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Chirality is a feature of many biological systems, and much research has been focused on understanding the
origin and implications of this property. Famously, sugars and amino acids found in nature are homochiral, i.e.,
chiral symmetry is broken and only one of the two possible chiral states is ever observed. Certain types of cells
show chiral behavior, too. Understanding the origin of cellular chirality and its effect on tissues and cellular
dynamics is still an open problem and subject to much (recent) research, e.g., in the context of drosophila
morphogenesis. Here, we develop a simple model to describe the possible origin of homochirality in cells.
Combining the Vicsek model for collective behavior with the model of Jafarpour et al. [Phys. Rev. Lett.
115, 158101 (2015)], developed to describe the emergence of molecular homochirality, we investigate how a
homochiral state might have evolved in cells from an initially symmetric state without any mechanisms that
explicitly break chiral symmetry. We investigate the transition to homochirality and show how the “openness” of
the system as well as noise determine if and when a globally homochiral state is reached. While hypothetical and
explorative in nature, our analysis may serve as a starting point for more realistic models of chirality in flocking

multicellular systems.

DOI: 10.1103/PhysRevE.111.015427

I. INTRODUCTION

Chirality, i.e., the property in which an object differs from
its mirror image, is a common feature of many biological
systems, from amino acids up to biopolymers, cells, and fully
developed vertebrate and invertebrate organisms [1-3]. Most
biomolecules, for instance, are either left- or right-handed
(L or R for brevity), despite the reactions starting them not
favoring either of the two handednesses. Thus, most amino
acids are left-handed, whereas R-molecules are predominant
among sugars. These small chiral molecules, in turn, serve as
building blocks of larger biopolymers, thereby providing the
molecular basis for a hierarchical inheritance of chirality by
larger structures.

Because of its ubiquitousness in biology, the origin and
the relevance of chirality has been the subject of insightful
research for decades; see, e.g., Refs. [4-8] and references
therein. The function of a specific handedness, if any, and the
mechanism leading to chiral symmetry breaking, in particular,
are still hotly debated. While chirality appears to be crucial in
small biomolecules, where it was found to be linked to the
function of, e.g., proteins [7], it is not always clear if and
how chirality plays a role in larger structures. Thus, while
certainly LR asymmetry is instrumental to the mechanics of
flagella in sperm cells [9,10] and bacteria [11], its occur-
rence and role are not equally obvious in eukaryotic cells.
Yet, an increasingly large body of experimental evidence has
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recently begun to indicate that, even in this case, chirality
could serve specific biophysical functions in both unicellular
[7] and multicellular systems. For example, cell chirality has
been shown to influence the morphogenesis of Drosophila
[12], snails [13], C. elegans [14], and mammalian cells
[15-19]. In vitro, a particularly compelling example of chiral-
ity and its effect in multicellular eukaryotes was reported in
confined layers of spindlelike RPE1 and C2C12 cells [20], as
well as in cancerous HT1080 cells, where chirality gives rise
to topological edge currents, which rectify the chaotic cellular
motion in the bulk [21]. In these examples, cellular chirality
appears uniform across the entire monolayer—a property also
known as homochirality—and its effect on the cells’ collective
dynamics can be accurately reproduced by postulating the
existence of a chiral active stress, reflecting the forces exerted
by the cells [20-22]. Yet, how homochirality originates at the
cellular scale remains elusive.

A necessary step towards a satisfactory understanding
of homochirality in multicellular systems consists of estab-
lishing whether LR-symmetry is explicitly or spontaneously
broken, that is, whether cellular chirality is genetically pro-
gramed to be always the same or if it can spontaneously
arise during the lifetime of a system, as a consequence of
mechanical instabilities of phenotypical switches. In spite of
the enormous advances of live-cell imaging, the current ex-
perimental literature does not provide clear indications in this
respect, with both scenarios being equally likely and possi-
bly system-specific. For instance, Tee ef al. reported that the
actin cytoskeleton of human foreskin fibroblast (HFF), cul-
tured in circular wells, robustly organizes in right-handed (i.e.,
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FIG. 1. Model. (a) A schematic of the reactions defined in Egs. (1). To perform the reactions, we subdivide the total system into square
boxes of height 2R. Left-chiral particles (blue arrow) and right-chiral particles (red arrow) can divide with the rate k,, through the consumption
of nutrients (cyan dot). Our model is based on the assumption that chirality is preserved during the division process and thus inherited by
daughter cells. Furthermore, they die with the rate k, and are replaced by a nutrient, or the nutrient “spontaneously transforms” into a particle
with rate k.. Here a left-chiral particle undergoes these reactions. See the main text for a proper interpretation of the rates. (b) Snapshot of the
simulations carried out in a square system of height £ at density o = 2 and noise n = 0.3. Again, right-chiral particles are represented by blue
arrows while left-chiral particles are represented by red arrows. (c) A snapshot taken for higher densities (o = 4) and lower noise (n = 0.1).

counterclockwise) patterns [17]. This handedness, in turn, is
regulated by «-actinin-1 and could be reversed only upon
overexpressing the latter. In this study, the overexpression of
a-actinin-1 was artificially induced, but one cannot exclude
that similar effects could occur spontaneously as a conse-
quence of transcriptional switches. Because the cytoskeleton
is shared between the mother and daughter cell upon division,
this scenario could imply—so far only hypothetically—an
inheritance of chirality from mother to daughter. In Ref. [23],
conversely, Drosophila cells treated with Pak3 were observed
to support both right- and left-handed traveling waves at the
periphery of the cells’ lamellipodium. Whether this further
example of cytoskeletal handedness is sufficiently robust to
be inherited upon division is, however, presently unknown.
A right-handed homochirality was also found in HT1080
fibrosarcoma cells confined within fibronectin-coated strips
[21], but not in a more recent in vivo study of metastatic inva-
sion [24], thus supporting the hypothesis that cellular chirality
could be phenotype-dependent and possibly change across a
cell’s lifecycle.

To make progress through the seemingly endless complex-
ity of this problem, in this article we restrict our attention to
a single scenario, corresponding to the case in which cellu-
lar chirality consists of an inheritable trait, which cells can
transfer to each other upon division, while flocking in an
open environment. This construction relies on the fundamen-
tal assumptions that cellular chirality is phenotype-dependent,
hence sensitive to mechanical and biochemical cues from the
cells’ microenvironment, and physically encoded in the cell
structure—e.g., the cytoskeleton or the spatial arrangement
of the internal organelles—so to be conserved during mitotis
[Fig. 1(a)]. We stress that neither one of these assumptions is
confirmed by the existing experimental literature. The picture
investigated here is, therefore, entirely hypothetical. Yet, by
unraveling the phenomenology entailed in these assumptions,
we hope to provide signatures that experiments can later con-
firm or disprove. Starting from a minimal model based on two
reaction equations coupled with the Vicsek model [25], we
show that noise breaks LR symmetry already at the cellular

scale, and the system can reach a homochiral state from an
initially racemic one. We numerically investigate if and how
the presence of activity and alignment interactions influences
the transition to homochirality from a racemic state. We find
that, for specific choices of parameters, the system is guar-
anteed to reach a homochiral state in a finite time. While the
system is in a mixed state, hence away from homochirality,
we find large fluctuations of the number density and the local
chirality. Furthermore, we observe that like-chiral cells are
more strongly correlated than cells of opposite chirality, even
though there is no explicit interaction term favoring one over
the other. Finally, we find that the time a given system takes
to transition to homochirality follows a long-tail distribution,
with mean and standard deviation being of the same order of
magnitude.

This article is organized as follows. In Sec. II, we present
our model in more detail. In Secs. III and IV, on the other
hand, we explore two possible regimes of the model, where
the evolutionary and spatial dynamics are indirectly or directly
coupled. We identify the conditions for which the system
transitions from a racemic to a homochiral state, and we
reconstruct the statistics of spatial fluctuations and hetero-
geneities. In Sec. V, we conclude this article with a brief
discussion of some potential applications, for example in the
context of population dynamics and genetic drift.

II. MODEL

We model cells as self-propelled particles with aligning
interactions, and whose dynamics is governed by the classic
Vicsek model [25]. To account for chirality, we follow a clas-
sic approach pioneered by Frank [4] and recently extended by
Jafarpour et al. to explain the emergence of homochiral states
in racemic mixtures of left and right (L and R) molecules
[8,26]. This model assumes the existence of two possible chi-
ralities, i.e., L and R, and a solvent—denoted with S—which
can fill the space left by a cell after its death and replenish the
cell layer with nutrients. These processes occur by means of
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the following reactions:

R+S -2 2R, L4801, (1a)
ky ky
R=3S L=s. (1b)
ke ke

The first two equations, Eqgs. (1a), describe cell division: a cell
with given chirality uptakes nutrients from the solvent and
divides into two cells having the same chirality with a rate
k... The second set of equations, Egs. (1b), contain a forward
and a backward reaction. The former, occurring with rate &,
accounts for the death of a cell and its extrusion from the
monolayer (apoptosis), after which the void left by the cell
is replenished with solvent. The backward reaction, occurring
with rate k., describes instead cells entering the monolayer
from an external reservoir and replacing part of the solvent in
the process. Thus, the reaction rate k. encodes the “openness”
of the cell layer, that is, its propensity to recruit cells from
outside a specific region of interest or from another layer
situated above or below. If the rate vanishes, the monolayer
is closed and no cells can enter, while if the rate is positive,
there is a nonvanishing flux of cells into the monolayer. Our
model relies then on three nontrivial reaction rates: k,, (cell
division), k; (cell death), and k. (cell influx). Note also that
all reactions are symmetric for left and right chirality, i.e.,
there is no explicit symmetry breaking. While undoubtedly
simplistic when compared to the actual life cycle of a cell
embedded in a monolayer, these reactions allow us to account
for two fundamental cellular processes, such as division and
apoptosis, while rendering the problem tractable, by guaran-
teeing that the total number of cells and solvent particles, i.e.,
N = Ng + Ni, + Ng, is conserved. Moreover, while originat-
ing in the realm of chiral systems, Egs. (1) could potentially
describe the inheritance of any trait in a community of cells
(or other active particles) that divide, die, and enter and exit
an open environment. Some of our results can be thought of
as generic of cellular flocks, whether chiral or achiral.

Cellular motion is described in terms of the classic
Vicsek model [25] (see also Refs. [27-29] for reviews).
Each cell is characterized by a position r;, a velocity v; =
vo(cos 0;, sin 6;), with vy a constant, and a chirality y;, and
it evolves in time according to the following set of recursion
relations:

rit+1)=ri@)+ v;@), (2a)

Oit + 1) = Arg| Y Cij(t)v;(t) | + (1 —28,,1) Q2+ &(t).

J
(2b)

Here, Cj;(t) is the connectivity matrix whose entries are
Cij(t) = 1if |r;(t) —r;(t)| < R, with R a constant interaction
radius, and C;;(t) = 0 if |r;(t) — r;(z)| > R. The second term
in Eq. (2b) describes a chirality-dependent rotation of a given
particle, i.e., 4+ for right-handed and —2 for left-handed
cells. Finally, &;(t) is a Gaussian-distributed random num-
ber with zero mean, (§;) = 0, and finite standard deviation,

\/(§7) = n. Thus, the first two terms on the right-hand side

of Eq. (2b) align the direction of motion of the ith cell with
those of its neighbors, which in turn can process at the rate

4+ depending on the chirality of the cells. The third term,
on the other hand, introduces a random rotation whose effect
is to disturb such an alignment mechanism, thereby favoring
isotropy across the flock. The relative importance of these
two effects is determined by the constant 1, which, in our
construction, varies in the range 0 < n < 1. If n is sufficiently
small and the density of particles is sufficiently large, the
system described by Eqgs. (2) undergoes a discontinuous phase
transition from a disordered to a flocking state, where all the
agents persistently move in the same direction. We stress that,
unlike cells, the agents comprising our model are pointlike
and are, therefore, not subject to steric repulsion. The latter
is known to produce large density fluctuations at the macro-
scopic scale (see, e.g., Ref. [29]), but it is not expected to
qualitatively change the inheritance of chirality at the scale R,
which, for all practical purposes, can be treated as the average
cell size [30,31].

The reactions in Egs. (1) are implemented via the Gillespie
algorithm [32,33] and coupled with the dynamics described
by Egs. (2) using the following strategy. After each time step
of the Vicsek model, we divide the total system into boxes
of area (2R)? and in each of these boxes we run m steps of
the Gillespie algorithm. After updating the population in each
box, we perform another time step of the Vicsek model. Our
in silico cell monolayer inhabits a square box of size £ with a
periodic boundary and, at t = 0, consists solely of one L and
one R cell, with random positions and orientations. At a given
density p there are then Ng(t = 0) = pL? solvent particles.
Thus, the total number of agents, including both cells and sol-
vent particles, for a given density p is given by N = pL£? + 2,
which, as explained above, is conserved and constant in time
by construction. We fix lengthscales by setting the interaction
radius to unity, R = 1. In these units, we set k; = 10 and
define k,, = k,,/kq and k. = k./ky. In the following, we will
always work with the rescaled rates, but we drop the tilde.
The effect of varying the other model parameters will be
investigated below. In Figs. 1(b) and 1(c) we show a snapshot
of the simulations at different densities and values of Ny /Ng.
While the global alignment in Fig. 1(b) is low, for higher
values of density and lower values of noise almost all cells
have the same orientation, see Fig. 1(c). We color L cells in
red and R cells in blue. Note that the configuration shown
in Fig. 1(c) is considerably closer to homochirality than that
shown in Fig. 1(b), with N > Ng. The question of whether
the density and flocking have an effect on the appearance of
homochirality, or the mean time until this state is reached, will
be discussed below.

III. € =0 CASE

To explore how homochirality is progressively established
across the cellular flocks, we first investigate the case in which
Eqgs. (1) and (2) are not explicitly coupled, thus €2 = 0. In this
case, chirality does not directly affect the motion of individual
cells and the interplay between the evolutionary and spatial
dynamics occurs solely at the level of mixing. The 2 # 0 will
be discussed instead in Sec. IV. As we will see, the system is
guaranteed to reach a homochiral state only if rate k. vanishes.
Therefore, as we are interested in the transition to homochiral-
ity, we afterwards set k. = 0 and instead investigate the time

015427-3



LUDWIG A. HOFFMANN AND LUCA GIOMI

PHYSICAL REVIEW E 111, 015427 (2025)

() (d)

(a) (b)
ke =0 ke = 0.025
0.04
0.4 -
. 0.03 -
3/ <
“oadl B 0.02
0.01 A
0.0 : 0.0 + l
0 0.5 1 0 0.5 1

w

0.08 4 k. =10 —— o(w)
k —0.25
0.4 c
0.06
. 107!
3
0.04 4 Y
0.2
0.02 . -
10° 10%
0.0 T T OO T T T T ﬁI
0 0.5 1 0 25 50 75 100
w ke

FIG. 2. Distributions of global order parameter. (a) Probability distribution P(w) of the order parameter w for vanishing rate k.. The
system is guaranteed to evolve to a homochiral state, thus w = 0 and 1 both occur with a probability of about 50%. The inset represents the
time evolution of the order parameter for 20 independent runs. Each of the columns is an independent run, and time increases in the positive
y-direction. The color code is according to the legend at the top, i.e., @ = 0 (homochirality of right particles) is red, @ = 1 (homochirality of
left particles) is blue, and the racemic state w = 0.5 is white. Every systems is initialized in a state with w = 0.5. The order parameter can
be seen to fluctuate in time, but eventually all systems evolve to one of the two homochiral states. (b) Probability distribution of the order
parameter for k. = 0.025. (c) Distribution for k. = 10. To obtain each of the histograms, we measure the order parameter of the system after a
certain number of time steps, where the system has on average reached a stationary state, and we average over 1000 independent runs. (d) We
plot the standard deviation o (w) of the distribution P(w) as a function of the reaction rate k.. We find that the curve is well approximated by a
power-law decay with exponent —0.25 [see the inset for the log-log plot of standard deviation o (@) over k.]. Simulation parameters: k,, = 5,

p=2,n1=03,v=04m=2.

it takes a given system on average to reach the homochiral
state. We investigate how varying different model parameters
speeds up or slows down the transition time.

A. Global properties of open cell layers

As mentioned in Sec. II, we interpret k. as the rate at which
new cells of either chirality are introduced into the system, but
not as a result of cell division. This can occur, for instance, in
open cell monolayers, when a cell enters a specific region of
interest, thereby replacing (consuming) previously present nu-
trients, or in multilayered structures, when a cell moves from
one layer to another, i.e., both processes cause a nonvanishing
flux of cells into the system. This is assumed to be equally
likely for cells of either chirality, therefore guaranteeing that
LR symmetry is not explicitly broken. Global chirality can be
identified starting from the order parameter

w:Le[O,l], 3)

N + Ng

such that w = 1 if all particles are L, @ = 0 if all particles are
R, and @ = 0.5 in the case of a racemic mixture of L and R.
We now consider the probability distribution of w after a given
number of time steps of Eqs. (2), when the average of many
independent runs has approximately reached a steady state.
To obtain the probability distribution, we record the order
parameter at this time for 10° independent simulations. The
resulting distributions are shown in Fig. 2 for some values
of k.. If k. vanishes, we find a bimodal probability distribu-
tion which takes nonvanishing values only at the homochiral
states w = 0 and 1; see Fig. 2(a). That is, regardless of the
specific rates of division and apoptosis, the monolayer always
converges within a finite time to a homochiral state, which is
equally likely to be L or R. The time evolution of the order
parameter for some of the runs is presented in the inset. As
can be seen, the order parameter heavily fluctuates initially,
but once a system has evolved into a homochiral state, it

remains in this state. This reflects the fact that, for k. = 0,
once N; = 0, new L cells cannot be created from the reactions
Eqgs. (1). The only reactions occurring in the N; = 0 case are
cell division and death of R cells, and similarly for Ny = 0.
Thus, the homochiral states are a fixed point of the reactions
if ke = 0.

If the creation rate is finite, however, the system is not
guaranteed to reach a homochiral state. Indeed, we find that
already for small k. values the probability distribution changes
dramatically, with the distribution being peaked at the racemic
state w = 0.5 [see Fig. 2(b) for k. = 0.025] and the monolayer
never converging to a homochiral state. As k. increases, the
width of the probability distribution decreases rapidly, and
for large k. values the distribution is sharply peaked around
w = 0.5 [see Fig. 2(c) for k. = 10]. To quantify this behavior,
we computed the standard deviation o (w) of the distributions
as a function of the rate k. over four orders of magnitude.
We find that o (w) ~ k- '/4; see Fig. 2(d). Lastly, note that
the distribution is symmetric for all k. values, reflecting that
none of the mechanisms entailed by Eqgs. (1) and (2) explicitly
breaks LR symmetry. The average order parameter is, there-
fore, always (w) = 0.5.

B. Spatial fluctuations

In the previous section, we discussed the probability distri-
bution of the chiral order parameter w across the entire system.
As already evident from the simulations of the snapshots in
Figs. 1(b) and 1(c), neither w nor the cell number density are
uniform across the monolayer, but they vary greatly in space.
Such an inhomogeneity originates from the anisotropy intro-
duced through the alignment interaction, and it is enhanced
by the large density fluctuations that characterize the Vicsek
model.

To investigate how the order parameter varies in space, we
choose k. = 0.025 as an example and consider one scenario
characterized by a relatively large noise and small density
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FIG. 3. Distributions of local order parameter. We measure the
local order parameter wyox, Which is the order parameter in each of
the square boxes of height 27R. Per system there are (£/2R)*> = 100
boxes. To obtain the histograms shown here, we average over 1000
independent runs. If a box is empty, the order parameter is not well
defined and we do not include it in the histogram. (a) The probability
distribution for noise n = 0.3 and density p = 2. (b) The probability
distribution for noise n = 0.1 and density p = 4. Simulation param-
eters: k. = 0.025,k,, =5,v9 =04, m = 2.

(i.e., n =0.3 and p = 2), and another one where noise is
small and density large (i.e., n = 0.1 and p = 4). The latter
is deep in the flocking regime [see the snapshot in Fig. 1(c)],
while for the former the overall alignment of the cells is
weaker [see the snapshot in Fig. 1(b)]. The outcome of this
analysis is summarized by the histograms in Figs. 3 and 4,
which we constructed as follows. At the end of each run,
we measure the order parameter wpox in every box of size
R of the system. We only include the order parameter in
the histogram if this box is not empty, i.e., if it contains at
least one L or R cell, such that the order parameter is well-
defined. The histogram is then obtained from averaging over
all independent runs. We find that this probability distribution
is strongly peaked around wyox = 0 and 1, and that there is
another maximum at wpox = 0.5. The relatively nonmono-
tonic structure of the distribution can be explained by some
values of wpox = 0 being much more likely to occur if they
are rational numbers for ratios of a small number of cells.
This is particularly evident for small densities where only a
few particles are present in some boxes. However, in either
case we find the general trend of the distribution decreasing
away from wpox = 0.5, and then strongly increasing at the
edges. A noticeable difference between the two cases shown
in Fig. 3 is that for higher densities and lower noises, the
relative frequency of the homochiral state is much greater. We
have also considered an intermediate state of low noise and
density (n = 0.1 and p = 2) (not shown), and we did not find
a significant difference from the histogram in Fig. 3(a).

In Figs. 4(a) and 4(b) we present the probability distri-
bution of the field ng, defined as the number of R cells in a
given box. As the distributions of L and R cells are identical,
we only show one of the two. Again, we consider the aver-
age over independent runs at a fixed time where the average
over the whole system has reached a steady state to find the
probability distributions. Note that if all cells were distributed
homogeneously in space, (n) = (2R)?>p. We normalize the
number of cells by this number and write the renormalized
quantities with a tilde, i.e., fig = ng/(n). For k. =0, i.e., if

the system is homochiral, there is about a 50% probability that
its entire population consists of L cells, thus P(7ig = 0) ~ 0.5
[inset in Fig. 4(a)]. Since the probability distribution of 7ig
is trivial in this case, we now consider only the systems that
evolve to R homochirality. The distribution of 7ig is rather
broad; see Fig. 4(a), with a mean of (iig) ~ 0.9 cells per
box with relative fluctuations of o (7ig)/(7ig) ~ 0.62, where
o (7g) is the standard deviation of the distribution. Note that
the distribution peaks at 7ig = 0.75 and decreases for both
smaller and larger values. If we consider the total number of
cells, without regard for their chirality, that is, 7i = 7ig + i,
we find the distribution shown in Fig. 4(b). It is essentially
identical to the one for R cells (after removing the subset of
systems that evolved to L. homochirality), reflecting the fact
that, after a monolayer has reached a homochiral state, cells
are either all R or all L, thus the distribution of the number
densities of the two subpopulations is equal to the distribu-
tion of the entire population. This is markedly different for
nonvanishing k.. Again, we choose k. = 0.025 as an example.
The most likely case now is to encounter a box that contains
no R cells and the distribution is monotonically decreasing
for increasing 7ig; see Fig. 4(c). The average (iig) ~ 0.46 is
about half the previous average value (reflecting that the mean
global order parameter is w = 0.5), but the distribution is
much wider, with the standard deviation almost being equal
to the mean, o (7ig)/(fig) =~ 0.99. Thus, fluctuations are very
large. The distribution for the total number of cells in this
case [Fig. 4(d)] is similar to that for vanishing rate k., with
(1) ~ 0.9 and o (i) /(1) =~ 0.75. However, the distributions of
71 and 7ig (or, equivalently, of 71, ) are now different, as can be
seen by comparing Figs. 4(c) and 4(d). With increasing k., the
distribution preserves its structure, but (7ig) slightly increases
(to (fg) ~ 3.7 for k. = 10), while the relative fluctuations
slightly decrease [see the inset of Fig. 4(c)]. Mean and relative
fluctuations for the total number of cells 7i remains constant.
For k. = 0.025, but higher density and lower noise (p = 4 and
n = 0.1 compared to p = 2 and n = 0.3 as before), the distri-
bution becomes less broad, with (i) &~ 0.84 and (1) ~ 0.61,
but its mean and structure do not change much.

To complete our analysis of spatial fluctuations in model
cellular flocks, we look at the number density correlation
functions, i.e., Cxy = (nx(r)ny(r')), where X and Y are any
combination of R and L. This is shown for two different
k. values, i.e., k. = 0.025 and 10, in Figs. 4(e) and 4(f),
respectively. For k. = 0.025, we find that, whether R or
L, like-chiral cells are more strongly correlated in space
than cells of opposite chirality, even at long distances; see
Fig. 4(e). Furthermore, the correlation functions roughly fol-
low a power-law decay, with the exponent associated with
like-chiral cells being approximatively twice that of cells of
opposite chirality. That is, for k. = 0.025, Crg =~ CLL ~ |r —
r'|7%2, while Cgp ~ |r —r/|7%!!; see the inset in Fig. 4(e).
For higher density and lower noise we find that the behavior
is similar, with the ratio of the exponents again being about
2. For higher k., the two correlation functions instead over-
lap, with Crg ~ Cp ~ |r —r|7%1% and Cgp ~ |r —r/|7016;
see Fig. 4(f). Furthermore, in this case the large lengthscale
behavior of the correlation functions is very similar as well.

In conclusion, our analysis revealed a large inhomogeneity
in both the cell number density and chiral order parameter,
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FIG. 4. Fluctuations and correlations of particles density. (a) We show the probability distribution to find a number of 7ig right-chiral
particles in a box for k. = 0. Here, 7ig is not the total number of particles but the ratio of the number of particles over the average number
of particles one would expect in a box in a homogeneous system (see the main text). Thus for 7ix < 1, the number of particles in a box
is smaller than expected in a homogeneous system, while for 7ig > 1 it is greater. The probability distribution shown here is obtained by
ignoring/subtracting the cases in which the system has evolved to a left-homochiral state. The inset shows the distribution if these cases are
not subtracted. The large probability of finding a box without a right-chiral particle reflects the fact that the system evolves in half of the runs
to a left-homochiral where no right-chiral particles are present. (b) The probability to find a given relative total number of particles in a box.
(c) The same probability distribution as in (a) but for k. = 0.025 and without subtracting the cases of left homochirality. This is because, as was
shown in Fig. 2, the system virtually never evolves to a homochiral state and the systems are always mixed. The inset shows the dependence of
the ratio of standard deviation over mean for the probability distribution P(iig) as a function of the rate k.. The best fit is found to be ~k‘2‘°17.
(d) The same distribution as in (b) but for k. = 0.025. (e) The correlation function between right-chiral particles (RR, blue), left-chiral particles
(LL, orange), and left- and right-chiral particles (RL, green). The x-axis is distances measured in terms of the system size £. The inset shows
the same data in a log-log plot with the best fit of the linear region (in the log-log plot), namely 0.1 < |[r — 7|/ £ < 0.5. (f) The same data but
for k. = 10 now. Simulation parameters: k,, =5, p = 2,171 =0.3,v9 = 0.4, m = 2.

despite chirality not affecting directly cellular motion. That is,
Eqgs. (2), which govern the motion as well as the orientational
interactions among cells, do not distinguish between R and L.
The higher spatial correlation of like-chiral cells, therefore, is
indicative of an emergent feedback mechanism, which effec-
tively enhances the interactions between the like-chiral cells.

C. Time to homochirality

In this section, we investigate how cell motion affects the
convergence to homochirality. To this end, we set k. = 0 to
guarantee that either one of the two available homochiral
states is reached in a finite time t, and we reconstruct the
statistics of 7 for various parameter choices. Specifically, we
again run 10° independent simulations, terminating each run
once homochirality is established.

We begin this analysis with an assessment of the influence
of rotational noise by varying its standard deviation 7 through-
out the unit interval. We find that the mean time (7) required
to reach the homochiral state is significantly larger for lower

noises, quickly decreases, and eventually plateaus as noise is
increased; see Fig. 5(a). Orientational noise thus facilitates
the onset of homochirality by favoring the dispersion of the
cells in the solvent, hence the uptake of nutrients, which is
instrumental to their division. In the limiting case of vanishing
noise, on the other hand, the two cells comprising the initial
configuration of the system move on a straight trajectory,
which quickly becomes depleted of solvent particles, thus
reducing the performance of the reactions in Egs. (1), which
lead to homochirality. This effect, however, is at play only at
low noise, where the dispersion of the cells in the solvent does
not completely disrupt the coherence of the flock. For large n
values, conversely, the monolayer transitions from flocking to
isotropic, and the route to homochirality is equivalent to that
of isolated cells. To clarify this further, we show in Fig. 5(b)
the probability distributions of t for a few different n values.
We find that noise has no visible influence on the mode of the
distribution (i.e., the location of the peak), but it does increase
the length of its tail. In conclusion, flocking slows down
the convergence to homochirality by reducing the mixing of
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FIG. 5. Transition time for different noises and division rates. (a) The average time (t) in which the system evolves for a homochiral
state as a function of noise 7 for different cell division rates k,,. (b) The distribution P(7) of the transition time 7 found from recording 7 for
1000 independent runs for three values of noise. (c) The same distribution but now for three different division rates. (d) The mean (purple),
standard deviation (STD, red), and median (olive green) of the distribution P(7) for different values of noise and for one division rate, k,, = 5.

Simulation parameters: k. =0, p =2, vp = 0.4, m = 2.

the cells, hence the effective biological noise. However, such
an effect can be drastically reduced by introducing a small
amount of orientational noise, which can restore efficient mix-
ing without disrupting the flock.

Next, we consider different values for the cell division
rate k,. Remember that the rate k,, is defined relative to
the death rate such that k, > 1 is required for a growing
cell population (greater division than the death rate) and that
for k, < 1 the cells in a given system will eventually all
die. Surprisingly, the value of the ratio is rather irrelevant,
with the mean length for k,, = 2 and 10 being very similar
even though in the former case the cells are dying at a rate five
times higher; see Fig. 5(a). In particular, different rates show
the same power-law behavior. To illustrate the similarity of the
three different ratios we consider, we present in Fig. 5(c) the
probability distribution for different rate ratios at a fixed noise.
Indeed, they are almost indistinguishable. We find that these
probability distributions are again strongly peaked at small
times, but that there is a long tail with some runs taking almost
five times the average time to reach homochirality. To quantify
the probability distribution of the time to homochirality, we
present the mean, standard deviation, and median for a fixed
rate ratio k,, = 5 for different noises. Note that the results
for k,, = 2 and 10 are almost identical. We find that all three
quantities have a similar magnitude and fall off at a similar
rate, with the standard deviation and mean curves overlapping
while the mean is shifted by a constant factor with respect to
these curves; see Fig. 5(d). All three curves follow the same
power-law behavior ~z~0-16(£0.03),

We continue by looking at the effect of the cell speed vy,
as well as the number m of cycles of the Gillespie algorithm
used to update the stochastic trajectory arising from Eqgs. (1)
in one time step of the Vicsek model. For both parameters we
perform an analysis similar to the one for the noise presented
above. Varying the speed vy, we find that T decreases with
increasing speed; see Fig. 6(a). The decrease is fast at low
speed and slower for large vy values. The higher the speed,
the more peaked the distribution at small times. Again, we find
that the standard deviation and median curves are very similar,
while the mean (7) changes only by a prefactor, so that all
three quantities exhibit the same power-law scaling [inset in
Fig. 6(a)]. A similar behavior is found when varying m. The
higher the number of cycles, the faster is the convergence to

homochirality; see Fig. 6(b). The most significant difference
compared with the speed vy is that the decay is much steeper;
see Fig. 6(b).

Finally, we explore the effect of density o = N/L? by vary-
ing the number of cells and solvent particles while keeping the
magnitude of noise fixed. Together with n, density is a classi-
cal control parameter of the Vicsek model, which determines
whether the system is in the isotropic or flocking phase. Upon
increasing p, we find that the mean time increases slightly
faster than linearly for all 1 values. Away from the smallest
noise value n = 0.01, we do not find a significantly differ-
ent behavior when varying the noise at a fixed density; see
Fig. 6(c). Lastly, we note that when increasing R, the mean
time increases approximately linearly with %, however the
value of the noise becomes less important, with the time being
considerably less sensitive to changes in noise, as expected
since the alignment interaction radius is increased. For these
results, the cell number density is varied by changing the total
number of agents, N, while keeping the size of the system, £,
fixed. Conversely, simultaneously increasing both N and L,
so as to keep p fixed, has the effect of progressively reducing
noise, thus delaying the time to homochirality until entirely
suppressing the transition in the limit N — oo [see Egs. (4)
and (5) in Sec. IV].

IV. @ # 0 CASE

In this section, we briefly discuss the effect of including
a deterministic rotation in the equation of motion, that is,
Q # 0 in Eq. (2b). In this case, the handedness of a given
cell explicitly affects its spatial dynamics. For small €2 values,
this effect does not disrupt the onset of homochirality, and
the same picture presented in Sec. III carries over, at least
qualitatively. However, sufficiently large 2 values, combined
with sufficiently small values of 1, can result in phase separa-
tion, since cells with opposite handednesses now move along
divergent trajectories. Thus rotational motion effectively traps
cells in a circular domain, leading to the demixing of the flock.
An example is shown in the snapshot in Fig. 7.

This phase has previously been studied in the context of
flocking of chiral active particles. These investigations were
motivated by an attempt to understand the flocking behavior
of chiral microswimmers such as sperm cells [34,35], bacteria
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FIG. 6. Transition time for different speed and density. (a) The mean (blue), standard deviation (STD, orange), and median (green) of the
distribution P(7) for different values of the speed vy of the Vicsek model. The inset shows the same data but in a log-log plot, with the red line
indicating the power-law decay of all three quantities ~v,, 0-25(002) (1) The data as in panel (a) but when varying m, the number of steps of
the reactions performed during each step of the Vicsek model. Mean, standard deviation, and median now decay as t ~ m~%4*002)_(¢) The
average time (7) as a function of the density p. Each curve corresponds to a different value of noise 5. Simulation parameters: k. = 0, k,, = 5,
p = 2 [in panels (a) and (b)], vy = 0.4 [in panels (b) and (c)], m = 2 [in panels (a) and (c)].

[36—40], or curved filaments [41,42]. Liebchen and Lewis
[43] and Denk et al. [44] study a collection of self-propelled
particles which all rotate with a fixed frequency 2 and find
the existence of coherently rotating flocks. When considering
systems where instead half the particles have frequency 2
and half have frequency —<2, curved flock trajectories (for
small €2) and homochiral cluster formation (for larger 2) are
observed [45,46]. These findings are in agreement with our
numerical results.

The number of cells used in the simulations reported in
Fig. 7 is unfortunately too small to exclude the possibility
of finite-size effects. To mitigate this limitation and rational-
ize our numerical observations, we introduce here a simple
continuum analog of Egs. (1) and (2). To this end, we first
review the model by Jafarpour et al. and discuss how the

»

FIG. 7. Separated clusters in the presence of chiral motion. Snap-
shot of a system with nonvanishing deterministic rotation, 2 = 0.1
and n = 0.01. The system quickly demixes in two counterrotating
vortices. Most particles are confined to the area indicated by the
dashed lines, and this state is stable for long times.

mechanism presented in Refs. [8,26], used to explain the
onset of molecular homochirality, combined with our findings,
allows one to formulate a possible explanation of the chiral
cellular flows investigated by Duclos e al. [20] and others
[21,22]. To account for spatially extended systems, Jafarpour
et al. coupled Egs. (1) with a diffusive dynamics, obtaining the
following reaction-diffusion equation for the space-dependent
order parameter:

by = — 2 Keha 1\ 4 pyv? +,/2k" (1 — )
= Nk, 0] 2 oV w Na) w)l.

“)
Here, N > 1 is the number of agents—whether it be
molecules, cells, or another—V is the volume of the system,
Dy is a diffusion coefficient, and ¢ is Gaussian white noise of
zero mean and unit variance. Both in Refs. [8,26] and here,
the noise field ¢ is independent of the stochastic processes
affecting the motion of the agents, but it reflects the inherent
noise of the reactions governing the inheritance of chirality or
other traits. Equation (4), in turn, allows a simple explanation
of the origin of homochirality in the limit of vanishing k. If
the system is not spatially extended, diffusion is irrelevant and
Eq. (4) reduces to

dw

. 2ky ] 5
E_‘,Ww( —w)¢, (5)

when k. = 0. This equation has two fixed points, i.e., @ = 0
and 1, representing the two homochiral states. Perhaps more
interestingly, the right-hand side of Eq. (5) is coupled to the
noise field ¢, indicating that noise is indispensable for the
onset of homochirality. As long as k. = 0, diffusion does not
change this picture, as the structure of the fixed points is not
altered by the Laplacian term in Eq. (4).

To include the effect of flocking, we next couple Eq. (4)
with the simplified Toner and Tu equations (see, e.g.,
Ref. [47]), augmented by a local rotation with angular velocity
Q = Qe,, with e, a unit vector in the z-direction [48,49].
To couple to motion as in Egs. (2), € must in turn be an
increasing function of @ and change sign at w = 1/2. At the
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lowest order in w this gives
Q=Q)2w—1), (6)

with € a constant. Thus, taking k. = 0 in Eq. (4) and using
Eq. (6) gives, after standard manipulation,

dhp+V-(pv) =0, (7a)

B +v-V)Q=DVQ+,/Q2—-Q2¢,  (Tb)

@ +Av- Vv = (o« — BvHv+ D,V
+Qxv—0Vp+f, (7¢)

where ¢’ = /2k; /N ¢. Equation (7a) is the continuity equa-
tion for the cell total number, with p the number density, while
Eq. (7b) is simply obtained upon incorporating advection in
Eq. (4). Equation (7c), finally, describes flocking with average
speed v = /a/B. In the spirit of the Toner-Tu theory [50],
one can set @ = ap(p — p.), with p, a critical density and
B = Pop. This guarantees the existence of a continuous phase
transition from an isotropic to a flocking state when p > p,, so
that v = vg+/1 — p./p at steady state, with vy = +/o/Bo. The
terms proportional to ¥Vv and V p represent self-advection
and the ordering effect caused by possible density gradients,
with A and o constants, whereas the aligning interactions char-
acteristic of the Vicsek model are embodied here in a single
diffusive term D;VZv. Finally, the term 2 x v describes the
persistent circular motion introduced by chirality, while f is
again a white Gaussian vectorial noise field, with zero mean
and variance proportional to 12 [49].

We stress that Egs. (7) are not obtained from a systematic
coarse-graining strategy and only aim at capturing qualitative
aspects of the particle model embodied in Eqs. (2). A thorough
analysis of Eq. (7) will be reported in a future work. Here, we
restrict ourselves to elucidating the origin of phase separation
in chiral flocks, as suggested by Fig. 7. First we note that, in
the isotropic phase where v = 0, Egs. (7) reduce to Jafarpour
et al.’s model for the case k. = 0, thus Q2 = +, with each
sign representing a specific handedness. In the flocking phase,
a long-time mean-field solution of Egs. (7) is found by assum-
ing that cells have reached a stationary state, where diffusion
is no longer prominent and the structure of the velocity field is
dictated by the interplay between the effective inertial forces,
originating from the rotatory motion, and compression. In this
regime, Egs. (7a) and (7c) reduce to

Vo-v+pV-v=0, (8a)
A -Vv—Rxv+4+0Vp=0. (8b)

Next, we seek a vortex solution of these equations, cor-
responding to the homochiral state, i.e., Q2 =+, and
v==2vey, with v=1v9/1 —p/p. and ey, = —singe, +
cos ¢ e,. Using this ansatz and assuming the speed v, and
hence the density p, to be a sole function of the distance r
from the center of the vortex, i.e., v = v(r), allows casting
Eqgs. (8) as a single differential equation of the form

1 v \? : v Q
20T, = (—> 1 (———), ©)
Vo r A

(a) (b)

10 10
’UQ/U():O
0.5
2 0 S5
<) U
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FIG. 8. Vortex structure for Q2 # 0. (a) The vortex speed v and
(b) density p vs the distance from the core obtained from a numerical
solutions of Eq. (9) for A = 0 and different values of vq /vy, with
v = af2. For finite vg /vy values, a single homochiral vortex is
mechanically unstable, as indicated by the fact that speed v changes
sign at a distance r/a ~ vy/vg from the core.

where A = )»vé /(o p.). Now, when €y = 0, the solution of
Eq. (9) is given in terms of p and v by

P A

E_1+W|:(;> } (10a)
S (10b)
Vo 1Y

where W = W (x) is the so-called Lambert function, defined
fromthe solution of the transcendental equation We" = x,
and a is the vortex core radius [47]. This corresponds to a
self-spinning vortex, whose speed vanishes at the core, in-
creases monotonically with r/a, and eventually saturates at
large distances, where p/p. & 1 + A log(r/a) for r/a — oo,
so that v — vy (see Fig. 8). This structure, in turn, reflects
the balance between the effective centrifugal force caused by
the self-advection, proportional to Av2 /r, and the centripetal
force, proportional to —o 9, p, arising in response to the accu-
mulation of cells away from the vortex core.

A finite Q2 value interferes with this balance by introducing
an additional effective Coriolis force, proportional to —Quw,
which acts towards establishing a rigid-body rotation, with
v = (2/1)r. However, as is now evident from Eq. (9), the
latter can lead to a steady state only in the limit A — oo, that
is, when the speed v of the rotating flock is unbounded. Any
finite vy value, on the other hand, renders rigid body rotation
unstable when v > vy, that is, at a distance r/a ~ vy/vg from
the vortex core, where vg = a2/ is the inherent velocity
scale introduced by chirality. This mechanism is reflected in
the plots of Fig. 8, corresponding to numerical solutions of
Eq. (9) for different values of the dimensionless velocity ratio
vo/vo and A = 1. Consistent with the previous discussion, for
va/vo = 0 the vortex speed plateaus to vy at a large distance
from the core. For finite vg /vy values, on the other hand, v
changes sign at a distance becoming shorter and shorter as
vg increases, indicating the propensity of a single homochiral
vortex to split into two counter-rotating vortices.
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V. CONCLUSIONS

In this article, we investigated the onset of homochirality
in a population of collectively moving cells by coupling the
Vicsek model with reaction equations modeling cell division,
death, and an influx of cells from the external environment.
This model is based on the crucial assumption that cellular
handedness is conserved during mitosis, so that chirality is
de facto an inheritable trait, which cells can pass to each other
across generations. This assumption, on the other hand, has
never been specifically tested in experiments. The scenario
investigated in this work is, therefore, entirely hypothetical.

In the absence of a direct coupling between cellular hand-
edness and motion, we found that the system is guaranteed to
evolve to a homochiral state from an initially symmetrically
mixed state in finite time only if the system is closed in the
sense that the reaction rate k. vanishes. In the mixed state, we
find large fluctuations of the local order parameter and the par-
ticle density around the mean value. In particular, we find that
cells of the same chirality tend to be correlated more strongly
in space than cells of opposite chirality. In the case in which
the system evolves to a homochiral state, we showed that the
transition time has a fat-tail distribution with the ratio of mean
and standard deviation being of order unity. Introducing a
small amount of noise in the spatial dynamics significantly
decreases the mean transition time. Lastly, we found that
the time decays like a power law with the speed vy of the
Vicsek model and the number of steps m of the reactions.
This picture continues to hold in the presence of a weak direct
coupling between chirality and motion, implemented here as
a deterministic rotation in the direction of a cell’s handedness.
When this effect becomes dominant, however, cells split into
two counter-rotating vortices, and a homochiral state can no
longer be established in a finite time.

While the onset of homochirality in flocking tissues is the
primary focus of this investigation, the case in which the evo-
lutionary and spatial dynamics are not directly coupled could
also serve as a toy model for the inheritance of binary traits in
generic flocking systems. For example, the spatial dynamics
of some types of bacteria have been successfully described us-
ing the Vicsek model (see, e.g., Refs. [28,51-54]). Our model
(or a potentially slightly modified version) can therefore be
used to describe the evolution of chirality, inhomogeneous
phenotypes, motility, or other properties in bacterial colonies.
Furthermore, bacterial colonies often consist of several inter-
acting species, and our model can be applied to the study of
the dynamics of such systems. These examples connect our
model with the recent work of, for example, Refs. [55-58].
In particular, experimental realizations using bacteria colonies
might be more accessible than eukaryotic cell layers.

In the context of population dynamics and genetics, the
question of how traits are inherited from generation to gen-
eration is fundamental. Changes in time can be due to either
natural selection (external pressures resulting in an increased
fitness) or neutral processes, where changes are due to ran-
dom chance. A prominent example of the latter is the change
in the frequency of gene variant known as genetic drift. In
particular, if a population initially contains two variants of a
trait, how does their distribution evolve over time, and does
one of them perhaps even go extinct (loss) such that only
one variant still occurs in a population (fixation) [59-64]?
For large populations, genetic drift is often negligible since
fluctuations are relatively small (law of large numbers). Dur-
ing migration, however, genetic drift can be an important
driver of diversity, for example because only a small subgroup
migrates (founder effect) or because there is a frontier such
that only a small subgroup of the entire population is effec-
tively relevant [61,65-71]. A more closeup investigation of
genetic drift in the presence of nontrivial spatial dynamics
is therefore interesting. The model we introduced above can
be a starting point for a such a study, with homochirality
corresponding to fixation in this case. In a similar vein, ques-
tions about the evolution of social, rather than genetic, traits
could be asked, e.g., in the context of studying the spread of
languages [72].

Another opportunity for future research consists of a gener-
alization of the model to account for nonbinary traits. This can
be readily achieved by assigning each cell a trait 7;, with i =
1,2, ..., Nr, whose kinetics is governed by reactions similar
to those in Egs. (1) and possibly affecting the dynamics of
the cells. Related theoretical results have been reported in the
context of active chiral cells, with the traits corresponding to
different angular velocities, but without the birth-and-death
dynamics characteristic of multicellular systems. Incorporat-
ing the latter into the problem would then naturally lead to
the question of how the initial distribution of traits evolves in
time and whether certain traits become dominant while others
come to be extinct.
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