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ABSTRACT

In this paper we present phenomenological evidence for the validity of an exponential distance relation (also known as generalized
Titius—Bode law) in the 32 planetary systems (31 extra solar, plus our Solar System) containing at least five planets each (known
up to July 2023). We produce the semi-log fittings of the data, and we check them against the statistical indicators of R?> and
Median. Then we compare them with the data of 4000 artificial planetary systems created at random. In this way, a possible
origin by chance of the Titius—Bode rule (TBR) is reasonably excluded. We also point out that in some systems the fittings can
be definitely improved by the insertion of new planets into specific positions. We discuss the harmonic resonances method and
fittings, and compare them with the Titius—Bode fittings. Moreover, for some specific systems, we compare the Titius—Bode
fitting against a polynomial fitting ( ~ n?). Further comparisons with previous relevant works are reported in the last section. It
emerges that TBR describes 25 out of the 32 planetary systems (78 per cent) with a R? > 0.95. Further, it results to be the most
economical (in terms of free parameters) and best-fitting law for the description of spacing among planetary orbits. This analysis
allows us to conclude that an exponential distance relation can reasonably be considered as ‘valid’, or strongly corroborated,

also in extra solar planetary systems.

Key words: planetary systems —exoplanets.

1 INTRODUCTION

Following the footsteps of the visionary work of Johannes Kepler
(Kepler 1596), for more than 170 years scholars had been looking
for a law able to encode in a formula the distances of the known
planets from the Sun. Kepler proposed the platonic solids as a guide
to the numerical progression of the major axis of the elliptic orbits
he envisaged. Such an idea was quite rapidly abandoned, especially
after the dynamics of the Solar System had been unveiled by Isaac
Newton. Nevertheless the quest for a distance relation among the
planets of the Solar System remained alive. And actually the quest
soon extended also to the systems of moons of Jupiter and Saturn,
discovered in the meanwhile. After several precursors had paved the
way (among them we count Christian von Wolff, mathematician,
physicist, philosopher, and his brilliant disciple Immanuel Kant),
finally a rule for the distances of planets from the Sun was proposed
by Johann Daniel Titius (Titius 1766), and published as a note in
his German translation of the Charles Bonnet’s Contemplation de
la Nature (1764). Soon the law was noticed and popularized by the
much more famous astronomer Johann Elert Bode (Bode 1772).

The original formulation of the rule, proposed by Titius, can be
expressed by the simple formula

r(n)=04+0.3-2", (n

* E-mail: fabio@phys.ntu.edu.tw (FS); krommydas.di@gmail.com (DK)

where the distance r(n) of the planet from the Sun is given
in astronomical units, i.e. in terms of the radius of the Earth’s
orbit (which defines 1 Astronomical Unit ~ 150 x 10° km). For
n=—00,0,1,2, ... this relation gives the distances r(n) from the
Sun, respectively, of Mercury, Venus, Earth, Mars, etc., including the
asteroid belt (actually, Ceres, the heaviest asteroid, was discovered
by Piazzi in 1801 by following the indication of this rule withn = 3),
and Uranus (n = 6), which at the moment of the first formulation of
the law (1766—1772) had not yet been discovered [see the book
of Nieto (1972) for history, different explicit formulations, and
extensive bibliography].

In its original form (1), the relation was not able to account for
the distance of Neptune and Pluto. During the 20th century more
refined versions of the rule were elaborated (Blagg 1913; Richardson
1945; Dermott 1968). The present-day versions are able to describe
not only the planetary distances within the solar system, including
planets like Neptune and Pluto, but also can be successfully applied
to the systems of satellites orbiting Jupiter, Saturn, and Uranus (See
Appendix D for the precise ways in which those moons obey TBR).
The agreement between the predicted and the observed distances of
the various satellites from the central body is really good, of the order
of a few per cents (see e.g. again Nieto 1972). The modern version
of the Titius—Bode rule can be expressed, if we neglect second-order
corrections, by an exponential relation as

r(n) = a e, 2)

© 2025 The Author(s).

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

G202 19qWanoN 0 U Josn UNSIPS| A 8EZ1208/0EL2/v/8ES/A0IME/SEIUL/WOO"dNo-olWapede//:Sdny WOy papeojumoq



Titius-Bode rule in extra solar planetary systems

where the factor 2 is introduced for convenience reasons and n =
1,2,3,....
For the Solar System we have

22 = 0.53707, e ~1.7110,

a =0.21363 A.U.

The amazing thing found by Blagg was that the geometric progres-
sion ratio ¢?* is roughly the same for the Solar System and for the
satellite systems of Jupiter (e** ~ 1.7277), Saturn (e** ~ 1.5967),
and Uranus (¢** ~ 1.4662). The parameter A is dimensionless, its
value is inferred from the observed data, and it depends on the specific
system considered (planetary or satellite system). Also the parameter
a is in general obtained from observations, it has the dimension of
a length and it is linked to the radius of the first orbit of the system
considered, since 7(1) = ae**. With a slightly different formulation
of the TB rule as r(n) = ae®"~Y n =1,2,3, ..., then a coincides
with the radius of the first orbit, r(1) = a.

Despite its quite evident successes in describing the spacing of the
local planetary systems (Solar system, plus the satellites systems of
Jupiter, Saturn, Uranus), the physical interpretation of the TB relation
has been often questioned and remains a matter for heated debate.

Broadly speaking, there are at least three groups of opinions re-
garding the TBR and its physical significance: (i) the TBR constitutes
just simply sheer numerology; (ii) the TBR is valid only for some
specific systems due to particular conditions occurred during the
planet formation process; (iii) the TBR is largely a direct consequence
of (some) planetary stability requirements which should be satisfied
during the course of the systems’ existence.

Many criticisms have been risen against an effective physical
meaning of the law. For example, according to Graner & Dubrulle
(1994) the TB relation is probably just a consequence of the scale
invariance of the disc which gave rise to the planets. However, ac-
cording to Lynch (2003), it is not possible to conclude unequivocally
that laws of Titius—Bode type are, or are not, physically significant.
In other words, Lynch convincingly argued that the agreement with
the observations cannot be safely considered as a mere statistical
chance. So, the possibility of a physical explanation for the observed
distributions remains open.

A somehow similar conclusion also appears to be consistent with
the work by Hayes and Tremaine (1998). Following an approach
which involves some statistical numerical experiments, they chose
to fit randomly selected artificial planetary systems to Titius—Bode
type laws by considering a distance rule inspired by the Hill stability
of adjacent planets. They did not identify a particularly profound
significance of the TBR, except that its general meaning is that stable
planetary systems tend to be spaced in a regular manner.

On the side of physical models, many theories have been developed
during the last 250 years to explain the Titius—Bode relation. There
have been dynamical models connected with the theory of the origin
of the solar system (Alfven 1954), gravitational theories (Schmidt
1946), nebular theories (Weizsidcker 1943, Willerding 1992), just to
cite some of them. Many of them have been excellently reviewed in
the book of Nieto (1972).

Also the approaches involving ideas from scale relativity, or
stochastic trajectories, or also Schrodinger-like equations, in order to
give account of the rule (2) have a robust tradition. During the years
many authors have suggested various models in this direction (for an
incomplete list of papers see for example: Caswell 1929; Albeverio
et al. 1983; Nottale 1996; Agnese & Festa 1997; Nottale et al. 1997;
Reinisch 1998; de Oliveira Neto et al. 2004; Scardigli 2007).
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Of course, in the last 15-20 years, with the discovery of a growing
number of extra solar planetary systems, it has become increasingly
important to check the TB relation in the new observed systems.
Following the original tradition, many authors have applied the TB
rule to exoplanetary systems in order to predict new planets. In this
direction goes, for example, the paper of Bovaird & Lineweaver
(2013). The exoplanetary system 55 Cancri (HD 75732), containing
five planets, was investigated in some detail using the TBR by Chang
(2008), Poveda & Lara (2008), and Cuntz (2012). Cuntz (2012), in
particular, argued that new planetary candidates were predicted in
the 55 Cancri system through the Titius—Bode’s relation, and perhaps
one of the new planets could be habitable. Also the planetary system
revolving around the star HD10180 has been studied in some specific
detail (Lovis et al. 2011), and it appears to satisfy the TB rule.
According to Chang (2010) one cannot rule out the possibility that
the distribution of the ratio of orbiting periods in multiple planet
systems is consistent with that derived from Titius—Bode’s relation.
Lara et al. (2020) used data from 27 exoplanetary systems with at
least five planets and showed that the planetary orbital periods in
exoplanetary systems are not consistent with a random distribution.

The main purpose of this paper is to examine the 32 planetary
systems that, up to today (July 2023, see NASA Archive), appear to
host at least five planets each, all orbiting around a single star, and
to see if and to what extent the TB rule is satisfied in such systems.
We decided to consider systems with at least five planets in order
to fit at best the two parameters of TB rule, and to minimize the
possible (statistical) errors. Of course, this investigation has been
made possible by the surveys and discoveries operated by Kepler
and TESS satellites, in particular in the last ten years or so.

On the other hand, a survey aimed at checking the TB rule in extra
solar planetary systems seems to be quite timely now, since the data
released by Kepler and TESS satellites cover a significant number of
systems, each one endowed with a significant number of confirmed
planets (at least five, as said).

As for the source of our data, we decided to stick with the NASA
Exoplanet Archive (NASA Archive), in order to have an up-to-dated
source, as well as to enjoy a reliable uniformity in the presentation
of the data.

In this paper we focus mainly on an exponential spacing law (aka
Titius—Bode rule). In Section 2 we present the planetary systems
under scrutiny, and discuss the analytical tools employed to produce
fittings and graphs. In Section 3 (following the tradition which led
to the proposal and discovery of the asteroid belt), we present the
possibility to improve some fittings by inserting new planets to fill
suspected gaps among existing planetary orbits. We discuss several
examples and propose some ‘predictions’. In Section 4 we discuss
a possible relation between the TB rule and the age of the planetary
systems. In Sections 5 and 6 we briefly discuss also different
descriptions of the planetary spacing data, namely the harmonic
resonances fitting (Section 5), and the polynomial fitting (Section 6).
Finally, Section 7 is devoted to some further specific comparisons
with previous works, and then to conclusions.

We are pretty confident in saying that the main result of our paper
is that the TB law seems to be confirmed as the ‘best’ rule to describe
planetary spacing also among extra solar planetary systems, at least
for what concerns the best fitting obtained with a minimum number
of free parameters (two).

2 FITTINGS AND GRAPHS

The list of planetary systems considered in this work is given in
Table 1.

MNRAS 538, 2730-2743 (2025)
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2732  D. Krommydas and F. Scardigli

Table 1. Each of the 32 systems considered in this work hosts at least five
planets, revolving around a single star. The statistical indicators displayed are
R? and Median (for definitions see the main text and appendices). We have a
maximum agreement when R2, . = 1 and Mediany,x = 0. For references on
each single planetary system see Table E1.

System Planets R? Median Notes
Sun 10 0.993448869 0.019581007  with Ceres
KOI-351 8 0.96322542 0.059404861 Kepler 90
Trappist 1 7 0.994255648 0.012727939 -
HD 10180 6 0.992725066 0.06644463 -
HD 191939 6 0.945551901 0.08825776 2022
HD 219134 6 0.913657699 0.126773358 -
HD 34445 6 0.974290137 0.108819429 -
K2-138 6 0.945458309 0.094321758 2021
Kepler 11 6 0.962373014 0.044210656 -
Kepler 80 6 0.955414548 0.04023616 -
TOI- 1136 6 0.987422135 0.031168586 2022
TOI - 178 6 0.983217838 0.047680406 2021
HD 108236 5 0.976381637 0.037194964 2021
HD 158259 5 0.999713447 0.003377513 2020
HD 23472 5 0.988496548 0.022330332 2022
HD 40307 5 0.984933377 0.046130252 -
K2-268 5 0.957182918 0.062647955 2019
K2-384 5 0.983020508 0.04991254 2022
Kepler 102 5 0.987900552 0.017713236 -
Kepler 122 5 0.98710756 0.026533536 -
Kepler-150 5 0.8605413 0.236636167 -
Kepler 154 5 0.985703723 0.045352455 -
Kepler 169 5 0.875354644 0.151151179 -
Kepler 186 5 0.92681234 0.093772029 -
Kepler 238 5 0.98771232 0.053557294 -
Kepler 292 5 0.995427692 0.008569513 -
Kepler 32 5 0.971262925 0.042153715 -
Kepler 33 5 0.948841017 0.054322078 -
Kepler 55 5 0.988367826 0.02874602 -
Kepler 62 5 0.950734271 0.15977283 -
Kepler 82 5 0.955569351 0.086643589 2019
Kepler 84 5 0.992394962 0.022666502 -

As we said, the data used to construct Table 1 are taken from NASA
Exoplanet Archive.! Hereafter we discuss the reasons to consider
that list, give comments, and explanations of parameters appearing
in Table 1, and discuss anomalous cases.

First, in our analysis, we only consider extra solar planetary
systems with at least five confirmed planets each (or more), revolving
around a single star. The choice of the number ‘5’ for the population
of the planetary systems examined, could appear quite arbitrary, and
perhaps it is. However, simple practical considerations push towards
that choice. Since our aim is to fit the distances/periods of the planets
of a single system with a two-parameters exponential law, of course
one would like to maximize the number of points contained in a
single system, and therefore to choose systems with a large number
of planets. To compute with accuracy the coefficients of a semi-
log linear regression requires as many points as possible. That is
even more true, if we consider that some of the TB regression lines
will be used to ‘predict’ the presence of new planets in a given
system. Obviously, the smaller the number of points you have at
your disposal, the less performing is an exponential TB law in
this prediction task. On the other hand, the known systems with

IFor this reason we excluded the system HIP 41378, which seems to have
five planets, but the data of the fifth planet are not available on the NASA
Archive.

MNRAS 538, 2730-2743 (2025)

Table 2. R? and Median analysis for planetary systems with two or three
stars at their centre. Maximum agreement for R,znax = 1 and Mediang,x = 0.

System Planets R? Median Notes
Kepler 20 6 0.994934868  0.020480257 2 stars
55 Cancri 5 0.974846945  0.105266615 2 stars
GJ 667 C 5 0.940319108  0.085544299 3 stars
Kepler 296 5 0.999532566  0.006855603 2 stars
Kepler 444 5 0.996885042  0.007292345 3 stars

Table 3. Raw data for the planetary system KOI-351.

Planet Host N.Stars and Orbital period
name name N.Planets (days)
KOI-351 b KOI-351 1-8 7.008151£0.000019
KOI-351 ¢ KOI-351 1-8 8.71937540.000027
KOI-351d KOI-351 1-8 59.73667+0.00038
KOI-351 e KOI-351 1-8 91.93913+0.00073
KOI-351 f KOI-351 1-8 124.9144+0.0019
KOI-351 g KOI-351 1-8 210.60697+0.00043
KOI-351 h KOI-351 1-8 331.60059+0.00037
Kepler-90 i KOI-351 1-8 14.44912+0.00020

many planets are not so many, and we also want to check the TB
relation in as many different systems as possible, in order to strongly
corroborate its statistical validity. The balance between these two
opposite requirements has pushed us to choose systems populated
with at least five planets.

For sake of completeness, in Table 2 we report also the statistical
analysis for planetary systems containing at least five planets, but
with two or three stars at their centre. Although some of these systems
present very good statistical indicators (with the exception of GJ 667
C), it is also fair to say that the presence of two or three stars at the
centre of these systems can complicate the understanding of their
dynamics in unexpected ways. Therefore, as for the discussion of
the phenomenology of the Titius—Bode rule in extra solar planetary
systems, we think it is prudent to confine ourselves to single-star
systems, at least in this paper, postponing the analysis of multiple-
star systems to future works.”

2.1 Semi-log formulation of TB rule

In Table 3 we display a sample of the raw data of one of the
32 planetary systems under our scrutiny (precisely, KOI-351), data
that we used to build the semi-log linear regressions, and hence to
compute the R? and Median statistical indicators showed in Table 1.
In particular, to our scope, pivotal data are: number of planets
for each system; number of stars in each system (we considered
planetary systems with only one single star at the centre); period
and/or semimajor axis of each planetary orbit.

In order to produce a linear fitting of the data presented in Table 3,
it is useful to take the log of relation (2) so that

logr(n) =loga + 2in, 3)

2Further, we note that the system HD 20781-2, endowed with five planets, has
not been reported neither in Table 1 nor in Table 2, since not only it contains
two stars at its centre, but apparently four planets revolve around HD 20781,
and one planet revolves around HD 20782... a really too complicated system!
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which can be rewritten as sSun

12
Y(n) = A + Bn, “) 11 ()

L)
where Y(n) = logr(n). The linear fittings will provide the coef- _ 1::
ficients A and B, which are linked to the TB parameters by the = .
relations g ]
[

a=et 61
A= B)2. Q) ]
Since the planetary orbital periods are actually the variables directly ' : ’ ¢ ’ - ¢ ! : ? e
measured by the observers, instead of semimajor axes, we can make .
use of Kepler third law, 72 = kr?3, to reformulate the rule (2) in terms i Trappist 1
of orbital periods and integers 3 “ 1 (b)

254
T? =kr’ = ka’e™" (6)

= 20-
that is [
_8‘ 1.5
T(n) = (ka’)'/* ™" ™
Taking the log of both members we have o5 &
Z(n) = C + Dn, ®) L 2 3 ] 5 6 7
where
| Kepler-84

Z@m)=logT(n), C= 3 log(ka®), D =3x. ) (c)

3.51
Following equations (3)—(8), for each planetary system we proceed -
to order in an increasing way the periods 7'(n), or better the =7
log T(n), and we label each term of the resulting sequence with '30!'2‘5— .
an increasing natural integer i = 1, 2, 3, .... In so doing we obtain, - 20 )
for each system, the set of data {i, log 7'(i)} to which the usual linear
regression method is applied (the least squared method). Some of 1.5
these plots are displayed, as examples, at the end of this Section in 1 ' 3 ) 5

n

Fig. 1.

In our diagrams we do not report error bars. The reason is simple:
from Table 3, and from the general tables in the NASA Archive, it
appears clearly that the large majority of the errors on the periods
(measured in days) are at most of the order of 1072 or less. Since
we are interested in displaying on the diagrams the logs of periods,
any (already small) error bar would be further strongly suppressed.
In formulae, if we have T' = T, % ¢, then

log(T) = log(Ty + &) =~ log Ty + % , (10)
0

and displaying error bars of the order of 10~3 or less would be

graphically tough, as well as useless.

2.2 Statistical tools

The tools we use to quantify the ‘goodness’ of the linear regressions,
and consequently of the evaluations of the TB parameters, are the
R? and Median statistical indicators (see Appendices A, B, C for
definitions and properties). An inspection of Table 1 reveals that, of
the 32 single-star planetary systems (including our Solar systems),
at least six have an R” greater than 0.99, revealing a very good
agreement between the astronomical data and the linear regression
with the phenomenological TB rule.

One of the most common arguments used against the TB rule
concerns a possible origin at random of the law itself. According

3 A formulation of the exponential TB relation that uses orbital periods (in
place of semimajor axis) is also known under the name of ‘Dermott’s law’
(Dermott 1968).

Figure 1. Examples of various TB fittings for different systems. (a) TB
fitting of the Solar system, including Ceres and Pluto, namely 10 plan-
ets. The statistical indicators (see Table 1) are R? = 0.993448869 and
Median = 0.019581007. (b) TB fitting of Trappist 1, a system with 7
confirmed planets. The statistical indicators (Table 1) are R? = 0.994255648
and Median = 0.012727939. (¢) TB fitting of Kepler-84, a system with five
confirmed planets. The statistical indicators (Table 1) are R? = 0.992394962
and Median = 0.022666502.

to this point of view, it would be statistically ‘easy’ to produce
planetary systems at random, and they would naturally turn out to
obey the TB relation, by pure chance. To explore this possibility, we
created randomly 4000 artificial planetary systems: 1000 systems
with 8 planets each, 1000 with 7, 1000 with 6, and 1000 systems
with 5 planets each, respectively. In this first naive attempt we did
not impose any particular further constraint. Essentially, referring
for example to a system with 8 planets, we extracted at random 8
numbers 7;, with 0 < T; < 1, namely the periods of the 8 planets,
and reordered them in an increasing way, so that 7; < T} iffi < j.Of
course, through a trivial rescaling ©7;, these numbers can represent
any period from zero to infinity. We then fit the points {i, log 7;},
i=1,2,...,8,withalinear regression, and compute the relevant R?
and Median indicators. The averages over the 1000 random systems
are displayed in Table 4.

Already a superficial glimpse to Table 1 shows that the R?’s of
‘real’ systems are much closer to 1 than the R*’s attained by the
randomly created systems of Table 4. This first impression can be
further substantiated by comparing ‘real’ and ‘random’ statistical
indicators, as it is done in Table 5.

MNRAS 538, 2730-2743 (2025)
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Table 4. R? and Median analysis for randomly created planetary systems.

Maximum agreement R2,, = 1 and Mediany,x = 0.
Systems with R? Median Notes
8 Planets 0.91183483 0.1416661 Averages over 1000
random systems
7 Planets 0.90784475 0.14490068 idem
6 Planets 0.90386207 0.15141145 idem
5 Planets 0.89719999 0.15552048 idem

Table 5. Comparison between ‘Randomly created’ and ‘Real’ planetary
systems, R? and Median analysis.

Systems AVG of all R?’s AVG of all Medians
Randomly created 0.90518541 0.148374678
Real 0.966078109 0.06215032

There, we compare the averages of the statistical indicators R? and
Median computed for artificial as well as for real planetary systems.
From the figures, it appears extremely clear that an exponential
distance relation (aka TB law) fits much better real planetary systems
than artificial, randomly created, ones [see also the discussions
in, e.g. Lecar (1973); Pletser (1988); Hayes & Tremaine (1998);
Pletser (2017)]. Of course, the efficiency displayed by the TB rule
in describing distances in real planetary systems calls for a (fully
accepted and shared) theoretical explanation, which is perhaps still
lacking, at present. However, from the phenomenological point
of view, it is quite clear that the descriptive ability of the TB
relation cannot be easily denied, even for extra solar planetary
systems.

One can also refine the ‘quality’ of the artificial planetary systems,
for example by inserting mechanisms which mimic, in principle,
the gravitational evolution of the (proto)planetary system itself. A
possibility followed by Hayes & Tremaine (1998) is to require that
adjacent planets are separated by a minimum distance of k times the
sum of their Hill radii, for opportune values of k (0 < k < 8). This
originates more realistic planetary systems, and, according to the
conclusion of Hayes & Tremaine (1998), these systems generally fit
a Titius—Bode law better than the purely ‘random’ ones, and about as
well as some of the real planetary systems (as for example our own
Solar System). From our point of view, this reinforces our thesis that
the TB rule truly describes an actual phenomenological property of
real planetary systems (Lara et al. 2012).

To illustrate further the capacity of the TB relation to effectively
describe the spacing in planetary systems, we provide hereafter a
diagram where the TBR-valid systems are related to a ‘total number’
of observed exoplanetary systems. Of course, crucial is the definition
of what ‘total number’ should mean in this context. Given our
argued choice to restrict the investigation to systems with at least
five planets, it would result into a nonsense to compare the number
of TBR-valid systems with the totality of known planetary systems.
In fact, we have sufficiently clarified that to include in our analysis
also systems with two or three planets would produce meaningless
results from the point of view of the semi-log linear regressions and
the statistical indicators R? and Median. Obviously, there is only
a single straight line passing through two points and in such two-
planets systems we would get R? = 1, by definition. Just adding one
or two points (namely, planets) would not produce yet meaningful
results from the statistical point of view. Things become physically
(and statistically) significant when the examined planetary system

MNRAS 538, 2730-2743 (2025)
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Figure 2. Histogram of the R? and Median values. Distributions of the
Median-values (red, on the left) and of the R2-values (blue, on the right)
among the 32 exoplanetary systems listed in Table 1. The bin size is 0.01.

contains at least five planets. So, the ‘total number’ of exoplanet
systems against which we compare the number of systems where
TBR is satisfied (to certain degree) is the number of systems with
at least five planets orbiting a single star, namely the 32 systems of
Table 1.

Having stated the above, in Fig. 2 we show a histogram where
we display the distribution of the R?>-values among the 32 systems
considered in Table 1 (namely how many systems have R > 0.99,
how many with 0.98 < R? < 0.99, how many with 0.97 < R? <
0.98, etc., until the worst R> ~ 0.86 exhibited by Kepler 150).
The R? histogram is depicted in blue, while an analogue histogram
describing the distribution of the Median-values is depicted in red.
From the histograms it is quite clear that the TB relation is very
successful in mimicking the structure of real planetary systems.
According to Table 1, 6 systems out of 32 (19 per cent) have an
R?>>0.99, and 16 out of 32 (50 percent) have an R? > 0.98.
Only 7 systems out of 32 (22 percent) present an R? < 0.95
(and they will be specifically studied in the next section, since
they are very good candidates for the ‘prediction’, or insertion, of
new planets). These numbers speak by themselves in favour of the
remarkable efficiency of the Titius—Bode relation for the description
of orbital spacing in planetary systems with at least five planets
each.

3 PREDICTING NEW PLANETS WITH THE
TITIUS-BODE RULE

From its conception, Titius—Bode rule was used as a predictive tool
for discovering orbits of some celestial bodies in our Solar System.
The original form of the law described well the distances of the
known planets from the Sun, provided a gap between Mars and
Jupiter was admitted. Since the law was working so well for all
the known planets, and moreover it adapted almost perfectly to the
‘new comer’ Uranus (discovered in 1781), people started taking it
seriously, and searched a planet in between Mars and Jupiter for
about twenty years. The endeavor was crowned with success when
finally Piazzi observed Ceres (the first and largest asteroid) in 1801.

In the previous sections we showed that the modern formulation
of the law, equation (2), is in good agreement with the recent data of
a large number of exoplanetary systems. Therefore it sounds natural
to attempt harnessing TB rule, in order to successfully predict orbits
of possible ‘missing’ celestial bodies, perhaps just in those systems
where the agreement with the law is, apparently, less striking [on
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Kepler 186

logT(n)
.

Figure 3. This is a ‘raw’ fitting of the Kepler 186 system, namely before
the insertion of any gap. The statistical indicators (see Table 1) are R? =
0.92681234 and Median = 0.093772029. We can clearly identify a ‘big’
jump between the fourth and the fifth planet.

Table 6. R? and Median analysis before and after the insertion of one planet,
for exoplanetary systems with not optimal agreement (R < 0.95) according
to Titius—Bode rule.

Systems 0ld R? New R?2 Old Median New Median
HD 219134 913657699 974791203  .126773358 .05855297

HD 191939 945551901 985952278 08825776 .034601236
K2-138 945458309 991472463  .094321758  .035982039
Kepler-150 8605413 952818595 236636167  .152566663
Kepler 169 .875354644 960693503  .151151179  .091297799
Kepler 186 92681234 98794486 093772029  .030801858
Kepler 33 948841017 991408774  .054322078  .023090953

this see also e.g. Bovaird & Lineweaver (2013); Scholkmann (2013);
Huang & Bakos (2014); Bovaird et al. (2015); Lara et al. (2020)].

Our procedure for achieving such predictions is described in what
follows, and it appears quite straightforward. To our understanding,
the predictions are readily experimentally testable in present or
future exploratory exoplanetary missions (see e.g. PLATO; ARIEL;
TOLIMAN).

To start with, we give a quantitative definition of optimal agree-
ment for a TB fitting by using the R? coefficient of determination:
any system with an R? > 0.95 is said to be in optimal agreement
with the TB rule. The idea now is that for the few systems where the
agreement with TB rule is not optimal, we can quite easily identify
at least a (big) ‘jump’ in the fitting graph (see e.g. the ‘jumps’ in
Fig. 3). We then interpret the ‘jump’ as a missing celestial object,
whose orbital period (or position) can be predicted using the TB
fitting. Since the values of log 7 on the Y axis are fixed (namely
given by the observations), then, in order to ‘smooth’ the jump in
the graph (focus on Fig. 3 as an example), the only freedom we
have is to insert a gap on the X axis, namely to shift the numerical
places of the planets on the X axis. Below, we discuss an example
and a detailed explanation of our predictive procedure for the few
exoplanetary systems with a non-optimal agreement.

First, we collect in Table 6 the planetary systems (chosen from
those listed in Table 1), whose agreement is non-optimal (namely
R? < 0.95).

We consider then, as a first example, Kepler 186, a system with five
planets. We compute the R? resulting from a direct linear regression
of the five-planet system, without any gap inserted (Fig. 3). Then we
check whether the insertion of one gap improves the R? and Median
(significantly) or not. We note that if a gap (and therefore a planet)
is placed at any position other than that of the big ‘jump’, the fit
with TB becomes worse (R? worsens), as it can be seen from Fig. 4.
Instead, if the gap is placed at the big ‘jump’ (between the fourth
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Kepler 186 - Planet added n=2

Figure 4. In the Kepler 186 system, inserting for example a planet between
the first and second planet makes the fit to TB law worse, i.e. R? decreases
and the Median increases significantly. The position of the hypothetical planet
(represented by the red square) is n = 2. [R? = 0.864350834, Median =
0.141705383].

Kepler 186 - Planet added n=5

Figure 5. In the Kepler 186 system, inserting a planet between the fourth
and fifth planet makes the fit to TB law much better, i.e. improves R? and
Median significantly. The position of the hypothetical planet (represented by
the red square) is n = 5. [R% = 0.98794486, Median = 0.030801858].

Table 7. Here we display experimentally testable predictions of the sequence
positions and the periods of the planets ‘predicted’ with TB rule.

Systems Position of Predicted
predicted planet period (days)
HD 219134 n==6 488.3976385
HD 191939 n==6 744.2371442
K2-138 n==6 23.05233175
Kepler 150 n=>5 145.3213414
Kepler 169 n=>5 36.08528335
Kepler 186 n=>5 56.03297983
Kepler 33 n=2 30.00633542

and the fifth planet), both R? and Median are significantly improved,
hence the fit with TB becomes much better (Fig. 5). This point is
very important: in most cases, the addition of a planet in an arbitrary
place, even if the planet follows exactly the TB law, makes the overall
fit worse. Only when the planet is placed at the right point of a (big)
‘jump’, then the fit becomes better; and significantly at that point.
Once the above procedure is applied to all the systems contained in
Table 6, the experimentally testable outcome are the orbital periods
of the predicted planets, displayed in Table 7. We point out that,
using this method, it would be possible in principle to insert more
than one gap (even not consecutive), and therefore more than one
planet, in a TB fitting. We refrain however to do that, since it would
probably increase the bias of the data too much. For example, adding
two points to a set of five would affect the 40 per cent of the total
data, or even adding two points to a set of seven would imply to bias
almost the 30 per cent of the data. A further argument in favour of

MNRAS 538, 2730-2743 (2025)
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being sparing in the addition of new gaps or planets in a planetary
system is the following: the geometrical intuition suggests that, given
two bunches of points on a diagram, the R? of a linear regression
among those points will be in general improved by ‘moving away’
one bunch of points from the other. So, in general, it looks wise not
to abuse with the insertion of ‘new’ planets. The possible reasons
why these predicted missing planets have not yet been detected in
previous surveys may be various, the first being, of course, the general
difficulty of these measurements. A further realistic possibility is that
the missing planets are not really planets, but instead for example
asteroid belts, or clouds of dust (as it happens in our solar system).
This possibility could be supported by the fact that, apart from Kepler
33, all the other systems allow for a gap at n = 5 or n = 6. Actually,
this was the case of our solar system, where the gap was exactly atn =
5, between Mars and Jupiter. To showcase this possibility, we point
out that the R? and Median of a TB fitting of our solar system without
the inclusion of Ceres or the asteroid belt are, respectively, R, =
0.981440834 and Mediangg = 0.034928964; to be compared with
the current values, which include the gap at n = 5 between Mars and
Jupiter, i.e. R2,, = 0.993448869 and Median,e, = 0.019581007.

Finally, we would like to emphasize that the point of this section is
not to improve the agreement of the TB rule with systems of
sub-optimal agreement. The sole purpose of this section is to
provide a testable prediction of the TB rule, which we believe
may help in the search and discovery of new exoplanetary celestial
objects.

4 TB RULE AND THE AGE OF THE
PLANETARY SYSTEMS

It is clear that TB rule is intended to be obeyed on a statistical basis,
by planetary systems which are already ‘running’ by a ‘fair’ amount
of time. At the beginning of their history, protoplanetary systems are
obviously full of dust, small debris, rocks etc. which can be found at
any distance from the central star. With time, the planetary formation
process goes on, matter aggregates onto specific bodies, and planets
slowly emerge. In particular, preferred orbits, those described for
example by TB rule, slowly emerge and become more precise and
definite. On the other hand, it is well known that light objects, like
comets, small debris, in general small objects, do not (and are not
expected to) obey, singularly, the TB rule, at any time. Therefore, it
seems reasonable to investigate a possible correlation between the
age of the planetary system, i.e. the age of the central star, and the
goodness to which the TB rule is obeyed in that planetary system.
Hereafter the reader will find such analysis.

In Table 8 we report, like in Table 1, the name of the planetary
system (i.e. the name of the central star), the number of planets
in the system, the R? indicator, but in place of Median column
we have the age of the central star in Gigayears. The age of the
central star in general is not explicitly given on the NASA Exoplanet
Archive (NASA Archive), however it can be obtained from literature
dedicated to the specific planetary system under scrutiny.

According to the above argument, in a diagram ‘R? versus Age of
Star’, one would expect several points pretty far from 1 for young
systems, and then for increasing ages, the points should accumulate
nearby R? = 1. Instead, looking at Fig. 6, the situation is not such.
We see young systems close to R? = 1, as well as older systems;
and equally, young systems far from R? = 1, as well as old systems.
Thus, according to the diagram in Fig. 6, no correlation emerges
between the age of a planetary system, and the ‘goodness’ to which
the system obeys TB rule.
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Table 8. R? and age of the central star (in Gyr). Data source: NASA
Exoplanet Archive, plus literature on the specific planetary system considered.

System Planets R? Age of Notes
Star (Gyr)
Sun 10 0.993448869 4.603 with Ceres
KOI-351 8 0.96322542 0.5 Kepler90
Trappist 1 7 0.994255648 72422 -
HD 10180 6 0.992725066 7.3 -
HD 191939 6 0.945551901 7+3 2022
HD 219134 6 0.913657699 9.3 -
HD 34445 6 0.974290137 8.5+2.0 -
K2-138 6 0.945458309 23048 2021
Kepler 11 6 0.962373014 32409 -
Kepler 80 6 0.955414548 2 -
TOI - 1136 6 0.987422135 0.7 2022
TOI - 178 6 0.983217838 71453 2021
HD 108236 5 0.976381637 6.7+4 2021
HD 158259 5 0.999713447 7.4 2020
HD 23472 5 0.988496548 - 2022
HD 40307 5 0.984933377 6.9+4 -
K2-268 5 0.957182918 - 2019
K2-384 5 0.983020508 - 2022
Kepler 102 5 0.987900552 1.41 -
Kepler 122 5 0.98710756 3.89 -
Kepler-150 5 0.8605413 4.57 -
Kepler 154 5 0.985703723 4.47 -
Kepler 169 5 0.875354644 - -
Kepler 186 5 0.92681234 4.040.6 -
Kepler 238 5 0.98771232 6.76 £2 -
Kepler 292 5 0.995427692 5.13+3 -
Kepler 32 5 0.971262925 27+1 -
Kepler 33 5 0.948841017 427 -
Kepler 55 5 0.988367826 3.13 -
Kepler 62 5 0.950734271 7+4 -
Kepler 82 5 0.955569351 5.1 2019
Kepler 84 5 0.992394962 49 -
R? vs Age
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Figure 6. Diagram reporting R? versus age of the central star.

5 COMPARISON BETWEEN THE TB RULE AND

THE HARMONIC RESONANCES METHOD

Of course, the TB rule does not represent the only attempt to give a
phenomenological description of planetary spacing. One of the most
interesting and promising ways to arrive to such a description is
the so-called Harmonic Resonances (HR) method. The idea comes
from the observation that points of a periodic system, interacting

G202 19qWanoN 0 U Josn UNSIPS| A 8EZ1208/0EL2/v/8ES/A0IME/SEIUL/WOO"dNo-olWapede//:Sdny WOy papeojumoq



Titius-Bode rule in extra solar planetary systems

with each other (as for example the orbital systems), tend to manifest
resonances, and resonances tend to stabilize the periodic system
itself. In particular, computer simulations of planetary systems have
shown that random injections of new planets tends to produce
dynamically unstable orbits, until the planets surviving in the system
settle their orbital periods into ‘harmonic ratios’, namely in (quasi)
rational ratios, usually expressible in simple fractions [on this see
Peale (1976); McFadden et al. (2007); Batygin, Morbidelli (2013);
Aschwanden (2018)]. Historically, the HR idea seems to originate
from a generalization of a resonance relation already known to
Laplace (1829) among the orbital periods of three Galilean satellites
of Jupiter, namely lo, Europa, Ganymede, which can be written as

1 3 2

+ - ~0. (11)
TIo TEur. TGan,

Such relation is fulfilled with an accuracy of the order of &~ 1073, and,
using more precise orbital periods, perhaps even to an astonishing
accuracy of &~ 10~ (Peale 1976).

On the ground of the orbital periods known in the Solar System,
Aschwanden (2018) proposed a generalization of equation (11) for
a two-body resonance existing between two neighboured planets in
stable long-term orbits, as

H;  Hiy
T; Tiv1

SN OFFEREN (12)

The H; are (small) integers, 7; is the orbital period of the i-th planet,
and w; ;4 is the residual that accounts for possible further resonances
from third or more planets involved. As Aschwanden explains, once
considered two neighboured planets, we know from observation
T;, T:+1, and we choose the two smallest integers H;, H; 1 (positive
or negative) such that the modulus of the residual |w; ;1| results
to be minimal. The ratios H,,;/H; are called harmonic ratios. Of
course, once a particular ratio between two periods is established,
T;+1/T; >~ H;y1/H;, this can be immediately transferred into a ratio
between the distances of the planets from the central body, by virtue
of Kepler’s third law, R oc T%/3. On the basis of previous empirical
work (Peale 1976), the integers H; are picked in the range 1,...,5, and
therefore the possible distinct harmonic ratios considered are (5 :
4),(5:3),5:2),5:1),(4:3),4:1),3:2),3:1),(2:1). This
procedure is applied by Aschwanden to all the nine neighboured
planet pairs that can be extracted from the Solar System, including
Ceres (considered here as the main representative of the asteroids
belt). So the pairs considered are: Mercury—Venus, Venus—Earth,
Earth—-Mars, Mars—Ceres, Ceres—Jupiter, Jupiter—Saturn, Saturn—
Uranus, Uranus—Neptune, and Neptune—Pluto. Empirically, As-
chwanden finds for the above nine planet pairs that the best-fitting
resonances are confined to the five particular ratios (3:2),(5:
3),(2:1),(5:2),(3: 1), and the residuals are all quite small, being
in the range w; ;+; ~ 0.005 — 0.06. Moreover, it is found that the
ratio (5 : 2) works for four different pairs Mercury—Venus, Mars—
Ceres, Ceres—Jupiter, Jupiter—Saturn, the ratio (2 : 1) describes the
pairs Earth-Mars and Uranus—Neptune, while the remaining three
ratios fit one single pair each.

Also the role of the most massive planet, Jupiter, is investigated
(Aschwanden 2018) by expanding the previous 2-body equation (12)
into a 3-body resonance condition
Hi  Hiyi  Hyp

Wi 41 - (13)
Ti Ti+1 TJup "

However, identical results were found (yielding Hy,, = 0), except
for the 3-body configuration Mars—Ceres—Jupiter. This supports the
conclusion that the neighboured planet—planet interaction is more
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important in shaping the resonance than the influence of the largest
giant planet, with the exception perhaps of the planet—asteroid pairs.

Once, through empirical attempts, the harmonic ratios are estab-
lished, they can be used to re-construct distances among planets in
the Solar System, of course via the Kepler third law, namely

Risi (T,-+1 )2/3 <H,-+1 )2/3

= ~ ) (14)
R T; H;
This procedure is applied by Aschwanden to the planets of the Solar
System, as well as to 7 moons of Jupiter, to 13 moons of Saturn, to
8 moons of Uranus, and to 6 moons of Neptune. All the satellites
are chosen according to the rule of having a diameter larger than
100 km, on the ground of the general rule that planetary spacing
patterns (as TB rule, or HR rule) are in general obeyed by ‘enough
big’ objects. It is in fact well-known that ‘small’ objects, like comets,
small asteroids, debris, etc. do not follow, singularly, any particular
pattern in the size of their orbits, and can be found at any distance
(allowed by classical mechanics) from the central body.

For all the above planetary systems, HR model produces an
agreement between observed planetary distances R,ps and model-
predicted values Ryeq significantly better than the Titius-Bode law
(2). The reported quantities by Aschwanden (2018) are the mean
and the standard deviation of the ratios R/ Rops computed for the
satellites of a given planetary system. For example, for the Solar
System the values for the TB law are Rtg/Rops = 0.95 £0.13, to
be compared against a Ryr/Rops = 1.00 £ 0.04 given by the HR
model. Similar good figures are described in Aschwanden (2018)
for the satellite systems of Jupiter, Saturn, Uranus, Neptune, and
even for two extra solar planetary systems, namely 55 Cnc, and HD
10180. Thus, Aschwanden (2018) concludes that the HR model is
clearly better than the TB rule in describing planetary spacing, and
can be also much more efficiently used to ‘predict’ possible missing
planets or satellites in ‘empty’ places of the planetary sequences
(Aschwanden & Scholkmann 2017; Scholkmann 2017).*

Although the above figures should not certainly be under-
appreciated, some considerations on the comparison between the
TB rule and the HR method are surely in order. HR method seems to
have some grounds in the classical mechanics of periodic systems,
perhaps firmer and more sounding than the grounds backing the
TB rule. However, as a matter of fact, there is no definite theory,
or bunch of theorems, in classical or celestial mechanics predicting
that a periodic system should exhibit (harmonic) resonances, after
that a certain amount of ‘running’ time has elapsed. And even less,
no theory predicts what specific harmonic ratios should be used
to describe a particular system. The integers entering the ratios in
equations (11), (12), (13), (14) are chosen empirically, ad hoc for

4 At a first sight, one further possibility to compare HR model and TB rule
could be to consider a R2-test for the HR method applied to Solar System, so
to compare it with the R2-test applied to the TB rule, also for the Solar System.
However, R2-tests are well defined, in general, for predictive models encoded
by a function, typically a linear regression, maybe coming from exponential
rules through taking a log (see equations 2 and 3). On the contrary, from
equation (14) it is clear that the HR method does not generate an exponential
law, neither a definite function. This would happen if the ratios H;11/H; were
the same for all the planet pairs, say (H;y1/ H;)?*® = . Then from equation
(14) one would infer R;+; = aR;, and hence R, = "~ 'Ry, which is the TB
rule. But in general the ratios H;1/H; are not the same for different pairs,
and actually they change from pair to pair in an (in principle) unpredictable
way. Therefore the R2-test seems to be non-applicable to the HR rule. So,
in order to compare TB and HR rules we have to stick on the Aschwanden
method Rpred/ Robs, above already described.

MNRAS 538, 2730-2743 (2025)
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any specific planetary pair, among ‘small’ integers. Of course, being
a matter of rational numbers, if the ratio (5:2) describes well, say, the
pair Jupiter—Saturn, nothing prevents us from thinking that perhaps
the ratios (7:3), or (8:3), or maybe (51:22), or (48:19), can describe
that pair even better. In other words, the arbitrariness in the choice
of a given ratio is large. A further weak point of the HR method is
that no theory predicts which ratio should be used for a particular
planetary pair, or if/why ratios have to be repeatedly used (and how
many times) to describe different pair of planets or satellites, as
happens for example in the Solar System with the pairs Mercury—
Venus, Mars—Ceres, Ceres—Jupiter, Jupiter—Saturn [and similarly in
other (exo)planetary systems]. The lack of any explicit theoretical
constraint for choosing the numbers H;, makes the HR method
equivalent to a model with five or even nine pairs of free parameters
(namely, 10 to 18 free parameters in total). Then it comes with
no surprise that the HR model fits the planetary distances (in our
solar system, as well as in exoplanetary systems) with much higher
accuracy than the TB law. Using a model that in principle has (at
least) ten free parameters produces quite obviously better fittings
than a model which has only two free parameters, as the TB rule in
equation (2). As said above, Aschwanden claims to have singled five
harmonic ratios out of nine which are particularly useful to describe
planetary and satellite distances, both in the Solar and extra Solar
systems. But, still, this is just an empirical, though extremely useful,
observation. No reasons are given about why just those five ratios
work well, or why the ratio (5:3) works better or worse than the ratio,
say, (49:31).

By comparison, TB rule has only two free parameters, that we
indicate with a and X. The two free parameters have to be adapted
(usually with a regression method) to the specific planetary system
under consideration, and in general they change from system to
system. The five harmonic ratios above proposed by Aschwanden,
on the contrary, seem to be valid (again on an empirical basis) for
any planetary system. However also the HR ratios have to be chosen
each time ad hoc for the specific system examined, and often with a
priori unpredictable repetitions.

All in all, we conclude that the TB rule still appears to be the
empirical, most economic and efficient rule on the ‘market’ to
describe planetary distances or periods.

6 IN LASKAR’S FOOTSTEPS: SECOND
DEGREE POLYNOMIAL AND EXPONENTIAL

Laskar (2000) presented an interesting model of planetary accretion,
and consequent formation of a planetary system, based on the
conservation of mass, momentum, and angular-momentum-deficit
stability. Without entering in technical details, we can say that
the model predicts the distribution of the final stable orbits of the
planetary system as a function of the initial linear mass density p(r)
in the protoplanetary disc. For a mass density of the form p(r) = ¢r?,
the distributions of the stable final orbits are given in Table 9, for
some specific values of p.

The parameters A;, B; are in general functions of the angular
momentum deficit, and of the (arbitrary) parameter ¢ (see Laskar
2000 for more details). In the context of this work, the parameters A;,
B; can be determined from the observational data via the usual linear
regression method. We notice that all the planetary distribution laws
predicted by the Laskar’s model contain only two (free) parameters
A;, B;. From this point of view the TB rule and the other distributions
proposed in Table 9 are similar. On the contrary, they differ blatantly
from the HR rule, where the potentially free parameters are at least
five or ten.

MNRAS 538, 2730-2743 (2025)

Table 9. Planetary distributions corresponding to different initial mass
densities p(r) = ¢rP of the protoplanetary discs. A constant distribution
p(r)=2¢,ie p =0, gives a law in n%; while p = —3/2 gives a Bode-like
exponential law. Of course,n =0, 1,2,3,....

p r(n)
0 rl2 = Ay + Bin
-1/2 3 = Ay + Ban
-1 r'/® = A3 + Byn
—-3/2 log(r) = A4 + Ban

Particularly significant is the law with r ~ n%. In fact, power
laws as n? were proposed in several works, even long ago, for
the distribution of planets or satellites in the Solar System (see
Caswell 1929; Schmidt 1946; Nottale 1996; Nottale et al. 1997;
Agnese & Festa 1997; Reinisch 1998; de Oliveira Neto et al. 2004).°
Although at a first glance the n? rule seems to be able to fit some data,
more attentive considerations reveal that authors in Caswell (1929),
Schmidt (1946), Nottale (1996), Nottale et al. (1997), Agnese &
Festa (1997), Reinisch (1998), and de Oliveira Neto et al. (2004)
are in general forced to use non-consecutive integers in order to
accommodate the planetary distances. Or, perhaps more often, they
split the Solar System into two sets of inner and outer planets (i.e.
terrestrial and gigantic planets); the semimajor axis in each set then
follow a n? power law to a high degree of approximation, however
with different coefficients A;, B; for each of the two planetary
families. In other words, we have two different fitting parabolae,
which in general do not join into a single smooth function.

However, the sounding theoretical basis of the n? rule (at least,
in the Laskar formulation), and its partial efficiency in describing
planetary distances, have pushed us to check such law also in extra
solar planetary systems. Therefore we took the worst six systems
in terms of R? and Median agreement with the TB rule, and we
recomputed them with a polynomial (A + Bn)? fitting, to see if their
new R? and Median indicators are better or worse than those obtained
with the TB fitting.

Since, according to Table 9 (Laskar), we have

r~(A+ Bn)?, (15)
and also, according to Kepler third law, r3 ~ T2, then it should hold
T~ A+ Bn. (16)

This last relation is the one we checked against the observational data.
The ‘goodness’ of the linear regressions in getting the coefficients
A, B is displayed in Table 10, as usual in terms of the R? statistical
indicator. The R? of the six worst TB systems (central column) are
compared with the R? of the same systems, but re-computed via a n2
fitting (right column). Just a simple glance is sufficient to conclude
that the TB fitting, even in the worst six cases, works way better
than the n? fitting. The TB rule seems to emerge, once again, as
the most efficient, and most economical mathematical relation to

Stis interesting to observe that, with the exception of Schmidt, all the authors
in Caswell (1929), Schmidt (1946), Nottale (1996), Nottale et al. (1997),
Agnese & Festa (1997), Reinisch (1998), and de Oliveira Neto et al. (2004)
arrive to a quadratic law for the orbital radii distribution, r ~ n?, because
they consider a quantum-like description of the planetary systems, where
they assume a Newtonian potential 1/ together with a Bohr-like quantization
condition for the angular momentum (per unit mass). A different example of
quantum-like description, that instead leads to an exponential rule r ~ ¢?*",
is presented in Scardigli (2007).
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Table 10. R? of the six worst TB systems compared with the R?
of the same systems, but re-computed via a n? fitting.

Worst TB Systems R*>TB R? Laskar n?
Kepler 150 0.8605413 0.696871005
Kepler 169 0.875354644 0.769928531
HD 219134 0.913657699 0.684612854
Keper 186 0.92681234 0.819327821
K2-138 0.945458309 0.860764702
HD 191939 0.945551901 0.785594964
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Figure 7. Graphic comparison of two different fittings for HD 219134, a
system with six confirmed planets. (a) Titius—Bode fitting (namely semi-log)
of HD 219134. The R? statistical indicator (Table 10) is R2 = 0.913657699.
(b) n®fitting (Laskar model) of HD 219134. The R? statistical indicator is
R? = 0.684612854.

describe planetary spacing, not only in the Solar System, but also in
extra solar planetary systems.

For sake of completeness, we could perhaps check the R? of the
worst six systems also against a model with r ~ n®, listed also in
the Laskar Table 9. However, it is quite clear that the larger is the
exponent of the power law, r ~ n¥, the closer such law is to the
exponential r ~ ¢", namely to the TB rule. Therefore, such further
fitting and comparison with the TB rule probably would not result to
be particularly insightful.

Finally, for a visual comparison, we consider one of the systems
in Table 10, HD 219134, and we draw two diagrams of the same
system: one displaying a TB-fitting and the other displaying a n>-
fitting, see Fig. 7. Then, it appears extremely clear that a TB rule
works way better than a n>-fitting (Laskar model).
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7 DISCUSSION AND CONCLUSIONS

The aim of this paper is to check if the Titius—Bode rule can be
considered a reliable description of the spacing among planets in
a planetary system, with reference not only to our Solar system,
but also in extra solar planetary systems. To this scope, after a
general introduction to the Titius—Bode rule, we examined the 32
planetary systems (31 plus the Solar system) known to harbour at
least five planets each (to date, July 2023). To keep the analysis as
uniform as possible, we considered systems with a single central
star only. We then computed the semi-log linear regressions, and
used the statistical indicators R? and Median in order to measure
how ‘good’ is an exponential distance relation, like the TB rule, in
fitting the observational data. To clear the stage from the suspect
of a purely random origin of the TB law, we created at random
4000 “artificial’ planetary systems and observed that, according to
the statistical indicators, the TB rule fits real planetary systems much
better than artificial ones. We found that the TB rule describes more
than 78 per cent (25 out of 32) of the examined real systems with
an accuracy better than R > 0.95, and even more than 50 per cent
with an R? > 0.98. By comparison, the ‘artificial’ random systems
are fitted, on average, with an accuracy of R? ~ 0.90.

Following a long tradition, we too use the TB rule to predict
some new planets in systems that apparently present bad fittings.
Our criterion to insert new planet(s) into a system is simple: the
insertion should improve the fitting, namely the R? should getting
closer to 1, and possibly the Median getting closer to 0. However, we
also critically discuss the intrinsic limits that such a procedure seems
to present naturally, and therefore the reasons of why it looks wise
not to exceed in planetary insertions. A possible correlation between
the age of a planetary system and the goodness to which TB rule is
obeyed (which would seem a natural link), has been on the contrary
ruled out by the observations.

Our findings can be compared and contrasted with results of
previous relevant works on the TB rule. Hayes and Tremaine (1998),
for example, have considered, like us, randomly created planetary
systems, but furthermore they selected specific systems by applying
a conservative stability criterion which requires that adjacent planets
are separated by a minimum distance of k times the sum of their Hill
radii (for values of k ranging from O to 8). They performed least-
squares fits of these systems to generalized Bode laws and compared
them with the fit of our own Solar System. In so doing they found that
this stability criterion generally produce geometrically spaced planets
that fit a Titius—Bode law about as well as our own Solar System.
From our point of view, this means that TB rule, far from being a
mere product of chance, actually implies some kind of underlying
physical mechanism at work. Thus, our findings which strongly
support the validity of TB relation also in extra solar planetary
systems, coherently fit with the results of Hayes and Tremaine, in
pointing towards a definite universal physical law.

On a different line, Bovaird and Lineweaver (2013), building (also)
on the early data collected by the Kepler mission, presented one of the
first systematic studies on a possible validity of the TBR in extra solar
planetary systems. They considered the 71 systems known in 2013
for harbouring at least 4 planets each. It should be said, however, that
some of these systems contain double or triple stars at their centre,
a circumstance that we were able to avoid in this paper, thanks of
course to the much richer set of exosystems available to us, ten
years later (2023). As statistical tool they employed a x? analysis,
which however, in case of uniform or constant error bars (a position
adopted by Bovaird and Lineweaver), is essentially equivalent to the
R? analysis used in our work (see Appendix A). These authors found
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that a vast majority of exoplanetary systems of their set adhere to
the TB relation to an extent similar or greater than our Solar system
does. This finding is essentially confirmed by our work, ten years
later, and perhaps even reinforced, given the more refined set of
planetary systems we used (five or more planets for each system,
and single-star systems only). Then Bovaird and Lineweaver, on the
basis of the just verified TB law, dive into a whirlwind of predictions
of new planets. They arrive at inserting up to 10 new planets for each
system, compiling a list for the existence of 141 new exoplanets in
68 multiple-exoplanet systems. On this point, in Section 3 we have
been much more prudent (for the geometrical reasons we explained
there), and we ‘predicted’ at most one new planet per system. The
criterium we adopted was however coincident with that of Bovaird
and Lineweaver, namely the insertion of a new planet should improve
the R? (or x?) distribution.

Finally, in Sections 5 and 6 we compared the TB rule with two
of its major competitors, namely the Harmonic Resonances (HR)
method (see e.g. Aschwanden 2018), and the polynomial fitting (see
e.g. Laskar 2000). In both cases, although for different reasons, the
TB rule, an exponential relation, emerges as the most ‘economical’
(in terms of free parameters) and best fitting law for the description
of the spacing among planetary orbits.

In conclusion, we believe that our study contributes to definitively
lift the TB rule out of the bag of conjectures and dubious numerical
coincidences, and gives to the rule the status of a corroborated
physical phenomenological law. Perhaps a bit like what the studies
of Fraunhofer and Balmer did for the atomic spectra along the
nineteenth century [for potential connections of TBR with atomic
physics see Caswell (1929); Albeverio et al. (1983); Agnese &
Festa (1997); Scardigli (2007); Batygin (2018)]. The theoretical
interpretations and explanations of such an empirical law still remain
a much debated matter of the present-day research.
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APPENDIX A: THE STATISTICAL TOOLS R?
AND x2

The statistical indicator R?, called ‘coefficient of determination’,
is defined in the following way. Given a set of points (x;, y;), i =
1, ..., N, the ordinary least-squares method tries to find the ‘best’
analytic function y = f(x) that approximates the set (x;, y;). Usually
the function is a polynomial, and even more usually it is a straight line
y = A + Bx. What one tries to minimize is the sum of the squares
of the residuals

0= Iyi—fe)Pr. (AD)

Of course, it would be useful to have ‘something’ with which to
compare the sum o, a sort of ‘maximum error’, in order to produce
then a  percentage error’. The idea is then to consider the average
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of the y; data
_ 1
y=x Z i (A2)

and to consider as maximum possible error the sum of the squares of
the residuals in respect to this average y

Omax = »_(yi = ). (A3)

The percentage error is then clearly 0/0max, and the R? indicator is
defined as

Q
QleX

Therefore, the agreement between the fitting line and the data is as
better as R? is closer to 1.

The statistical indicator x? is defined, usually, as follow. Given
a set of points (x;, y;), i =1, ..., N, suppose that y; indicate the
observed data (each y; is supposed to depend on the specific value
x; of the parameter x); each J; indicates the datum predicted by the
(regression) model for the specific value x; of the parameter, namely
9; = f(x;); each o; indicates the uncertainty, or error bar, associated
with the specific observed datum y;. Then x? is defined as

R*=1- (Ad)

1 i —3i)°
x2=ﬁz(ygizy)~ (AS)

i i
i

In case of constant or uniform errors bars, namely o; = ¢ for any 7,
then we can rescale o = 1, and

1 Q
2__7 i—Aiz_—f, A6
X N% i =9 N (A06)

and therefore

N x?

RP=1- (A7)

Qmax

APPENDIX B: THE STATISTICAL TOOL Median

The definition of Mean Absolute Deviation, also known as Average
Absolute Deviation in Excel (where it is produced by the statisti-
cal function AVEDEV) is the following: given a set of numbers
{x1, x2, ..., xy} and defined the Mean X in the usual way as

B 1
== Z Xi, (B1)
then the Mean Absolute Deviation referred to that set of numbers is

1
MAD = Z |x; — %I (B2)
Clearly, MAD is a measure of how much ‘close’ the numbers x; are
to their arithmetical mean X. The closer to zero is MAD, the less
‘dispersed’ are the numbers x; around their mean . In the ideal case,
when MAD = 0 then x; = X for any i.

In our context of (linear) regressions, we call Median what is
known as Mean Average Error (MAE). Given a set of points (x;, y;),
i=1,..., N, where y; are the observed data (supposed to depend
on the values x; of the parameter x), and J; are the data predicted by
the (regression) model, usually J; = f(x;), then the Mean Average
Error is defined as

1 .
MAE = NZ'”‘”" (B3)
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Obviously, the smaller is the MAE, the better is the fit by the model
y = f(x). The MAE can be compared with the Mean Squared Error,
MSE, another statistical indicator of the ‘goodness’ of a fitting model,
defined as

1
MSE = N Zf:(yl' — 9. (B4)

Of course, given the above definitions, the MSE and the sum of the
squared residuals, equation (A1), are linked by the relation

0=N -MSE = Z(y,— — 9. (B5)

i

APPENDIX C: A THEOREM ON THE
STATISTICAL INDICATORS R?, Median

Given a planetary system, the relevant TB fitting can be constructed
by using, as starting data, either the orbital periods 7;, namely the set
of points {7, log 7;}, or the semimajor axis r;, namely the set of points
{i,logr;},withi = 1,2,3,..., N.Itis then quite easy to show that:

RX(T) = R*(r), Median(T) = %Median(r) (CD)

namely, the R? of the data sets {i, log T;} and {i, log r;} are the same,
while the Medians are proportional, through a factor 3 /2.

Proof. By the Kepler Third Law we have Ti2 = kr}. Defining
Y; =logr;, Z; = log T;, we can write
Z ! logk + 3 Y,

i = 5 10 5 i

2 5T
and with reference to equations (3)—(9), a straightforward calculation
yields
3

1 3
C = -logk + 2A: D= >B.
708k + 3 2

Defining now Z = (Zj Z;)/N and ¥ = (Zj Y;)/N, we can then
write

3
Zi—Z3) = E(Yi —Y(@)

Zi—7 = %(Y,- -7 (C2)

and these two can be used together with equations (A1), (A3) to
arrive at

9
Qmax(T) = Z Qmax(r)y

which yield the thesis R?(T) = R?(r).

Using again equation (C2), and the definition (B3) of Median (i.e.
MAE), we immediately also have Median(7) = (3/2) Median(r).
QED.

T — 9
o(T) = Zg(r),

APPENDIX D: TITUS-BODE RULE FOR THE
SATELLITES OF JUPITER, SATURN, URANUS

We show here how and to what extent the TB rule is obeyed by
the systems of moons of, respectively, Jupiter, Saturn, and Uranus.
Although this subject is obviously outside of the main topic of this
paper, from the historical point of view it presents a relevant interest,
since it helps to depict the opinion that people formed about the TB
law during the 20th century, before the discovery of exoplanetary
systems. For the semimajor axis (or for the periods) of the satellites’
orbits we use recent data taken from Wikipedia (see there the links
Jupiter moons, Saturn moons, Uranus moons) and also from the
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G202 19qWanoN 0 U Josn UNSIPS| A 8EZ1208/0EL2/v/8ES/A0IME/SEIUL/WOO"dNo-olWapede//:Sdny WOy papeojumoq



2742  D. Krommydas and F. Scardigli

15.5

=
LS}
w
=
v

Figure D1. Fitting of the main satellites of Jupiter. The statistical indicators
are R? = 0.99759458 and Median = 0.00181383.

Figure D2. Fitting of the main satellites of Saturn. The statistical indicators
are R? = 0.94507382 and Median = 0.014263996.

Figure D3. Fitting of the main satellites of Uranus. The statistical indicators
are R? = 0.99512428 and Median = 0.00204344.

Encyclopedia of the Solar System (McFadden et al. 2007). In these
tables and regression diagrams we do not include, on purpose, the
satellites recently discovered only with spacecrafts (namely after
Pioneer and Voyager missions), just because they are in general very
light bodies, and it is well known that the TB rule works well only for
quite large and quite massive objects (it does not work, for example,
for comets or light asteroids).

In the case of Jupiter, for example, the satellites Metis, Adrastea,
Amalthea, and Thebe, all orbiting at distances shorter than the Io’s

MNRAS 538, 2730-2743 (2025)

Table D1. Main satellites of Jupiter.

Jupiter system n Orbital radius in km
Io 1 421700
Europa 2 671034
Ganymede 3 1070412
Callisto 4 1882709

Table D2. Main satellites of Saturn.

Saturn system n Orbital radius in km
Mimas 1 185539
Enceladus 2 237948
Tethys 3 294 619
Dione 4 377396

Rhea 5 527108

Titan 6 1221870
Hyperion 7 1481009
Tapetus 8 3560 820
Table D3. Main satellites of Uranus.

Uranus system n Orbital radius in km
Miranda 1 129 858

Ariel 2 190930
Umbriel 3 265982
Titania 4 436282
Oberon 5 583449

orbit, are all bodies with sizes of order 100 km, and masses of
10~7 — 10~* times the mass of Io. Therefore, for the above reasons,
they are not considered in the regression diagram. A fortiori the small
moons orbiting at distances larger than Callisto orbit, all with sizes
of 50 km or less, are ignored. The Jupiter diagram therefore displays
only the Galilean satellites, lo, Europa, Ganymede, Callisto.

Analogue considerations hold for the satellites systems of Saturn
and Uranus.

Hereafter the reader can find the regression diagrams for the main
satellites of Jupiter 8, Saturn 9, and Uranus 10, each one equipped
with the R? and Median values computed from the specific statistical
analysis. As the reader can easily realize, the statistical indicators
R? and Median assume really good values, in particular for Jupiter
and Uranus. In fact, both the Jupiter’s and Uranus’ R?, as well as
their Medians, are better than the Solar System R” and Median. Both
Jupiter and Uranus systems fall in the set of R? > 0.99.

For the Saturn system the situation is clearly worse. This could
perhaps be due to the fact that the system of Saturn contains
more moons (146, May 2023) than any other planet in the Solar
system. Moreover, the large rings might affect the distribution of the
satellites’ orbits in a still unknown way.

In any case, it would be interesting to define a (precise) quantitative
criterion to understand when a moon should be expected to obey a
TB relation, or not. At present, the empirical selection rule (that we
used to compile the Tables D1, D2, D3) is just based on the size/mass
of the considered moon. We followed the tradition, since this rule is
also adopted in the Nieto book, as well as in most of the literature on
the Titius-Bode relation. Possible quantitative formulations of this
criterion will form the subject of future works.
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APPENDIX E: REFERENCES FOR THE
PLANETARY SYSTEMS IN TABLE 1

Table E1. References for planetary systems in Table 1.

System Planets References
Sun 9 + Ceres https://doi.org/10.1016/C2010-0-67309-3
KOI-351 b,c,de.f,g,h  https://doi.org/10.1088/0004-637X/781/1/18
i https://doi.org/10.3847/1538-3881/aa%09
Trappist 1 b,c,d,ef,gh https://doi.org/10.3847/PSJ/abd022
HD 10180 b,c.d,ef,g https://doi.org/10.1088/0004-637X/792/2/111
HD 191939 b,c.d,e.f,g https://doi.org/10.1051/0004-6361/202244120
HD 219134 b,c,d,e https://doi.org/10.1038/s41550-017-0056
f.g https://doi.org/10.1088/0004-637X/814/1/12
HD 34445 b https://doi.org/10.3847/1538-3881/aa5df3
c,def.g https://doi.org/10.3847/1538-3881/aa8b6 1
K2-138 b,c.d,e,f,g https://doi.org/10.1051/0004-6361/201936267
Kepler 11 b,c,d,e,f,g  https://doi.org/10.1088/0004-637X/770/2/131
Kepler 80 b,c.d,e,f  https://doi.org/10.3847/0004-6256/152/4/105
g https://doi.org/10.3847/1538-3881/aa9¢09
TOI - 1136 b,c.d.e.f,g https://doi.org/10.3847/1538-3881/ad 1330
TOI - 178 b,c,d,e.f,g https://doi.org/10.1051/0004-6361/202039767
HD 108236 b,c,de,f  https://doi.org/10.1051/0004-6361/202039608
HD 158259 b,c,d,e,f  https://doi.org/10.1051/0004-6361/201937254
HD 23472 b,c,de,f  https://doi.org/10.1051/0004-6361/202244293
HD 40307 b,c,d,e,f  https://doi.org/10.1051/0004-6361/201220268
K2-268 b,c,d.e,f https://doi.org/10.1093/mnras/stab2305
K2-384 b,c.d,e,f https://doi.org/10.3847/1538-3881/ac5c4c
Kepler 102 b,c,de,f  https://doi.org/10.1051/0004-6361/202346211
Kepler 122 b,c.d,e https://doi.org/10.1088/0004-637X/784/1/45
f https://doi.org/10.1088/0004-637X/787/1/80
Kepler-150 b,c.d,e https://doi.org/10.1088/0004-637X/784/1/45
f https://doi.org/10.3847/1538-3881/aa62ad
Kepler 154 b,c https://doi.org/10.1088/0004-637X/784/1/45
dee,f https://doi.org/10.3847/0004-637X/822/2/86
Kepler 169 b,c.d,e,f https://doi.org/10.1088/0004-637X/784/1/45
Kepler 186 b,c.d,e https://doi.org/10.1126/science.1249403
f https://doi.org/10.1088/0004-637X/800/2/99
Kepler 238 b,c,d https://doi.org/10.1088/0004-637X/784/1/45
ef https://doi.org/10.1088/0067-0049/210/2/25
Kepler 292 b,c,def https://doi.org/10.1088/0004-637X/784/1/45
Kepler 32 b https://doi.org/10.3847/1538-3881/abd93f
c,de,f https://doi.org/10.1088/0004-637X/750/2/114
Kepler 33 b,c,d,e,f  https://doi.org/10.1088/0004-637X/750/2/112
Kepler 55 b,c https://doi.org/10.1093/mnras/sts090
de,t https://doi.org/10.1088/0004-637X/784/1/45
Kepler 62 b,c.d,e,f https://doi.org/10.1126/science.1234702
Kepler 82 b,c.f https://doi.org/10.1051/0004-6361/201935879
d,e https://doi.org/10.1088/0004-637X/784/1/45
Kepler 84 b,c https://doi.org/10.1088/0067-0049/208/2/22
dee,f https://doi.org/10.1088/0004-637X/784/1/45
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