω

zq |q⟩ where ω = e2πi/s. The multi-
level controlled-D operator

∑s−1
q=0 |q⟩ ⟨q| ⊗ Dq is

then applied as follows:

∑s−1
q=0 aq |q⟩

|Ψ⟩ D =
s−1∑
q=0

aq |q⟩ ⊗Dq |Ψ⟩ ,

(15)
where aq ∈ C and

∑s−1
q=0 |aq|2 = 1. An inverse

discrete Fourier transform F † is then applied
before measuring the top qudit. Similar to the
two-device filter, we extend the postselection
criteria correspondingly, and one can see that
strong selection can still make the states of each
party remain product. In addition, weak postse-
lection makes the state in general entangled but
it evolves asymptotically to a product of identical
eigenstates when K is large. The pseudocode for
the s-device filter is shown in Algorithm 2.

Algorithm 2 s-device distributed filtering algo-
rithm
Require: s product states |ψ1⟩ ⊗ · · · ⊗ |ψs⟩ =∣∣∣ψ(0)

〉⊗s
; target iteration K; postselection

type P.
Ensure: State

∣∣∣Ψ(K)
12···s

〉
.

1: Initialize:
∣∣∣Ψ(0)

〉
←
∣∣∣ψ(0)

〉⊗s
;

2: for k = 1 to K do
3: Generate random time tk such that φ(k)

j =
−tkλj mod 2π ∼ Uniform(0, 2π) for every
j;

4: Input
∣∣∣Ψ(k−1)

〉
and tk to the circuit in

Fig. 5(a);
5: Measure and get the result |mk⟩ =∣∣∣m(k)

0 m
(k)
1 · · ·m

(k)
s

〉
;

6: if P = weak and m
(k)
0 = 0 then

7: Output
∣∣∣Ψ(k)

〉
and continue;

8: else if P = strong and (mk =
00 · · · 0 or mk = 01 · · · 1) then

9: Output
∣∣∣Ψ(k)

〉
and continue;

10: else
11: break and start over from initialization;
12: end if
13: end for
14: return

∣∣∣Ψ(K)
12···s

〉
.

We numerically benchmark the performance
of a distributed filter algorithm on a single
device, two or three devices in Fig. 5(b,c,d).
We choose n = 4 and

∣∣∣ψ(0)
〉

= |+⟩⊗n per
device. Notably, the three-device filter (with
either weak or strong postselection) consistently
yields states with lower average energy variance.
It also introduces greater energy biases. Re-
garding the cumulative success rate, similar to
the two-device case, strong postselection incurs
exponential overhead of the success rate with
respect to the number of iterations k, while the
overhead for weak postselection stabilizes after
several iterations, which is lower-bounded by∑

j |c
(0)
j |2s for general s. Additionally, the three-

device algorithm always incurs more overhead,
as the number of possible measurement results
that are discarded under postselection increases.
Note that when the number of devices s is
prime, each Dq for q ̸= 0 constitutes a full-cycle
permutation on the registers [29]. However, this
does not hold for non-prime s, which might affect
the performance of the multi-device distributed
filtering algorithm under weak postselection. We
provide further analysis on this generalization in
Appendix C.

Numerical simulations for more than three
devices are not feasible due to the exponential
growth of Hilbert space. However, already from
the data available for up to three devices and
four qubits we can attempt an extrapolation of
the protocol performance. We perform an expo-
nential fit ∝ exp(−ηk) of the average variance
shown in Fig. 5(c) in the interval k ∈ [4, 12],
i.e., after the initial roll-off and before the data
for the strong postselection case has some visible
fluctuations due to a smaller number of samples
remaining after postselection. For the single
device case, we find η = 0.178. Using the weak
postselection criterion, we have η = 0.277 for two
devices and η = 0.386 for three devices. For the
strong postselection criterion, we find η = 0.376
for two devices and η = 0.490 for three devices.

With only limited data available due to the pro-
hibitive simulation cost with the system size and
the number of devices, an extrapolation to more
than two devices is only indicative. However, for
the strong postselection case there is a related
analytical result in the limit of many devices [16]:
the relative suppression between a dominant and
a subdominant amplitude converges asymptoti-
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No Postselection

No Postselection Weak Postselection

Weak Postselection

Strong Postselection

Strong Postselection

Postselection
Weak:  
Strong: 

Figure 5: (a) Proposed distributed filtering algorithm across s ≥ 2 devices. Similar to the two-device algorithm, the
input is a product state

∣∣Ψ(0)〉 =
∣∣ψ(0)〉⊗s with sufficiently large random values tk for each iteration k. Additionally,

a top auxiliary qudit with s levels is introduced, and a cyclic permutation test [27, 28, 29] is applied across the top
auxiliary qudit and the Hadamard test auxiliary qubits of each device. Postselection, as defined above, is still required.
Numerics for n = 4 and

∣∣ψ(0)〉 = |−⟩⊗n for single-, two-, and three-device cases are shown in (b), (c), and (d): (b)
cumulative success rate after postselection; (c) average variance; and (d) average energy of the pure state ensemble
per iteration k under no postselection, weak postselection, and strong postselection, respectively. We use 107 trials
from the beginning for strong postselection cases and 105 for the rest to acquire accurage enough expectation values.
Plots with complete error bars are presented in Appendix E.
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cally to a fixed value. However, the data in
Fig. 5(c) does not consider the ratio between am-
plitudes, but takes all amplitudes of the state into
consideration. While an immediate quantitative
comparison with the analytical result is therefore
not possible, we conjecture that the scaling of the
average variance of the strong postselection result
could also converge, implying that additional
devices result in diminishing returns.

4 Discussion and Outlook

In this work, we have presented a distributed
filtering algorithm for eigenstate preparation that
employs multiple quantum devices with postse-
lection. By coordinating operations across two
devices, this approach allows one to prepare low-
variance states with a lower circuit depth than in
a single-device setup. Our results demonstrate
that postselection can play a critical role in
accelerating convergence towards the eigenstates.
We emphasize that only the overhead for the
strong postselection grows exponentially in the
number of rounds. For weak postselection, the
overhead due to postselection converges to a fixed
value that is independent of the number of rounds
of the protocol.

The protocol we present is a distributed algo-
rithm inspired by methods from iterative quan-
tum phase estimation (IQPE). Our technique
inherits the minimal requirement of a single
auxiliary qubit for the conditional dynamics from
IQPE. Textbook QPE, however, proceeds by
including an inverse quantum Fourier transforma-
tion on the auxiliary register. One can devise a
similar distributed algorithm for textbook QPE,
although this would require additional telepor-
tation operations per circuit between the two
devices due to the additional auxiliary qubits
than the ones considered in this work.

The two-device circuit was previously pre-
sented in [16] with an eigenstate broadcasting
application, so we briefly highlight the novel
contributions in this work. First, we no longer
assume the initial state to be in a superposition
of a dominant eigenstate and other subdom-
inant state. Rather, we consider an energy
distribution described by its mean and variance,
corresponding to the typical scenario of an initial
product states [11]. Second, we introduced novel
technical analysis tools based on the moments of

the distribution. Next, we have included a new
numerical analysis on the different use (which
we named weak vs. strong) of postselection in
the distributed quantum algorithm. Finally, we
present a new approach to realizing a symmetric
projection of the auxiliary qubits that uses a
qudit-controlled derangement operator.

The extension of the distributed algorithms
to arbitrarily many connected quantum devices
is a main result of our paper. We also show
numerically that a third device allows for an
even larger reduction of the energy variance for a
fixed number of iterations of the protocol than
with two devices. This naturally leads to an
increased reset overhead, which is also bounded
for the weak postselection criterion, and increases
exponentially with each iteration for the strong
postselection criterion. However, when success-
ful, strong postselection converges exponentially
faster than the corresponding weak postselection
scheme.

Our findings also suggest that a hybrid pro-
tocol that starts with strong postselection and
transitions to weak postselection would optimize
resources better, as the weak postselection vari-
ance plateaus when the devices hold a sufficiently
good approximation to identical eigenstates.

Overall, distributed quantum algorithms of-
fer promising strategies to accelerate eigenstate
preparation by reducing the circuit depth re-
quired. Practical realizations of these algorithms
in noisy quantum devices may shed light on
optimal engineering of projections onto sym-
metric subspaces and further improvements of
distributed techniques more generally.
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A Single-device filter

We start from stating the single-device filter algorithm [6, 13, 15, 14, 16] and the pseudocode is shown
below:

Algorithm 3 Single-device distributed ancilla-mediated filtering algorithms.

Require: A product state
∣∣∣ψ(0)

〉
; target iteration K.

Ensure: State
∣∣∣ψ(K)

〉
.

1: Initialize:
∣∣∣Ψ(0)

〉
←
∣∣∣ψ(0)

〉
;

2: for k = 1 to K do
3: Generate random time tk such that φ(k)

j = −tkλj mod 2π ∼ Uniform(0, 2π) for every j;
4: Input

∣∣∣Ψ(k−1)
〉

and tk to the circuit in Fig. 6;

5: Measure and output
∣∣∣Ψ(k)

〉
;

6: continue;
7: end for
8:
∣∣∣ψ(K)

〉
←
∣∣∣Ψ(K)

〉
;

9: return
∣∣∣ψ(K)

〉
.

Similarly, we would like to find out the behavior of the output states’ average E and σ2.

Figure 6: Circuit for single-device filtering algorithm.

A.1 Energy

After K ∈ Z+ iterations, the output state
∣∣∣ψ(K)

〉
has the energy:

E(K) =
〈
ψ(K)

∣∣∣H ∣∣∣ψ(K)
〉
. (16)

As mentioned in the main text, for each repetition,
∣∣∣ψ(K)

〉
can vary. Suppose we have enough

repetitions r which corresponds to each state
∣∣∣ψ(K)

r

〉
with probability pr. Therefore, assume the

sequence of time evolution t = {t1, t2, · · · , tK} on average, we have:

E
[
E(K)

∣∣∣t] =
∑

r

pr

〈
ψ(K)

r

∣∣∣H ∣∣∣ψ(K)
r

〉
= Tr

(
H
∑

r

pr

∣∣∣ψ(K)
r

〉〈
ψ(K)

r

∣∣∣) = Tr
(
Hρ

(K)
t

)
, (17)

where we denote ρ(K)
t as the density matrix at iteration K under the fixed time evolution sequence t.

Note that for the Hadamard test operation at each iteration k, we have a channel:

ρ
(k)
t = E(k)(ρ(k−1)) =

1∑
m=0

E(k)
m ρ(k−1)E(k)

m

†
, (18)
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with Kraus operators:

E(k)
0 = 1

2(I + U(tk)) → |0⟩ on the auxiliary qubit;

E(k)
1 = 1

2(I − U(tk)) → |1⟩ on the auxiliary qubit.
(19)

Therefore,

ρ
(K)
t = E(K) ◦ E(K−1) ◦ · · · ◦ E(1)

(∣∣∣ψ(0)
〉〈
ψ(0)

∣∣∣) . (20)

Note that:
ρ

(k)
t = E(k)

(
ρ(k−1)

)
= 1

2
(
ρ(k−1) + U(tk)ρ(k−1)U(tk)†

)
, (21)

including the input state, controlled unitaries and Hamiltonian into the eigenbasis, i.e.,∣∣∣ψ(0)
〉

=
∑

j

c
(0)
j |ϕj⟩ ; (22)

U(tk) = e−itkH =
∑

j

e−itkλj |ϕj⟩ ⟨ϕj | =
∑

j

eiφ
(k)
j |ϕj⟩ ⟨ϕj | ; (23)

H =
∑

j

λj |ϕj⟩ ⟨ϕj | , (24)

we have (we omit superscript (0) of c(0)
j for simplicity):

ρ
(K)
t = E(K) ◦ E(K−1) ◦ · · · ◦ E(1)

(∣∣∣ψ(0)
〉〈
ψ(0)

∣∣∣)
= 1

2K

∑
α∈P({1,2,··· ,K})

(∏
a∈α

U(ta)
) ∣∣∣ψ(0)

〉〈
ψ(0)

∣∣∣
∏

a′∈α

U(ta′)

†

= 1
2K

∑
α∈P({1,2,··· ,K})

∑
l,l′

exp

i∑
a∈α

φ
(a)
l − i

∑
a′∈α

φ
(a′)
l′

 clc
∗
l′ |ϕl⟩ ⟨ϕl′ | ,

(25)

where P({1, 2, · · · ,K}) denotes all the subsets of {1, 2, · · · ,K}. Therefore:

E
[
E(K)

∣∣∣t] = Tr
(
Hρ

(K)
t

)
= 1

2K

∑
α∈P({1,2,··· ,K})

Tr

∑
j

λj |ϕj⟩ ⟨ϕj |
∑
l,l′

exp

i∑
a∈α

φ
(a)
l − i

∑
a′∈α

φ
(a′)
l′

 clc
∗
l′ |ϕl⟩ ⟨ϕl′ |


= Tr

∑
l,l′

λlclc
∗
l′ |ϕl⟩ ⟨ϕl′ |

 =
∑

l

λl |cl|2 .

(26)

As E
[
E(K)

∣∣∣t] does not depend on t, therefore:

E
[
E(k)

]
=
∑

j

λj |cj |2 . (27)

which equals to the energy of the initial state
∣∣∣ψ(0)

〉
.
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A.2 Energy Variance

The variance of the output state
∣∣∣ψ(K)

〉
is:

(
σ2
)(K)

=
〈
ψ(K)

∣∣∣H2
∣∣∣ψ(K)

〉
−
(〈
ψ(K)

∣∣∣H ∣∣∣ψ(K)
〉)2

, (28)

and on average:

E
[(
σ2
)(K)

]
= E

[〈
ψ(K)

∣∣∣H2
∣∣∣ψ(K)

〉]
− E

[(〈
ψ(K)

∣∣∣H ∣∣∣ψ(K)
〉)2

]
. (29)

Similar to the previous derivations, we have the first term as:

E
[〈
ψ(K)

∣∣∣H2
∣∣∣ψ(K)

〉]
= Tr

(
H2ρ(K)

)
=
∑

j

λ2
j |cj |2 . (30)

The second term is complicated. First, we again fix the time sequence t and find:

E
[(〈

ψ(K)
∣∣∣H ∣∣∣ψ(K)

〉)2 ∣∣∣t] =
∑

r

pr

(〈
ψ(K)

r

∣∣∣H ∣∣∣ψ(K)
r

〉)2
. (31)

Note that each
∣∣∣ψ(K)

r

〉
can be denoted as:

∣∣∣ψ(K)
r

〉
= 1√

Pm

1
2K

K∏
k=1

(I + (−1)mkU(tk))
∣∣∣ψ(0)

〉
= 1√

Pm

1
2K

∑
j

cj

K∏
k=1

(
1 + (−1)mkeiφ

(k)
j

)
|ϕj⟩ , (32)

where Pm denotes the probability of getting the measurement result m = {m1,m2, · · · ,mK} on the
auxiliary qubit of each iteration k at repetition r. Then we have:

〈
ψ(K)

r

∣∣∣H ∣∣∣ψ(K)
r

〉
= 1
Pm

1
2K

∑
j

|cj |2
K∏

k=1

(
1 + (−1)mk cosφ(k)

j

)
λj , (33)

and:

Pm = 1
2K

∑
j

|cj |2
K∏

k=1

(
1 + (−1)mk cosφ(k)

j

)
. (34)

Therefore:

E
[(〈

ψ(K)
∣∣∣H ∣∣∣ψ(K)

〉)2 ∣∣∣t] =
∑

r

pr

(〈
ψ(K)

r

∣∣∣H ∣∣∣ψ(K)
r

〉)2

= 1
2K

∑
m

(∑
j |cj |2 λj

∏K
k=1

(
1 + (−1)mk cosφ(k)

j

))2

∑
j |cj |2

∏K
k=1

(
1 + (−1)mk cosφ(k)

j

)
= 1

2K

∑
m

(∑
j |cj |2 λj

∏K
k=1 (1 + (−1)mk cosλjtk)

)2

∑
j |cj |2

∏K
k=1 (1 + (−1)mk cosλjtk)

.

(35)

Now, suppose t are uniformly distributed within a time interval T . Then, we have:

E
[(〈

ψ(K)
∣∣∣H ∣∣∣ψ(K)

〉)2
]

= 1
TK

1
2K

∑
m

∫ T

0
· · ·
∫ T

0

(∑
j |cj |2 λj

∏K
k=1 (1 + (−1)mk cosλjtk)

)2

∑
j |cj |2

∏K
k=1 (1 + (−1)mk cosλjtk)

dt1 · · · dtK .

(36)
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Next, we show why we need large T to maximize the quantity E
[(〈

ψ(K)
∣∣∣H ∣∣∣ψ(K)

〉)2
]
, thus minimize

E
[(
σ2)(K)]. Since we lack prior knowledge of the populations of

∣∣∣ψ(0)
〉

in the eigenbasis, one of

the optimal approaches is to completely randomize the phases φ
(k)
j . Specifically, from Eq. (34)

and (32), we can observe that: suppose one of the populations
∣∣∣c(k−1)

j

∣∣∣2 is already sufficiently larger
than the other populations at (k − 1)-th iteration. And we assume for the k-th iteration, the
extra factor

(
1 + (−1)mk cosφ(k)

j

)
> 1. This, in general, magnifies the probability Pm of achieving∣∣∣c(k)

j

∣∣∣2 =
∣∣∣c(k−1)

j

∣∣∣2 (1 + (−1)mk cosφ(k)
j

)
>
∣∣∣c(k−1)

j

∣∣∣2, amplifying this population even more. In order to

achieve this, we need to let φ(k)
j be independent with each other, which requires large time interval T .

Otherwise, the correlations among different φ(k)
j may magnify several populations instead of only one,

turning into superpositions of eigenstates.

Proposition 1. Under the assumptions that λj′
λj′′

is (almost) irrational for any j′ ̸= j′′ ∈ {1, 2, · · · , 2n},

for the time interval T in large limit and tk uniformly sampled within the interval, φ
(k)
j =

−tkλj (mod 2π) can be approximated as i.i.d. in Uniform(0, 2π) for all j and k.

Proof. Firstly, we consider the Weyl’s criterion of equidistribution [30], showing that φ(k)
j for specific

j and random tk distributed in large interval T can be considered as Uniform(0, 2π). Weyl’s criterion

states that φ
(k)
j

2π (mod 1) is uniformly distributed if and only if for all non-zero integers l:

lim
R→∞

1
R

R∑
r=1

ei2πl
φ

(k)
j
2π = lim

R→∞

1
R

R∑
r=1

e−iltk,rλj = 1
T

∫ Tmax

Tmin

e−iltkλjdtk = 0. (37)

Here we suppose tk ∼ Uniform(Tmin, Tmax), Tmax > Tmin > 0 and Tmax − Tmin = T . By integrating
the above integral, we have:

∣∣∣∣∣ 1T
∫ Tmax

Tmin

e−iltkλjdtk

∣∣∣∣∣
2

= 1
l2

sinc2
(
Tλj

2

)
≤ sinc2

(
Tλj

2

)
→ 0, (38)

for large interval T .
Secondly, we show that each φ

(k)
j is independent with each other for all j and k, under the

assumptions that λj′
λj′′

is irrational for any j′ ̸= j′′ ∈ {1, 2, · · · , 2n}. If λj′
λj′′

is rational, i.e., λj′
λj′′

= p
q

where p, q ∈ Z, then there exists a period t within Tmin ∼ Tmax such that 2πp
λj′

= 2πq
λj′′

= t. Because

of this, the points with coordinates
(
φ

(k)
j′ , φ

(k)
j′′

)
cannot cover the whole area of (0, 2π)2. However, if

λj′
λj′′

is irrational, there will be no such t that exists. Thus,
(
φ

(k)
j′ , φ

(k)
j′′

)
can cover all (0, 2π)2 if tk is

sufficiently large. The independence can also be found for rational λj′
λj′′

but with extremely large period

t. In this case,
(
φ

(k)
j′ , φ

(k)
j′′

)
still nearly cover (0, 2π)2, before any periodic behavior emerges. This is

where we name almost-irrational λj′
λj′′

.
A simple counter-example for the independence is that we choose the Hamiltonian asH =

∑
j ZjZj+1

where it has symmetric eigenvalues like λj′ = −λj′′ . In this case, φ(k)
j′ and φ(k)

j′′ are strongly correlated.
The points

(
φ

(k)
j′ , φ

(k)
j′′

)
form a diagonal line on (0, 2π)2. Consequently, this algorithm fails as it cannot

result in
∣∣cj′
∣∣2 being magnified while

∣∣cj′′
∣∣2 is suppressed, or vice versa. Shifting the Hamiltonian to

break the symmetries can remedy this, i.e., H ′ = H + ϵI (cf. Appendix in [16]).
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Now, by proving Proposition 1, we have:

E
[(〈

ψ(K)
∣∣∣H ∣∣∣ψ(K)

〉)2
]

= 1
2K

∑
m

( 1
2π

)NK ∫ 2π

0
· · ·
∫ 2π

0

(∑
j |cj |2 λj

∏K
k=1

(
1 + (−1)mk cosφ(k)

j

))2

∑
j |cj |2

∏K
k=1

(
1 + (−1)mk cosφ(k)

j

) dφ
(1)
1 · · · dφ

(K)
N

=
( 1

2π

)NK ∫ 2π

0
· · ·
∫ 2π

0

(∑
j |cj |2 λj

∏K
k=1

(
1− cosφ(k)

j

))2

∑
j |cj |2

∏K
k=1

(
1− cosφ(k)

j

) dφ
(1)
1 · · · dφ

(K)
N ,

(39)

where N = 2n. The second equality is due to the symmetries of cosφ(k)
j within 0 ∼ 2π. Note that this

integral cannot be computed analytically. However, as shown in [15], E
[(〈

ψ(K)
∣∣∣H ∣∣∣ψ(K)

〉)2
]

increases

with K, leading to a decrease in the average variance E
[(
σ2)(K)]. Therefore, finally we have:

E
[
(σ2)(K)

]
=
∑

l

λ2
l

∣∣∣c(0)
l

∣∣∣2 − ( 1
2π

)NK ∫ 2π

0
· · ·
∫ 2π

0

(∑
j |cj |2 λj

∏K
k=1

(
1− cosφ(k)

j

))2

∑
j |cj |2

∏K
k=1

(
1− cosφ(k)

j

) dφ
(1)
1 · · · dφ

(K)
N .

(40)

B Two-device filter

The setup of two-device filter has been shown in Fig. 1(b) and Algorithm 1. Below we analyze the
behavior of two-device filter under no, weak and strong postselection, respectively.

B.1 Energy

B.1.1 No postselection

In the case where we do not postselect anything and let the two-device protocol run until K iterations,
at each iteration k, we have multiple possible operations (Kraus operators) that can be applied on the
state (we omit the iteration notation (k) for now):

E00
0 =1

4(I + U)⊗ (I + U) = 1
4
∑
j,j′

(1 + eiφj )(1 + eiφj′ )
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ ;
E01

0 =1
4(I ⊗ I − U ⊗ U) = 1

4
∑
j,j′

(1− ei(φj+φj′ ))
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ = E10
0 ;

E11
0 =1

4(I − U)⊗ (I − U) = 1
4
∑
j,j′

(1− eiφj )(1− eiφj′ )
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ ;
E01

1 =1
4(U ⊗ I − I ⊗ U) = 1

4
∑
j,j′

(eiφj − eiφj′ )
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ = −E10
1 ;

E00
1 =0 = E11

1 .

(41)

where the subscript is the measurement result of top auxiliary qubit and the superscript denotes the
other two. One can easily check that:

1∑
j,k,l=0

Ekl
j

†Ekl
j = I. (42)
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For energy, similarly, we consider the quantum channel. Initially, the state is:

ρ(0) =
∣∣∣ψ(0)ψ(0)

〉〈
ψ(0)ψ(0)

∣∣∣ . (43)

Once we apply the quantum channel with Kraus operators E , we have the state after one round of the
protocol as:

ρ(1) =
1∑

j,k,l=0
Ekl

j ρ
(0)Ekl

j
†

=1
4
(
ρ(0) + (I ⊗ U)ρ(0)(I ⊗ U †) + (U ⊗ I)ρ(0)(U † ⊗ I) + (U ⊗ U)ρ(0)(U † ⊗ U †)

)
.

(44)

Then we can define our new equivalent channel with Kraus operators:

K1 =I ⊗ I =
∑
j,j′

∣∣ϕjϕj′
〉 〈
ϕjϕj′

∣∣ ;
K2 =I ⊗ U =

∑
j,j′

eiφj
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ ;
K3 =U ⊗ I =

∑
j,j′

eiφj′
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ ;
K4 =U ⊗ U =

∑
j,j′

ei(φj+φj′ ) ∣∣ϕjϕj′
〉 〈
ϕjϕj′

∣∣ .
(45)

Therefore, we have:

ρ(1) = 1
4
∑

l,l′,h,h′

(
1 + ei(φl−φh)

) (
1 + ei(φl′ −φh′ )

)
clcl′c

∗
hc

∗
h′ |ϕlϕl′⟩ ⟨ϕhϕh′ | . (46)

Here we also denote c as the input population and omit the iteration notation (k). Therefore, after K
rounds, we have (adding the superscripts on φ to denote the different time evolution for each iteration
k):

ρ(K) = 1
4K

∑
l,l′,h,h′

K∏
k=1

(
1 + ei(φ(k)

l
−φ

(k)
h

)
)(

1 + ei(φ(k)
l′ −φ

(k)
h′ )
)
clcl′c

∗
hc

∗
h′ |ϕlϕl′⟩ ⟨ϕhϕh′ | . (47)

Now, we trace out one of the system (e.g., Bob) and preserve one (e.g., Alice), we have:

ρ
(K)
A = TrB

(
ρ(K)

)
= 1

2K

∑
l,h

∑
α∈P({1,··· ,K})

ei
∑

a∈α
(φ(a)

l
−φ

(a)
h

)clc
∗
h |φl⟩ ⟨φh| . (48)

Then, the average energy becomes:

E
[
E(K)

]
=E

[
E(K)

∣∣∣t] = Tr
(
Hρ

(K)
A

)
= 1

2K
Tr

∑
j

λj |ϕj⟩ ⟨ϕj |
∑
l,h

∑
α∈P(1,··· ,K)

ei
∑

a∈α
(φ(a)

l
−φ

(a)
h

)clc
∗
h |φl⟩ ⟨φh|


= 1

2K
Tr

∑
j,l,h

∑
α∈P(1,··· ,K)

λje
i
∑

a∈α
(φ(a)

l
−φ

(a)
h

)clc
∗
hδ(h, j)δ(l, j)


= 1

2K
Tr

∑
j

λj2K |cj |2
 =

∑
j

λj |cj |2 .

(49)

This concludes that in the case where there is no postselection, the average energy will stay the same
as the energy of the initial input state

∣∣∣ψ(0)
〉
.
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B.1.2 Weak postselection

Now we throw away the cases with |1⟩ on the top auxiliary qubit. In this case, after one iteration of
the protocol, we have the density matrix:

ρ(1) = 1
Tr(·)

(
ρ(0) + I ⊗ U + U ⊗ I√

2
ρ(0) I ⊗ U † + U † ⊗ I√

2
+ U ⊗ Uρ(0)U † ⊗ U †

)
, (50)

where Tr(·) is the trace normalization term to make sure Tr(ρ) = 1.
We define:

K1 =I ⊗ I;

K2 =I ⊗ U + U ⊗ I√
2

;

K3 =U ⊗ U.

(51)

Therefore, after K rounds, we have (note that K changes for each iteration due to different time
evolution tk):

ρ(K)

= 1
Tr(·)

∑
j,j′,h,h′

K∏
k=1

1 +

(
eiφ

(k)
j + e

iφ
(k)
j′

)(
e−iφ

(k)
h + e−iφ

(k)
h′

)
2 + eiφ

(k)
j e

iφ
(k)
j′ e−iφ

(k)
h e−iφ

(k)
h′


cjcj′c∗

hc
∗
h′
∣∣ϕjϕj′

〉
⟨ϕhϕh′ | .

(52)

Similarly, we trace out one of the parties and then we have:

ρ
(K)
A =

∑
j,j′,h

∏K
k=1

1 +

(
e

iφ
(k)
j +e

iφ
(k)
j′
)(

e
−iφ

(k)
h +e

−iφ
(k)
j′
)

2 + eiφ
(k)
j e−iφ

(k)
h

 cj

∣∣cj′
∣∣2 c∗

h |ϕj⟩ ⟨ϕh|

∑
j,j′
∏K

k=1
(
3 + cos tk(λj − λj′)

)
|cj |2

∣∣cj′
∣∣2 . (53)

Therefore:

E(K) = Tr
(
Hρ

(K)
A

)
=
∑

j,j′ λj
∏K

k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2∑

j,j′
∏K

k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2 . (54)

and:

E
[
E(K)

]
=
( 1

2π

)NK ∫ 2π

0
· · ·
∫ 2π

0

∑
j,j′ λj

∏K
k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2∑

j,j′
∏K

k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2 dφ

(1)
1 · · · dφ

(K)
N .

(55)
This integral is also hard to be solved analytically. However, let us make the following observation:
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Proposition 2. Eq. (55) can be approximated as:

( 1
2π

)NK ∫ 2π

0
· · ·
∫ 2π

0

∑
j,j′ λj

∏K
k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2∑

j,j′
∏K

k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2 dφ

(1)
1 · · · dφ

(K)
N

≈

(
1

2π

)NK ∫ 2π
0 · · ·

∫ 2π
0
∑

j,j′ λj
∏K

k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2 dφ(1)

1 · · · dφ
(K)
N(

1
2π

)NK ∫ 2π
0 · · ·

∫ 2π
0
∑

j,j′
∏K

k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2 dφ(1)

1 · · · dφ
(K)
N

=
E
[∑

j,j′ λj
∏K

k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2]

E
[∑

j,j′
∏K

k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2]

=

((
4
3

)K
− 1

)∑
j λj |cj |4 +

∑
j λj |cj |2((

4
3

)K
− 1

)∑
j |cj |4 + 1

.

(56)

Proof. Let’s denote:

g(φ) =
∑
j,j′

K∏
k=1

(
1 + 1

3 cos
(
φ

(k)
j − φ

(k)
j′

))
|cj |2

∣∣cj′
∣∣2 . (57)

In order to make the approximation accurate enough, we are going to show that the variance of g(φ):

σ2 [g(φ)] = E
[
g2(φ)

]
− (E [g(φ)])2 , (58)

is sufficiently small compared to E [g(φ)]. Since:

E [g(φ)] =
((4

3

)K

− 1
)∑

j

|cj |4 + 1, (59)

and:

E
[
g2(φ)

]
=

(4
3

)K ∑
j

∣∣∣c(0)
j

∣∣∣4
2

+ 2
(4

3

)K
∑

j

∣∣∣c(0)
j

∣∣∣4
×

∑
j ̸=j′

|cj |2
∣∣cj′
∣∣2+

∑
{j},{j′},{l},{l′} and

{j,l},{j′},{l′} and
{j,l′},{j′},{l} and
{j′,l},{j},{l′} and

{j′,l′},{j},{l}

|cj |2
∣∣cj′
∣∣2 |cl|2 |cl′ |2 +

(19
18

)K ∑
{j,l},{j′,l′} and

{j,l′},{j′,l}

|cj |2
∣∣cj′
∣∣2 |cl|2 |cl′ |2 , (60)

where the indices inside each braces are equal to each other, and are completely distinct with indices
in other braces. For example, {j, l}, {j′}, {l′} denotes j = l ̸= j′ ̸= l′ ̸= j = l. Then, we have:

σ2 [g(φ)] =E
[
g2(φ)

]
− E2 [g(φ)]

=2
((19

18

)K

− 1
)

∑
j

|cj |4
2

−
∑

j

|cj |8


≪
((4

3

)K

− 1
)∑

j

|cj |4 + 1 = E [g(φ)] .

(61)

Therefore, we approximate this integral of quotient into quotient of integrals, which does not hold in
general but holds for this specific case (or any other similar integral forms).
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Therefore, the average energy becomes:

E
[
E(K)

]
≈

((
4
3

)K
− 1

)∑
j λj |cj |4 +

∑
j λj |cj |2((

4
3

)K
− 1

)∑
j |cj |4 + 1

, (62)

which introduces energy biases to the system. Moreover, the biases are bounded, as K →∞, we have:

E
[
E(∞)

]
→

∑
j

λj

∣∣∣c(0)
j

∣∣∣4
/∑

j

∣∣∣c(0)
j

∣∣∣4
 . (63)

We can further analyze cases where the energy distribution of the Hamiltonian H is continuous,
extending the applicability to a broader range of scenarios. We assume H is traceless and local. This
kind of H has Gaussian density of states centered at zero [5]. Also, the input product state

∣∣∣ψ(0)
〉

has
populations with Gaussian shape in the eigenbasis [11]. Therefore, we have the density of states:

D(λ) = 1√
2πσ2

exp
(
− λ2

2σ2

)
, (64)

and the populations:

A(λ) = A exp
(
−(λ− µ)2

2ξ2

)
, (65)

where σ2 and ξ2 denote the variance of density of states and populations, respectively. µ is the mean
of the Gaussian shape (not the mean of the overall populations) and A is the normalization factor.
Firstly, we need to find out A, as:∫ ∞

−∞
D(λ)A(λ)dλ = A

∫ ∞

−∞

1√
2πσ2

exp
(
− λ2

2σ2

)
exp

(
−(λ− µ)2

2ξ2

)
dλ = 1. (66)

Therefore:

A =
exp

(
µ2

2(ξ2+σ2)

)√
ξ2 + σ2

ξ
. (67)

Then: ∑
j

∣∣∣c(0)
j

∣∣∣4 ≈ ∫ ∞

−∞
A2(λ)D(λ)dλ =

exp
(

µ2

ξ2+σ2 − µ2

ξ2+2σ2

)
(ξ2 + σ2)

ξ
√
ξ2 + 2σ2 , (68)

∑
j

λj

∣∣∣c(0)
j

∣∣∣4 ≈ ∫ ∞

−∞
λA2(λ)D(λ)dλ =

2 exp
(

µ2

ξ2+σ2 − µ2

ξ2+2σ2

)
µσ2(ξ2 + σ2)

ξ(ξ2 + 2σ2)
3
2

, (69)

E(0) =
∑

j

λj

∣∣∣c(0)
j

∣∣∣2 ≈ ∫ ∞

−∞
λA(λ)D(λ)dλ = σ2

ξ2 + σ2µ. (70)

Therefore:

E
[
E(K)

]
= µ

σ2

1 +
2
(

−1+( 4
3 )K

)
e

µ2σ2

ξ4+3ξ2σ2+2σ4 (ξ2+σ2)2

ξ(ξ2+2σ2)3/2


(ξ2 + σ2)

1 +

(
−1+( 4

3 )K
)

e
µ2σ2

ξ4+3ξ2σ2+2σ4 (ξ2+σ2)

ξ
√

ξ2+2σ2


. (71)
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The energy goes up for positive µ and goes down for negative µ. Then, for K →∞, we have:

E
[
E(∞)

]
= µ

ξ2

2σ2 + 1
. (72)

Then the largest bias we can introduce is approximately:

∣∣∣E(0) − E
[
E(∞)

]∣∣∣ =
∣∣∣∣∣ µ

ξ2

2σ2 + 1
− µ

ξ2

σ2 + 1

∣∣∣∣∣ = |µ|
(

1
ξ2

2σ2 + 1
− 1

ξ2

σ2 + 1

)
≤ |µ| 1

2
√

2 + 3
≈ 0.1716|µ|. (73)

And there is no energy bias if µ = 0.

B.1.3 Strong postselection

Now, if we have strong postselection, i.e., we only preserve the one with |000⟩ and |011⟩ on all three
auxiliary qubits. We have:

ρ(1) = 1
Tr(·)

(
(I ⊗ U + U ⊗ I)ρ(0)(I ⊗ U † + U † ⊗ I) + (I ⊗ I + U ⊗ U)ρ(0)(I ⊗ I + U † ⊗ U †)

)
. (74)

We define:

K1 = I ⊗ U + U ⊗ I;
K2 = I ⊗ I + U ⊗ U.

(75)

Therefore, after K rounds, we have (note that K changes for each round due to different time evolution
tk):

ρ(K) = 1
Tr(·)

∑
j,j′,h,h′

K∏
k=1

[(
eiφ

(k)
j + e

iφ
(k)
j′

)(
e−iφ

(k)
h + e−iφ

(k)
h′

)
+ (1 + e

i(φ(k)
j +φ

(k)
j′ ))(1 + e−i(φ(k)

h
+φ

(k)
h′ ))

]
cjcj′c∗

hc
∗
h′
∣∣ϕjϕj′

〉
⟨ϕhϕh′ |

(76)

Once we trace out one of the systems, we have:

ρ
(K)
A

=

∑
j,j′,h

∏K
k=1

[(
eiφ

(k)
j + e

iφ
(k)
j′

)(
e−iφ

(k)
h + e

−iφ
(k)
j′

)
+ (1 + e

i(φ
(k)
j

+φ
(k)
j′ ))(1 + e

−i(φ
(k)
h

+φ
(k)
j′ ))

]
cj |cj′ |2 c∗

h |ϕj⟩ ⟨ϕh|∑
j,j′
∏K

k=1

[(
eiφ

(k)
j + e

iφ
(k)
j′

)(
e−iφ

(k)
j + e

−iφ
(k)
j′

)
+ (1 + e

i(φ
(k)
j

+φ
(k)
j′ ))(1 + e

−i(φ
(k)
j

+φ
(k)
j′ ))

]
|cj |2 |cj′ |2

(77)

Therefore:

E(K) = Tr
(
Hρ

(K)
A

)
=
∑

j,j′ λj
∏K

k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2∑

j,j′
∏K

k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2 (78)

and:

E
[
E(K)

]
=
( 1

2π

)NK ∫ 2π

0
· · ·
∫ 2π

0

∑
j,j′ λj

∏K
k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2∑

j,j′
∏K

k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2 dφ

(1)
1 · · · dφ

(K)
N (79)

This is still not analytically solvable. However, our numerical studies show that the approximation
similar to Proposition 2 still holds for all K ∈ Z+:
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Conjecture 3. Eq. (79) can be approximated as:

( 1
2π

)NK ∫ 2π

0
· · ·
∫ 2π

0

∑
j,j′ λj

∏K
k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2∑

j,j′
∏K

k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2 dφ

(1)
1 · · · dφ

(K)
N

≈

(
1

2π

)NK ∫ 2π
0 · · ·

∫ 2π
0
∑

j,j′ λj
∏K

k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2 dφ(1)

1 · · · dφ
(K)
N(

1
2π

)NK ∫ 2π
0 · · ·

∫ 2π
0
∑

j,j′
∏K

k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2 dφ(1)

1 · · · dφ
(K)
N

=
E
[∑

j,j′ λj
∏K

k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2]

E
[∑

j,j′
∏K

k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2]

=

((
3
2

)K
− 1

)∑
j λj |cj |4 +

∑
j λj |cj |2((

3
2

)K
− 1

)∑
j |cj |4 + 1

.

(80)

This conjecture is numerically tested and the approximation matches with the data shown in Fig. 4.
However, the similar proof of Proposition 2 does not apply here. The reason is as follows. We let:

g(φ) =
( 1

2π

)NK ∫ 2π

0
· · ·
∫ 2π

0

∑
j,j′

K∏
k=1

(
1 + cosφ(k)

j cosφ(k)
j′

)
|cj |2

∣∣cj′
∣∣2 dφ(1)

1 · · · dφ
(K)
N . (81)

Since:

E [g(φ)] =
((3

2

)K

− 1
)∑

j

|cj |4 + 1, (82)

and:

E
[
g2(φ)

]
=
(19

8

)K ∑
j

|cj |8 +
(9

4

)K ∑
j ̸=j′

|cj |4 |cj |4 + 2
(3

2

)K ∑
j,l ̸=l′

|cj |4 |cl|2 |cl′ |2 +

∑
{j},{j′},{l},{l′} and

{j,l},{j′},{l′} and
{j,l′},{j′},{l} and
{j′,l},{j},{l′} and

{j′,l′},{j},{l}

|cj |2
∣∣cj′
∣∣2 |cl|2 |cl′ |2 +

(5
4

)K ∑
{j,l},{j′,l′} and

{j,l′},{j′,l}

|cj |2
∣∣cj′
∣∣2 |cl|2 |cl′ |2 . (83)

Therefore:

σ2 [g(φ)] =E
[
g2(φ)

]
− E2 [g(φ)]

=2
((5

4

)K

− 1
)∑

j

|cj |4
2

+
((19

8

)K

−
(9

4

)K

− 2
(5

4

)K

+ 2
)∑

j

|cj |8 .
(84)

Note that σ2 [g(φ)] ≪ E
[
g2(φ)

]
only holds for small K. For large K, σ2 [g(φ)] ≫ E

[
g2(φ)

]
. This

is why a similar analysis of Proposition 2 does not apply here. Moreover, direct samples of Eq. (79)
to compute the integral may have precision problem, as the number of random φ to sample is 2NK ,
scaled exponentially for both N and K. Again, if this approximation holds, we can proceed to a similar
analysis for continuous case, and get the same energy bias bound in the end.

B.2 Energy Variance

In two-device case, we trace out one of the systems in the output state
∣∣∣Ψ(K)

〉
at iteration K and we

have:
E
[(
σ2
)(K)

]
= E

[〈
Ψ(K)

∣∣∣ I ⊗H2
∣∣∣Ψ(K)

〉]
− E

[(〈
Ψ(K)

∣∣∣ I ⊗H ∣∣∣Ψ(K)
〉)2

]
. (85)
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Let’s analyze the first term first. We denote E1, En, Ew and Es as the expected values for cases of
single-device, two-device without postselection, with weak postselection, and with strong postselection,
respectively. Therefore, from the previous analysis, and also the Proposition 2 and 3, we have:

E1
[〈
ψ(K)

∣∣∣H2
∣∣∣ψ(K)

〉]
= En

[〈
Ψ(K)

∣∣∣H2
∣∣∣Ψ(K)

〉]
=
∑

j

λ2
j |cj |2 , (86)

Ew
[〈

Ψ(K)
∣∣∣ I ⊗H2

∣∣∣Ψ(K)
〉]

=

((
4
3

)K
− 1

)∑
j λ

2
j |cj |4 +

∑
j λ

2
j |cj |2((

4
3

)K
− 1

)∑
j |cj |4 + 1

, (87)

Es
[〈

Ψ(K)
∣∣∣ I ⊗H2

∣∣∣Ψ(K)
〉]

=

((
3
2

)K
− 1

)∑
j λ

2
j |cj |4 +

∑
j λ

2
j |cj |2((

3
2

)K
− 1

)∑
j |cj |4 + 1

. (88)

For the second term, we remind that:

E1

[(〈
ψ(K)

∣∣∣H ∣∣∣ψ(K)
〉)2

]
=
( 1

2π

)N ∫ 2π

0
· · ·
∫ 2π

0

(∑
j |cj |2 λj (1− cosφj)

)2

∑
j |cj |2 (1− cosφj)

dφ1 · · · dφN . (89)

For the two-device case, remind the Kraus operators we have in the no-postselection case:

E00
0 =1

4(I + U)⊗ (I + U) = 1
4
∑
j,j′

(1 + eiφj )(1 + eiφj′ )
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ ;
E01

0 =1
4(I ⊗ I − U ⊗ U) = 1

4
∑
j,j′

(1− ei(φj+φj′ ))
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ = E10
0 ;

E11
0 =1

4(I − U)⊗ (I − U) = 1
4
∑
j,j′

(1− eiφj )(1− eiφj′ )
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ ;
E01

1 =1
4(U ⊗ I − I ⊗ U) = 1

4
∑
j,j′

(eiφj − eiφj′ )
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ = −E10
1 ;

E00
1 =0 = E11

1 .

(90)

We can actually write them in a closed form:

Eab
s = 1

8
∑
j,j′

(1+(−1)aeiφj )(1+(−1)beiφj′ )+(−1)s(1+(−1)beiφj )(1+(−1)aeiφj′ )
∣∣ϕjϕj′

〉 〈
ϕjϕj′

∣∣ , (91)

where a, b, s can be either 0 or 1, denoting the auxiliary qubit result |sab⟩ for each round. Now, we
apply E on the pure state

∣∣∣ψ(0)ψ(0)
〉
, the state becomes:

∣∣∣Ψ(1)
〉

= 1√〈
ψ(0)ψ(0)

∣∣ (Eab
s )†Eab

s

∣∣ψ(0)ψ(0)〉Eab
s

∣∣∣ψ(0)ψ(0)
〉

= 1√
P ab

s

Eab
s

∣∣∣ψ(0)ψ(0)
〉

= 1√
P ab

s

× 1
8
∑
j,j′

(1 + (−1)aeiφj )(1 + (−1)beiφj′ ) + (−1)s(1 + (−1)beiφj )(1 + (−1)aeiφj′ )

cjcj′
∣∣ϕjϕj′

〉
,

(92)

where P ab
s denotes the probability of applying operation Eab

s on the state
∣∣∣ψ(0)ψ(0)

〉
. Therefore:

〈
Ψ(1)

∣∣∣ I ⊗H ∣∣∣Ψ(1)
〉

= 1
P ab

s

1
64
∑
j,j′

|cj |2
∣∣cj′
∣∣2 λj′Θab

s , (93)
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where:

Θ00
0 =16(1 + cosφj)(1 + cosφj′) = 64 cos2 φj

2 cos2 φj′

2 ;

Θ01
0 =8(1− cos

(
φj + φj′

)
) = 16 sin2 φj + φj′

2 = Θ10
0 ;

Θ11
0 =16(1− cosφj)(1− cosφj′) = 64 sin2 φj

2 sin2 φj′

2 ;

Θ01
1 =8(1− cos

(
φj − φj′

)
) = 16 sin2 φj − φj′

2 = Θ10
1 ;

Θ00
1 =0 = Θ11

1 ,

(94)

and:
P ab

s = 1
64
∑
j,j′

|cj |2
∣∣cj′
∣∣2 Θab

s . (95)

Extending it to K rounds, we have:〈
Ψ(K)

∣∣∣ I ⊗H ∣∣∣Ψ(K)
〉

= 1
P ab

s

1
64K

∑
j,j′

|cj |2|cj′ |2λj′

K∏
k=1

Θakbk
sk

, (96)

and:

P ab
s = 1

64K

∑
j,j′

|cj |2
∣∣cj′
∣∣2 K∏

k=1
Θakbk

sk
, (97)

with the populations of
∣∣ϕjϕj′

〉
:

|c(K)
jj′ |2 = 1

P ab
s

1
64K
|cj |2|cj′ |2

K∏
k=1

Θakbk
sk

. (98)

Notably, when we pick |sab⟩ = |000⟩ or |011⟩ only (in the strong postselection criterion), the states
on the devices keep the tensor product structure; that is, c(k)

jj′ can be always written in c
(k)
j c

(k)
j′ . This

implies that the states of Alice and Bob are pure product states after each iteration of operation. Then,
under the no postselection case:

En

[(〈
Ψ(K)

∣∣∣ I ⊗H ∣∣∣Ψ(K)
〉)2

]
=
∑

a,b,s
E

P ab
s

 1
P ab

s

1
64K

∑
j,j′

|cj |2|cj′ |2λj′

K∏
k=1

Θakbk
sk

2


= 1
64K

∑
a,b,s

E


(∑

j,j′ |cj |2
∣∣cj′
∣∣2 λj′

∏K
k=1 Θakbk

sk

)2

∑
j,j′ |cj |2

∣∣cj′
∣∣2∏K

k=1 Θakbk
sk

 .
(99)

Then, for the weak postselection case, a normalization on P ab
s is required. Therefore:

W a′b′ = P a′b′
0∑

a,b P
ab
0

= P a′b′
0

1
4K

∑
j,j′ |cj |2|cj′ |2

∏K
k=1(3 + cos

(
φ

(k)
j − φ

(k)
j′

)
)
, (100)

and:

Ew

[(〈
Ψ(K)

∣∣∣ I ⊗H ∣∣∣Ψ(K)
〉)2

]

=
∑
a,b

E

W ab

 1
P ab

0

1
64K

∑
j,j′

|cj |2|cj′ |2λj′

K∏
k=1

Θakbk
0

2


= 1
16K

∑
a,b

E


(∑

j,j′ |cj |2
∣∣cj′
∣∣2 λj′

∏K
k=1 Θakbk

0

)2

∑
j,j′ |cj |2

∣∣cj′
∣∣2∏K

k=1 Θakbk
0

∑
j,j′

|cj |2|cj′ |2
K∏

k=1
(3 + cos

(
φ

(k)
j − φ

(k)
j′

)
)

−1
 .

(101)
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Similarly, for the strong postselection, the normalization on P ab
s is:

Sa′
k=b′

k = P
a′

k=b′
k

0∑
ak=bk

P ak=bk
0

= P
a′

k=b′
k

0
1

2K

∑
j,j′ |cj |2|cj′ |2

∏K
k=1(1 + cos

(
φ

(k)
j

)
cos
(
φ

(k)
j′

)
)

(102)

and:

Es

[(〈
Ψ(K)

∣∣∣ I ⊗H ∣∣∣Ψ(K)
〉)2

]

=
∑

ak=bk

E

Sak=bk

 1
P ak=bk

0

1
64K

∑
j,j′

|cj |2|cj′ |2λj′

K∏
k=1

Θak=bk
0

2


= 1
32K

∑
ak=bk

E


(∑

j,j′ |cj |2
∣∣cj′
∣∣2 λj′

∏K
k=1 Θak=bk

0

)2

∑
j,j′ |cj |2

∣∣cj′
∣∣2∏K

k=1 Θak=bk
0

∑
j,j′

|cj |2|cj′ |2
K∏

k=1
(1 + cos

(
φ

(k)
j

)
cos
(
φ

(k)
j′

)
)

−1
 .

(103)

These are the analytical expressions for the expectation value of
(〈

Ψ(K)
∣∣∣ I ⊗H ∣∣∣Ψ(K)

〉)2
, which

are extremely difficult to compute explicitly. However, a similar line of analysis can be carried out
by analogy with the single-device filtering process. As shown in Eq. (92) and (94), the overall state
shared between Alice and Bob remains symmetric throughout the protocol; that is, the state is invariant
under the exchange of indices j and j′. Consequently, the reduced states of Alice and Bob are always
identical. This implies that, asymptotically, the two-device eigenstate preparation protocol prepares
two identical eigenstates, provided that cases with ancillary outcome |s⟩ = |1⟩ are excluded. If such
outcome occurs, the populations corresponding to the state |ϕj⟩ ⊗ |ϕj⟩ may vanish, possibly resulting
in a final state composed of superpositions of |ϕj⟩ ⊗

∣∣ϕj′
〉

and
∣∣ϕj′

〉
⊗ |ϕj⟩ for j ̸= j′.

To build intuition, we first focus on the strong postselection case. In this scenario, we apply the
same filtering factor (1± cosφ(k)

j ) to the populations of each party, which is the same the single-device
case. Also, the global state remains separable, and the time evolutions on both devices are identical
at each iteration. As a result, the dominant (unnormalized) population on two identical eigenstates is
amplified as:

|c(k)
j |

2 · |c(k)
j |

2 = |c(k−1)
j |2 × (1± cosφ(k)

j ) · |c(k−1)
j |2 × (1± cosφ(k)

j ), (104)
with the larger associated measurement probability given by:

P 00 or 11
0

P 00
0 + P 11

0
=

1
4
∑

j,j′ |c(k−1)
j |2|c(k−1)

j′ |2(1± cosφ(k)
j )(1± cosφ(k)

j′ )
1
2
∑

j,j′ |c(k−1)
j |2|c(k−1)

j′ |2
(
1 + cosφ(k)

j cosφ(k)
j′

)
=

(
1±

∑
j |c

(k−1)
j |2 cosφ(k)

j

)2

2 + 2
(∑

j |c
(k−1)
j |2 cosφ(k)

j

)2 ,

(105)

when ± cosφ(k)
j > 0. The signs + and − correspond to the postselection outcomes P 00

0 and P 11
0 ,

respectively. Note that the resulting probability distribution differs from the single-device case. Since
|c(k−1)

j |2 is the dominant population, it is likely that ±
∑

j |c
(k−1)
j |2 cosφ(k)

j > 0. In such cases, it is
straightforward to verify that Eq. (105) yields a value larger than or equal to the single-device filtering
probability,

P0 or 1 = 1
2 ±

1
2
∑

j

|c(k−1)
j |2 cosφ(k)

j ,

meaning that the probability of amplifying the dominant |c(k−1)
j |2 is higher in the two-device setting.

This demonstrates that the two-device protocol with strong postselection can outperform the single-
device case, albeit at the cost of the exponential postselection overhead.
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In the case of weak postselection, the accepted outcomes include not only those from the strong
postselection (i.e., |sab⟩ = |000⟩ and |011⟩), but also additional measurement results such as |001⟩
and |010⟩. These outcomes can generally induce entanglement between Alice and Bob’s subsystems.
Nevertheless, similar analytical arguments apply, and numerical evidence suggests that the weak
postselection still outperforms the single-device algorithm, while maintaining a bounded postselection
overhead. As the energy variance decreases with successive successful iterations, the entanglement
between the two parties gradually diminishes, and the overall state increasingly approximates a product
of two identical eigenstates shared between Alice and Bob.

Note that the P ab
s is analytically calculable for both weak and strong postselection scenarios. In the

weak postselection, the cumulative success rate:

Pw = 1
64K

∑
j,j′

|c(0)
j |

2|c(0)
j′ |2

K∏
k=1

1
4π2

∫ 2π

0

∫ 2π

0
(64− 32 sin2 φ

(k)
j − φ

(k)
j′

2 )dφ(k)
j dφ

(k)
j′

=
∑

j

|c(0)
j |

4 +
(3

4

)K ∑
j ̸=j′

|c(0)
j |

2|c(0)
j′ |2,

(106)

which is lower-bounded by
∑

j |cj |4 with respect to K. This matches with the numerical result where
after several iterations the cumulative success rate plateaus. Therefore, the lower-bound of Pw only
depends on the populations of the initial state in the eigenbasis of the Hamiltonian H. In the case of
product state as the initial state and local Hamiltonian,

∑
j |cj |4 can be then approximated in Eq. (68)

with σ, ξ ∼ O(
√
n) where n is the number of qubits of the prepared eigenstate [5, 11]. Therefore, this

lower-bound has scaling of A exp(B/n) where A and B are coefficients independent from n.
On the other hand, for the strong postselection case:

Ps = 1
64K

∑
j,j′

|c(0)
j |

2|c(0)
j′ |2

K∏
k=1

1
4π2

∫ 2π

0

∫ 2π

0
(64 cos2 φ

(k)
j

2 cos2 φ
(k)
j′

2 + 64 sin2 φ
(k)
j

2 sin2 φ
(k)
j′

2 )dφ(k)
j dφ

(k)
j′

=
(3

4

)K ∑
j

|c(0)
j |

4 +
(1

2

)K ∑
j ̸=j′

|c(0)
j |

2|c(0)
j′ |2,

(107)

which decreases exponentially with K.

B.3 Eigenvalue spreading (variance of the mixed state)
Throughout this work, we primarily discuss the average variance of the pure state ensemble.
Specifically, for each repetition, we let the algorithm to run for several iterations, obtaining the output
pure state (provided the algorithm does not restart due to postselection). We then compute the energy
variance of this output state and store the result. This process is repeated, and the energy variance
values are averaged across all repetitions. This averaged value is what we refer to as the average
variance of the pure state ensemble, i.e.,

E
[
(σ2)(k)

]
= E

[〈
ψ(k)

∣∣∣H2
∣∣∣ψ(k)

〉]
− E

[(〈
ψ(k)

∣∣∣H ∣∣∣ψ(k)
〉)2

]
= Tr

(
ρ(k)H2

)
− E

[
E(k)2]

, (108)

where E(k) =
〈
ψ(k)

∣∣∣H ∣∣∣ψ(k)
〉

denotes the energy of pure state ψ(k) at kth iteration.
Alternatively, we can consider an expected ensemble of pure states returned by the algorithm over

many iterations, and consider the ensemble as a mixed state ρ(k). This mixed state has an associated
energy E(k) = Tr

(
ρ(k)H

)
. We can then define another variance, corresponding to the mixed state

ρ(k), denoted as V (k):

V (k) = Tr
(
ρ(k)H2

)
− E

[
E(k)2] = Tr

(
ρ(k)H2

)
−
(
Tr
(
ρ(k)H

))2
. (109)
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We highlight that this is a different quantity from E
[
(σ2)(k)

]
. We refer to V (k) as the eigenvalue spread

to avoid using the term variance for both concepts. The eigenvalue spread is the variance of mixed
state ρ.

For the analysis below, we distinguish different cases for the respective postselection criterion.

B.3.1 No postselection

In this case, there is no energy bias. Therefore, V (K) stays the same as the energy variance of the
input state and does not vary for any K ∈ Z+, i.e.,

V (K) =
∑

j

λ2
j |cj |2 −

∑
j

λj |cj |2
2

. (110)

B.3.2 Weak postselection

For the first term, we use the approximation of Proposition 2 but only change λj into λ2
j , which still

makes the approximation (integral of quotient → quotient of integrals) valid. And the second term
has been introduced in the section discussing the energy biases of weak postselection cases. Therefore,
here:

V (K) ≈

((
4
3

)K
− 1

)∑
j λ

2
j |cj |4 +

∑
j λ

2
j |cj |2((

4
3

)K
− 1

)∑
j |cj |4 + 1

−


((

4
3

)K
− 1

)∑
j λj |cj |4 +

∑
j λj |cj |2((

4
3

)K
− 1

)∑
j |cj |4 + 1


2

, (111)

and the bound is:

V (∞) =
∑

j λ
2
j |cj |4∑

j |cj |4
−
(∑

j λj |cj |4∑
j |cj |4

)2

. (112)

Similarly, we can also extend this into continuous scenarios. As:

∑
j

λ2
j

∣∣∣c(0)
j

∣∣∣4 ≈ ∫ ∞

−∞
λ2A2(λ)D(λ)dλ =

exp
(

µ2

ξ2+σ2 − µ2

ξ2+2σ2

)
σ2(ξ2 + σ2)(ξ4 + 4µ2σ2 + 2ξ2σ2)

ξ(ξ2 + 2σ2)
5
2

;

(113)∑
j

λ2
j

∣∣∣c(0)
j

∣∣∣2 ≈ ∫ ∞

−∞
λ2A(λ)D(λ)dλ = σ2(ξ4 + µ2σ2 + ξ2σ2)

(ξ2 + σ2)2 , (114)

then we have:

V (K) = σ2

(ξ2 + σ2)2 ·
Γ + Ξ

Θ , (115)

where:

Θ =

1 +

(
−1 +

(
4
3

)K
)
e

µ2σ2

ξ4+3ξ2σ2+2σ4
(
ξ2 + σ2)

ξ
√
ξ2 + 2σ2


2

, (116)

Γ = −σ2

µ+
2
(
−1 +

(
4
3

)K
)
e

µ2σ2

ξ4+3ξ2σ2+2σ4 µ
(
ξ2 + σ2)2

ξ (ξ2 + 2σ2)3/2


2

, (117)
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Ξ =

1 +

(
−1 +

(
4
3

)K
)
e

µ2σ2

ξ4+3ξ2σ2+2σ4
(
ξ2 + σ2)

ξ
√
ξ2 + 2σ2

×
ξ4 + (µ2 + ξ2)σ2 +

(
−1 +

(
4
3

)K
)
e

µ2σ2

ξ4+3ξ2σ2+2σ4
(
ξ2 + σ2)3 (ξ4 + 4µ2σ2 + 2ξ2σ2)

ξ (ξ2 + 2σ2)5/2

 .
(118)

One can find that V (K) decreases with K and does not depend on whether the input state energy is
above or below 0. For the cases when K →∞, we have the eigenstate spread decrease:

V (0) − V (∞) = ξ2 1
ξ2

σ2 + 1
− ξ2 1

ξ2

σ2 + 2
= 1(

ξ2

σ2 + 1
) (

ξ2

σ2 + 2
)ξ2. (119)

B.3.3 Strong postselection

As shown in Proposition 3, the approximation:

V (K) ≈

((
3
2

)K
− 1

)∑
j λ

2
j |cj |4 +

∑
j λ

2
j |cj |2((

3
2

)K
− 1

)∑
j |cj |4 + 1

−


((

3
2

)K
− 1

)∑
j λj |cj |4 +

∑
j λj |cj |2((

3
2

)K
− 1

)∑
j |cj |4 + 1


2

, (120)

is conjectured to be true. Moreover, this is also supported by the numerics as in Fig. 3. Therefore,
we can also analyze strong postselection for continuous case and finally get the same bound of the
eigenstate spread.

C Generalization to s devices
In the main text, we discuss a possible way to generalize our algorithm to multiple devices, where
we use the cycle permutations to replace the SWAP operations. Here we briefly give more analytical
details on the extensions.

For s-device filter, we write the corresponding state in Fig. 5 step by step. Assuming the input state
is
∑

j1,··· ,js
cj1···js |ϕj1 · · · js⟩. Before the controlled-D operator, the state is:

1
2

s
2 s

1
2

s−1∑
α=0
|α⟩ ⊗

1∑
a1,··· ,as=0

|a1 · · · as⟩ ⊗
∑

j1,··· ,js

exp (i(a1φj1 + · · ·+ asφjs)) cj1···js |ϕj1 · · ·ϕjs⟩ , (121)

where |α⟩ and |a1 · · · as⟩ denote the top and s-device local auxiliary qudit/qubits, respectively. Then
we apply a multi-level controlled-D operator

∑s−1
q=0 |q⟩ ⟨q| ⊗Dq, and apply Fourier transform on every

auxiliary qudit/qubit. Before the measurement, the state becomes:

1
2ss

s−1∑
α=0
|α⟩⊗

1∑
a1,··· ,as=0

1∑
b1,··· ,bs=0

(−1)a1b1+···+asbs |b1 · · · bs⟩

⊗
∑

j1,··· ,js

[exp (i(a1φj1 + · · ·+ asφjs)) + ωα exp (i(a1φj2 + · · ·+ asφj1)) + · · ·+

ω(s−1)α exp
(
i(a1φjs + · · ·+ asφjs−1)

)]
cj1···js |ϕj1 · · ·ϕjs⟩ .

(122)

One can see that if the top auxiliary s-level qudit clicks at α ̸= 0, the populations for |ϕj · · ·ϕj⟩
become 0. That is why we still need to postselect |α⟩ = |0⟩.
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By measuring all the auxiliary qudit and qubits with outcome |0⟩⊗ |b1 · · · bs⟩, we have the state and
the corresponding measurement probability as:

1

2ss
√
P b1···bs

0

1∑
a1,··· ,as=0

(−1)a1b1+···+asbs

∑
j1,··· ,js

[exp (i(a1φj1 + · · ·+ asφjs)) + ωα exp (i(a1φj2 + · · ·+ asφj1)) + · · ·+

ω(s−1)α exp
(
i(a1φjs + · · ·+ asφjs−1)

)]
cj1···js |ϕj1 · · ·ϕjs⟩ ,

(123)

and,

P b1···bs
0 = 1

s2

∑
j1,··· ,js

|cj1···js |2
 ∑

cyc φj

s∏
l=1

(
bl sin φjl

2 + (1− bl) cos φjl

2

)2

, (124)

respectively. From Eq. (123), one can see that due to the symmetry of cyclic permutation, the state
for each reduced system will still be identical.

Still, the strong postselection case can be analyzed similarly. In this case, |cj1···js |2 = |cj1 |2 · · · |cjs |2.
Once |b1 · · · bs⟩ = |0 · · · 0⟩ or |b1 · · · bs⟩ = |1 · · · 1⟩, the dominant population |cj |2 for each corresponding
index j will also be multiplied by the same factor (1± cosφj). When ± cosφj > 0, the dominant
population will be further amplified with increased probability:

(1±
∑

j |cj |2 cosφj)s

(1 +
∑

j |cj |2 cosφj)s + (1−
∑

j |cj |2 cosφj)s
(125)

as ±
∑

j |cj |2 cosφj is more likely to be larger than 0. Note that in this circumstance, this
probability increases with number of devices s, which means that increasing s will yield faster eignestate
convergence, but with more communication costs between parties. Also, one can find that on average,
P 0···0

0 and P 1···1
1 still exponentially decrease with number of iterations K. For weak postselection cases,

the analytics become more complicated but numerical evidences suggest that 3-device filter still works
in the similar way and we expect that it also works for general s. However, notice that Dq (q ̸= 0) for
non-prime s may not constitute full-cycle permutation, which might affect the convergence rate. This
has been briefly mentioned in the main text and also discussed in [29]. Finally, for weak postselection,
via calculations, the success probability on average is bounded by:∑

j

|c(0)
j |

2s (126)

D Resource cost in the distributed settings
In this appendix, we discuss the resource costs associated with the distributed setting. In our
distributed filtering protocol, non-local operations are required. specifically, a control-SWAP gate
per iteration that acts across the single auxiliary qubits on each device, facilitated by shared Bell
pairs. Also, due to the overhead introduced by postselection, additional resource consumption arises,
such as an increased number of controlled time evolutions and greater use of Bell pairs.

We begin by emphasizing that the single-device filter requires only one control-e−iHt operation
per iteration and no Bell pairs. Moreover, since there is no postselection involved in the single-device
protocol, it always succeeds. Consequently, the total number of control-e−iHt operations grows linearly
with the number of iterations k.

In contrast, for the multi-device filter, each party must apply a local control-e−iHt operation per
iteration. Thus, the total number of control time evolutions per iteration equals the number of
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Figure 7: The quantum circuit per iteration to realize the distributed filtering protocol with shared Bell pairs and
local operations and classical communication. The qubits above and below the dashed line are held by Alice and
Bob, respectively.

Figure 8: Empirical average number of control time evolutions (control-e−iHt) and consumed Bell pairs for the cases
in Fig. 5. The upper panels depict the total cost, while the lower panels present the cost normalized by the number
of output states.
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participating parties. Furthermore, due to the presence of postselection, the protocol may need to
restart multiple times, leading to additional resource costs.

In addition to time evolutions, a shared Bell state
∣∣Φ+〉 = 1√

2(|00⟩+|11⟩) is required in each iteration
to teleport Bob’s auxiliary qubit to Alice via local operations and classical communication. Once the
teleportation is complete, Alice can apply the control-SWAP gate locally and determine whether the
measurement outcomes satisfy the postselection criterion. If the protocol proceeds to the next iteration,
the local auxiliary qubit registers can be reset and reused. The detailed circuit implementation is shown
in Fig. 7. This teleportation-based approach generalizes straightforwardly to the s-device filter, which
requires a total of s − 1 Bell pairs per iteration to teleport all auxiliary qubits to Alice, allowing her
to perform the control permutations locally.

These resource requirements are closely tied to the cumulative success rate of the protocol. Since each
iteration carries a probability of failure and possible restart, resource wastage can accumulate. Using
Monte Carlo method, we compute the corresponding resource costs, as illustrated in Fig. 8. In the
weak postselection regime, the cumulative success rate plateaus after a few iterations, implying that the
protocol will almost always succeed beyond a certain k. As a result, the total resource cost ultimately
scales linearly with k. However, in the strong postselection regime, the cumulative success rate decays
exponentially, meaning that the protocol continues to have a non-negligible failure probability at each
iteration. Consequently, the total resource cost grows exponentially with k. Moreover, we illustrate
the cost normalized by the number of output states as shown in the lower panels of Fig. 8), since
the distributed protocols can yield multiple identical eigenstates. They reveal the per-state resource
requirements, enabling a fairer comparison among different settings.

We also note that when the controlled-SWAP operation is affected by noise, such as from an imperfect
shared Bell pair or a noisy teleportation process, the protocol still functions, though with reduced
performance depending on the noise level (cf. Fig. 12 in [16]).

E Additional numerical experiments
In the final subsection of this Appendix, we present additional numerical experiments on several product
state instances of the form |p(θ)⟩ = (cos θ |0⟩ + sin θ |1⟩)⊗n, where we choose θ ∈ {−π/4, π/4} and
n ∈ {4, 5, 6}. We show one standard deviation (±σdata) of the data around the mean value in Fig. 9,
10, 11 and 12. Different from the numerics in the main text, where the average values are computed
as accurately as possible, here we fix the number of repetition times to 106 for Fig. 9 and 10 and 105

for Fig. 11 and 12. For each iteration k, we compute the average value from the data that meet the
postselection criteria, and discard the others. Then, especially for strong postselection, the data is
computed from smaller ensembles, leading to noticeable statistical fluctuations at large k. Also, we
note that due to the randomness inherent in the filtering process, the error |σdata| can occasionally
be large. To clearly illustrate the decrease in average variance (not the eigenvalue spreading) across
different iterations, the y-axis is plotted on a logarithmic scale. As a result, the estimates for the lower
error bars can extend below zero, causing the shaded error regions to cover all the areas below the
data points on the plots.
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Figure 9: Average variance and energy of the pure state ensemble per iteration k. Four cases are shown including
the instances in the main text: n = 5 or 6; θ = ±π/4. The algorithm is repeated 106 times, with each repetition
lasting up to 30 iterations. The fluctuations in the average variance for the strong postselection case at large k are
attributed to the limited data available from the exponentially decreasing number of surviving rounds.
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Figure 10: The surviving rounds of repetitions after postselection at each iteration, for all four numerical instances
in Fig. 9.

No Postselection

No Postselection Weak Postselection

Weak Postselection

Strong Postselection

Strong Postselection

Figure 11: The numerical experiment results with the same inputs in Fig. 5 (comparing single-, two- and three-device
algorithms with n = 4, θ = −π/4) but with fixed repetition numbers (105) of the algorithm at the beginning.

Figure 12: The surviving rounds of repetitions after postselection at each iteration for the numerical instances in
Fig. 11.
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