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Introduction

Plants form a crucial but often undervalued component of our anthropocentric
society. Essentially, they are the basis for all organic material on earth by providing
all the components for life e.g. oxygen, building materials and food The crop plants
used for these purposes have been optimized over centuries to meet our needs.
The increasing strain on crops to deliver nutrients and materials for the world
population has led to modern breeding techniques which use molecular techniques
to speed up the process. Among these are genetic techniques, which however,
have been restricted for many commercial markets. The common method for plant
genome modifications, apart from chemical mutagenesis, is utilizing the natural
gene editing capabilities of the phytopathogen Agrobacterium tumefaciens
(Agrobacterium). For crop plants it would be useful to introduce genes that
increase production or help develop new pest or stress resilient varieties. To
comply with the negative public opinion against genome modification (GM) in
plants, especially in the European Union, efforts have been made to find novel
ways that are considered non-GM and can be used to introduce traits in crop plants
to enhance the agri- and horticultural sustainability and productivity. In this
chapter we will review these methods with a focus on the use of Agrobacterium
and enhancing plant regeneration.

Agrobacterium: a tumor inducing plant pathogen

More than a century, the soil dwelling Agrobacterium was identified as the
causative agent of the so-called crown gall tumors on host plants (Smith &
Townsend, 1907). Initially, Agrobacterium was isolated from grapevine and the first
recorded observation of tumor formation on plants dates back to 1679 (Malpighi,
1675). Almost 300 years later it was discovered that Agrobacterium induces tumor
formation by transferring a copy of a DNA fragment (Chilton et al., 1977), termed
the transfer or T-DNA and situated on the tumor inducing plasmid (Ti plasmid), to
plant cells, where it integrates into the chromosomal DNA of these plant cells. The
T-DNA carries genes for the biosynthesis of the plant hormones auxin and
cytokinin, causing plant cells to divide and form a tumor, but also genes that cause
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the tumor cells to produce amino acid-derived compounds (opines) that are used
as carbon and nitrogen source by the bacterium. The plant transformation process
is facilitated by Virulence (Vir) proteins encoded by the vir region located on the Ti
plasmid. These Vir proteins help to generate the single stranded T-DNA copy (T-
strand) and form the type IV secretion system (T4SS) pilus through which the T-
strand together with some other Vir proteins are introduced into the plant cell. The
translocated Vir proteins protect the T-strand and help to guide it towards the
plant cell nucleus where it is inserted into chromosomal DNA of the plant host
(Nester, 2015).

The activation of the Agrobacterium virulence machinery and of the
production of Virulence proteins is energy costly. In the nutrient poor environment
where Agrobacterium resides it has evolved a strategy to only activate vir gene
expression when a suitable host plant is detected. The first step of Agrobacterium
pathogenesis in a natural environment begins with the detection of wounded plant
cells (Guo et al., 2017). The damaged plant cells release a variety of compounds
(Fig. 1), among which phenolic compounds and sugars, that trigger the expression
of the vir genes. The acidity, temperature and low phosphate in the plant cell
environment all enhance the vir gene induction (Ashby et al., 1988; Baron, Domke,
Beinhofer, Hapfelmeier, et al., 2001; Melchers et al., 1989; Parke et al., 1987;
Subramoni et al., 2014; D. V. Thompson et al., 1988). Additionally, Agrobacterium
uses quorum-sensing and quorum quenching to react on environmental
parameters, such as the amount of Agrobacterium cells present on a plant cell,
thereby limiting unwanted activation of the nutrient costly virulence machinery
(Dessaux & Faure, 2018). The Agrobacterium vir genes are located in several vir
operons, designated virA, B, C, D, E, F, G and H. Each vir gene encodes for a protein
with a specific function related to pathogenesis in the host plant. The phenolic
compound acetosyringone, originally found to be exuded by wounded tobacco
cells, is generally used as the main inducer of vir gene expression in laboratory
settings (Stachel et al., 1985). It has the strongest effect on virulence induction and
it triggers the VirA/VirG bacterial two component regulatory system by activating
the transmembrane sensor histidine kinase VirA (Capra & Laub, 2012). In turn VirA

phosphorylates the VirG transcription factor, which promotes vir gene expression



by binding to the vir gene promoters. The induction signal is strongest not only in
the presence of acetosyringone but when all inducing conditions of the plant cell
environment are present (Wise & Binns, 2016). To be able to perceive signals for
virulence induction, the virA and virG operons are constitutively expressed at a low
level. In addition, there are chromosomally-located vir (chv) genes, that are
independently regulated from the VirA/VirG regulatory system. For example, the
chromosomally encoded periplasmic sugar binding VirE protein (ChvE) involved in
chemotaxis and uptake of sugars (Huang et al., 1990) directly interacts with the
periplasmic domain of VirA to enhance vir gene induction (Shimoda et al., 1990).
The expression of ChvE is induced in response to glucose in a concentration-
dependent manner (Hu et al., 2013), but glucose does not turn on vir expression in
the absence of acetosyringone (Wise & Binns, 2016). This all is part of the bacterial
strategy to limit unwanted virulence induction without a suitable plant host for

infection and thus reducing the risk of resource depletion.

T-DNA transfer and Vir protein translocation via the type 4 secretion system

The generation of the T-strand and its transfer and integration into the host
plant genome is facilitated by a diverse set of Vir proteins (Gelvin, 2010; McCullen
& Binns, 2006; Nester, 2015). As soon as the virulence machinery is activated, DNA
transfer starts with the recognition of two 25 bp imperfect direct repeats that flank
the T-region and are accordingly named the left border (LB) and right border (RB)
repeat. The size of the T-DNA depends on the Agrobacterium strain and can range
from 10 to 30 kilobasepairs (kbp). A relaxosome consisting of the VirD1 helicase
and the VirD2 endonuclease binds to the border sequence where VirD2 introduces
a nick in the bottom strand. During this process it stays covalently attached to the
5’ end of the nick (Pansegrau et al., 1993; Ward & Barnes, 1988). The single
stranded T-strand is subsequently released from the Ti plasmid by DNA
polymerase-mediated repair of the nicks assisted by the VirD1 helicase. The
covalent binding of VirD2 to the 5’end of the T-strand (T-complex) is essential for
virulence, as the protein protects the DNA from nucleases and guides the transfer
to the plant cell nucleus through its nuclear localization signals (Van Kregten et al.,
2009). The process is enhanced by VirC1 and VirC2 by binding to the overdrive
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sequence close to the RB of the T-DNA sequence (Toro et al., 1989), but it also
recruits, together with three VirD2-Binding Proteins (VBP 1-3) (Guo, et al., 2007;
Guo, et al., 2007), the T-DNA complex to the T4SS (Atmakuri et al., 2007). In the
plant cell, the T-strand is bound by the single stranded DNA binding Virulence
protein VirE2, which similar to VirD2 provides protection from nucleases and
guidance to the plant cell nucleus through nuclear localization signals (Citovsky et
al., 1989) (Fig. 1) (Ballas & Citovsky, 1997; Van Kregten et al., 2009). The process of
T-DNA transfer and incorporation is commonly known as plant transformation with
T-DNA and is termed Agrobacterium-mediated transformation (AMT)

The T4SS through which Agrobacterium transports the T-DNA spans the
bacterial inner membrane, the periplasm and the outer membrane. It is unique
among other bacterial delivery systems, as it is able to transfer DNA inter- and
intra-species (Christie, 2019). It shows similarities to the bacterial conjugation
system and is based on a conserved set of proteins found in most T4SS (Schroder &
Lanka, 2005). Sometimes called the VirB/D4 secretion system, it is composed of
twelve Vir proteins, VirB1 — 11 and VirD4, each with a specific function and
expressed from the virB and virD operons located on the Ti plasmid (Christie et al.,
2005). It differs from other bacterial secretion systems, such as the type three
secretion system (T3SS), in its ability to transfer both DNA and Vir proteins to plant
cells. The T4SS can be ordered in four subassemblies; the substrate receptor or
type four coupling protein (T4CP), the inner membrane translocase (IMC), the core
complex or outer membrane complex (OMC) and the extracellular pilus (Christie et
al., 2014; Costa et al., 2021). The actual translocation channel is formed by the
T4CP, IMC and OMC subassemblies and all four subassemblies together form the
T4SS. The T4CP VirD4 situated at the base of the translocation channel recognizes
the substrates, such as the T-complex, allowing them to enter the T4SS. Together
with VirB4 and VirB11 from the IMC these three ATPases provide energy to transfer
the substrate through the barrel like OMC, which consists of the outer membrane-
associated VirB7 and VirB9 lipoproteins and the cell-envelope-spanning subunit
VirB10. The extracellular pilus is used to cross the barriers of the plant cell wall and
plasma membrane. It is composed of the pillin subunit VirB2 and pilus-tip adhesin
VirB5 (Christie et al., 2014). It is suggested that substrates, apart from direct
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transfer from the bacterial cytosol through the T4SS into the cytosol of the plant
cell, enter as well from the periplasm. They could first enter the periplasm via a
part of the T4SS, the IMC, and then enter the secretion chamber of the core
complex (Low et al., 2014). Apart from T-DNA, Agrobacterium translocates
virulence proteins VirD2, VirD5, VirE2, VirE3 and VirF to the plant cell (Lacroix et al.,
2005; Vergunst et al., 2000; Vergunst et al., 2005). It was shown that
Agrobacterium delivers VirE2 by presumably manipulating clathrin-mediated
endocytosis (X. Li & Pan, 2017) and VirE3 is imported by the karyopherin a-
dependent pathway. It mimics VirE2- interacting protein (VIP1), which is required
for VirE2 nuclear import of plants (Tzfira et al., 2001; Lacroix et al., 2005; Li et al.,
2020). Each translocated protein plays a different role in either DNA transfer,
integration or tumor formation. VirD5 increases the transformation frequency, but
it also elevates spindle instability which might allow more time for DNA repair after
T-DNA integration before cytokinesis, but also causes enhanced chromosome mis-
segregation (Zhang & Hooykaas, 2019) leading to DNA damage and mutation
(Zzhang et al., 2022). The F-box protein VirF is a subunit of a class of E3 ubiquitin
ligases and part of the ubiquitin-proteasome system (Schrammeijer et al., 2001)
which is often manipulated by pathogens to facilitate infection. The function of VirF
is not yet fully understood, however it increases virulence in plants in a host
specific way (Regensburg-Tuink & Hooykaas, 1993) and in Arabidopsis
Agrobacterium induces expression of endogenous AtVIP1-Binding F-box protein
(VBF), which substitutes VirF (Zaltsman et al., 2010). In this thesis the term AMT is
used for T-DNA transfer, whereas Agrobacterium-mediated protein translocation
(AMPT) is used to specifically indicate the transfer of proteins (of interest) by

Agrobacterium to plant host cells.
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1.Vir gene activation 2.T-DNA and Vir protein translocation 3.T-DNA integration and expression
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Figure 1. Schematic simplified representation of AMT and AMPT to plant cells. (1) Vir gene
induction; The wounded plant cell secretes compounds, which induce the Agrobacterium
virulence by activation of the VirA/VirG signaling cascade. Virulence proteins are produced,
the T4SS is formed and the T-strand is generated. (2) T-DNA and protein translocation: The
virulence proteins and the ssDNA are guided through the T4SS inside the plant cell. (3) T-
DNA integration and expression: The T-DNA is protected against degradation inside the
plant cell and once it reaches the plant cell nucleus it is incorporated into the plant genome
from where the T-DNA genes are expression.

Application of Agrobacterium-mediated transformation (AMT) in agriculture

and biotechnology

Since the discovery of the potential of Agrobacterium to introduce genes into the
genome of host plants, various efforts have been made to develop it for both
scientific as well as agricultural and biotechnological use. Initially, methods of direct
DNA transformation were developed in parallel, such as protoplast transformation
by chemical or electroshock treatment or bombardment of plant tissues with DNA-
coated particles. With the increasing ease to generate desired T-DNA constructs
using newly developed binary vectors (Hoekema et al., 1983) and the discoveries
on the more optimal mechanism of DNA transfer compared to direct DNA
transformation (Jorgensen et al., 1987), the Agrobacterium vector system has

become the preferred method for both stable plant genetic modification and
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transient gene expression studies in plant cells. In fact, following the discovery that
not only plants but also yeast and other fungal cells are hosts for Agrobacterium-
mediated transformation (Bundock et al., 1995; De Groot et al., 1998), the
Agrobacterium vector system has become a common method for the genetic
modification for these organisms as well.

In general, stable transformation is the most common method. The transient
expression system using Agrobacterium has been used mainly for research,
however it has also been used in biotechnology. A variation of techniques have
been developed for transient expression (Chincinska, 2021) and the most popular is
the infiltration of tobacco leaves with a syringe on the abaxial side (Yang et al.,
2000). Vacuum infiltration is a popular alternative for plant species that are more
difficult to infiltrate with syringe infiltration e.g. Arabidopsis (Leuzinger et al.,
2013). The production of recombinant proteins in N. benthamiana via transient
expression is performed on industrial scale (Spiegel et al., 2022). Although only
feasible for high profit biopharmaceutical compounds, it has the potential to be
scaled up via large scale leaf infiltration (Chen et al., 2014) or by using cell
suspension bioreactors (O’Neill et al., 2008). The production of recombinant
proteins by transient expression is generally in controlled production facilities,
however also field production applications have been reported (Hahn et al., 2015).
These open field production methods have raised great concern about the spread
of engineered Agrobacterium strains and the resulting GM plants in the

environment (Bauer-Panskus et al., 2020).

Recalcitrance to AMT: political issues

The most common use of Agrobacterium is stable genetic modification. The use is
however restricted in many parts of the world, including the European Union (EU),
which has many restrictions for the use of genetically modified organisms (GMOs).
Since 1990 the EU Council directive 90/220/EEC is in force on the deliberate release
of GMOs into the environment, amended by directive 2001/18/EC and it is focused
on the introduction of heterologous genes (Eriksson, 2018). It covers established
genomic techniques (EGT) which are techniques such as random mutagenesis using

physical or chemical mutagens or the transfer of genetic material e.g. using AMT
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(Mullins et al., 2022). In the case of all these techniques the genome is modified
randomly e.g. for AMT the exogenous sequence integrates randomly into the host
genome. In contrast, new genomic techniques (NGTs) that have been developed in
the recent decades are designed to achieve targeted mutagenesis. A well-known
example is CRISPR-Cas9, by which the plant genome can be altered at a predefined
location (Doudna & Charpentier, 2014). The current directive requires an
exhaustive list of assessments for a GM crop to be cultured in the field, including an
environmental risk assessment and post-release monitoring (Ramsay 2022). This
legislative burden has prevented the introduction and field cultivation of GM crops
in the EU, where only one crop (the insect resistant maize Mon 810 expressing a
Bacillus thuringiensis protein) has been approved for cultivation, and this approval
is currently waiting its second renewal.

The European Union is discussing a draft regulation on new genomic techniques
(NGTs) through which GM plants are obtained by targeted mutagenesis, cis-genesis
or intra-genesis. The incorporation of genetic material from sexually incompatible
organisms, transgenesis, is out of the scope of the current negotiations, even
though it has been shown that horizontal gene transfer in plants is very common in
nature (Aubin et al., 2021). Criteria are being developed for the risk assessment of
crops generated by these NGTs (Mullins et al., 2022), and various options for NGTs
in the EU are being investigated (Eriksson et al., 2018; Purnhagen et al., 2023).
Recently, GM plants created by NGTs were proposed to fall in to two categories,
where plants and products in category 1 would be exempt from the requirements
of GMO legislation. The outcome is still insecure and the procedures are of
considerable length (Garcia-Alonso et al., 2022). To circumvent the GM discussion
and legislation, new methods resulting in genetically improved crops that are likely
be considered non-GM are being explored, such as Agrobacterium plant genome

editing using non integrating viral vectors (Gong et al., 2021).

Recalcitrance to AMT: plant pathogen interaction issues

Plant transformation is an important technique for research and industry;
however, plants have developed defense strategies to repel various pathogen

attacks. Agrobacterium tries to manipulate the plant defense response via its
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virulence effector proteins (Tiwari et al., 2022). In turn, a plant’s resistance to a
pathogen is determined by its genetic traits and of the pathogen. Plants contain
resistance (R) genes that are involved in the recognition of pathogen derived
molecules. The pathogen in its turn contains matching avirulence (avr) genes,
encoding effector proteins that overcome the effect of the plant’s defense
response (White et al., 2000). The plant and pathogen often reside in the same
biotope and the gene-for-gene interaction can co-evolve between host-pathogen.
Three scenarios can occur for a plant-pathogen interaction. In a compatible
interaction the pathogen will infect the plant by successfully suppressing the host
defense responses. In an incompatible interaction, the pathogen is either incapable
of infecting the plant and cause disease symptoms, or its initial infection leads to a
strong defense response (Yuan et al., 2021).

A plant pathogen can be recognized through its pathogen-associated
molecular patterns (PAMPs) by surface pattern recognition receptors (PRRs), which
induces PAMP-triggered immunity (PTI), or its effectors can be recognized by
cytosolic nucleotide-binding/leucine-rich-repeat (NLR) receptors and induce
effector-triggered immunity (ETI) (Bigeard et al., 2015; Cui et al., 2015). The plant
hormone salicylic acid (SA) plays an important role in both PTI and ETI. Upon
pathogen attack, its biosynthesis is upregulated, which in Arabidopsis leads to the
activation of many SA-inducible genes through the nuclear import of the SA
receptor NON-EXPRESSOR OF PR GENES 1 (NPR1) (Backer et al., 2019). Effectors of
the pathogenic Pseudomonas syringae were shown to suppress defence responses
by directly interacting with NPR1. Another P. syringae effector, AvrPto, was shown
to block pattern triggered immunity (PTI) by binding PRRs, including FLS2 and EFR
(Xiang et al., 2008). In non-susceptible hosts, the Pto kinase competes with PRRs
for binding AvrPto and activates ETI (Chen et al., 2017). Both PTl and ETI are basal
local defense mechanisms leading to diverse physiological outputs for ETI often
conferring resistance by inducing a hypersensitive response (HR), which is a rapid
defence response that can be induced by phytopathogenic bacteria and prevents
the spread of the infection by localized cell death on the site of infection (Dixon et
al., 1994; Yuan et al., 2021). The resistance upon infection spreads throughout the

plant and is called systemic acquired resistance (SAR). This resistance is able to
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remain active for prolonged periods of time and provides resistance to a variety of
pathogens, including fungi, viruses and bacteria by the expression of pathogenesis-
related (PR) genes (Ryals et al., 1996). The SAR response is triggered upon the
formation of HR or any other disease symptom, and induces the accumulation of
SA. Once activated it can repel pathogens that normally cause disease.

The SA response is an important factor determining recalcitrance to AMT.
Nicotiana benthamiana plants treated with SA showed decreased susceptibility to
Agrobacterium infection. (Anand et al., 2008). Moreover, exogenous application of
SA to Agrobacterium cultures decreased the bacterial growth, virulence, and
attachment to plant cells (Y. Peng et al., 2021; Verberne et al., 2003; Vlot et al.,
2021). Ectopic expression of the bacterial NahG gene, encoding salicylate
hydroxylase which metabolizes SA, in Arabidopsis prevented pathogen-induced
accumulation of SA and prevented the subsequent SAR defense responses thereby
increasing the transformation efficiency (Lawton et al., 1995). Interestingly,
Agrobacterium also uses SA to regulate its own virulence. After perception of plant-
derived sucrose it is able to release SA from the conjugated storage form SA-
glucose (Zeier, 2021) to rapidly down-regulate vir gene expression and thereby
preserve energy (Wang et al., 2019a). In conclusion, one has to keep in mind that
Agrobacterium is a plant pathogen that triggers defense responses in plant tissues
and that mitigating these defense responses might help to overcome recalcitrance
to AMT or AMPT.

Plant regeneration and propagation: what can we learn from zygotic

embryogenesis?

The majority of crops are flowering plants, which reproduce sexually via
zygotic embryogenesis, where two haploid sexual cells, the gametes, fuse to form a
diploid zygote, which then develops into an embryo. Cell division and cell
differentiation change the pluripotent embryonic cells into mature somatic tissue.
The gametes can be derived from the same hermaphrodite parent, or from
different unisexual parents (Schmidt et al., 2015). Further development and growth
of the root and shoots are maintained by stem cell zones e.g. in the shoot apical

meristem (SAM) and the root apical meristem (RAM). Positioned at the tip of the
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shoot, the SAM maintains pluripotent stem cells and its daughter cells differentiate
into organs. The SAM and RAM remain active throughout the life span of a plant.
Early in Arabidopsis embryogenesis, the apical and basal patterning is
formed mediated by WUSCHEL RELATED HOMEOBOX2 (WOX2) and WOX8
respectively (Breuninger et al., 2008). WOX2 is involved in the initiation of shoot
stem cells by promoting the expression of HD-ZIP Ill transcription factors, which
creates a balance of cytokinin and auxin (Zhang et al., 2017). Auxin in turn controls
pattern formation during embryogenesis with the hormone minima and maxima
concentrations acting as developmental signal (Friml et al., 2003; Verma et al.,
2021). The stem cell inducing transcription factors WUSCHEL (WUS) and SHOOT
MERISTEMLESS (STM) are required for SAM establishment and maintenance
(Barton, 2010). WUS is able to move from cell to cell and part of the regulation is
restricting movement by the formation of dimers (Daum et al., 2014). Stem cells
express the CLAVATA3 (CLV3) peptide and its expression restricts WUS through
signaling via the CLV1 and CLV2 receptor-like kinases (Brand et al., 2002). CLV1/2/3
are required to restrict the number of stem cells accumulating in both shoot and
floral meristems and are found in the plasma membrane (CLV1 and 2) and in the
apoplastic space (CLV3). During early phases of embryogenesis, the transcription
factor BABY BOOM (BBM) is expressed in developing embryos and seeds (Boutilier
et al., 2002). It encodes an AINTEGUMENTA-LIKE (AIL) APETALA2/ethylene-
responsive element binding factor (AP2/ERF), which in Arabidopsis is part of an
eight-member clade, which next to BBM comprises AINTEGUMENTA (ANT),
AINTEGUMENTA-LIKE 1 (AIL1), PLETHORA1 (PLT1), PLT2, AIL6/PLT3,
EMBRYOMAKER (EMK)/AIL5/PLT5 and PLT7. The early embryo arrest of the bbm
plt2 double mutant shows the redundant and important role of these two
transcription factors in zygotic embryogenesis (Horstman et al., 2015).
Interestingly, BBM transcriptionally regulates LEAFY COTYLEDON 1 and 2 (LEC1 and
LEC2), as well as FUSCA3 (FUS3), ABI45 INSENSITIVE3 (ABI3) and AT-HOOK MOTIF
NUCLEAR LOCALIZED 15 (AHL15), all transcription factors playing crucial roles

during zygotic embryogenesis (Horstman et al., 2017; Karami et al., 2021).

18



Plant reproduction via somatic embryogenesis

Apart from sexual reproduction via zygotic embryogenesis, some plants such as
Kalanchoé daigremontiana have the ability to clonally reproduce by regenerating
an entire new plant from somatic cells (Garcés et al., 2007). For other plants
various laborious techniques are needed for clonal propagation by tissue culture
using techniques such as stem cuttings or tissue culture. The tissue culture
techniques can be divided into two methods: organogenesis or somatic
embryogenesis (SE). For organogenesis plant cells or tissues are commonly cultured
on media containing a specific ratio of the plant hormones cytokinin and auxin to
induce shoots or roots. Generally, regeneration by organogenesis is a three-step
procedure starting with the induction of cell division followed by shoot formation
and rooting of these shoots. In some plants somatic cells can be induced in vitro to
develop into to embryos using various stress treatments, plant hormones or
ectopic expression of transcription factors involved in embryogenesis (Horstman et
al., 2017). In Brassica napus and Arabidopsis, the ectopic expression of BBM leads
to the formation of somatic embryos on the SAM and cotyledons of germinating
seedings (Boutilier et al., 2002). The overexpression of WUS in Arabidopsis causes
similar vegetative to embryonal conversions (Zuo et al., 2002). Apart from WUS and
BBM, a number of other genes have been identified in Arabidopsis that when
ectopically expressed promote somatic embryo development, among which the
BBM target genes LEC1, LEC2 and AHL15 (Lotan et al., 1998; Stone et al., 2001;
Karami et al., 2021).

Interestingly, these SE-inducing genes have also been used to overcome
regeneration recalcitrance during transformation. The combined ectopic
expression of the maize homologs of BBM and WUS resulted in enhanced
regeneration of transgenic calli in a recalcitrant hybrid maize genotype. Moreover,
the same method also stimulated transformation in sorghum (Sorghum bicolor)
immature embryos, sugarcane (Saccharum officinarum) callus, and rice (Oryza
sativa ssp indica) callus tissue (Lowe et al., 2016). However, regeneration proved
difficult and it was shown that ectopic expression of BBM and WUS prevented
further development of the transgenic calli. To circumvent constant expression,

excision of a JoxP site-flanked WUS and BBM containing fragment by Cre
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recombinase has been used, where the Cre gene was expressed under the drought
inducible promoter of the maize rab17 gene (Lowe et al., 2016). Other gene
induction systems often rely on a hormone triggered response, which uses the
regulatory mechanism of steroid hormone receptors not naturally present in
plants. These systems use the receptor domain of the rat glucocorticoid receptor
(GR) and the ligand dexamethasone (DEX), a strong synthetic glucocorticoid
(Aoyama & Chua, 1997), thus preventing constitutive expression of a heterologous

gene in the host plant.

Agrobacterium-mediated translocation of heterologous proteins as solution

to recalcitrance to AMT

Alternative to genetic transformation approaches the AMPT system of
Agrobacterium can be used to transiently introduce proteins of interest inside the
plant cell without modifying the host genome. Previously AMPT has been used to
introduce proteins of interest in plant cells (Vergunst et al., 2000; Khan, 2017;
Schmitz et al., 2020). The proteins of interest could be transcription factors, such as
BBM or WUS, that following AMPT would promote regeneration of genetically
transformed cells of regeneration recalcitrant crops (Anjanappa & Gruissem, 2021).
The WUS transcription factor was shown to be required for effective regeneration
of Arabidopsis mesophyll protoplasts (Xu et al., 2021) and, as presented above, the
combined effect of ectopic BBM and WUS expression resulted in enhanced
regeneration in recalcitrant monocot species (Lowe et al., 2016). Difficulties in
approval and public opinion have halted the widespread use of Agrobacterium
outside of academic settings. The use of AMPT instead of AMT, thereby
circumventing genomic alteration, is currently not yet regarded as genetic

modification.

Transient protein expression and visualization

In order to test the use of AMPT for improved regeneration it is important
that the occurrence and efficiency of protein translocation can be monitored.

Translocation of virulence proteins by Agrobacterium was demonstrated for the
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first time by fusing the site-specific Cre recombinase to VirE2 and VirF, and using
this in combination with a transgenic Arabidopsis line containing a loxP-flanked
region interrupting the expression of a neomycin phosphotransferase (nptl/) gene.
Successful translocation led to excision of a disruptive region between the
promoter and open reading frame, allowing to detect and monitor the efficiency of
AMPT by selecting on kanamycin. It was shown that a positively charged C-terminal
signal peptide on the virulence proteins is required for T4SS-mediated protein
translocation. Fusing this part to the C-terminus of proteins of interest resulted in
their translocation (Vergunst et al., 2000). A disadvantage of the antibiotic
resistance selection system was that it did not allow for direct visualization of the
process. As fluorescent proteins such as GFP appeared not be translocated by the
Agrobacterium T4SS, probably due to their tight folding, the split-GFP system was
adopted to visualize AMPT. For the split-GFP system, the coding region of the GFP
gene has been split in two parts, a larger fragment coding for amino acids 1-214
comprising B-strands 1 to 10 (GFP1.10, the detector) and a smaller fragment coding
for amino acids 214-230 comprising B-strand 11 (GFP1;, the tag). Both GFP parts are
non-fluorescent, however when brought together they can reassemble into a
functional GFP (Ghosh et al., 2000a). In plants visualization of fluorescent
molecules is more challenging because of many autofluorescent components. To
increase the fluorescence intensity, the GFP molecule has been previously
improved for use in plants (Pang et al., 1996). The split-GFP molecule has been
optimized to prevent misfolding when the GFP1; tag is expressed as fusion protein.
This so called superfolder GFP (sfGFP) has increased solubility which increases the
fluorescence and extraction efficiency in living cells. Originally visualizing the
transfer of fusion proteins tagged with GFP;; via the Agrobacterium T4SS using the
split-GFP system relied on a host plant expressing GFP1.10 (Sakalis et al., 2014a),
which required a priori transformed plants and limited the capabilities to visualize
protein transfer in any genotype. However, the split-GFP system has been adapted
to transfer simultaneously both GFP1.10 on T-DNA and GFP1; as fusion protein via
the T4SS into the plant host cell (Khan, 2017). The general approach is an
Agrobacterium strain carrying a binary vector containing a plasmid for T-DNA

transfer and a second plasmid from which the fusion protein to be translocated to
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the host plant cell is expressed. With this system, AMPT can be visualized in any
plant species or genotype without the need for a priori generation of plant lines
expressing the detector protein (Fig. 2).

1. Vir gene activation 2.T-DNA and Vir protein translocation 3. T-DNA expression and fluorescence
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Figure 2. Schematic simplified representation of the general method for construct design
and detection of AMPT to plant cells. (1) Vir gene induction: schematic representation of
the two Agrobacterium constructs necessary for the split-GFP method previously
developed; a protein translocation plasmid and a T-DNA transfer plasmid. Both plasmids
have been engineered to be modified to suit the needs for further experiments to
translocate any protein of interest. (2) T-DNA and protein translocation: both T-DNA and
GFPii-labelled AVirF fusion protein are introduced in the plant cell through the T4SS pilus
and guided to the nucleus. (3) T-DNA transient expression and GFP reconstitution, T-DNA
expresses GFP1.10, which is targeted to the nucleus by its NLS sequence. Upon co-
translocation of the GFP1i-labelled AVirF fusion protein reconstitution of GFP results in a
nuclear green fluorescent signal.

Furthermore, the sensitivity of GFP fluorescence visualization was
increased by addition of a NLS signal to GFP1.10 (Fig. 3A and B), resulting in
accumulation of the fluorescent signal into the nucleus (Khan, 2017). More
recently, the possibility to do multi-color imaging was added by the development of
split systems for other fluorescent proteins, such as superfolder Cherry2
(sfCherry2), in animal cells. Importantly, the components of split-sfGFP and split-

sfCherry2 are not interchangeable and GFP or Cherry can only be reconstituted to a
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fluorescent molecule if both unique parts of the protein are present (Fig. 3C and D).
This now allows to visualize the simultaneous translocation of different proteins to
host cells (Kamiyama et al., 2016a; Park et al., 2017).
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Figure 3. A schematic representation of the split-GFP and split-Cherry system and the effect
of a NLS sequence. (A) The split GFP system used to detect AMPT: translocation of the
fusion protein consisting of the GFP11-tag, the protein of interest (POI) and the translocation
signal (AVirF) to a plant cell expressing the nuclear localized (NLS) GFP1.10 reporter protein
results in reconstitution of a functional green fluorescent protein (B) Comparison of
detection of AMPT with a cytosolic or nuclear localized GFP1-10reporter protein. (C, D) There
is no cross contamination between the split-GFP and the split-Cherry system. GFP1.10 can
only form a functional green fluorescent protein with GFP11 (C) and Cherryi-10can only
reconstitute to a functional red fluorescent protein with Cherryi1 (D).

Thesis outline

The knowledge gained from AMT on plant development and physiology is
tremendous. The stable and transient overexpression or inducible gene constructs
gave insight in the biological function of many genetic elements in plants. The
demonstration that Agrobacterium can also translocate virulence proteins and the
recent advances in AMPT opened the possibilities for novel experimental insights.
Moreover, growing knowledge in the interaction between pathogens and plant

hosts enables finetuning of the transformation efficiency. In this thesis the
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application of AMPT on wild type plants was studied to address transformation
recalcitrance by AMPT of proteins which could improve regeneration or reduce the
defense response against Agrobacterium.

Previous experiments using the split-GFP system to detect AMPT showed
that the fluorescent signal was relatively weak compared to the GFP signal
following AMT, leading to an underestimation of the AMPT frequency (Khan, 2017).
In Chapter 2 the split-GFP system was codon-optimized for expression in plants
(GFP1-10) or Agrobacterium (GFP1;-fusion protein) resulting in enhanced efficiency
and fluorescence intensity. Furthermore, the use of a novel fluorophore variant,
sfCherry2 (Cherry), was tested in plants and the split variant was tested for the
double split-fluorophore system (ds-FP) that would allow to detect the
simultaneous translocation of two proteins of interest. Whereas the Cherry protein
appeared to be a suitable reporter in plant cells, the split Cherry did not work in
plant cells. We therefore incorporated the Cherry fluorophore on a T-DNA
alongside the split-GFP system and could successfully show that this allowed co-
localization of the T-DNA derived Cherry signal with the AMPT derived split-GFP
signal, termed the colocalization split-GFP (split-GFP<),

In Chapter 3 a workflow was established, combining confocal microscopy
with multi-well plate reader-based quantification of fluorescent signal, to analyze
GFP fluorescence reporting vir gene induction in Agrobacterium or to quantify
simultaneous GFP and Cherry fluorescence reporting respectively AMPT and AMT
in plant cells. The use of the multi-well plate reader enabled a higher throughput
quantification of AMPT and AMT and time lapse analysis of vir gene induction and
the data were verified by confocal microscopy. The plate reader method showed
that the virE promoter resulted in much higher expression in Agrobacterium
compared to the virF or virD promoter, indicating that it is the preferred promoter
for expression of proteins to be translocated from Agrobacterium to plant cells. The
method also allowed for optimization of the Agrobacterium induction conditions
and resulted in increased AMT of Arabidopsis suspension cells.

In Chapter 4 we used the optimized constructs and conditions from
Chapter 2 and Chapter 3 to investigate whether AMPT of heterologous proteins

could be used to modulate plant physiology and ultimately to remove bottle necks
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causing transformation recalcitrance. Previously, it was shown that expression of
the P. syringae pv. Tomato DC3000 effector AvrPto or the bacterial salicylic acid
hydroxylase NahG in Arabidopsis leads to higher transient expression following
AMT. AMPT of AvrPto did not induce a hypersensitive response (HR) in N.
benthamiana leaves, but instead it did enhance the efficiency of both AMT and
AMPT. AMPT of NahG enhanced the efficiency of both AMT and AMPT to even a
higher level. In addition, we could show that AMPT of AHL15 delayed senescence in
N. benthamiana leaves and was able to enhance shoot regeneration on tobacco
leaf discs. A slight effect on translocation was observed of N- and C-terminal tags
on the fusion protein, although overall in all cases a clear physiological effect was
observed in the experiments.

In conclusion, with the research described in this thesis we show that the
AMPT system is capable of introducing biologically active heterologous proteins to
plant cells and that this can be used to increase transformation efficiency by
removing the main bottle necks of transformation recalcitrance. Moreover, the
tools developed to visualize and quantify AMT and AMPT will be useful to optimize
vir gene induction and Agrobacterium-plant cell cocultivation conditions in a high
throughput manner.
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