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ABSTRACT: Protein−ligand interaction prediction with proteo-
chemometric (PCM) models can provide valuable insights during
early drug discovery and chemical safety assessment. These models
have benefitted from the large amount of data available in bioactivity
databases. However, an issue that is often overlooked when using
this data is the broad diversity in the biological assays present. The
effect of small molecules on a protein can be measured in various
ways, and this can influence the outcome. Yet, currently there is a
lack of standardized, specific assay metadata, while this could help
increase understanding of the origin of data points, improve data curation, and lead to better models that are both more accurate and
make predictions specific to the readout of interest. To make use of the existing information on the biological context, we set out to
create and validate multiple assay descriptors and test their use in protein−ligand interaction models. Dimensionality reduction of
embedded free text assay descriptions from ChEMBL showed that text embeddings capture relevant features. Additionally, clustering
of these embedded descriptions groups the assays in a way that enriches purity, matches manually categorized assays, and yields
sensible topic describing words. From ligand-protein combinations with multiple measurements, it becomes apparent that the
deviation between different measurements in general is higher than the deviation of measurements within assay categories, with a
logarithmic mean absolute deviation of 0.83 and 0.66, respectively. Incorporating this biological context into the PCM models in the
form of BioBERT-based embeddings improved the average R2 from 0.67 to 0.69 across different data sets and splits. Conversely,
using simpler methods such as bag-of-words (in which frequently used words are used as features) no improvement was seen
(average R2 0.66). Overall, models that integrate assay embeddings yield more accurate predictions and give the user the option to
train their model on all available data yet still predict specific end points. In addition, the novel method for assay categorization
described here facilitates data curation and provides a useful overview of the biological context of studied targets. In conclusion,
biological assay context is important for bioactivity modeling and provides a means to easily get insight into this context.

■ INTRODUCTION
A pivotal step in the drug discovery process is quantifying the
interaction of a compound with a protein target of interest. For
this purpose, many different biological assays have been
developed that quantify these interactions in systems ranging
from (radio)ligand binding assays on cell membranes to
functional downstream effects in cellular systems. To capture
structure activity relationships in the data gathered by these
assays, protein−ligand interaction models have proven to be
useful.1 These in silico methods allow for the identification of
compounds with a desired predicted interaction profile and
they can increase the efficiency of the drug discovery process.
This can be used to enrich for compounds with a high potency
on a drug target or with minimal interactions that cause side-
effects.

Previous research into protein−ligand interaction prediction
has established that grouping data from multiple protein
targets improves performance.2 These proteochemometric
(PCM) models make use of similarities and dissimilarities

between proteins in addition to the compound structures used
in the target-specific quantitative structure−activity relation-
ship (QSAR) models. This way, the addition of target
information increases both model performance and types of
applications (for example to extend modeling to several protein
targets simultaneously or the inclusion of genetic variants).

An important aspect of creating a data set for modeling is
data curation. Bioactivity data sets, such as ChEMBL, make
large sets of data from different sources available.3 For
modeling, it is often assumed that data from different biological
assays can be combined. However, this has been criticized and
previous research has shown that reported half-maximal

Received: March 19, 2025
Revised: May 20, 2025
Accepted: June 12, 2025
Published: June 30, 2025

Articlepubs.acs.org/jcim

© 2025 The Authors. Published by
American Chemical Society

7013
https://doi.org/10.1021/acs.jcim.5c00603
J. Chem. Inf. Model. 2025, 65, 7013−7023

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

84
.8

2.
11

4.
25

3 
on

 N
ov

em
be

r 
4,

 2
02

5 
at

 1
1:

31
:0

9 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Linde+Schoenmaker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Enzo+G.+Sastrokarijo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Laura+H.+Heitman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joost+B.+Beltman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Willem+Jespers"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gerard+J.P.+van+Westen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gerard+J.P.+van+Westen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jcim.5c00603&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00603?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00603?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00603?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00603?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.5c00603?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jcisd8/65/13?ref=pdf
https://pubs.acs.org/toc/jcisd8/65/13?ref=pdf
https://pubs.acs.org/toc/jcisd8/65/13?ref=pdf
https://pubs.acs.org/toc/jcisd8/65/13?ref=pdf
pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jcim.5c00603?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jcim?ref=pdf
https://pubs.acs.org/jcim?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


response concentrations (IC50 or EC50) values, inhibitory
binding constants (Ki) and dissociation constants (KD) are
noisy.4−6 Next to experimental error, this could in part be
caused by assay heterogeneity; experiments vary in their
format, target modifications, detection method, and end point,
which can all affect the readout.7,8

Recently, multiple studies have been published on ways of
combining data from different sources while preserving the
assay context. One method to achieve this is by adding generic
assay descriptors as an additional model input. The addition of
a fingerprint denoting whether the assay is a binding or
functional assay, i.e. measures a direct interaction or indirect
effects, can lead to improvements in predictive performance.9

Another approach that has been explored is multitask
modeling, where the model simultaneously makes predictions
for various tasks, for example the assay categories, and derives
both shared and task-specific parameters. This has been
applied on broad assay categorizations such as the distinction
between binding and functional experiments,11 different
readouts,12 and on the detailed level of individual publica-
tions/records.9,13 Taken together, the recent interest in
biological assay context has led to an improved predictive
performance of models, and has hugely benefitted from the
metadata available in ChEMBL. However, for the current
metadata in ChEMBL, categorization is either very broad or
unique to the specific publication that data originated from.
Currently, assay-specific descriptions in ChEMBL are available
and provide information on the aim, target and method of the
experiment. However, they are present in the form of free text
and can therefore not easily be used to group similar assays.

Recent advances in natural language processing (NLP) allow
the use of these descriptions for assay categorization. NLP
models are well suited for the purpose of processing
unstandardized text. The language model BERT, for example,

has substantially improved performance within the field of
language understanding tasks.14 More recently, large language
model-based text embeddings have shown state-of-the art
performance.15 With such pretrained NLP models, meaningful
embeddings − numeric vectors representing text − can be
created from the assay descriptions annotated in ChEMBL.
Learned embeddings based on these descriptions improve
predictive quality, in the context of zero- and few-shot
learning.10 We propose that NLP-based embeddings can also
be used in traditional machine learning protocols like QSAR
and PCM models. Additionally, with an NLP-based clustering
pipeline, BERTopic, assay description-based embeddings can
be grouped into topics − with different levels of specificity−
allowing for a new way of describing and grouping related
biological assays.16 Using this form of neural topic modeling,
we propose a novel method that leverages biological context in
an easily understandable way and show how it can be
employed for bioactivity modeling. In cases where the
experimental design influences the bioactivity outcome, the
inclusion of assay context might improve performance by
removing unexplained variance or by predicting the effect at
different readout levels.

In this study, we set out to create biological assay
descriptions suitable for data curation and modeling purposes.
To this end, we examined various methods for incorporating
biological assay context, analyzed the difference between
biological assays, and evaluated the use of assay context for
PCM models on representative sets of target groups. The
findings contribute to the incorporation of biological assay
context into the bioactivity model and adaptation of this
context by the modeler.

Figure 1. Workflow of the steps taken to create the data set, prepare model inputs, and evaluate the results.
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■ MATERIAL & METHODS
Data Set Creation and Preparation. The data and code

discussed in this study are available on https://github.com/
CDDLeiden/AssayCTX. For clarity an overview of the
workflow is presented in Figure 1. To obtain a data set with
bioactivity values and annotated assay information, ChEMBL
(version 34) was used. Assays were described by the following
properties: description, assay_type, assay_tax_id, bao_format,
confidence_score, curated_by, pref_name, standard_type.3

Only entries from binding (B) and functional (F) assays
were kept.17 This resulted in 1,277,311 unique assay entries
with 1,142,320 unique descriptions. Inspection of the assay
description lengths showed that description length is right-
skewed and most descriptions have fewer than 500 characters
(Figure SI 1). Descriptions beyond this length often contain
whole experimental protocols and therefore deviate from most
other descriptions. Therefore, we removed assay descriptions
when they contained more than 500 characters, a step which
filtered out 2441 unique assay descriptions.

To evaluate the performance of the assay clustering method
(described in section “Assay Clustering” below), we annotated
biological assays from a small subset of the data. For this
purpose, all assays (2476) from the 4 human adenosine
receptors (ARs) were collected: AA1R (P30542), AA2AR
(P29274), AA2BR (P29275), and AA3R (P0DMS8). This
subset was deemed small enough for manual annotation and at
the same time representative for binding and functional assays
recorded in ChEMBL as it includes a variety of different
experiments. We labeled the meta target and the detection
technology of these assays based on the assay description using
subcategorizations previously described in literature.18,19 To
speed up manual categorization, keywords relating to radio-
ligands, fluorescence methods and functional responses were
used for classification. The resulting label frequencies are
shown in Table SI 1 and indicate that out of the 13 meta
targets the most frequent ones include ligand displacement and
cyclic adenosine monophosphate (cAMP) assays, whereas
other labels occur less frequently.

To investigate the effect of using biological assay context for
bioactivity modeling, we created several representative
bioactivity data sets using the Papyrus data set (version
05.7).20 Specifically, we collected data for targets from the class
A G protein-coupled receptors (GPCRs), protein tyrosine
kinases, and solute carriers (SLCs). Only the subset describing
ChEMBL data was kept as this can be linked to annotated
assay information therein. Low quality data points, i.e.
censored bioactivity values and binary activity classes, were
removed using the “low quality” data label present in the
Papyrus set, as well as compounds with a molecular weight
over 1000 Da and data points from publications describing
allosteric modulators.21 As a final filtering step, only targets
with more than 100 unique compounds were kept. As visible
from the number of targets, compounds and individual data
points, the final data sets of the GPCRs and protein tyrosine
kinases are larger than for the SLCs (Table SI 2). The
preprocessed data is available on https://zenodo.org/records/
15302295.

Assay Descriptors. Two different types of assay
descriptors were evaluated: fingerprints and embedded assay
descriptions. Fingerprints were created based on metadata
available in ChEMBL and bag-of-words feature extraction. For
the fingerprints based on metadata, properties were included if

100% of the property was defined and the property contained
40 or less unique categories (Table SI 3). This was the case for
the following properties: relationship type, standard type, src
id, confidence score, BioAssay Ontology (BAO) format,
curated by, and assay type. For the bag-of-words featurization
of the assay descriptions, stemming was applied and English
stop words (from scikit learn) and assay specific stop words
(see Figure SI 2) were removed. The maximum descriptor
length was capped at 1024 bits. On average 7.5 bits (each
representing a word) were present per description.

The ChEMBL assay descriptions were also encoded using
BioBERT v1.2, a language representation model pretrained on
biomedical texts, and gte-Qwen2-1.5B-instruct, a general text
embedding model with a high ranking on the Massive Text
Embedding Benchmark.15,22,23 In both cases assay descriptions
of up to 500 characters in length were used. The resulting
embeddings consisted of 768 bits and 1536 bits for BioBERT
and gte-Qwen2-1.5B-instruct, respectively.

Assay Clustering. To group similar assays, we performed
neural topic modeling based on the assay descriptions available
in ChEMBL. To create a generalizable description grouping,
clustering with BERTopic was applied to all unique assay
descriptions in ChEMBL (with <500 characters).16 First, assay
embeddings were created using either BioBERT or gte-
Qwen2-1.5B-instruct as described previously. These embed-
dings were then reduced to 5 dimensions using Uniform
Manifold Approximation and Projection (UMAP) as is the
default setting in BERTopic.24 Apart from unsupervised
dimensionality reduction, we also tested semisupervised
UMAP. To this end, the categorical labels, assay type, BAO
format and standard type from ChEMBL were used. The
number of neighbors used for manifold approximation was set
to 15 and the minimum distance between embedded points to
0.1. These embeddings were then clustered using Hierarchical
Density-Based Spatial Clustering of Applications with Noise
(HDBSCAN).25 In order to vary the level of detail captured by
the topics, HDBSCAN was fitted with 16, 32, 68, and 126 as
minimum cluster size. Using BERTopic, the word importance
within a cluster was assigned with class-based term frequency−
inverse document frequency (c-TF-IDF). Descriptions that
were not assigned to a cluster after training, hereafter referred
to as outliers, were assigned to the most similar cluster based
on c-TF-IDF. Because this is a stochastic clustering approach
results are given as the mean ± standard deviation of three
repeats with different seeds. We have made Jupyter Notebook-
based tutorials to show how to obtain these clusters for any
ChEMBL data set of interest and how to get information on
the underlying pharmacological experiments using a pretrained
large-language model (https://github.com/CDDLeiden/
AssayCTX/blob/main/assayctx/descriptors/).

Cluster Evaluation. To evaluate the clustering results,
multiple metrics were assessed. First, the clustering results were
compared to manually annotated labels for a subset of the data.
To quantify the similarity between annotated labels and
generated clusters, we used both the homogeneity, i.e., the
label agreement of records within the same cluster, and the
completeness, i.e., the extent to which all occurrences of a
particular experiment are assigned to the same cluster. Second,
the similarity of records in the same cluster was assessed based
on the normalized purity of the properties assay type, BAO
format and standard type. For this purpose the normalized
purity was calculated as follows:
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=

normalized purity
purity prevalence of the most frequently occurring label

1 prevalence of the most frequently occurring label

This means that the normalized purity of a cluster is one if it
only contains objects of the same label, and zero if no label is
enriched compared to the whole data set. Third, the weighted
average of the mean absolute deviations for protein-compound
measurements grouped by assay category was compared to the
equivalent deviation inthe whole data set.

PCM Modeling. To compare the different methods of
adding assay context for bioactivity modeling, assay-aware
PCM models were trained and evaluated for different protein
families. For the control condition, a single task PCM model
trained on all agglomerated data without assay context was
used. The assay descriptors were evaluated using a single task
model with the additional input of the assay descriptor. We
evaluated assay-based transfer learning using PCM multitask
models, with the tasks corresponding to assay clusters.

For data preparation and modeling, the python package
QSPRpred was used.26 For all models, the same data sets were

used. Bioactivity was expressed in pChEMBL values, i.e., the
negative logarithmic of either the scaled half-maximal response
concentration, potency, or affinity values. For compound-
protein pairs with multiple measurements, either the median
pChEMBL value of all measurements was used (control), or
the median pChEMBL value of the assays from the same
category (multitask) or with the same description (assay
descriptor). Molecules were standardized and then described
using extended-connectivity fingerprints with a radius of 3
bonds and were folded to 2048 bits (ECFP6). The protein
sequences (whole protein, rather than only the binding site)
for each protein family were aligned separately via multiple
sequence alignment using Clustal Omega (final alignment is
available here: https://github.com/CDDLeiden/AssayCTX/
tree/main/qspr/data) and described using Hellberg’s z-
scales.27−29 For the assay descriptor condition, we included
additional assay descriptions (as described in the section
“Assay Descriptors”). Finally, high correlation (>0.8) and low
variance (<0.05) filters were applied to the resulting
descriptors from the training set to keep the most informative
features. We compared two splitting methods for training set

Figure 2. BioBERT embeddings of assay descriptors visualized by UMAP for the categories: assay type, tax id, confidence score, standard type, and
BAO format. Data points are colored by the top 5 most prevalent labels; points belonging to other categories are shown in gray. The axes are
cropped to exclude highly diverging embeddings.
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(90%) and test set (10%) creation, based on either a random
split or a scaffold split (at the molecule level).

We performed both single and multitask modeling with
regression gradient boosting models constructed using
pyboost, using the mean squared error (MSE) as the loss
function.30 For multitask modeling, where the output often
consisted of a sparce matrix, missing values were masked.
During cross validation, we applied early stopping based on
(masked) R-squared (R2) values on a holdout set. The models
were created using a maximum number of 1000 trees (lower in
case early stopping was triggered during cross validation), a
learning rate of 0.1, a minimum of 50 data points per leaf, a
maximum depth of 8, and a subsample of 80% per tree. Feature
importance was recorded based on the gain in RMSE decrease
during training.

Validation. For model validation, the R2, root-mean-square
error (RMSE) and Kendall’s Tau on the test set are reported as
the mean ± standard deviation of three repeats based on
different seeds used for the data split. For the multitask models,
these values were calculated for each task independently and
the weighted average based on the number of data points per
task is reported.

■ RESULTS
Natural Language Processed Assay Descriptions

Reflect Assay Characteristics. The present study is aimed
at incorporating biological assay context into bioactivity
modeling. In order to make the assay descriptions that are
available in ChEMBL machine interpretable, we compared a
bag-of-words and an NLP-based embeddings. In the first
method, assay descriptions were converted to a bag-of-words
based fingerprint (Figure SI 3). In the second method, the
assay descriptions were embedded by the pretrained language
models BioBERT and gte-Qwen2−1.5B-instruct. Subse-
quently, dimensionality reduction was applied to the resulting
embeddings. Coloring the data points based on properties
from the ChEMBL metadata shows that BioBERT yields
informative representations: for several relevant properties a
separation is visible among the plotted records (Figure 2) also
when the data points are shown as bivariate density estimates
(Figure SI 4). The separation is most pronounced for the
division between binding and functional assays and for the
BAO format. The BAO format shows that within the
functional assays there is a clear distinction between the
records involving living organisms (orange, organism-based)
and cell-based assays (green, cell-based). By coloring on assay
tax id (i.e., the assay taxonomy) it also becomes clear that most
binding assays and a large part of functional assays are done in
human based systems (H. sapiens, red). The majority of
experiments done in mice (M. musculus, blue) and rats (R.
norvegicus, orange) cluster together and do not overlap with
human-based systems. There is a marked overlap between
confidence scores and assay types. Interestingly, the different
standard types do not separate as clearly as other assay
properties, although the readouts minimum inhibitory
concentration (MIC), activity, and Ki do occur frequently in
certain regions. Similarly to the BioBERT-based embeddings,
the UMAP of gte-Qwen2−1.5B-instruct embeddings shows
local clustering of properties with the same label, although the
clusters of the latter are more dispersed (Figure SI 5). Taken
together, these results suggest that free text assay descriptions
can be transformed into an informative descriptor with NLP-
based approaches.

Automated Assay Clustering Yields Accurate Group-
ings. In ChEMBL broad assay categorizations are available but
it does not contain groupings of the same − or closely related−
assays. Instead, each publication/record is assigned a unique
assay ID. To cluster biological assays on the assay level, we
created a novel, detailed assay categorization based on
embedded assay descriptions. Briefly, we employed UMAP
and semisupervised UMAP representations as input for
HDBSCAN clustering with a varied minimum cluster size,
and c-TF-IDF was used to assign outliers to their closest
related cluster.

The clustering performance on the whole data set was
evaluated based on the ‘purity’ of the preannotated labels
within different categories. Here normalized purity is defined
as the sum of the frequencies of the dominant class labels for
all clusters divided by the total number of records, and min-
max scaled by the prevalence of the most frequently occurring
label per property (meaning that no clustering/random
clustering leads to a normalized purity of 0). For assay type,
BAO format and standard type, the most frequently occurring
labels have a prevalence of 0.63, 0.35, and 0.30, respectively.
Figure 3 shows that clustering based on BioBERT embeddings

increases normalized purity. Records with the same assay type
and BAO format are more successfully grouped together than
ones with the same the standard type. This analysis also shows
that outlier reduction has a beneficial effect on cluster
normalized purity and that increasing the minimum cluster
size reduces normalized purity. For the gte-Qwen2-1.5B-
instruct embeddings the same trends in purity scores are
observed but with slightly lower scores (Figure SI 6).

To evaluate the automated clustering method on cluster
labels based on manual annotations, we performed manual
categorization on records related to the adenosine receptors.
The concurrence with this manual categorization was evaluated
based on multiple metrics (see Table 1). The best performance
in terms of balance between completeness (extent to which
members of the same category are assigned to the same
cluster) and homogeneity (extent to which a cluster contains

Figure 3. Bar plot of the normalized purity for the labels assay type,
BAO format, and standard type based on clustering with BioBERT
embeddings. The purity is shown for models with and without outlier
reduction (OLR) and with different minimum cluster sizes (16, 32,
64, and 128). Mean and standard deviation are based on independent
clustering runs (n = 3).
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members of a single category) was achieved by using BioBERT
and a minimum cluster size of 128. Clustering based on gte-
Qwen2−1.5B-instruct embeddings results in slightly worse
scores. Interestingly, there is a marked difference between the
accuracy of clustering for binding and functional assays. The
completeness of the functional assays (0.34) is higher than for

the binding assays (0.10), which indicates oversegmentation of
similar binding assays. For the functional assays a homogeneity
of 0.61 is achieved and for binding assays the homogeneity is
0.26. As a side note, the employment of semisupervised UMAP
based on assay type or standard type does not improve the
clustering accuracy (Table SI 4). The final clustering method

Table 1. Clustering Performance Evaluation of Different Minimum Cluster Sizesf

Type Minimum size AMIa Homogeneityb Completenessc V-measured Fowlkes-Mallowse

BioBERT Functional 16 0.29 0.69 0.25 0.37 0.37
32 0.29 0.64 0.25 0.36 0.41
64 0.37 0.64 0.32 0.42 0.53
128 0.39 0.61 0.34 0.43 0.56

Binding 16 0.10 0.38 0.10 0.15 0.36
32 0.09 0.34 0.09 0.14 0.36
64 0.10 0.28 0.09 0.13 0.41
128 0.11 0.26 0.10 0.15 0.50

QWEN Functional 16 0.24 0.60 0.22 0.32 0.33
32 0.24 0.49 0.23 0.31 0.49
64 0.35 0.52 0.32 0.40 0.65
128 0.35 0.45 0.35 0.40 0.63

Binding 16 0.09 0.38 0.09 0.14 0.29
32 0.11 0.33 0.10 0.16 0.50
64 0.09 0.28 0.09 0.13 0.43
128 0.11 0.23 0.10 0.14 0.59

aAdjusted Mutual Information, measure for agreement of assigned and predicted labels. bThe label agreement of records within the same cluster.
cThe extent to which all occurrences of a label are assigned to the same cluster. dHarmonic mean of homogeneity and completeness. eThe
geometric mean of the pairwise precision and recall. fThe performance was evaluated for functional and binding assays separately.

Table 2. Top 8 Most Frequently Occurring Clusters Found in the Adenosine Receptor (AR) Dataseta

Cluster
ID

Total
entries

Entries in AR
subset Topic describing words

Predominant assay type (in AR
subset)

1 20199 102 displacement, 3h, from, 125i, membranes, scintillation, counting, dopamine,
radioligand, receptor

Binding

3 11550 78 calcium, camp, flipr, forskolin, agonist, intracellular, fluo, mobilization, antagonist,
am

Functional

63 2212 770 adenosine, a1, a2a, dpcpx, a3, 21680, cgs, meca, ab, displacement Binding
192 917 34 cyclase, adenylate, adenylyl, ecd, forskolin, neca, ng108, stimulation, adenosine,

moles
Functional

222 1176 185 adenosine, a1, a2a, a3, receptor, a2b, affinity, binding, a2, radioligand Binding
327 782 355 adenosine, a2a, dpcpx, a1, zm241385, scintillation, counting, a3, displacement,

cgs21680
Binding

352 782 283 adenosine, camp, a2b, neca, a2a, a3, a1, cho, forskolin, antagonist Functional
652 217 88 mre3008, f20, range, a3, adenosine, hek, suppressant, glu, 1st, tyr Binding

aThe total cluster size as well as the number of assays in the subset are shown. For each cluster the topic describing words (based on class-based
TF-IDF) are included and the predominant assay type is given.

Figure 4. pChEMBL values from compound-protein combinations tested in multiple assays for the GPCRs, tyrosine (TK) protein kinases and
SLCs.
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(based on BioBERT embeddings and nonsupervised cluster-
ing) leads to a total of 1,027 clusters with a median size of 638
records per cluster and the largest cluster containing 24,105
entries. Qualitative evaluation of the topic-describing words
that are enriched within the generated clusters (as derived by
class-based TF-IDF) shows that they are interpretable and
refer to existing assays (Table 2). In summary, these results
show that although the clustering is not identical to assigned
labels our clustering method gives an accurate and
interpretable grouping of the data.

Assay Groupings Explain Variance between Measure-
ments. To establish whether inclusion of detailed information
on assay context could be helpful for bioactivity prediction
modeling, we compared bioactivity outcomes from different
assays with overlapping protein-compound measurements
(423,195 data points). Plots of pChEMBL values of protein-
compound pairs that were measured repeatedly, show a large
variability in measured pChEMBL values for the same target-
compound combination (Figure 4). The mean absolute
deviation for all repeated data points with an associated
accession value is 0.83. For GPCRs, tyrosine kinases and SLCs

Table 3. Performance of PCM Models with Different Ways of Adding Assay Context Compared to Controla

A. SLCs

Random split Scaffold split

R2 RMSE KT R2 RMSE KT

Control 0.73 0.42 ± 0.02 0.67 0.65 0.58 ± 0.01 0.63
Assay Descriptor Fingerprint 0.73 ± 0.02 0.41 ± 0.03 0.67 ± 0.01 0.66 0.57 ± 0.01 0.63

Bag-of-words 0.72 ± 0.01 0.43 ± 0.03 0.6 ± 0.01 0.66 0.57 ± 0.01 0.63
Embedding 0.74 ± 0.01 0.4 ± 0.02 0.68 0.67 0.56 ± 0.01 0.63

MT NA 1.10 ± 0.03 0.42 ± 0.01 NA 1.10 0.44 ± 0.01
B. GPCRs

Random split Scaffold split

R2 RMSE KT R2 RMSE KT

Control 0.68 0.55 ± 0.01 0.63 0.6 0.69 0.58
Assay Descriptor Fingerprint 0.68 0.55 ± 0.01 0.63 0.62 0.67 0.59

Bag-of-words 0.65 0.61 0.61 0.58 0.74 0.56
Embedding 0.71 0.5 ± 0.01 0.65 0.65 0.61 0.61

MT 0.64 0.5 ± 0.01 0.66 0.51 0.64 0.60 ± 0.01
C. Tyrosine kinases

Random split Scaffold split

R2 RMSE KT R2 RMSE KT

Control 0.69 ± 0.01 0.47 ± 0.02 0.64 ± 0.01 0.68 0.52 0.63
Assay Descriptor Fingerprint 0.68 ± 0.01 0.51 ± 0.01 0.63 ± 0.01 0.66 0.54 0.62

Bag-of-words 0.66 ± 0.02 0.53 ± 0.02 0.62 ± 0.01 0.64 0.58 ± 0.01 0.6
Embedding 0.7 ± 0.02 0.47 ± 0.03 0.65 ± 0.01 0.68 0.5 0.64

MT 0.63 ± 0.03 0.48 ± 0.03 0.64 ± 0.02 NA 0.52 0.63
aPerformance is assessed using the correlation (R2), root mean squared error (RMSE), and Kendall’s Tau (KT). Mean ± standard deviation of 3
repeats is shown, in cases where the standard deviation is 0 only the mean is shown.

Figure 5. Proportion of different descriptor types for top 30 features based on feature importance. We calculated feature importance by their
average gain in mean squared error reduction over 3 repeats for different random splits.
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this is 0.76, 1.16 and 0.54, respectively. To establish whether
assay context explains part of this variance, the average of the
mean absolute deviation within assay clusters derived from the
best performing clustering approach was calculated. Overall,
this reduces the mean absolute deviation to 0.66 ± 0.02 (based
on n = 3 clustering repeats). Notably, the effect of clustering
does differ for the chosen target groups. Specifically, the
variance of the measured pChEMBL values reduces more for
the kinases (mean absolute deviation 0.84 ± 0.09) than for the
GPCRs (mean absolute deviation 0.69 ± 0.08) and SLCs
(mean absolute deviation 0.47 ± 0.03). In conclusion,
biological assay context as extracted with NLP-based clustering
partially explains the variance observed in ChEMBL data.

Influence of Assay Context on Modeling Perform-
ance. To assess the effect of adding assay context on PCM
model performance, we trained and evaluated multiple models.
As control condition a single-task PCM model was trained that
did not include assay context. This model has an R2 of 0.73,
0.68, and 0.69 for SLCs, GPCRs, and tyrosine kinases,
respectively. (Table 3, random split). Interestingly, adding a
bag-of-words descriptor (a descriptor representing frequently
occurring words) consistently slightly decreases model
performance, indicating that this might lead to overfitting.
The fingerprint based on assay metadata does not affect model
performance. For the GPCR case a slight increase in
performance occurs when assay description embeddings are
used as additional input descriptor (R2 of 0.71). This effect is
consistent across both the random split and the more
challenging scaffold split. Moreover, for GPCRs the RMSE
and Kendall’s Tau correlation coefficient exhibit a consistent
improvement when using the embeddings. However, no
significant improvement occurs upon adding the assay
embeddings to the SLC and tyrosine kinase models.
Investigation of feature importance shows that assay
embeddings are among the most important features for
achieving an RMSE decrease during model training (Figure
5). For all targets, the MT models performed worse than the
control, indicating that using our assay categories as separate
outputs does not improve performance. Overall these results
indicate that assay context can improve model performance
and that assay embeddings best represent this context.

■ DISCUSSION
In this research we set out to address the question whether
employment of aggregated bioactivity data from different
biological assays can be improved by taking this experimental
context into account. We demonstrated that one can use NLP
techniques to create novel assay descriptors and to give an
overview of assays present in a data set. Additionally, clustering
of similar biological assays showed that a substantial part of the
variance between measurements of the same compound-
protein combinations is due to assay context. Finally, including
assay context in the form of embeddings slightly improved the
predictive performance of PCM models in some data sets.

The main objective of our study was to facilitate the use of
the large corpus of written, unstandardized assay descriptions
available in the ChEMBL database. To harness this
information for incorporating assay context into the bioactivity
modeling process, these descriptions were embedded and
clustered. For the embedding approach, the pretrained
biomedical language representation model BioBERT and the
general text embedding model gte-Qwen2−1.5B-instruct were
used.22,23 The resulting embeddings both capture relevant

information as is shown by the concurrence of their mapping
with other assay characteristics annotated in ChEMBL.
However, BioBERT embeddings show a more concentrated
grouping of assays with similar labels. Specifically, a clear
division was apparent for the categories assay type, taxonomy,
assay format and ChEMBL confidence score. Note that this
confidence score reflects the specificity and characterization of
the target used for the measurement, hence records with a
similar description are indeed expected to have a similar
confidence score. The separation based on standard type (i.e.,
the type of readout) was less strict. This could be caused by the
fact that the standard type is not dependent on assay properties
like the meta target or detection method but instead on the
perturbagen concentration. This information may not be
prominently mentioned in the assay descriptions. In general,
despite these minor shortcomings these results suggest that the
embeddings provide usable information. Further improve-
ments could possibly be achieved with domain-specific large
language models like ChemLLM.31

In ChEMBL, identical or similar biological assays are
currently not grouped together. However, such a grouping
could be useful to obtain a clear overview of how the data in a
data set was derived, and for modeling purposes. Therefore,
one of the objectives of our study was to use neural topic
modeling with TF-IDF to cluster similar records, which was
successful. It should be mentioned that for all metrics used
here we do not expect to see perfect clustering; a perfect way
to group − or even label − this very heterogeneous collection
of biological experiments does not exist. Overall, the best
clustering was obtained for models with a minimum cluster
size of 128 (see Table 1) and using outlier reduction (see
Figure 3). The normalized purity of labels annotated in
ChEMBL showed that the resulting clusters enriched for
similar properties, especially when small clusters were allowed.
Interestingly, the records that clustered together generally had
the same ChEMBL assay type (binding/functional) and BAO
format but more diverse standard types. This was in line with
the UMAP visualization, in which standard types did not
occupy distinct regions. Further evaluation based on
comparison to manually annotated labels showed that the
assay clusters also grouped similar assays together on a detailed
level. Here large minimum cluster sizes perform slightly better
than small sizes. In general, the grouping of functional assays
performed better than binding assays. One difference between
these types of assay is that functional assays are much more
diverse than binding assays. The functional assay descriptions,
for that reason, often contain highly assay-specific information.
Binding assays with different detection methods often only
contain detailed information on the radioligand and target
which is not relevant for the classification of the assay type.
This is for example apparent for the binding assay clusters
found for the adenosine receptors, as shown by the receptor
and perturbagen specific topic-describing words (Table 2).
Overall, our qualitative analysis established that these words
made sense and often referred to a specific type of
experimental protocol. To facilitate the interpretation of
these topics, we have made a Jupyter Notebook that shows
how to use a pretrained large-language model to link the
keywords to a type of pharmacological experiment (https://
github.com/CDDLeiden/AssayCTX/blob/main/assayctx/
descriptors/llm_agent.ipynb). It should be noted that the
relevance of the assay descriptor is contingent on the specificity
of the assay description. Specific assay conditions that can

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.5c00603
J. Chem. Inf. Model. 2025, 65, 7013−7023

7020

https://github.com/CDDLeiden/AssayCTX/blob/main/assayctx/descriptors/llm_agent.ipynb
https://github.com/CDDLeiden/AssayCTX/blob/main/assayctx/descriptors/llm_agent.ipynb
https://github.com/CDDLeiden/AssayCTX/blob/main/assayctx/descriptors/llm_agent.ipynb
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.5c00603?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


influence the outcome, e.g. the presence of an agonist, can only
be taken into account when they are mentioned in the assay
description.

This research set out with the hypothesis that different
biological assays give significantly deviating outcomes. To
evaluate if this hypothesis holds, we established the average
deviation between measurements on the same protein-
compound combinations. In general, there was a substantial
variance between bioactivity values within the same protein-
compound pair (mean absolute deviation0.83). This variance
was clearly lower when the assay context was considered. Prior
studies have also found that results from different assays
vary.5,6,32 An interesting finding is that a larger variation in
outcomes occurred for the kinase data set than for the GPCRs
and SLCs. This seemed to mainly be due to assay effects, as the
variation within the same assay − as approximated by assay
clusters − exhibited a marked decrease especially for the kinase
data set. One possible explanation for this finding could be that
IC50 values reported for kinase inhibitors that are ATP-
competitive are affected by the ATP-concentration used in the
assay.33 Another explanation could be that for kinase inhibitors
the binding site of the molecule influences its biological effect,
in this work the kinase inhibitor type was not taken into
account. It should be noted that we did not look for systematic
trends between different assay outcomes. Instead, we focused
on using machine learning models to correct for assay specific
outcomes.

We showed that including assay context can improve
modeling results in some data sets, by explaining part of the
variance present in the modeled data. Interestingly, for the
kinase data set using assay embeddings on top of the other
inputs did not help. Assay descriptions have previously been
shown to be useful for modeling by Seidl et al., who found that
ChEMBL’s assay descriptions can be used for zero-shot and
few-shot learning.10 Here we aimed to improve models of
targets with sufficient existing data. To this end we utilized
multiple PCM models that include assay context. The
embedding-based descriptor showed a consistent improvement
for the largest data set that was modeled, resulting in an R2

increasing from 0.68 to 0.71 in the random split condition and
from 0.60 to 0.65 in the scaffold split condition. For most of
the other methods and data sets that were analyzed including
assay context did not have an effect or even had a negative
effect. Specifically, the bag-of-words fingerprint and the models
with separate tasks for the assay topics decreased performance.
These findings suggest that the heterogeneous nature of assay
descriptions requires assay embeddings in order to obtain a
clear signal among this noisy information in order to improve
performance. For example, to improve the performance for the
bag-of-words approach one could attempt to select the used
words/bits that improve modeling performance. Alternatively,
since the assay descriptions do not always include information
that is available in the assay labels (most notably the assay
readout), NLP-derived assay embeddings could also be
combined with annotated labels to improve performance.
The reason that assay embeddings perform well but that MT
models with assay topics based on these embeddings have
hardly any predictive performance could be due to the balance
between data sparsity on one hand and cluster size on the
other.

These findings have provided insight into the challenges
associated with aggregated data for bioactivity modeling.
Currently such agglomerated data is commonly used for

modeling purposes and it has been reported that this comes at
the cost of a large unexplained variance between measure-
ments.6 However, until now, little has been done to address
this problem. Here, we demonstrated that measured bioactivity
values indeed vary strongly and that part of this variance is
explained by the experimental context. Moreover, we showed
that the presence of different assays in our data sets negatively
influences model performance, although these effects are small
and depend on the data set. Prior to our work it was difficult to
get an overview of the assays present in ChEMBL and use that
information for data curation. With our clustering method,
similar assays are grouped and summarized with a few topic
describing words. Additionally, we showed that assay
embeddings hold information on the assays performed and
are therefore valuable to include when modeling data derived
from different biological experiments. At inference time, these
types of models would be queried with compound, protein and
assay combinations to yield predictions for specific end points.
A natural follow-up of this work is to apply it in a prospective
validation setting.

Being limited to annotated data from ChEMBL and a small
subset of manually annotated assays, we could not assess the
validity of the majority of found clusters. From the clusters we
were able to validate, we concluded that similar assays indeed
grouped together, yet also contained some data points where
clustering could be further improved. Moreover, in some cases
different clusters actually described the same assay, as shown
by the completeness score. This was especially true for binding
assays, while the resulting readouts are expected to be similar.
Part of this oversegmentation could be caused by receptor
classes and specific radioligands mentioned in a lot of the assay
descriptions. In order to prevent this additional separation
based on protein specific information, words referring to such
information could be ignored or replaced by a generic abstract
term. Ideally, increased awareness of the assay context would
help establish validated, standardized ways to deal with this
assay context. There is, for example, a definite need for assay-
level benchmark data sets.

■ CONCLUSION
Here we have shown that assay context can affect bioactivity
modeling outcomes for specific data sets. Our approach
enables the use of this context both for the bioactivity model
and the modeler. This work does highlight the importance of
bioactivity data to be accompanied by well-annotated assay
descriptions. Continued efforts should be made to make these
descriptions available in a standardized format. Furthermore,
follow-up work can likely further improve the handling of free
text assay descriptions and therefore of large bioactivity data
sets.
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