
Exponential distance relation (aka Titius–Bode rule) in extra solar
planetary systems
Krommydas, D.; Scardigli, F.

Citation
Krommydas, D., & Scardigli, F. (2025). Exponential distance relation (aka Titius–Bode rule)
in extra solar planetary systems. Monthly Notices Of The Royal Astronomical Society,
538(4), 2730-2743. doi:10.1093/mnras/staf405
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/4281851
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/4281851


MNRAS 538, 2730–2743 (2025) https://doi.org/10.1093/mnras/staf405 
Advance Access publication 2025 March 11 

Exponential distance relation (aka Titius–Bode rule) in extra solar 

planetary systems 

Dimitrios Krommydas 1 ‹ and Fabio Scardigli 1 , 2 ‹
1 Institute-Lorentz for Theoretical Physics, Leiden University, P.O. Box NL-9506 Leiden, the Netherlands 
2 Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy 

Accepted 2025 February 21. Received 2025 February 4; in original form 2023 August 15 

A B S T R A C T 

In this paper we present phenomenological evidence for the validity of an exponential distance relation (also known as generalized 

Titius–Bode law) in the 32 planetary systems (31 extra solar, plus our Solar System) containing at least five planets each (known 

up to July 2023). We produce the semi-log fittings of the data, and we check them against the statistical indicators of R 

2 and 

Median . Then we compare them with the data of 4000 artificial planetary systems created at random. In this way, a possible 
origin by chance of the Titius–Bode rule (TBR) is reasonably excluded. We also point out that in some systems the fittings can 

be definitely impro v ed by the insertion of new planets into specific positions. We discuss the harmonic resonances method and 

fittings, and compare them with the Titius–Bode fittings. Moreo v er, for some specific systems, we compare the Titius–Bode 
fitting against a polynomial fitting ( r ∼ n 

2 ). Further comparisons with previous relevant works are reported in the last section. It 
emerges that TBR describes 25 out of the 32 planetary systems (78 per cent ) with a R 

2 ≥ 0 . 95. Further, it results to be the most 
economical (in terms of free parameters) and best-fitting law for the description of spacing among planetary orbits. This analysis 
allows us to conclude that an exponential distance relation can reasonably be considered as ‘valid’, or strongly corroborated, 
also in extra solar planetary systems. 

Key words: planetary systems – exoplanets. 
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 I N T RO D U C T I O N  

ollowing the footsteps of the visionary work of Johannes Kepler
Kepler 1596 ), for more than 170 years scholars had been looking
or a law able to encode in a formula the distances of the known
lanets from the Sun. Kepler proposed the platonic solids as a guide
o the numerical progression of the major axis of the elliptic orbits
e envisaged. Such an idea was quite rapidly abandoned, especially
fter the dynamics of the Solar System had been unveiled by Isaac
e wton. Ne vertheless the quest for a distance relation among the
lanets of the Solar System remained alive. And actually the quest
oon extended also to the systems of moons of Jupiter and Saturn,
isco v ered in the meanwhile. After several precursors had paved the
ay (among them we count Christian von Wolff, mathematician,
hysicist, philosopher, and his brilliant disciple Immanuel Kant),
nally a rule for the distances of planets from the Sun was proposed
y Johann Daniel T itius (T itius 1766 ), and published as a note in
is German translation of the Charles Bonnet’s Contemplation de
a Nature (1764). Soon the law was noticed and popularized by the
uch more famous astronomer Johann Elert Bode (Bode 1772 ). 
The original formulation of the rule, proposed by Titius, can be

xpressed by the simple formula 

( n ) = 0 . 4 + 0 . 3 · 2 n , (1) 
 E-mail: fabio@phys.ntu.edu.tw (FS); krommydas.di@gmail.com (DK) 

c

r

Published by Oxford University Press on behalf of Royal Astronomical Socie
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
here the distance r( n ) of the planet from the Sun is given
n astronomical units, i.e. in terms of the radius of the Earth’s
rbit (which defines 1 Astronomical Unit � 150 × 10 6 km). For
 = −∞ , 0 , 1 , 2 , ... this relation gives the distances r( n ) from the
un, respectively, of Mercury, Venus, Earth, Mars, etc., including the
steroid belt (actually, Ceres, the heaviest asteroid, was disco v ered
y Piazzi in 1801 by following the indication of this rule with n = 3),
nd Uranus ( n = 6), which at the moment of the first formulation of
he law (1766–1772) had not yet been disco v ered [see the book
f Nieto ( 1972 ) for history, different explicit formulations, and
 xtensiv e bibliography]. 

In its original form ( 1 ), the relation was not able to account for
he distance of Neptune and Pluto. During the 20th century more
efined versions of the rule were elaborated (Blagg 1913 ; Richardson
945 ; Dermott 1968 ). The present-day versions are able to describe
ot only the planetary distances within the solar system, including
lanets like Neptune and Pluto, but also can be successfully applied
o the systems of satellites orbiting Jupiter, Saturn, and Uranus (See
ppendix D for the precise ways in which those moons obey TBR).
he agreement between the predicted and the observed distances of

he various satellites from the central body is really good, of the order
f a few per cents (see e.g. again Nieto 1972 ). The modern version
f the Titius–Bode rule can be expressed, if we neglect second-order
orrections, by an exponential relation as 

( n ) = a e 2 λn , (2) 
© 2025 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
ch permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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here the factor 2 is introduced for convenience reasons and n =
 , 2 , 3 , . . . . 
For the Solar System we have 

 λ = 0 . 53707 , e 2 λ � 1 . 7110 , 

a = 0 . 21363 A . U . 

he amazing thing found by Blagg was that the geometric progres-
ion ratio e 2 λ is roughly the same for the Solar System and for the
atellite systems of Jupiter ( e 2 λ � 1 . 7277), Saturn ( e 2 λ � 1 . 5967),
nd Uranus ( e 2 λ � 1 . 4662). The parameter λ is dimensionless, its
alue is inferred from the observed data, and it depends on the specific 
ystem considered (planetary or satellite system). Also the parameter 
 is in general obtained from observations, it has the dimension of
 length and it is linked to the radius of the first orbit of the system
onsidered, since r(1) = ae 2 λ. With a slightly different formulation 
f the TB rule as r( n ) = ae 2 λ( n −1) , n = 1 , 2 , 3 , . . . , then a coincides
ith the radius of the first orbit, r(1) = a. 
Despite its quite evident successes in describing the spacing of the 

ocal planetary systems (Solar system, plus the satellites systems of 
upiter, Saturn, Uranus), the physical interpretation of the TB relation 
as been often questioned and remains a matter for heated debate. 

Broadly speaking, there are at least three groups of opinions re-
arding the TBR and its physical significance: (i) the TBR constitutes 
ust simply sheer numerology; (ii) the TBR is valid only for some
pecific systems due to particular conditions occurred during the 
lanet formation process; (iii) the TBR is largely a direct consequence
f (some) planetary stability requirements which should be satisfied 
uring the course of the systems’ existence. 
Man y criticisms hav e been risen against an ef fecti ve physical
eaning of the la w. F or e xample, according to Graner & Dubrulle

 1994 ) the TB relation is probably just a consequence of the scale
nvariance of the disc which gave rise to the planets. Ho we ver, ac-
ording to Lynch ( 2003 ), it is not possible to conclude unequivocally
hat laws of Titius–Bode type are, or are not, physically significant. 
n other words, Lynch convincingly argued that the agreement with 
he observations cannot be safely considered as a mere statistical 
hance. So, the possibility of a physical explanation for the observed 
istributions remains open. 
A somehow similar conclusion also appears to be consistent with 

he work by Hayes and Tremaine ( 1998 ). Following an approach
hich involves some statistical numerical e xperiments, the y chose 

o fit randomly selected artificial planetary systems to Titius–Bode 
ype laws by considering a distance rule inspired by the Hill stability
f adjacent planets. They did not identify a particularly profound 
ignificance of the TBR, except that its general meaning is that stable
lanetary systems tend to be spaced in a regular manner. 
On the side of physical models, many theories have been developed 

uring the last 250 years to explain the Titius–Bode relation. There 
ave been dynamical models connected with the theory of the origin 
f the solar system (Alfven 1954 ), gravitational theories (Schmidt 
946 ), nebular theories (Weizs ̈acker 1943 , Willerding 1992 ), just to
ite some of them. Many of them have been excellently re vie wed in
he book of Nieto ( 1972 ). 

Also the approaches involving ideas from scale relativity, or 
tochastic trajectories, or also Schr ̈odinger-like equations, in order to 
ive account of the rule ( 2 ) have a robust tradition. During the years
an y authors hav e suggested various models in this direction (for an

ncomplete list of papers see for e xample: Caswell 1929 ; Albev erio
t al. 1983 ; Nottale 1996 ; Agnese & Festa 1997 ; Nottale et al. 1997 ;
einisch 1998 ; de Oliveira Neto et al. 2004 ; Scardigli 2007 ). 
Of course, in the last 15–20 years, with the disco v ery of a growing
umber of extra solar planetary systems, it has become increasingly 
mportant to check the TB relation in the new observed systems.
ollowing the original tradition, many authors have applied the TB 

ule to exoplanetary systems in order to predict new planets. In this
irection goes, for example, the paper of Bovaird & Lineweaver 
 2013 ). The exoplanetary system 55 Cancri (HD 75732), containing
ve planets, was investigated in some detail using the TBR by Chang
 2008 ), Po v eda & Lara ( 2008 ), and Cuntz ( 2012 ). Cuntz ( 2012 ), in
articular, argued that new planetary candidates were predicted in 
he 55 Cancri system through the Titius–Bode’s relation, and perhaps 
ne of the new planets could be habitable. Also the planetary system
evolving around the star HD10180 has been studied in some specific
etail (Lovis et al. 2011 ), and it appears to satisfy the TB rule.
ccording to Chang ( 2010 ) one cannot rule out the possibility that

he distribution of the ratio of orbiting periods in multiple planet
ystems is consistent with that derived from Titius–Bode’s relation. 
ara et al. ( 2020 ) used data from 27 exoplanetary systems with at

east five planets and showed that the planetary orbital periods in
xoplanetary systems are not consistent with a random distribution. 

The main purpose of this paper is to examine the 32 planetary
ystems that, up to today (July 2023, see NASA Archive), appear to
ost at least five planets each, all orbiting around a single star, and
o see if and to what extent the TB rule is satisfied in such systems.

e decided to consider systems with at least five planets in order
o fit at best the two parameters of TB rule, and to minimize the
ossible (statistical) errors. Of course, this investigation has been 
ade possible by the surv e ys and disco v eries operated by Kepler

nd TESS satellites, in particular in the last ten years or so. 
On the other hand, a surv e y aimed at checking the TB rule in extra

olar planetary systems seems to be quite timely now, since the data
eleased by Kepler and TESS satellites co v er a significant number of
ystems, each one endowed with a significant number of confirmed 
lanets (at least five, as said). 
As for the source of our data, we decided to stick with the NASA

xoplanet Archi ve (NASA Archi ve), in order to have an up-to-dated
ource, as well as to enjoy a reliable uniformity in the presentation
f the data. 
In this paper we focus mainly on an exponential spacing law (aka

itius–Bode rule ). In Section 2 we present the planetary systems
nder scrutiny, and discuss the analytical tools employed to produce 
ttings and graphs. In Section 3 (following the tradition which led

o the proposal and disco v ery of the asteroid belt), we present the
ossibility to impro v e some fittings by inserting new planets to fill
uspected gaps among existing planetary orbits. We discuss several 
xamples and propose some ‘predictions’. In Section 4 we discuss 
 possible relation between the TB rule and the age of the planetary
ystems. In Sections 5 and 6 we briefly discuss also different
escriptions of the planetary spacing data, namely the harmonic 
esonances fitting (Section 5 ), and the polynomial fitting (Section 6 ).
inally, Section 7 is devoted to some further specific comparisons 
ith previous works, and then to conclusions. 
We are pretty confident in saying that the main result of our paper

s that the TB law seems to be confirmed as the ‘best’ rule to describe
lanetary spacing also among extra solar planetary systems, at least 
or what concerns the best fitting obtained with a minimum number
f free parameters (two). 

 FI TTI NGS  A N D  G R A P H S  

he list of planetary systems considered in this work is given in
able 1 . 
MNRAS 538, 2730–2743 (2025) 
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Table 1. Each of the 32 systems considered in this work hosts at least five 
planets, revolving around a single star. The statistical indicators displayed are 
R 

2 and Median (for definitions see the main text and appendices). We have a 
maximum agreement when R 

2 
max = 1 and Median max = 0. For references on 

each single planetary system see Table E1 . 

System Planets R 

2 Median Notes 

Sun 10 0 .993448869 0 .019581007 with Ceres 
KOI-351 8 0 .96322542 0 .059404861 Kepler 90 
Trappist 1 7 0 .994255648 0 .012727939 –
HD 10180 6 0 .992725066 0 .06644463 –
HD 191939 6 0 .945551901 0 .08825776 2022 
HD 219134 6 0 .913657699 0 .126773358 –
HD 34445 6 0 .974290137 0 .108819429 –
K2-138 6 0 .945458309 0 .094321758 2021 
Kepler 11 6 0 .962373014 0 .044210656 –
Kepler 80 6 0 .955414548 0 .04023616 –
TOI - 1136 6 0 .987422135 0 .031168586 2022 
TOI - 178 6 0 .983217838 0 .047680406 2021 
HD 108236 5 0 .976381637 0 .037194964 2021 
HD 158259 5 0 .999713447 0 .003377513 2020 
HD 23472 5 0 .988496548 0 .022330332 2022 
HD 40307 5 0 .984933377 0 .046130252 –
K2-268 5 0 .957182918 0 .062647955 2019 
K2-384 5 0 .983020508 0 .04991254 2022 
Kepler 102 5 0 .987900552 0 .017713236 –
Kepler 122 5 0 .98710756 0 .026533536 –
Kepler-150 5 0 .8605413 0 .236636167 –
Kepler 154 5 0 .985703723 0 .045352455 –
Kepler 169 5 0 .875354644 0 .151151179 –
Kepler 186 5 0 .92681234 0 .093772029 –
Kepler 238 5 0 .98771232 0 .053557294 –
Kepler 292 5 0 .995427692 0 .008569513 –
Kepler 32 5 0 .971262925 0 .042153715 –
Kepler 33 5 0 .948841017 0 .054322078 –
Kepler 55 5 0 .988367826 0 .02874602 –
Kepler 62 5 0 .950734271 0 .15977283 –
Kepler 82 5 0 .955569351 0 .086643589 2019 
Kepler 84 5 0 .992394962 0 .022666502 –
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Table 2. R 

2 and Median analysis for planetary systems with two or three 
stars at their centre. Maximum agreement for R 

2 
max = 1 and Median max = 0. 

System Planets R 

2 Median Notes 

Kepler 20 6 0.994934868 0 .020480257 2 stars 
55 Cancri 5 0.974846945 0 .105266615 2 stars 
GJ 667 C 5 0.940319108 0 .085544299 3 stars 
Kepler 296 5 0.999532566 0 .006855603 2 stars 
Kepler 444 5 0.996885042 0 .007292345 3 stars 

Table 3. Raw data for the planetary system KOI-351. 

Planet Host N.Stars and Orbital period 
name name N.Planets (days) 

KOI-351 b KOI-351 1 - 8 7.008151 ±0.000019 
KOI-351 c KOI-351 1 - 8 8.719375 ±0.000027 
KOI-351 d KOI-351 1 - 8 59.73667 ±0.00038 
KOI-351 e KOI-351 1 - 8 91.93913 ±0.00073 
KOI-351 f KOI-351 1 - 8 124.9144 ±0.0019 
KOI-351 g KOI-351 1 - 8 210.60697 ±0.00043 
KOI-351 h KOI-351 1 - 8 331.60059 ±0.00037 
Kepler-90 i KOI-351 1 - 8 14.44912 ±0.00020 
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As we said, the data used to construct Table 1 are taken from NASA
xoplanet Archive. 1 Hereafter we discuss the reasons to consider

hat list, give comments, and explanations of parameters appearing
n Table 1 , and discuss anomalous cases. 

First, in our analysis, we only consider extra solar planetary
ystems with at least five confirmed planets each (or more), revolving
round a single star. The choice of the number ‘5’ for the population
f the planetary systems examined, could appear quite arbitrary, and
erhaps it is. Ho we ver, simple practical considerations push to wards
hat choice. Since our aim is to fit the distances/periods of the planets
f a single system with a two-parameters e xponential la w, of course
ne w ould lik e to maximize the number of points contained in a
ingle system, and therefore to choose systems with a large number
f planets. To compute with accuracy the coefficients of a semi-
og linear regression requires as many points as possible. That is
ven more true, if we consider that some of the TB regression lines
ill be used to ‘predict’ the presence of new planets in a given

ystem. Obviously, the smaller the number of points you have at
our disposal, the less performing is an exponential TB law in
his prediction task. On the other hand, the known systems with
NRAS 538, 2730–2743 (2025) 

 For this reason we excluded the system HIP 41378, which seems to have 
ve planets, but the data of the fifth planet are not available on the NASA 

rchive. 

2

n
t
a

any planets are not so many, and we also want to check the TB
elation in as many different systems as possible, in order to strongly
orroborate its statistical validity. The balance between these two
pposite requirements has pushed us to choose systems populated
ith at least five planets. 
For sake of completeness, in Table 2 we report also the statistical

nalysis for planetary systems containing at least five planets, but
ith two or three stars at their centre. Although some of these systems
resent very good statistical indicators (with the exception of GJ 667
), it is also fair to say that the presence of two or three stars at the
entre of these systems can complicate the understanding of their
ynamics in unexpected ways. Therefore, as for the discussion of
he phenomenology of the Titius–Bode rule in extra solar planetary
ystems, we think it is prudent to confine ourselves to single-star
ystems, at least in this paper, postponing the analysis of multiple-
tar systems to future works. 2 

.1 Semi-log formulation of TB rule 

n Table 3 we display a sample of the raw data of one of the
2 planetary systems under our scrutiny (precisely, KOI-351), data
hat we used to build the semi-log linear regressions, and hence to
ompute the R 

2 and Median statistical indicators showed in Table 1 .
n particular, to our scope, pivotal data are: number of planets
or each system; number of stars in each system (we considered
lanetary systems with only one single star at the centre); period
nd/or semimajor axis of each planetary orbit. 

In order to produce a linear fitting of the data presented in Table 3 ,
t is useful to take the log of relation ( 2 ) so that 

log r( n ) = log a + 2 λn, (3) 
 Further, we note that the system HD 20781-2, endowed with five planets, has 
ot been reported neither in Table 1 nor in Table 2 , since not only it contains 
wo stars at its centre, but apparently four planets revolve around HD 20781, 
nd one planet revolves around HD 20782... a really too complicated system! 
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Figure 1. Examples of various TB fittings for different systems. ( a ) TB 

fitting of the Solar system, including Ceres and Pluto, namely 10 plan- 
ets. The statistical indicators (see Table 1 ) are R 

2 = 0 . 993448869 and 
Median = 0 . 019581007. ( b ) TB fitting of Trappist 1, a system with 7 
confirmed planets. The statistical indicators (Table 1 ) are R 

2 = 0 . 994255648 
and Median = 0 . 012727939. ( c ) TB fitting of Kepler-84, a system with five 
confirmed planets. The statistical indicators (Table 1 ) are R 

2 = 0 . 992394962 
and Median = 0 . 022666502. 
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hich can be rewritten as 

 ( n ) = A + Bn, (4) 

here Y ( n ) = log r( n ). The linear fittings will provide the coef-
cients A and B, which are linked to the TB parameters by the
elations 

 = e A 

= B/ 2 . (5) 

ince the planetary orbital periods are actually the variables directly 
easured by the observers, instead of semimajor axes, we can make 

se of Kepler third law, T 2 = kr 3 , to reformulate the rule ( 2 ) in terms
f orbital periods and integers 3 

 

2 = kr 3 = ka 3 e 6 λn (6) 

hat is 

 ( n ) = ( ka 3 ) 1 / 2 e 3 λn . (7) 

aking the log of both members we have 

( n ) = C + Dn, (8) 

here 

( n ) = log T ( n ) , C = 

1 

2 
log ( ka 3 ) , D = 3 λ . (9) 

ollowing equations ( 3 )–( 8 ), for each planetary system we proceed
o order in an increasing way the periods T ( n ), or better the
og T ( n ), and we label each term of the resulting sequence with
n increasing natural integer i = 1 , 2 , 3 , . . . . In so doing we obtain,
or each system, the set of data { i , log T ( i ) } to which the usual linear
egression method is applied (the least squared method ). Some of
hese plots are displayed, as examples, at the end of this Section in
ig. 1 . 
In our diagrams we do not report error bars. The reason is simple:

rom Table 3 , and from the general tables in the NASA Archive, it
ppears clearly that the large majority of the errors on the periods
measured in days) are at most of the order of 10 −2 or less. Since
e are interested in displaying on the diagrams the logs of periods,

ny (already small) error bar would be further strongly suppressed. 
n formulae, if we have T = T 0 ± ε, then 

log ( T ) = log ( T 0 ± ε) � log T 0 ± ε 

T 0 
, (10) 

nd displaying error bars of the order of 10 −3 or less would be
raphically tough, as well as useless. 

.2 Statistical tools 

he tools we use to quantify the ‘goodness’ of the linear regressions,
nd consequently of the e v aluations of the TB parameters, are the
 

2 and Median statistical indicators (see Appendices A, B, C for 
efinitions and properties). An inspection of Table 1 reveals that, of
he 32 single-star planetary systems (including our Solar systems), 
t least six have an R 

2 greater than 0.99, revealing a very good
greement between the astronomical data and the linear regression 
ith the phenomenological TB rule. 
One of the most common arguments used against the TB rule 

oncerns a possible origin at random of the law itself. According 
 A formulation of the exponential TB relation that uses orbital periods (in 
lace of semimajor axis) is also known under the name of ‘Dermott’s law’ 
Dermott 1968 ). 

 

‘  

r  

f
i

o this point of view, it would be statistically ‘easy’ to produce
lanetary systems at random, and they would naturally turn out to
bey the TB relation, by pure chance. To explore this possibility, we
reated randomly 4000 artificial planetary systems: 1000 systems 
ith 8 planets each, 1000 with 7, 1000 with 6, and 1000 systems
ith 5 planets each, respectively. In this first naive attempt we did
ot impose any particular further constraint. Essentially, referring 
or example to a system with 8 planets, we extracted at random 8
umbers T i , with 0 ≤ T i ≤ 1, namely the periods of the 8 planets,
nd reordered them in an increasing way, so that T i < T j iff i < j . Of
ourse, through a trivial rescaling μT i , these numbers can represent
ny period from zero to infinity. We then fit the points { i, log T i } ,
 = 1 , 2 , . . . , 8, with a linear regression, and compute the rele v ant R 

2 

nd Median indicators. The averages over the 1000 random systems 
re displayed in Table 4 . 

Already a superficial glimpse to Table 1 shows that the R 

2 ’s of
real’ systems are much closer to 1 than the R 

2 ’s attained by the
andomly created systems of Table 4 . This first impression can be
urther substantiated by comparing ‘real’ and ‘random’ statistical 
ndicators, as it is done in Table 5 . 
MNRAS 538, 2730–2743 (2025) 
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Table 4. R 

2 and Median analysis for randomly created planetary systems. 
Maximum agreement R 

2 
max = 1 and Median max = 0. 

Systems with R 

2 Median Notes 

8 Planets 0.91183483 0.1416661 Av erages o v er 1000 
random systems 

7 Planets 0.90784475 0.14490068 idem 

6 Planets 0.90386207 0.15141145 idem 

5 Planets 0.89719999 0.15552048 idem 

Table 5. Comparison between ‘Randomly created’ and ‘Real’ planetary 
systems, R 

2 and Median analysis. 

Systems AVG of all R 

2 ’s AVG of all Medians 

Randomly created 0 .90518541 0 .148374678 
Real 0 .966078109 0 .06215032 
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Figure 2. Histogram of the R 

2 and Median values. Distributions of the 
Median -values (red, on the left) and of the R 

2 -values (blue, on the right) 
among the 32 exoplanetary systems listed in Table 1 . The bin size is 0.01. 
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There, we compare the averages of the statistical indicators R 

2 and
edian computed for artificial as well as for real planetary systems.

rom the figures, it appears extremely clear that an exponential
istance relation (aka TB law) fits much better real planetary systems
han artificial, randomly created, ones [see also the discussions
n, e.g. Lecar ( 1973 ); Pletser ( 1988 ); Hayes & Tremaine ( 1998 );
letser ( 2017 )]. Of course, the efficiency displayed by the TB rule

n describing distances in real planetary systems calls for a (fully
ccepted and shared) theoretical explanation, which is perhaps still
acking, at present. Ho we ver, from the phenomenological point
f view, it is quite clear that the descriptive ability of the TB
elation cannot be easily denied, even for extra solar planetary 
ystems. 

One can also refine the ‘quality’ of the artificial planetary systems,
or example by inserting mechanisms which mimic, in principle,
he gravitational evolution of the (proto)planetary system itself. A
ossibility followed by Hayes & Tremaine ( 1998 ) is to require that
djacent planets are separated by a minimum distance of k times the
um of their Hill radii, for opportune values of k (0 ≤ k ≤ 8). This
riginates more realistic planetary systems, and, according to the
onclusion of Hayes & Tremaine ( 1998 ), these systems generally fit
 Titius–Bode law better than the purely ‘random’ ones, and about as
ell as some of the real planetary systems (as for example our own
olar System). From our point of view, this reinforces our thesis that

he TB rule truly describes an actual phenomenological property of
eal planetary systems (Lara et al. 2012 ). 

To illustrate further the capacity of the TB relation to ef fecti vely
escribe the spacing in planetary systems, we provide hereafter a
iagram where the TBR-valid systems are related to a ‘total number’
f observ ed e xoplanetary systems. Of course, crucial is the definition
f what ‘total number’ should mean in this conte xt. Giv en our
rgued choice to restrict the investigation to systems with at least
ve planets, it would result into a nonsense to compare the number
f TBR-valid systems with the totality of known planetary systems.
n fact, we have sufficiently clarified that to include in our analysis
lso systems with two or three planets would produce meaningless
esults from the point of view of the semi-log linear regressions and
he statistical indicators R 

2 and Median . Obviously, there is only
 single straight line passing through two points and in such two-
lanets systems we would get R 

2 = 1, by definition. Just adding one
r two points (namely, planets) would not produce yet meaningful
esults from the statistical point of view. Things become physically
and statistically) significant when the examined planetary system
NRAS 538, 2730–2743 (2025) 
ontains at least five planets. So, the ‘total number’ of exoplanet
ystems against which we compare the number of systems where
BR is satisfied (to certain degree) is the number of systems with
t least five planets orbiting a single star, namely the 32 systems of 
able 1 . 
Having stated the abo v e, in Fig. 2 we show a histogram where

e display the distribution of the R 

2 -values among the 32 systems
onsidered in Table 1 (namely how many systems have R 

2 > 0 . 99,
ow many with 0 . 98 < R 

2 < 0 . 99, how many with 0 . 97 < R 

2 <

 . 98, etc., until the worst R 

2 � 0 . 86 exhibited by Kepler 150).
he R 

2 histogram is depicted in blue, while an analogue histogram
escribing the distribution of the Median -values is depicted in red.
rom the histograms it is quite clear that the TB relation is very
uccessful in mimicking the structure of real planetary systems.
ccording to Table 1 , 6 systems out of 32 (19 per cent ) have an
 

2 > 0 . 99, and 16 out of 32 (50 per cent) have an R 

2 > 0 . 98.
nly 7 systems out of 32 (22 per cent) present an R 

2 < 0 . 95
and they will be specifically studied in the next section, since
hey are very good candidates for the ‘prediction’, or insertion, of
ew planets). These numbers speak by themselves in fa v our of the
emarkable efficiency of the Titius–Bode relation for the description
f orbital spacing in planetary systems with at least five planets 
ach. 

 PREDI CTI NG  N E W  PLANETS  WI TH  T H E  

I TI US–BODE  RU LE  

rom its conception, Titius–Bode rule was used as a predictive tool
or disco v ering orbits of some celestial bodies in our Solar System.
he original form of the law described well the distances of the
nown planets from the Sun, provided a gap between Mars and
upiter was admitted. Since the law was working so well for all
he known planets, and moreo v er it adapted almost perfectly to the
new comer’ Uranus (disco v ered in 1781), people started taking it
eriously, and searched a planet in between Mars and Jupiter for
bout twenty years. The endea v or was crowned with success when
nally Piazzi observed Ceres (the first and largest asteroid) in 1801.
In the previous sections we showed that the modern formulation

f the law, equation ( 2 ), is in good agreement with the recent data of
 large number of exoplanetary systems. Therefore it sounds natural
o attempt harnessing TB rule, in order to successfully predict orbits
f possible ‘missing’ celestial bodies, perhaps just in those systems
here the agreement with the law is, apparently, less striking [on
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Figure 3. This is a ‘raw’ fitting of the Kepler 186 system, namely before 
the insertion of any gap. The statistical indicators (see Table 1 ) are R 

2 = 

0 . 92681234 and Median = 0 . 093772029. We can clearly identify a ‘big’ 
jump between the fourth and the fifth planet. 

Table 6. R 

2 and Median analysis before and after the insertion of one planet, 
for exoplanetary systems with not optimal agreement ( R 

2 < 0 . 95) according 
to Titius–Bode rule. 

Systems Old R 

2 New R 

2 Old Median New Median 

HD 219134 .913657699 .974791203 .126773358 .05855297 
HD 191939 .945551901 .985952278 .08825776 .034601236 
K2-138 .945458309 .991472463 .094321758 .035982039 
Kepler-150 .8605413 .952818595 .236636167 .152566663 
Kepler 169 .875354644 .960693503 .151151179 .091297799 
Kepler 186 .92681234 .98794486 .093772029 .030801858 
Kepler 33 .948841017 .991408774 .054322078 .023090953 
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Figure 4. In the Kepler 186 system, inserting for example a planet between 
the first and second planet makes the fit to TB law worse, i.e. R 

2 decreases 
and the Median increases significantly. The position of the hypothetical planet 
(represented by the red square) is n = 2. [ R 

2 = 0 . 864350834, Median = 

0 . 141705383]. 

Figure 5. In the Kepler 186 system, inserting a planet between the fourth 
and fifth planet makes the fit to TB law much better, i.e. improves R 

2 and 
Median significantly. The position of the hypothetical planet (represented by 
the red square) is n = 5. [ R 

2 = 0 . 98794486, Median = 0 . 030801858]. 

Table 7. Here we display experimentally testable predictions of the sequence 
positions and the periods of the planets ‘predicted’ with TB rule. 

Systems Position of Predicted 
predicted planet period (days) 

HD 219134 n = 6 488 .3976385 
HD 191939 n = 6 744 .2371442 
K2-138 n = 6 23 .05233175 
Kepler 150 n = 5 145 .3213414 
Kepler 169 n = 5 36 .08528335 
Kepler 186 n = 5 56 .03297983 
Kepler 33 n = 2 30 .00633542 
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his see also e.g. Bovaird & Lineweaver ( 2013 ); Scholkmann ( 2013 );
uang & Bakos ( 2014 ); Bovaird et al. ( 2015 ); Lara et al. ( 2020 )]. 
Our procedure for achieving such predictions is described in what 

ollows, and it appears quite straightforward. To our understanding, 
he predictions are readily experimentally testable in present or 
uture e xploratory e xoplanetary missions (see e.g. PLATO ; ARIEL ;
OLIMAN ). 
To start with, we give a quantitative definition of optimal agree- 

ent for a TB fitting by using the R 

2 coefficient of determination:
ny system with an R 

2 ≥ 0 . 95 is said to be in optimal agreement
ith the TB rule. The idea now is that for the few systems where the

greement with TB rule is not optimal , we can quite easily identify
t least a (big) ‘jump’ in the fitting graph (see e.g. the ‘jumps’ in
ig. 3 ). We then interpret the ‘jump’ as a missing celestial object,
hose orbital period (or position) can be predicted using the TB
tting. Since the values of log T on the Y axis are fixed (namely
iven by the observations), then, in order to ‘smooth’ the jump in
he graph (focus on Fig. 3 as an example), the only freedom we
ave is to insert a gap on the X axis, namely to shift the numerical
laces of the planets on the X axis. Below, we discuss an example
nd a detailed explanation of our predictive procedure for the few 

xoplanetary systems with a non-optimal agreement. 
First, we collect in Table 6 the planetary systems (chosen from

hose listed in Table 1 ), whose agreement is non-optimal (namely 
 

2 < 0 . 95). 
We consider then, as a first example, Kepler 186, a system with five

lanets. We compute the R 

2 resulting from a direct linear regression
f the five-planet system, without any gap inserted (Fig. 3 ). Then we
heck whether the insertion of one gap impro v es the R 

2 and Median
significantly) or not. We note that if a gap (and therefore a planet)
s placed at any position other than that of the big ‘jump’, the fit
ith TB becomes worse ( R 

2 worsens), as it can be seen from Fig. 4 .
nstead, if the gap is placed at the big ‘jump’ (between the fourth
nd the fifth planet), both R 

2 and Median are significantly impro v ed,
ence the fit with TB becomes much better (Fig. 5 ). This point is
ery important: in most cases, the addition of a planet in an arbitrary
lace, even if the planet follows exactly the TB law, makes the overall
t worse. Only when the planet is placed at the right point of a (big)
jump’, then the fit becomes better; and significantly at that point. 

Once the abo v e procedure is applied to all the systems contained in
able 6 , the experimentally testable outcome are the orbital periods
f the predicted planets , displayed in Table 7 . We point out that,
sing this method, it would be possible in principle to insert more
han one gap (even not consecutive), and therefore more than one
lanet, in a TB fitting. We refrain ho we ver to do that, since it would
robably increase the bias of the data too much. For example, adding
wo points to a set of five would affect the 40 per cent of the total
ata, or even adding two points to a set of seven would imply to bias
lmost the 30 per cent of the data. A further argument in fa v our of
MNRAS 538, 2730–2743 (2025) 
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Table 8. R 

2 and age of the central star (in Gyr). Data source: NASA 

Exoplanet Archive, plus literature on the specific planetary system considered. 

System Planets R 

2 Age of Notes 
Star (Gyr) 

Sun 10 0.993448869 4.603 with Ceres 
KOI-351 8 0.96322542 0.5 Kepler90 
Trappist 1 7 0.994255648 7 . 2 ± 2 . 2 –
HD 10180 6 0.992725066 7.3 –
HD 191939 6 0.945551901 7 ± 3 2022 
HD 219134 6 0.913657699 9.3 –
HD 34445 6 0.974290137 8 . 5 ± 2 . 0 –
K2-138 6 0.945458309 2 . 3 ±0 . 44 

0 . 36 2021 
Kepler 11 6 0.962373014 3 . 2 ± 0 . 9 –
Kepler 80 6 0.955414548 2 –
TOI - 1136 6 0.987422135 0.7 2022 
TOI - 178 6 0.983217838 7 . 1 ± 5 . 3 2021 
HD 108236 5 0.976381637 6 . 7 ± 4 2021 
HD 158259 5 0.999713447 7.4 2020 
HD 23472 5 0.988496548 – 2022 
HD 40307 5 0.984933377 6 . 9 ± 4 –
K2-268 5 0.957182918 – 2019 
K2-384 5 0.983020508 – 2022 
Kepler 102 5 0.987900552 1.41 –
Kepler 122 5 0.98710756 3.89 –
Kepler-150 5 0.8605413 4.57 –
Kepler 154 5 0.985703723 4.47 –
Kepler 169 5 0.875354644 – –
Kepler 186 5 0.92681234 4 . 0 ± 0 . 6 –
Kepler 238 5 0.98771232 6 . 76 ± 2 –
Kepler 292 5 0.995427692 5 . 13 ± 3 –
Kepler 32 5 0.971262925 2 . 7 ± 1 –
Kepler 33 5 0.948841017 4.27 –
Kepler 55 5 0.988367826 3.13 –
Kepler 62 5 0.950734271 7 ± 4 –
Kepler 82 5 0.955569351 5.1 2019 
Kepler 84 5 0.992394962 4.9 –

Figure 6. Diagram reporting R 

2 versus age of the central star. 
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eing sparing in the addition of new gaps or planets in a planetary
ystem is the following: the geometrical intuition suggests that, given
wo bunches of points on a diagram, the R 

2 of a linear regression
mong those points will be in general impro v ed by ‘moving away’
ne bunch of points from the other. So, in general, it looks wise not
o abuse with the insertion of ‘new’ planets. The possible reasons
hy these predicted missing planets have not yet been detected in
revious surv e ys may be various, the first being, of course, the general
ifficulty of these measurements. A further realistic possibility is that
he missing planets are not really planets, but instead for example
steroid belts , or clouds of dust (as it happens in our solar system).
his possibility could be supported by the fact that, apart from Kepler
3, all the other systems allow for a gap at n = 5 or n = 6. Actually,
his was the case of our solar system, where the gap was exactly at n =
, between Mars and Jupiter. To showcase this possibility, we point
ut that the R 

2 and Median of a TB fitting of our solar system without
he inclusion of Ceres or the asteroid belt are, respectively, R 

2 
old =

 . 981440834 and Median old = 0 . 034928964; to be compared with
he current values, which include the gap at n = 5 between Mars and
upiter, i.e. R 

2 
new = 0 . 993448869 and Median new = 0 . 019581007. 

Finally, we w ould lik e to emphasize that the point of this section is
ot to impro v e the agreement of the TB rule with systems of
ub-optimal agreement. The sole purpose of this section is to
rovide a testable prediction of the TB rule, which we believe
ay help in the search and disco v ery of new exoplanetary celestial 

bjects. 

 TB  RU LE  A N D  T H E  AG E  O F  T H E  

L ANETA RY  SYSTEMS  

t is clear that TB rule is intended to be obeyed on a statistical basis,
y planetary systems which are already ‘running’ by a ‘fair’ amount
f time. At the beginning of their history, protoplanetary systems are
bviously full of dust, small debris, rocks etc. which can be found at
ny distance from the central star. With time, the planetary formation
rocess goes on, matter aggregates onto specific bodies, and planets
lowly emerge. In particular, preferred orbits, those described for
xample by TB rule, slowly emerge and become more precise and
efinite. On the other hand, it is well known that light objects, like
omets, small debris, in general small objects, do not (and are not
 xpected to) obe y , singularly , the TB rule, at any time. Therefore, it
eems reasonable to investigate a possible correlation between the
ge of the planetary system, i.e. the age of the central star, and the
oodness to which the TB rule is obeyed in that planetary system.
ereafter the reader will find such analysis. 
In Table 8 we report, like in Table 1 , the name of the planetary

ystem (i.e. the name of the central star), the number of planets
n the system, the R 

2 indicator, but in place of Median column
e have the age of the central star in Gigayears. The age of the

entral star in general is not explicitly given on the NASA Exoplanet
rchi ve ( NASA Archi ve ), ho we ver it can be obtained from literature
edicated to the specific planetary system under scrutiny. 
According to the abo v e argument, in a diagram ‘ R 

2 versus Age of
tar’, one would expect several points pretty far from 1 for young
ystems, and then for increasing ages, the points should accumulate
earby R 

2 = 1. Instead, looking at Fig. 6 , the situation is not such.
e see young systems close to R 

2 = 1, as well as older systems;
nd equally, young systems far from R 

2 = 1, as well as old systems.
hus, according to the diagram in Fig. 6 , no correlation emerges
etween the age of a planetary system, and the ‘goodness’ to which
he system obeys TB rule. 
NRAS 538, 2730–2743 (2025) 
 C O M PA R I S O N  BETWEEN  T H E  TB  RU LE  A N D  

H E  H A R M O N I C  RESONA NCES  M E T H O D  

f course, the TB rule does not represent the only attempt to give a
henomenological description of planetary spacing. One of the most
nteresting and promising ways to arrive to such a description is
he so-called Harmonic Resonances (HR) method. The idea comes
rom the observation that points of a periodic system, interacting
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4 At a first sight, one further possibility to compare HR model and TB rule 
could be to consider a R 

2 -test for the HR method applied to Solar System, so 
to compare it with the R 

2 -test applied to the TB rule, also for the Solar System. 
Ho we ver, R 

2 -tests are well defined, in general, for predictive models encoded 
by a function, typically a linear regression, maybe coming from exponential 
rules through taking a log (see equations 2 and 3 ). On the contrary, from 

equation ( 14 ) it is clear that the HR method does not generate an exponential 
law, neither a definite function. This would happen if the ratios H i+ 1 /H i were 
the same for all the planet pairs, say ( H i+ 1 /H i ) 2 / 3 = α. Then from equation 
( 14 ) one would infer R i+ 1 = αR i , and hence R n = αn −1 R 1 , which is the TB 

rule. But in general the ratios H i+ 1 /H i are not the same for different pairs, 
and actually they change from pair to pair in an (in principle) unpredictable 
way. Therefore the R 

2 -test seems to be non-applicable to the HR rule. So, 
in order to compare TB and HR rules we have to stick on the Aschwanden 
method R pred /R obs , abo v e already described. 
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ith each other (as for example the orbital systems), tend to manifest
esonances, and resonances tend to stabilize the periodic system 

tself. In particular, computer simulations of planetary systems have 
hown that random injections of new planets tends to produce 
ynamically unstable orbits, until the planets surviving in the system 

ettle their orbital periods into ‘harmonic ratios’, namely in (quasi) 
ational ratios, usually expressible in simple fractions [on this see 
eale ( 1976 ); McFadden et al. ( 2007 ); Batygin, Morbidelli ( 2013 );
schwanden ( 2018 )]. Historically, the HR idea seems to originate 

rom a generalization of a resonance relation already known to 
aplace ( 1829 ) among the orbital periods of three Galilean satellites
f Jupiter, namely Io, Europa, Ganymede, which can be written as 

1 

T Io 
− 3 

T Eur. 
+ 

2 

T Gan . 
� 0 . (11) 

uch relation is fulfilled with an accuracy of the order of ≈ 10 −5 , and,
sing more precise orbital periods, perhaps even to an astonishing 
ccuracy of ≈ 10 −9 (Peale 1976 ). 

On the ground of the orbital periods known in the Solar System,
schwanden ( 2018 ) proposed a generalization of equation ( 11 ) for
 two-body resonance existing between two neighboured planets in 
table long-term orbits, as 

H i 

T i 
− H i+ 1 

T i+ 1 
� ω i ,i + 1 . (12) 

he H i are (small) integers, T i is the orbital period of the i-th planet,
nd ω i ,i + 1 is the residual that accounts for possible further resonances 
rom third or more planets involved. As Aschwanden explains, once 
onsidered two neighboured planets, we know from observation 
 i , T i+ 1 , and we choose the two smallest integers H i , H i+ 1 (positive
r ne gativ e) such that the modulus of the residual | ω i ,i + 1 | results
o be minimal. The ratios H i+ 1 /H i are called harmonic ratios . Of
ourse, once a particular ratio between two periods is established, 
 i+ 1 /T i � H i+ 1 /H i , this can be immediately transferred into a ratio
etween the distances of the planets from the central body, by virtue
f Kepler’s third law, R ∝ T 2 / 3 . On the basis of previous empirical
ork (Peale 1976 ), the integers H i are picked in the range 1,...,5, and

herefore the possible distinct harmonic ratios considered are (5 : 
) , (5 : 3) , (5 : 2) , (5 : 1) , (4 : 3) , (4 : 1) , (3 : 2) , (3 : 1) , (2 : 1). This
rocedure is applied by Aschwanden to all the nine neighboured 
lanet pairs that can be extracted from the Solar System, including 
eres (considered here as the main representative of the asteroids 
elt). So the pairs considered are: Mercury–V enus, V enus–Earth, 
arth–Mars, Mars–Ceres, Ceres–Jupiter, Jupiter–Saturn, Saturn–
ranus, Uranus–Neptune, and Neptune–Pluto. Empirically, As- 

hwanden finds for the abo v e nine planet pairs that the best-fitting
esonances are confined to the five particular ratios (3 : 2) , (5 :
) , (2 : 1) , (5 : 2) , (3 : 1), and the residuals are all quite small, being
n the range ω i ,i + 1 ≈ 0 . 005 − 0 . 06. Moreo v er, it is found that the
atio (5 : 2) works for four different pairs Mercury–Venus, Mars–
eres, Ceres–Jupiter, Jupiter–Saturn, the ratio (2 : 1) describes the 
airs Earth–Mars and Uranus–Neptune, while the remaining three 
atios fit one single pair each. 

Also the role of the most massive planet, Jupiter, is investigated 
Aschwanden 2018 ) by expanding the previous 2-body equation ( 12 )
nto a 3-body resonance condition 

H i 

T i 
− H i+ 1 

T i+ 1 
− H Jup 

T Jup 
� ω i ,i + 1 . (13) 

o we ver, identical results were found (yielding H Jup = 0), except
or the 3-body configuration Mars–Ceres–Jupiter. This supports the 
onclusion that the neighboured planet–planet interaction is more 
mportant in shaping the resonance than the influence of the largest
iant planet, with the exception perhaps of the planet–asteroid pairs. 
Once, through empirical attempts, the harmonic ratios are estab- 

ished, they can be used to re-construct distances among planets in
he Solar System, of course via the Kepler third law, namely 

R i+ 1 

R i 

= 

(
T i+ 1 

T i 

)2 / 3 

� 

(
H i+ 1 

H i 

)2 / 3 

. (14) 

his procedure is applied by Aschwanden to the planets of the Solar
ystem, as well as to 7 moons of Jupiter, to 13 moons of Saturn, to
 moons of Uranus, and to 6 moons of Neptune. All the satellites
re chosen according to the rule of having a diameter larger than
00 km, on the ground of the general rule that planetary spacing
atterns (as TB rule, or HR rule) are in general obeyed by ‘enough
ig’ objects. It is in fact well-known that ‘small’ objects, like comets,
mall asteroids, debris, etc. do not follow, singularly, any particular 
attern in the size of their orbits, and can be found at any distance
allowed by classical mechanics) from the central body. 

For all the above planetary systems, HR model produces an 
greement between observed planetary distances R obs and model- 
redicted values R pred significantly better than the Titius–Bode law 

 2 ). The reported quantities by Aschwanden ( 2018 ) are the mean
nd the standard deviation of the ratios R pred /R obs computed for the
atellites of a given planetary system. For example, for the Solar
ystem the values for the TB law are R TB /R obs = 0 . 95 ± 0 . 13, to
e compared against a R HR /R obs = 1 . 00 ± 0 . 04 given by the HR
odel. Similar good figures are described in Aschwanden ( 2018 )

or the satellite systems of Jupiter, Saturn, Uranus, Neptune, and 
ven for two extra solar planetary systems, namely 55 Cnc, and HD
0180. Thus, Aschwanden ( 2018 ) concludes that the HR model is
learly better than the TB rule in describing planetary spacing, and
an be also much more efficiently used to ‘predict’ possible missing
lanets or satellites in ‘empty’ places of the planetary sequences 
Aschwanden & Scholkmann 2017 ; Scholkmann 2017 ). 4 

Although the abo v e figures should not certainly be under-
ppreciated, some considerations on the comparison between the 
B rule and the HR method are surely in order. HR method seems to
ave some grounds in the classical mechanics of periodic systems, 
erhaps firmer and more sounding than the grounds backing the 
B rule. Ho we ver, as a matter of fact, there is no definite theory,
r bunch of theorems, in classical or celestial mechanics predicting 
hat a periodic system should exhibit (harmonic) resonances, after 
hat a certain amount of ‘running’ time has elapsed. And even less,
o theory predicts what specific harmonic ratios should be used 
o describe a particular system. The integers entering the ratios in
quations ( 11 ), ( 12 ), ( 13 ), ( 14 ) are chosen empirically, ad hoc for
MNRAS 538, 2730–2743 (2025) 
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Table 9. Planetary distributions corresponding to different initial mass 
densities ρ( r) = ζ r p of the protoplanetary discs. A constant distribution 
ρ( r) = ζ , i.e. p = 0, giv es a la w in n 2 ; while p = −3 / 2 giv es a Bode-like 
e xponential la w. Of course, n = 0 , 1 , 2 , 3 , . . . . 

p r( n ) 

0 r 1 / 2 = A 1 + B 1 n 

−1 / 2 r 1 / 3 = A 2 + B 2 n 

−1 r 1 / 6 = A 3 + B 3 n 

−3 / 2 log ( r) = A 4 + B 4 n 
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5 It is interesting to observe that, with the exception of Schmidt, all the authors 
in Caswell ( 1929 ), Schmidt ( 1946 ), Nottale ( 1996 ), Nottale et al. ( 1997 ), 
Agnese & Festa ( 1997 ), Reinisch ( 1998 ), and de Oliveira Neto et al. ( 2004 ) 
arrive to a quadratic law for the orbital radii distribution, r ∼ n 2 , because 
they consider a quantum-like description of the planetary systems, where 
they assume a Newtonian potential 1 /r together with a Bohr-like quantization 
condition for the angular momentum (per unit mass). A different example of 
quantum-like description, that instead leads to an exponential rule r ∼ e 2 λn , 
is presented in Scardigli ( 2007 ). 
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ny specific planetary pair, among ‘small’ integers. Of course, being
 matter of rational numbers, if the ratio (5:2) describes well, say, the
air Jupiter–Saturn, nothing prevents us from thinking that perhaps
he ratios (7:3), or (8:3), or maybe (51:22), or (48:19), can describe
hat pair even better. In other words, the arbitrariness in the choice
f a given ratio is large. A further weak point of the HR method is
hat no theory predicts which ratio should be used for a particular
lanetary pair, or if/why ratios have to be repeatedly used (and how
any times) to describe different pair of planets or satellites, as

appens for example in the Solar System with the pairs Mercury–
enus, Mars–Ceres, Ceres–Jupiter, Jupiter–Saturn [and similarly in
ther (exo)planetary systems]. The lack of any explicit theoretical
onstraint for choosing the numbers H i , makes the HR method
qui v alent to a model with five or even nine pairs of free parameters
namely, 10 to 18 free parameters in total). Then it comes with
o surprise that the HR model fits the planetary distances (in our
olar system, as well as in exoplanetary systems) with much higher
ccuracy than the TB law. Using a model that in principle has (at
east) ten free parameters produces quite obviously better fittings
han a model which has only two free parameters, as the TB rule in
quation ( 2 ). As said abo v e, Aschwanden claims to have singled five
armonic ratios out of nine which are particularly useful to describe
lanetary and satellite distances, both in the Solar and extra Solar
ystems. But, still, this is just an empirical, though extremely useful,
bservation. No reasons are given about why just those five ratios
ork well, or why the ratio (5:3) works better or worse than the ratio,

ay, (49:31). 
By comparison, TB rule has only two free parameters, that we

ndicate with a and λ. The two free parameters have to be adapted
usually with a regression method) to the specific planetary system
nder consideration, and in general they change from system to
ystem. The five harmonic ratios above proposed by Aschwanden,
n the contrary, seem to be valid (again on an empirical basis) for
ny planetary system. Ho we ver also the HR ratios have to be chosen
ach time ad hoc for the specific system examined, and often with a
riori unpredictable repetitions. 
All in all, we conclude that the TB rule still appears to be the

mpirical, most economic and efficient rule on the ‘market’ to
escribe planetary distances or periods. 

 IN  LA SKA R ’ S  FOOTSTEPS:  S E C O N D  

E G R E E  P O LY N O M I A L  A N D  E X P O N E N T I A L  

askar ( 2000 ) presented an interesting model of planetary accretion,
nd consequent formation of a planetary system, based on the
onservation of mass, momentum, and angular-momentum-deficit
tability. Without entering in technical details, we can say that
he model predicts the distribution of the final stable orbits of the
lanetary system as a function of the initial linear mass density ρ( r)
n the protoplanetary disc. For a mass density of the form ρ( r) = ζ r p ,
he distributions of the stable final orbits are given in Table 9 , for
ome specific values of p. 

The parameters A i , B i are in general functions of the angular
omentum deficit, and of the (arbitrary) parameter ζ (see Laskar

000 for more details). In the context of this work, the parameters A i ,
 i can be determined from the observational data via the usual linear

egression method. We notice that all the planetary distribution laws
redicted by the Laskar’s model contain only two (free) parameters
 i , B i . From this point of view the TB rule and the other distributions
roposed in Table 9 are similar. On the contrary, they differ blatantly
rom the HR rule, where the potentially free parameters are at least
ve or ten. 
NRAS 538, 2730–2743 (2025) 
Particularly significant is the law with r ∼ n 2 . In fact, power
aws as n 2 were proposed in several works, even long ago, for
he distribution of planets or satellites in the Solar System (see
aswell 1929 ; Schmidt 1946 ; Nottale 1996 ; Nottale et al. 1997 ;
gnese & Festa 1997 ; Reinisch 1998 ; de Oliveira Neto et al. 2004 ). 5 

lthough at a first glance the n 2 rule seems to be able to fit some data,
ore attentive considerations reveal that authors in Caswell ( 1929 ),
chmidt ( 1946 ), Nottale ( 1996 ), Nottale et al. ( 1997 ), Agnese &
esta ( 1997 ), Reinisch ( 1998 ), and de Oliveira Neto et al. ( 2004 )
re in general forced to use non-consecutiv e inte gers in order to
ccommodate the planetary distances. Or, perhaps more often, they
plit the Solar System into two sets of inner and outer planets (i.e.
errestrial and gigantic planets); the semimajor axis in each set then
ollow a n 2 power law to a high degree of approximation, ho we ver
ith different coefficients A i , B i for each of the two planetary

 amilies. In other w ords, we have tw o different fitting parabolae,
hich in general do not join into a single smooth function. 
Ho we ver, the sounding theoretical basis of the n 2 rule (at least,

n the Laskar formulation), and its partial efficiency in describing
lanetary distances, have pushed us to check such law also in extra
olar planetary systems. Therefore we took the worst six systems
n terms of R 

2 and Median agreement with the TB rule, and we
ecomputed them with a polynomial ( A + Bn ) 2 fitting, to see if their
ew R 

2 and Median indicators are better or worse than those obtained
ith the TB fitting. 
Since, according to Table 9 (Laskar), we have 

 ∼ ( A + Bn ) 2 , (15) 

nd also, according to Kepler third law, r 3 ∼ T 2 , then it should hold 

 

1 / 3 ∼ A + Bn . (16) 

his last relation is the one we checked against the observational data.
he ‘goodness’ of the linear regressions in getting the coefficients
, B is displayed in Table 10 , as usual in terms of the R 

2 statistical
ndicator. The R 

2 of the six worst TB systems (central column) are
ompared with the R 

2 of the same systems, but re-computed via a n 2 

tting (right column). Just a simple glance is sufficient to conclude
hat the TB fitting, even in the worst six cases, w orks w ay better
han the n 2 fitting. The TB rule seems to emerge, once again, as
he most efficient, and most economical mathematical relation to



Titius-Bode rule in extra solar planetary systems 2739 

Table 10. R 

2 of the six worst TB systems compared with the R 

2 

of the same systems, but re-computed via a n 2 fitting. 

Worst TB Systems R 

2 TB R 

2 Laskar n 2 

Kepler 150 0 .8605413 0 .696871005 
Kepler 169 0 .875354644 0 .769928531 
HD 219134 0 .913657699 0 .684612854 
Keper 186 0 .92681234 0 .819327821 
K2-138 0 .945458309 0 .860764702 
HD 191939 0 .945551901 0 .785594964 

Figure 7. Graphic comparison of two different fittings for HD 219134, a 
system with six confirmed planets. ( a ) Titius–Bode fitting (namely semi-log) 
of HD 219134. The R 

2 statistical indicator (Table 10 ) is R 

2 = 0 . 913657699. 
( b ) n 2 -fitting (Laskar model) of HD 219134. The R 

2 statistical indicator is 
R 

2 = 0 . 684612854. 
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escribe planetary spacing, not only in the Solar System, but also in
xtra solar planetary systems. 

For sake of completeness, we could perhaps check the R 

2 of the
orst six systems also against a model with r ∼ n 6 , listed also in

he Laskar Table 9 . Ho we ver, it is quite clear that the larger is the
xponent of the power law, r ∼ n k , the closer such law is to the
xponential r ∼ e n , namely to the TB rule. Therefore, such further
tting and comparison with the TB rule probably would not result to
e particularly insightful. 
Finally, for a visual comparison, we consider one of the systems

n Table 10, HD 219134, and we draw two diagrams of the same
ystem: one displaying a TB-fitting and the other displaying a n 2 -
tting, see Fig. 7 . Then, it appears extremely clear that a TB rule
 orks w ay better than a n 2 -fitting (Laskar model). 
 DI SCUSSI ON  A N D  C O N C L U S I O N S  

he aim of this paper is to check if the Titius–Bode rule can be
onsidered a reliable description of the spacing among planets in 
 planetary system, with reference not only to our Solar system,
ut also in extra solar planetary systems. To this scope, after a
eneral introduction to the Titius–Bode rule, we examined the 32 
lanetary systems (31 plus the Solar system) known to harbour at
east five planets each (to date, July 2023). To keep the analysis as
niform as possible, we considered systems with a single central 
tar only. We then computed the semi-log linear regressions, and 
sed the statistical indicators R 

2 and Median in order to measure
ow ‘good’ is an exponential distance relation, like the TB rule, in
tting the observational data. To clear the stage from the suspect
f a purely random origin of the TB law, we created at random
000 ‘artificial’ planetary systems and observed that, according to 
he statistical indicators, the TB rule fits real planetary systems much
etter than artificial ones. We found that the TB rule describes more
han 78 per cent (25 out of 32) of the examined real systems with
n accuracy better than R 

2 ≥ 0 . 95, and even more than 50 per cent
ith an R 

2 ≥ 0 . 98. By comparison, the ‘artificial’ random systems
re fitted, on average, with an accuracy of R 

2 � 0 . 90. 
Following a long tradition, we too use the TB rule to predict

ome new planets in systems that apparently present bad fittings. 
ur criterion to insert new planet(s) into a system is simple: the

nsertion should impro v e the fitting, namely the R 

2 should getting
loser to 1, and possibly the Median getting closer to 0. Ho we ver, we
lso critically discuss the intrinsic limits that such a procedure seems
o present naturally, and therefore the reasons of why it looks wise
ot to exceed in planetary insertions. A possible correlation between 
he age of a planetary system and the goodness to which TB rule is
beyed (which would seem a natural link), has been on the contrary
uled out by the observations. 

Our findings can be compared and contrasted with results of 
re vious rele v ant works on the TB rule. Hayes and Tremaine ( 1998 ),
or e xample, hav e considered, like us, randomly created planetary
ystems, but furthermore they selected specific systems by applying 
 conserv ati ve stability criterion which requires that adjacent planets
re separated by a minimum distance of k times the sum of their Hill
adii (for values of k ranging from 0 to 8). They performed least-
quares fits of these systems to generalized Bode laws and compared
hem with the fit of our own Solar System. In so doing they found that
his stability criterion generally produce geometrically spaced planets 
hat fit a Titius–Bode law about as well as our own Solar System.
rom our point of view, this means that TB rule, far from being a
ere product of chance, actually implies some kind of underlying 

hysical mechanism at work. Thus, our findings which strongly 
upport the validity of TB relation also in extra solar planetary
ystems, coherently fit with the results of Hayes and Tremaine, in
ointing towards a definite universal physical law. 
On a different line, Bovaird and Lineweaver ( 2013 ), building (also) 

n the early data collected by the Kepler mission, presented one of the
rst systematic studies on a possible validity of the TBR in extra solar
lanetary systems. They considered the 71 systems known in 2013 
or harbouring at least 4 planets each. It should be said, ho we ver, that
ome of these systems contain double or triple stars at their centre,
 circumstance that we were able to a v oid in this paper, thanks of
ourse to the much richer set of exosystems available to us, ten
ears later (2023). As statistical tool they employed a χ2 analysis, 
hich ho we ver, in case of uniform or constant error bars (a position

dopted by Bovaird and Lineweaver), is essentially equivalent to the 
 

2 analysis used in our work (see Appendix A). These authors found
MNRAS 538, 2730–2743 (2025) 
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hat a vast majority of exoplanetary systems of their set adhere to
he TB relation to an extent similar or greater than our Solar system
oes. This finding is essentially confirmed by our work, ten years
ater, and perhaps e ven reinforced, gi ven the more refined set of
lanetary systems we used (five or more planets for each system,
nd single-star systems only). Then Bovaird and Lineweaver, on the
asis of the just verified TB law, dive into a whirlwind of predictions
f new planets. They arrive at inserting up to 10 new planets for each
ystem, compiling a list for the existence of 141 new exoplanets in
8 multiple-exoplanet systems. On this point, in Section 3 we have
een much more prudent (for the geometrical reasons we explained
here), and we ‘predicted’ at most one new planet per system. The
riterium we adopted was ho we ver coincident with that of Bovaird
nd Lineweaver, namely the insertion of a new planet should impro v e
he R 

2 (or χ2 ) distribution. 
Finally, in Sections 5 and 6 we compared the TB rule with two

f its major competitors, namely the Harmonic Resonances (HR)
ethod (see e.g. Aschwanden 2018 ), and the polynomial fitting (see

.g. Laskar 2000 ). In both cases, although for different reasons, the
B rule, an exponential relation, emerges as the most ‘economical’

in terms of free parameters) and best fitting law for the description
f the spacing among planetary orbits. 
In conclusion, we believe that our study contributes to definitively

ift the TB rule out of the bag of conjectures and dubious numerical
oincidences, and gives to the rule the status of a corroborated
hysical phenomenological law. Perhaps a bit like what the studies
f Fraunhofer and Balmer did for the atomic spectra along the
ineteenth century [for potential connections of TBR with atomic
hysics see Caswell ( 1929 ); Albeverio et al. ( 1983 ); Agnese &
esta ( 1997 ); Scardigli ( 2007 ); Batygin ( 2018 )]. The theoretical

nterpretations and explanations of such an empirical law still remain
 much debated matter of the present-day research. 
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PPENDI X  A :  T H E  STATISTICAL  TO O L S  R 

2 

N D  χ2 

he statistical indicator R 

2 , called ‘coefficient of determination’,
s defined in the follo wing way. Gi ven a set of points ( x i , y i ), i =
 , ..., N , the ordinary least-squares method tries to find the ‘best’
nalytic function y = f ( x) that approximates the set ( x i , y i ). Usually
he function is a polynomial, and even more usually it is a straight line
 = A + Bx. What one tries to minimize is the sum of the squares
f the residuals 

 = 

∑ 

i 

[ y i − f ( x i )] 
2 . (A1) 

f course, it would be useful to have ‘something’ with which to
ompare the sum 
, a sort of ‘maximum error’, in order to produce
hen a ‘ percentage error’. The idea is then to consider the average
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f the y i data 

¯ = 

1 

N 

∑ 

i 

y i (A2) 

nd to consider as maximum possible error the sum of the squares of
he residuals in respect to this average ȳ 

 max = 

∑ 

i 

( y i − ȳ ) 2 . (A3) 

he percentage error is then clearly 
/
 max , and the R 

2 indicator is
efined as 

 

2 = 1 − 
 


 max 
. (A4) 

herefore, the agreement between the fitting line and the data is as
etter as R 

2 is closer to 1. 
The statistical indicator χ2 is defined, usually, as follo w. Gi ven 

 set of points ( x i , y i ), i = 1 , ..., N , suppose that y i indicate the
bserved data (each y i is supposed to depend on the specific value
 i of the parameter x); each ˆ y i indicates the datum predicted by the
regression) model for the specific value x i of the parameter, namely 
ˆ  i = f ( x i ); each σi indicates the uncertainty, or error bar, associated

ith the specific observed datum y i . Then χ2 is defined as 

2 = 

1 

N 

∑ 

i 

( y i − ˆ y i ) 2 

σ 2 
i 

. (A5) 

n case of constant or uniform errors bars, namely σi = σ for any i,
hen we can rescale σ = 1, and 

2 = 

1 

N 

∑ 

i 

( y i − ˆ y i ) 
2 = 


 

N 

, (A6) 

nd therefore 

 

2 = 1 − N χ2 


 max 
. (A7) 

PPEN D IX  B:  T H E  STATISTICAL  TO O L  Median 

he definition of Mean Absolute Deviation , also known as Avera g e
bsolute Deviation in Excel (where it is produced by the statisti-
al function AVEDEV) is the follo wing: gi ven a set of numbers
 x 1 , x 2 , . . . , x N } and defined the Mean ̄x in the usual way as 

¯ = 

1 

N 

∑ 

i 

x i , (B1) 

hen the Mean Absolute Deviation referred to that set of numbers is 

AD = 

1 

N 

∑ 

i 

| x i − x̄ | . (B2) 

learly, MAD is a measure of how much ‘close’ the numbers x i are
o their arithmetical mean x̄ . The closer to zero is MAD, the less
dispersed’ are the numbers x i around their mean x̄ . In the ideal case,
hen MAD = 0 then x i = x̄ for any i. 
In our context of (linear) regressions, we call Median what is 

nown as Mean Avera g e Error (MAE). Given a set of points ( x i , y i ),
 = 1 , . . . , N , where y i are the observed data (supposed to depend
n the values x i of the parameter x), and ˆ y i are the data predicted by
he (regression) model, usually ˆ y i = f ( x i ), then the Mean Avera g e
rror is defined as 

AE = 

1 

N 

∑ 

i 

| y i − ˆ y i | . (B3) 
bviously, the smaller is the MAE, the better is the fit by the model
 = f ( x). The MAE can be compared with the Mean Squared Error ,
SE, another statistical indicator of the ‘goodness’ of a fitting model,

efined as 

SE = 

1 

N 

∑ 

i 

( y i − ˆ y i ) 
2 . (B4) 

f course, given the above definitions, the MSE and the sum of the
quared residuals, equation ( A1 ), are linked by the relation 

 = N · MSE = 

∑ 

i 

( y i − ˆ y i ) 
2 . (B5) 

PPENDI X  C :  A  T H E O R E M  O N  T H E  

TA  TI STI CAL  I N D I C A  TO R S  R 

2 ,  Median 

iven a planetary system, the relevant TB fitting can be constructed
y using, as starting data, either the orbital periods T i , namely the set
f points { i, log T i } , or the semimajor axis r i , namely the set of points
 i, log r i } , with i = 1 , 2 , 3 , . . . , N . It is then quite easy to show that: 

 

2 ( T ) = R 

2 ( r) , Median ( T ) = 

3 

2 
Median ( r) (C1) 

amely, the R 

2 of the data sets { i, log T i } and { i, log r i } are the same,
hile the Medians are proportional, through a factor 3 / 2 . 
Proof . By the Kepler Third Law we have T 2 i = kr 3 i . Defining

 i = log r i , Z i = log T i , we can write 

 i = 

1 

2 
log k + 

3 

2 
Y i 

nd with reference to equations ( 3 )–( 9 ), a straightforward calculation
ields 

 = 

1 

2 
log k + 

3 

2 
A ; D = 

3 

2 
B . 

efining now Z̄ = ( 
∑ 

j Z j ) /N and Ȳ = ( 
∑ 

j Y j ) /N , we can then
rite 

 i − Z( i) = 

3 

2 
( Y i − Y ( i)) 

Z i − Z̄ = 

3 

2 
( Y i − Ȳ ) (C2) 

nd these two can be used together with equations ( A1 ), ( A3 ) to
rrive at 

 ( T ) = 

9 

4 

 ( r) , 
 max ( T ) = 

9 

4 

 max ( r) , 

hich yield the thesis R 

2 ( T ) = R 

2 ( r). 
Using again equation ( C2 ), and the definition ( B3 ) of Median (i.e.
AE), we immediately also have Median ( T ) = (3 / 2) Median ( r).
ED. 

PPENDI X  D :  TI TUS-BODE  RU LE  F O R  T H E  

ATELLITES  O F  JUPI TER,  SATURN,  U R A N U S  

e show here how and to what extent the TB rule is obeyed by
he systems of moons of, respectively, Jupiter, Saturn, and Uranus. 
lthough this subject is obviously outside of the main topic of this
aper, from the historical point of view it presents a rele v ant interest,
ince it helps to depict the opinion that people formed about the TB
aw during the 20th century, before the disco v ery of exoplanetary
ystems. For the semimajor axis (or for the periods) of the satellites’
rbits we use recent data taken from Wikipedia (see there the links
upiter moons , Saturn moons , Uranus moons ) and also from the
MNRAS 538, 2730–2743 (2025) 
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M

Figure D1. Fitting of the main satellites of Jupiter. The statistical indicators 
are R 

2 = 0 . 99759458 and Median = 0 . 00181383. 

Figure D2. Fitting of the main satellites of Saturn. The statistical indicators 
are R 

2 = 0 . 94507382 and Median = 0 . 014263996. 

Figure D3. Fitting of the main satellites of Uranus. The statistical indicators 
are R 

2 = 0 . 99512428 and Median = 0 . 00204344. 
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Table D1. Main satellites of Jupiter. 

Jupiter system n Orbital radius in km 

Io 1 421 700 
Europa 2 671 034 
Ganymede 3 1070 412 
Callisto 4 1882 709 

Table D2. Main satellites of Saturn. 

Saturn system n Orbital radius in km 

Mimas 1 185 539 
Enceladus 2 237 948 
Tethys 3 294 619 
Dione 4 377 396 
Rhea 5 527 108 
Titan 6 1221 870 
Hyperion 7 1481 009 
Iapetus 8 3560 820 

Table D3. Main satellites of Uranus. 

Uranus system n Orbital radius in km 

Miranda 1 129 858 
Ariel 2 190 930 
Umbriel 3 265 982 
Titania 4 436 282 
Oberon 5 583 449 
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ncyclopedia of the Solar System (McFadden et al. 2007 ). In these
ables and regression diagrams we do not include, on purpose, the
atellites recently disco v ered only with spacecrafts (namely after
ioneer and Voya g er missions), just because they are in general very

ight bodies, and it is well known that the TB rule works well only for
uite large and quite massive objects (it does not work, for example,
or comets or light asteroids). 

In the case of Jupiter, for example, the satellites Metis, Adrastea,
malthea, and Thebe, all orbiting at distances shorter than the Io’s
NRAS 538, 2730–2743 (2025) 
rbit, are all bodies with sizes of order 100 km, and masses of
0 −7 − 10 −4 times the mass of Io. Therefore, for the abo v e reasons,
hey are not considered in the regression diagram. A fortiori the small

oons orbiting at distances larger than Callisto orbit, all with sizes
f 50 km or less, are ignored. The Jupiter diagram therefore displays
nly the Galilean satellites, Io, Europa, Ganymede, Callisto. 
Analogue considerations hold for the satellites systems of Saturn

nd Uranus. 
Hereafter the reader can find the regression diagrams for the main

atellites of Jupiter 8 , Saturn 9 , and Uranus 10 , each one equipped
ith the R 

2 and Median values computed from the specific statistical
nalysis. As the reader can easily realize, the statistical indicators
 

2 and Median assume really good values, in particular for Jupiter
nd Uranus. In fact, both the Jupiter’s and Uranus’ R 

2 , as well as
heir Median s, are better than the Solar System R 

2 and Median . Both
upiter and Uranus systems fall in the set of R 

2 > 0 . 99. 
For the Saturn system the situation is clearly worse. This could

erhaps be due to the fact that the system of Saturn contains
ore moons (146, May 2023) than any other planet in the Solar

ystem. Moreo v er, the large rings might affect the distribution of the
atellites’ orbits in a still unknown way. 

In any case, it would be interesting to define a (precise) quantitative
riterion to understand when a moon should be expected to obey a
B relation, or not. At present, the empirical selection rule (that we
sed to compile the Tables D1 , D2 , D3 ) is just based on the size/mass
f the considered moon. We followed the tradition, since this rule is
lso adopted in the Nieto book, as well as in most of the literature on
he Titius-Bode relation. Possible quantitative formulations of this
riterion will form the subject of future works. 
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PPEN D IX  E:  R EFERENCES  F O R  T H E  

LANETA RY  SYSTEMS  IN  TA BLE  1  

able E1. References for planetary systems in Table 1 . 

ystem Planets References 

un 9 + Ceres https:// doi.org/ 10.1016/ C2010- 0- 67309- 3 
OI-351 b,c,d,e,f,g,h https:// doi.org/ 10.1088/ 0004-637X/ 781/ 1/ 18 

i https:// doi.org/ 10.3847/ 1538-3881/ aa9e09 
rappist 1 b,c,d,e,f,g,h https:// doi.org/ 10.3847/ PSJ/ abd022 
D 10180 b,c,d,e,f,g https:// doi.org/ 10.1088/ 0004-637X/ 792/ 2/ 111
D 191939 b,c,d,e,f,g https:// doi.org/ 10.1051/ 0004-6361/ 202244120
D 219134 b,c,d,e https:// doi.org/ 10.1038/ s41550- 017- 0056 

f,g https:// doi.org/ 10.1088/ 0004-637X/ 814/ 1/ 12 
D 34445 b https:// doi.org/ 10.3847/ 1538-3881/ aa5df3 

c,d,e,f,g https:// doi.org/ 10.3847/ 1538-3881/ aa8b61 
2-138 b,c,d,e,f,g https:// doi.org/ 10.1051/ 0004-6361/ 201936267
epler 11 b,c,d,e,f,g https:// doi.org/ 10.1088/ 0004-637X/ 770/ 2/ 131
epler 80 b,c,d,e,f https:// doi.org/ 10.3847/ 0004-6256/ 152/ 4/ 105

g https:// doi.org/ 10.3847/ 1538-3881/ aa9e09 
OI - 1136 b,c,d,e,f,g https:// doi.org/ 10.3847/ 1538-3881/ ad1330 
OI - 178 b,c,d,e,f,g https:// doi.org/ 10.1051/ 0004-6361/ 202039767
D 108236 b,c,d,e,f https:// doi.org/ 10.1051/ 0004-6361/ 202039608
D 158259 b,c,d,e,f https:// doi.org/ 10.1051/ 0004-6361/ 201937254
D 23472 b,c,d,e,f https:// doi.org/ 10.1051/ 0004-6361/ 202244293
D 40307 b,c,d,e,f https:// doi.org/ 10.1051/ 0004-6361/ 201220268
2-268 b,c,d,e,f https:// doi.org/ 10.1093/ mnras/ stab2305 
2-384 b,c,d,e,f https:// doi.org/ 10.3847/ 1538-3881/ ac5c4c 
epler 102 b,c,d,e,f https:// doi.org/ 10.1051/ 0004-6361/ 202346211
epler 122 b,c,d,e https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 

f https:// doi.org/ 10.1088/ 0004-637X/ 787/ 1/ 80 
epler-150 b,c,d,e https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 

f https:// doi.org/ 10.3847/ 1538-3881/ aa62ad 
epler 154 b,c https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 

d,e,f https:// doi.org/ 10.3847/ 0004-637X/ 822/ 2/ 86 
epler 169 b,c,d,e,f https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 
epler 186 b,c,d,e https:// doi.org/ 10.1126/ science.1249403 

f https:// doi.org/ 10.1088/ 0004-637X/ 800/ 2/ 99 
epler 238 b,c,d https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 

e,f https:// doi.org/ 10.1088/ 0067-0049/ 210/ 2/ 25 
epler 292 b,c,d,e,f https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 
epler 32 b https:// doi.org/ 10.3847/ 1538-3881/ abd93f

c,d,e,f https:// doi.org/ 10.1088/ 0004-637X/ 750/ 2/ 114
epler 33 b,c,d,e,f https:// doi.org/ 10.1088/ 0004-637X/ 750/ 2/ 112
epler 55 b,c https:// doi.org/ 10.1093/ mnras/ sts090 

d,e,f https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 
epler 62 b,c,d,e,f https:// doi.org/ 10.1126/ science.1234702 
epler 82 b,c,f https:// doi.org/ 10.1051/ 0004-6361/ 201935879

d,e https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 
epler 84 b,c https:// doi.org/ 10.1088/ 0067-0049/ 208/ 2/ 22 

d,e,f https:// doi.org/ 10.1088/ 0004-637X/ 784/ 1/ 45 
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