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Physics-based evolution of transmembrane
helices reveals mechanisms of cholesterol
attraction

Jeroen Methorst 1,2, Nino Verwei 1, Christian Hoffmann 3,
Paweł Chodnicki 4,5, Roberto Sansevrino3, Partha Pyne6, Han Wang 3,
Niek van Hilten 1,7,8, Dennis Aschmann1, Alexander Kros 1, Loren Andreas6,
Jacek Czub 4, Dragomir Milovanovic 3,9 & Herre Jelger Risselada 1,2

The existence of linear cholesterol-recognition motifs in transmembrane
domains has long been debated. Evolutionary molecular dynamics (Evo-MD)
simulations—genetic algorithms guided by (coarse-grained) molecular force-
fields–reveal that thermodynamic optimal cholesterol attraction in isolated
alpha-helical transmembrane domains occurs when multiple consecutive
lysine/arginine residues flank a short hydrophobic segment. These findings are
supported by atomistic simulations and solid-state NMR experiments. Our
analyses illustrate that linear motifs in transmembrane domains exhibit weak
binding affinity for cholesterol, characterized by sub-microsecond residence
times, challenging the predictive value of linear CRAC/CARC motifs for cho-
lesterol binding. Membrane protein database analyses suggest even weaker
affinity for native linear motifs, whereas live cell assays demonstrate that
optimizing cholesterol binding restricts transmembrane domains to the
endoplasmic reticulum post-translationally. In summary, these findings con-
tribute to our understanding of cholesterol-protein interactions and offer
insight into themechanisms of protein-mediated cholesterol regulationwithin
membranes.

Cholesterol serves as a major constituent of the mammalian plasma
membrane. The overall fraction of cholesterol in the plasma mem-
brane relative to total plasmamembrane lipids is about 30% to 40% in
leukocytes, epithelial cells, neurons, and mesenchymal cells1. The
localization, trafficking, and functionality of membrane proteins
involved in cholesterol-dependent pathways and cholesterol home-
ostasismay critically rely on their ability to attract and bind cholesterol

molecules2–14. Prediction of protein-cholesterol affinity could therefore
illuminate their role in diseases that are characterized by loss of cho-
lesterol homeostasis (e.g., neurological diseases and cancer15), and
pave the road for novel drug targets and strategies6,11,12,16–20. A com-
pelling amount of data obtained by bioinformatic approaches, mole-
cular modeling and simulations, and experiments have suggested the
existence of cholesterol recognition amino acid consensus motifs
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(CRAC motifs)3,4,14,21,22, as well as its inverse (CARC motif)23, in various
membrane protein families, including, for example: viral membrane
proteins (e.g., refs. 16,19), ion channels (e.g., refs. 24,25), andGprotein-
coupled receptors (GPCRs)—the most intensively studied drug target
family (e.g., refs. 6,11,26–30).

However, the looseness of the CRAC and CARC definitions,
represented via the flexible algorithmic rules: (L/V)-X1−5-(Y)-X1−5-(K/R)
and (K/R)-X1−5-(Y/F)-X1−5-(L/V) respectively, is rather unexpected for a
motif that mediates binding to a unique molecule, raising skepticism
about its predictive value3,10,23,31. This flexible definition based solely on
residue patterning within a single transmembrane motif neglects the
overall 3-dimensional protein structure of multipass membrane pro-
teins, including the presence of hydrophobic grooves and cavities
formed between helical hairpins and additional adjacent transmem-
brane helices, which have been shown to actively mediate cholesterol
binding7,8,10,31,32. In addition, the large flexibility of these motifs implies
that cholesterol recognition does not depend solely on exact mole-
cular shape compatibility, as in protein-ligand docking, but is influ-
encedbyother thermodynamic forces primarilydictatedby theoverall
amino acid composition and structural features of transmembrane
helices such as hydrophobic length and accessible surface area, similar
to the structural determinants that dictate their relative preference for
cholesterol-enriched membrane phases5. Hence, such an alternative
perspective would account for the variability in the positions of these
amino acids within various proposed linear motifs associated with
cholesterol binding3,14,23,33.

High-throughput screening of transmembrane sequences offers a
powerful approach for investigating the existence of linear motifs
while simultaneously characterizing their underlying thermodynamic
driving forces. However, the accessible chemical space of transmem-
brane domains is astronomical (about 2020 possibilities), which war-
rants the use of smart search strategies.

Directed evolution is a method used in protein engineering that
mimics the process of natural selection to steer proteins or nucleic
acids toward a pre-specified goal34. Evolutionary inverse design stra-
tegies see applications in a variety of fields due to their efficient
exploration of search-space35. These methods fall within the scope of
reinforcement learning, adapting processes for optimal performance
by reinforcing desired behavior36. Of special interest are the genetic
algorithms (GA), which model the mechanisms of Darwinistic evolu-
tion in a computational algorithm, utilizing genetic elements such as
recombination, cross-over, mutation, selection, and fitness37. Since
directed evolution is both time and labor intensive, it can quickly
become intractable in a laboratory setting thereby limiting its value. In
such scenarios, molecular dynamics (MD) simulations may provide an
alternative in silico route for the high-throughput virtual screening of
chemical space.

Here, we demonstrate the ability of GAs guided by coarse-grained
MD simulations—a method which we coin evolutionary molecular
dynamics (Evo-MD)—to yield unique insights into the driving forces
that underpin cholesterol recognition (Fig. 1). Evo-MD effectively
reduces the search for optimal ligand consensus motifs to solving a
variational problem in high-dimensional chemical space using sto-
chastic operators such as genetic cross-overs and mutations. To this
end, we introduce EVO-MD, a highly parallel software package for
evolutionary molecular dynamics simulations that incorporates the
GROMACS molecular dynamics engine into a custom, Python-based
GA wrapper. EVO-MD can adapt any element of MD simulations, be it
structural (e.g., atoms, molecules), topological, or simulation para-
meters (e.g., force field parameters), based on a reinforcement value
measured during the simulation (see ref. 38 for a recent perspective on
physics-based optimization).

In this work, we employ the computational method Evo-MD to
explore the thermodynamicdriving forces of cholesterol attraction for
a fixed-length sequence of 20 amino acids within a transmembrane

domain. Our primary objective is to investigate the factors that influ-
ence cholesterol binding affinity in transmembrane helices, guided by
the hypothesis that the presence of a cholesterol-binding linear motif
correlateswith optimal cholesterol binding in isolated transmembrane
domains. In accordance with the original linear motif concept, we
exclude contributions from neighboring helices to cholesterol attrac-
tion/binding that could generate correlations extending beyond a
single transmembrane domain. Our Evo-MD simulations reveal an
intriguing phenomenon in this context: a strong negative hydrophobic
mismatch emerges as a predominant factor in cholesterol attraction
within isolated membrane helices. The resolved patterning is char-
acterized by a short hydrophobic segment flanked by stacked charged
lysine and arginine residues. This finding is further substantiated by
atomistic free energy calculations, which underscore the high affinity
of cholesterol for this specific hydrophobic configuration. Moreover,
solid-state NMR experiments validate the interaction of cholesterol
with lysine residues embedded within the hydrophobic interior of the
membrane, as evidenced in synthesized transmembrane peptides.
Cellular assays reveal that proteins incorporating these optimal motifs
localize to the endoplasmic reticulum (ER) membrane post-
translationally due to their hydrophobic mismatch.

The estimated residence time for optimal cholesterol binding is
approximately hundreds of nanoseconds, which is remarkably short
compared to the timescales ofmany biological processes.Our findings
also underscore that some of the proposed essential hydrophobic
aromatic residues within CARC motifs, such as phenylalanine, in fact
actively and inherently repel cholesterol, refuting the prevailing
assumption of their cholesterol-attracting nature. As a result, our
analysis proposes that the responsiveness of specific motifs to
increased cholesterol levels might be due to their use of the dual
function of cholesterol as both a ligand and a solvent for membrane
proteins. This responsiveness appears to rely on a fine balance
between amino acids that either attract or repel cholesterol, rather
than solely focusing on ligand binding.

Results
Cholesterol attraction features evolutionary conservation
Artificial evolution is simulated in a system consisting of a 30% cho-
lesterol and 70% 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine
(POPC) membrane containing a single, 20 amino acid long peptide
sequence positioned transversely through the membrane (Fig. 2A, B).
The use of a model membrane composed of POPC and 30% choles-
terol, though simple, effectivelymimics the lipid carbon tail saturation

MD simulations

Cholesterol

Evo-MD

Random
Initialization

+

-

Fitness

SelectionRecombination

Next
Iteration

Convergence

Fig. 1 | Illustration of the basic concept of evolutionary molecular dynamics
(Evo-MD). Random peptide sequences self-evolve into optimal cholesterol
attracting transmembrane domains in the course of evolution. Generated peptides
are iteratively ranked upon increasing fitness, as determined via ensemble aver-
aging within molecular dynamics simulations.
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and cholesterol concentration found in many cellular membranes39.
We conducted simulations using both the Martini 240–42 and the newer
Martini 343–45 coarse-grained force fields to validate for potential
inconsistencies between the forcefields.Owing to the symmetryof the
here studied bilayer, generated sequences are mirror symmetric, i.e.,
only the first ten amino acids are independently chosen. Evolution is
directed towards peptide sequences that increase the local density of
cholesterol, visualized by the percentage cholesterol content of the
membrane within a certain range from the peptide (Fig. 2C). In prac-
tice, this is obtained by maximizing the ensemble-averaged non-bon-
ded interaction energy between the peptide and cholesterol, i.e., this
defines the fitness, in the course of sequence evolution.

Starting from random peptide sequences, the observed evolution
eventually converges to an optimum, as is evident by a plateau in the
fitness values (Fig. 2D). Convergence of genetic algorithmsdepends on
a variety of factors, most notably the size of the population—which
directly relates to the area of the search space that is sampled each
iteration—and the number of iterations that are performed. Either
parameter requires some minimum value for convergence to occur.
The population size should be large enough (in combination with
mutation rate and other diversifying factors) to prevent premature
convergence to suboptimal solutions, and, with evolution proceeding

between iterations, a certain minimum number of iterations is neces-
sary. Ideally, both parameters are chosen as large as possible.

To assess whether the convergence of evolution is either sub-
optimal (i.e., a local solution) or optimal (i.e., a global solution), we
conducted a set of evolutionary runs with population sizes ranging
from 4 to 320 individuals until no further convergence of fitness was
observed. Figure 2D shows how the fitness of the best-performing
sequences changes with each generation. As expected, increasing
population size increases the optimum fitness, as is evident from a
higher plateau value reached after convergenceoffitness (Fig. 2E). This
increase in optimal fitness leveled off once the population size began
exceeding 128 individuals, which we took as the baseline population
size for GA convergence. Data from GA runs containing 128+ indivi-
duals and at least 40 generations was used for sequence analysis.

Associated with the convergence in fitness with respect to
population size,weobserveda similarity in the sequences producedby
distinct GA runs. AlthoughGA runswith smaller population sizes (<64)
eventually converged to some fitness value, a comparison between
these distinct GA runs revealed a large diversity in the respective
sequences, indicating that the algorithms converged to local optima in
the solution space. This diversity in sequence decreases as population
size increases, with very similar sequences being obtained as
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Fig. 2 | Evolutionary molecular dynamics simulations of a cholesterol attract-
ing transmembrane protein. A,B Snapshots of a transmembrane protein (yellow)
embedded within a POPC (white/brown) membrane containing 30% cholesterol
(red). C Ratio of the cholesterol content in a local radius around the protein (see
methods). An increase in fitness correlates to an increase in local cholesterol. The
baseline cholesterol concentration (30%) is indicated by the dashed line. D Fitness

development during protein evolution, shown for various population sizes. The
fitness is expressed in terms of the total peptide-cholesterol non-bonded interac-
tion energy. Fitness increases with GA iterations. Size of the population affects the
height of the fitness plateau. E The GA converges to different fitness values,
depending on the size of the populations. Eventually, evolution converges to an
optimal solution for population sizes greater than 128 individuals.
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population sizes increase to 128 individuals and above. Furthermore, at
such population sizes, starting the evolution from different initial
populations consisting of randomly generated sequences yields a
consistent result. On these grounds, we can conclude that the GA
successfully converges to a global optimum.

To gain detailed insights into the resolved evolutionary land-
scape, high-fitness sequences from all GA runs with populations of
128+ individuals were combined to generate a sequence logo of the
sampled sequence space (Fig. 3A). Sequence logos express the degree
of amino acid conservation at each position within the sequence in
terms of the concomitant Shannon entropy (bits) by scaling the
character height of the corresponding amino acid. Randomly

occurring amino acids at a certain position contain no information,
corresponding to a small letter, whereas a more frequently occurring
amino acid encodes information, corresponding to a larger letter.

In both theMartini 2 andMartini 3 coarse-grained force fields, the
global solution converges to a distinctive pattern featuring a short
conserved hydrophobic core centered within the peptide. This core is
flanked by two hydrophilic blocks composed of conserved positively
charged lysines (K) and arginines (R). Notable differences exist
between force fields. Martini 2 exhibits a strong preference for three
consecutive lysines, which are the most evolutionarily conserved
residues. In contrast, Martini 3 features equal competition between
lysines and arginines. Both versions primarily feature negatively
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poly-lysine patches, and the short hydrophobic section. The corresponding

atomistic structure is shown below. E Free energy profiles over the peptide-
cholesterol distance are computed in all-atom simulations for the rationally
designed motif D3K3L11K3D3 (L11), and the stereotypical transmembrane peptide
GK2[LA]7LK2A (KALP21). KALP21 is characterized by a slender hydrophobic motif
rich in leucines [LA]7L. Nevertheless, a pronounced cholesterol affinity is only
observed for the designed motif L11. Shaded areas represent the standard error of
the mean. 3 independent replicates were simulated for each peptide. F Peptide
covering the known cholesterol binding γM4 transmembrane region4,56. The CARC
motif present in this sequence is indicated by the colors4,56. Mutation of the aro-
matic residue phenylalanine into an alanine is known to impair its cholesterol-
dependence4. G Free energy profiles over the peptide-cholesterol distance are
computed in all-atom simulations for the γM4 peptide, and the non-CARC (F → A)
mutant of the γ M4 peptide. Mutation of phenylalanine in fact produces a strong
increase in cholesterol affinity. Shaded areas represent the standard error of the
mean. 3 independent replicates were simulated for each peptide.

Article https://doi.org/10.1038/s41467-025-63769-5

Nature Communications |         (2025) 16:9275 4

www.nature.com/naturecommunications


charged aspartic acids (D) at terminal positions, which aremore highly
conserved in theMartini 3 force field. High-fitness sequences resulting
from directed evolution in both Martini 2 and Martini 3 force field
versions exhibit a consistent hydrophobic pattern. This pattern fea-
tures positively charged lysines and arginines at positions directly
facing a central short hydrophobic block.

It is important to emphasize that the solution space resolved here
is subject to a constraint in secondary structure, i.e., all sequences are
assumed to be alpha-helical5. We will address the transferability of
solution space in more detail in a later section of this work. Further-
more, while our study primarily investigates cholesterol attraction in
simplified POPC model membranes, it is important to note that ver-
ification using a coarse-grainedmodel of native epithelial membrane46

demonstrates the universality and persistence of the resolved attrac-
tion features in more realistic membrane environments (Supplemen-
tary Fig. 2).

Short hydrophobic blocks maximize cholesterol attraction
The sharp positional convergence of hydrophilic charged residues
deeply located in the hydrophobic core of themembrane promptedus
to investigate what role the length of the hydrophobic block plays in
the cholesterol-sensing ability of the sequence. To this end, we created
dummy peptides according to the D2K(12−x/2)–Lx–K(12−x/2)D2 motif with
each peptide consisting of 20 amino acids in total. Here, leucines form
the hydrophobic block of the peptides, with lysines functioning as the
hydrophilic edges. By varying the number of leucines and lysines, we
effectively vary the length of the hydrophobic block. Interestingly,
cholesterol affinity increases with decreasing hydrophobic block
length, with an optimal effect at 2–4 leucines (Fig. 3B). This pattern
seems to arise from a trade-off between short block length and
transmembrane (meta)stability, with a further decrease in block length
resulting in a decline in functionality. Artificially restraining a trans-
membrane orientation/topology for such motifs (e.g., K9V2K9, and
even K20) eliminates the stability factor, thereby restoring the func-
tionality (Supplementary Fig. 3). The cholesterol attraction thus
appears to be mediated by positively charged lysine residues deeply
embedded in the membrane, as is consistent with their evolutionary
conservation. The positioning of these residues, specifically the length
of the conserved hydrophobic block, must ensure a transmembrane
topology during evolutionary development. Interestingly, despite the
Martini 2 force field showing a stronger net attraction than theMartini
3 force field, both exhibit a similar overall gradual decline in relative
cholesterol affinity as block size increases toward a hydrophobic
length of 20 amino acids.

Finally, we emphasize that our study specifically focuses on
maximizing the attraction of freemembrane cholesterol. Owing to the
membrane thickening effect of cholesterol42, cholesterol-enriched
phases such as the liquid ordered (Lo) phase generally favor TMDs
characterizedbya long rather than shorthydrophobic length5,47–50. The
here-resolvedmotif is therefore not expected tooptimally bind toward
the interface of cholesterol-enriched liquid ordered domains5,42 (Sup-
plementary Fig. 9). Nevertheless, the clustering of cholesterol is itself
membrane phase independent and equally occurs when the resolved
TMD is embedded within a liquid-ordered DPPC:cholesterol mixture
(Supplementary Fig. 3).

Cholesterol affinity favors small hydrophobic amino acids
Next, we examined whether the composition of the hydrophobic
fraction influences cholesterol attraction. To investigate this, we con-
structed D2K2X20K2D2 sequences to systematically analyze the native
cholesterol affinity of hydrophobic residues in the absence of hydro-
phobic mismatch for the Martini 2, Martini 3, and the atomistic
(AMBER99SB-ILDN with Slipids) force field (Fig. 3C). Wemeasured the
local cholesterol composition within a 1.0 nm radius of the trans-
membrane domain to assess cholesterol attraction.

In the Martini 2 force field, we observed an unexpectedly strong
attraction between cholesterol and certain amino acid residues, par-
ticularly proline, valine, and leucine. These residues aremodeled using
a simplified representation consisting of a small single-bead side chain
with variable bond lengths. Our investigation revealed that artificially
altering the side chain bond distances significantly impacted choles-
terol attraction. Specifically, decreasing the bond length enhanced
cholesterol attraction, while increasing it diminished attraction (Sup-
plementary Fig. 20). We attribute this pronounced cholesterol attrac-
tion primarily to artifacts arising from the exaggerated interactions
between small bead types used to represent both cholesterol and
amino acids within the Martini 2 force field43,44.

In contrast, the Martini 3 force field showed a different pattern.
Only alanine and glycine displayed significant net attraction toward
cholesterol. However, the atomistic simulations revealed that only
glycine may exhibit a weak but significant cholesterol attraction. This
finding aligns with the cholesterol binding to glycine zipper motifs
observed in atomistic simulations17,51.

Surprisingly, larger hydrophobic aromatic residues such as tyr-
osine (Y) and phenylalanine (F)—key components of CRAC/CARC
motifs—were found to be weakly or strongly cholesterol repulsive
across all simulation models, including atomistic simulations. Fur-
thermore, other hydrophobic CRAC/CARC residues like leucine and
valine showed either inert or repulsive behavior toward cholesterol,
with particularly strong repulsion observed in the atomistic
simulations.

Our research across three distinct force fields reveals that the
composition of hydrophobic residues may prioritize minimizing cho-
lesterol repulsion over maximizing attraction. Notably, the atomistic
and Martini 3 force fields demonstrated greater behavioral similarity
compared to the Martini 2 force field. To minimize repulsion, simula-
tions consistently favored small hydrophobic amino acids, such as
alanine, and residues with weaker helical propensity, including valine,
proline, and glycine. Conversely, larger hydrophobic amino acids like
leucine and aromatic amino acids (phenylalanine and tyrosine)
enhance repulsion. This pattern suggests that cholesterol affinity
appearsmoredependent on the size rather than the hydrophobicity of
the hydrophobic amino acids constituting transmembrane helices. We
propose that bulky, highly corrugated proteins disrupt the order
within the surrounding cholesterol matrix5,52, resulting in a local
depletion of cholesterol. The surprising absence of correlation
between amino acid hydrophobicity and (relative) cholesterol affinity
suggests that depletion is likely driven by optimizing cholesterol-
cholesterol interactions rather than protein-cholesterol interactions.
Hydrophobic transmembrane domains therefore tend to show a net
repulsion rather than a net attraction toward cholesterol. This repul-
sion appears to be compensated by negative hydrophobic mismatch
via lysines and arginines exposed to the hydrophobic membrane core.

NMR experiments and AtomisticMD support the resolvedmotif
In this work, we resolved the essential physicochemical driving forces
that underpin cholesterol attraction in transmembrane domains
within homogeneous model membranes. The here-resolved motif
features of the optimal cholesterol attractor are subsequently trans-
lated into more realistic peptide sequences by accounting for the
following three model approximations:

(I) Given that transmembrane domains are primarily composed of
alpha-helices, we imposed an alpha-helical secondary structure con-
straint on the generated sequences. Although this assumption sim-
plifies the search space by bypassing the challenge of secondary
structure prediction, it introduces the potential for amino acids with
low alpha-helix propensities (such as proline and valine)53 to appear in
the generated sequences, potentially leading to non-helical peptides in
unconstrained simulations. Maintaining stable helicity is crucial for
preserving membrane stability. Short hydrophobic helical segments
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flanked by deeply embedded charged amino acids create negative
hydrophobic mismatch, which maximizes cholesterol attraction.
However, strong membrane elastic forces constantly counteract this
stability. To address this, we designed a polyleucine sequence due to
its high helical propensity. Note that leucine residues exhibit inherent
cholesterol repulsion in our atomic-scale simulations (Fig. 3C).

(II) Electrostatic interactions are underestimated in the coarse-
grained simulations, enabling the formation of sequences with a high
net charge. To obtain a sequence with net zero charge, we balance the
conserved lysines patches by adding three aspartic acids (D) to both
terminal ends. This essentially entails a superposition of the conserved
features observed in the Martini 2 and 3 force fields.

(III) We anticipate on the notion that the coarse-grained model—
and MD simulations in general—underestimate the hydrophobic
length where transmembrane domains become thermodynamically
stable with respect to experimental conditions. Transmembrane par-
titioning of polyleucine helices in experiments only becomes favorable
over surface partitioning at a length of 10 leucines, in contrast to their
atomistic estimation of 7–8 leucines54 and our course-grained esti-
mation of 6 leucines (Supplementary Fig. 4).

Altogether, this leads to themore realistic sequences D3K3L11K3D3

(L11) and potentially D3K3L10K3D3 (L10), both of which retain all the
design features proposed by the GA. Biophysical characterization in
model membranes (POPC and DLPC with 30% cholesterol) using Cir-
cular Dichroism (CD) spectra confirms that even the shorter of these
two sequences (L10) adopts a helical structure in lipid membranes
(Supplementary Fig. 15).

The L10 peptide was confirmed to associate with cholesterol
through its highly conserved lysine patch in NMR experiments that
correlate peptide and cholesterol signals when the two are in close
contact. The peptide was labeled with 13C at the carbonyl group of the
two lysine residues that are directly adjacent to the Leucine motif
(position 6 and 17 in the sequence) and 13C4 labeled cholesterol. The
use of ether-linked lipids avoids any signal in the carbonyl region
coming from the lipids. A cross peak in the PDSD spectrum (Fig. 4A,
Supplementary Fig. 5) between the carbonyl group and cholesterol C4
confirms the interaction. A comparable interaction is seen for KALP-21
(Supplementary Fig. 6), which was labeled at the analogous lysine
residues. For these measurements, the sample temperature was 100K
to prevent diffusion, allowing a long mixing time of 30 s, which is
needed to efficiently observe transfer over the expected distance
range of about 6 to 9Å55. Note that the transfer rate in PDSD is
expected to scale downwith the sixth power of distance, such that the
measurement is strongly influenced by any small changes in the pose
of the cholesterol molecule relative to the peptide (See Fig. 4 for a
depiction of two such poses of close contact between peptide and
cholesterol, in which the distance changes substantially).

Furthermore, free energy calculations in atomistic MD simula-
tions (see Methods) confirm that this design pattern exhibits a pro-
nounced functionality in cholesterol affinity, as shown in Fig. 3E for the
sequence L11. This functionality is particularly evident when compared
to (i) the prototypical and somewhat similar model peptide KALP21
(sequence: GKK(LA)7LKKA), (ii) the γM4 transmembranedomain of the
muscle nicotinic acetylcholine receptor—a known strong cholesterol
binding sequence with a CARC motif4,56, and (iii) its F-452/A mutant4

(see Fig. 3G and Supplementary Fig. 21). We thus observe that the
encoded functionality persists between the different model resolu-
tions. Moreover, the obtained free energy profile illustrates that cho-
lesterol attraction occurs over rather large distances—up to 1.8 nm—

suggesting that the attraction is membrane mediated, and thus
resulting from an interplay between peptide and membrane.

Optimization of cholesterol binding resulted in a thermodynamic
optimum characterized by a small free energy minimum of up to 5 kJ/
mol or 2 kBT. Notably, this optimum represents the upper limit of
achievable residence time for optimal cholesterol binding. To put such

a value into perspective: The binding free energy of typical ligands
modifyingGPCR function exceeds values of 40 kJ/mol or 16 kBT

57 and is
thus substantially larger than that of cholesterol acting as a ligand via
binding of linear motifs.

Notably, our fitness function effectively maximizes the integral of
the free energy profiles shown in Fig. 3 within the cutoff radius of the
simulation (1.2 nm). To elucidate its association with the maximum
binding affinity of a single cholesterol molecule, we analyzed multiple
sequences, including the well-established CRAC and CARC motifs. An
overview of the measured fitness and the associated (maximum)
binding affinity of a single cholesterol molecule is listed in Supple-
mentary Fig. 17. The linear correlation we observed provides evidence
for the correlation between the maximum binding affinity of a single
cholesterol molecule and the overall enthalpic interaction. Therefore,
optimizing the attraction between cholesterol and the membrane
environment simultaneously optimizes the binding affinity for indivi-
dual cholesterol molecules, and thus we observed the upper thermo-
dynamic limit of cholesterol binding to linear motifs.

Our analysis of the concomitant average first passage times (see
Methods), derived from atomistic simulations, reveals that the upper
bound for cholesterol-binding residence time falls below 400 ns for
the L11 sequence. Although linear motifs within transmembrane
domains can facilitate cholesterol binding, the lowbinding affinity and
concomitant short residence time—even when close to the thermo-
dynamic optimum—may significantly limit the ability of such a ligand
binding based mechanism to alter protein functionality within GPCRs,
given that concomitant changes within the conformational ensemble
due to ligand binding occur on microseconds to milliseconds time
scales58,59.

The mechanism behind optimal cholesterol attraction
The main question to address remains why the thermodynamically
optimal mechanism of cholesterol attraction favors hydrophobic
mismatch. Notably, the observed effect is consistent across different
force fields, demonstrating robustness and reliability. Specifically, the
phenomenonoccurs in all three forcefields tested, suggesting that the
underlying physical principles driving this behavior are not dependent
on the particular set of parameters used in molecular simulations. In
contrast to POPC lipids, cholesterol exhibits a low free energy barrier
when undergoing flip-flopping between the two leaflets of the mem-
brane. As a result, the head groupof cholesterol is particularly adept at
interacting with the lysines deeply located within the hydrophobic
region of themembrane. Such bindingmode is confirmed both by our
molecular dynamics simulation as well as solid state NMR experiments
(Fig. 4A). We hypothesize that by moving toward this hydrophobic
region, cholesterol molecules effectively shield the lysine patch from
unfavorable interactions with the hydrophobic lipid tails (Fig. 4B). To
this end, we conducted simulations within theMartini 2 forcefield that
artificially restricted bilayer flip-flopping of cholesterol in the simula-
tions via the application of an external field (flat-bottom potentials).
High-fitness sequences containing a short hydrophobic block, which
would rely on the vertical mobility of cholesterol for their function-
ality, experienced a significant decrease in cholesterol attraction.
However, longer attractors with less optimal characteristics, where the
attraction of cholesterol primarily depends on the nature of the
hydrophobic section, remained relatively unaffected (Fig. 4C). There-
fore, we attribute the enhanced attraction of cholesterol to the dif-
ference in vertical mobility of lipid head groups in the immediate
vicinity of the transmembrane domain (TMD). It is worth noting that
the thermodynamically optimal POPE attractor (Martini 2 force field)
can also be attributed to a differential vertical mobility effect between
POPE and POPC lipids due to the effectively smaller phosphatidy-
lethanolamine (PE) head group. However, in this case the attractors
exploit a favorable enthalpic interaction between POPE head groups
and the centrally located tryptophan region (Supplementary Fig. 14).
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Exploitation of hydrophobic mismatches is limited by nature
An interesting question is to what extent a hydrophobic mismatch
mediated attraction of cholesterol can be expressed within isolated
transmembrane domains in nature. Noting that hydrophobic mis-
match is also a known determinant in protein trafficking and
sorting49,60, one would therefore intuitively expect a stronger lim-
itation on the evolutionary expression of such a mechanism. To
investigate the possible nature of these evolutionary constraints, we
performed experiments in live cells (HEK cells) expressing the short
hydrophobic sequences D3K3L10K3D3 (L10) and D3K3L11K3D3 (L11),
each with a fluorescent tag, as well as KALP21 (GK2[LA]7LK2A).
KALP21 is a typical model peptide in membrane biophysical studies
and has a (relatively short) hydrophobic length of 15 amino acids.
Our experiments revealed that L10 (Fig. 5E), L11 (Fig. 5F), and KALP21
(Fig. 5G) can be effectively expressed in live cells. These trans-
membrane proteins were found to localize exclusively to the endo-
plasmic reticulum (ER) and not to other intracellular organelles such
as lysosomes or mitochondria (Supplementary Fig. 10). In addition,

they did not localize to the plasma membrane, but notably
decreased the trafficking of fat transporter and scavenger receptor
CD36 to the plasma membrane (Supplementary Figs. 11 and 13). The
unique characteristics of the ER membrane make it particularly
favorable for the insertion of transmembrane domains (TMDs) with
negative hydrophobic mismatch, as it is the thinnest membrane in
live cells and incurs the lowest energetic penalty for such
insertions60,61. In contrast, the TMDs of SNARE proteins (such as
Syntaxin-1), which have longer hydrophobic lengths ranging from 23
to 25 amino acids, can still be successfully expressed throughout the
cell using the assay employed in this study49. However, the fact that a
prototypical model peptide like KALP21 (with a hydrophobic length
of 15 amino acids), which differs by only one amino acid from the
shortest native TMD within the TmAlphaFold database (with a
hydrophobic length of 16 amino acids), is confined to the ER mem-
brane highlights the existence of an evolutionary barrier related to
protein trafficking. This barrier prevents optimal exploitation of the
hydrophobic mismatch mechanism, which favors a hydrophobic
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length toward the limit of transmembrane topology stability (10 to
11 amino acids).

Finally, to explore the potential exploitation of hydrophobic
mismatch-mediated attraction in nature, we systematically analyzed
isolated transmembrane domains extracted from 8370 native mem-
brane proteins in the TmAlphaFold database using a CNN trained on
EVO-MD fitness-labeled data within the Martini 2 model (see Methods
and Supplementary Information). We discovered a weak but sig-
nificant correlation between predicted fitness and TMD length in
single-pass proteins, specifically at the shortest hydrophobic length of
16 amino acids (Fig. 5C). This correlation was absent in multi-pass
proteins, likely due to differential TMD lengths diminishing weak
evolutionary pressures for the expression of negative hydrophobic
mismatch. As a result, cholesterol attraction via linearmotifs in nature
will be limited toward less efficient mechanisms yielding residence
times that likely fall below the timescale of several 100 ns estimated for
optimal cholesterol attraction/binding. This raises the question whe-
ther these thermodynamically suboptimal mechanisms could remain
effective in achieving their biological purpose, specifically the regula-
tion of GPCRs, given that the timescales of conformational responses
(relaxation times) within GPCRs upon binding of ligands, being high
microsecond to milliseconds58,59, lie far beyond the here estimated
range of maximal attainable residence times for cholesterol binding to
linear motifs.

CRAC/CARC seems not predictive for cholesterol attraction
The CRAC/CARC motif has traditionally served as the primary cri-
terion for predicting cholesterol attraction/binding within trans-
membrane domains (TMDs). However, our study aimed to reassess
this motif’s predictive capacity for accurately determining choles-
terol attraction, its proposed functional role. Interestingly, our Evo-

MD simulations revealed that aromatic residues crucial for the
CRAC/CARC motif were not conserved during the evolutionary
process aimed at optimizing cholesterol attraction. In addition,
systematic atomistic simulations demonstrated that hydrophobic
motifs consisting of the aromatic CRAC/CARC residues F and Y
strongly repel cholesterol. The most potent cholesterol binding
motif described in the scientific literature, as revealed through in
silico molecular docking, is a CARC motif found within the γ M4
transmembrane domain of the muscle nicotinic acetylcholine
receptor4,56. Although our atomistic simulations confirmed amodest
initial affinity for cholesterol, as indicated by a shallow free energy
minimumof approximately 2.3 kJ/mol, the introduction of a putative
mutation (F-452/A) in the crucial aromatic residue within the CARC
motif, replacing phenylalanine with alanine4, actually enhanced the
motif’s ability to attract cholesterol rather than impairing it (Fig. 3G).
This finding is consistent with the detrimental effect of phenylala-
nine on cholesterol attraction when it forms the hydrophobic motif,
as observed in our coarse-grained and atomistic simulations. Nota-
bly, the characteristic free energy well depth for cholesterol
attraction in linear motifs is small (on the order of kBT), leading to
considerable variations between replicas in individual umbrella
sampling attempts (Supplementary Fig. 21). However, the free
energy differences between the different peptide sequences, parti-
cularly between L11, KALP21, and γ M4, are pronounced and sub-
stantially larger than the sampling noise.

Our results challenge the current assumption of CRAC/CARC
motif functionality in transmembrane domains (TMDs), as the pre-
sence of hydrophobic CRAC/CARC residues V, L, F, and Y within
hydrophobic motifs—being larger amino acids—intrinsically decreases
rather than increases cholesterol attraction (also see Supplementary
Fig. 12). The discrepancy between observed behavior and proposed
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roles in optimizing cholesterol binding affinity raises questions about
the true biological functions of thesemotifs. Key observations include:

• Short residence times: The cholesterol binding free energy to
CRAC/CARC motifs is 2 kBT or less (<5 kJ/mol), indicating low
affinity when compared to the energy of thermal fluctuations.
Consequently, the residence time is only several hundred nano-
seconds, suggesting rapid dissociation compared to other ligands
known to regulate GPCRs57.

• Cholesterol repulsion: Key residues in CRAC/CARC motifs repel
cholesterol, contradicting expectations based on their proposed
function.

• Absence of co-crystal structures: No crystal or Cryo-Electron
Microscopy (Cryo-EM) structures feature cholesterol bound to
CRAC/CARC motifs, suggesting generally weak binding
affinities10,31. Despite molecular docking studies in vacuum
showing good fit for cholesterol binding to CRAC/CARCmotifs3,23,
actual experimental support for this interaction remains scarce.

Finally, we conducted a comprehensive analysis using the TmAl-
phaFold database for membrane proteins, employing a convolutional
neural network (CNN) trained on fitness-labeled data generated by
EVO-MD using the Martini 2 model (see Methods and Supplementary
Information). The Martini 2 coarse-grained force field has been suc-
cessfully applied in modeling cholesterol binding to CRAC motifs
present in serotonin1A receptors and ErbB2 growth factor receptors
227,62. Although this coarse-grainedmodel systematically overestimates
cholesterol attraction in transmembrane proteins45, its behavior aligns
with the atomistic simulations regarding cholesterol repulsion by
aromatic residues. The performed analysis examined the frequency of
CRAC/CARC motifs and their correlation with cholesterol attraction
(Fig. 5B). Our findings reveal a negative correlation between choles-
terol attraction and the occurrence of CRACmotifs in both single-pass
and multi-pass transmembrane domains (TMDs). Notably, systematic
mutation of these residues to alanine significantly increases choles-
terol attraction (Supplementary Fig. 12). This phenomenon can be
attributed to the cholesterol-repulsive nature of hydrophobic aro-
matic residues required to classify a motif as CRAC/CARC.

These observations collectively indicate that mechanisms gov-
erning CRAC/CARC motif function in TMDs may differ significantly
from their proposed role in optimizing cholesterol binding affinity.
This conclusion highlights the need for further research to elucidate
the potential recognition mechanisms of linear motifs. Specifically, it
emphasizes the need for further investigation of exampleswherepoint
mutations in identified CRAC/CARC motifs have impaired cholesterol
responsiveness, such as the motifs present in the Programmed death-
ligand 1 (PD-L1) and serotonin 1A receptor, or the mitochondrial
translocator protein TSPO11–13.

Discussion
Our study applied Evo-MD simulations to investigate the mechanisms
and design features responsible for driving optimal cholesterol
attraction within transmembrane domains (TMDs). We found that
hydrophobic mismatch and the presence of small hydrophobic amino
acids play significant roles in facilitating the ideal interaction between
cholesterol and TMDs. These mechanisms demonstrated robustness
across multiple simulation models, diverse simulated membrane
compositions (including a coarse-grained model of the native epithe-
lial membrane46), as depicted in Supplementary Fig. 2, and various
membrane environments such as the liquid-disordered and liquid-
ordered phases, as shown in Supplementary Fig. 9. These findings
emphasize the fundamental importance of these mechanisms in gov-
erning cholesterol-membrane interactions within native membrane
proteins.

In the field of cholesterol-binding domains, the CRAC (cholesterol
recognition/interaction amino acid consensus) and its inverse motif

CARC have gained significant attention and are widely studied in sci-
entific literature. Thesemotifs have been identified in various proteins
known to interact with cholesterol, particularly GPCRs (G-protein
coupled receptors)3. However, there is an ongoing debate regarding
the applicability of CRAC/CARCmotifs in GPCRs. It has been observed
that cholesterol can crystallize bound to GPCRs that lack a CRAC,
CARC, or the equivalent cholesterol consensus motif (CCM) that
switches the position of Y/F residue and L/V within the CRAC
algorithm30,33,63, and even when these motifs are present, cholesterol
often does not occupy them10,14,31,64. This highlights the complexity of
cholesterol-protein binding and suggests that additional mechanisms
beyond CRAC/CARC motifs may contribute to cholesterol binding in
GPCRs. Our study adds to this understanding by exploring the broader
mechanisms and design features that govern cholesterol attraction in
linearmotifs.We demonstrated that isolated transmembrane domains
can facilitate cholesterol binding akin to the concept of linear motifs,
albeit with very low affinity (up to 2 kBT) and short residence time (up
to 400 ns) even in the thermodynamic optimum.

Previous atomistic simulations have explored how cholesterol
modulates the human β2-adrenergic receptor (β2AR), a prototype G
protein-coupled receptor, in an allosteric manner63. The proposed
mechanism involves cholesterol binding to specific high-affinity sites
near transmembrane helices 5-7 of the receptor. Notably, the lifetime
of cholesterol in these high-affinity sites was found to be (at least)
microsecond-scale, thus significantly longer than the nanosecond
lifetimes observed for linear motifs.

The binding of typical regulatory ligands targeting GPCRs is 42 kJ/
mol (10 kcal/mol) or about 16 kBT

57 and exceeds the here measured
binding free energy of cholesterol to optimal linear motifs (about
2 kBT) by about 14 kBT

57. This would therefore result in a concomitant
residence time that is, assuming a similar kinetic prefactor, 1.2 × 106

times longer—thus approaching second time scales. It can be argued
that, due to the high abundance of cholesterol within the plasma
membrane, the binding occupancy will be high despite weak binding
interactions. Nevertheless, it remains questionable whether the rapid
ligandbinding andunbinding kinetics associatedwith linearmotifs can
sufficiently influence the slower relaxation modes within membrane
proteins, which are relevant for functionality and occur on and above
microsecond timescales65.

Aromatic residues are considered the key components in the
CRAC, CARC, and CCM motifs3,23,33. Notably, the contribution of aro-
matic residues to the binding affinity within CARC/CARC motifs has
been primarily inferred from the enthalpic interactions observed in
docking experiments with a single cholesterol molecule in a vacuum3.
Our simulations sought to replicate and extend these findings by
maximizing enthalpic interactions within a more realistic membrane
environment. In such an environment, the interactions with phos-
pholipids become competitive since the attraction of cholesterol is
mediated by relative differences in binding affinity with other lipids,
rather than relying solely on absolute cholesterol binding affinity as
measured within in vacuo docking experiments.

Having shown that hydrophobic aromatic residues tend to be
detrimental to cholesterol attraction in isolated linear motifs within
a lipid environment, the following question emerges: is their pre-
sence coincidental, arising from other evolutionary pressures
unrelated to cholesterol-mediated regulation of transmembrane
proteins (such as structural stability or the decreased packing of
lipids in membrane leaflets66,67), or do they actively participate in
cholesterol responsivity?

Although the co-evolution with cholesterol-repelling aromatic
residues could be coincidental, mutating these residues in presumed
functional CRACmotifs, like PD-L1 and TSPO, impairs their cholesterol
responsiveness12,13. Aromatic residues within these motifs may alter-
natively facilitate responsivity through the repulsion of cholesterol—
with cholesterol acting as a cosolvent for membrane proteins rather
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than a ligand51—to alter the behavior and functionality of membrane
proteins.

Such a sensing mechanism relying on repulsion rather than
attraction of the surrounding lipid environment may reflect the
membrane saturation sensing mechanism in the transcriptional reg-
ulator Mga2, which relies on the relative rotation of two transmem-
brane domains (TMDs) to sense lipid packing density68. Tighter lipid
packing favors a rotational orientation, with the bulky tryptophan
sensing residue ’hiding’ in the dimer interface. Less dense lipid packing
in membranes with a high proportion of unsaturated lipid acyl chains
favors a different relative orientation of the TMDs, with the sensing
residue facing hydrophobic lipid acyl chains, therebyweakening dimer
formation.

Analogously, elevated cholesterol levelsmight inducemembrane-
exposed aromatic residues and leucines to facilitate dimerization by
prioritizing protein-protein interactions over protein-lipid interac-
tions. Dimerization is known to control the functionality of awide class
of both single-pass62 andmulti-passmembrane proteins69. Our coarse-
grained simulations exploring dimers of the γM4 TMD23 highlight the
role of phenylalanine within the CARC motif in enhancing protein-
protein interactions within cholesterol-enriched lipid membranes
(Supplementary Fig. 16).

Likewise, elevated cholesterol levels in multi-pass membrane
proteins may alternatively force aromatic residues to rotate inward,
enhancing interactions with residues in neighboring helices, thereby
shielding them from the unfavorable membrane environment. Such
an induced structural change could alter protein (channel) config-
uration and functionality potentially even via long range allosteric
coupling13.

Akin to cholesterol-protein docking studies in a vacuum3, aro-
matic residues may however favor cholesterol binding under specific
conditionswherecompetition fromother lipids is absent. For instance,
when these residues are situated within a groove between several
transmembrane domains10,14,32, deeply embedded within the mem-
brane and inaccessible to other lipids except cholesterol, they can
effectively promote cholesterol binding. However, it is important to
note that this scenario requires knowledge of the protein’s full three-
dimensional structure, especially for multi-pass membrane proteins.
Such comprehensive understanding exceeds the predictive cap-
abilities of models solely based on linear motifs.

The observation of direct binding interactions between aromatic
residues within identified CRAC motifs and cholesterol27 in coarse-
grained molecular simulations using the Martini 2 force field appears
counterintuitive, given the strong cholesterol repulsion of aromatic
residueswithin this forcefield. In fact, systematicmutation of aromatic
residues within identified CRAC/CARC motifs in native proteins actu-
ally increases cholesterol attraction, asdescribedby the sameMartini 2
force field (Supplementary Fig. 12). This suggests that secondary
interactions, including those with other residues and residues in
neighboring helices, as well as the overall three-dimensional protein
structure (hydrophobic groves), are likely to play a role in facilitating
the observed cholesterol binding.

Despite significant advancements, the mechanisms governing
cholesterol-dependent protein regulation in GPCRs remain poorly
elucidated. Atomistic simulations revealed that cholesterol binding to
specific high-affinity sites reduced β2AR conformational variability in a
high (40%) cholesterol environment compared to a low (10%) choles-
terol environment63. A primary challenge at elevated cholesterol con-
centrations lies in distinguishing the effects resulting from cholesterol
binding as a weak ligand versus its role as a cosolvent of membrane
proteins. Additional control simulations inwhichcholesterol binding is
artificially conserved under low cholesterol conditions, as well as point
mutations within the specific binding sites, could further clarify the
different roles of cholesterol binding versus its effects on lipid mem-
branes such as stiffening and reduced dynamics.

In summary, our study has demonstrated the ability of Evo-MD to
identify evolutionary fingerprints of protein-lipid interactions in
membrane proteins. Our methodology relies on the physics-based
inverse design of molecules, leveraging the fact that the physical
driving forces governing functionality are inherently embeddedwithin
the complexity of independently parameterized classical molecular
force fields. This approach diverges significantly from prevalent data-
driven quantitative structure-activity relationship (QSAR) based
inverse design approaches, which employ machine learning based
variational encoders to translate optima in an abstract high-
dimensional latent space into corresponding chemical structures35.

By determining the true thermodynamic optimum for cholesterol
attraction, Evo-MD has provided insights into the fundamental forces
that drive lipid recognition and binding in membrane proteins. This
unique ability of Evo-MD enables us to gain a deeper understanding of
how proteins recognize and bind specific membrane lipids or lipid-
soluble ligands, including hormones and vitamins, within the complex
and crowded environment of lipid membranes. We anticipate that
physics-based evolution approaches like Evo-MD will unveil insights
into the molecular organization of biological membranes and protein
trafficking mechanisms38. The synergy with other groundbreaking
protein structure prediction methodologies, such as the Alphafold 2
project70, could further facilitate these applications.

Methods
Software
Coarse-Grained simulations were performed with the Martini 2.2 and
Martini 3 CG force field using the GROMACS 2019.1 molecular
dynamics package. EVO-MD is written in Python 3.6.8 and depends on
the NumPy and MPI for Python packages for functionality. Peptide
topologies are generated using seq2itp71. Input parameters for the
coarse-grained simulations are based on the Martini 2 ’New-RF’
parameters72 and the Martini 3 recommended parameters43. with
exceptions detailed in the sections below.

EVO-MD implementation
EVO-MDwas developed as a framework for the simulated evolution of
MD simulation systems. Simulated evolution is a type of optimization
problem involving the optimization of someproperty of the simulated
system, by means of iteratively tuning a set of parameters. The per-
formance (i.e., fitness) of such a parameter set is then measured by
means of a fitness function, which generally consists of one or more
MD simulations followed by an analysis step.

Using GAs, we canmanage large, hyper-dimensional optimization
problems through efficient explorationof the search space. Analogous
to the method’s origin in genetics, we envision each possible solution
as a chromosome, which consists of a unique set of parameters
encoded into a (bit)string sequence. The algorithm iteratively samples
parts of the search space by forming a population of chromosomes
and measuring their fitnesses. In line with evolution, individuals with
high fitnesses are selected to recombine and form a new population.
Since the new population is based on a highest fitness subset of the
previous population, it is assumed that the average fitness of the
population increases each iteration. This process is visualized in Fig. 1.

Implementation of the cholesterol sensing project is illustrated in
Fig. 6. Each candidate peptide is encoded as a sequence of one-letter
amino acid codes. For faster convergence, the sequence ismirrored to
produce apalindromic sequence, effectively reducing the search space
for a peptide 20 amino acids in length from 2020 to 2010 (assuming 20
amino acid types). The GA is initialized by generating a random
population of Npop sequences, after which each sequence is evaluated
in parallel according to the fitness function.

The fitness function takes a sequence as argument and returns a
single float value representing the sequence’s fitness. This function
involves several simulation steps: generate_peptide, insert_peptide,
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production, and compute_fitness. Generate_peptide generates a peptide
structure and topology using the seq2itp tool71, followed by energy
minimization and peptide-membrane alignment. Insert_peptide com-
bines the peptide structure with an existing equilibrated membrane
structure containing 128 lipidmolecules (90 POPC, 38 cholesterol) and
1598Martini water beads, and places the peptide transversely through
the membrane. Collisions between peptide and membrane structures
are resolved by partially decoupling the non-bonded interactions—
combined with soft-core potentials—and running a steepest descent
algorithm. The production module adds ions to neutralize any net
charge on the system, after which equilibration and production
simulations areperformed. The compute_fitnessmodule thenmeasures
the ensemble-averaged short-ranged Lennard-Jones interactions
between peptide and cholesterol molecules from the simulation tra-
jectory, which is returned as the fitness (Coulomb interactions invol-
ving cholesterol are absent within the CG model). Notably, such a
fitness is the direct outcome of the competition between cholesterol
and POPC lipids to interact with the peptide. Therefore, its value is
directly proportional to the adopted cholesterol concentration and
thus the relative binding free energy.

Once all sequences in the population have been evaluated, the
algorithm proceeds by selecting the best N performers to serve as
parents for the next population. A new sequence is generated by
recombining two randomly selected sequences from the parent pool,
which involves a cross-over operation and a mutation operation.
During the cross-over operation, a random position is selected in the
new sequence. The part to the left of that position is inherited from the
first parent, while the rest of the sequence is inherited from the second
parent. Afterwards, the mutation operation ensures that each position
in the sequence has a 1/len(sequence) chance of being replaced with a
random amino acid. New sequences are created in this manner until a
new population of size Npop is produced. This process of population
fitness evaluation and recombination of the highest fitness candidates
into a new population is then repeated until a desired number of
iterations is achieved.

A rerun mechanism was implemented to account for possible
undersampling during fitness evaluation. If a sequence reoccurs in a
futuregeneration, itsfitness valuewill be computed from theweighted
average of the current and all priorfitness evaluations.With the chance

of sequence reoccurrence increasing as the algorithm converges, this
mechanism serves to increase confidence in the final fitness value.

Membrane setup
The membrane template structure consists of a 5.6 × 5.6 × 10 nm
simulation box, containing a bilayer membrane in water solvent. The
membrane consists of 90 POPC molecules and 38 cholesterol mole-
cules. The solvent consists of 1598 Martini water beads.

EVO-MD modules
generate_peptide. As the seq2itp tool only produces topology files, a
structure file for the peptide is generated by stacking hardcoded
amino acid structures along the Z-axis and performing a 1.5 ps simu-
lation at low time step (0.05 fs) using the GROMACS 2019.1 ’sd’ sto-
chastic dynamics integrator. This allows the hardcoded structure to
slowly relax to a more reasonable conformation according to the
generated topology.

insert_peptide. Insert_peptide centers the peptide in the membrane
box and merges the two structures together. A steepest descent,
combined with a partial decoupling of the non-bonded interactions
(λ =0.75) and soft-core potentials, is then performed on the merged
structure to remove collisions between the peptide and themembrane
structures.

production. A final steepest descent is performed without soft-core
potentials. A short, 1.5 ps simulation is performed at low time step
(0.05 fs) using the stochastic dynamics integrator to prevent blowing
up of the system before the actual simulation is performed. The pro-
duction simulation consists of a 500ns NPT MD simulation with 30 fs
time step, of which the first 50 ns are used for equilibration. Tem-
perature is coupled to 300K using velocity rescaling (τ = 1 ps with
separate coupling groups for the membrane, peptide, and solvent),
Pressure is coupled semi-isotropically to 1 bar using the Berendsen
algorithm (τ = 8 ps), with compressibility set to 4.5 × 10−5 bar−1.

compute_fitness. Evaluation of the sequence’s fitness is finalized by
computation of a fitness value from the produced simulation trajec-
tory. GROMACS’ gmx energy tool is used to extract the ensemble
average of the non-bonded interaction energies from the production
trajectory. The absolute value is then returned to the GA.

Quantification of sequence cholesterol clustering capability was
performed by measuring the ratio of cholesterol molecules to mem-
brane molecules within a cylinder of radius r centered on the peptide
center-of-mass (COM). GROMACS’ gmx rdf tool was used to compute a
cumulative number radial distribution function (gCN(r)) for cholesterol
COMs and POPC COMs, both with respect to the peptide COM. The
final ratio figures are created by computing:

f ratioðrÞ=
gCN,CHOLðrÞ

gCN,CHOLðrÞ+ gCN, POPC ðrÞ
ð1Þ

Comparisons between multiple ratio figures (local cholesterol
content) were taken at a cylinder radius of 1.0 nm, chosen as a middle-
groundbetween local-sampling (low r) and sufficient sampling (high r).

GA parameters
Production runs of the GA were performed according to the para-
meters as described in Table 1. Parents indicates the size of the
selection pool, from which parents were selected at random for the
recombination step. Iteration elites describe the number of highest
fitness sequenceswhichpassunaltered into thenext generation. Rerun
elites keeps track of a list of sequences which have been evaluated

Fig. 6 | Graphical overviewofEVO-MD.Peptide sequences are evaluated bymeans
of MD simulation. A peptide structure (yellow) is generated from sequence and
inserted into a POPC (beige) and cholesterol (red) bilayer membrane. The fitness is
then computed from the resulting trajectory. Highest fitness sequences are selec-
ted from the evaluated population. Through recombination (involving crossover
and mutation operations) of the selected sequences, a new population is
generated.
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more than once, and allows several highest fitness sequences to pro-
ceed to the next generation unaltered. The total number of elites is
equal to the sum of iteration and rerun elites.

All-atom validation simulations
Simulations for the analysis of side-chain cholesterol affinity were
performed using the GROMACS 2019.1 molecular dynamics package.
Simulations for the computation of the free energy profiles and the
cholesterol binding residence time were performed using the GRO-
MACS 2021.3 molecular dynamics package, with the Plumed 2.7.2
plugin. Peptides were represented using AMBER99SB-ILDN73, while
POPC and cholesterol were represented with the Slipids forcefield74,75.
For water molecules we used the TIP3P model. Simulations were per-
formed in the NPT ensemble at 303.15 K, maintained with a Nose-
Hoover thermostat. Pressure was kept at 1 bar using a semi-isotropic
coupling scheme and a Parrinello-Rahman barostat. Long-range elec-
trostatic interactions were calculated using the PME algorithm with a
real-space cutoff of 1.4 nm. Van derWaals interactions were calculated
with a 1.4 nm cutoff, and dispersion corrections for energy and pres-
sure were applied. The leap-frog algorithm with a time step of 2 fs was
used to integrate the equations of motion. The LINCS algorithm was
used to constrain hydrogen atom-containing bonds.

Analysis of side-chain cholesterol affinity. Lipid bilayer simulation
systems were set up consisting of 83 POPC lipids, 35 cholesterol
molecules, and 6359 water molecules. Peptides were generated in an
initial helical conformation and placed transversely through the
membrane, no bias was enforced during the simulations. The systems
were equilibrated for 50ns with the lipids and peptide coupled to a
600K temperature bath, while water remained at 303.15 K. After initial
equilibration, a simulated annealing procedure linearly decreased the
temperature of the lipids and peptide from 600K to 303.15 K over
10 ns, after which the simulations continued for another 50 ns at
303.15 K. 2μs measurement simulations were performed for each
sequence, of which the first 250ns were discarded for equilibration
purposes. 5 replicates were performed for each sequence according to
this procedure. The error bars represent the maximum difference
among the five ensemble averages from these five simulations.

Computationof the freeenergyprofiles. Umbrella sampling (US)was
used to determine the free energy profile of cholesterol binding to
KALP21, L11, γM4, and themutant of γM4. As the reaction coordinate,
we used the in-plane center-of-mass distance (xy-distance) between
the cholesterol ring system and all the peptide Cα atoms located in the
same membrane leaflet as the cholesterol molecule (residues 1–11 and
1–12 for KALP21 and L11, respectively; residues 1–14 were selected for
the γ M4 transmembrane peptide and its mutant). To describe the
binding process, we sampled the 0.7–2.3 nm range of xy-distance
using 9 evenly spaced US windows separated by 0.2 nm. In each

window the reaction coordinate was subject to a harmonic bias
potential with a spring constant of 250kJmol−1 nm−2. For eachwindow,
1.5μs simulations were performed, and the free energy profiles were
calculated using theWHAMmethod. For each window, the first 400ns
of the trajectory were discarded for equilibration purposes. For each
peptide we simulated three replicas, each starting from an indepen-
dent set of configurations, to produce the final PMFs. The statistical
uncertainties of the free energy were estimated using the Monte Carlo
bootstrap method, taking into account autocorrelation times.

Residence time of cholesterol binding. The residence time of cho-
lesterol binding to the L11 peptide was calculated according to the
following formula (see Zwanzig76):

τða ! bÞ=
Z b

a
dx

eβGðxÞ

DðxÞ
Z x

x0

dye�βGðyÞ ð2Þ

where x is the reaction coordinate (i.e., L11–cholesterol xy-distance),
while the integration limits a and b correspond to the bound and
dissociated states, respectively (i.e., 0.70 and 1.80nm). G(x) and D(x)
represent the free energy and diffusion coefficient as a function of the
reaction coordinate x. x0 represents the position of a reflecting barrier
at 0.62 nm.

To obtain D(x), the diffusion coefficient was computed for each
US window separately according to D = Var(x)/θ77 and interpolated.
Here, Var(x) and θ represent the variance and autocorrelation of the
reaction coordinate in a given US window.

Restraining vertical lipid mobility/flip-flopping
To investigate the hydrophobic mismatch mechanism, the removal of
vertical mobility of lipids and lipid flip-flopping was facilitated by
applying an inverse flat bottom position restraint to the first beads of
POPC (NC3 bead) and cholesterol (ROH bead). The position restraint
consists of a layer, parallel to themembrane and centeredon the bilayer
center. A harmonic force with force constant 1000 kJ .mol−1 .nm−2,
directed away from the bilayer center, is applied to affected beads that
come within 2.0 nm (NC3) or 1.5 nm (ROH) of the center of the bilayer.

Database analysis using a convolutional neural network
Convolutional neural network. The CNN architecture consisted of a
one-hot encoding step, which is fed into 2 convolutional layers (128
nodes each) with max pooling, followed by 2 fully-connected dense
layers (36 nodes each) and a single output neuron. The random
dropout,which is appliedbefore theoutput of the convolutional layers
enters the dense layers, was set to 0.5%. A dataset of 26769 sequences
generated using Evo-MD was used for the development of the CNN
model, of which 20%was used as an independent validation set for the
final model. The remaining 80% of the dataset was used in a 4-fold
cross-validation (each fold using 5353 sequences as a test set, and
16061 sequences for training). The model was trained in 16 epochs,
with a batch size of 64 and a learning rate of 0.001. An independent
benchmarking of the model’s performance against molecular dynam-
ics simulations over the whole applicability domain (Coefficient of
determination: R2 = 0.859) is given in Supplementary Fig. 18.

Database analysis. Protein sequences and corresponding transmem-
brane predictions were downloaded from the TmAlphaFold Trans-
membrane Protein Structure Database (https://tmalphafold.ttk.hu/
downloads). From this database, Homo sapiens (UP000005640), Mus
musculus (UP000000589), and Rattus norvegicus (UP000002494)
were considered for analysis.We only included proteins that passed all
10 TM prediction quality flags (i.e., categorized as ’excellent’), as
described in ref. 78. The resulting dataset contained 8370 protein
entries in total, which was subsequently split in a single-pass dataset
(2084 entries) and a multi-pass dataset (6286 entries, 42436 passes).

Table 1 | Overview of GA run parameters

Population # of
GA
runs

Parents Iteration
elites

Rerun
elites

Mutation
frequencya

4 4 2 1 1 1/20

8 4 2 1 1 1/20

16 4 4 1 1 1/20

32 4 8 2 2 1/20

64 2 16 2 2 1/20

128 2 16 2 2 1/20

256 2 16 2 2 1/20

320 1 16 2 2 1/20
aper amino acid.
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We post-processed these datasets to produce sequences of 20
amino acids, as theCNNwas trainedon this typeof data.TMsequences
that exceeded 20 amino acids in length were removed, and TM
sequences shorter than 20 amino acids were extended evenly along
the edges using the corresponding non-TM amino acids from the
protein sequence. We ended up with 902 single-pass sequences and
11,954 multi-pass sequences, which we used for fitness prediction
using the CNN, and subsequent analysis.

NMR and CD analysis
Sample preparation. Membranes were prepared using standard pro-
tocols for the hydration of lipid films79. Briefly, 5mg of 1,2-di-O-dode-
cyl-sn-glyercero-3-phosphocholine (12:0 ether-linked DLPC lipid),
0.2mg of labeled peptide (labeled at the carbonyl of the two leucine-
proximal lysine residues) and 1.093mg of cholesterol (13C labeled at
C4) were dissolved in chloroform. The chloroformwas then dried with
gentle N2 flow and the film was stored under vacuum overnight for
complete evaporation of chloroform. The film was then hydrated with
250μL of buffer (mixture of 5mM HEPES buffer, pH 7.4 and 100mM
NaCl). The hydrated film was then sonicated (5min on, 10min off, 4
cycles in a 25 ∘C water bath) to prepare the final membranes. The
sample was lyophilized and thoroughly mixed with a solution of
13C-depleted d8-Glycerol (60 percent by volume), and 0.13mg of
AmuPoL. A sample without 13C labeling of the peptide provided a
control.

Circular dichroism measurements. CD spectra were recorded in a
Jasco J815 spectrometer with a scan rate of 20 nm/min. For the CD
measurement, liposomes were prepared in the same way as for the
NMR sample, but with 2mM phospholipids and 0.5 mM cholesterol.
The phospholipid composition was an equimolar mixture of 1,2-dite-
tradecanoyl-sn-glycero-3-phosphocholine (DMPG) and 1 mM 1,2-
Dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) (DMPG). The pep-
tide concentration was 100 μM.

DNP enhanced ssNMR measurements. All DNP-enhanced NMR
spectra were recorded with a 600MHz Bruker Avance III HD spec-
trometer (magnetic field of 14.1 T) equipped with 3.2mm low tem-
perature (LT) HCNmagic angle spinning (MAS) DNP probe. A 395GHz
gyrotron oscillator was deployed to deliver the desired microwave
irradiation to the sample through a corrugated waveguide. For the LT
MAS probe, variable temperature, bearing and drive gasses were
cooled with a second-generation Bruker liquid nitrogen cold cabinet,
operating at 100K. Samples were packed into 3.2mm zirconia MAS
NMR rotors via a custom-made filling device made from a truncated
pipette tip. Finally, the rotorwas centrifuged to ensureproper packing.
13C Proton-driven spin diffusion (PDSD) spectra80,81 were carried out at
8 KHz MAS. Cross polarization from proton to carbon was imple-
mented with a 1.5ms Hartmann-Hahn transfer using 66–74 kHz (10%
linear ramp) on the proton channel, and 71 kHz on the 13C channel.
Decoupling, 83 kHz SPINAL-6482, was applied on the proton channel
during acquisition. A PDSD mixing time of 30 s was chosen to effect
transfer over the expecteddistance rangeof about 6–9Å. Spectrawere
referencedby setting the 13C signal fromsilicone to 4.3 ppmon theDSS
scale83. All spectra were acquired and analyzed in Topspin 3.5 patch
level 6.

In-vitro expression of short hydrophobic sequences
Cloning. Amino acid sequences for D3K3L10K3D3 (L10), D3K3L11K3D3

(L11), and GK2[LA]7LK2A (KALP21) were introduced into mScarlet-N1
and mEmerald-N1 by Gibson assembly. The final constructs were all
confirmed by sequencing (Supplementary Table 1).

Cell-basedexperiments. HEK cellswere transfectedby Lipofectamine
2000 (ThermoFisher Scientific) followingmanufacturer’s instructions.

Briefly, 3ml of Lipofectamine 2000 was mixed with max 2mg of total
DNA (in equimolar ratio) in 200mlOptiMEM (Gibco). Transfectionmix
was incubated for 30min at room temperature, then was added to the
cells. Cells were transfected and incubated overnight (37 ∘C and 5%
CO2). The day after medium was fully replaced with fresh
supplemented DMEM.

Prior to imaging the transfected cells were incubated with Wheat
Germ Agglutinin, CF®405S Conjugate (WGA405, 1:20, stock 2mg/ml)
for 10min. During acquisition the laser power was kept constant.
Exposure time 200ms and Piezo stage z-motor was used to collect
z-stacks.

For visualizing the intracellular organelles, the transfected cells
were incubated with LysoTracker™ Deep Red, (Thermo Fisher Scien-
tific) and MitoTracker™ Deep Red FM, (Thermo Fisher Scientific) for
visualizationof lysosomes andmitochondria, respectively. Fluorescent
dyes were diluted 1:1000 in pre-warmed imaging solution and added
to HEK cells 10 min before imaging.

Image analysis. Images were acquired using Acquisition software NIS
Elements 5.21.02 and analyzed with ImageJ (NIH). Freehand selection
tool in Fiji was used to select a region of interest (ROI) of 3 pixel width
following the fluorescence signal of WGA405 (i.e., 405-channel) as
reference for plasma membrane from the medial cell plane. Each ROI
was assessed for the signal intensity in the 561-channel (for mCherry-
CD36) and the mean fluorescent intensity wasmeasured from the ROI
for calculating Intensity/length (mm). GraphPad Prism 9 was used to
plot the graphs (each value is shown as the average ± standard error of
themean). Statistical testperformedwasunpaired t-Test (p <0.0001,P
value summary ****).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The datasets generated by Evo-MD used in this work are available at
[https://doi.org/10.5281/zenodo.15925656]. The trained CNN model
used in this work is available at [https://doi.org/10.5281/zenodo.
15925656]. All relevant data supporting the findings of this study are
available with the paper and its supplementary information files.
Source data is provided with this paper.

Code availability
The version of Evo-MDused in this work is available at [https://doi.org/
10.5281/zenodo.15925656].
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