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Multipartite entanglement is an essential resource for quantum information theory and technologies, but its
quantification has been a persistent challenge. Concentratable entanglement (CE), introduced recently, can be
estimated from just two copies of a quantum state. Here, we propose generalized concentratable entanglement
(GCE), a broader class of multipartite entanglement measures naturally tied to quantum Tsallis entropies, and
present a parallelized protocol for estimating GCE across multiple state copies. Increasing the number of copies
yields an improved error bound in the presence of imperfections. We prove that GCE is a well-defined entangle-
ment monotone and conjecture some new entropic inequalities. Moreover, we demonstrate the concentration
of entanglement into W states using three-state copies. Our results contribute to more robust and versatile

characterizations of multipartite entanglement.

DOL: 10.1103/jtlj-gs3y

Introduction. Quantum entanglement is one of the most in-
triguing and fundamental phenomena in quantum mechanics
[1]. As a valuable resource in quantum information process-
ing, entanglement is crucial for quantum networks [2—4],
distributed quantum computing [5-7], and quantum sensing
[8-10]. To certify the functionality of these applications, it is
important to verify and quantify the degree of entanglement in
quantum systems [11-15]. However, large-scale quantum net-
works and computers include numerous quantum subsystems,
making this characterization challenging. Several multipartite
entanglement measurement techniques have been proposed
[16-22], but they are often impractical to estimate and limited
by system size.

Recently, a family of multipartite entanglement measures
called concentratable entanglement (CE) has been proposed
[23-25]. Mathematically, it is the arithmetic mean of the lin-
ear entropy (the first-order approximation of von Neumann
entropy), 1 — Tr(,o(%) [26,27], of all possible subsystems c.
In some special cases, CE can recover several well-known
entanglement measures [18-22]. Moreover, it can be esti-
mated efficiently via parallelized SWAP tests between two
copies of a given quantum state |i¢) [28-30]. As collec-
tive measurements on multiple copies of a quantum system
are advantageous for single-system property testing [31-33],
it is compelling to consider the generalization of CE to
more than two copies of [i¢), both mathematically and
practically.

In this work, we introduce generalized concentratable en-
tanglement (GCE) and reveal its close relation to quantum

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2025/7(3)/L032022(7)

L032022-1

Tsallis entropies Tx(p) [34,35], for any real K > 1. For any
prime number K, we prove that GCE can be efficiently mea-
sured in a quantum computer using K copies of a state |y)
and a parallelized permutation test [36,37]. We also illustrate
the approach to compute GCE for nonprime number K by
applying multiple different permutation tests. We demonstrate
that, up to local unitaries, W states can be probabilistically
extracted from the permutation test when K = 3, thereby con-
centrating the entanglement into W states. Furthermore, we
analyze the errors in the estimated GCE for a constant number
of noisy input states and show that they decrease with the
number of state copies as 0(%). We also prove that GCE is
still a well-defined entanglement monotone as its value, on
average, does not increase under local operations and classi-
cal communication (LOCC). In the end, we present several
mathematical properties of GCE and, supported by strong
numerical evidence, present two conjectures, which may pro-
vide deeper mathematical insights into the features of both
GCE and Tsallis entropies. In addition, our definition of GCE,
featuring efficient estimation and robust mathematical prop-
erties, is versatile and applicable to tasks like entanglement
witnessing, multivariate trace estimation, and error mitigation,
enhancing its utility beyond just entanglement measures.

Generalized concentratable entanglement. We consider the
following definition of GCE.

Definition 1 (generalized concentratable entanglement).
Consider an input n-qubit pure state |¢) with labels S =
{1,2,---,n} for each qubit respectively, and one measures
the entanglement of every non-empty subsystem s in the
power set of S, i.e., s € P(S)\{D}. The generalized concen-
tratable rntanglement (GCE) is defined as

1 1
(K) - _ K
Cl) == | 1= 55 2 TH|.
a€eP(s)
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FIG. 1. Circuit structure for computing GCE with prime K. Mul-
tiple copies of the state |y) are prepared, and n permutation tests
are performed on the state copies in parallel using n K-level qudit
ancillas. The probability distribution of the measurement result on
the ancillas can be efficiently sampled, simply by running the circuit,
and hence one can estimate the GCE via Eq. (2). Notably, this only
holds for any prime K. The analytical proof for this can be found in
[39].

for any K > 1. Here, |s| is the cardinality of s. p, denotes the
corresponding reduced density matrix of subsystem « € P(s),
where p = |/)(/|. We take Tr(pX) = 1.

Equivalently, the definition of Cf$>)(s) can be viewed as the

arithmetic mean of the Tsallis entropies Tx(py) = ﬁ(l -

Tr(pf )) for all subsystems ¢ of the measured system s. No-
tably, when K = 2, Eq. (1) recovers the original CE defined in
[23]. Moreover, when K — 1, Eq. (1) becomes the arithmetic
mean of the von Neumann entropy [26].

Ejﬁcient estimation of GCE. Eq. (1) includes the term
Tr(,o ). When K is a positive integer, it can be estimated
via a controlled-derangement operator, [0)(0]| @ I + |1){(1| ®
D, decomposed in controlled-SWAP operations [32,33,38],
where a possible choice for D is the cyclic permutation oper-
ator such that D |y - - - Yk) = |23 - - - ). To estimate
Tr(pX) in this way, one needs to prepare K copies of p, for
each «. For K = 2, the GCE can be estimated efficiently via
a series of parallelized SWAP tests [23]. While an extension
to multiple copies via a series of parallelized derangement op-
erators might seem plausible, such an approach is not viable,
since D is not Hermitian.

Here we propose a quantum circuit building on the par-
allelized permutation test with K-level ancillas [36,37] to
efficiently estimate the GCE for any prime K. The cor-
responding circuit is shown in Fig. 1. To begin with, K

copies of |y) are prepared, and n ancillary K-level qudits
are initialized in |0). Then, all ancillas are acted upon by
a quantum Fourier transform F : |z) — f Z o™ |k)

where @ = ¢*"/K. Subsequently, a multilevel controlled-D
operator, Zf:_ol |z)(z| ® D, is applied in parallel to qubits
in each copy that share the same label. Finally, the inverse
Fourier transforms F ¥ are applied to each ancilla and one mea-
sures them eventually. By running the circuit with sufficiently
many repetitions, one can obtain the probability distribution
of the resulting digit strings on the ancillas, ie., p(z) =
p(zizo---zn), where z € {0, 1, --- , K — 1}". From p(z), one
can estimate the GCE in Eq. (1) for prime K. For non-prime
K, however, a single permutation test circuit is insufficient
since D* for z € [1, K — 1] related to single-cycic permuta-
tions only applies to prime K. This issue can be addressed
by applying multiple different permutation tests with IC < K
state copies, where K is a divisor of K. Details are in [39],
while the main text focuses on estimating GCE with prime K.

Proposition 1. Sampling from the probability distribution
p(z), we can estimate GCE for prime K as

\s\(K 12 Z = Z p()

aeP(s) Y req 2x=0 (mod K)

2“‘(1{— 5 > > p@. )

a€P(s) Y ., 2#0 (mod K)

(K)(S)

XEa

From Proposition 1, one can find that:

Corollary 1. p(z') = 0 for any h(z') # 0 (mod K), where
h(z') denotes the sum over the digits in the string z' =
22y gy il h(@) =3, 2

This corollary states that by running the circuit in Fig. 1,
certain measurement outcomes z’ will never occur. As a result,
there are only K"~! nontrivial p(z) instead of K".

Notably, when K = 2, the circuit in Fig. 1 recovers the par-
allelized SWAP test from Ref. [23], as the Fourier transforms
become Hadamard gates, and controlled-D operators become
Fredkin gates. In addition, the circuit in Fig. 1 can be en-
coded into a qubit system, possibly with redundant computing
power, which may be more suitable for practical experiments.

Entanglement concentration for K = 3. When K = 2, there
is a probabilistic way to concentrate the entanglement (Bell
pairs) from the input states at the controlled system of each
parallelized SWAP test. In this work, we provide a similar
proposition for K = 3:

Proposition 2. For K = 3, there is a probabilistic entan-
glement concentration for each parallelized permutation test.
Specifically, for each parallelized permutation test, when the
top ancilla clicks at either [1) or |2). Then once we measure
out the other target systems with the ancilla outcome being
|0), there exists a set of local unitaries that convert the re-
maining controlled system into W states: |W) = f(| 100) +
|010) + 1001)).

For K > 3, there does not exist a set of local unitaries that
convert the controlled system into either W or Greenberger—
Horne—Zeilinger (GH Z) states and the GCE of the output state
from each parallelized permutation test is possibly larger than
the values of GHZ or W states, which can be easily tested
numerically. This is because for the GCE of the large system,
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FIG. 2. Numerical simulations for GCE errors. We have considered 5000 samples of Haar-random input states |y) for each {K, n} and
|s| = 2 for all cases. The leftmost two plots show scenario 1, where there are K noisy copies of |v), each with trace distance € to the perfect
state. The rightmost two plots show scenario 2, where there is only 1 noisy copy. One can see that all the errors are upper-bounded by Eq. (3).
Also, on average, the GCE errors decrease for larger K and n. Our study suggests there may exist sharper upper bounds.

its maximum value is far away from the case of GHZ or W
states, as intensively discussed for K = 2 in Ref. [40]. Thus,
other different entanglement structures may appear for the
controlled system when K > 3.

Robustness analysis. In this section, we consider the
scenario that only noisy states [¢') can be prepared such
that there is a trace distance D(|y), |[¢')) = %H V) (W] —
¥y (¥'| |l = €. In this case, the estimated GCE will also
have errors accordingly, and here we propose an upper-bound
for the errors of estimated GCE.

Proposition 3. Suppose there are prime K noisy input
copies [/]) . [¥3) .+ . [Wk) with D() . [/{)) = €. There-
fore, in general, via the approach shown in Fig. 1 and Eq. (2),
there exists an upper bound for the estimated GCE error

(K) )
= 1C5) 1wty @) = Cly (O] [41]:
2|SI -1 K
¢ < — 1)2lsl Z & + ];; €x€r + k<;k” €xEp €L

K
ceaf]e)
k=1

For simplicity, we assume each copy of |i) is either
noisy with € error or perfect. For illustration, we consider
the following two scenarios. First, suppose there are K
noisy copies, then the GCE error is upper bounded by £ <
(1 — 3751+ &)X + € —1). Second, if there is only
one noisy copy, the GCE error is upper bounded by & <
(1— ﬁ)ﬁe. In this case, the upper bound of £ decreases
strongly reciprocally with K.

Figure 2 depicts numerical results for these two error sce-
narios. We find that the errors £ will decrease on average
under a larger number of copies K or with a larger state size
n. Moreover, the errors are always below the error bound in
Eq. (3). Note that the error bound in Eq. (3) is the analytical
result and may not be sharp enough. It is possible that there
also exists a general sharper bound including the system size
n as well.

Properties of GCE. Our definition of GCE C( )(s) enjoys
some convenient properties, which hold in the more general
setting K € R, K > 1.

Theorem 1. The GCE has the following properties:

(1) Pure state entanglement measures: Cl({b())
creasing on average under LOCC.

2 C‘(g))(s) = 0 for fully product states |) =
and Vs € P(S)\{o}.

(3) Continuity: For two pure states | ) and |1// ) that satisfy
DY), W) < € then |C[y)(5) = Clya (9] < 255

2

(@) C(K)(S) C(K)(S\{no})for any single subsystem label
ny € {1, 2 3

Theorem 1 highlights key properties of GCE, establishing
it as a well-defined entanglement measure. Specifically, The-
orem 1.1 shows that X, (s) is a well-defined entanglement
measure for any K > 1. Also, one should not confuse Theo-
rem 1.3 with Proposition 2, as Theorem 1.3 can be regarded as
the special case of Proposition 2 where the input noisy states
are exactly the same. The proof of the theorem can be found
[39].

Furthermore, our numerical studies (c.f. [39]) provide evi-
dence for the following conjecture:

Conjecture 1. The GCE has the following properties:

(1) €y () < C) ) ifs' T s.

(2) Subadditivity: c<K>(s Us) <
s'=o.

Here, Conjecture 1.1 states that the GCE for any K > 1 of
a given system is always larger than or equal to the GCE of its
subsystems, which should hold for a well-defined entangle-
ment measure. Conjecture 1.2 surmises that the GCE for any
K > 1 obeys the subadditivity property, which means that the
sum of two separate systems’ GCEs should be larger than the
GCE of the overall system. These two conjectures have been
proven to be true for K = 2 [23]. Based on these arguments,
we here conjecture that they also hold for K > 1. Moreover,
we show that:

Proposition 4. Conjecture 1.1 is equivalent to a not-so-
strong subadditivity (NSSSA) form of Tsallis entropy: for
an n-partite (qubit) pure state p = |[¢) (Y| and any of its
tri-separation ABC s.t. B contains only one party (qubit), we
have:

(s) is nonin-

&, 1))

C(K)(s) + C(K)(s ) fors N

D" (Tx(pause) + T (pa)
as€P(A)

— Tk (PayB) — Tx (Pa,c)) < 0, 4
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FIG. 3. GCE (s = §) of the 40-qubit spin-squeezed state |P(u))
for different K and interaction strength p (upper plot), and the GCE
difference C&, HZ(s) C;f )(s) for different n, |s| and K (lower plot).
For |®(w)), GCE measures more entanglement and goes asymp-
totically to ~(K — 1)~! with larger K and u. For GHZ and W,
GCE concludes more entanglement in GHZ state than in W state as
CE) () > CX(s), and the GCE difference decreases for increasing
K and |[s|.

which is the sum over all possible strong subadditivity (SSA)
of Tsallis entropy related to the subsets of A. Here, each oy is
in the power set of A, and asBC, asB, «4C denote the union
of the corresponding subsystems of p.

Proposition 4 may be interesting and important in its own
right, because SSA of Tsallis entropy does not generally hold
[42]. Tt is important to note that the equivalence between
Conjecture 1.1 and NSSSA in Proposition 4 always holds true.
However, the validity of the statement in Proposition 4 itself
depends on the truth of Conjecture 1.1. We refer the reader to
[39] for further discussions.

Examples. We now calculate GCE for selected quantum
states that are of experimental interest. Let us first consider
spin-squeezed states, |P (1)), that can be prepared by evolving
a coherent spin state under the one-axis twisting Hamiltonian
operator Hpar = XS’ZZ for a time ¢ and parametrized through
the interaction strength u = 2xt [43,44]. The GCE (s = S)
of the 40-qubit state |®(w)) is shown in Fig. 3 (upper plot).
Notice that when the interaction strength u becomes larger,
the GCE predicts more entanglement in the state |®(u)).
Moreover, it goes asymptotically to ~(K — 1)~! for larger
K, and larger K ends up with faster convergence w.r.t. the
interaction strength p.

Secondly, we consider w (W) =
ﬁz;;l |0---1;---0)) and GHZ (IGHZ) =
%(|0)®” +[1)®")). The GCE difference between them,

(G’;)Z( )—C, (K)(s) is shown in Fig. 3 (lower plot). Note

states
states

that ngz(s) > C‘(f)(s) for all cases, which illustrates that
there is more entanglement in GHZ state than in W the
state according to GCE measures. The GCE difference also
decreases with increasing K and |s|. In addition, when |s|
is large enough (for example, |s| & n), increasing n makes
the GCE difference go asymptotically to 0. More analytical
details for these two examples can be found in [39].

Conclusions and outlook. In this work, we proposed a
K-th order pure-state entanglement measure, generalized
concentratable entanglement, for arbitrary real-valued
K > 1. We provided an efficient way for estimating GCE
on a quantum computer, through parallelized permutation
tests given that the number of state copies, K, is prime. Using
multiple parallelized permutation tests for both order K and its
corresponding divisors enables the computation of GCE for
non-prime K as well. We also showed that each parallelized
permutation test can concentrate the entanglement into the W
state with three state copies. In addition, we provided both
analytical and numerical results for the errors of the estimated
GCE when some of the state copies are imperfect. We
demonstrated that these errors become smaller as the number
of copies increases, for a constant number of imperfect copies.
Then, we proved several mathematical properties of GCE,
especially that GCE is a well-defined pure-state entanglement
measure as it does not increase under LOCC on average.
Backed up by strong numerical evidence, we also proposed
two conjectures that may provide further mathematical
insights, not only on GCE, but also of independent interest
for the study of quantum Tsallis entropies. One of them hints
at the existence of a weaker form of strong subadditivity of
quantum Tsallis entropy (NSSSA), which lies between sub-
additivity (which holds [45]) and strong subadditivity (which
does not hold in general [42]), and may serve as an interesting
starting point for future investigations. Finally, we provided
examples and explicitly calculated GCE for spin-squeezed,
W, and GHZ states. We anticipate that our GCE measures
could establish new directions in multipartite entanglement,
enabling practical, noise-resilient implementation and making
significant mathematical contributions to entanglement
theories.

Notably, the original concentratable entanglement (CE)
has natural connections to other various applications, in-
cluding entanglement witnesses [46—51], multivariate trace
estimation [38,52-57], probing the properties of many-body
systems [58—60], error mitigation [32,33,52,61,62], quantum
benchmarking [12,63—-66], and inspiring other entanglement
measures [67-09]. Given the wide-ranging applications of
CE, exploring its generalization to GCE is highly meaningful,
as GCE may offer deeper insights and further advance these
applications even beyond the scope of GCE measure itself.

It would be interesting to explore the entanglement con-
centrated from the parallelized permutation test for K > 3,
which remains open [40]. Moreover, deriving a sharper bound
for the GCE errors would be useful to study the intrinsic
error properties of larger n and K. Finally, a rigorous proof
of Conjecture 1 should yield valuable insights in the quest to
characterize all entropic inequalities in quantum information
science [70-76].

Acknowledgments. We thank Andreas Winter, Marcus Hu-
ber, Jose Carrasco, and Matthias Christandl for their valuable

L032022-4



GENERALIZED CONCENTRATABLE ENTANGLEMENT VIA ...

PHYSICAL REVIEW RESEARCH 7, L032022 (2025)

insights. X.L. thanks Kshiti Sneh Rai and Jinfu Chen for
fruitful discussions. J.K. gratefully acknowledges the support
from Dr. Max Rossler, the Walter Haefner Foundation, and
the ETH Ziirich Foundation. Z.J.W. thanks David Elkouss for
his support and valuable discussions. J.T. acknowledges the
support received from the European Union’s Horizon Europe
research and innovation programme through the ERC StG
FINE-TEA-SQUAD (Grant No. 101040729). J.T. and Z.J.W.
also acknowledge the support received by the Dutch National
Growth Fund (NGF), as part of the Quantum Delta NL pro-
gramme. This publication is part of the "Quantum Inspire —

the Dutch Quantum Computer in the Cloud" project (with
project number [NWA.1292.19.194]) of the NWA research
program "Research on Routes by Consortia (ORC)," which
is funded by the Netherlands Organization for Scientific Re-
search (NWO). The views and opinions expressed here are
solely those of the authors and do not necessarily reflect those
of the funding institutions. Neither of the funding institutions
can be held responsible for them.

Data availability. The data that support the findings of this
article are not publicly available. The data are available from
the authors upon reasonable request.

[1] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-
mechanical description of physical reality be considered
complete? Phys. Rev. 47, 777 (1935).

[2] W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, Inside
quantum repeaters, IEEE J. Sel. Top. Quantum Electron. 21, 78
(2015).

[3] S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A
vision for the road ahead, Science 362, eaam9288 (2018).

[4] Y. Zhong, H.-S. Chang, A. Bienfait, E. Dumur, M.-H. Chou,
C. R. Conner, J. Grebel, R. G. Povey, H. Yan, D. I. Schuster
et al., Deterministic multi-qubit entanglement in a quantum
network, Nature (London) 590, 571 (2021).

[5] H. Buhrman and H. Rohrig, Distributed quantum computing, in
Mathematical Foundations of Computer Science 2003, edited
by B. Rovan and P. Vojtas$ (Springer, Berlin, Heidelberg, 2003),
pp. 1-20

[6] J. L. Cirac, A. K. Ekert, S. F. Huelga, and C. Macchiavello,
Distributed quantum computation over noisy channels, Phys.
Rev. A 59, 4249 (1999).

[7] B. E. Schiffer and J. Tura, Quantum eigenstate preparation as-
sisted by a coherent link, Phys. Rev. A 111, 012445 (2025).

[8] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing,
Rev. Mod. Phys. 89, 035002 (2017).

[9] Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro,
Entanglement-enhanced sensing in a lossy and noisy environ-
ment, Phys. Rev. Lett. 114, 110506 (2015).

[10] Q. Zhuang, Z. Zhang, and J. H. Shapiro, Distributed quantum
sensing using continuous-variable multipartite entanglement,
Phys. Rev. A 97, 032329 (2018).

[11] A. Elben, B. Vermersch, R. van Bijnen, C. Kokail, T. Brydges,
C. Maier, M. K. Joshi, R. Blatt, C. F. Roos, and P. Zoller, Cross-
platform verification of intermediate scale quantum devices,
Phys. Rev. Lett. 124, 010504 (2020).

[12] J. Knorzer, D. Malz, and J. I. Cirac, Cross-platform verification
in quantum networks, Phys. Rev. A 107, 062424 (2023).

[13] C. Zhang, W.-H. Zhang, P. Sekatski, J.-D. Bancal, M. Zwerger,
P. Yin, G.-C. Li, X.-X. Peng, L. Chen, Y.-J. Han, J.-S. Xu,
Y.-F. Huang, G. Chen, C.-F. Li, and G.-C. Guo, Certification
of genuine multipartite entanglement with general and robust
device-independent witnesses, Phys. Rev. Lett. 129, 190503
(2022).

[14] Y. Wang, B. Zhao, and X. Wang, Quantum algorithms for esti-
mating quantum entropies, Phys. Rev. Appl. 19, 044041 (2023).

[15] S. Lee, H. Kwon, and J. S. Lee, Estimating entanglement
entropy via variational quantum circuits with classical neural
networks, Phys. Rev. E 109, 044117 (2024).

[16] V. Coffman, J. Kundu, and W. K. Wootters, Distributed entan-
glement, Phys. Rev. A 61, 052306 (2000).

[17] H. Barnum and N. Linden, Monotones and invariants for multi-
particle quantum states, J. Phys. A: Math. Gen. 34, 6787
(2001).

[18] A. Wong and N. Christensen, Potential multiparticle entangle-
ment measure, Phys. Rev. A 63, 044301 (2001).

[19] D. A. Meyer and N. R. Wallach, Global entanglement in multi-
particle systems, J. Math. Phys. 43, 4273 (2002).

[20] M. Walter, B. Doran, D. Gross, and M. Christandl, Entan-
glement polytopes: Multiparticle entanglement from single-
particle information, Science 340, 1205 (2013).

[21] G. K. Brennen, An observable measure of entanglement for
pure states of multi-qubit systems, arXiv:quant-ph/0305094.

[22] A. R. Carvalho, F. Mintert, and A. Buchleitner, Decoherence
and multipartite entanglement, Phys. Rev. Lett. 93, 230501
(2004).

[23] J. L. Beckey, N. Gigena, P. J. Coles, and M. Cerezo, Com-
putable and operationally meaningful multipartite entanglement
measures, Phys. Rev. Lett. 127, 140501 (2021).

[24] J. L. Beckey, G. Pelegri, S. Foulds, and N. J. Pearson, Multipar-
tite entanglement measures via Bell-basis measurements, Phys.
Rev. A 107, 062425 (2023).

[25] L. Coffman, A. Seshadri, G. Smith, and J. L. Beckey, Local
measurement strategies for multipartite entanglement quantifi-
cation, Phys. Rev. A 110, 012454 (2024).

[26] J. Von Neumann, Mathematical Foundations of Quantum Me-
chanics: New Edition (Princeton University Press, Princeton,
New Jersey, 2018).

[27] E. Santos and M. Ferrero, Linear entropy and Bell inequalities,
Phys. Rev. A 62, 024101 (2000).

[28] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa,
and C. Macchiavello, Stabilization of quantum computations by
symmetrization, SIAM J. Comput. 26, 1541 (1997).

[29] H. Buhrman, R. Cleve, J. Watrous, and R. De Wolf,
Quantum fingerprinting, Phys. Rev. Lett. 87, 167902
(2001).

[30] S. Foulds, V. Kendon, and T. Spiller, The controlled SWAP test
for determining quantum entanglement, Quantum Sci. Technol.
6, 035002 (2021).

[31] J. Cotler, S. Choi, A. Lukin, H. Gharibyan, T. Grover, M. E.
Tai, M. Rispoli, R. Schittko, P. M. Preiss, A. M. Kaufman, M.
Greiner, H. Pichler, and P. Hayden, Quantum virtual cooling,
Phys. Rev. X 9, 031013 (2019).

[32] B. Koczor, Exponential error suppression for near-term quan-
tum devices, Phys. Rev. X 11, 031057 (2021).

L032022-5



LIU, KNORZER, WANG, AND TURA

PHYSICAL REVIEW RESEARCH 7, L032022 (2025)

[33] W.J. Huggins, S. McArdle, T. E. O’Brien, J. Lee, N. C. Rubin,
S. Boixo, K. B. Whaley, R. Babbush, and J. R. McClean, Vir-
tual distillation for quantum error mitigation, Phys. Rev. X 11,
041036 (2021).

[34] C. Tsallis, Possible generalization of Boltzmann-Gibbs statis-
tics, J. Stat. Phys. 52, 479 (1988).

[35] F. Caruso and C. Tsallis, Nonadditive entropy reconciles the
area law in quantum systems with classical thermodynamics,
Phys. Rev. E 78, 021102 (2008).

[36] M. Kada, H. Nishimura, and T. Yamakami, The efficiency of
quantum identity testing of multiple states, J. Phys. A: Math.
Theor. 41, 395309 (2008).

[37] H. Buhrman, D. Grinko, P. V. Lunel, and J. Weggemans, Per-
mutation tests for quantum state identity, arXiv:2405.09626.

[38] Y. Quek, E. Kaur, and M. M. Wilde, Multivariate trace
estimation in constant quantum depth, Quantum 8§, 1220
(2024).

[39] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/jtlj-qs3y for the proof of the circuit for computing
GCE,; proof of propositions; GCE circuit encoded in qubit sys-
tems; proof of GCE’s mathematical properties; discussions on
the conjectures; GCE of several examples. The Supplemental
Material also contains Refs. [77-86].

[40] L. Schatzki, G. Liu, M. Cerezo, and E. Chitambar, Hierarchy of
multipartite correlations based on concentratable entanglement,
Phys. Rev. Res. 6, 023019 (2024).

[41] The error definition here is different from the one in [23] as in
this work we focus on the difference between the perfect and
noisy scenarios.

[42] D. Petz and D. Virosztek, Some inequalities for quantum Tsal-
lis entropy related to the strong subadditivity, Mathematical
Inequalities & Applications 18, 555 (2015).

[43] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A
47,5138 (1993).

[44] J. Guo, J. Tura, Q. He, and M. Fadel, Detecting bell correlations
in multipartite non-gaussian spin states, Phys. Rev. Lett. 131,
070201 (2023).

[45] K. M. Audenaert, Subadditivity of g-entropies for q > 1, J.
Math. Phys. 48, 083507 (2007).

[46] F. G. S. L. Branddo, Quantifying entanglement with witness
operators, Phys. Rev. A 72, 022310 (2005).

[47] F. Shahandeh, M. Ringbauer, J. C. Loredo, and T. C. Ralph, Ul-
trafine entanglement witnessing, Phys. Rev. Lett. 118, 110502
(2017).

[48] V. Saggio, A. Dimié, C. Greganti, L. A. Rozema, P. Walther, and
B. Daki¢, Experimental few-copy multipartite entanglement de-
tection, Nat. Phys. 15, 935 (2019).

[49] P. Cieslinski, J. Dziewior, L. Knips, W. Ktobus, J. Meinecke, T.
Paterek, H. Weinfurter, and W. Laskowski, Valid and efficient
entanglement verification with finite copies of a quantum state,
npj Quantum Inf. 10, 1 (2024).

[50] K. FE. Pdl, G. Téth, E. Bene, and T. Vértesi, Bound entangled
singlet-like states for quantum metrology, Phys. Rev. Res. 3,
023101 (2021).

[51] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzanski, Compat-
ibility in multiparameter quantum metrology, Phys. Rev. A 94,
052108 (2016).

[52] J.-M. Liang, Q.-Q. Lv, Z.-X. Wang, and S.-M. Fei, Unified mul-
tivariate trace estimation and quantum error mitigation, Phys.
Rev. A 107, 012606 (2023).

[53] S. Johri, D. S. Steiger, and M. Troyer, Entanglement spec-
troscopy on a quantum computer, Phys. Rev. B 96, 195136
(2017).

[54] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P.
Horodecki, and L. C. Kwek, Direct estimations of linear and
nonlinear functionals of a quantum state, Phys. Rev. Lett. 88,
217901 (2002).

[55] Y. Subasi, L. Cincio, and P. J. Coles, Entanglement spec-
troscopy with a depth-two quantum circuit, J. Phys. A: Math.
Theor. 52, 044001 (2019).

[56] J. Yirka and Y. Subasi, Qubit-efficient entanglement spec-
troscopy using qubit resets, Quantum 5, 535 (2021).

[57] M. Shin, J. Lee, S. Lee, and K. Jeong, Resource-efficient
algorithm for estimating the trace of quantum state powers,
arXiv:2408.00314.

[58] Z. Liu, Y. Tang, H. Dai, P. Liu, S. Chen, and X. Ma, Detecting
entanglement in quantum many-body systems via permutation
moments, Phys. Rev. Lett. 129, 260501 (2022).

[59] H. Sharma and U. T. Bhosale, Signatures of quantum inte-
grability and exactly solvable dynamics in an infinite-range
many-body Floquet spin system, Phys. Rev. B 110, 064313
(2024).

[60] Z. Wang and D. Bouwmeester, Correspondence between quasi-
particle dissipation and quantum information decay in open
quantum systems, Phys. Rev. A 110, 032407 (2024).

[61] Z. Cai, R. Babbush, S. C. Benjamin, S. Endo, W. J. Huggins, Y.
Li, J. R. McClean, and T. E. O’Brien, Quantum error mitigation,
Rev. Mod. Phys. 95, 045005 (2023).

[62] J. Miguel-Ramiro, Z. Shi, L. Dellantonio, A. Chan, C. A.
Muschik, and W. Diir, Superposed quantum error mitigation,
Phys. Rev. Lett. 131, 230601 (2023).

[63] J. Eisert, D. Hangleiter, N. Walk, I. Roth, D. Markham, R.
Parekh, U. Chabaud, and E. Kashefi, Quantum certification and
benchmarking, Nat. Rev. Phys. 2, 382 (2020).

[64] M. Kliesch and I. Roth, Theory of quantum system certification,
PRX Quantum 2, 010201 (2021).

[65] M. Larocca, F. Sauvage, F. M. Sbahi, G. Verdon, P. J. Coles, and
M. Cerezo, Group-invariant quantum machine learning, PRX
Quantum 3, 030341 (2022).

[66] L. Schatzki, A. Arrasmith, P. J. Coles, and M. Cerezo, Entan-
gled datasets for quantum machine learning, arXiv:2109.03400.

[67] Y. LiandJ. Shang, Geometric mean of bipartite concurrences as
a genuine multipartite entanglement measure, Phys. Rev. Res. 4,
023059 (2022).

[68] X. Ge, L. Liu, Y. Wang, Y. Xiang, G. Zhang, L. Li, and S.
Cheng, Faithful geometric measures for genuine tripartite en-
tanglement, Phys. Rev. A 110, L010402 (2024).

[69] Z.-X. Jin, X. Li-Jost, S.-M. Fei, and C.-F. Qiao, Entanglement
measures based on the complete information of reduced states,
Phys. Rev. A 107, 012409 (2023).

[70] N. Linden and A. Winter, A new inequality for the von neumann
entropy, Commun. Math. Phys. 259, 129 (2005).

[71] N. Linden, M. Mosonyi, and A. Winter, The structure of
Rényi entropic inequalities, Proc. R. Soc. A 469, 20120737
(2013).

[72] J. Cadney, M. Huber, N. Linden, and A. Winter, Inequalities for
the ranks of multipartite quantum states, Linear Algebra and its
Applications 452, 153 (2014).

[73] B. Ibinson, N. Linden, and A. Winter, All inequalities for the
relative entropy, Commun. Math. Phys. 269, 223 (2006).

L032022-6



GENERALIZED CONCENTRATABLE ENTANGLEMENT VIA ...

PHYSICAL REVIEW RESEARCH 7, L032022 (2025)

[74] S. Morelli, C. Klockl, C. Eltschka, J. Siewert, and M. Huber,
Dimensionally sharp inequalities for the linear entropy, Linear
Algebra and its Applications 584, 294 (2020).

[75] P. Appel, M. Huber, and C. Klockl, Monogamy of correlations
and entropy inequalities in the Bloch picture, J. Phys. Commun.
4, 025009 (2020).

[76] E. Chitambar and G. Gour, Quantum resource theories, Rev.
Mod. Phys. 91, 025001 (2019).

[77] A. Aloy, M. Fadel, and J. Tura, The quantum marginal problem
for symmetric states: Applications to variational optimization,
nonlocality and self-testing, New J. Phys. 23, 033026 (2021).

[78] MOSEK. ApS, The MOSEK Optimization Toolbox for MAT-
LAB Manual. Version 10.1. (2024).

[79] H. A. Carteret, A. Higuchi, and A. Sudbery, Multipartite gener-
alization of the Schmidt decomposition, J. Math. Phys. 41, 7932
(2000).

[80] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[81] E. P. Hanson and N. Datta, Tight uniform continuity bound for
a family of entropies, arXiv:1707.04249.

[82] X. Hu and Z. Ye, Generalized quantum entropy, J. Math. Phys.
47, 023502 (2006).

[83] B. Legat, C. Coey, R. Deits, J. Huchette, and A. Perry, Sum-
of-squares optimization in Julia, in JuMP Developers Meetup/
Workshop (Massachusetts Institute of Technology, Sloan2017).

[84] M. A. Nielsen, Conditions for a class of entanglement transfor-
mations, Phys. Rev. Lett. 83, 436 (1999).

[85] G. A. Raggio, Properties of g-entropies, J. Math. Phys. 36, 4785
(1995).

[86] T. Weisser, B. Legat, C. Coey, L. Kapelevich, and J. P. Vielma,
Polynomial and moment optimization in julia and JuMP, in
JuliaCon, Baltimore, USA (University of Maryland, 2019).

L032022-7



