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Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant
response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, pro-
liferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program
acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and
cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of
stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative
relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi-
mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression
in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane,
andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear
mixed effect modeling approach with partially hierarchical parameters accurately captures the observed
experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification
to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of
NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2-
mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors.

1. Introduction

homeostatic conditions, most of the synthesized NRF2 protein is
sequestered in the cytosol by actin-associated Kelch-like ECH associated

Hepatotoxicity is a leading cause of adversity, frequently resulting in
failure of preclinical and clinical trials due to drug-induced liver injury
(DILI) (Centers et al., 2002; Kaplowitz, 2001). Various cellular stress
signaling pathways, such as the oxidative stress response (OSR), the
inflammatory stress response (ISR), the unfolded protein response
(UPR), and the DNA damage response (DDR) have been implicated in
DILI, and the mechanism through which these pathways are activated by
exposure to a chemical or drug determines whether the liver injury is
acute or chronic (Pickering et al., 2013). Among the mentioned path-
ways, the OSR plays a particularly prominent role in DILI (Ghanim et al.,
2021), as it swiftly responds to chemical stress and tightly regulates
several key physiological processes, i.e., autophagy, proliferation, and
apoptosis.

The main transcription factor within the OSR is Nuclear factor
erythroid 2-related factor 2 (NRF2; gene name NFE2L2). Under
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protein 1 (KEAP1), and subsequent ubiquitination of NRF2 leads to its
degradation by the proteasome (Suzuki and Yamamoto, 2015; Yama-
moto et al., 2018). Upon exposure to chemicals such as electrophilic
agents, cysteine residues on KEAP1 become modified, which prevents
NRF2 ubiquitination and subsequent degradation (Eggler et al., 2005).
As a result, the NRF2 concentration within cells increases and NRF2
translocates to the nucleus where it binds to antioxidant response ele-
ments (AREs). This induces transcription of ARE genes such as
glutamate-cysteine ligase modifier (GCLM), heme oxygenase 1
(HMOX1), NAD(P)H quinone oxidoreductase 1 (NQO1), thioredoxin
reductase 1 (TXNRDI1), peroxiredoxins (PRDXs) and sulfiredoxinl
(SRXN1), which play an important role in the maintenance of cellular
homeostasis (Ma, 2013). SRXN1 is a key enzyme that repairs hyper-
oxidized peroxiredoxins, thus maintaining the antioxidant capacity of
the cell (Jose et al., 2024).Finally, homeostasis is restored through the
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effect of ARE gene regulation, and NRF2 becomes sequestered in the
cytosol again. NRF2 is well recognized as a master regulator not only of
the oxidative stress response (OSR), but also of the cellular response to
electrophilic stress (Yamamoto et al., 2018).

Our current understanding of NRF2 as a transcriptional regulator of
ARE genes remains incomplete. Specifically, it is unclear which down-
stream targets are preferentially activated, what their relative contri-
butions are to the resolution of oxidative or electrophilic stress
(Yamamoto et al., 2018), and to what extent these effects are
chemical-specific and exposure scenario dependent. NRF2 knockout
experiments have demonstrated that NRF2 is the sole transcription
factor regulating ARE genes (Wijaya et al., 2022), yet regulation of such
genes is complicated due to the nonlinear dynamics involved and the
modifying impact of various cofactors (Reichard et al., 2007; Qian et al.,
2015). Small MAF proteins (sSMAFs) represent one class of cofactors that
can modify transcriptional regulation mediated by NRF2 (Katsuoka
et al., 2005). In homeostatic conditions, SMAFs form homodimers
(Kataoka et al., 1995) but under oxidative stress conditions, SMAFs
heterodimerize with NRF2, thereby enhancing its transcription factor
activity (Itoh et al., 1997). The production of sMAFs, and their compe-
tition with other cofactors that heterodimerize with NRF2 (Kataoka
et al., 1995) could be influenced by various biological pathways
(Katsuoka and Yamamoto, 2016), possibly indicating crosstalk. Indeed,
several studies reported that kinases such as ERK, PI3K, PKC and p38
MAPK modify and influence NRF2 mediated activation of downstream
genes (Yu et al., 1999; Huang et al., 2000, 2002; Bloom and Jaiswal,
2003). For example, Zipper et al. reported that both ERK and the p38
pathway contribute to the transcriptional upregulation of gamma glu-
tamylcysteine synthetase (GCS) by enhancing binding of NRF2 to ARE
(Zipper and Mulcahy, 2000). Other proteins with a modifying impact are
the histone acetyltransferases p300/CBP, which have been shown to
directly acetylate NRF2, thereby increasing its transcription factor ac-
tivity with respect to various ARE genes, such as NQO1, TXNRD1 and
GCLM (Sun et al., 2009). In contrast, Reichard et al. observed that
BACH]1 acts as a repressor of the NRF2 target gene HMOX1, and inac-
tivation of BACH1 is crucial for substantial HMOXI1 transcription
(Reichard et al., 2007).

For a number of electrophilic compounds (e.g. diethyl maleate
(DEM), CDDO-me, sulforaphane), we and others have demonstrated that
NRF2 and its downstream molecules exhibit a concentration and com-
pound specificity in their activation dynamics (Ke et al., 2021; Bischoff
et al.,, 2019; ter Braak et al., 2022). The height of the perceived stress by
cells may play an important role in determining these dynamics. For
example, for low stress levels, peroxiredoxins (PRDXs) that scavenge
ROS are preferentially activated, while for high stress levels, the
detoxification capacity of PRDXs may become exhausted, resulting in
hyperoxidation; under these conditions, the NRF2 target gene SRXN1
plays a crucial role in repairing over-oxidized PRDXs and restoring their
antioxidant function (Jeong et al., 2012; Abbas et al., 2013). Exposure
scenario and type of compound can also result in differential activation
of downstream molecules. For instance, during repeated exposure sce-
narios we previously showed that the level of NRF2 activation was
slightly lower for a second exposure than for a first exposure, yet that
this resulted in a three-fold higher SRXN1 response compared to the first
treatment (Bloom and Jaiswal, 2003). Moreover, this differential acti-
vation dynamics of SRXN1 upon a repeated exposure was compound
specific.

Taken together, these prior findings indicate that transcription factor
activity of NRF2 is influenced by various biological pathways and,
considering that chemicals may perturb multiple pathways, this likely
complicates NRF2-mediated regulation of various ARE genes. In order to
explore the relation between NRF2 activity and ARE gene expression in a
quantitative manner, we investigated the dependence of SRXN1,
selected as an important NRF2 target gene, on NRF2 abundance over
time following compound exposure, and studied the compound and
exposure scenario dependency of this relation. We specifically asked
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whether the NRF2 abundance can by itself explain SRXN1 dynamics
irrespective of compound type and exposure scenario, or whether there
is a chemical and exposure scenario specific effect that modulates NRF2
activity.

Detailed measurements of the time-dependent induction of NRF2
under various stress conditions together with ARE gene (in this case
SRXN1) induction along with in silico mechanistic modeling may provide
insights into these questions. The development of quantitative high
throughput imaging assays based on bacterial artificial chromosome
(BAC)-transgenomics green fluorescent protein (GFP) tagging in HepG2
cells has enabled such detailed time-course dynamics of both NRF2 and
SRXN1 (Bischoff et al., 2019; ter Braak et al., 2022; Wink et al., 2018,
2017). Only a limited number of in silico models of the NRF2 pathway
response to stress have been developed (Kolodkin et al., 2020; Zhang
and Andersen, 2007; Khalil et al., 2015; Leclerc et al., 2015; Hiemstra
etal., 2022), and these models have not been applied to study compound
and exposure scenario dependence of the relation between NRF2 and
SRXN1. Therefore, we set out to develop a semi-mechanistic model that
could be applied to high throughput imaging data based on multiple
compounds and repeated exposure data of NRF2 and SRXN1 using
HepG2 BAC GFP reporter cells. Our approach utilizes nonlinear
mixed-effect models aiming to predict SRXN1 dynamics based on a
known input of NRF2 dynamics. We considered four electrophilic
compounds, i.e. sulforaphane (Sul), andrographolide (Andr), ethacrynic
acid (ETA) and CDDO-me (CDDO), which were already known to acti-
vate the NRF2 pathway (ter Braak et al., 2022). We fitted our models to
data of HepG2 cells that were exposed to these chemicals in an in vitro
setting. We showed that modulators are required which modify the
transcription factor activity of NRF2, and that the activity of these
modulators should vary both over time and with compound and expo-
sure scenario.

2. Methods
2.1. Experimental data and analysis

The data for our study was obtained from assays performed with
HepG2 NRF2 and SRXN1 BAC-GFP reporter cell lines (Ke et al., 2021;
Bischoff et al., 2019; Hiemstra et al., 2022). Live cell imaging using
confocal microscopy was used to determine the NRF2 and SRXN1-GFP
responses over time upon exposure to various chemicals, considering
multiple stress conditions (i.e., single or repeated exposure). For further
experimental details, see (ter Braak et al., 2022; Niemeijer et al., 2025).
In brief, for every HepG2 BAC-GFP reporter, we generated three bio-
logical replicates each consisting of two technical replicates for which
we took two images from different positions of the same well upon
compound exposure. Subsequently, the GFP intensities in generated
images were quantified in a specific subcellular location using an
automated pipeline consisting of ImageJ plugins and CellProfiler 2.2.0
modules as reported previously (Sun et al., 2009; Bischoff et al., 2019).
Individual nuclei were segmented based on the Hoechst signal as re-
ported previously (Bois and Maszle, 1997). This allowed the quantifi-
cation of nuclear NRF2 intensity by the calculation of the integrated
NRF2-GFP intensity of all pixels belonging to a detected nucleus, and
subsequently taking the arithmetic mean of all nuclei in an image.
Similarly, integrated cytoplasmic SRXN1-GFP intensities of individual
cells were determined by utilizing the Identify-secondary-objects mod-
ule set to the ‘propagation’ distance-N method (using 20 pixels) in
CellProfiler.

Four different compounds were studied: Sul, Andr, ETA and CDDO,
along with DMSO as a control. For Sul and CDDO, we re-used our
published experimental data (Niemeijer et al., 2025), while the data for
Andr and ETA were generated as part of the current work. We exposed
HepG2 NRF2 or SRXN1 BAC-GFP reporter cell lines to these compounds
at different concentrations ranging from subthreshold to maximally
effective concentrations as known from prior studies (Bischoff et al.,
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2019; ter Braak et al., 2022) (Table 1). All compounds were freshly
prepared in DMSO and added to the culture medium immediately prior
to exposure (Bischoff et al., 2019). These compounds are expected to
remain sufficiently stable and bioactive under cell culture conditions for
the duration of the experiments. However, measurements of compound
concentrations in the medium have shown that there are clear differ-
ences in compound stability, with CDDO concentrations being the most
stable (Niemeijer et al., 2025). We applied two continuous exposure
scenarios (32 h and 48 h single exposure), and two repeated exposure
scenarios (8 h first exposure followed by medium change and
24 h second exposure, referred to as 8 h + 24 h; and 24 h first exposure
followed by medium change and then 24 h exposure, referred to as 24 h
+ 24 h). For the repeated exposure scenarios, we applied all possible
combinations of concentrations in the first and second exposure. During
the imaging, the plates were taken out of the microscope for the second
exposure. Note that this resulted in some additional NRF2 activation
also for the wells with continuous single exposure, possibly due to minor
handling-related stress.

After quantification of GFP intensities through our image analysis
pipeline, we averaged the two technical replicates, forming one bio-
logical replicate for every time point. Then we normalized the data for
each biological replicate based on the DMSO control, which was done by
subtracting the GFP intensity of chemical-treated cells with DMSO-
treated cells for every time point. First this was done separately for
each concentration and each biological replicate. Subsequently the
mean intensity per time point was calculated across all biological rep-
licates. The time course of this mean at concentration 6 (see Table 1) for
each chemical was utilized to generate a hysteresis plot (i.e., plotting the
SRXN1-GFP intensity against NRF2-GFP), thereby providing insight into
the NRF2-SRXN1 relationship, such as the occurrence of delays. Note
that at the studied concentrations (Table 1), there was a similar increase
in cell counts over time for all our chemicals, with only a slightly slower
increase rate at the highest utilized concentrations (Andr and ETA, see
Fig. S1; Sul and CDDO, see (Niemeijer et al., 2025).

2.2. Model design

We created three different model versions in order to establish the
mechanistic relationship between NRF2 and SRXN1, i.e., (1) a model
with constant NRF2 transcription factor activity, (2) a model with
constant cofactors (not described explicitly) modifying NRF2 tran-
scription factor activity, hereafter referred to as ‘cofactor X’ (where X
represents a hypothetical set of cofactors or NRF2 modifiers), and (3) a
model with a dynamic cofactor X (i.e., whose activity or expression
varies over time) modifying NRF2 transcription in a time-dependent
manner. All model versions use NRF2 time course experimental data
as inputs. To this purpose, we transformed the NRF2 time course data
into a smooth time-dependent input N(t) using the R spline function,
because a smooth function is required by the internal steps taken by ODE
integration algorithms.

The Ordinary differential equation (ODE) for SRXN1 (S) in the 3
considered models includes basal production and degradation of SRXN1,
and NRF2-induced SRXN1 production (Eq. I).
ds

E:kp—kd*S—i—ps (0))]

Here, k, is the basal SRXN1 production rate, k4 is the basal SRXN1
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degradation rate, and ps is the NRF2-induced SRXN1 production rate.

2.2.1. Model with constant NRF2 transcription factor activity

In the simplest model version (Fig. 1A), we considered NRF2-
mediated SRXN1 transcription to be independent of activity of
cofactor X. Specifically, the NRF2-induced SRXN1 production rate (ps)
depends on NRF2 (N(t)) following a nonlinear Hill process:

(Vimax * N(t)n)
(Kn" + N(t)")
Here, Vi is the maximal SRXN1 production rate, K,, is the NRF2

level for which the SRXN1 production rate is half-maximal, and n is the
Hill coefficient.

Ps aan

2.2.2. Model with a constant cofactor X modifying NRF2 transcription
factor activity

Next, we considered that cofactor X (representing a set of cofactors or
NRF2 modifiers, for example CREB-binding protein (CBP), p300, p160,
and receptor-associated co-activator 3 (RAC3)) modifies the transcrip-
tion factor activity of NRF2, which would affect a subset of the present
NRF2. Thus, at each time point the total NRF2 is split in an amount of
modified NRF2 (N,,) and of unmodified NRF2 (N,) due to the presence of
cofactor X (Fig. 1B). These amounts are determined by parameter f,
which represents the fraction of NRF2 whose transcription is affected by
cofactor X (0 < f < 1):

Nin(t) = N(t) = f; Nu(t) = N(t) = (1 — f). (Im

We described the NRF2-induced SRXN1 expression by a multiplica-
tive mechanism, i.e. the presence of both unmodified and modified
NRF2 provides increased stimulation of SRXN1 production in a
nonlinear manner:

(Vmaxl * Nmnm * Nunu)

= X T
P = Rt N s R+ N ™

Here, Vimax is the maximum induction rate of SRXN1 by NRF2, K,,,,
and K,, are the Michaelis-Menten constants for the modified and un-
modified NRF2, respectively, and n,, and n, for the Hill coefficients of
modified and unmodified NRF2, respectively.

2.2.3. Model with a dynamic cofactor X modifying NRF2 transcription
factor activity

Finally, we considered that cofactor X might have its own dynamic
response to the applied chemicals, which would also make the fraction
of modified NRF2 vary with time. Modeling the dynamics of cofactor X
with a separate ODE would require assumptions on both its production
and degradation processes, as well as on its modification of NRF2, which
would be problematic for parameter calibration in the absence of data
on either of these aspects. Therefore, we focused on directly describing
the dynamics of the fraction of modified NRF2 in a semi-mechanistic
manner, anticipating that this fraction would initially increase due to
compound exposure, and after reaching a maximum would decrease
again. Moreover, second dosing would lead to another increase and
subsequent decrease, albeit with a different initial fraction and poten-
tially different increase and decrease parameters. To model this semi-
mechanistically, we extended the prior model version by making the
fraction of modified NRF2 dynamic instead of constant (as in Eq. IV)
with only a limited number of additional parameters:

Table 1

The different exposure scenarios per compound to which HepG2 cell lines were exposed.
Compound Concentration(uM) 1 2 3 4 5 6
Sulphoraphane (Sul) 0.35 0.75 1.62 3.5 7.54 16.25
Andrographolide (Andr) 0.1 0.32 1 3.16 10 31.62
Ethacrynic Acid (ETA) 1 2.14 4.64 10 21.54 46.4
CDDO-me (CDDO) 0.01 0.02 0.05 0.1 0.22 0.46
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Fig. 1. Modeling strategy to describe SRXN1 dynamics induced by NRF2. A-B) Schematics of model with constant NRF2-mediated induction of SRXN1 transcription (A)
and of two models with modified NRF2 having distinct effects on SRXN1 transcription compared to unmodified NRF2 (B). In (B), implicitly described NRF2 modifiers
are considered to affect the fraction of modified NRF2 (potentially in a dynamic manner), which in turn influences SRXN1 transcription. In all model versions, SRXN1
undergoes basal degradation. C) Nonlinear mixed modelling framework: Panel summarizes which data are utilized for which generic and chemical- or exposure-

scenario-specific parameters within our Bayesian framework.

1
f=
<f1—ifl) xexp( —tx1) +exp(t*d;)

{t > tdosingl: t< tdosingZ}

1 .
f = {t 2 tdosingz}v Wlth

(ﬁ - 1) * exp( — t*13) + exp(t x dy)

1
fi :
(fll - 1) * exp( - tdosin.gz * rl) + exp(tdosin,gZ * dl)

(%)

Here, t represents time since first dosing at ty.ing1 = 0, and the second
dosing (if applicable) occurs at time point tyong2. Further, r; and r,
determine the rates at which cofactor X increases after a first and a
second dosing, respectively, d; and d, determine the rates at which
cofactor X decreases after a first and a second dosing, respectively.
Finally, f; and f; represent the initial fraction and fraction prior to second
dosing of modified NRF2 due to cofactor X respectively.

2.3. Parameter calibration

The model parameters were calibrated to our experimental data with
a Bayesian approach, implemented in MCSim (ver. 6.1) (Vehtarh et al.,
2021). In this approach, parameter values are considered random

variables distributed either according to a normal distribution or a
truncated normal distribution. In conjunction with a likelihood function,
we determined posterior distributions by Markov Chain Monte Carlo
(MCMC) simulations. The likelihood of the data was considered to
follow a normal distribution with a coefficient of variation of 10 %. We
initialized the variable S (SRXN1) at a value determined by the ratio
between its basal synthesis rate (k,) and degradation rate (kq) to ensure
that the model starts at steady state. Further, we constrained these two
parameters by using a truncated normal prior distribution within the
range le-4 to 1 for ky, and 1e-4 to 1 for k4. We have also constrained the
Hill coefficients (n,, and n,) within the range 1 to 10 using the same
approach. We did this to avoid the possibility of very large Hill co-
efficients that would approximate a step function on the one hand, and
to remain in a regime of biologically interpretable Hill coefficients (i.e.,
at least 1) on the other hand. We ran four independent Markov chains of
100,000 to 1,000,000, and used the last 10,000 iterations to check
convergence with the potential scale reduction factor R. This includes a
joint prior distribution of the parameters which is randomly sampled
within the given distribution and eventually gets updated through a
comparison of model predictions and the experimental data. The
convergence criterion R was computed for the four different chains and
all values were below 1.05 indicating model convergence (Hsich et al.,
2020). All model parameters were estimated simultaneously, and we did
not observe evidence of non-identifiability or practical estimation issues
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based on MCMC convergence and pairwise posterior plots (Fig. S2). It
should be noted that the latter analysis did indicate some naturally ex-
pected yet moderate parameter dependencies, e.g. between the SRXN1
production rate (k,) and degradation rate (kq).

For the simplest model with constant NRF2 transcription factor ac-
tivity (model 1), we fitted the parameters using only the 48 h continuous
exposure data for Sul. Subsequently, the model with the estimated pa-
rameters, i.e., kp, kg, Vimax, Km, n was simulated for the other three
compounds using their respective experimental NRF2 time course data
as inputs. For the model with a constant cofactor X modifying NRF2
transcription factor activity (model 2), we kept some parameters the
same for all chemicals, i.e., kp, k4, Vmax1, Km,,» K, > tm, Nu- The cofactor X
that modifies NRF2 transcription factor activity was considered
compound-specific, leading to a constant fraction of modified NRF2
(parameter f). We fitted the parameters using the 48 h continuous
exposure data for all four compounds in a hierarchical fashion (with f a
hierarchical parameter).

For the model with a dynamic cofactor X modifying NRF2 tran-
scription factor activity (model 3), the prior model was extended by
considering that the dynamic response of cofactor X leads to a fraction of
modified NRF2 that varies over time. The parameters determining this
response, i.e., 1, ry, d1, da (Eq. V) were both compound- and exposure
scenario-specific. We used the following calibration strategy (Fig. 1C):
First we fitted all the parameters using the 48 h continuous exposure
data for all four compounds. For parameters ry, 1y, di, da, we used a
hierarchical specification. Population-level parameters (71411, T2a1, d1als
doay) describe the overall parameter space across compounds, while
compound-specific parameters (r, 3, d1, d2) are modeled as draws from
this shared space. During MCMC sampling, both levels are estimated
jointly, so the inference yields posterior estimates for the population
parameters as well as for each compound-specific parameter. Subse-
quently, both compound- and scenario-specific parameters were esti-
mated using the experimental data from the exposure combinations
where the first exposure ranges from lowest to highest and the second
exposure was the highest concentration. Note that this was done sepa-
rately for the 32 h (8 h+24 h) and 48 h (24 h+24 h) exposure data,
while using the same model structure and keeping the other parameters
to the same value. The estimated model parameters and their meaning
for the different model versions are provided in Tables S1-S3.

2.4. Model diagnostics

The model with a dynamic cofactor X was used to predict various
continuous and repeated exposure scenarios. For these model simula-
tions, we used three different NRF2 inputs to predict SRXN1. Specif-
ically, these inputs included the mean, maximum and minimum of NRF2
per time point on the basis of the three biological replicates. Finally, we
visually compared the model simulations to the experimental data of
various scenarios and different concentration combinations. Impor-
tantly, a large amount of these combinations were not used during
parameter calibration.

Apart from visual comparison of model predictions and experimental
data, we also calculated R? for the different model versions. To inves-
tigate the effect of parameter variation on model output, we employed a
global sensitivity analysis (GSA) using the R package pksensi (Louizos
et al., 2014). This package uses a variance-based GSA method that in-
tegrates random phase-shift with extended Fourier Amplitude Sensi-
tivity Test (eFAST) to perform the sensitivity test (Hsieh et al., 2020). All
parameters were varied by 1 % to compute the effect on the SRXN1
response and sensitivity coefficients over time were calculated for each
parameter. Sensitivity coefficients higher than 0.1 were considered to
indicate highly influential parameters, and lower than 0.05 were
considered non-influential parameters.
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3. Results
3.1. NRF2 regulates SRXN1 in a compound-specific manner

Plots of NRF2-GFP expression versus SRXN1-GFP expression at the
same time points (Fig. 2A-B; Fig. S3A-B) as well as plots of NRF2-GFP
expression and SRXN1-GFP expression over time (Fig. 2C-D; Fig. S3C-
D) upon compound exposure demonstrated that SRXN1 expression
increased in a delayed manner relative to the NRF2 expression increase,
a phenomenon described by the term ‘counter-clockwise hysteresis
(Louizos et al., 2014). This implies that the relation between NRF2 and
SRXN1 may not be adequately captured by a simple linear function,
which motivated our use of nonlinear models in subsequent quantitative
analysis. The dynamics of fast NRF2 activation followed by delayed
SRXN1 activation occurred for all considered compounds. Curve shifts to
the left and upwards at late time points indicated that NRF2 expression
decreased at late time points yet that SRXN1 expression was still
increasing upon continuous exposure of 32 h, except for exposure to
Andr for which a minor SRXN1 decay occurred (Fig. 2A). During longer
time periods of continuous exposure (48 h), for ETA and Sul an SRXN1
plateau was reached, yet for CDDO SRXN1 still continued to increase
(Fig. 2B).

For repeated exposure scenarios of 32 h (8 h + 24 h; Fig. S3A) and of
48h (24h + 24 h; Fig. S3B), the overall patterns did not change
compared to the continuous exposure scenarios. For exposure to CDDO,
both SRXN1 and NRF2 reached similar maximal levels for repeated and
single exposure (Fig. S3A-B vs Fig. 2A-B, yellow). For the other com-
pounds, both NRF2 and SRXN1 obtained somewhat higher levels at the
end of the observation period (48 h) for repeated than for single expo-
sure. For exposure to Sul a minor SRXN1 decay occurred during the
second exposure after a 24 h initial exposure (Fig. S3A, grey). Thus, at
the highest administered concentration there were clear differences in
the qualitative relation between NRF2 and SRXN1 across compounds,
which persisted for both single and repeated exposure scenarios. This
suggests that the regulatory role of NRF2 may be different depending on
the compound that activates the oxidative stress pathway.

3.2. Mathematical modeling confirms chemical dependence of NRF2-
mediated SRXN1 regulation

In order to investigate whether the observed difference of the tem-
poral relation between nuclear NRF2 expression and SRXN1 expression
across compounds at the highest applied concentrations hold true for
other concentrations as well, we employed a semi-mechanistic mathe-
matical modeling approach. Specifically, we utilized a simple ordinary
differential equation (ODE) for NRF2-driven SRXN1 expression
including nonlinear Hill kinetics (referred to as model with constant
NRF2 activity), where we took the measured NRF2 expression as a
concentration- and compound-dependent input function over time
estimated by spline interpolation (see Methods). We started with formal
estimation of the parameters related to SRXN1 formation and degrada-
tion for Sul based on 48 h continuous exposure data (Fig. S4A, S5B; see
Table S1 for model parameters). Among the six applied concentrations,
the model with constant NRF2 activity resulted in an acceptable match
to the three highest concentrations (Fig. 3A, top panel). For the lowest
three concentrations, the fit was clearly worse compared to the three
highest concentrations, and the long-term SRXN1 dynamics were over-
estimated (Fig. 3A, bottom panel). Notably, the initial Hill model esti-
mated a Hill coefficient close to 1 and a very large K, value,
corresponding to a nearly linear response. This suggests that even for
application of a single compound, the effect of NRF2 as a transcription
factor differs for high and low concentrations at which the compound is
applied.

Subsequently, we simulated the same model for the other com-
pounds using the fitted parameters for Sul yet the NRF2 input for the
individual compounds. For all compounds, the model simulations
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Fig. 2. Quantitative relation between NRF2 and SRXN1 is compound dependent. (A-B) Plots show SRXN1-GFP expression vs NRF2-GFP expression in HepG2 BAC re-
porter cells upon continuous exposure for 32 h (A) and 48 h (B) to the compounds Andr, CDDO, ETA or Sul (colors) at a concentration of 31.62, 0.46, 46.4 or
16.25 pM, respectively. (C-D) Time courses of SRXN1-GFP (solid red, left y-axis) and NRF2-GFP (dashed blue, right y-axis) for the same exposures over 32 h (C) and

48 h (D). Intensities are in arbitrary units (au).

exhibited either over- or underestimation of the experimental data
(Fig. 3B-D). In particular, the model was not able to predict the SRXN1
decay observed at late time points for Andr and ETA, leading to an
overestimation of SRXN1 dynamics (Fig. 3B-C). To the contrary, for
CDDO-me the model underestimated the SRXN1 response at the highest
concentrations (Fig. 3D). This is consistent with the observation that the
maximum expression of NRF2 was approximately 2-fold less for CDDO
compared to Sul at the highest concentration, whereas the SRXN1
expression was similar (Fig. 3A-B). Together, these findings indicate that
the transcription factor activity of nuclear NRF2 is both concentration-
and compound-dependent. As a result, straightforward Hill kinetics is
not sufficient to capture this differential regulatory effect of NRF2 on
SRXNI.

3.3. A fixed fraction of modified NRF2 improves fit of concentration-
dependent SRXN1 expression

Because several cofactors/regulators (jointly referred to as cofactor
X) can play a role in promoting or inhibiting NRF2 transcriptional ac-
tivity, e.g., through acetylation of NRF2 by p300/CBP, we considered
the possibility that a fixed fraction of the present NRF2 is in modified
form due to presence of cofactor X, and therefore has altered tran-
scription factor activity. Thus, in a subsequent model version, referred to
as the model with fixed cofactor X, we split the present NRF2 in two
fractions which together determine SRXN1 transcription (see Eqs. III &
IV in Methods). In addition, we considered the possibility that the
fraction of modified NRF2 due to cofactor X could depend on the type of
compound, because they may have multiple modes-of-action. Thus, the
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Fig. 3. Nonlinear Hill kinetics do not capture NRF2-mediated SRXN1 regulation across concentrations and compounds. A-D) Panels show experimental measurements
(mean =+ sd (from three biological replicates)) and model fit (solid lines) of SRXN1 expression in HepG2 BAC-GFP reporter cells for Sul (A), Andr (B), ETA (C) and
CDDO (D) at either high concentrations (top panels) or low concentrations (bottom panels) for up to 48 h continuous exposure. Colors denoting the administered
concentration are shown at the top of the plots. Model simulations are based on the model considering a constant activity of the nuclear NRF2.

influence of cofactor X on the modified NRF2 fraction could be different
for every considered compound, while the other parameters influencing
SRXN1 dynamics were shared for all chemicals.

Calibration of the model with fixed cofactor X (Fig. S4B; see Table S2
for model parameters) slightly improved the fit (Fig. 4) compared to the
earlier model with constant NRF2 activity (Fig. 3). Specifically, for Sul
the R? value was larger than 0.8 at both high and low concentrations
(Fig. 4A), and for the other compounds R? was larger than 0.6 except for
Andr which had R? < 0.6 at low concentrations (Fig. S5). Clearly,
despite the improved fit this model still had difficulties with capturing
the decreasing SRXN1 dynamics at late time points, suggesting that the
remaining nuclear NRF2 at those points might exhibit less transcription
factor activity than in the early response.

3.4. A dynamic fraction of modified NRF2 explains compound-specific
and exposure scenario-specific SRXN1 response

Modifiers and cofactors of NRF2 that influence its activity as a
transcription factor might themselves exhibit a dynamic response
pattern when exposed to specific compounds. Therefore, we considered
the possibility that the fraction of modified NRF2 initially increased and
subsequently decreased during the waning of the response, and that this
dynamic pattern was compound dependent. Thus, we constructed a
third model version, referred to as the model with dynamic cofactor X
(see Eq. V in Methods), in which the initial fraction of cofactor X was set

to a very low level (1le-3) that initially increased (described with
parameter r;) and later on decreased (described with parameter d;). In
this model, r; and d; were considered to be compound-specific, whereas
the other parameters for SRXN1 production and decay were shared
across compounds.

Calibration of this model with dynamic cofactor X to the 48 h
continuous exposure SRXN1 data (Fig. S6; see Table S3 for model pa-
rameters) led to a much better fit (Fig. 5) than the simpler models
(Figs. 3-4). To take into account the biological variability among rep-
licates, we simulated the calibrated model using minimal, mean, and
maximal inputs for NRF2 (Fig. S7). To check for consistency across data
sets, we also simulated the model for the shorter-lasting 32 h continuous
exposure scenario while keeping all parameters at the same value. This
showed that the model also properly predicted the 32h continuous
exposure scenario data (Fig. S8), providing further confidence in the
model. Importantly, the model simulations now captured the SRXN1
decay also at late time points. Although for some concentrations the
model slightly over- or underestimated the experimental data, for each
compound the R? value exceeded a value of 0.9, demonstrating the
goodness-of-fit of this model quantitatively (Fig. S9).

Having a model that properly describes the relation between NRF2
and SRXN1 based on a dynamic fraction of modified NRF2, we next
considered whether the model could also describe various repeated
exposure scenarios for the same compounds. We reasoned that upon a
second exposure the fraction of modified NRF2 should again change
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Fig. 4. Fit of model with fixed fraction of modified NRF2 due to cofactor X to observed SRXN1 intensities. A-D) Panels show experimental measurements (mean + sd
of three biological replicates) and model fit (solid lines) for Sul (A), Andr (B), ETA (C) and CDDO (D) at either high concentrations (top panels) or low concentrations
(bottom panels). Colors denote the administered concentration (uM) and their values are shown at the top of the plots.

with time. However, the starting point of the fraction of modified NRF2
should be different at the time of second exposure given its dynamic
change throughout the primary exposure. Therefore, it was likely that
the increase and decay dynamics of the fraction of modified NRF2 would
also deviate from the first exposure. Therefore, to describe repeated
exposure data we included two additional parameters in the model
describing the increase (r;) and decrease (d2). We calibrated the addi-
tional parameters on the basis of a selected set of concentration com-
binations (see Methods), while keeping the other parameters to the
values resulting from the fit of the first exposure. We simulated the
model with newly calibrated r, and d, parameters for all four com-
pounds and all repeated exposure scenarios (Fig. S10-517). A subset of
the repeated exposure scenarios, i.e., with repeated 48 h (24 h+24 h)
and 32 h (8 h+24 h) scenario with equal concentrations during first and
second exposure, and with large differences between the concentrations
of first and second exposure demonstrated that the model fit was
generally good (Fig. 6). This evaluation by visual inspection was
confirmed by R? values that typically exceeded 0.9 for 32 h repeated
exposure data and 0.8 for 48 h repeated exposure data (Fig. S18). Only
for a limited number of concentration combinations clear over- and
under-predictions occurred. In conclusion, on top of the proper
description for single exposure scenarios, the model with dynamic
cofactor X could explain a large number of repeated exposure dosing
schemes (384 combinations in total). Importantly, to achieve this per
compound, only one additional process was required, involving 2 pa-
rameters for continuous exposure scenarios and 2 additional parameters

for repeated exposure scenarios.

3.5. Mechanistic insight based on model with dynamic fraction of
modified NRF2

In the model with a dynamic fraction of modified NRF2, we
considered that a fraction of the present NRF2 becomes modified. The
modified NRF2 is assumed to have greater transcriptional activity when
compared to unmodified NRF2. A fast modification process would imply
that the molecules (cofactors) playing a role in the modification follow a
similar time course as that of modified NRF2. Thus, studying how the
time course of modified NRF2 depends on the chemical and on the
exposure scenario provides mechanistic insight. The shape of the curve,
i.e., the extent of activation and decay, and the different dynamics for
first and second exposures represent the characteristic features of the
response (Fig. 7A). A large fold increase in modified NRF2 and a large
area under the curve suggests a strong involvement of modification
enzymes or cofactors in the transcription factor activity of NRF2 with
respect to SRXN1.

Treatment with Sul caused most NRF2 modification compared to the
other compounds, whereas Andr treatment led to the lowest amount of
NRF2 modification. For CDDO, the decay rate of modified NRF2 was
lower than for other compounds, which is consistent with the high sta-
bility of CDDO (Niemeijer et al., 2025). For all compounds, second ex-
posures led to an increased fraction of modified NRF2 compared to
continuous exposure, yet the extent of the increase depended on the
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Fig. 5. Model with dynamic cofactor X describes SRXN1 dynamics following continuous exposure. Plots show simulated SRXN1 expression upon compound exposure
based on minimal (green), maximal (red) and mean (blue) NRF2 input per time point, and experimentally determined SRXN1 expression using HepG2 BAC-GFP
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with exposure levels indicated above the panels (in uM).

compound and time point of second exposure. An early second exposure
at the 8 h time point (Fig. 7A, red lines) typically led to modified NRF2
levels beyond the maximum observed for continuous exposure (Fig. 7A,
blue lines), likely because the second exposure typically occurred at a
similar time point as where this maximum occurred. However, for Sul
this was not the case. Here, the amount of modified NRF2 was predicted
to both increase and decrease extremely steeply, such that the moment

of re-exposure at 8 h was already several hours beyond the peak. This
suggests that the response of modified NRF2 during the second exposure
merely caused a delay of the decrease, rather than a new peak. Inter-
estingly, the second exposure at 24 h had only a slight effect on modified
NRF2 (Fig. 7A, red lines). This suggests that NRF2-mediated transcrip-
tion of SRXN1 is less strongly influenced by NRF2 modifiers for late
second exposures than for primary exposures.
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Fig. 6. Model with dynamic cofactor X describes SRXN1 dynamics following repeated exposure. Plots show simulated SRXN1 expression based on minimal (green),
maximal (red) and mean (blue) NRF2 input per time point, and experimentally determined SRXN1 expression using HepG2 BAC-GFP reporter cells (shaded gray area:
mean =+ SD across three biological replicates) for 48 h (24 h + 24 h) repeated exposure scenarios. Each row corresponds to one chemical (Sul, Andr, ETA, and CDDO),
with exposure levels during first and second exposure indicated above the panels, separated by a comma (in uM).

Besides the parameters determining the fraction of modified NRF2
over time, also the other parameters related to SRXN1 transcription and
decay play an important role to determine NRF2-driven SRXN1 dy-
namics. We carried out a sensitivity analysis on the time-course simu-
lations by varying the values of these parameters within a 0.5- and 2-fold
range of the calibrated values to study how these parameters affect the
temporal dynamics. To this purpose, we utilized the Sul-induced NRF2

10

inputs for the 48 h continuous exposure scenario. The parameters Va1
(maximal transcription rate of SRXN1) and Ky, (concentration of un-
modified NRF2 at which the SRXN1 transcription rate is half-maximal)
had qualitatively equal, yet opposite effects along the time course of
the SRXN1 response (Fig. 7B-C). Interestingly, the parameter Kp,
(concentration of modified NRF2 at which the SRXN1 transcription rate
is half-maximal) does not have any effect on the initial activation of
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predicted dynamics for one altered parameter, i.e., Va1 (B), K, (C), and Kp,, (D). The effect of K,,,, modification is most pronounced at late time points, whereas

K, and Vpax have clear impact on the entire time course.

SRXN1 but only affects the late time point dynamics, with a higher K,
value leading to faster decay (Fig. 7D). This finding is likely caused by
the strong initial increase in modified NRF2 predicted by the model fits,
in combination with a K, value that is estimated relatively low. In
summary, the parameter K, and the level of modified NRF2 over time
jointly determine the SRXN1 response. Note that in a global sensitivity
analysis we found all parameters to be sensitive (Fig. S19), with the
magnitude of the total order sensitivity being slightly higher than the
first order sensitivity, except for the Hill parameter n, for SRXN1
transcription.

4. Discussion

In this study, we used live-cell imaging time course data for NRF2
and its downstream target SRXN1 in HepG2 BAC-GFP reporter cells
exposed to various stressors and exposure conditions. By leveraging
these quantitative data in a semi-mechanistic mathematical model, we
investigated how the transcription factor activity of NRF2 is modulated
by compound- and scenario-specific factors. This approach provided
insight into the dynamic regulation of NRF2-mediated gene expression.

Our initial data analysis employing experimental NRF2-SRXN1
‘hysteresis’ plots already indicated a time-, chemical-, and exposure-
dependent discrepancy between NRF2 and SRXN1 expression. The
swift activation of NRF2 after compound exposure is in line with data
suggesting that these compounds activate NRF2 at protein level by
inhibiting its degradation through modification of Keapl (Wakabayashi
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et al., 2004; Kobayashi et al., 2006). The observed delay in the onset of
the SRXN1 response is likely due to the time it takes to transcribe and
translate SRXN1 protein, and a similar delay in its return to baseline
would be expected due to protein degradation dynamics. Interestingly,
the maximal abundance of NRF2 achieved by Andr differed around
1-fold from that caused by Sul, yet the difference in maximal SRXN1
expression was almost 3-fold (at the highest concentration). However,
CDDO exposure led to higher SRXN1 maximal expression compared to
Sul (and other compounds) even though its NRF2 maximum was lower
than for Sul. These experimental findings thus already hinted at factors
in addition to the nuclear abundance of NRF2 playing a role in deter-
mining SRXN1 abundance.

In order to formally test whether the amount of NRF2 and its dy-
namics could be sufficient to explain SRXN1 abundance independent of
treatment type, we developed a mathematical model with constant
NRF2 transcription factor activity. Although this model could reason-
ably explain the Sul data for several concentrations, this approach was
not successful for all concentrations and did not perform well when it
was applied to the other three compounds. Thus, this finding clearly
indicated that the NRF2-SRXN1 relationship obeyed a more complex
mechanism than originally anticipated. This was confirmed by our final
model incorporating dynamic, compound-dependent NRF2 modifica-
tion (by cofactor X), which captured the observed SRXN1 dynamics
across all scenarios well. This observation is in line with many reported
studies suggesting that NRF2 activity depends on other factors or pro-
cesses. Here, one important process is that NRF2 often forms
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heterodimers with sMAF transcription factors (Rooney et al., 2020;
Tonelli et al., 2018; Li et al., 2008). These heterodimers can also interact
with other proteins that act as co-activators/co-suppressors to alter the
transcription factor activity of NRF2-induced ARE gene expression. For
instance, NRF2 is known to recruit p300 which modifies NRF2 by
acetylation, resulting in an increase in NRF2’s transcriptional abilities
(Sun et al., 2009; Cai et al., 2015). On the other hand, methylation of
NRF2 promoter residues, or microRNAs like miR153, miR27a,
miR142-5p, and miR144 can result in inhibitory effects on
NRF2-mediated transcription (Narasimhan et al., 2012; Su et al., 2013).
It is thus likely that the disparity in SRXN1 expression among different
treatments depends on factors that modulate NRF2 transcriptional
regulation.

In our modeling framework, we used a Hill function to allow for a
range of possible relationships between NRF2 and SRXN1, from linear to
highly nonlinear, depending on the Hill coefficient (n) and the ratio of
NRF2 to estimated K. In the simplest model version, the fitted Hill
coefficient was close to 1 and the NRF2:K,, ratios remained much
smaller than 1, corresponding to a nearly linear regime. This indicates
that for these conditions, SRXN1 expression responds in a graded, pro-
portional manner to NRF2, without strong ultrasensitivity or threshold
effects. However, in our most complex where the fraction of modified
NRF2 changes dynamically over time, we observed a marked difference:
the Hill coefficient for the modified NRF2 form was close to 10 (highly
nonlinear/ultrasensitive), while for the unmodified form it remained
near 1. This supports the idea that cofactor-mediated modification of
NRF2 can drive strong nonlinearities in downstream gene regulation,
even when the unmodified form acts linearly.

Consistent with the improved model fit for the model with a dynamic
cofactor X compared to the model with constant NRF2 transcription
factor activity, the fraction of modified NRF2 was indeed predicted to
exhibit large variation in the rate and extent of modified NRF2 across
treatment type and exposure scenario. This suggests that in response to
Andr, only a low fraction of NRF2 becomes modified. This would explain
why Andr- and Sul-induced NRF2 induction is similar whereas the
SRXN1 expression in response to these two compounds is very different.
Further analysis of the developed model revealed that the parameter K,
controls the SRXN1 dynamics only at late time points. This coincides
with the dynamics of the fraction of modified NRF2 that is predicted to
quickly decrease during the late response. Differences in the fractions of
modified NRF2 over time across compounds could be due to differences
in the in-vitro half-lives of the compounds, which may directly affect
other pathways or cofactors that mediate the NRF2 transcription factor
activity. Indeed, in our related paper we show that NRF2 response
activation is very much dependent on compound kinetics (Hiemstra
et al., 2022).

Beyond compound kinetics, additional mechanisms may contribute
to the observed compound-dependent effects on SRXN1 regulation. For
example, certain compounds may differentially activate specific xeno-
biotic nuclear receptors such as AhR, CAR, or PXR, leading to receptor
crosstalk and modulation of NRF2 signaling (Vorrink and Domann,
2014). Differences in metabolic processing, resulting in the formation of
distinct reactive metabolites, may also influence the magnitude or
duration of NRF2 activation and downstream gene induction (Hayes and
Dinkova-Kostova, 2014). Furthermore, some compounds may selec-
tively induce either oxidative or electrophilic stress, each of which can
recruit different upstream signaling pathways or cofactor proteins.
Variability in cellular uptake, efflux, or subcellular localization could
further contribute to the distinct transcriptional responses observed
(Klaassen and Aleksunes, 2010). Elucidating the precise mechanisms
underlying compound dependency will require future studies inte-
grating metabolic profiling, receptor activation assays, and targeted
perturbations of relevant signaling pathways.

Although this has not been experimentally shown in great detail, it is
known that NRF2 can sense stress differentially depending on contex-
tualized regulatory mechanisms following ligand and treatment type.
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For instance, Rong et al. reported that tert- butylhydroquinone (tBHQ)
and Sul induce changes in NRF2 transcription factor activity related to
Raf-1 kinase activity (Yu et al., 1999). In another study in rats, copper
induced SRXN1 expression via NF-kB signaling, hinting at the potential
importance of crosstalk (Jeong et al., 2012). As a third example, a het-
erodimer formed by ligand-bound PPARy and RXR enhances the
strength of glutathione S-transferase expression by facilitating trans-
activation complexes comprising NRF2 and C/EBP@ (Park et al., 2004).
Finally, Sul-induced NQO1 expression is not linked to altered cellular
levels of NRF2, yet is associated with oscillatory changes in cyto-
plasmic/nuclear translocation of NRF2, which is also linked to ongoing
phosphorylation and dephosphorylation of NRF2 via a non-canonical
pathway (Xue et al., 2015). Future studies are required that aim to
determine the contribution of specific cofactors recruited by NRF2, of
non-canonical pathways influencing NRF2, and how these contributions
vary over time and with type of exposure. While our current model
captures compound- and time-dependent modulation of NRF2 activity
through an empirical dynamic cofactor term, other mechanistic model
structures—such as explicit feedback loops or dose-dependent feedback
mechanisms—could also be considered. Future model extensions may
incorporate these forms when quantitative time-course data for relevant
cofactors or signaling intermediates become available. We chose our
stepwise, data-driven approach to balance model complexity and
interpretability in light of the current data. In order to confirm our hy-
pothesis that such cofactors and pathways jointly affect NRF2 modifi-
cation, the influence of silencing of the identified factors on NRF2 and
SRXN1 dynamics need to be evaluated. Although our final model can
explain SRXN1 dynamics driven by NRF2 for four different compounds,
the current model is limited because it requires NRF2 measurements to
translate these into downstream SRXN1 dynamics. This limitation might
be overcome in the future by extending the model to include in vitro
compound kinetics, and predicting NRF2 based on those kinetics. Such
modeling will likely reveal additional mechanistic information about
NRF2 pathway signaling dynamics beyond the link between NRF2 and
SRXN1 that we focused on with our current models.

In summary, in our work we aimed to explain SRXN1 differential
expression dynamics given a particular input of NRF2 dynamics. To this
purpose, we developed a nonlinear mixed effect semi-mechanistic
modeling approach, and applied this to HepG2 BAC-GFP experimental
data on NRF2 and SRXN1 that were acquired under multiple compound
exposure scenarios (Niemeijer et al., 2025). Our proposed hierarchical
model for a subset of parameters quantified factors that change NRF2
transcription factor activity inducing SRXN1 expression. Likely these
underlying mechanisms are highly important to tightly regulate the
NRF2 transcriptional machinery and thereby the downstream targets
that are required to maintain the balance in the cellular environment.
We focused on SRXN1 only in our model analysis, yet we expect that the
general concept extrapolates to other downstream NRF2 targets, which
would require measurements on those targets as well as model exten-
sions. For example, through application of mathematical models to
experimental data we recently showed that also the relation between
nuclear NRF2 presence and glutathione abundance, an important anti-
oxidant, is compound-dependent (Perkins et al., 2019). Although
glutathione is not a direct NRF2 target, its formation is affected by
glutamate cysteine ligase (GCL), whose catalytic (GCLC) and modifier
(GCLM) subunits are both transcriptional targets of NRF2 (Spinu et al.,
2020). A recent human transcriptome study showed that SRXN1 is an
excellent downstream biomarker of NRF2 activation to study chemical
toxicity (Rooney et al., 2020). Therefore, quantitative knowledge on the
link between NRF2 and SRXN1 could be very useful for predicting the
threshold between cellular adaptivity and adversity. Especially the
detailed dynamics of NRF2 and SRXN1, and cofactors determining NRF2
transcription factor activity, are likely important drivers of cell fate. One
way to achieve such predictions on adversity includes the application of
quantitative adverse outcome pathways (qAOPs) for chemical risk
assessment. In such qAOPs, the relationship between Molecular
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initiating events (MIEs; for the compounds investigated here this could
be described by e.g. ‘chemical-induced electrophilic attack on KEAP1
cysteine residues’) and key events (KEs; for the investigated compounds
this could be described as e.g. NRF2 activation and SRXN1 induction, or
more crudely as oxidative stress) is generally considered to be very
direct (Perkins et al., 2019; Spinu et al., 2020). We show that such re-
lationships, even of close-by events, may be more complicated than
originally anticipated, which implies that detailed experimental studies
on NRF2 binding partners and cofactors are required to fully take
advantage of qAOPs for risk assessment purposes in the future. Never-
theless, in the absence of full mechanistic understanding of the
NRF2-SRXN1 relation, our current models can already be incorporated
within such qAOPs.
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