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Long-range order in two-dimensional systems
with fluctuating active stresses†

Yann-Edwin Keta * and Silke Henkes *

In two-dimensional tissues, such as developing germ layers, pair-wise forces (or active stresses) arise

from the contractile activity of the cytoskeleton, with dissipation provided by the three-dimensional

surroundings. We show analytically how these pair-wise stochastic forces, unlike the particle-wise

independent fluctuating forces usually considered in active matter systems, produce conserved centre-

of-mass dynamics and so are able to damp large-wavelength displacement fluctuations in elastic

systems. A consequence of this is the stabilisation of long-range translational order in two dimensions,

in clear violation of the celebrated Mermin–Wagner theorem, and the emergence of hyperuniformity

with a structure factor S(q) B q2 in the q - 0 limit. We then introduce two numerical cell tissue models

which feature these pair-wise active forces. First a vertex model, in which the cell tissue is represented

by a tiling of polygons where the edges represent cell junctions and with activity provided by stochastic

junctional contractions. Second an active disk model, derived from active Brownian particles, but with

pairs of equal and opposite stochastic forces between particles. We study the melting transition of these

models and find a first-order phase transition between an ordered and a disordered phase in the disk

model with active stresses. We confirm our analytical prediction of long-range order in both numerical

models and show that hyperuniformity survives in the disordered phase, thus constituting a hidden order

in our model tissue. Owing to the generality of this mechanism, we expect our results to be testable in

living organisms, and to also apply to artificial systems with the same symmetry.

1 Introduction

Biological tissues are a paradigmatic active or living material,
characterised by the competition between crowding effects and
active driving. In in vitro epithelial cell layers, the focus of most
models, activity arises primarily from cells crawling over the
underlying solid substrate.1,2 This setup has motivated a num-
ber of minimal microscopic models of tissues, such as self-
propelled particles3–6 and self-propelled Voronoi models.7–9 In
these, the ‘‘self-propelled’’ qualifier indicates that a time-
persistent and space-independent force acts on each degree
of freedom (e.g. particle or Voronoi centre). However, in many
developmental contexts such as avian10–12 and drosophila13

early development, the driving activity arises from cytoskeletal
contractility,14–16 and the cells are surrounded by fluid that

provides dissipation, but against which the tissue cannot exert
active forces. These models therefore are not suitable here, and
instead the active interactions within cell sheets need to be
modelled as stochastic forces which act on pairs of degrees of
freedom in an opposite manner, thus respecting action-
reaction. Since the sum of these driving forces cancel, the
dynamics they produce conserves the centre of mass, and
should be regarded in continuum elastic formulation as deriv-
ing from the divergence of an active stress ract. We may then
write for these overdamped systems

z _uðr; tÞ ¼ �
ð
d2r0Delðr� r0Þuðr0; tÞ þ r � ractðr; tÞ (1)

where u(r,t) describes the elastic deformation from position r, z
is a friction coefficient, and �D

el is a dynamical matrix17 describ-
ing elasticity (see Fig. 1(a)). More generally, one can envisage a
full dissipation matrix f that includes additional cell–cell

terms, a point we will return to below.
Recent studies within a field theoretical18 and a granular

context19 have linked stochastic active stresses and the emer-
gence of crystalline phases with long-range translational order
and hyperuniform density fluctuations – fluctuations which
vanish on large length scales. In the active matter context, long-
range translational order and hyperuniformity have also been
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uncovered in systems with anti-alignment,20 chiral or non-
reciprocal interactions,21–23 oscillatory driving forces,24

pulsating contractions,25 in systems of driven-dissipative hard
spheres,26 as well as in active turbulence27 – see a recent
review.28 However, a broader understanding together with a
minimal model of these processes is lacking, and the link to the
biological context has only very recently been made.25

It should be noted that within a continuum active fluid
paradigm, eqn (1) with pair forces would belong to the well-
understood class of dry or mixed dry-wet active nematics or
active gels which have long been proposed as tissue
models.29,30 The difference here is the active solid starting
point with purely fluctuating activity, very unlike the typical
active nematic state with moving defects. Moreover, we take
microscopic order into account, allowing us to access transla-
tional and hexatic order parameters – see however31,32 for an
intrinsically hexatic active fluid approach.

In this paper we first derive the active elastic theory of long-
range correlations at linear order. We then show in two models
of dense biological tissues how pair-wise fluctuating active
forces stabilise long-range translational order. In addition, we
show numerically that hyperuniformity is displayed both in the
low-noise ordered solid and the large-noise disordered liquid.
We contrast these results with simulations of analogous
models with particle-wise fluctuating active forces where trans-
lational order is at most quasi-long-range with algebraically
decreasing correlations33 and diverging structural fluctuations
in the infinite size limit. The paper is organised as follows. In
Section 2 we derive analytically the structural fluctuations of
models described by (1). In Section 3 we introduce our models
and perform the numerical study of their structural character-
istics, including their melting transition. In Section 4 we gather
our findings and discuss their future applications.

2 Long-range translational order
and hyperuniformity

At thermal equilibrium, the Mermin–Wagner theorem
indicates that there can be no spontaneous breaking of a
continuous symmetry in dimensions d = 1, 2 at finite

temperature.34 A consequence of this is that thermally induced
long-range displacement fluctuations grow with system size in
theses low dimensions, and long-range translational order is
unachievable in the thermodynamic limit.35,36 Moving flocks
however (almost certainly37) display true long-range polar
orientational order,38 the first indication that activity allows
for exceptions of this law.

Structural fluctuations can be quantified through the count-
ing of the number N(R) of particles in a volume Rd as a function
of R. For typical disordered systems such as liquids, the
variance Var(N;R) = hN(R)2i � hN(R)i2 grows as Rd, while
Var(N;R) B Rd�1 in periodic crystals.39 Many active systems,
in particular those which display flocking behaviours, were
reported to display giant number fluctuations, in the sense
that Var(N;R) grows faster than Rd.40–45 More recently, long-
range translational order in two-dimensional active systems
has been a subject of interest. Galliano et al. have shown how
such order arises in a nonequilibrium particle model driven by
pair-wise random displacements.46 Maire and Plati have
derived this property in underdamped granular systems driven
by a momentum-conserving noise,19 using an approach similar
to the one detailed below. In both cases, long-range transla-
tional order is associated with hyperuniformity. This designates
the anomalous vanishing of density fluctuations on large
length scales,47 associated with a variance Var(N;R) which
decreases slower than Rd, and is known to occur in systems
with absorbing state transitions.48–50

In this section we derive, for a two-dimensional continuous
elastic medium, the fluctuations of the displacement field at
linear order. In a second part we show how these relate, in a
discrete system, to the translational order correlation function
and the scaling of the structure factor over large wavelengths.

2.1 Two-dimensional continuous medium

We introduce the Fourier transform in space and time of the
displacement field

uðr; tÞ ¼ 1

ð2pÞ2
ð
d2qeiq�r ~uðq; tÞ

¼ 1

ð2pÞ3
ð
d2q

ð
doeiq�rþiot ~Uðq;oÞ;

(2)

Fig. 1 (a) Sketch of a two-dimensional continuous system with fluctuating active stress described by (1). (b) Vertex model with stochastic junction
tension (jtVM). (c) Active Brownian particles with pair-wise propulsion forces (pABP).
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and write (1) in Fourier space as

ioz ~Uðq;oÞ ¼ � ~DelðqÞ ~Uðq;oÞ þ ~Kðq;oÞ; (3)

where ~Kðq;oÞ is the Fourier transform of the noise term

kðr; tÞ ¼ r � ractðr; tÞ: (4)

We assume (i) that the Fourier transform of the dynamical

matrix ~DelðqÞ can be decomposed as follows5

~DelðqÞ ~Uðq;oÞ ¼ jqj2 ðBþ mÞ ~Ukðq;oÞ þ m ~U?ðq;oÞ
� �

; (5)

where q̂ = q/|q|, Ũ8(q,o) = (Ũ(q,o)�q̂)q̂ and Ũ>(q,o) = Ũ(q,t) �
Ũ8(q,o) are respectively the longitudinal and transverse displa-
cements in Fourier space, and B and m are respectively the bulk
and shear moduli.

We assume (ii) that the fluctuations of the active stress (4)
follow18,19,51

hk(r,t)�k(r0,t0)i = �s2a2e�|t�t0|/tr2d(r � r0), (6)

where s is an energy scale, a a coarse-graining length scale, and
t a persistence time. This assumption stems from the idea that
the stress is uncorrelated in space but autocorrelated in time.
We highlight here that, from the point of view of numerical
particle-based models, the divergence of the stress in (4) should
be interpreted as the discrete divergence of a noise vector field
defined over the ensemble of pairs of particles.51 Assuming that
these noise vectors are uncorrelated between pairs leads to (6)
withr2 interpreted as a discrete Laplacian. We provide an exact
derivation for a triangular lattice in the ESI† (Section B). We
write (6) in Fourier space as

~Kðq;oÞ � ~Kðq0;o0Þ�
D E

¼ ð2pÞ3 2s
2tjqj2

1þ o2t2
dðo� o0Þa2dðq� q0Þ:

(7)

We use (3), (5), and (7), to compute the equal-time displace-
ment fluctuations in Fourier space (see ESI,† Section A, for a
full derivation) and obtain

~uðq; tÞ � ~uðq0; tÞ�h i

¼ s2t2

2z2
xk�2

1þ jqj2xk2
þ x?�2

1þ jqj2x?2

� �
ð2paÞ2dðq� q0Þ;

(8a)

where we have used the longitudinal and transversal correla-

tion length scales xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðBþ mÞt=z

p
and x? ¼

ffiffiffiffiffiffiffiffiffiffi
mt=z

p
. We com-

pare this result to the case of a space-uncorrelated fluctuating
force field with correlations hk(r,t)�k(r0,t0)i = f2a2e�|t�t0|/td(r �
r0), for which the spectrum reads5

~uðq; tÞ � ~uðq0; tÞ�h i

¼ f 2t2

2z2
1

jqj2
xk�2

1þ jqj2xk2
þ x?�2

1þ jqj2x?2

� �
ð2paÞ2dðq� q0Þ:

(8b)

Spectrum (8a) importantly differs from (8b) by the absence
of the factor 1/|q|2 which diverges on large length scales |q| -
0. This difference arises solely from the spectrum of stochastic
forces (7) whose fluctuations vanish in the limit |q| - 0.

We define the variance of displacement for a square two-
dimensional system of linear size L as

u2
� �

¼ lim
t!1

1

ð2pÞ4
ðð2p=a

2p=L
d2qd2q0 ~uðq; tÞ � ~uðq0; tÞ�h i; (9)

where we introduced a lower-wavevector cuttof qmin = 2p/L
due to finite system sizes L and upper-wavevector cutoff
qmax = 2p/a due to coarse-graining over length scale a. The
difference in q-scaling we have stressed between spectra (8)
leads to the following respective variances scaling in the
thermodynamic limit

u2
� �s ¼

L!1
u2
� �s

1¼ const; (10a)

u2
� �

f ¼
L!1

Cf logðL=aÞ; (10b)

where the s and f subscript refer to the fluctuating stress and
force cases respectively. In the latter case of a fluctuating force
field, this variance diverges for infinite systems.19,52,53

2.2 Two-dimensional regular lattice

We just showed how two-dimensional systems with fluctuating
active stresses have finite displacement fluctuations in the
thermodynamic limit L - N. This motivates us to investigate
structural fluctuations in discrete ordered systems. We then con-
sider a system of N particles with displacements ui = ri � r0

i from
their equilibrium lattice points r0

i . We highlight that the displace-
ment spectra (8) follow the transformation from continuous to
discrete Fourier space hũ(q,t)�ũ(q0,t)*i - a4hũq(t)�ũq0(t)*i, with the

coarse-graining length a ¼ L
	 ffiffiffiffi

N
p

, through the substitution rule
d(q � q0) - (Dq)�2dq,q0 with Dq = 2p/L the wavevector spacing.5

We introduce the local hexatic orientational order parameter
c6,i and the local translational order parameter cq0,i in order to
quantify structural order,33,54–56

c6;i ¼
1

zi

X
j2N i

e6iyij ; yij ¼ arg rj � ri

 �

; (11)

cq0,i = eiq0�(ri�r0), (12)

where N i is the ensemble of nearest neighbours of particle i
and zi the coordination number of particle i, i.e. the number of
particles in N i, r0 is the position of one of the particles, and q0

is a reciprocal vector of the lattice. We infer the latter from the
position of the maximum of the structure factor (16) S(q0) =
maxq S(q).57

The translation by �r0 in (12) is chosen so that cq0,i = 1
everywhere in a perfect crystal lattice (see Fig. 3). This
works since for any vector v linking two lattice points, q0�v =
0 modulo 2p. As this simply corresponds to choosing a parti-
cular origin, it does not affect the correlations (14), only the
argument of (12).
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We quantify the global order parameter with the following
ensemble averages (x = 6, q0)

Cx ¼
1

N

XN
i¼1

cx;i

�����
�����

* +
; (13)

and the following spatial correlation functions

CxðrÞ ¼

P
iaj

cx;ic
�
x;jd r� rj � ri

�� ��
 �
P
iaj

d r� rj � ri
�� ��
 �

* +
: (14)

The latter function, considering translational order, is
related to the scalings (10) (see ESI,† Section C) as follows

Cs
q0
ðrÞ ¼

L!1
r!1

e�
1
2
q0j j2 u2h is1 ; (15a)

Cf
q0
ðrÞ �

L!1
r!1

r�
1
2
q0j j2Cf

: (15b)

These scalings show that, in the case a stochastic stress
field, true long-range translational order is possible, as opposed
to the quasi-long-range order in the case of a stochastic
force field.

Finally, we define the structure factor58

SðqÞ ¼ 1

N

XN
i;j¼1

eiq� rj�rið Þ
D E

(16)

which characterises density fluctuations. Under the assump-
tions of normally distributed displacements (e.g. satisfied for
normally distributed stochastic forces and harmonic interac-
tions) and isotropy, the structure factor can be reduced in the
large system size and large wavelength limit to (see ESI,†
Section D, for a derivation)

SðqÞ ¼
L!1
jqj�2p=L

1

2N
jqj2 ~uq

�� ��2D E
: (17)

This result relies on a Taylor expansion of the exponentials
in (16), in the large-system-size and small-wavevector limits,
and is consistent with previous derivations.59 Therefore, given
the displacement spectra (8), we infer the following scalings for
the structure factor (16)

SsðqÞ �
L!1
jqj�2p=L

jqj2; (18a)

Sf ðqÞ �
L!1
jqj�2p=L

1; (18b)

indicating that, in the case of a stochastic stress field, the
system is ‘‘maximally hyperuniform’’ similarly to other systems
with conserved centre-of-mass dynamics.18,47–49

In summary, we have presented three emerging properties
for two-dimensional systems in the thermodynamic limit: finite
displacement fluctuations with respect to the lattice positions
(10a), long-range translational order (15a), and hyperuniformity
(18a). We stress that these properties derive from considering a

space-uncorrelated stochastic stress field rather than a force
field: they rely on the driving fluctuations (here the active stress
field) decaying on large wavelengths while competing against a
dissipation mechanism acting independently on all individuals
in the system. It is thus noteworthy that these properties would
disappear if we included a white noise term in (1) (see ESI,†
Section B.2) – such a term would be expected to counterbalance
the white drag if the system were to follow the second fluctua-
tion–dissipation theorem.60–62 We finally highlight that these
properties are not affected if we include an additional viscosity-
like cell–cell dissipation term (see ESI,† Section B.2), i.e. a full
dissipation matrix f. This adds realism to cell models as it

counterbalances the fluctuating stresses, and we can show that
this modification as expected only affects the small-wavelength
fluctuations.

3 Tissue models with pair-wise
stochastic forces

Our predictions were derived for harmonic systems with parti-
cles arranged in regular lattices, and so are potentially suscep-
tible to renormalisation group flow to different exponents from
nonlinear terms.18,50 In order to test the robustness of these
predictions outside of the linear and ordered regime, as well as
the applicability of these results, we introduce two numerical
models suited for the description of dense cell tissues (see
Fig. 1) and study their structural fluctuations.

3.1 Model definitions

In Section 3.1.1, we introduce a model based on a polygonal
tiling of the two-dimensional space, where each tile represents
a single cell. This kind of model has been widely used to
represent confluent cell sheets2,63,64 and allows to represent
complex interactions, between cells and between cells and their
substrate, as well as constraints on cell shapes. We highlight
here two general classes of these models: Voronoi models7–9,65

where the tiling of cells is determined through a Voronoi
tesselation from cell centres, and vertex models (VM)66–68 where
cell corners (or vertices) are the degrees of freedom. The model
we first introduce belongs to this second class.

In Section 3.1.2, we introduce a model based on interacting
disks. Despite such models lacking the possibility to represent
accurate cell shapes and deformations, they have been applied
with great success to understand mesoscale correlations in
active tissues.5 Moreover, the simplicity of these models allow
for the numerical simulation of the large systems needed to
characterise large-wavelength fluctuations.

For both models studied here, we introduce the following
overdamped equation of motion of their degrees of freedom
(respectively cell vertices and disk centres), which is the dis-
crete analogue of (1),

z :rm = �qrmU
int + kact

m , (19)
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where the degrees of freedom are indexed by m, z is a friction
coefficient, Uint is an interaction potential, and the kact

m are the
active driving forces.

3.1.1 Junctional tension vertex model (jtVM). Vertex
models are defined as meshes of vertices m, at positions rm,
linked by edges which enclose faces which describe the cells i
(see Fig. 1(b)). By extension we will denote i the centroid of cell
i, whose position is

ri ¼
1

6Ai

X
m2cell i

rm þ rmþ1

 �

xmymþ1 � xmþ1ym

 �

; (20)

where rm = (xm,ym), vertices m are ordered in an anticlockwise
direction relative to the cell centre i, and where Ai is the area of
cell i; we denote its perimeter by Pi. We stress that the centroid
corresponds to the centre of mass of the cell, i.e. the arithmetic
mean of all the points on its surface, and should be distin-
guished from the mean of its corners’ positions.

We introduce the following vertex model interaction
potential65

U int ¼
X
cells i

1

2

k

A0
Ai � A0ð Þ2þ1

2
k Pi � P0ð Þ2

� �
; (21)

with k a spring constant, A0 the target area and P0 the target
perimeter.

We consider active forces which are pair-wise or particle-
wise, respectively (see Fig. 1(b) for a visual representation)

kactm ¼
X
n^m

Tmnl̂mn ; (22a)

kact
m = fu(ym), (22b)

where f is the stochastic force amplitude, u(ym) = (cos ym,sin ym),
n4 m designates the vertices n linked by an edge to vertex m, Tmn

is the tension of edge mn, lmn = rn � rm and l̂mn ¼ lmn
	

lmn
�� ��.

These forces evolve stochastically: tensions Tmn follow an Orn-
stein–Uhlenbeck process69–72 and angles ym diffuse similarly to
self-propelled Voronoi models,8,9

t _Tmn ¼ �Tmn þ
ffiffiffiffiffiffiffiffiffi
2f 2t

p
Zmn ; (23a)

_ym ¼
ffiffiffiffiffiffiffi
2=t

p
Zm; (23b)

where t is the persistence time, and Zmn and Zm are Gaussian
white noises with zero means and variances hZmn(0)Zab(t)i =
dmadnbd(t) and hZm(0)Zn(t)i = dmnd(t).

We perform simulations of N cells with periodic boundary
conditions. We define the unit length

ffiffiffiffiffiffi
A0

p
¼ 1, energy kA0 = 1,

and time z/k = 1. Simulations are started from a regular
hexagonal packing which satisfies cell areas Ai = A0. This
implies that the area of the system is L2 = NA0. We enforce
the shape index s0 ¼ P0

	 ffiffiffiffiffiffi
A0

p
¼ 3:72 such that in absence of

forcing the regular hexagonal packing of cells is both rigid and
force-free. We use t = 5 for all data presented.

This model is integrated using the MIT-licensed library
cells.73

3.1.2 Pair active Brownian particles (pABP). We consider N
disk particles with diameters D and positions rm which interact
via a harmonic pair-wise potential

U int ¼
XN
m;n¼1
man

1

2
k D� rn � rm

�� ��
 �2Y D� rn � rm
�� ��
 �

; (24)

where Y is the Heaviside function. For this model the cell
centres are the disk centres with positions ri = rm.

We consider active forces which are pair-wise or particle-
wise, respectively (see Fig. 1(c) for a visual representation)

kactm ¼ f
XN
n¼1
man

u ym

 �

� u ynð Þ

 �

b rn � rm
�� ��
 �

; (25a)

kact
m = fu(ym), (25b)

where f is the stochastic force amplitude and with the kernel
function b(r) = (1 � r/D0)Y(D0 � r) where D0 = 1.5D 4 D to avoid
singularities at the point of contact. These forces evolve sto-
chastically: angles ym diffuse as in active Brownian particles3,4,74

_ym ¼
ffiffiffiffiffiffiffi
1=t

p
Zm; (26)

where t is the persistence time, and Zm is a Gaussian white noise
with zero mean and variance hZm(0)Zn(t)i = dmnd(t). We stress that
the particle-wise force model corresponds exactly to active
Brownian particles (ABPs).

We perform simulations of N cells with periodic boundary
conditions. We define the unit length D/2 = 1, energy k(D/2)2 =
1, and time z/k = 1. Except where noted, simulations are started
from a regular hexagonal packing with packing fraction f =
Np(D/2)2/L2 = 1, corresponding to a thoroughly solid state. We
use t = 25 for all data presented.

This model is integrated using the GPL-licensed library
SAMoS.75

3.2 Location and properties of the melting transition

We expect a disordered liquid phase at large stochastic force
amplitude f, and an ordered solid phase at small f. While at
equilibrium, it is expected that structural and dynamical char-
acteristics coincide and so determine the phase of the system,
we cannot exclude that out of equilibrium, structure and
dynamics may indicate different phases (see e.g. the flowing
crystals of ref. 76). We thus consider two structural character-
istics, the global hexatic and translational order parameters C6

and Cq0
(13), and a dynamical characteristics, the mean square

displacement (MSD)77

MSDðtÞ ¼ 1

N

XN
i¼1

riðtÞ � rðtÞ½ � � rið0Þ � rð0Þ½ �j j2
D E

; (27)

with rðtÞ ¼ ð1=NÞ
PN
i¼1

riðtÞ the position of the centre of mass at

time t, to determine the phase of our models as a function of
the force amplitudes.
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For both jtVM and pABP models there is, as the force
amplitude is increased, a sharp simultaneous decrease in both
translational and hexatic order (Fig. 2(a) and (b)). We thus
observe a structurally ordered phase, in the jtVM model for f t
0.03, and in the pABP model for f o 0.11. For the pABP model,
dynamics is slow near the transition, and we have confirmed
that configurations at f = 0.115 and f = 0.117 are disordered in
steady-state by using long simulations of both ordered and
disordered initial configurations.

In Fig. 3, we plot configurations of the pABP model corres-
ponding to the solid (a, b), the liquid (e, f), and a configuration
at an intermediate value of f (c, d). The intermediate force
amplitudes f = 0.112 and to a small extent f = 0.11 show phase
coexistence at steady state after liquid bubbles slowly nucleate
in the ordered solid (see ESI,† Videos S1 and S2).

This structural ordering partially coincides with a dynamical
transition from a diffusing liquid state at large f, where correla-
tions decay over times t \ t, to an arrested solid state at small f
as evidenced by the plateau in MSD (Fig. 2(c) and (d)). For the
pABP model, we observe a narrow range f = 0.11–0.112 of very
slow liquid dynamics while the system stays long range ordered
while bubbles of disordered phase nucleate in the system. In
the ESI† (Section E), we also show how the self-intermediate
scattering function Fs(t) relaxes, and finally, we also provide the
dynamical characteristics of the ABP model, for comparison.

The abrupt structural relaxation together with the equally
abrupt transition in the MSD and the coexisting phase is

indicative of a first-order melting transition in the pABP
system. We now turn to our observations for the structural
fluctuations.

3.3 Structural fluctuations

Deep in the solid phase, we expect our derivations for harmonic
lattices to hold. We first compute the displacement variance
hu2i for both models in the solid phase, with particle-wise and
pair-wise stochastic forces, as a function of system size (Fig. 4(a)
and (b)). These confirm our predictions (10). For systems with
pair-wise stochastic forces, hu2i converges to a finite value at
large N. In contrast, for systems with particle-wise stochastic

forces, hu2i diverges as logL � log
ffiffiffiffi
N
p

. We fit hu2i(N) to a

Fig. 2 (a) and (b) Global structural order parameters (13) – hexatic order
parameter C6 (blue open symbols) and translational order parameter Cq0

(orange full symbols) – in steady state as functions of the stochastic force
amplitude f. (c) and (d) Mean squared displacements as functions of time
MSD(t) (27) in steady state for different stochastic force amplitudes f.
Dashed lines are linear functions of time as guides to the eye. (a) and
(c) Junctional tension vertex model (jtVM) with N = 108 cells and persis-
tence time t = 5. (b) and (d) Pair active Brownian particles (pABP) with N =
16 384 particles and persistence time t = 25. Identical markers between
(a) and (c) and between (b) and (d) correspond to identical data sets.

Fig. 3 Order and disorder for pair active Brownian particles (pABP).
Visualisation of the argument of the local hexatic order parameter
arg(c6,i) (11) (left column, (a), (c) and (e)), and the argument of the local
translational order parameter arg(cq0,i) (12) (right column, (b), (d) and (f)).
(g) Shows different hexagonal packing orientations with the colour corres-
ponding to the argument of the hexatic order parameter. Colours asso-
ciated to the argument of the translational order parameter illustrate
deviations from the regular lattice corresponding to cq0

: an ordered lattice
should display arg(cq0,i) = 0 everywhere. We used N = 16 384 particles and
persistence time t = 25. Stochastic force amplitude is (a) and (b) f = 0.1,
(c) and (d) f = 0.112, (e) and (f) f = 0.15.
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constant hu2isN for models with pair-wise stochastic forces, and

to Cf log
ffiffiffiffi
N
p

for models with particles-wise stochastic forces.
We extract Cf E 4.83 � 10�3 and hu2isN E 7.00 � 10�3 in the
vertex model with self-propelled vertices and junction tensions
respectively (Fig. 4(a)), and Cf E 2.41 � 10�2 and hu2isN E
3.10 � 10�3 for active and pair active Brownian particles
respectively (Fig. 4(b)). It is noteworthy that hu2i can be derived
from the displacement spectra (8) (see ESI,† Section C).

Next, we compute the translational order correlation func-
tion Cq0

in the solid phase (Fig. 4(c) and (d)). We confirm that
the solid phase of the models with pair-wise stochastic forces
exhibits long-range translational order, with a large-distance
correlation value deriving from the (finite) displacement var-
iance. We observe, in the case of particle-wise stochastic forces,
that correlations decay algebraically, consistently with quasi-
long-range translational order.33 Our linear response predic-
tions (15) fit this data if we use the values of Cf and hu2isN
determined from the system-size dependence of displacement
fluctuations (Fig. 4(a) and (b)), as well as the measured

reciprocal lattice vector squared norms |q0|2 E 45.6 for the
vertex model and |q0|2 E 14.6 for the particle model. Therefore,
we confirm that the exponent of this decay is directly related to
the factor with which the displacement variance diverges (15b).
We report the following exponents for the algebraic decay of the
correlations Cq0

B r�Z in the case of systems with stochastic

forces: ZABP ¼ 1

2
q0j j2Cf � 0:176 for disk ABPs and ZVM E 0.110

for the self-propelled vertex model. Both exponents are below

their expected upper limit of
1

3
within the KTHNY theory,

consistently with previous studies on self-propelled particles78

and unlike active particles with small amounts of polar
alignment.33

In Fig. 5 we compute the order correlation functions
through the melting transition, using the largest system size
N we have available. As shown in Fig. 5(a) and (b), the orienta-
tional order correlation function C6(r) in both ABP and pABP
models shows long-range correlations in the solid phase and
short-ranged correlations in the liquid phase. We observe
indications of a power-law decay near the melting transition,
and notably we find a significant drop between f = 0.11 and f =
0.112 for the pABP model, both liquids in the coexistence
region. As shown in Fig. 5(c) and (d), the translational order
correlation Cq0

has the same transition points, though in the
solid phase the pABP has long range order while the ABP is
power law (note the extended y range compared to Fig. 4(d)).
We stress that regions with short-range structural order are rich
in defects, as evidenced by coordination numbers zi a 6, while
regions with long-range structural order are exempt of these

Fig. 4 (a) and (b) Displacement fluctuations hu2i (10) computed in steady
state and plotted for (a) the vertex model with particle-based self-
propulsion and junctional tension (jtVM), and (b) particle and pair active
Brownian particles (pABP) as a function of the number of particles N. Full
symbols represent models with pair-wise stochastic forces, which we fit to
a constant hu2isN (solid lines). In contrast, for models with particle-wise
stochastic forces (plotted in open symbols), we fit to Cf log

ffiffiffiffi
N
p

(dashed
lines). These plots are logarithmic on the x-axis and linear on the y-axis.
(c) and (d) Translational order correlations Cq0

(14) for the same data as in
(a) and (b) with pair-wise models (full symbols) and particle-wise models
(open symbols), together with our predictions for the large-distance
scalings of the correlations (15): a constant (stress, solid lines) for pair-
wise and an algebraic decay (force, dashed lines) for particle-wise sto-
chastic forces. These plots are logarithmic on both axes. We used
persistence time t = 5 and force amplitude f = 0.02 for both vertex models
(a) and (c) and persistence time t = 25 and force amplitudes f = 0.1 and f =
0.05 for the pair-wise and particle-wise particle models respectively (b)
and (d). Identical colours and markers between plots correspond to
identical data sets.

Fig. 5 (a) and (b) Orientational order correlation functions C6(r), and
(c) and (d) translational order correlations Cq0

(r) as functions of space for
different stochastic force amplitudes f for particle-wise (ABP, left) and pair-
wise active forcing (pABP, right). We used N = 16 384 or 65 536 where
available, and persistence time t = 25. Dashed lines are algebraic functions
of distance as guides to the eye.
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same defects (see ESI,† Section F), in accordance with the
established understanding of the melting of two-dimensional
solids.79 For the pABP model, we confirm thus that the diffus-
ing liquid state corresponds to a molten state with short-range
structural correlations, while the arrested solid state displays
long-range structural order. At our current numerical resolu-
tion, in the pABP model, we do not see evidence of a hexatic
phase8,78,80 with finite hexatic order and vanishing transla-
tional order, with the potential candidates f = 0.11–0.112
showing solid–liquid coexistence instead.

Finally, we compute the radially-averaged structure factor
S(q) to test our predictions of hyperuniformity (16). We present
results exclusively for the (p)ABP models because the large
systems sizes needed to observe the large-wavelength decay of
structural fluctuations are not yet attainable with our current
vertex model algorithm. In Fig. 6, we plot the structure factor
for particle-wise (a) and pair-wise (b) stochastic forces. In the
former case, we observe that S(q) converges to a finite constant
as q - 0, which is the expected behaviour for self-propelled
particles systems at moderate activities away from spontaneous
phase separation.81,82 In the latter case, we do observe the
expected scaling S(q) B q2 as q - 0 away from the order-to-
disorder transition, which confirms that these systems are
indeed hyperuniform. Most interestingly, we observe that this
scaling applies not only in the solid phase at f r 0.1, where our
derivation is expected to hold, but also in the liquid phase at
f Z 0.15. Therefore, despite this phase showing orientational
and translational disorder on small length scales only (Fig. 3(e)
and (f)), this measurement confirms that there is a ‘‘hidden
order’’ on large length scales,39 which has also recently been
observed in phase separating droplets.83 We also see that the
scaling S(q) B f 2 of the continuum prediction works well in the
deeply solid region. In both regions, we observe an apparent
Bqa scaling with a 4 2 for some values of f. However, as we
showed, large-wavelength relaxations are heavily suppressed
for fluctuating active stresses, and relaxation to the true steady
state of S(q) may occur only on an inordinately long time
scale. Meanwhile, near the transition region where order and

disorder coexist, on both sides, the system displays more
complex, but not hyperuniform scaling of S(q).

4 Discussion and conclusion

In this paper we first demonstrated how, within linear elasticity
theory, two-dimensional active solids featuring fluctuating
active stresses display finite displacement fluctuations hu2i in
the thermodynamic limit N - N (10), long-range translational
order (15), and vanishing large-wavelength density fluctuations,
i.e. hyperuniformity (18).

These properties derive from, on the one hand, the
absence of particle-wise white noise counterbalancing the
instantaneous particle-wise friction, thus violating the second
fluctuation–dissipation theorem,60–62 and on the other hand,
the fluctuations of the driving force vanishing for large wave-
lengths (7).

Microscopically, these fluctuating active stresses take the
form of pair-wise stochastic forces, forces which respect action-
reaction rather than the more usual particle-wise active driving.
We introduced two numerical models which incorporate these
pair-wise stochastic forces: a vertex model with fluctuating
junction tension (jtVM) and a particle-based model with pair-
wise additive stochastic forces respecting action-reaction
(pABP). We showed that all of our predictions held in both
models. These models are built from widespread active matter
models used to describe the physics of dense cell tissues,
therefore we expect these results to shed light on both out-of-
equilibrium ordering transitions as well as on structural fluc-
tuations of living systems.

Since an ordered symmetry-broken phase is possible within
our model, it is questionable if the two-step melting scenario of
two-dimensional solid from the KTHNY theory applies here.
This has been the subject of recent interest in the active matter
community with several experimental systems being designed
to address these questions.76,84,85 To the best of our current
numerical efforts, we have not been able to identify a hexatic
phase which would feature short-range translational order and
quasi-long-range orientational order. Moreover we observe
phase-separated configurations close to the transition
(Fig. 3(c) and (d)) which indicate a first-order transition
between a disordered liquid and an ordered solid as in three-
dimensional equilibrium systems.

Our numerical results also show that disordered liquid
states, outside the scope of linear elasticity theory, display
hyperuniformity as well.21,25,26 Previously it was shown that
force-balanced configurations (ground states of the potential
energy) of Voronoi models of biological tissues have suppressed
density fluctuations and are thus hyperuniform.86–88 In con-
trast, our pathway is more general as it is based on the
symmetry of the active fluctuations and does not depend on
the specific interaction potential. This outlines a larger class of
active systems which encompasses non-motile active matter
models, e.g. featuring pulsating contractions25 or state-
dependent interaction potentials.89 Therefore we expect our
results to be widely applicable.

Fig. 6 Scaled structure factor S(q)/f2 (16) defined as cylindrical average of
S(q) over wavevectors q = (2pm/Lx,2pn/Ly) which satisfy |q| A [q � dq/2,q +
dq/2] with dq = 10�2 and divided by the square of the stochastic force
amplitude f2. We plot the structure factor for different stochastic force
amplitudes f in (a) for the particle model with particle-wise stochastic force
(ABP), and in (b) for the particle model with pair-wise stochastic forces
(pABP). We used N = 16 384 or 65 536 particles, and persistence t = 25.
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We note that there is evidence of hyperuniform organisation
in biological systems, e.g. cell nuclei in brain tumours90 or
suspensions of algae.91 Further studies may explore if the
mechanism we have described is exploited in cell tissues in
order to suppress density fluctuations.
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