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A B S T R A C T

Nuclear factor erythroid 2-related factor 2 (NRF2) plays a vital role in the regulation of various antioxidant 
response element (ARE) genes, which control physiological processes such as oxidative stress, autophagy, pro
liferation and apoptosis to maintain cellular homeostasis. It is not understood in detail how the NRF2 program 
acquires its flexibility with respect to regulation of its downstream targets. Various NRF2 binding partners and 
cofactors specific to ARE genes are involved in this regulation, and are potentially condition-specific (e.g., type of 
stressor) and dependent on non-canonical signaling pathways (i.e., crosstalk). Here, we explored the quantitative 
relationship between NRF2 and sulfiredoxin 1 (SRXN1), a bona fide key NRF2 target gene. We developed a semi- 
mechanistic mathematical model based on time course experimental data of NRF2 and SRXN1 protein expression 
in HepG2 cells following single or repeated exposure to NRF2 activating soft electrophiles (sulforaphane, 
andrographolide, ethacrynic acid or CDDO-me) at a wide concentration range. We showed that a nonlinear 
mixed effect modeling approach with partially hierarchical parameters accurately captures the observed 
experimental dynamics. Our analysis highlights that NRF2 requires a cofactor or post-translational modification 
to regulate its activity as a transcription factor. Moreover, this modulation of the transcription factor activity of 
NRF2 is time-, compound- and exposure scenario specific. We conclude that a complete understanding of NRF2- 
mediated ARE genes activation requires detailed dynamic information on NRF2 binding partners and cofactors.

1. Introduction

Hepatotoxicity is a leading cause of adversity, frequently resulting in 
failure of preclinical and clinical trials due to drug-induced liver injury 
(DILI) (Centers et al., 2002; Kaplowitz, 2001). Various cellular stress 
signaling pathways, such as the oxidative stress response (OSR), the 
inflammatory stress response (ISR), the unfolded protein response 
(UPR), and the DNA damage response (DDR) have been implicated in 
DILI, and the mechanism through which these pathways are activated by 
exposure to a chemical or drug determines whether the liver injury is 
acute or chronic (Pickering et al., 2013). Among the mentioned path
ways, the OSR plays a particularly prominent role in DILI (Ghanim et al., 
2021), as it swiftly responds to chemical stress and tightly regulates 
several key physiological processes, i.e., autophagy, proliferation, and 
apoptosis.

The main transcription factor within the OSR is Nuclear factor 
erythroid 2-related factor 2 (NRF2; gene name NFE2L2). Under 

homeostatic conditions, most of the synthesized NRF2 protein is 
sequestered in the cytosol by actin-associated Kelch-like ECH associated 
protein 1 (KEAP1), and subsequent ubiquitination of NRF2 leads to its 
degradation by the proteasome (Suzuki and Yamamoto, 2015; Yama
moto et al., 2018). Upon exposure to chemicals such as electrophilic 
agents, cysteine residues on KEAP1 become modified, which prevents 
NRF2 ubiquitination and subsequent degradation (Eggler et al., 2005). 
As a result, the NRF2 concentration within cells increases and NRF2 
translocates to the nucleus where it binds to antioxidant response ele
ments (AREs). This induces transcription of ARE genes such as 
glutamate-cysteine ligase modifier (GCLM), heme oxygenase 1 
(HMOX1), NAD(P)H quinone oxidoreductase 1 (NQO1), thioredoxin 
reductase 1 (TXNRD1), peroxiredoxins (PRDXs) and sulfiredoxin1 
(SRXN1), which play an important role in the maintenance of cellular 
homeostasis (Ma, 2013). SRXN1 is a key enzyme that repairs hyper
oxidized peroxiredoxins, thus maintaining the antioxidant capacity of 
the cell (Jose et al., 2024).Finally, homeostasis is restored through the 
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effect of ARE gene regulation, and NRF2 becomes sequestered in the 
cytosol again. NRF2 is well recognized as a master regulator not only of 
the oxidative stress response (OSR), but also of the cellular response to 
electrophilic stress (Yamamoto et al., 2018).

Our current understanding of NRF2 as a transcriptional regulator of 
ARE genes remains incomplete. Specifically, it is unclear which down
stream targets are preferentially activated, what their relative contri
butions are to the resolution of oxidative or electrophilic stress 
(Yamamoto et al., 2018), and to what extent these effects are 
chemical-specific and exposure scenario dependent. NRF2 knockout 
experiments have demonstrated that NRF2 is the sole transcription 
factor regulating ARE genes (Wijaya et al., 2022), yet regulation of such 
genes is complicated due to the nonlinear dynamics involved and the 
modifying impact of various cofactors (Reichard et al., 2007; Qian et al., 
2015). Small MAF proteins (sMAFs) represent one class of cofactors that 
can modify transcriptional regulation mediated by NRF2 (Katsuoka 
et al., 2005). In homeostatic conditions, sMAFs form homodimers 
(Kataoka et al., 1995) but under oxidative stress conditions, sMAFs 
heterodimerize with NRF2, thereby enhancing its transcription factor 
activity (Itoh et al., 1997). The production of sMAFs, and their compe
tition with other cofactors that heterodimerize with NRF2 (Kataoka 
et al., 1995) could be influenced by various biological pathways 
(Katsuoka and Yamamoto, 2016), possibly indicating crosstalk. Indeed, 
several studies reported that kinases such as ERK, PI3K, PKC and p38 
MAPK modify and influence NRF2 mediated activation of downstream 
genes (Yu et al., 1999; Huang et al., 2000, 2002; Bloom and Jaiswal, 
2003). For example, Zipper et al. reported that both ERK and the p38 
pathway contribute to the transcriptional upregulation of gamma glu
tamylcysteine synthetase (GCS) by enhancing binding of NRF2 to ARE 
(Zipper and Mulcahy, 2000). Other proteins with a modifying impact are 
the histone acetyltransferases p300/CBP, which have been shown to 
directly acetylate NRF2, thereby increasing its transcription factor ac
tivity with respect to various ARE genes, such as NQO1, TXNRD1 and 
GCLM (Sun et al., 2009). In contrast, Reichard et al. observed that 
BACH1 acts as a repressor of the NRF2 target gene HMOX1, and inac
tivation of BACH1 is crucial for substantial HMOX1 transcription 
(Reichard et al., 2007).

For a number of electrophilic compounds (e.g. diethyl maleate 
(DEM), CDDO-me, sulforaphane), we and others have demonstrated that 
NRF2 and its downstream molecules exhibit a concentration and com
pound specificity in their activation dynamics (Ke et al., 2021; Bischoff 
et al., 2019; ter Braak et al., 2022). The height of the perceived stress by 
cells may play an important role in determining these dynamics. For 
example, for low stress levels, peroxiredoxins (PRDXs) that scavenge 
ROS are preferentially activated, while for high stress levels, the 
detoxification capacity of PRDXs may become exhausted, resulting in 
hyperoxidation; under these conditions, the NRF2 target gene SRXN1 
plays a crucial role in repairing over-oxidized PRDXs and restoring their 
antioxidant function (Jeong et al., 2012; Abbas et al., 2013). Exposure 
scenario and type of compound can also result in differential activation 
of downstream molecules. For instance, during repeated exposure sce
narios we previously showed that the level of NRF2 activation was 
slightly lower for a second exposure than for a first exposure, yet that 
this resulted in a three-fold higher SRXN1 response compared to the first 
treatment (Bloom and Jaiswal, 2003). Moreover, this differential acti
vation dynamics of SRXN1 upon a repeated exposure was compound 
specific.

Taken together, these prior findings indicate that transcription factor 
activity of NRF2 is influenced by various biological pathways and, 
considering that chemicals may perturb multiple pathways, this likely 
complicates NRF2-mediated regulation of various ARE genes. In order to 
explore the relation between NRF2 activity and ARE gene expression in a 
quantitative manner, we investigated the dependence of SRXN1, 
selected as an important NRF2 target gene, on NRF2 abundance over 
time following compound exposure, and studied the compound and 
exposure scenario dependency of this relation. We specifically asked 

whether the NRF2 abundance can by itself explain SRXN1 dynamics 
irrespective of compound type and exposure scenario, or whether there 
is a chemical and exposure scenario specific effect that modulates NRF2 
activity.

Detailed measurements of the time-dependent induction of NRF2 
under various stress conditions together with ARE gene (in this case 
SRXN1) induction along with in silico mechanistic modeling may provide 
insights into these questions. The development of quantitative high 
throughput imaging assays based on bacterial artificial chromosome 
(BAC)-transgenomics green fluorescent protein (GFP) tagging in HepG2 
cells has enabled such detailed time-course dynamics of both NRF2 and 
SRXN1 (Bischoff et al., 2019; ter Braak et al., 2022; Wink et al., 2018, 
2017). Only a limited number of in silico models of the NRF2 pathway 
response to stress have been developed (Kolodkin et al., 2020; Zhang 
and Andersen, 2007; Khalil et al., 2015; Leclerc et al., 2015; Hiemstra 
et al., 2022), and these models have not been applied to study compound 
and exposure scenario dependence of the relation between NRF2 and 
SRXN1. Therefore, we set out to develop a semi-mechanistic model that 
could be applied to high throughput imaging data based on multiple 
compounds and repeated exposure data of NRF2 and SRXN1 using 
HepG2 BAC GFP reporter cells. Our approach utilizes nonlinear 
mixed-effect models aiming to predict SRXN1 dynamics based on a 
known input of NRF2 dynamics. We considered four electrophilic 
compounds, i.e. sulforaphane (Sul), andrographolide (Andr), ethacrynic 
acid (ETA) and CDDO-me (CDDO), which were already known to acti
vate the NRF2 pathway (ter Braak et al., 2022). We fitted our models to 
data of HepG2 cells that were exposed to these chemicals in an in vitro 
setting. We showed that modulators are required which modify the 
transcription factor activity of NRF2, and that the activity of these 
modulators should vary both over time and with compound and expo
sure scenario.

2. Methods

2.1. Experimental data and analysis

The data for our study was obtained from assays performed with 
HepG2 NRF2 and SRXN1 BAC-GFP reporter cell lines (Ke et al., 2021; 
Bischoff et al., 2019; Hiemstra et al., 2022). Live cell imaging using 
confocal microscopy was used to determine the NRF2 and SRXN1-GFP 
responses over time upon exposure to various chemicals, considering 
multiple stress conditions (i.e., single or repeated exposure). For further 
experimental details, see (ter Braak et al., 2022; Niemeijer et al., 2025). 
In brief, for every HepG2 BAC-GFP reporter, we generated three bio
logical replicates each consisting of two technical replicates for which 
we took two images from different positions of the same well upon 
compound exposure. Subsequently, the GFP intensities in generated 
images were quantified in a specific subcellular location using an 
automated pipeline consisting of ImageJ plugins and CellProfiler 2.2.0 
modules as reported previously (Sun et al., 2009; Bischoff et al., 2019). 
Individual nuclei were segmented based on the Hoechst signal as re
ported previously (Bois and Maszle, 1997). This allowed the quantifi
cation of nuclear NRF2 intensity by the calculation of the integrated 
NRF2-GFP intensity of all pixels belonging to a detected nucleus, and 
subsequently taking the arithmetic mean of all nuclei in an image. 
Similarly, integrated cytoplasmic SRXN1-GFP intensities of individual 
cells were determined by utilizing the Identify-secondary-objects mod
ule set to the ‘propagation’ distance-N method (using 20 pixels) in 
CellProfiler.

Four different compounds were studied: Sul, Andr, ETA and CDDO, 
along with DMSO as a control. For Sul and CDDO, we re-used our 
published experimental data (Niemeijer et al., 2025), while the data for 
Andr and ETA were generated as part of the current work. We exposed 
HepG2 NRF2 or SRXN1 BAC-GFP reporter cell lines to these compounds 
at different concentrations ranging from subthreshold to maximally 
effective concentrations as known from prior studies (Bischoff et al., 
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2019; ter Braak et al., 2022) (Table 1). All compounds were freshly 
prepared in DMSO and added to the culture medium immediately prior 
to exposure (Bischoff et al., 2019). These compounds are expected to 
remain sufficiently stable and bioactive under cell culture conditions for 
the duration of the experiments. However, measurements of compound 
concentrations in the medium have shown that there are clear differ
ences in compound stability, with CDDO concentrations being the most 
stable (Niemeijer et al., 2025). We applied two continuous exposure 
scenarios (32 h and 48 h single exposure), and two repeated exposure 
scenarios (8 h first exposure followed by medium change and 
24 h second exposure, referred to as 8 h + 24 h; and 24 h first exposure 
followed by medium change and then 24 h exposure, referred to as 24 h 
+ 24 h). For the repeated exposure scenarios, we applied all possible 
combinations of concentrations in the first and second exposure. During 
the imaging, the plates were taken out of the microscope for the second 
exposure. Note that this resulted in some additional NRF2 activation 
also for the wells with continuous single exposure, possibly due to minor 
handling-related stress.

After quantification of GFP intensities through our image analysis 
pipeline, we averaged the two technical replicates, forming one bio
logical replicate for every time point. Then we normalized the data for 
each biological replicate based on the DMSO control, which was done by 
subtracting the GFP intensity of chemical-treated cells with DMSO- 
treated cells for every time point. First this was done separately for 
each concentration and each biological replicate. Subsequently the 
mean intensity per time point was calculated across all biological rep
licates. The time course of this mean at concentration 6 (see Table 1) for 
each chemical was utilized to generate a hysteresis plot (i.e., plotting the 
SRXN1-GFP intensity against NRF2-GFP), thereby providing insight into 
the NRF2-SRXN1 relationship, such as the occurrence of delays. Note 
that at the studied concentrations (Table 1), there was a similar increase 
in cell counts over time for all our chemicals, with only a slightly slower 
increase rate at the highest utilized concentrations (Andr and ETA, see 
Fig. S1; Sul and CDDO, see (Niemeijer et al., 2025).

2.2. Model design

We created three different model versions in order to establish the 
mechanistic relationship between NRF2 and SRXN1, i.e., (1) a model 
with constant NRF2 transcription factor activity, (2) a model with 
constant cofactors (not described explicitly) modifying NRF2 tran
scription factor activity, hereafter referred to as ‘cofactor X’ (where X 
represents a hypothetical set of cofactors or NRF2 modifiers), and (3) a 
model with a dynamic cofactor X (i.e., whose activity or expression 
varies over time) modifying NRF2 transcription in a time-dependent 
manner. All model versions use NRF2 time course experimental data 
as inputs. To this purpose, we transformed the NRF2 time course data 
into a smooth time-dependent input N(t) using the R spline function, 
because a smooth function is required by the internal steps taken by ODE 
integration algorithms.

The Ordinary differential equation (ODE) for SRXN1 (S) in the 3 
considered models includes basal production and degradation of SRXN1, 
and NRF2-induced SRXN1 production (Eq. I). 

dS
dt

= kp − kd ∗ S+ ps (I) 

Here, kp is the basal SRXN1 production rate, kd is the basal SRXN1 

degradation rate, and pS is the NRF2-induced SRXN1 production rate.

2.2.1. Model with constant NRF2 transcription factor activity
In the simplest model version (Fig. 1A), we considered NRF2- 

mediated SRXN1 transcription to be independent of activity of 
cofactor X. Specifically, the NRF2-induced SRXN1 production rate (pS) 
depends on NRF2 (N(t)) following a nonlinear Hill process: 

pS =
(Vmax ∗ N(t)n

)

(Km
n + N(t)n

)
(II) 

Here, Vmax is the maximal SRXN1 production rate, Km is the NRF2 
level for which the SRXN1 production rate is half-maximal, and n is the 
Hill coefficient.

2.2.2. Model with a constant cofactor X modifying NRF2 transcription 
factor activity

Next, we considered that cofactor X (representing a set of cofactors or 
NRF2 modifiers, for example CREB-binding protein (CBP), p300, p160, 
and receptor-associated co-activator 3 (RAC3)) modifies the transcrip
tion factor activity of NRF2, which would affect a subset of the present 
NRF2. Thus, at each time point the total NRF2 is split in an amount of 
modified NRF2 (Nm) and of unmodified NRF2 (Nu) due to the presence of 
cofactor X (Fig. 1B). These amounts are determined by parameter f , 
which represents the fraction of NRF2 whose transcription is affected by 
cofactor X (0 ≤ f ≤ 1): 

Nm(t) = N(t) ∗ f ; Nu(t) = N(t) ∗ (1 − f). (III) 

We described the NRF2-induced SRXN1 expression by a multiplica
tive mechanism, i.e. the presence of both unmodified and modified 
NRF2 provides increased stimulation of SRXN1 production in a 
nonlinear manner: 

ps =
(Vmax1 ∗ Nm

nm ∗ Nu
nu )

(Kmm
nm + Nm

nm ) ∗ (Kmu
∗nu + Nu

nu )
. (IV) 

Here, Vmax1 is the maximum induction rate of SRXN1 by NRF2, Kmm 

and Kmu are the Michaelis-Menten constants for the modified and un
modified NRF2, respectively, and nm and nu for the Hill coefficients of 
modified and unmodified NRF2, respectively.

2.2.3. Model with a dynamic cofactor X modifying NRF2 transcription 
factor activity

Finally, we considered that cofactor X might have its own dynamic 
response to the applied chemicals, which would also make the fraction 
of modified NRF2 vary with time. Modeling the dynamics of cofactor X 
with a separate ODE would require assumptions on both its production 
and degradation processes, as well as on its modification of NRF2, which 
would be problematic for parameter calibration in the absence of data 
on either of these aspects. Therefore, we focused on directly describing 
the dynamics of the fraction of modified NRF2 in a semi-mechanistic 
manner, anticipating that this fraction would initially increase due to 
compound exposure, and after reaching a maximum would decrease 
again. Moreover, second dosing would lead to another increase and 
subsequent decrease, albeit with a different initial fraction and poten
tially different increase and decrease parameters. To model this semi- 
mechanistically, we extended the prior model version by making the 
fraction of modified NRF2 dynamic instead of constant (as in Eq. IV) 
with only a limited number of additional parameters: 

Table 1 
The different exposure scenarios per compound to which HepG2 cell lines were exposed.

Compound Concentration(µM) 1 2 3 4 5 6

Sulphoraphane (Sul) 0.35 0.75 1.62 3.5 7.54 16.25
Andrographolide (Andr) 0.1 0.32 1 3.16 10 31.62
Ethacrynic Acid (ETA) 1 2.14 4.64 10 21.54 46.4
CDDO-me (CDDO) 0.01 0.02 0.05 0.1 0.22 0.46
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f =
1

(
1
fi
− 1

)

∗ exp( − t ∗ r1) + exp(t ∗ d1)

{
t ≥ tdosing1, t < tdosing2

}

f =
1

(
1
f1
− 1

)

∗ exp( − t ∗ r2) + exp(t ∗ d2)

{
t ≥ tdosing2

}
, with 

f1 =
1

(
1
fi
− 1

)

∗ exp
(
− tdosing2 ∗ r1

)
+ exp

(
tdosing2 ∗ d1

)
. (V) 

Here, t represents time since first dosing at tdosing1 = 0, and the second 
dosing (if applicable) occurs at time point tdosing2. Further, r1 and r2 

determine the rates at which cofactor X increases after a first and a 
second dosing, respectively, d1 and d2 determine the rates at which 
cofactor X decreases after a first and a second dosing, respectively. 
Finally, fi and f1 represent the initial fraction and fraction prior to second 
dosing of modified NRF2 due to cofactor X respectively.

2.3. Parameter calibration

The model parameters were calibrated to our experimental data with 
a Bayesian approach, implemented in MCSim (ver. 6.1) (Vehtarh et al., 
2021). In this approach, parameter values are considered random 

variables distributed either according to a normal distribution or a 
truncated normal distribution. In conjunction with a likelihood function, 
we determined posterior distributions by Markov Chain Monte Carlo 
(MCMC) simulations. The likelihood of the data was considered to 
follow a normal distribution with a coefficient of variation of 10 %. We 
initialized the variable S (SRXN1) at a value determined by the ratio 
between its basal synthesis rate (kp) and degradation rate (kd) to ensure 
that the model starts at steady state. Further, we constrained these two 
parameters by using a truncated normal prior distribution within the 
range 1e-4 to 1 for kp, and 1e-4 to 1 for kd. We have also constrained the 
Hill coefficients (nm and nu) within the range 1 to 10 using the same 
approach. We did this to avoid the possibility of very large Hill co
efficients that would approximate a step function on the one hand, and 
to remain in a regime of biologically interpretable Hill coefficients (i.e., 
at least 1) on the other hand. We ran four independent Markov chains of 
100,000 to 1,000,000, and used the last 10,000 iterations to check 
convergence with the potential scale reduction factor Ȓ. This includes a 
joint prior distribution of the parameters which is randomly sampled 
within the given distribution and eventually gets updated through a 
comparison of model predictions and the experimental data. The 
convergence criterion Ȓ was computed for the four different chains and 
all values were below 1.05 indicating model convergence (Hsieh et al., 
2020). All model parameters were estimated simultaneously, and we did 
not observe evidence of non-identifiability or practical estimation issues 

Fig. 1. Modeling strategy to describe SRXN1 dynamics induced by NRF2. A-B) Schematics of model with constant NRF2-mediated induction of SRXN1 transcription (A) 
and of two models with modified NRF2 having distinct effects on SRXN1 transcription compared to unmodified NRF2 (B). In (B), implicitly described NRF2 modifiers 
are considered to affect the fraction of modified NRF2 (potentially in a dynamic manner), which in turn influences SRXN1 transcription. In all model versions, SRXN1 
undergoes basal degradation. C) Nonlinear mixed modelling framework: Panel summarizes which data are utilized for which generic and chemical- or exposure- 
scenario-specific parameters within our Bayesian framework.
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based on MCMC convergence and pairwise posterior plots (Fig. S2). It 
should be noted that the latter analysis did indicate some naturally ex
pected yet moderate parameter dependencies, e.g. between the SRXN1 
production rate (kp) and degradation rate (kd).

For the simplest model with constant NRF2 transcription factor ac
tivity (model 1), we fitted the parameters using only the 48 h continuous 
exposure data for Sul. Subsequently, the model with the estimated pa
rameters, i.e., kp, kd, Vmax, Km, n was simulated for the other three 
compounds using their respective experimental NRF2 time course data 
as inputs. For the model with a constant cofactor X modifying NRF2 
transcription factor activity (model 2), we kept some parameters the 
same for all chemicals, i.e., kp, kd, Vmax1, Kmm , Kmu , nm, nu. The cofactor X 
that modifies NRF2 transcription factor activity was considered 
compound-specific, leading to a constant fraction of modified NRF2 
(parameter f). We fitted the parameters using the 48 h continuous 
exposure data for all four compounds in a hierarchical fashion (with f a 
hierarchical parameter).

For the model with a dynamic cofactor X modifying NRF2 tran
scription factor activity (model 3), the prior model was extended by 
considering that the dynamic response of cofactor X leads to a fraction of 
modified NRF2 that varies over time. The parameters determining this 
response, i.e., r1, r2, d1, d2 (Eq. V) were both compound- and exposure 
scenario-specific. We used the following calibration strategy (Fig. 1C): 
First we fitted all the parameters using the 48 h continuous exposure 
data for all four compounds. For parameters r1, r2, d1, d2, we used a 
hierarchical specification. Population-level parameters (r1all, r2all, d1all, 
d2all) describe the overall parameter space across compounds, while 
compound-specific parameters (r1, r2, d1, d2) are modeled as draws from 
this shared space. During MCMC sampling, both levels are estimated 
jointly, so the inference yields posterior estimates for the population 
parameters as well as for each compound-specific parameter. Subse
quently, both compound- and scenario-specific parameters were esti
mated using the experimental data from the exposure combinations 
where the first exposure ranges from lowest to highest and the second 
exposure was the highest concentration. Note that this was done sepa
rately for the 32 h (8 h+24 h) and 48 h (24 h+24 h) exposure data, 
while using the same model structure and keeping the other parameters 
to the same value. The estimated model parameters and their meaning 
for the different model versions are provided in Tables S1-S3.

2.4. Model diagnostics

The model with a dynamic cofactor X was used to predict various 
continuous and repeated exposure scenarios. For these model simula
tions, we used three different NRF2 inputs to predict SRXN1. Specif
ically, these inputs included the mean, maximum and minimum of NRF2 
per time point on the basis of the three biological replicates. Finally, we 
visually compared the model simulations to the experimental data of 
various scenarios and different concentration combinations. Impor
tantly, a large amount of these combinations were not used during 
parameter calibration.

Apart from visual comparison of model predictions and experimental 
data, we also calculated R2 for the different model versions. To inves
tigate the effect of parameter variation on model output, we employed a 
global sensitivity analysis (GSA) using the R package pksensi (Louizos 
et al., 2014). This package uses a variance-based GSA method that in
tegrates random phase-shift with extended Fourier Amplitude Sensi
tivity Test (eFAST) to perform the sensitivity test (Hsieh et al., 2020). All 
parameters were varied by 1 % to compute the effect on the SRXN1 
response and sensitivity coefficients over time were calculated for each 
parameter. Sensitivity coefficients higher than 0.1 were considered to 
indicate highly influential parameters, and lower than 0.05 were 
considered non-influential parameters.

3. Results

3.1. NRF2 regulates SRXN1 in a compound-specific manner

Plots of NRF2-GFP expression versus SRXN1-GFP expression at the 
same time points (Fig. 2A-B; Fig. S3A-B) as well as plots of NRF2-GFP 
expression and SRXN1-GFP expression over time (Fig. 2C-D; Fig. S3C- 
D) upon compound exposure demonstrated that SRXN1 expression 
increased in a delayed manner relative to the NRF2 expression increase, 
a phenomenon described by the term ‘counter-clockwise hysteresis 
(Louizos et al., 2014). This implies that the relation between NRF2 and 
SRXN1 may not be adequately captured by a simple linear function, 
which motivated our use of nonlinear models in subsequent quantitative 
analysis. The dynamics of fast NRF2 activation followed by delayed 
SRXN1 activation occurred for all considered compounds. Curve shifts to 
the left and upwards at late time points indicated that NRF2 expression 
decreased at late time points yet that SRXN1 expression was still 
increasing upon continuous exposure of 32 h, except for exposure to 
Andr for which a minor SRXN1 decay occurred (Fig. 2A). During longer 
time periods of continuous exposure (48 h), for ETA and Sul an SRXN1 
plateau was reached, yet for CDDO SRXN1 still continued to increase 
(Fig. 2B).

For repeated exposure scenarios of 32 h (8 h + 24 h; Fig. S3A) and of 
48 h (24 h + 24 h; Fig. S3B), the overall patterns did not change 
compared to the continuous exposure scenarios. For exposure to CDDO, 
both SRXN1 and NRF2 reached similar maximal levels for repeated and 
single exposure (Fig. S3A-B vs Fig. 2A-B, yellow). For the other com
pounds, both NRF2 and SRXN1 obtained somewhat higher levels at the 
end of the observation period (48 h) for repeated than for single expo
sure. For exposure to Sul a minor SRXN1 decay occurred during the 
second exposure after a 24 h initial exposure (Fig. S3A, grey). Thus, at 
the highest administered concentration there were clear differences in 
the qualitative relation between NRF2 and SRXN1 across compounds, 
which persisted for both single and repeated exposure scenarios. This 
suggests that the regulatory role of NRF2 may be different depending on 
the compound that activates the oxidative stress pathway.

3.2. Mathematical modeling confirms chemical dependence of NRF2- 
mediated SRXN1 regulation

In order to investigate whether the observed difference of the tem
poral relation between nuclear NRF2 expression and SRXN1 expression 
across compounds at the highest applied concentrations hold true for 
other concentrations as well, we employed a semi-mechanistic mathe
matical modeling approach. Specifically, we utilized a simple ordinary 
differential equation (ODE) for NRF2-driven SRXN1 expression 
including nonlinear Hill kinetics (referred to as model with constant 
NRF2 activity), where we took the measured NRF2 expression as a 
concentration- and compound-dependent input function over time 
estimated by spline interpolation (see Methods). We started with formal 
estimation of the parameters related to SRXN1 formation and degrada
tion for Sul based on 48 h continuous exposure data (Fig. S4A, S5B; see 
Table S1 for model parameters). Among the six applied concentrations, 
the model with constant NRF2 activity resulted in an acceptable match 
to the three highest concentrations (Fig. 3A, top panel). For the lowest 
three concentrations, the fit was clearly worse compared to the three 
highest concentrations, and the long-term SRXN1 dynamics were over
estimated (Fig. 3A, bottom panel). Notably, the initial Hill model esti
mated a Hill coefficient close to 1 and a very large Km value, 
corresponding to a nearly linear response. This suggests that even for 
application of a single compound, the effect of NRF2 as a transcription 
factor differs for high and low concentrations at which the compound is 
applied.

Subsequently, we simulated the same model for the other com
pounds using the fitted parameters for Sul yet the NRF2 input for the 
individual compounds. For all compounds, the model simulations 
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exhibited either over- or underestimation of the experimental data 
(Fig. 3B-D). In particular, the model was not able to predict the SRXN1 
decay observed at late time points for Andr and ETA, leading to an 
overestimation of SRXN1 dynamics (Fig. 3B-C). To the contrary, for 
CDDO-me the model underestimated the SRXN1 response at the highest 
concentrations (Fig. 3D). This is consistent with the observation that the 
maximum expression of NRF2 was approximately 2-fold less for CDDO 
compared to Sul at the highest concentration, whereas the SRXN1 
expression was similar (Fig. 3A-B). Together, these findings indicate that 
the transcription factor activity of nuclear NRF2 is both concentration- 
and compound-dependent. As a result, straightforward Hill kinetics is 
not sufficient to capture this differential regulatory effect of NRF2 on 
SRXN1.

3.3. A fixed fraction of modified NRF2 improves fit of concentration- 
dependent SRXN1 expression

Because several cofactors/regulators (jointly referred to as cofactor 
X) can play a role in promoting or inhibiting NRF2 transcriptional ac
tivity, e.g., through acetylation of NRF2 by p300/CBP, we considered 
the possibility that a fixed fraction of the present NRF2 is in modified 
form due to presence of cofactor X, and therefore has altered tran
scription factor activity. Thus, in a subsequent model version, referred to 
as the model with fixed cofactor X, we split the present NRF2 in two 
fractions which together determine SRXN1 transcription (see Eqs. III & 
IV in Methods). In addition, we considered the possibility that the 
fraction of modified NRF2 due to cofactor X could depend on the type of 
compound, because they may have multiple modes-of-action. Thus, the 

Fig. 2. Quantitative relation between NRF2 and SRXN1 is compound dependent. (A-B) Plots show SRXN1-GFP expression vs NRF2-GFP expression in HepG2 BAC re
porter cells upon continuous exposure for 32 h (A) and 48 h (B) to the compounds Andr, CDDO, ETA or Sul (colors) at a concentration of 31.62, 0.46, 46.4 or 
16.25 µM, respectively. (C–D) Time courses of SRXN1-GFP (solid red, left y-axis) and NRF2-GFP (dashed blue, right y-axis) for the same exposures over 32 h (C) and 
48 h (D). Intensities are in arbitrary units (au).
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influence of cofactor X on the modified NRF2 fraction could be different 
for every considered compound, while the other parameters influencing 
SRXN1 dynamics were shared for all chemicals.

Calibration of the model with fixed cofactor X (Fig. S4B; see Table S2
for model parameters) slightly improved the fit (Fig. 4) compared to the 
earlier model with constant NRF2 activity (Fig. 3). Specifically, for Sul 
the R2 value was larger than 0.8 at both high and low concentrations 
(Fig. 4A), and for the other compounds R2 was larger than 0.6 except for 
Andr which had R2 < 0.6 at low concentrations (Fig. S5). Clearly, 
despite the improved fit this model still had difficulties with capturing 
the decreasing SRXN1 dynamics at late time points, suggesting that the 
remaining nuclear NRF2 at those points might exhibit less transcription 
factor activity than in the early response.

3.4. A dynamic fraction of modified NRF2 explains compound-specific 
and exposure scenario-specific SRXN1 response

Modifiers and cofactors of NRF2 that influence its activity as a 
transcription factor might themselves exhibit a dynamic response 
pattern when exposed to specific compounds. Therefore, we considered 
the possibility that the fraction of modified NRF2 initially increased and 
subsequently decreased during the waning of the response, and that this 
dynamic pattern was compound dependent. Thus, we constructed a 
third model version, referred to as the model with dynamic cofactor X 
(see Eq. V in Methods), in which the initial fraction of cofactor X was set 

to a very low level (1e-3) that initially increased (described with 
parameter r1) and later on decreased (described with parameter d1). In 
this model, r1 and d1 were considered to be compound-specific, whereas 
the other parameters for SRXN1 production and decay were shared 
across compounds.

Calibration of this model with dynamic cofactor X to the 48 h 
continuous exposure SRXN1 data (Fig. S6; see Table S3 for model pa
rameters) led to a much better fit (Fig. 5) than the simpler models 
(Figs. 3–4). To take into account the biological variability among rep
licates, we simulated the calibrated model using minimal, mean, and 
maximal inputs for NRF2 (Fig. S7). To check for consistency across data 
sets, we also simulated the model for the shorter-lasting 32 h continuous 
exposure scenario while keeping all parameters at the same value. This 
showed that the model also properly predicted the 32 h continuous 
exposure scenario data (Fig. S8), providing further confidence in the 
model. Importantly, the model simulations now captured the SRXN1 
decay also at late time points. Although for some concentrations the 
model slightly over- or underestimated the experimental data, for each 
compound the R2 value exceeded a value of 0.9, demonstrating the 
goodness-of-fit of this model quantitatively (Fig. S9).

Having a model that properly describes the relation between NRF2 
and SRXN1 based on a dynamic fraction of modified NRF2, we next 
considered whether the model could also describe various repeated 
exposure scenarios for the same compounds. We reasoned that upon a 
second exposure the fraction of modified NRF2 should again change 

Fig. 3. Nonlinear Hill kinetics do not capture NRF2-mediated SRXN1 regulation across concentrations and compounds. A-D) Panels show experimental measurements 
(mean ± sd (from three biological replicates)) and model fit (solid lines) of SRXN1 expression in HepG2 BAC-GFP reporter cells for Sul (A), Andr (B), ETA (C) and 
CDDO (D) at either high concentrations (top panels) or low concentrations (bottom panels) for up to 48 h continuous exposure. Colors denoting the administered 
concentration are shown at the top of the plots. Model simulations are based on the model considering a constant activity of the nuclear NRF2.
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with time. However, the starting point of the fraction of modified NRF2 
should be different at the time of second exposure given its dynamic 
change throughout the primary exposure. Therefore, it was likely that 
the increase and decay dynamics of the fraction of modified NRF2 would 
also deviate from the first exposure. Therefore, to describe repeated 
exposure data we included two additional parameters in the model 
describing the increase (r2) and decrease (d2). We calibrated the addi
tional parameters on the basis of a selected set of concentration com
binations (see Methods), while keeping the other parameters to the 
values resulting from the fit of the first exposure. We simulated the 
model with newly calibrated r2 and d2 parameters for all four com
pounds and all repeated exposure scenarios (Fig. S10-S17). A subset of 
the repeated exposure scenarios, i.e., with repeated 48 h (24 h+24 h) 
and 32 h (8 h+24 h) scenario with equal concentrations during first and 
second exposure, and with large differences between the concentrations 
of first and second exposure demonstrated that the model fit was 
generally good (Fig. 6). This evaluation by visual inspection was 
confirmed by R2 values that typically exceeded 0.9 for 32 h repeated 
exposure data and 0.8 for 48 h repeated exposure data (Fig. S18). Only 
for a limited number of concentration combinations clear over- and 
under-predictions occurred. In conclusion, on top of the proper 
description for single exposure scenarios, the model with dynamic 
cofactor X could explain a large number of repeated exposure dosing 
schemes (384 combinations in total). Importantly, to achieve this per 
compound, only one additional process was required, involving 2 pa
rameters for continuous exposure scenarios and 2 additional parameters 

for repeated exposure scenarios.

3.5. Mechanistic insight based on model with dynamic fraction of 
modified NRF2

In the model with a dynamic fraction of modified NRF2, we 
considered that a fraction of the present NRF2 becomes modified. The 
modified NRF2 is assumed to have greater transcriptional activity when 
compared to unmodified NRF2. A fast modification process would imply 
that the molecules (cofactors) playing a role in the modification follow a 
similar time course as that of modified NRF2. Thus, studying how the 
time course of modified NRF2 depends on the chemical and on the 
exposure scenario provides mechanistic insight. The shape of the curve, 
i.e., the extent of activation and decay, and the different dynamics for 
first and second exposures represent the characteristic features of the 
response (Fig. 7A). A large fold increase in modified NRF2 and a large 
area under the curve suggests a strong involvement of modification 
enzymes or cofactors in the transcription factor activity of NRF2 with 
respect to SRXN1.

Treatment with Sul caused most NRF2 modification compared to the 
other compounds, whereas Andr treatment led to the lowest amount of 
NRF2 modification. For CDDO, the decay rate of modified NRF2 was 
lower than for other compounds, which is consistent with the high sta
bility of CDDO (Niemeijer et al., 2025). For all compounds, second ex
posures led to an increased fraction of modified NRF2 compared to 
continuous exposure, yet the extent of the increase depended on the 

Fig. 4. Fit of model with fixed fraction of modified NRF2 due to cofactor X to observed SRXN1 intensities. A-D) Panels show experimental measurements (mean ± sd 
of three biological replicates) and model fit (solid lines) for Sul (A), Andr (B), ETA (C) and CDDO (D) at either high concentrations (top panels) or low concentrations 
(bottom panels). Colors denote the administered concentration (µM) and their values are shown at the top of the plots.
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compound and time point of second exposure. An early second exposure 
at the 8 h time point (Fig. 7A, red lines) typically led to modified NRF2 
levels beyond the maximum observed for continuous exposure (Fig. 7A, 
blue lines), likely because the second exposure typically occurred at a 
similar time point as where this maximum occurred. However, for Sul 
this was not the case. Here, the amount of modified NRF2 was predicted 
to both increase and decrease extremely steeply, such that the moment 

of re-exposure at 8 h was already several hours beyond the peak. This 
suggests that the response of modified NRF2 during the second exposure 
merely caused a delay of the decrease, rather than a new peak. Inter
estingly, the second exposure at 24 h had only a slight effect on modified 
NRF2 (Fig. 7A, red lines). This suggests that NRF2-mediated transcrip
tion of SRXN1 is less strongly influenced by NRF2 modifiers for late 
second exposures than for primary exposures.

Fig. 5. Model with dynamic cofactor X describes SRXN1 dynamics following continuous exposure. Plots show simulated SRXN1 expression upon compound exposure 
based on minimal (green), maximal (red) and mean (blue) NRF2 input per time point, and experimentally determined SRXN1 expression using HepG2 BAC-GFP 
reporter cells (shaded gray area: mean ± sd across three biological replicates) for 48 h. Each row corresponds to one compound (Sul, CDDO, Andr, and ETA), 
with exposure levels indicated above the panels (in µM).
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Besides the parameters determining the fraction of modified NRF2 
over time, also the other parameters related to SRXN1 transcription and 
decay play an important role to determine NRF2-driven SRXN1 dy
namics. We carried out a sensitivity analysis on the time-course simu
lations by varying the values of these parameters within a 0.5- and 2-fold 
range of the calibrated values to study how these parameters affect the 
temporal dynamics. To this purpose, we utilized the Sul-induced NRF2 

inputs for the 48 h continuous exposure scenario. The parameters Vmax1 
(maximal transcription rate of SRXN1) and Kmu (concentration of un
modified NRF2 at which the SRXN1 transcription rate is half-maximal) 
had qualitatively equal, yet opposite effects along the time course of 
the SRXN1 response (Fig. 7B-C). Interestingly, the parameter Kmm 

(concentration of modified NRF2 at which the SRXN1 transcription rate 
is half-maximal) does not have any effect on the initial activation of 

Fig. 6. Model with dynamic cofactor X describes SRXN1 dynamics following repeated exposure. Plots show simulated SRXN1 expression based on minimal (green), 
maximal (red) and mean (blue) NRF2 input per time point, and experimentally determined SRXN1 expression using HepG2 BAC-GFP reporter cells (shaded gray area: 
mean ± SD across three biological replicates) for 48 h (24 h + 24 h) repeated exposure scenarios. Each row corresponds to one chemical (Sul, Andr, ETA, and CDDO), 
with exposure levels during first and second exposure indicated above the panels, separated by a comma (in µM).
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SRXN1 but only affects the late time point dynamics, with a higher Kmm 

value leading to faster decay (Fig. 7D). This finding is likely caused by 
the strong initial increase in modified NRF2 predicted by the model fits, 
in combination with a Kmm value that is estimated relatively low. In 
summary, the parameter Kmm and the level of modified NRF2 over time 
jointly determine the SRXN1 response. Note that in a global sensitivity 
analysis we found all parameters to be sensitive (Fig. S19), with the 
magnitude of the total order sensitivity being slightly higher than the 
first order sensitivity, except for the Hill parameter nu for SRXN1 
transcription.

4. Discussion

In this study, we used live-cell imaging time course data for NRF2 
and its downstream target SRXN1 in HepG2 BAC-GFP reporter cells 
exposed to various stressors and exposure conditions. By leveraging 
these quantitative data in a semi-mechanistic mathematical model, we 
investigated how the transcription factor activity of NRF2 is modulated 
by compound- and scenario-specific factors. This approach provided 
insight into the dynamic regulation of NRF2-mediated gene expression.

Our initial data analysis employing experimental NRF2-SRXN1 
‘hysteresis’ plots already indicated a time-, chemical-, and exposure- 
dependent discrepancy between NRF2 and SRXN1 expression. The 
swift activation of NRF2 after compound exposure is in line with data 
suggesting that these compounds activate NRF2 at protein level by 
inhibiting its degradation through modification of Keap1 (Wakabayashi 

et al., 2004; Kobayashi et al., 2006). The observed delay in the onset of 
the SRXN1 response is likely due to the time it takes to transcribe and 
translate SRXN1 protein, and a similar delay in its return to baseline 
would be expected due to protein degradation dynamics. Interestingly, 
the maximal abundance of NRF2 achieved by Andr differed around 
1-fold from that caused by Sul, yet the difference in maximal SRXN1 
expression was almost 3-fold (at the highest concentration). However, 
CDDO exposure led to higher SRXN1 maximal expression compared to 
Sul (and other compounds) even though its NRF2 maximum was lower 
than for Sul. These experimental findings thus already hinted at factors 
in addition to the nuclear abundance of NRF2 playing a role in deter
mining SRXN1 abundance.

In order to formally test whether the amount of NRF2 and its dy
namics could be sufficient to explain SRXN1 abundance independent of 
treatment type, we developed a mathematical model with constant 
NRF2 transcription factor activity. Although this model could reason
ably explain the Sul data for several concentrations, this approach was 
not successful for all concentrations and did not perform well when it 
was applied to the other three compounds. Thus, this finding clearly 
indicated that the NRF2-SRXN1 relationship obeyed a more complex 
mechanism than originally anticipated. This was confirmed by our final 
model incorporating dynamic, compound-dependent NRF2 modifica
tion (by cofactor X), which captured the observed SRXN1 dynamics 
across all scenarios well. This observation is in line with many reported 
studies suggesting that NRF2 activity depends on other factors or pro
cesses. Here, one important process is that NRF2 often forms 

Fig. 7. The fraction of modified NRF2 (with high transcription factor activity) due to cofactor X varies over time, across chemicals and exposure scenario. A) The 
model-predicted fraction of modified NRF2 over time is plotted for 48 h continuous exposure (green), 32 h (8 h+24 h) repeated exposure (blue) and 48 h 
(24 h+24 h) repeated exposure (red). Chemicals are labeled at the top. B-D) Model-generated time profiles for the SRXN1 dynamics during the 48 h (24 h+24 h) Sul 
continuous exposure scenario by varying the parameter values within a 0.5- to 2-fold range from their optimal value in 10 steps: Each colored curve represents the 
predicted dynamics for one altered parameter, i.e., Vmax1 (B), Kmu (C), and Kmm (D). The effect of Kmm modification is most pronounced at late time points, whereas 
Kmu and Vmax1 have clear impact on the entire time course.
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heterodimers with sMAF transcription factors (Rooney et al., 2020; 
Tonelli et al., 2018; Li et al., 2008). These heterodimers can also interact 
with other proteins that act as co-activators/co-suppressors to alter the 
transcription factor activity of NRF2-induced ARE gene expression. For 
instance, NRF2 is known to recruit p300 which modifies NRF2 by 
acetylation, resulting in an increase in NRF2’s transcriptional abilities 
(Sun et al., 2009; Cai et al., 2015). On the other hand, methylation of 
NRF2 promoter residues, or microRNAs like miR153, miR27a, 
miR142–5p, and miR144 can result in inhibitory effects on 
NRF2-mediated transcription (Narasimhan et al., 2012; Su et al., 2013). 
It is thus likely that the disparity in SRXN1 expression among different 
treatments depends on factors that modulate NRF2 transcriptional 
regulation.

In our modeling framework, we used a Hill function to allow for a 
range of possible relationships between NRF2 and SRXN1, from linear to 
highly nonlinear, depending on the Hill coefficient (n) and the ratio of 
NRF2 to estimated Km. In the simplest model version, the fitted Hill 
coefficient was close to 1 and the NRF2:Km ratios remained much 
smaller than 1, corresponding to a nearly linear regime. This indicates 
that for these conditions, SRXN1 expression responds in a graded, pro
portional manner to NRF2, without strong ultrasensitivity or threshold 
effects. However, in our most complex where the fraction of modified 
NRF2 changes dynamically over time, we observed a marked difference: 
the Hill coefficient for the modified NRF2 form was close to 10 (highly 
nonlinear/ultrasensitive), while for the unmodified form it remained 
near 1. This supports the idea that cofactor-mediated modification of 
NRF2 can drive strong nonlinearities in downstream gene regulation, 
even when the unmodified form acts linearly.

Consistent with the improved model fit for the model with a dynamic 
cofactor X compared to the model with constant NRF2 transcription 
factor activity, the fraction of modified NRF2 was indeed predicted to 
exhibit large variation in the rate and extent of modified NRF2 across 
treatment type and exposure scenario. This suggests that in response to 
Andr, only a low fraction of NRF2 becomes modified. This would explain 
why Andr- and Sul-induced NRF2 induction is similar whereas the 
SRXN1 expression in response to these two compounds is very different. 
Further analysis of the developed model revealed that the parameter Ka 
controls the SRXN1 dynamics only at late time points. This coincides 
with the dynamics of the fraction of modified NRF2 that is predicted to 
quickly decrease during the late response. Differences in the fractions of 
modified NRF2 over time across compounds could be due to differences 
in the in-vitro half-lives of the compounds, which may directly affect 
other pathways or cofactors that mediate the NRF2 transcription factor 
activity. Indeed, in our related paper we show that NRF2 response 
activation is very much dependent on compound kinetics (Hiemstra 
et al., 2022).

Beyond compound kinetics, additional mechanisms may contribute 
to the observed compound-dependent effects on SRXN1 regulation. For 
example, certain compounds may differentially activate specific xeno
biotic nuclear receptors such as AhR, CAR, or PXR, leading to receptor 
crosstalk and modulation of NRF2 signaling (Vorrink and Domann, 
2014). Differences in metabolic processing, resulting in the formation of 
distinct reactive metabolites, may also influence the magnitude or 
duration of NRF2 activation and downstream gene induction (Hayes and 
Dinkova-Kostova, 2014). Furthermore, some compounds may selec
tively induce either oxidative or electrophilic stress, each of which can 
recruit different upstream signaling pathways or cofactor proteins. 
Variability in cellular uptake, efflux, or subcellular localization could 
further contribute to the distinct transcriptional responses observed 
(Klaassen and Aleksunes, 2010). Elucidating the precise mechanisms 
underlying compound dependency will require future studies inte
grating metabolic profiling, receptor activation assays, and targeted 
perturbations of relevant signaling pathways.

Although this has not been experimentally shown in great detail, it is 
known that NRF2 can sense stress differentially depending on contex
tualized regulatory mechanisms following ligand and treatment type. 

For instance, Rong et al. reported that tert- butylhydroquinone (tBHQ) 
and Sul induce changes in NRF2 transcription factor activity related to 
Raf-1 kinase activity (Yu et al., 1999). In another study in rats, copper 
induced SRXN1 expression via NF-kB signaling, hinting at the potential 
importance of crosstalk (Jeong et al., 2012). As a third example, a het
erodimer formed by ligand-bound PPARγ and RXR enhances the 
strength of glutathione S-transferase expression by facilitating trans
activation complexes comprising NRF2 and C/EBPβ (Park et al., 2004). 
Finally, Sul-induced NQO1 expression is not linked to altered cellular 
levels of NRF2, yet is associated with oscillatory changes in cyto
plasmic/nuclear translocation of NRF2, which is also linked to ongoing 
phosphorylation and dephosphorylation of NRF2 via a non-canonical 
pathway (Xue et al., 2015). Future studies are required that aim to 
determine the contribution of specific cofactors recruited by NRF2, of 
non-canonical pathways influencing NRF2, and how these contributions 
vary over time and with type of exposure. While our current model 
captures compound- and time-dependent modulation of NRF2 activity 
through an empirical dynamic cofactor term, other mechanistic model 
structures—such as explicit feedback loops or dose-dependent feedback 
mechanisms—could also be considered. Future model extensions may 
incorporate these forms when quantitative time-course data for relevant 
cofactors or signaling intermediates become available. We chose our 
stepwise, data-driven approach to balance model complexity and 
interpretability in light of the current data. In order to confirm our hy
pothesis that such cofactors and pathways jointly affect NRF2 modifi
cation, the influence of silencing of the identified factors on NRF2 and 
SRXN1 dynamics need to be evaluated. Although our final model can 
explain SRXN1 dynamics driven by NRF2 for four different compounds, 
the current model is limited because it requires NRF2 measurements to 
translate these into downstream SRXN1 dynamics. This limitation might 
be overcome in the future by extending the model to include in vitro 
compound kinetics, and predicting NRF2 based on those kinetics. Such 
modeling will likely reveal additional mechanistic information about 
NRF2 pathway signaling dynamics beyond the link between NRF2 and 
SRXN1 that we focused on with our current models.

In summary, in our work we aimed to explain SRXN1 differential 
expression dynamics given a particular input of NRF2 dynamics. To this 
purpose, we developed a nonlinear mixed effect semi-mechanistic 
modeling approach, and applied this to HepG2 BAC-GFP experimental 
data on NRF2 and SRXN1 that were acquired under multiple compound 
exposure scenarios (Niemeijer et al., 2025). Our proposed hierarchical 
model for a subset of parameters quantified factors that change NRF2 
transcription factor activity inducing SRXN1 expression. Likely these 
underlying mechanisms are highly important to tightly regulate the 
NRF2 transcriptional machinery and thereby the downstream targets 
that are required to maintain the balance in the cellular environment. 
We focused on SRXN1 only in our model analysis, yet we expect that the 
general concept extrapolates to other downstream NRF2 targets, which 
would require measurements on those targets as well as model exten
sions. For example, through application of mathematical models to 
experimental data we recently showed that also the relation between 
nuclear NRF2 presence and glutathione abundance, an important anti
oxidant, is compound-dependent (Perkins et al., 2019). Although 
glutathione is not a direct NRF2 target, its formation is affected by 
glutamate cysteine ligase (GCL), whose catalytic (GCLC) and modifier 
(GCLM) subunits are both transcriptional targets of NRF2 (Spinu et al., 
2020). A recent human transcriptome study showed that SRXN1 is an 
excellent downstream biomarker of NRF2 activation to study chemical 
toxicity (Rooney et al., 2020). Therefore, quantitative knowledge on the 
link between NRF2 and SRXN1 could be very useful for predicting the 
threshold between cellular adaptivity and adversity. Especially the 
detailed dynamics of NRF2 and SRXN1, and cofactors determining NRF2 
transcription factor activity, are likely important drivers of cell fate. One 
way to achieve such predictions on adversity includes the application of 
quantitative adverse outcome pathways (qAOPs) for chemical risk 
assessment. In such qAOPs, the relationship between Molecular 
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initiating events (MIEs; for the compounds investigated here this could 
be described by e.g. ‘chemical-induced electrophilic attack on KEAP1 
cysteine residues’) and key events (KEs; for the investigated compounds 
this could be described as e.g. NRF2 activation and SRXN1 induction, or 
more crudely as oxidative stress) is generally considered to be very 
direct (Perkins et al., 2019; Spinu et al., 2020). We show that such re
lationships, even of close-by events, may be more complicated than 
originally anticipated, which implies that detailed experimental studies 
on NRF2 binding partners and cofactors are required to fully take 
advantage of qAOPs for risk assessment purposes in the future. Never
theless, in the absence of full mechanistic understanding of the 
NRF2-SRXN1 relation, our current models can already be incorporated 
within such qAOPs.
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