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ABSTRACT: Embedding techniques allow the efficient description of
correlations within localized fragments of large molecular systems while
accounting for their environment at a lower level of theory. We introduce
FragPT2: a novel embedding framework that addresses multiple
interacting active fragments. Fragments are assigned separate active
spaces, constructed by localizing canonical molecular orbitals. Each
fragment is then solved with a multireference method, self-consistently
embedded in the mean field from other fragments. Finally, interfragment
correlations are reintroduced through multireference perturbation theory.
Our framework provides an exhaustive classification of interfragment
interaction terms, offering a tool to analyze the relative importance of
various processes such as dispersion, charge transfer, and spin exchange.
We benchmark FragPT2 on challenging test systems, including N2
dimers, multiple aromatic dimers, and butadiene. We demonstrate that our method can be successful even for fragments defined
by cutting through a covalent bond.

1. INTRODUCTION
Multiconfigurational (MC) wave function-based methods have
long been the workhorse of ab initio quantum chemistry,
particularly for systems with low-lying or degenerate electronic
states.1,2 Practical MC approaches, such as the complete active
space self-consistent field (CASSCF),3 require defining an
active space comprising a subset of the most chemically
relevant orbitals. Within this space, electron correlations are
calculated exactly by a configuration interaction (CI) wave
function, a superposition of all electronic configurations
formed from a given set of active electrons and orbitals. The
number of these configurations scales exponentially with the
size of the active space, limiting the application of these
methods to small systems. There have been substantial efforts
to expand the size of the active space: some try to restrict the
number of excitations by partitioning the active space,4−9

others involve adaptive procedure to select the configurations
with the largest weights.10,11 Radically different approaches to
constructing a compressed CI wave function include tensor-
network algorithms such as the density matrix renormalization
group (DMRG),12 quantum Monte Carlo (QMC) methods,13

or various kinds of quantum algorithms.14

A more pragmatic approach for extending multiconfigura-
tional computations to larger systems relies on the concepts of
f ragmentation and embedding.15−18 Fragmentation exploits the
inherent locality of the problem, describing a system as a
composition of simpler subsystems. Each subsystem is then
treated with a higher level of theory. The subsystems are then

recombined by embedding them in each other’s environment
at a lower level of theory. The subsystem orbitals can be
constructed in various ways, with the most prominent method
being Density Matrix Embedding Theory (DMET).19−22

DMET constructs fragment and bath orbitals based on the
Schmidt decomposition of a trial low-level (e.g., Hartree−
Fock) single-determinant wave function of the full system. A
high-level calculation (e.g., FCI, Coupled-Cluster,23,24

CASSCF,25 DMRG,24,26,27 or auxiliary-field QMC28 is then
performed on the fragment orbitals. Subsequently, the low-
level wave function is fine-tuned self-consistently via the
introduction of a local correlation potential. Fragmentation
and embedding have also been studied in the context of
DFT.29,30 MC wave function-based methods that explicitly
construct localized active spaces for each fragment include the
Active Space Decomposition method,31 cluster Mean Field
(cMF)32 and Localized Active Space Self-Consistent Field
(LASSCF).33,34

While fragmentation methods have shown success in
reducing the complexity in treating localized static correlations,
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they typically do not capture interfragment correlations.
Especially weak, dynamical, correlations between the different
fragments and between fragments and their environment can
be crucial for obtaining an accurate description of the full
system.35 In CAS methods, the fragment-environment
correlations can be retrieved using Multi-Reference Perturba-
tion Theory (MRPT)36 methods like Complete Active Space
Second-Order Perturbation Theory (CASPT2)37 and N-
Electron Valence Second-Order Perturbation Theory
(NEVPT2).38,39 Some methods have been developed to also
recover interfragment correlations in embedding schemes
either variationally,40 perturbatively,32,41−43 or via a coupled-
cluster approach.44 Although treating strong correlations
between fragments remains challenging, there has been some
work in this direction.45,46 In the field of quantum algorithms, a
recent work proposed to treat interfragment entanglement with
a Unitary Coupled Cluster ansatz using the LASSCF
framework.47

In this work, we introduce and benchmark a novel active
space embedding framework, which we call FragPT2. Based on
a user-defined choice of two molecular fragments (defined as a
partition of the atoms in the molecule), we employ a top-down
localization scheme that generates an orthonormal set of
localized molecular orbitals, ordered by quasi-energies and
assigned to a specific fragment. Using these localized orbitals,
we define separate and orthogonal fragment active spaces. Our
orbital fragmentation scheme is straightforward, it does not
require iterative optimization, and it allows to define fragment
orbitals even when the fragments are covalently bonded; on
the downside, a good choice of fragments based on chemical
intuition is crucial for the success of our method. Within each
fragment’s active space, we self-consistently find the MC
ground state influenced by the mean field of the other
fragment (defined as a function of the fragment 1-particle
reduced density matrix).

The factorized state obtained with our method has a similar
structure to the wave function used in LASSCF and cMF, as
these methods also construct product state wave functions of
MC states defined on fragmented active spaces. The cMF
method is designed for the 1D and 2D Fermi-Hubbard model.
It is based on expressing the ground state wave function as a
tensor product of many-body states defined on local fragments.
The fragment orbitals are then optimized self-consistently to
minimize the total energy of the considered product state.
Interfragment correlations are then recovered in second-order
perturbation theory, using excited fragment eigenstates as
perturbing functions. On the other hand, LASSCF exploits a
modified DMET algorithm to construct fragments. Starting
from a product state, a Schmidt decomposition is used to
define fragment and bath orbitals for each fragment. Similarly
to cMF, the product state and fragment definition are then
optimized self-consistently. The resulting method can be made
fully variational with respect to both CI and orbital
coefficients.34 In contrast, in our approach, active fragment
orbitals are defined in top-down fashion, starting from a set of
reference canonical molecular orbitals. Our method is
variational with respect to the considered (fragment CI)
parameters, and does not require any orbital optimization. As a
trade-off for the simplicity of the method, we expect our
product wave function to have a higher energy than the orbital-
optimized LASSCF for the same fragment active space sizes.
We instead aim to recover the remaining interfragment
correlations perturbatively.

To this end, our product state will be used as a starting point
for MRPT to recover interfragment correlations. The
interactions between fragments can be naturally classified on
the basis of charge and spin symmetries imposed on the single
fragments, offering analytic insight into the nature of these
correlations. Differently from cMF, the perturbing functions
are chosen on the basis of electronic excitation operators
present in the original electronic Hamiltonian, and organized
according to a partially contracted basis akin to MRPT
methods like PC-NEVPT2.38,39 We apply our method to
challenging covalently and noncovalently bonded fragments
with moderate to strong correlation, providing qualitative
estimates of the contributions from various perturbations to
the total correlation energy within the active space.

The rest of this paper is organized as follows: in Section 2 we
detail our FragPT2 algorithm for multireference fragment
embedding. In Section 3, we perform numerical tests of the
method on a range of challenging chemical systems, ranging
from the noncovalently bonded but strongly correlated N2
dimer to covalently bonded aromatic dimers and the butadiene
molecule. In Section 4 we present an outlook on future
research directions, proposing possible improvements for the
method and an application in the field of FragPT2 in the field
of variational quantum algorithms. Finally, in Section 5 we give
concluding remarks.

2. FRAGPT2 METHOD
In this section, we introduce a novel method for fragmented
multireference calculations with perturbative corrections:
FragPT2. This method works by dividing the active space of
a molecule into localized subspaces that can be treated
separately using a MC solver, as illustrated in Figure 1. The
cost of MC methods scales quickly with the size of the treated
active space (e.g., exponentially in the case of FCI); splitting
the system into smaller active spaces allows the treatment of
larger systems for an affordable computational cost. In this
work, we focus on the special case of two active fragments
called A and B; however, our method can be promptly
generalized to the multiple fragment case as discussed in
Section 4.3. Our method requires the user to define the
molecular fragments as an input. The choice of fragmentation
should be based on chemical intuition, aiming at minimizing
interfragment correlations; a good choice is crucial to the
success of the method. Our method allows to recover some
interfragment correlations, allowing fragmentations that break
a covalent bond (like the one shown in Figure 1 for biphenyl),
i.e., where two atoms on either side of a covalent bond are
assigned to different fragments. The number of bonds broken
in fragmentation should, however, be kept to a minimum.

First, in Section 2.1 we introduce the construction of the
localized orbitals and the definition of the fragment active
spaces. In Section 2.2 we define fragment Hamiltonians by
embedding each fragment in the mean field of the other.
Applying separate MC solvers to each fragment Hamiltonian,
we show how to obtain a fragment product state | 0 which
will be the reference state for subsequent perturbative
expansions. Finally, in Section 2.3 we decompose the full
Hamiltonian into a sum of the solved fragment Hamiltonians
and a number of interfragment interaction terms. We classify
these terms on the basis of fragment symmetries and describe a
method to treat them in second-order perturbation theory.
2.1. Construction of Recanonicalized Intrinsic Local-

ized Molecular Orbitals. In order to define the fragment
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subspaces, we follow the top-down procedure introduced in
refs. 48 and 49, based on localizing precomputed molecular
orbitals. First, we calculate a set of canonical molecular orbitals
(CMOs) for the whole system (other choices for molecular
orbitals are discussed in Section 5). Distinct Hartree−Fock
calculations are also run on each fragment, capped if necessary
to saturate bonds severed in the fragmentation. We then
choose a valence space, removing a set of hard-core and hard-
virtual orbitals far from Fermi energy in both the super-
molecular and the fragment calculations. The remaining
valence fragment orbitals define the target localized active
spaces and are called reference fragment orbitals (RFOs).
These RFOs are nonorthogonal and only serve to depolarize
the valence CMOs, providing an orthonormal set of intrinsic
fragment orbitals (IFOs) of the same dimension as the RFO
basis. These IFOs are expressed in the CMO basis and could
already be assigned to a particular fragment. They do however
mix occupied and virtual spaces and we therefore merely use
them to define the localization function in Pipek-Mezey
localization50 of the CMOs. After recanonicalization (block-
diagonalizing the Fock matrix within each fragment), we obtain
a set of Recanonicalized Intrinsic Localized Molecular Orbitals
(RILMOs), partitioned in fragment subspaces, that together
span exactly the occupied space of the original CMOs48 plus
the chemically relevant valence virtual space. The active spaces
for each fragment are illustrated in Figure 1.

In this work we also consider covalently bonded fragments,
where there is an ambiguity in assigning one occupied orbital
representing the interfragment bond to either fragment. The
same ambiguity holds for one unoccupied antibonding orbital,
which can also be assigned to either fragment. To eliminate
this arbitrariness, we introduce a bias so that any such
(anti)bond is always assigned to the first fragment. This
enables us to define a natural fragmentation for covalently
bonded dimer molecules. As noted already above, in order to
generate the required IFO basis for this calculation, we need to
deal with “dangling” bonds that are severed in the
fragmentation process. For each fragment we simply saturate
these by adding a hydrogen atom to the fragment. The thus
produced fragment orbitals are well suited as RFOs, but do
yield one additional orbital in the span of the RFOs and IFOs.
Accepting this feature, the ROSE code reported in ref. 48
could be used without modification. In a forthcoming paper,
we plan to discuss the localization of higher lying virtuals for
which the RILMO generation does need to be modified (see
also ref. 49 for noncovalently bonded subsystems) by removing
the capping basis from the RFO space. For the covalently
bonded dimer systems tested in this work, the unmodified
RILMO generation could be used with only a bias in the
selection procedure to assign both the bond and the antibond
to the same fragment.
2.2. Fragment Embedding. The total Hamiltonian in the

combined active space spanned by both fragments is given by

= +H h E g e
1
2pq A B

pq pq
pqrs A B

pqrs pqrs
(1)

where we use the spin-adapted excitation operators

=

= =

†

† †

E a a

e a a a a E E E .

pq p q

pqrs p r s q pq rs qr ps
(2)

This Hamiltonian includes all interactions of all active
orbitals. Our embedding scheme aims at decomposing this
Hamiltonian as = +H H H0 , where H0 includes intrafrag-
ment terms and a mean-field interfragment term, and can be
solved exactly with separate in-fragment MC solvers. The
residual interfragment interactions H′ are treated separately
with perturbation theory, as described in Section 2.3.

To facilitate the use of separate MC solvers for each
fragment, we constrain the wave function of the total system to
be a product state over the two fragments,

| = | |A B
0 (3)

where | X is a many-body wave function in the active space of
fragment X, similar in spirit to cMF and LASSCF. We further
restrict each fragment wave function | X to have fixed, integer
charge and spin. Note that the conservation of spin and charge
on each fragment is not a symmetry of the subsystem;
however, this assumption is crucial to construct separate
efficient MC solvers. Interfragment charge transfer and spin
exchange processes are later treated in perturbation theory.

Under these constraints, we can simplify the expression of H
by removing all the terms that do not respect charge and spin
conservation on each fragment separately (as their expectation
value of | 0 would anyway be zero). The remaining

Figure 1. Example of fragmentation and definition of the fragment
active spaces. (Left) Active space selection for the entire biphenyl
molecule. The CAS treatment separates the canonical molecular
orbitals (CMOs) based on their energy ordering, obtaining a set of
doubly occupied core orbitals, a set of empty virtual orbitals, and a set
of active orbitals around Fermi energy used to describe correlations.
We illustrate the highest occupied molecular orbital. (Right)
Fragment active space selection for the left and right fragments of
the biphenyl molecule. After the localization procedure, we obtain
recanonicalized intrinsic localized molecular orbitals (RILMOs),
where the orbitals are assigned to either fragment A or B. We can
still select core, active, and virtual orbitals for each fragment based on
an approximate energy ordering, obtained through the recanonicaliza-
tion procedure. Here, we depict the highest occupied RILMO for the
right fragment. Using our method, we can half the size of the required
active space since the multireference solver is applied to just one
fragment at a time. The correlations between the localized active
spaces can be retrieved afterward with perturbation theory.
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Hamiltonian can be then decomposed as + +H H HA B AB, with
terms

= +H h E g e
1
2X

pq X
pq pq

pqrs X
pqrs pqrs

(4)

(with { }X A B, ), that only act nontrivially on a single
fragment, and a term

=H g E EAB
pq A rs B

pqrs pq rs
(5)

(where =g g gpqrs pqrs psrq
1
2

), that includes interactions
preserving local spin and charge. The term HAB still introduces
interfragment correlations; one way to make the fragments
completely independent would be to also treat this term
perturbatively (this is the choice made in SAPT.41 However,
including an effective mean-field interaction (originating from
HAB) in the nonperturbative solution improves the quality of
our | 0 .

To construct the effective Hamiltonian HX
eff for each

fragment we use a mean-field decoupling approach. We write
the excitation operator as its mean added to a variation upon
the mean: = +E E Epq pq pq. The mean is just the one-
particle reduced density matrix (1-RDM) of one of the
fragments, = | |Epq

X
X pq X . By substituting in eq 5 we obtain

[ + + ]g E E E E
pq A rs B

pqrs pq rs
B

pq
A

rs pq
A

rs
B

pq rs
(6)

The term E Epq rs will necessarily have zero expectation value
on the product state eq 3, as | | =E 0X pq X . Removing this

term (which we will later treat perturbatively) we obtain the
mean-field interaction

= [ + ]H g E E
pq A rs B

pqrs pq rs
B

pq
A

rs pq
A

rs
B

mf
(7)

We can finally define H0 as

= + +H H H HA B
0

mf (8)

where all terms are operators with support on only a single
fragment, thus the ground state | 0 of H0 is a product state of
the form eq 3. All the terms we removed from H to construct
H0 have zero expectation value on | 0 , thus it is the lowest
energy product state that respects the on-f ragment symmetries.

To find | 0 we minimize =E H0
0 by self-consistently

solving separate ground state problems on each fragment.
Consider the decomposition

= + +E E E EA B0 mf (9)

where = | |E HX X X X can be evaluated on a single fragment
X and =E gpq A rs B pqrs pq

A
rs
B

mf is the mean-field
interfragment coupling depending on the fragment 1-RDMs.
To find | A and | B , we iteratively solve for the ground state
of the following coupled Hamiltonians:

= +H H g EA A
pq A rs B

pqrs pq rs
Beff

(10)

= +H H g EB B
pq A rs B

pqrs pq
A

rs
eff

(11)

Table 1. Summary of the Perturbations and the Cost of PT2a

Perturbation Perturbing functions {| } Fragment matrix element

1. =H g E E( )( )
pq A rs B

pqrs pq pq
A

rs rs
B

disp
|

[ ]

E E

tu A vw B,
tu vw

0

| |E H EX lk X tu X
eff

2.

=

+

+ [ + ]

+ [ + ]

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ

H h g E

h g E

g E E E

g E E E

p A q B
pq

r A
prrq pq

p B q A
pq

r B
prrq pq

pqr A s B
pqrs pq rs sr

pqr B s A
pqrs pq rs sr

1CT

|
Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

E E

tuv A w B
tuw A v B
tuv B w A
tuw B v A

,
,

,
,

tu vw
0

| |

| |

†

†

a E H E a

a E H E a

X m lk X tu v X

X m lk X tu v X

eff

eff

3.

=

+

H g E E

g E E

1
2

1
2

pr A qs B
pqrs pq rs

pr B qs A
pqrs pq rs

2CT |
Ä
Ç
ÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑ

E E

tv A uw B
uw A tv B

,
,

tu vw
0

| |

| |

† †

† †

a a H a a

a a H a a

X l k X t u X

X l k X t u X

eff

eff

4. =H g t
pq A rs B

psrq pq rsTT ,
|

[ ]

t

tu A vw B,

tu vw,
0

| |

| |

| |

T H T

T H T

T H T

X lk X tu X

X lk X tu X

X lk X tu X

(1,0) eff (1,0)

(1,1) eff (1, 1)

(1, 1) eff (1,1)

aWe summarize here the perturbing functions and cost for each of the perturbations. The rightmost column reports the form of the matrix elements
of H0 required to compute each perturbation; estimating these matrix elements on the fragment state is the most expensive part of FragPT2. If done
naively by writing out the full fragment Hamiltonians as a contraction between integrals and this could require estimating 4-RDMs for the
dispersion, double-charge transfer (2CT) and triplet−triplet (TT) perturbations, and 5-RDMs for the single-charge transfer (1CT) perturbation.
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thus minimizing all the terms eq 9. We outline the whole
procedure in Algorithm 1. Note that this algorithm can be
readily generalized to other MC solvers within the fragment
that provide access to the state RDMs (e.g., the variational
quantum eigensolver, discussed in Section 4.2.

2.3. Multireference Perturbation Theory. While the
| 0 retrieved from Algorithm 1 is a solid starting point, it
neglects the correlations between the fragments. If the
fragments are sufficiently separated, we expect these
correlations to be minimal and recoverable by perturbation
theory. We propose using second-order perturbation theory to
retrieve the correlation energy of these interactions. The
interfragment interaction terms can be classified in four
categories, based on whether they conserve charge and/or
total spin on each fragment: dispersion Hdisp (which conserves
both charge and spin of the fragments), single-charge transfer
H1CT and double-charge transfer H2CT (that conserve charge
nor spin), and triplet−triplet coupling HTT (that conserves
charge but not local spin). Thus, the complete decomposition
of the Hamiltonian reads:

= + + + +H H H H H H0
disp 1CT 2CT TT (12)

The definition of these terms is given in Table 1 and their
derivation is reported in Appendix 1. We will treat the different
perturbations in eq 12 one at a time. First notice that for every
perturbation in eq 12, the first order energy correction is zero:

= | | =E H 01 0 0 . We will focus solely on the second
order correction to the energy.

To proceed, we need to choose a basis of perturbing functions
{| } used to define the first-order correction to the wave
function

| = |C1

(13)

For the exact second order perturbation energy, we should
consider all Slater determinants that can be obtained by
applying the terms within H to the set of reference
determinants. While this full space of perturbing functions is
smaller than the complete eigenbasis of H, it is still
unpractically large, and approximations need to be introduced.
To choose a compact and expressive basis, we look at the
perturbation under consideration. Every perturbative Hamil-
tonian can be expanded in a linear combination of two-body
operators:

=H g O O
A B

A B

(14)

where OX is either identity or a product of Fermionic operators
on fragment X and gμν are combinations of one- and two-
electron integrals (see Table 1 for their explicit form).
Consider the following (nonorthogonal) basis:

| = |O OA B 0
(15)

This partially contracted basis is a natural choice for compactly
representing the wave functions that interact with | 0 through
the perturbations in H′.38

Following the choice of perturbing functions, we estimate
the matrix elements | |H 0 in this basis. The overlap

| must also be computed in order to be able to contract
with the gμν to yield | |H0 . To obtain the coefficients Cμν

that define the first-order correction to the wave function, we
solve the following linear equations:

| | + | | =H E C H 00 0 0

(16)

Then the second-order correction to the energy is given by

= | | = | |E H H C2 0 1 0

(17)

The total second-order PT correction can be expressed as the
sum of the different perturbations:

= + + +E E E E E2
disp
2

1CT
2

2CT
2

TT
2

(18)

The procedure is summarized in Algorithm 2.

Computing the matrix elements | |H 0 is the most
expensive part of our algorithm. The tensor product form of
the zeroth-order wave function significantly reduces the
algorithm’s cost by allowing the matrices to factorize in the
expectation values of operators on the different fragments, that
in turn can be expressed as combinations of fragment RDMs.
We outline the idea here, and refer the reader to Appendix 2
for the formal derivation for every perturbation:

| | = | | | |

+ | | | |

+ | | | |

† †

† †

† †

H O H O O O

O O O H O

E O O O O

A
A

A
A

A B
B B

B

A
A A

A B
B

B
B

B

A
A A

A B
B B

B

0 eff

eff

mf (19)

If there are N NBA two-body terms in eq 14, the number of
matrix elements that one needs to estimate on each fragment is

+N N N N( 1)B B
1
2 A A . However, if the amount of matrix elements
becomes too expensive, it is possible to alleviate the cost
without sacrificing much accuracy, for example by using a more
compact basis of perturbing functions. For a discussion of
further reductions of the cost, see Section 4.1.
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3. NUMERICAL DEMONSTRATION
In this section we demonstrate our method by applying it to a
range of molecular systems that are well-suited targets for
bipartite fragmentation. We have chosen three sets of systems.
The first system consists of two N2 molecules at a distance of
2.0 Å, with a (close to equilibrium) bond length of 1.2 Å. In
contrast to the other structures, we do not need to cut through
a covalent bond and can treat each molecule as a separate
fragment. We examine the results of our method while
stretching the nitrogen bond in one of the fragments; this is
known to rapidly increase static correlation in this system and
thus is a good benchmark for the multireference method. The
second type of systems we consider comprises a set of aromatic
dimers, where two aromatic rings of different kinds are
connected by a single covalent bond. Cutting through this
bond, we investigate the correlation energies of the dimers
with respect to the dihedral angle of the ring alignment. These
systems exhibit strong correlation whenever the rings are in the
same plane and low correlation when the rings are
perpendicular to each other: they are thereby suitable to
benchmark both regimes. The final system is butadiene, as the
simplest example of the class of polyene molecules that are
much studied as 1-D model systems51,52 as well as for their
importance in various applications.53 −55 Here we cut through
the single covalent bond between the middle carbons and
investigate the correlation energy with respect to the stretching
of the double bonds in a single fragment. This system, albeit
slightly artificial, is intriguing due to the significant static
correlation within the fragments induced by the dissociating
bonds, coupled with substantial dynamic interfragment
correlation.
3.1. Numerical Simulation Details. We construct the

localized orbitals using a localization scheme implemented in
the ROSE code.56 The FragPT2 method is implemented
completely inside the quantum chemical open-source software
package PySCF.57 Algorithm 1 uses the FCI solver of the
program to get the optimal product state of the fragments. The
matrix elements in eq 19 by exploiting the software capabilities
to manipulate CI-vectors and estimate higher order RDMs.
Finally we implemented Algorithm 2 that solves eqs 16,17 for
every perturbation in eq 12. To assess the accuracy of our
algorithm, we compare the fragment embedding energy E0

(from Algorithm 1), the FragPT2 energy +E E0 2 including
the perturbative correction (from Algorithm 2), and the exact
ground state energy Eexact of the Hamiltonian in eq 1
(calculated with CASCI in a full-molecule active space of
double size). The N2 dimer and aromatic dimer calculations
are done in a cc-pVDZ basis set, while butadiene is treated in a
6-31G basis.
3.2. N2 Dimer. As an initial test system, we consider a

dimer of nitrogen molecules, i.e., N2−N2. To increase the static
correlation within the fragment, we dissociate one of the
nitrogen molecules. This bond breaking is modeled using three
occupied and three virtual localized orbitals in the active space,
representing the σ bond and the two π bonds. This results in
an active space of six electrons in six orbitals for each fragment.
The results in Figure 2 clearly demonstrate the failure of the
Hartree−Fock method due to the high degree of correlation
within the fragment. Our multireference solver within the
localized active spaces successfully addresses this issue, with E0

providing a good description of the ground state. There is

some minor interfragment correlation, and our perturbative
correction brings us closer to the exact solution.

Our data further shows that the perturbative correction
arises mainly from the single-charge transfer contribution.
Notably, the double-charge transfer and triplet−triplet
coupling are zero everywhere. Additionally, we find that for
stretched bond lengths, the dispersion interaction between the
fragments is minimal. The ability to identify the character of
the relevant interactions between fragments is a further
advantage of our method.
3.3. Aromatic Dimers. Here we focus on aromatic dimers,

i.e., molecules with two aromatic rings that are attached by a
single covalent bond. The simplest such system considered is
two phenyl rings, known as biphenyl, shown in Figure 1. As the
biphenyl case is highly symmetric, other similar molecules can
be generated by substituting various ligands for one of the
hydrogen atoms, or a nitrogen for a carbon in the phenyl rings.
In this manner, we generate a comprehensive benchmark on a
variety of systems. Our set of examples is motivated from the
different classes of biaryl systems studied by Sanfeliciano et al.
in the context of drug design.58

Figure 2. Potential energy curve for the N2 dimer. The upper panel
shows a comparison of the curves obtained through Hartree−Fock
(EHF), fragment embedding (E0), FragPT2 ( +E E0 2), and full-
molecule CASCI (exact). The two N2 are parallel and at a distance of
2 Å, and the bond distance of the right dimer is varied. The fragment
active spaces each comprise six electrons in six spatial orbitals,
corresponding to the triple bonding and antibonding orbitals.
Hartree−Fock performs poorly due to the strong intrafragment
correlation. The fragment embedding energy E0 captures the correct
behavior of the system, while E2 gives an additional, small correction
in the direction of the exact solution. The bottom panel reports the
deviation w.r.t. the exact result over the potential energy curve, where
we sequentially add the different perturbative corrections described in
Table 1. We first add the dispersion correction Edisp

2 (red line) and

then the single-charge transfer contribution E1CT
2 (blue line), showing

the other contributions are zero by plotting the full FragPT2 energy
+E E0 2 (orange dots).
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To construct the fragment active spaces, we consider the
conjugated * system on each ring, typically resulting in
six electrons distributed across six orbitals for each fragment.
There are a few exceptions to this rule. For pyrrole rings, the
relevant aromatic orbitals comprise six electrons in five orbitals.
Furthermore, for rings that include a CN or OCH3 substituent
(i.e., (c−f), (i−k) and (m) in Figure 3), there is a low-lying π
orbital and high-lying * orbital that mix with a p orbital of the
substituent. These orbitals are excluded from the active space
of these fragments, reducing the active space to four electrons
in four orbitals. This only provides additional insight into the
performance of our method with asymmetric active space sizes
in the fragments.

For each dimer, we vary the dihedral angle ϕ of the two
planes spanned by the rings, thus rotating over the covalent
bond. This gives a potential energy curve with a high variance
of correlation energy: if the rings are perpendicular, the
aromatic systems are localized and the correlation between the
fragments is low. Instead, if the rings are aligned, we expect to
see a high amount of correlation between the fragments, and

thus a breakdown of the description of E0. The results of our
method compared to the exact energies are given in Figure 3.

Our data shows that, for each of the molecules and values of
ϕ, E0 recovers at least 93% of the correlation energy (with an
average of 97%). While this is high in absolute terms, the shape
of the potential energy curves for these models can be
qualitatively wrong. As expected, a product state is not a good
approximation if the rings are aligned, as the aromatic system
will be delocalized over the molecule. This causes the
interactions between the fragments to play a more significant
role. The product state is on the other hand a good
approximation when the rings are perpendicular, there pushing
E0 to 99% of the correlation energy. This causes an imbalance
between the two configurations and calls for the need to treat
the interactions. When we compute the second-order
perturbation energy E2, it is shown in Figure 3 that sometimes
E0 finds a different minimum than the exact state. In these
cases especially, the perturbative corrections need to be
calculated to give a more correct shape of the potential energy
curve. In Figure 4, one can see that the division of the

Figure 3. Relative potential energy curves for the set of aromatic dimers, where we vary the dihedral angle ϕ of the two dimers. The molecular
orbitals are localized on the fragments naturally defined by the two aromatic rings (including the respective ligands). In principle, for each dimer,
we select the active space of six electrons in six orbitals on each fragment that comprise the conjugated * system (with some exceptions
elaborated on in Section 3.3). Thus, our method cuts down the space for the exact calculation (12 electrons in 12 orbitals) into half. This is small
enough to verify our method against an exact CASCI calculation. The blue line represents the fragment embedding energy E0. The orange line
includes the second-order perturbation energy for all considered perturbations, representing the FragPT2 energy +E E0 2. The black line reports
the exact calculation Eexact. All reported energies are relative to the minimum of Eexact. The considered molecules are, in row-first order: (a)
biphenyl, (b) 2-cyanobiphenyl, (c) 2-(2-methoxyphenyl)pyridine, (d) 2-(4-cyanophenyl)pyridine, (e) 4-methoxybiphenyl, (f) 2-phenylpyrimidine,
(g) 3-phenylpyridine, (h) 2-(2-trifluoromethylphenyl)pyridine, (i) 2-methoxybiphenyl, (j) 2-(2-cyanophenyl)pyridine, (k) 2-(4-methoxyphenyl)-
pyridine, (l) 4-phenylpyridine, (m) 4-cyanobiphenyl, (n) 2-phenylpyridine, and (o) N-phenylpyrrole.
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perturbation energies can be very constructive in determining
the important contributions of the system in question. In case
of aromatic dimers, two interactions are important: dispersion
and single-charge transfer. While the former takes care of a
constant shift over the dihedral angles, the latter is much larger
when the aromatic rings are aligned, thus crucial in retrieving
the right behavior of PES. The double-charge transfer and
triplet−triplet spin exchange terms are not important in these
class of molecules.
3.4. Butadiene. Butadiene (C4H6) is the final test system

that we consider. We define the two fragments by cutting
through the middle bond of the molecule. We study the energy
of the system while stretch the double bond onto dissociation
inside one of the fragments, thereby testing our method to
increasing amounts of static correlation inside the fragment.
Dissociating the bond additionally causes the leftover molecule
to be a radical, thus increasing significantly the strength of the
interaction between the fragments.

We define the active spaces by taking the * and
* system of the double bonds of both fragments. This

results in an active space of four electrons in four orbitals for
each fragment.

The potential energy curves are shown in the upper panel of
Figure 5. It can be clearly seen that the multireference product
state is a correct description at the equilibrium geometry, but
its performance is somewhere in between the Hartree−Fock
and the exact solution at dissociation. To improve on it, we
clearly need the perturbative corrections.

If we analyze the contributions to the perturbative correction
plotted in the lower panel of Figure 5, we see that H1CT
interaction is the most important (contributing around
80 88% to E2). Notably, in this system the HTT contribution
is large as well (contributing around 8 12% to E2). This is in
line with chemical intuition, as this system has low-lying triplet
states;59 a singlet-coupled double triplet excitation may

therefore contribute significantly to the ground state wave
function. Again, the ability to separately analyze the different
classes of interfragment interactions is useful here, as it allows
to consider the correlation in polyenes in terms of products of
local excitations.

4. OUTLOOK
4.1. Computational Efficiency. In order to estimate the

perturbative corrections in Table 1 we have to construct high-
order k-RDMs for all k 5. These RDMs are tensors with up
to 10 indices: constructing and storing them explicitly is
computationally expensive. Several methods to evaluate and
store high order RDMs in a compressed form have been
proposed in the context of e.g., NEVPT2 theory.60,61

Resolution of identity (RI),62 cumulant expansions,63 tensor
contraction with integrals64,65 are some of the ways to
circumvent this bottleneck. Future research should consider
how these methods can be applied in the specific case of
FragPT2.

To further improve the efficiency of FragPT2, we can
consider modifications to the part our algorithm that calculates
the perturbative corrections. For example, to circumvent the
need to calculate all the different elements of the RDMs, we
can compress the basis of perturbing functions in eq 15. One

Figure 4. Average errors for the aromatic dimer set. Mean deviation
in total energy with respect to the exact result for the complete set of
aromatic dimers shown in Figure 3, where we vary the dihedral angle
ϕ of the two aromatic rings. We show the result of sequentially adding
the different perturbative corrections described in Table 1. The top
curve represents the error of fragment embedding energy E0. We first
add the dispersion correction Edisp

2 , which is giving a constant shift
along the dihedral angle. Then, the (single) charge transfer correction
E1CT

2 crucially corrects for the behavior where the rings are aligned.
Finally, we add the double-charge transfer term E2CT

2 and triplet−
triplet term ETT

2 together, recovering the final FragPT2 energy
+E E0 2. These last terms contribute an additional small shift to the

aligned rings configuration. Figure 5. Potential energy curves of butadiene. The fragments are
chosen by cutting through the middle bond and subsequently
stretching the double bond of one of the fragments, as illustrated in
the inset. The curves are color coded like in Figure 2 and show that
both intrafragment and interfragment correlations are important to
recover the correct behavior. In particular, interfragment correlations
are explained by the vicinity of the two fragments and by the radical
that is left over after dissociation of the stretched bond. In the lower
panel, we show once more the result of sequentially adding the
different perturbative corrections described in Table 1. We first add
the single-charge transfer contribution E1CT

2 (blue line) and then the
triplet−triplet coupling ETT

2 (purple line), showing the other
contributions are zero by plotting the full FragPT2 energy +E E0 2

(orange dots).
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option is to set the coefficients Cμ of eq 13 by the integrals of
the perturbation H′ under consideration. This gives a single
(unnormalized) perturbing function | = |H1 0 , known in
literature as a strongly contracted basis. This strongly contracted
form has applied with some success in the context of
NEVPT2.38 The bottleneck of the algorithm then becomes
estimating higher order powers of the Hamiltonian and the
perturbations on | 0 , effectively equivalent to the first order of
a moment expansion.38,66 Another possible approach to
reducing the cost of computing perturbations relies on
stochastic formulations of MRPT, which have also been
studied in the context of strongly contracted NEVPT2.67−69 In
these approaches, the necessary quantities were determined in
a quantum Monte Carlo (QMC) framework.
4.2. Integration with Quantum Algorithms. In this

manuscript, we focused on solving the single fragments with
FCI, but our framework is compatible with any method that
can recover RDMs of fragment wave functions. Quantum
algorithms have emerged as promising tools for tackling
classically hard electronic structure problems, but they come
with specific limitations distinct from those of classical
algorithms. Fragmentation and embedding techniques are
critical for defining tasks suited to quantum algorithms,
enabling a focus on strongly correlated active sites while
reducing problem sizes. Recent studies have explored
integrating quantum algorithms into embedding schemes,
including SAPT (for both near-term variational70,71 and fault-
tolerant72 approaches) and LASSCF.47,73 In this context, we
discuss integrating FragPT2 with the variational quantum
eigensolver (VQE).74,75

The VQE prescribes to prepare on a quantum device an
ansatz state | ( ) , as a function of a set of classical parameters
θ which are then optimized to minimize the state energy

= | |E H( ) ( ) ( ) . Having access to a quantum device
allows to produce states which can be hard to represent on a
classical computer, enabling the implementation of ansaẗze
such as unitary coupled cluster74,76 and other heuristic
constructions77−79 however, sampling the energy and other
properties from the quantum state incurs a large sampling cost,
which is worsened by the required optimization overhead.

Integrating FragPT2 with the VQE is straightforward. For
each fragment X, a separate parametrized wave function
| ( )X X is represented, reconstructing an ansatz
| |( ) ( )A A A B for the product state eq 3. As no quantum
correlation is needed, multiple wave functions can be prepared
in parallel in separate quantum devices, or even serially on the
same device; this can allow to treat larger chemical systems
with limited-size quantum devices. We can find the lowest-
energy product state directly by minimizing the expectation
value of the Hamiltonian

= | | | |E H( , ) ( ) ( ) ( ) ( )A B A A B B A A B B (20)

this energy can be estimated by measuring the one- and two-
body reduced density matrices separately on each fragment. As
shown in Section 2.2, the minimum energy product state
matches the solution of the mean field embedding.

Integrating VQE with fragmentation techniques can help
describe binding energies, proposed in literature with a method
based on symmetry adapted perturbation theory and termed
SAPT(VQE).70,71 SAPT(VQE) addresses the same terms as
Algorithm 1, but uses a perturbative expansion instead of
mean-field coupling for terms dependent on fragment 1- and 2-

RDMs. It employs two nonorthogonal orbital sets for the
fragments, limiting this method to noncovalently bonded
fragments. Inspired by SAPT(VQE), Algorithm 1 could be
adapted to measure interaction energies. A thorough
comparison of the two methods and studying their dependence
on molecular orbitals and atomic basis set is a promising area
for future work. SAPT has also recently been applied to fault-
tolerant quantum algorithms, overcoming some of the
limitations of near-term devices.72

As per Algorithm 2, to recover the perturbative corrections
accounting for interfragment interactions we need to extract
higher-order reduced density matrices from each fragment’s
wave function. Perturbation theory for the variational quantum
eigensolver has been studied in the context of recovering
dynamical correlations.80,81 Using measurement optimization
techniques from refs. 82 and 83 , estimating all the elements of
the k-RDMs on a fragment active space of N orbitals to a
precision ϵ requires O N( )k2 samples. In practice this makes
naively estimating the perturbative corrections very costly,
especially for the single-charge transfer terms H1CT that require
5-RDMs (see Table 1). An interesting direction for future
research might consider using shadow tomography and its
Fermionic extension84,85 to estimate RDMs to all orders at the
same time.
4.3. Further Extensions. Extension to multiple f ragments

� This paper focused on the case of two active fragments.
However, it is relatively straightforwardly applied to more. The
lowest energy product state can be retrieved by trivially
extending the algorithm, looping through the fragments and
solving exactly the active fragment feeling the mean-field of the
inactive fragments, until reaching convergence. Subsequently,
we can treat the interfragment interactions that can span four
fragments at a time at most (as the Hamiltonian is a two-body
operator), which is a coupled charge transfer excitation. While
the perturbing functions then have to be extended to these
types of excitations, the matrix elements that one has to
estimate will factorize in the same way, and the algorithm will
not be more costly than for two fragments (i.e., no higher
order RDMs will have to be estimated). Working out the exact
expressions and implementing a truly many-fragment algo-
rithm is part of future work.
Localized orbitals beyond Hartree−Fock � The Hartree−

Fock determinant is known to be an unstable reference in
dissociating systems and other highly correlated molecules.86,87

To generate the input orbitals, one might want to change from
a cheap mean-field method to a slightly more expensive
CASSCF calculation with a small active space. As the
localization scheme can handle any input orbitals, our method
can be trivially adapted to a better choice of reference orbitals
that already takes into account some correlation. Additionally,
one can include intrafragment orbital-optimization during the
fragment embedding (Algorithm 1). A simple approach would
involve using a CASSCF solver on the individual fragments,
with orbital rotations constrained to each fragment to keep the
fragments separated. This could enhance the method’s
accuracy and provide a better starting point for perturbation
theory. In this spirit, a version LASSCF33 or vLASSCF34 could
be recovered as an extension of our method where orbital
rotations between fragment active spaces are also allowed and
optimized self-consistently.
NEVPT2-like perturbations�So far we have treated the

interactions only inside the complete active space, i.e., our H
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from eq 1 involves indices within either active fragment. To
retrieve more of the dynamical correlation energy, the core
idea of NEVPT2 is to include excitations involving also the
inactive orbitals in a perturbative way. We can build on top of
our previous approach by including additional perturbations
and perturbing functions. Correspondingly, we can augment
our Hamiltonian from eq 1 as,

= + +H H H H0
act inact (21)

where Hinact consists of the various classes of perturbations
involving excitations from the core to the active space, the
active space to the virtual space and the core to the active
space. For the form of these perturbations, see ref. 38 . It is
straightforward to extend the methods from NEVPT2 to the
case of multiple active fragments, and again the matrix
elements will factorize on different fragments in the same
way, relieving the need to estimate additional matrix elements
on the multireference fragment solvers.

5. CONCLUSION
In this work, we introduced a novel multireference multifrag-
ment embedding framework called FragPT2. We showed that
our method gives accurate results for a reduced cost in active
space size, especially when the fragments are well-separated.
Our comprehensive numerical benchmarks on a variety of
molecules show that 1. Intrafragment static correlation can be
retrieved by an MC product state ansatz (E0) 2. Interfragment
correlation can be treated as a perturbative correction (E2) 3. A
combination of these is needed to recover the correct shape of
the potential energy curve. Using a decomposition of the
Hamiltonian based on fragment symmetries, we can distinguish
the contributions to the interfragment correlation in E2,
providing insight into important interactions within the studied
systems. Furthermore, our adapted localization scheme allows
to define molecular fragments that cut through covalent bonds.
In this case, perturbative corrections describing interfragment
charge transfer (and, to a lesser extent, triplet−triplet spin
exchange) are crucial for accurately describing the system.
Future research directions include improving the efficiency of
high-order RDM estimation, integrating FragPT2 with varia-
tional quantum algorithms, and extensions to multiple
fragments for broader applicability.

Our multireference embedding scheme could find broad
applications, for instance in understanding the spatial depend-
ence of the correlation energy in π-stacked systems and other
biochemically important systems,88 modeling supramolecular
complex formation89 in metal ion separation, or in analyzing
metallophilic interactions.90−92

■ APPENDIX A

A. Hamiltonian decomposition
In this appendix, we give a detailed derivation of the terms in
the decomposition eq 2 of the full active-space molecular
Hamiltonian.

We start from the full Hamiltonian eq 1, and we rewrite the
quartic excitation operators =e E E Epqrs pq rs qr ps in terms of
the quadratic Epq, obtaining

= +H h E g E g E E
1
2

1
2pq

pq pq
pq r

prrq pq
pqrs

pqrs pq rs

(22)

We will separately deal with the terms that conserve charge on
each fragment (in Appendix A.1) and those that transfer
charge between fragments (in Appendix A.2). It can be easily
identified whether a term preserves charge on each fragment
by counting the number of electrons moved across orbitals, as
all orbitals { }p q r s, , , pertain to either fragment A or B.

A.1. Charge-conserving terms. In this section we derive the
charge-conserving interfragment terms Hdisp and HTT, as well
as the on-fragment Hamiltonians HA and HB.

The one-body term of eq 22 only conserves charge if p and q
are both in the A fragment or both in the B fragment, these
terms will respectively be part of HA and HB. The two-body
term of eq. 22 includes terms where all p q r s, , , are part of the
same fragment: these will also be part of HA and HB.

The other possible options that preserve charge while
including terms on both fragments are

+

+ +

g E E g E E

g E E g E E

1
2

1
2

1
2

1
2

pq A rs B
pqrs pq rs

pq B rs A
pqrs pq rs

pq A rs B
psrq ps rq

rs B pq A
rqps rq ps

(23)

It is straightforward to show that the first two terms are
equivalent by using the symmetry =g gpqrs rspq and the
e x c i t a t i o n o p e r a t o r c o m m u t a t i o n r e l a t i o n s
[ ] =E E E E,pq rs ps qr rq ps. These terms represent the Cou-
lomb interactions between the fragments. The latter two terms
describe the exchange interactions between the fragments.

We rewrite the exchange term using Fermionic commutation
rules−using the notation pX being an orbital index on fragment
X we get

=

=

=

= +

+

† †

† † †

† † † †

† † † †

E E a a a a

a a a a a a

E a a a a a a a a

a a a a a a a a

E S S T T T T

T T

( )

p s r q p s r q

r s p q p q r s

r s p q p q r s p q r s

p q r s p q r s

r s p q p q r s p q r s p q r s

p q r s

0,0 0,0 1,0 1,0 1,1 1, 1

1, 1 1,1

A B B A A B B A

B B A A A A B B

B B A A A A B B A A B B

A A B B A A B B

B B A A A A B B A A B B A A B B

A A B B (24)

where we use the definition of the spin operators:86

= = +† †S E a a a a
1
2

1
2

( )p q p q p q p q
(0,0)

X X X X X X X X (25)

= † †T a a a a
1
2

( )p q p q p q
(1,0)

X X X X X X (26)

= †T a ap q p q
(1,1)

X X X X (27)

= †T a ap q p q
(1, 1)

X X X X (28)

and
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= +

=

†

†

a a S T

a a S T

1
2

( )

1
2

( )

p q pq pq

p q pq pq

(0,0) (1,0)

(0,0) (1,0)

(29)

Notice that the last three terms of eq 24 conserve the total
spin of the system, but flip the local spin of the individual
fragments. Separating out these terms from the expansion of
eq. 23 we obtain the triplet−triplet interaction Hamiltonian:

= + +

=

H g T T T T T T

g t

pq A rs B
psrq p q r s p q r s p q r s

pq A rs B
psrq pq rs

TT
1,0 1,0 1,1 1, 1 1, 1 1,1

,

A A B B A A B B A A B B

(30)

where =t T T T T T Tpq rs pq rs pq rs pq rs,
1,0 1,0 1,1 1, 1 1, 1 1,1.

After subtracting this term from eq 23, we arrive at the
following expression for the Hamiltonian that includes all
fragment charge-conserving and spin-conserving terms:

+ +H H HA B AB, which can be easily split in the three terms

= +H h E g E g E E
1
2A

pq A
pq pq

pqr A
prrq pq

pqrs A
pqrs pq rs

(31)

= +H h E g E g E E
1
2B

pq B
pq pq

pqr B
prrq pq

pqrs B
pqrs pq rs

(32)

+ =
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑH H g g E E

1
2pq A rs B

pqrs psrq pq rsmf disp
(33)

where the last row can be further split in a mean-field
interaction term Hmf and a dispersion term Hdisp: the mean-

field interaction is defined self-consistently on the basis of the

solution of the Hamiltonian = + +H H H HA B
0

mf , as we
showed in Section 2.2.

A.2. Charge transfer terms. We now work on separating the
terms that involve charge transfers between the fragments. As
the molecular Hamiltonian contains only one-body and two-
body terms, we only need to consider single-charge and
double-charge transfers, respectively classified as part of H1CT

and H2CT.
We first isolate the single-charge transfer terms. These

include the single-body terms of eq 22 where p and q pertain to
different fragments:

+h E h E
p A q B

pq pq
p B q A

pq pq
(34)

along with the two-body terms where three indices pertain to a
fragment and one pertains to the other:

+ + +

+ + + +

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅ

É
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ÑÑÑÑÑÑÑÑÑÑÑÑ

g E E E

g E E E

1
2

( ( ))

1
2

( ( ))

pqr A s B pqs A r B prs A q B qrs A p B

pqrs pq rs qr ps

pqr B s A pqs B r A prs B q A qrs B p A

pqrs pq rs qr ps

(35)

where for brevity we write multiple sums (in brackets) sharing
the same summand (in parentheses). We can simplify this
using the symmetr ies of the two-body integral

= = =g g g gpqrs rspq qprs pqsr and the commutation relations of
excitation operators [ ] =E E E E,pq rs ps qr rq ps, obtaining

+ +

+ +

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ
i
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jjjjjj

y
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zzzzzzg E g E

g E E E

g E E E
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( )

p A q B r A
prrq pq

p B q A r B
prrq pq

pqr A s B
pqrs pq rs sr

pqr B s A
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(36)

Combining this with the one-body term eq 34 we define the
single-charge transfer term

=

+

+ [ + ]

+ [ + ]

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ
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p A q B
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r A
prrq pq

p B q A
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r B
prrq pq

pqr A s B
pqrs pq rs sr

pqr B s A
pqrs pq rs sr

1CT

(37)

The double-charge transfer is simpler, as there are just two
two-body terms that allow for a double-charge transfer:

= +H g E E g E E
1
2

1
2pr A qs B

pqrs pq rs
pr B qs A

pqrs pq rs2CT

(38)

One can easily verify that

= + + + + + +H H H H H H H HA B mf disp TT 1CT 2CT

■ APPENDIX B

B. Fragment matrix elements
This section contains derivations of the expressions for the
zeroth-order Hamiltonian matrix elements | |H 0 for
every perturbation =H g O OA B. We will focus here on
estimating these matrix elements exactly without any
approximation, resulting in the need for higher order RDMs.
For a discussion of future work to improve efficiency, see
Section 4.1. In general, the expressions are given as
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| | = | | | |

+ | | | |

+ | | | |

† †

† †

† †

H O H O O O

O O O H O

E O O O O

A
A

A
A

A B
B B

B

A
A A

A B
B

B
B

B

A
A A

A B
B B

B

0 eff

eff

mf

(39)

| | = | | | |† †
H g O O O OA

A A
A B

B B
B

0

(40)

where we defined the per turb ing funct ions as
| = | |O OA B

A B . We have

| | = +

| | + | |

i
k
jjjjjj

y
{
zzzzzzO H O h g g

O E O g O E E O

X
X

X
X

X
pq X

pq
rs Y

pqrs rs
Y

r X
prrq

X
X

pq
X

X
pqrs X

pqrs X
X

pq rs
X

X

eff

(41)

Thus, the relevant operator matrix elements to estimate are
| |O E E OX

X
pq rs

X
X , | |O E OX

X
pq

X
X , and | |O OX

X X
X .

B.1. Dispersion. For the case of the dispersion perturbation,
we use the perturbing functions

| [ ]E E tu A vw B,tu vw
0

(42)

Thus, we straightforwardly identify O EX
pq and the most

expensive matrix element to compute is

| |E E E EX vw pq rs tu X (43)

i.e. a 4-particle reduced density matrix.
B.2. Single-charge transfer. The single-charge transfer case

is a bit more complicated. We like to preserve the total spin, so
we use the spin-free excitation operators to define the
perturbing functions as

|

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
E E

tuv A w B
tuw A v B
tuv B w A
tuw B v A

,
,

,
,

tu vw
0

(44)

That means a straightforward decomposition into O OA B is
more intricate because of the sum over spin. Instead, we have

†E a ap q v wX X X Y
and †E a ap q v wY Y X Y

. Let us work out the
matrix elements explicitly for the first case in eq 44. This is
easily generalizable to the other cases. The total matrix element
becomes

| | = | | | |

+ | | | |

+ | | | |

† †

† †

† †

H a E H E a a a

a E E a a H a

E a E E a a a

k l m n t u v w A m lk A tu v A B n w B

A m lk tu v A B n B w B

A m lk tu v A B n w B

0 eff

eff

mf

A A A B A A A B

(45)

As Epq and HX
eff preserve spin, and | X are eigenfunctions of S2,

we can replace the double sum over spin by a single one as
= . Now substituting †O E aX

tu v in eq 41 the most
expensive object to estimate will be

| |†a E E E E aX m lk pq rs tu v X (46)

i.e. a 5-particle reduced density matrix.

B.3. Double-charge transfer. For the double-charge transfer
we have the following set of perturbing functions:

|
Ä
Ç
ÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑE E tv A uw B

uw A tv B
,

,tu vw
0

(47)

This makes the total matrix element equal to

| | = | | | |

+ | | | |

+ | | | |

† † † †

† † † †

† † † †

H a a H a a a a a a

a a a a a a H a a

E a a a a a a a a

k l m n t u v w A m k A t v A B n l u w B

A m k t v A B n l B u w B

A m k t v A B n l u w B

0 eff

eff

mf

A B A B A B A B

(48)

Here there also simplifications possible regarding the sum over
spin. Namely, only the following options are nonzero:

{ }, , , , , , , , . Re-
gardless, making the identification † †O a aX

t v in eq 41, the
most expensive object to estimate is

| |† †a a E E a aX m k pq rs t v X (49)

and similarly for O a aX
t v , this is as expensive as estimating

a 4-particle reduced density matrix.
B.4. Triplet−triplet. The triplet−triplet perturbing functions

are given by

| [ ]t tu A vw B,tuvw
0

(50)

where =t T T T T T Ttuvw tu vw tu vw tu vw
1,0 1,0 1,1 1, 1 1, 1 1,1 (see Appendix

A.1 for their definition). Observe that, for any fragment
operator OX that preserves spin, all matrix elements

| |T O TX
m X m

X
(1, ) (1, ) are only nonzero if + =m m 0,

where { }m m, 1, 0, 1 . Thus, we can make the following
statement:

| | = | |

= | | | |

+ | | | |

+ | | | |

†O O t O O t

T O T T O T

T O T T O T

T O T T O T

klmn
A B

tuvw k l m n
A B

t u v w

A lk
A

tu A B nm
B

vw B

A lk
A

tu A B nm
B

vw B

A lk
A

tu A B nm
B

vw B

0 0 0
, ,

0

(1,0) (1,0) (1,0) (1,0)

(1,1) (1, 1) (1, 1) (1,1)

(1, 1) (1,1) (1,1) (1, 1)

A A B B A A B B

(51)

Finally, the matrix element of H0 in this basis is thus equal to

| | = | | |

| + | | | |

+ | | | |

+ =

+ =

+ =

H T H T T T

T T T H T

E T T T T

k l m n t u v w
m m

A lk
m

A tu
m

A B nm
m

vw
m

B
m m

A lk
m

tu
m

A B nm
m

A vw
m

B

m m
A lk

m
tu

m
A B nm

m
vw

m
B

0

0

(1, ) eff (1, ) (1, ) (1, )

0

(1, ) (1, ) (1, ) eff (1, )

mf
0

(1, ) (1, ) (1, ) (1, )

A A B B A A B B

(52)

The most expensive object to estimate in the triplet−triplet
case is then, identifying O TX

tu
m(1, ) in eq 41:

| |T E E TX lk
m

pq rs tu
m

X
(1, ) (1, )

(53)

where + =m m 0. This is equivalent in cost to measuring a 4-
particle reduced density matrix.
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