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We treat privacy in a network of quantum sensors where accessible information is limited to specific
functions of the network parameters, and all other information remains private. We develop an analysis of
privacy in terms of a manipulation of the quantum Fisher information matrix, and find the optimal state
achieving maximum privacy in the estimation of linear combination of the unknown parameters in a
network of quantum sensors. We also discuss the effect of uncorrelated noise on the privacy of the network.
Moreover, we illustrate our results with an example where the goal is to estimate the average value of the
unknown parameters in the network. In this example, we also introduce the notion of quasiprivacy
(ϵ privacy), quantifying how close the state is to being private.
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Simultaneously estimating spatially distributed parame-
ters via a quantum network, or networked quantum sensing,
has numerous applications, including clock synchroniza-
tion [1,2] and phase imaging [3–5]. Alongside experimen-
tal progress [6,7], theoretical studies are advancing
to address practical challenges in the field. A major concern
is the presence of adversaries who may eavesdrop on
quantum channels [8–10]. In this context, the goal is not
only to achieve optimal precision in parameter estimation
but also to ensure security. While security in single-
parameter quantum estimation has been explored [11–14],
networked quantum sensing requires a distinct focus on
security concepts [15,16].
In this Letter, we develop the notion of privacy introduced

in [15] and its relation to standardmultiparamater estimation
tools, notably the quantum Fisher information matrix. The
goal of a private network of quantum sensors is to ensure
optimal precision and that all parties have access only to the
allowed information, and not more—so that it remains
private. To set the stage, let us consider a statistical model
made of nodes, where at each node an unknown parameter
θμ is encoded locally on a global quantum state via a given
quantum channel ΛμðθμÞ. The overall channel is given by

ΛΘ ¼ ⊗
d

μ¼1
ΛμðθμÞ; ð1Þ

where Θ ¼ fθ1; θ2;…; θdg denotes the set of unknown
parameters. After the encoding stage, local measurements
are performed at each node and the results are announced

publicly. The conditional probability distribution of the
outcomes is given by the Born rule pðxjΘÞ ¼ Tr½ρΘΠx�,
in which ρΘ is the quantum state of the probe after the
encoding and fΠxg represents a (factorized) positive oper-
ator-valued measure acting on the global Hilbert space
describing the overall state at all the nodes. After collecting
results x from repeated (local) measurements, one can
estimate the value of unknown parameter θμ by an estimator
function θ̃μðxÞ. The general scheme of the protocol is
depicted as in Fig. 1.
In local estimation theory, the classical Fisher informa-

tion matrix (CFIM) quantifies the amount of information
that may be extracted about the set of unknown parameters
given the state of the probe (also known as the statistical
model) and a specific measurement. The entries of the
CFIM are given by

F μνðΘÞ ¼
Z

dx pðxjΘÞ∂μ lnpðxjΘÞ∂ν lnpðxjΘÞ; ð2Þ

where ∂μ ¼ ð∂=∂θμÞ. In turn, the CFIM determines a lower
bound on the precision of estimation through the so-called
multiparameter Cramér-Rao bound [17–24]

CovðΘÞ ≥ 1

F
; ð3Þ

in which

CovμνðΘÞ ¼
Z

dxpðxjΘÞ�θ̃μðxÞ − θμ
��
θ̃νðxÞ − θν

�
: ð4Þ

The metrological problem that we pose in this Letter is
that of estimating a linear combination of unknown*Contact author: majidhasani2010@gmail.com
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parameters, namely, fðΘÞ. In this setting, privacy was
introduced in [15] and means that each party μ can only
access fðΘÞ and their own parameter θμ and no other
information [for example, they are not allowed to know the
parameters of other parties unless it is equal to fðΘÞ].
However, that work focused on one particular function (the
average of the parameters), and lacked a general way of
addressing different combinations of unknown parameters.
This Letter develops a more detailed account of privacy for
any linear combinations, which also allows a more detailed
analysis of optimality and noise.
Such a privacy quantifier in the network of quantum

sensors should capture the idea that only the information
about fðΘÞ can be extracted from the network of quantum
sensors, but the individual values of each parameter should
remain hidden.
The CFIM actually depends on both the quantum

statistical model ρΘ and the particular set of measurement
operators fΠxg. One can set an upper bound on the CFIM,
by optimizing over all possible measurements (including
joint entangled measurements across the nodes). Such an
upper bound may be derived by introducing the symmetric
logarithmic derivative (SLD) operator for each parameter,
denoted by Lμ [19] as

∂μρΘ ¼ 1

2
fLμ; ρΘg; ð5Þ

where f·g denotes the anticommutator. By substituting
Eq. (5) in Eq. (2) and employing the Cauchy-Schwarz
inequality [25–28], one obtains the following upper bound
on the CFIM F μν ≤ Qμν½Θ�, where the quantum Fisher
information matrix (QFIM) is defined as

Qμν½Θ� ¼
1

2
TrρΘfLμ; Lνg: ð6Þ

The QFIM is a symmetric matrix with real elements, which
quantifies the maximum amount of extractable information
about different unknown parameters over all possible
measurements. In particular, the off-diagonal entries of
the QFIM imply that the different unknown parameters are
statistically correlated to each other. If the different SLDs
do not commute, the different parameters cannot be
estimated independently without the addition of intrinsic
noise of quantum origin.
If the aim is to estimate some function(s) of unknown

parameters, Θ0 ¼ fðΘÞ, the corresponding CFIM and
QFIM may be obtained by reparametrization,

F 0 ¼ BTFB; ð7Þ

Q½Θ0� ¼ BTQ½Θ�B; ð8Þ

where the elements of the transformation matrix B are
defined as Bμν ¼ ∂θμ=∂θ0ν [26,29].
We will now see how the notion of privacy puts

constraints on the form of the QFIM, that will allow us
to state conditions for privacy and lead to its quantification
in our example (the average of local parameters). The
starting point is to first ask that the reparametrized QFIM,
Q½Θ0�, is a diagonal matrix. The diagonal form of the QFIM
implies that there is no statistical correlation between the
different linear functions of the unknown parameters
(different θ0s). Since the QFIM is a real symmetric positive
definite matrix, it can be diagonalized by a similarity
transformation. In the diagonal representation, the eigen-
vectors of Q½Θ� correspond to the coefficients of the linear
combination of the unknown parameters which can be

FIG. 1. Schematic of a network of quantum sensors with d ¼ 6. After preparing and sharing the quantum probe ρ0 by the central node
(C) (preparation stage; in general it will be an entangled state), the μth unknown parameter (θμ) is encoded by local quantum operations
[ΛμðθμÞ], overall described by the factorized channel ΛΘ (sampling stage). In order to estimate the values Θ, the set of parameters, the
quantum probe is locally measured (measurement stage) at each node. Measurement results are sent publicly to the central node.
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estimated in private. In particular, if the diagonal repre-
sentation of Q½Θ� is a one-rank matrix, only a single linear
combination of the unknown parameters can be estimated
privately. This is the requirement we should impose.
Let us assume that, in fact, the aim of the network is to

share an estimate of a (single) linear combination of Θ;
θ01 ¼ wTΘ for some w∈Rd [8,9,30]. In order to ensure
privacy of this shared estimation protocol, the QFIM must
be a one-rank matrix, i.e., Q½Θ� ∝ wwT (or Q½Θ� ¼ awwT,
where a is a real positive constant). This fact implies that
the only extractable information from the network is about
θ01 and the local information about the parameters is kept
private. For a given vector of interest like w, one can

construct W ¼ wwT . In order to get the privacy, the QFIM
of the statistical model should be proportional to W.
Since the concept of privacy in quantum networks is

highly sensitive to the relationships between the different
entries of the QFIM, the definition of privacy can be linked
to the continuity relations among them [31–34]. Without
any specific assumption about the initial states and how
quantum states acquire their parameter dependence, we
may arrive at the following theorem, which is the gener-
alization of results in [33] for the entries of the QFIM.
Theorem—Given the generic statistical model ρΘ, the

following inequality holds true:

��Qμν½Θ� −Qμ0ν0 ½Θ�
�� ≤ 1

2
ξ
�k∂μρΘ − ∂μ0ρΘk1ðk∂νρΘk1 þ k∂ν0ρΘk1Þ þ k∂νρΘ − ∂ν0ρΘk1ðk∂μρΘk1 þ k∂μ0ρΘk1Þ

�
; ð9Þ

where

ξ ¼ 1

λminðρ̃Þ
�
1þ 32

λminðρ̃Þ
�
; ð10Þ

and ρ̃ is the (invertible) restriction of ρ onto the support
subspace of the quantum state.
Proof—See the Supplemental Material for the complete

proof [35]. ▪
Such a continuity relation not only can help to find a

proper initial state which provides privacy in the networked
sensing but also paves the way to define quasiprivacy or ϵ
privacy, which will be considered later in this Letter.
In order to gain better insight about the applications of

the above results, let us consider the case where
wT ¼ ðω1;ω2;…;ωdÞ, ∀ ωμ ∈R. This yields

W ¼ wwT

¼

0
BBBBB@

ω1ω1 ω1ω2 � � � ω1ωd

ω2ω1 ω2ω2 � � � ω2ωd

..

. ..
. . .

. ..
.

ωdω1 ωdω2 � � � ωdωd

1
CCCCCA
: ð11Þ

To obtain the privacy in the estimation of θ01 ¼ wTΘ, the
QFIM should be proportional to W:

Qμν½Θ� ∝ Wμν ⇒ Qμν½Θ� ∝ ωμων; ∀ μ; ν: ð12Þ

For the purpose of finding proper quantum states where
their corresponding QFIMs satisfy Eq. (12), the continuity
relation, Eq. (9), can be recast as follows:

��Qμμ½Θ� −Qμν½Θ�
�� ≤ ξ0k∂μρΘ − ∂νρΘk1; ∀ μ ≠ ν; ð13Þ

where ξ0 includes all other terms that are not pertinent to the
rest of the derivation. Substituting Eq. (12) in Eq. (13) gives

jωμ − ωνj ≤ ζk∂μρΘ − ∂νρΘk1; ∀ μ ≠ ν; ð14Þ

in which ζ ¼ ξ0=jωμj. Since the proportionality is crucial
here, without loss of generality, Eq. (14) can be rephrased
as follows:

k∂μρΘ − ∂νρΘk1 ∝ jωμ − ωνj; ∀ μ ≠ ν: ð15Þ

Hence, any set of quantum states which satisfies the above
condition [Eq. (15)] can estimate θ01 in private, irrespective
of how it acquires the parameter dependence. Among the
quantum states in this private set, the one that maximizes
the single diagonal entry of the QFIM is the optimal state
for precision. In the following, we specify our Letter to the
case where the unknown parameters are encoded via local
unitary evolutions, UðθμÞ ¼ e−iHμðθμÞ onto a shared quan-
tum state. Here HμðθμÞ is a Hermitian operator that acts
nontrivially on the Hilbert space of each quantum sensor.
Hence, the sampling operator can be presented by

UΘ ¼ ⊗
d

μ¼1
UðθμÞ ¼ e−i

P
μ
Hμ ; ð16Þ

where Hμ ¼ 1 ⊗ 1 ⊗ � � � ⊗ ½HμðθμÞ�⊗ωμ ⊗ � � � ⊗ 1 ⊗ 1.
The first derivative of the density matrix in the case of
unitary evolution is derived as follows:

∂μρΘ ¼ −i½H0
μ; ρΘ�; ð17Þ

where ½·� denotes the commutator and H0
μ ¼ ∂μHμ. From

whence the condition (15) can be cast in this form:
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k½H0
μ −H0

ν; ρΘ�k1 ∝ jωμ − ωνj; ∀ μ ≠ ν: ð18Þ

For the unitary evolutions where their associated generators
satisfy

½∂μHμðθμÞ; HμðθμÞ� ¼ 0; ∀ μ; ð19Þ

Eq. (18) can be simplified more. Using the fact that ρΘ ¼
UΘρ0U

†
Θ and ½A;BCD�¼ ½A;B�CDþBC½A;D�þB½A;C�D

for any arbitrary operators A, B, C, and D, Eq. (18) yields

k½H0
μ −H0

ν; ρ0�k1 ∝ jωμ − ωνj; ∀ μ ≠ ν: ð20Þ

In order to estimate the linear combination of spatially
distributed unknown parameters [which are encoded via
local unitary operations where their generators satisfy
Eq. (19)], the initial state of quantum probe should satisfy
Eq. (20). Let us consider the case of multiplicative
unknown parameter in which HμðθμÞ ¼ θμH [which sat-
isfies Eq. (19)]. Ergo,

H0
μ¼1⊗1⊗ � ��⊗ ½ωμH⊗ ðθμHÞ⊗ωμ−1�⊗ �� �⊗1⊗1:

ð21Þ

In this case any pure states in the form of

jΨi ¼
Xn
i¼1

αi ⊗
d

μ¼1
jλii⊗ωμ ; ð22Þ

where αi ∈C and fjλiig are the eigenvectors of n-dimen-
sional H, satisfy condition (20) and provide privacy in the
estimation of the linear combination with integer coeffi-
cients in the networked sensing.
Noise model—We now analyze the effect of noise.

Generally, noise can affect any metrological schemes after
or before the sampling stage. Let us consider the case where
the quantum probe satisfies condition (15) and the noise
affects the probe state after the sampling stage,

ρ0Θ ¼ ΛΘðρ0Þ ¼
Xqd
k¼1

AkUðΘÞρ0UðΘÞ†A†
k ¼

X
k

AkρΘA
†
k;

ð23Þ

where Ak ¼ Ak1 ⊗ Ak2 ⊗ � � � ⊗ Akd in which k ¼
fk1; k2;…; kdg. In this notation ki ∈ f1; 2;…; qg denotes
the kith Kraus operator of the noise model which satisfiesPq

k¼1 A
†
kAk ¼ 1 and acts on the ith node of the network

[39]. Without loss of generality, one can consider the case
where the Kraus operators do not depend on the set of
unknown parameters. Hence,

k∂μρ0Θ − ∂νρ
0
Θk1 ¼

				
Xqd
k¼1

Akð∂μρΘ − ∂νρΘÞA†
k

				
1

∝ jωμ − ωνj; ∀ μ ≠ ν; ð24Þ

which shows that the probe state remains private.
We explore privacy in cases where noise affects the

quantum probe between preparation and sampling stages.
Suppose the quantum states that ensure privacy in the ideal
case are shared across the network. If all Kraus operators of
the noise model commute with the sampling operators, the
parameter of interest can still be privately estimated, as the
noise model and sampling operators are separable, allowing
relation (24) to hold.
Example—We now consider the specific case in which

the aim is to estimate the average value of the spatially
distributed unknown parameters which are encoded via
local evolutions, Eq. (1). In this case our parameter of
interest is θ̄ ¼ wTΘ, where wT ¼ 1=dð1; 1;…; 1Þ. Hence,
jωμ − ωνj ¼ 0, ∀ μ; ν. This implies that all entries of the
QFIM should be equal to each other. From Eq. (15), if all
first derivatives of the probe state (after the sampling stage)
with respect to the different unknown parameters are equal,
then all entries of the QFIM are equal to each other. Thus,
any quantum states which satisfy the following condition,

∂μρΘ ¼ ∂νρΘ: ∀ μ; ν; ð25Þ

can be used in the private estimation of the average value
irrespective of how they acquire the parameter dependence.
Once more, we can consider the case of unitary evolution
with multiplicative unknown parameter where H ¼ σz=2
Therefore, the unitary evolution reads

UðΘÞ ¼ ⊗
d

μ¼1
ðj0ih0j þ eiθμ j1ih1jÞ: ð26Þ

From whence, the privacy condition in Eq. (25) can be
written as

½H0
μ −H0

ν; ρΘ� ¼ 0; ∀ μ; ν: ð27Þ

Now, by substituting the eigenvectors of σz in Eq. (22), one
can find the private states in the form of

jΦi ¼ αj0i⊗d þ βj1i⊗d ≡ jGHZ-likei; ð28Þ

where α2 þ β2 ¼ 1 (can be named as GHZ-like state) or
mixed states like

γ0jΦihΦj þ
X
i

γijϕiihϕij; ð29Þ

where jϕii ¼ jl1; l2;…; ldi, lj ∈ f0; 1g, and P
i¼0 γi ¼ 1.

Such states satisfy condition (27) and get the privacy in the
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estimation of the average value. Among these private states,
Eqs. (28) and (29), the GHZ state with α ¼ β ¼ 1=

ffiffiffi
2

p
is

the only one that maximizes the single diagonal entry of the
QFIM. Practically speaking, one can distribute a GHZ
state, jψ0i ¼ ð1= ffiffiffi

2
p Þðj0i⊗d þ j1i⊗dÞ, throughout the net-

work. Ergo, we can ask each node to perform the measure-
ment in the X basis and announce the result in public [1],
Fig. 1. Regarding the result of the measurement, the
conditional probability distribution can be derived as
pð�jΘÞ ¼ 2−d½1� cosðdθ̄Þ�, where � represents the result
of the parity measurement. One can easily calculate the
entries of the CFIM [Eq. (2)] for the given conditional
probability distribution and show that it is equal to the
QFIM:

F μνðΘÞ ¼ QμνðΘÞ ¼ 1; for μ ≠ ν: ð30Þ

This form illustrates that the information about all unknown
parameters is distributed equally throughout the network
and that the GHZ state is the appropriate initial state to
estimate the average value in the network of quantum
sensors privately. Since any quantum state in the form of
ϱ ¼ jΨihΨj is a private state (in the estimation of average
function), we can define ϵ privacy in the sense of the
closeness of an arbitrary state to the ideal state which
provides the (perfect) privacy, e.g., ϱ. Given σ, the ϵ privacy
may be quantified:

ϵ ¼ k½H0
μ −H0

ν; σ�k1 ¼ k½H0
μ −H0

ν; σ − ϱ�k1 ≤ 4kH0
μk∞kσ − ϱk1 ≤ 4kHk∞kσ − ϱk1 ≤ 8kHk∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðσ; ϱÞ

q
; ð31Þ

where Fðσ; ϱÞ denotes the fidelity of two quantum states
Fðσ; ϱÞ ¼ Tr½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϱ
p

σ
ffiffiffi
ϱ

pp �. The last inequality follows from

1 − Fðσ; ϱÞ ≤ 1
2
kσ − ϱk1 ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðσ; ϱÞ

p
. Equation (31)

shows that the privacy of the network is a continuous
function of fidelity, which in turn implies the robustness of
our protocol against noise. In other words, some form of
privacy may be achieved also for suboptimal states in a
neighborhood of the optimal one. Note that when the
sampling operator is given by Eq. (26), the corresponding
dephasing and erasure noise Kraus operators [35] commute
with the encoding unitary UðθμÞ. On the other hand, if the
Kraus operators of the noise model do not commute with
the sampling operators, the presence of noise before the
sampling stage may affect privacy. For example, the Kraus
operators of the depolarizing and amplitude damping
noises do not commute with the unitary evolution. Never-
theless, privacy of the initial GHZ-like state still holds, as
we prove in the Supplemental Material [35].
Conclusion—We have given a quantitative definition of

privacy in the estimation of linear combination of unknown
parameters that are spatially distributed in a network, in the
sense that specific information can be extracted from the
network of quantum sensors. Regarding the function (linear
combination of unknown parameters) of interest to be
estimated and the continuity relation between different
entries of the QFIM, one can find the proper set of initial
states which estimate the function privately. Any quantum
state in the private set that maximizes the relevant entries of
the QFIM is optimal for precision. The effect of uncorre-
lated noise in the private estimation has been studied.
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