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ARTICLE INFO ABSTRACT

Edited by Menghua Wang Machine learning models have steadily improved in estimating inherent optical properties (IOPs) from remote
sensing observations. Yet, their generalization ability when applied to new water bodies, beyond those they
were trained on, is not well understood. We present a novel approach for assessing model generalization
Neural networks across various scenarios, including interpolation within in situ observation datasets, extrapolation beyond
Inherent optical properties the training scope, and application to hyperspectral observations from the PRecursore IperSpettrale della
Hyperspectral remote sensing Missione Applicativa (PRISMA) satellite involving atmospheric correction. We evaluate five probabilistic neural
Optically complex waters networks (PNNs), including novel architectures like recurrent neural networks, for their ability to estimate
absorption at 443 and 675 nm from hyperspectral reflectance. The median symmetric accuracy (MdSA) worsens
from >25% in interpolation scenarios to >50% in extrapolation scenarios, and reaches >80% when applied
to PRISMA satellite imagery. Across all scenarios, models produce uncertainty estimates exceeding 40%,
often reflecting systematic underconfidence. PNNs show better calibration during extrapolation, suggesting
an intrinsic awareness of retrieval constraints. To address this miscalibration, we introduce an uncertainty
recalibration method that only withholds 10% of the training dataset, but improves model calibration in 86%
of PRISMA evaluations with minimal accuracy trade-offs. Resulting well-calibrated uncertainty estimates enable
reliable uncertainty propagation for downstream applications. IOP retrieval uncertainty is predominantly
aleatoric (inherent to the observations). Therefore, increasing the number of measurements from the same
distribution or selecting a different neural network architecture trained on the same dataset does not enhance

Keywords:
Generalization

* Corresponding author.
E-mail address: mortimer.werther@eawag.ch (M. Werther).

https://doi.org/10.1016/j.rse.2025.114820
Received 15 October 2024; Received in revised form 9 May 2025; Accepted 12 May 2025

Available online 2 June 2025
0034-4257/© 2025 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/rse
https://www.elsevier.com/locate/rse
https://orcid.org/0000-0002-0775-9285
https://orcid.org/0000-0002-2487-4533
https://orcid.org/0000-0002-4899-9795
https://orcid.org/0000-0002-8926-1789
https://orcid.org/0000-0002-6952-1475
https://orcid.org/0000-0002-3937-4988
https://orcid.org/0000-0002-4131-9080
https://orcid.org/0000-0002-7185-8464
https://orcid.org/0009-0002-4152-3409
https://orcid.org/0000-0001-5289-8842
https://orcid.org/0000-0002-6296-9146
https://orcid.org/0000-0001-7346-3901
https://orcid.org/0000-0001-6143-9330
https://orcid.org/0000-0003-3855-6525
https://orcid.org/0000-0002-9258-8678
https://orcid.org/0000-0001-8449-0593
mailto:mortimer.werther@eawag.ch
https://doi.org/10.1016/j.rse.2025.114820
https://doi.org/10.1016/j.rse.2025.114820
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2025.114820&domain=pdf
http://creativecommons.org/licenses/by/4.0/

M. Werther et al.

Remote Sensing of Environment 328 (2025) 114820

model accuracy. Our findings indicate that we have reached a predictability limit in retrieving IOPs using
purely data-driven approaches. We therefore advocate embedding physical principles of IOPs into model
architectures, creating physics-informed neural networks capable of surpassing current limitations.

1. Introduction

Reflectance measurements of surface waters in the visible-light
spectrum, obtained through satellite and airborne sensors, enable the
assessment of water quality (Bukata et al., 1974; Morel, 1980), detec-
tion of extreme ecological events (Irani Rahaghi et al., 2024; Kohler
et al., 2024; Tang et al., 2021), and monitoring of long-term changes in
aquatic environments (Meyer et al., 2024; Schaeffer et al., 2022b). Cen-
tral to these applications is understanding how photons interact with
water and its constituents, characterized by inherent optical properties
(IOPs; Morel and Prieur (1977)). The spectral absorption coefficients
of phytoplankton (aph(l)), colored dissolved organic matter (acpopm(4)),
and non-algal particles (aysp(4)) are key IOPs that provide insights into
biogeochemical processes, forming the foundation for numerous remote
sensing applications (Astuti et al., 2018; Behrenfeld et al., 2009; Effler
et al., 2006; Hommersom et al., 2009; Silsbe et al., 2016).

Spaceborne remote sensing approaches for retrieving IOPs through
reflectance inversion were initially developed for open ocean and
coastal waters using multispectral sensors. Widely used inversion ap-
proaches include the quasi-analytical algorithm (QAA; Lee et al. (2002)),
generalized inherent optical property model (GIOP; Werdell et al.
(2013)), and three-component semi-analytical algorithm (3SAA; Jorge
et al. (2021)). With the advent of hyperspectral missions like NASA’s
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE), DLR’s Environmen-
tal Mapping and Analysis Program (EnMAP), and ASI’s PRecursore
IperSpettrale della Missione Applicativa (PRISMA), there is a need for
algorithms that fully exploit the enhanced spectral resolution avail-
able (Cael et al., 2023). Such high-dimensional observations call for
methods capable of capturing the subtle spectral signatures of IOPs, an
ability at which neural networks (NNs) excel.

NNs have become popular in aquatic remote sensing because of
their ability as universal function approximators and the growing avail-
ability of extensive training datasets (Bricaud et al., 2007; Brockmann
et al,, 2016; Gonzélez Vilas et al., 2011; Hieronymi et al., 2017;
Keiner and Yan, 1998; Schiller and Doerffer, 1999). Their flexibility
enables them to model complex relationships between hyperspectral
reflectance and IOPs across optically complex waters. However, suc-
cessful NN application depends on training datasets that accurately
represent the full range of environmental conditions. Consequently,
quantifying uncertainties in NN-based estimates is critical to ensure
reliable deployment (Gray et al., 2024).

Most operational NNs in this domain provide only deterministic es-
timates, with only a few approaches incorporating explicit uncertainty
quantification. For example, the C2RCC neural network (Brockmann
et al.,, 2016) offers uncertainty estimates for water constituents and
IOPs by leveraging forward and inverse models to flag inputs that
deviate from its training scope (Doerffer and Schiller, 2007). However,
this method has not yet been extended to hyperspectral sensors. More
recently, probabilistic neural networks (PNNs) have emerged, produc-
ing probability distributions for outputs and thus enabling explicit
uncertainty quantification (Werther et al., 2022; Saranathan et al.,
2023). Despite their promise, relatively few studies have examined
PNN architectures for hyperspectral IOP retrieval (O’Shea et al., 2023;
Pahlevan et al.,, 2022; Saranathan et al., 2024), leaving important
gaps in our understanding of their performance under varied optical
conditions. A key dimension of this performance involves uncertainty
estimation, which plays a major role in assessing model reliability.

Uncertainties in IOP retrieval stem from various sources and can be
studied through the lens of aleatoric and epistemic components (Hiiller-
meier and Waegeman, 2021). Aleatoric uncertainty arises from inherent

variability or error in observations and persists even with increased
sampling of the same type. Examples include error in R ; measurements
(both in situ and atmospherically corrected), uncertainties in reference
in situ IOP measurements (Leymarie et al., 2010; Wang et al., 2005),
ambiguity due to different IOP combinations producing (near-)identical
R, (Defoin-Platel and Chami, 2007; Zaneveld, 1994), and other obser-
vational processing errors (Burggraaff, 2020), as well as true variability
in the measurands due to random effects. Epistemic uncertainty, con-
versely, reflects limitations in model knowledge or problem space
coverage, often due to gaps within or at the limits of the distribution of
training samples. In practice, aleatoric and epistemic uncertainty often
coexist (Valdenegro-Toro and Mori, 2022).

Limited datasets, whether from in situ measurements (Lehmann
et al., 2023) or simulations (Loisel et al., 2023), cannot capture the full
bio-optical variability of natural and man-made waters. Consequently,
predictive models are frequently required to extrapolate beyond their
training IOP distribution, especially when applied to diverse satellite
imagery. Ideally, the generalization ability of a model should be in-
dicated by its uncertainty estimates, exhibiting low uncertainty for
accurate estimates in familiar scenarios and high uncertainty when
extrapolating to novel scenarios. However, good alignment between
estimated uncertainties and actual errors — known as calibration - is
not guaranteed (Guo et al., 2017; Minderer et al., 2021).

PNNs can simultaneously model aleatoric uncertainty and assess
epistemic uncertainty through output variability, effectively quantify-
ing and distinguishing different types of uncertainty. However, three
critical gaps remain in understanding how these networks generalize.

First, most NN studies have presented results from individual mod-
els without rigorous comparisons between different architectures under
standardized conditions (Brockmann et al., 2016; Hieronymi et al.,
2017; O’Shea et al., 2023; Pahlevan et al., 2020; Werther et al., 2022).
Although Saranathan et al. (2024) recently compared two PNNs us-
ing identical datasets and hyperparameters for estimating water con-
stituents like chlorophyll-a concentration, and found that the models
achieved similar retrieval accuracy but substantially differed in their
uncertainty estimates, standardized evaluations using PNNs for IOP
retrieval are still undocumented. It remains unresolved to what extent
variations in PNN performance for IOP estimation are due to archi-
tectural choices, training datasets, the inherent complexity of IOPs, or
other unidentified factors.

We address this gap through a comprehensive investigation of five
distinct PNN architectures using consistent training and parameter
configurations. Based on aforementioned literature, we expect mini-
mal differences in IOP retrieval accuracy between architectures, but
significant variability in uncertainty estimation.

Second, the generalization ability of PNN-based IOP retrieval meth-
ods to unfamiliar real-world scenarios is inadequately studied. Current
literature predominantly employs either random splits or geograph-
ical leave-one-out (LOO) strategies for validation with large in situ
datasets (Cao et al., 2020; Pahlevan et al., 2020, 2022; Saranathan
et al., 2024; Smith et al., 2021; Werther et al., 2022). Random splits are
subject to knowledge leakage (Stock et al., 2023) because observations
from the same water body appear in both training and test sets, hin-
dering the assessment of true generalization ability (Gray et al., 2024).
The LOO approach divides the dataset into regions, training on all but
one and testing on the excluded region. However, with large datasets
like GLORIA (Lehmann et al., 2023), this approach can result in over 40
regions being used for training (Pahlevan et al., 2022), and the single
left-out region may not adequately represent an extrapolation scenario.
Importantly, both evaluation methods fail to explicitly account for the
underlying distributions of water constituents or IOPs, making it un-
clear whether model generalization ability is being assessed effectively.
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This gap in understanding is critical for satellite applications, where
IOP distributions in new scenes may deviate significantly from training
datasets, and additional layers of uncertainty, such as atmospheric
correction, are introduced (Pahlevan et al., 2021).

In this study, we introduce a novel model assessment approach that
tests models on water bodies not included in the training in situ dataset,
distinguishing between similar IOP conditions (within-distribution,
WD) and unseen IOP conditions (out-of-distribution, OOD). We antici-
pate significant disparities in performance between WD and OOD sce-
narios. Additionally, when incorporating a PRISMA match-up dataset
for model evaluation, we expect to observe further differences between
in situ and satellite applications, due to the uncertainties and errors
associated with satellite imagery.

Finally, although PNNs quantify uncertainties, the calibration prop-
erties of these estimates are not well-characterized. Reliable uncertainty
estimates are essential for model trustworthiness, especially in un-
known conditions; mis-calibrated uncertainties can mislead assessments
of reliability and affect downstream applications. Recent studies have
begun addressing uncertainty calibration (Saranathan et al., 2024;
Werther et al., 2022), but a comprehensive understanding of PNN
calibration properties is lacking. Recalibration, which adjusts estimated
uncertainties post hoc to better align with actual discrepancies between
model estimates and in situ observations, can enhance reliability for
models that provide distributional outputs amenable to such adjust-
ments (Kuleshov et al., 2018). However, to date, the impact of post-hoc
recalibration on the reliability of uncertainty estimates from PNNs
remains unexplored in aquatic remote sensing applications.

We evaluate the uncertainty calibration properties of the five PNNs
and the efficacy of applying recalibration. We expect calibration prop-
erties to vary between PNNs based on their different mechanisms for
uncertainty estimation. Provided sufficient observations are available,
we expect post-hoc recalibration to consistently improve the reliability
of uncertainty estimates. Our exploration of these aspects advances the
understanding of PNN generalization ability to estimate IOPs through
hyperspectral remote sensing.

2. Datasets
2.1. In situ observations

The core datasets used in this study originate from GLORIA
(Lehmann et al., 2023) and SeaBASS (Werdell et al., 2003). We ex-
tended the GLORIA dataset with observations from various sources
(Appendix A). The resulting dataset comprises 2066 in situ obser-
vations from 155 water bodies (lakes, coastal waters, and oceans)
across 14 countries. Each observation includes spectral remote-sensing
reflectance (R,5(4)) from 400 to 700 nm in 5 nm increments and
absorption IOPs (ayy, acpoms anap) at 443 and 675 nm (Fig. 1). Erro-
neous spectra with a Quality Water Index Polynomial (QWIP; Dierssen
et al. (2022)) score exceeding +0.2 were discarded. Both R,; and IOPs
were measured using diverse methodologies, which are documented in
GLORIA and SeaBASS for the respective datasets, and in Appendix A
for the rest.

The IOP wavelengths of 443 and 675 nm were selected because of
their distinct absorption features and the greater measurement avail-
ability at these wavelengths in our dataset. Although our reflectance
inputs cover the entire hyperspectral range (400-700 nm), we only es-
timate IOPs at 443 and 675 nm. At 443 nm, strong absorption by acpom
and ayup is observed, with these components decaying exponentially
towards longer wavelengths, while a;, exhibits peaks at both 443 and
675 nm. In our study, we also estimate acpoy and ayap at 675 nm to
serve as a baseline for evaluating PNN uncertainty, particularly relative
to the ay, peak. Although 675 nm may exhibit relatively uncertain
scattering components due to scattering from small particles, it offers
valuable information for studying PNN generalization for absorption
IOPs in the red region of the spectrum.

Remote Sensing of Environment 328 (2025) 114820
2.2. PRISMA match-up dataset

The PRISMA satellite, launched on March 22nd, 2019, contains a
high-spectral-resolution imaging spectrometer and panchromatic cam-
era. For this study, we selected 36 bands in the visible range from 406
to 694 nm, which contain the most relevant information content for ob-
taining IOPs at 443 and 675 nm. This range offers a spectral resolution
of <12 nm (Full Width at Half Maximum) and a spatial resolution of
30 m with a swath width of 30 km (2.45° field of view). The signal-to-
noise ratio (SNR) for coastal waters has been found to be 100-120 in
the 450-600 nm range (Braga et al., 2022). The radiometric accuracy
in this wavelength range is within 2%-7% compared to field/airborne
spectroscopy (Cogliati et al., 2021).

59 in situ measurements from PRISMA validation campaigns in-
cluding the combination of a,p, acpom, and ayup at 443 and 675 nm
were available, of which 50 were match-ups with PRISMA overpasses.
These measurements were made over the Venice Lagoon, Lake Garda,
and Lake Trasimeno in Italy and the Curonian Lagoon in Lithuania.
A 3 x 3 pixel window was extracted from the satellite scenes around
each sampling station, and a spatial homogeneity check (Bailey and
Werdell, 2006) was performed. Specifically, for each window, pixel
values outside the median +1.5 standard deviations were discarded.
The mean of the remaining pixel values was then used for the match-
up analysis. A +1.5-hour time window aligned the field sampling with
the satellite overpass (Guanter et al., 2010; Warren et al., 2019).
Further details about the match-up protocols and processing details are
described in Braga et al. (2022), Pellegrino et al. (2023).

PRISMA top-of-atmosphere radiance was atmospherically corrected
using the standard PRISMA L2C processor (ASI, 2021) and ACOL-
ITE (Vanhellemont and Ruddick, 2018). We chose to compare two
atmospheric correction (AC) methods because of the impact of AC on
downstream product quality (Braga et al., 2022; Pahlevan et al., 2021;
Warren et al., 2019).

3. Methods

We designed six scenarios to assess the generalization ability of
the PNNs (Section 3.1). These scenarios consist of both in situ and
PRISMA-based applications. For each of these six scenarios, we trained
and evaluated 25 independent model instances of each of the five
distinct PNN architectures, thus probing both systematic differences
between scenarios and architectures and variability due to random
effects (Section 3.2).

3.1. Generalization scenarios

3.1.1. Random split

In the random split approach, the entire in situ dataset was randomly
divided into two equally sized subsets for training and testing. While
this method is prone to issues such as knowledge leakage (Stock et al.,
2023) and spatial and temporal autocorrelation (Stock and Subrama-
niam, 2022), it is widely used in the literature to establish a best-case
baseline for model performance (Cao et al., 2020; Pahlevan et al., 2020,
2022; Smith et al., 2021; Werther et al., 2022).

3.1.2. Within-distribution split

The within-distribution (WD) split explicitly considers the distribu-
tion of IOPs at 443 nm when dividing the entire in situ dataset, such that
the IOP distributions in both training and test sets mirror each other
closely (Fig. 2). We focused exclusively on the 443 nm wavelength for
the dataset split for three reasons. Firstly, measurements at 443 nm
are generally less prone to error and uncertainty. Additionally, IOPs
exhibit larger optical variability at 443 nm than at 675 nm. Lastly,
using three IOPs as variables instead of six reduced the complexity and
computational runtime of the splitting process.
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Fig. 1. Log-scaled distributions of ay,, acpom, and aysp at 443 and 675 nm in the in situ dataset. The number of measurements (2066) is equal across IOPs and wavelengths.

Random split

200 | (mmm Train

100 - -

L
|

Within-distribution

200 A h

Frequency
S
o o

Out-of-distribution

200 ~ a

100 A 1

0_
1075 10™* 1073 1072 107! 10°
apn(443)

y

1072 107! 10°
acpom(443)

10' 10> 107* 1073

10* 10> 10™* 1073 1072 107! 10° 10!
anap(443)

In situ value

Fig. 2. Histograms illustrating the distributions of the three IOPs a;,(443), acpoy(443), and ay,p(443) in the training and test sets under three splitting strategies. The top row
shows a random split, while the middle and bottom rows respectively represent the within-distribution and out-of-distribution splits generated by the dataset splitting algorithm.

To prevent knowledge leakage, we ensured that all observations
from a specific system (water body) were grouped together, residing en-
tirely in either the training set or the test set, but not both. By training
on observations from a set of systems and testing on completely sepa-
rate systems, the models are evaluated on their interpolation ability to
generalize to new waters that are similar to known waters.

3.1.3. Out-of-distribution split

The out-of-distribution (OOD) split evaluates the ability of a model
to generalize when confronted with observations that differ substan-
tially from those seen during training. Similar to the WD split, we used
IOPs at 443 nm to partition the entire in situ dataset into training
and test sets. However, the OOD split maximizes the dissimilarity
between the IOPs in these sets. Consequently, the test set includes
observational properties and IOP combinations that are either absent
or underrepresented in the training set (Fig. 2). Such scenarios are
common in satellite remote sensing. For example, a model might en-
counter entirely new phytoplankton species compositions (absent case)
or optical properties affected by extreme weather or climate change
(underrepresented case). Unlike the WD split, the OOD split challenges

models to extrapolate their learned knowledge not just to indepen-
dent waters, but also to entirely new or significantly underrepresented
biogeochemical and optical conditions.

3.1.4. Dataset splitting algorithm

The primary goal of the dataset splitting algorithm is to auto-
matically separate a dataset into training and testing subsets with
distributions that are either highly similar (WD) or dissimilar (OOD),
while ensuring that each water body is assigned entirely to one subset
and that both subsets are as balanced in sample size as possible. To
achieve this, we adopt a dual annealing optimization strategy, which
combines global exploration with local search (Tsallis and Stariolo,
1996).

The algorithm proceeds in the following stages:

1. Initialization: Each water body (uniquely identified, e.g., by its
name) is initially assigned at random to either the training or
test set.

2. Objective function: The quality of the current split is evaluated
with an objective function that includes:

« For WD: A mean-based similarity score computed over
selected summary columns (here ayp,, agpoms anap)-
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» For OOD: A percentile-based dissimilarity score computed
using the same summary columns.

Here, the IOPs at 443 nm are used as summary columns; we ex-
cluded the 675 nm band to reduce complexity. In both cases, an
additional penalty is imposed based on the imbalance between
the subsets (i.e., the difference in number of observations), thus
favoring splits with near-equal sample sizes.

3. Global search via dual annealing: Rather than performing
explicit swaps of water bodies between the subsets, the optimiza-
tion process searches over possible selections of water bodies
for the training set by minimizing the objective function using
dual annealing. This approach balances global search with local
refinements.

4. Convergence: The optimization runs under a fixed time budget
(here, 10 min), and the process terminates once this time limit
is reached.

By integrating distribution-based objectives directly into the dual
annealing optimization process, our method yields deterministic and
reproducible splits that avoid knowledge leakage. The method can
be flexibly adapted to other datasets and variables, provided that
split variables are defined. Further details, including the full objective
functions, are provided in Appendix B, and our Python implementation
is described in the Code Availability section.

3.1.5. PRISMA application

We evaluated the PNNs using PRISMA to understand their gen-
eralization properties in the context of a spaceborne hyperspectral
application. This evaluation was conducted through three different,
PRISMA-specific scenarios:

1. In situ vs. in situ: Training on the in situ dataset (n = 2034),
resampled to the spectral response function (SRF) of PRISMA at
406-694 nm (Section 2.2), and then applying the models to the
in situ dataset accompanying the PRISMA match-ups (n = 59). We
note that 32 of the in situ spectra could not be resampled due to
spectral range limits. This approach assessed model performance
on resampled reflectance aligned with the spectral character-
istics of PRISMA, without introducing additional uncertainty
through prior AC. This scenario serves as a baseline for the
following scenarios.

2. General: Training on the in situ dataset, resampled to the PRISMA
SRF, and then applying the models to the atmospherically cor-
rected R, from PRISMA. The performance was evaluated against
the corresponding match-up in situ IOPs. This scenario represents
the general satellite application, where the model encounters
hyperspectral imagery without prior specific knowledge.

3. Local knowledge: Training on a combination of the full in situ
dataset (n = 2034) along with the local in situ dataset (n = 59) ac-
companying the PRISMA match-ups (in total » = 2093), and then
applying the models to the atmospherically corrected R, from
PRISMA. This scenario evaluates the impact of incorporating
local knowledge on model generalization.

3.2. Probabilistic neural networks

A standard neural network computes an output y from an input x
using a function f parameterized by weights 6:

y=f(x0) (€Y

where y in this study is the vector of the six IOPs and x is the pre-
processed input vector R.(4). The pre-processing of the input and target
variables is described in Appendix C.

PNNs modify this approach by estimating a probability distribution
over the possible outcomes for each output variable, here each IOP.
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This is achieved using Bayesian methods or other distributional tech-
niques. Instead of yielding a single point estimate for each IOP, a PNN
simultaneously estimates the mean u and variance o2 of the estimated
output distribution:

(6% = f(x;0),

The output variables may be estimated individually or simulta-
neously; here, we estimated the absorption IOPs simultaneously to
account for their correlated nature. Simultaneous estimation enables
the model to capture the relationships between IOPs, which has been
shown to be advantageous compared to individual retrieval (Cao et al.,
2022; Pahlevan et al., 2022; Saranathan et al., 2024).

We implemented five PNN architectures encompassing a broad
spectrum of state-of-the-art methodologies (Fig. 3). The PNNs were
constructed around the same core NN structure, defined as the shared
foundational neural network comprising dense layers, activation func-
tions, and hyperparameters such as the number of neurons and total
layers. All five PNNs were trained to estimate the six IOPs from R
inputs. To ensure consistent comparison between PNNs, we standard-
ized their architecture in terms of the number of neurons, layers, and
other hyperparameters such as learning rates. This uniformity enables
the individual assessment of model estimation capabilities, controlling
for potential variation arising from architectural differences. Details,
including model training, overfitting and hyperparameters are given in
Appendix D.

For each of the generalization scenarios (Section 3.1), we trained
25 instances of each PNN to probe the effects of random initialization
of network weights, variability in model training convergence, and
effectiveness of regularization mechanisms (Smith et al., 2021). Results
in Section 4 are presented for all 25 model instances, with the median
value and k = 1 or 1-0 confidence interval (CI). When analyzing all
25 model instances would introduce excessive complexity, we focus
on the median-performing model, defined as the model instance
with the median composite score derived by summing the median
symmetric accuracy (MdSA; Morley et al. (2018)) values for all IOPs at
443 nm (i.e., the 13th instance when sorted by this composite score).
Standardizing comparisons to the central tendency (median behavior)
of the 25 model instances per PNN architecture ensures a consistent
and equitable evaluation of model performance across scenarios un-
der identical statistical criteria, reducing potential bias introduced by
outlier model instances.

y~ N(u,c?). @)

3.2.1. Bayesian neural network with Monte Carlo dropout

The Bayesian Neural Network with Monte Carlo Dropout (BNN-
MCD) employs dropout layers that randomly deactivate 25% of neurons
during both training and application (Gal and Ghahramani, 2016a).
This process enables Monte Carlo sampling by simply estimating each
output multiple times (Section 3.3), approximating the posterior dis-
tribution of the model outputs and providing uncertainty estimates.
BNN-MCDs have previously been applied to water quality parameter
and IOP estimation (Saranathan et al., 2024; Werther et al., 2022).

3.2.2. Bayesian neural network with Monte Carlo DropConnect

The Bayesian Neural Network with Monte Carlo DropConnect (BNN-
DC) applies a stochastic principle similar to BNN-MCD, but uses Drop-
Connect instead of Dropout (Wan et al., 2013). DropConnect randomly
sets weights between neurons to zero, allowing for a finer-grained
exploration of the neural configuration space compared to BNN-MCD.
To our knowledge, the application of a BNN-DC for IOP retrieval is not
documented in the aquatic remote sensing literature.

3.2.3. Mixture density network

The Mixture Density Network (MDN) uses a deterministic core NN
to estimate parameters for a number of mixture distributions (here
five), thereby forming a Gaussian mixture model (GMM). This GMM is
trained using maximum likelihood estimation (MLE) where the network
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Fig. 3. Schematic illustration of the PNN architectures used in this work. For the RNN, a spectral band k is used in reset and update gates denoted by r and u, respectively, and p
and & are the resultant proposal and final activations. For simplicity, the RNN scheme does not depict multiple GRU layers and Dropout in between, as in the code implementation

(see Code Availability section).

parameters are optimized to maximize the likelihood of the observed
target variables (Bishop, 1994; Pahlevan et al., 2020; Saranathan et al.,
2023). During inference, a point estimate is approximated by taking the
mean of the Gaussian component with the largest weight. The MDN
approach captures multi-modal characteristics of reflectance spectra
and models correlations between target IOPs using a full covariance
matrix constructed via Cholesky decomposition (Pahlevan et al., 2022;
O’Shea et al., 2023).

3.2.4. Ensemble neural network

The Ensemble Neural Network (ENS-NN) aggregates outputs from
several (here 10) individual core neural networks. This architecture,
similar to earlier works (Bricaud et al., 2007; Brockmann et al., 2016;
Hieronymi et al., 2017), aims to enhance estimation accuracy and reli-
ability by overcoming the limitations of single-model estimates (Lak-
shminarayanan et al., 2017; Schaeffer et al., 2022a; Werther et al.,
2021).

3.2.5. Recurrent neural network with gated recurrent units and Monte Carlo
dropout

As the final PNN, we introduce the Recurrent Neural Network (RNN)
equipped with Gated Recurrent Units (GRUs) and Monte Carlo Dropout.

Although RNNs have been widely developed for hyperspectral remote
sensing (Mou et al., 2017; Li et al., 2019), their use for IOP estimation
in aquatic remote sensing has not been explored.

RNNs are particularly suited to modeling the sequential nature
of hyperspectral reflectance spectra, where strong correlations exist
between adjacent spectral bands (Cael et al., 2023). This sequential
modeling capability became particularly relevant in aquatic remote
sensing after the advent of hyperspectral satellite sensors in 2019.

GRUs address challenges that traditional RNNs face, such as the
vanishing gradient problem, by implementing gating mechanisms (Cho
et al,, 2014). The reset gate evaluates how much information from
the previous spectral band should be forgotten, while the update gate
balances information carried over from previous bands with the current
input. This process ensures that each state in the sequence is a well-
balanced representation of past and present information, allowing the
network to effectively capture and model the complex dependencies in
hyperspectral sequences (Chung et al., 2014). Within the GRU architec-
ture, we implemented MCD with a 25% chance to enable uncertainty
estimation (Gal and Ghahramani, 2016b), similar to the BNN-MCD and
BNN-DC.
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3.3. Uncertainty estimation

Using a negative log-likelihood loss function (Appendix E), the PNNs
were trained to estimate mean values y and associated variances 2 for
the IOPs at 443 and 675 nm (Section 3.2). For the BNN-MCD, BNN-DC,
and RNN, the estimation was performed 100 times per output, with
Dropout or DropConnect providing a different network configuration
each time. This process produces different estimates for y and o2,
sampling the posterior distribution of the model (Valdenegro-Toro and
Mori, 2022). The mean output j is the mean of the 100 sample means

Hit

L 3)

1
=N

\\Mz

The total estimated variance "tzot consists of two terms, namely the

aleatoric and epistemic variance (Section 1). The aleatoric variance is
what the individual networks estimate, and is thus calculated from the
mean of the individual estimates o?:

alea Z 9 “

The epistemic variance represents the uncertainty due to the model
configuration, and is calculated from the variance in the individual
sample means y;:

ooy = Z(M, e (5)

The total variance is the sum of the aleatoric and epistemic vari-
ances (Valdenegro-Toro and Mori, 2022), as in Eq. (6). The uncertainty
on individual measurements is the square root of the total variance,

Otot*

2 _
Otot = alea

+0' ol (6)

A similar process is performed with the ENS-NN, but using its 10
component NNs to produce 10 samples of 4 and o2. The MDN instead
employs a GMM to estimate the mean and variance (Section 3.2.3).

3.4. Evaluation metrics

3.4.1. IOP estimation accuracy

We assessed PNN IOP estimation accuracy through three common
metrics (Morley et al., 2018), namely the median symmetric accuracy
(MdSA, [%]), symmetric signed percentage bias (SSPB, [%]) and coef-
ficient of determination (R?). MdSA and SSPB were calculated using a
direct comparison between in situ observations and PNN estimates. R>
was calculated on the 10-logs of the observations and estimates.

3.4.2. Uncertainty calibration

We used two metrics to evaluate the uncertainty calibration of the
PNNs, namely coverage and miscalibration area.

Coverage is the probability that an estimation interval u + ko con-
tains the observed value y,, ;,, (Stoudt et al., 2021), as in Eq. (7) with
1 the indicator function. A well-calibrated normal distribution has a
coverage of 68%, corresponding to k = 1 or a 1-¢ uncertainty. Coverage
>68% indicates underconfidence, meaning the estimated uncertainties
are systematically larger than the actual errors, while <68% indicates
overconfidence:

100
C= Z 1 Yin situ,i € [”t - ko_t’ Hi+ ko; ]) [%] (7)

Mlscallbratlon area (MA) quantifies the agreement between accu-
racy and estimated uncertainty on varying scales. The observed fraction
of errors within quantiles a € [0, 1] is compared to the fraction expected
from the estimated uncertainty, assuming a normal distribution (Ras-
mussen et al., 2023). This is essentially a generalization of coverage.
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Fig. 4. Comparison between calibration curves using overconfident, well-calibrated,
and underconfident toy models with synthetic observations. Left: Ordered estimation
intervals with reference values and PNN estimates. Right: Calibration curves with
miscalibration area shaded in blue.

Plotting the observed vs. expected fraction of errors produces a calibra-
tion curve (Fig. 4), which is diagonal for perfect uncertainty calibration
and curved otherwise. MA is the area between the calibration curve
and the diagonal, ranging from 0 (perfect calibration) to 0.5 (extremely
over- or underconfident). We used the Uncertainty Toolbox (Chung
et al., 2021) implementation to calculate calibration curves and MA.

3.5. Uncertainty recalibration

Recalibration consists of first estimating IOPs and uncertainties
using a machine learning model capable of uncertainty quantification
and then adjusting these uncertainties with fitted recalibration func-
tions. The scenario-specific training set was randomly partitioned into
80% training and 20% recalibration parts. PNNs were trained on the
former and then applied to the latter to obtain calibration curves, to
which isotonic functions — one for each IOP for each PNN instance
— were fit. Isotonic functions are non-parametric and monotonically
increasing, allowing them to approximate calibration curves of arbi-
trary shapes (Kuleshov et al., 2018). The efficacy of recalibration was
assessed by comparing the IOP and uncertainty estimates from the 25
regular PNNs and the 25 recalibrated PNNs on the test set.
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4. Results
4.1. In situ scenarios

4.1.1. Estimation accuracy

The accuracy of the PNNs in estimating IOPs varied across the three
in situ scenarios (Fig. 5). In the random split scenario, the accuracy
showed minor variations across all models. For all 25 instances of
each architecture, the MdSA was < 38% for a h(443), h(675), and
acpom(443), with the median MdSA ranging from 25%-34%. The MDN
consistently exhibited larger errors than the other models, prompting
a more detailed analysis in Section 4.1.2. Errors from all PNNs for
acpom(675) and ayap at 443 and 675 nm were notably larger, with
errors in acpoy and ayap at 675 nm approximately double the error
in apy,. Despite these variations, all models demonstrated the ability
to estimate the six IOPs without significant positive or negative bias,
evidenced by the SSPB values clustering around zero.

The WD split scenario was characterized by elevated inaccuracy
across all models and IOPs compared to the random split. MdSA ranged
from 31%-53% for aph(443), aph(675), and acpoy(443) and from
55%-64% for ayap(443), increasing substantially to 71%-115% for
acpom and ayap at 675 nm. Again, the MDN performed worse than
the other model types (Section 4.1.2). The similarity in patterns be-
tween random split and WD results establishes a baseline for expected
performance when the models interpolate within familiar IOP ranges.

The median MdSA values in the OOD split scenario were up to 30
percent point (%pt.) larger than in the WD split for the IOPs with rela-
tively low MdSA (ay, and acpon(443)). For acpon(675) and ayap(675),
the difference in MdSA between WD and OOD was generally smaller.
Importantly, the OOD scenario had consistent negative bias across most
variables and models. The SSPB matches the discrepancy between the
training and test IOP distributions, the training set containing smaller
IOP values than the test set (Fig. 2). Consequently, the models failed to
generalize effectively, leading to underestimation of larger IOP values.
This outcome demonstrates a limitation in model ability to generalize to
truly OOD conditions. These findings were corroborated by R? showing
a clear degradation from consistently good fits in the random split
scenario to more scattered and sometimes negative values (as explained
in Kvéalseth (1985)) in the OOD scenario.

Variations in accuracy among the 25 instances of each PNN were
small for the random split scenario (standard deviations of 2%-11%
of the median MdSA for each IOP-architecture pair) but became more
pronounced in the WD (2%-31%) and OOD (10%-52%) scenarios.
Variability in median MdSA between the four PNN architectures (all
but MDN, Section 4.1.2) increased from the random split (3%—-27%)
through WD (8%-29%) to the OOD scenario (17%-39%), being similar
for a,;, and agpoy but higher for ayyp.

4.1.2. MDN analysis
A sensitivity study was conducted to explore the causes behind the
larger errors and variability exhibited by the MDN compared to the
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other PNNs (Appendix F). The training and evaluation process was
repeated without the variables acpoy(675) and ayap(675), which are
naturally more prone to uncertainty and error in both observations and
model application. The 4-IOP MDN was significantly more accurate
than the 6-IOP one. For example, the random split aph(443) MdSA
decreased from 52% (CI 41%-75%) to 36% (CI 33%-42%) and the
WD aph(443) MdASA decreased from 89% (CI 65%-111%) to 55% (CI
45%-74%). When the sensitivity analysis was repeated for the other
four PNNs in the 4-IOP configuration, no comparable changes were
observed, indicating that the MDN was uniquely sensitive to the choice
of output variables.

We also investigated the impact of Dropout regularization on the
MDNs, following Saranathan et al. (2024). Unlike in the BNN-MCD
and RNN models, Dropout was applied solely as a regularizer during
training, not for inference, as MDNs estimate uncertainty through
their mixture of probability distributions. 25 new MDN instances were
trained with Dropout layers inserted after each dense layer of neurons.
In the random split scenario, MDNs with Dropout demonstrated more
consistent and marginally improved accuracy metrics. For a,;(443),
the MdSA reached 45% (CI 43%-52%) with Dropout, compared to
52% (CI 41%-75%) without. However, Dropout had insignificant or
even adverse effects in the WD and OOD scenarios. For a;(443), the
MdSA increased from 89% (CI 65%-111%) to 114% (CI 91%-122%)
in the WD scenario, and from 201% (CI 150%-404%) to 417% (CI
301%-533%) in the OOD scenario. Analogous trends were observed
across the other IOPs, except acpon(443).

These outcomes can be attributed to the characteristics of each
scenario. The random split scenario suffers from knowledge leakage
leading to overfitting (Section 3.1.1). Dropout regularization mitigated
MDN overfitting, thus reducing intra-model variability and slightly
increasing accuracy. Conversely, the WD and OOD scenarios inherently
prevent knowledge leakage, rendering additional model regularization
potentially counterproductive. The large epistemic uncertainty exhib-
ited by the MDN in these scenarios (Section 4.1.3, Fig. 6) suggests
that it was operating at the limits of its available model knowledge
and would benefit from additional training observations. Consequently,
the introduction of Dropout layers in the WD and OOD scenarios re-
sulted in over-regularization (causing underfitting), thereby increasing
intra-model variability and decreasing accuracy.

The following sections include further results describing the sources
of error and variability specific to the MDN.

4.1.3. Estimated uncertainty

The total estimated uncertainty varied considerably across scenar-
ios, PNN architectures, and IOPs (Fig. 6). Generally, IOPs at 443 nm
and ap;, at 675 nm exhibited the smallest uncertainties, reflecting model
sensitivity to these variables. For the average-performing model, the
total relative uncertainties in the WD scenario were typically 1.2-2.6x
larger than in the random split scenario, while OOD uncertainties were
typically 1.2-6.2x those of the random split. ENS-NN uncertainties
were typically similar to those from the other networks, but showed
extreme spikes in some cases, such as acpgy(675) in Fig. 6. MDN
estimates differed significantly from the others, as in Section 4.1.1.

Across all scenarios, aleatoric uncertainty dominated the total un-
certainty for most models, consistently exceeding 89%. This predom-
inance indicates that the estimated uncertainty primarily stemmed
from inherent variability in the input reflectance spectra, rather than
insufficient training observations (Hiillermeier and Waegeman, 2021).
Consequently, for these models, additional training observations from
the same distribution would not reduce total uncertainty. Only the
MDN exhibited substantial epistemic uncertainty for several IOPs and
scenarios, indicating that the model lacked sufficient knowledge about
the test set conditions. This finding partially explains the variability
observed among MDN instances (Fig. 5).

The coverage, which expresses the alignment between accuracy
and uncertainty (Section 3.4.2), was greater than 68% (k = 1) for
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nearly all models and IOPs in the random split scenario (Fig. 7),
with a median coverage of 88% (CI 81%-94%), indicating significant
underconfidence. The same was true for all but a handful of models in
the WD scenario (median 90%; CI 80%-95%). While the OOD scenario
resulted in a wide spread from extremely underconfident (100%) to
extremely overconfident model instances (45%), it also resulted in the
most instances falling near the optimal value of 68%, with a median
coverage of 88% (CI 71%-98%). In conclusion, while the OOD scenario
yielded the poorest accuracy across all models, the PNNs demonstrated
some awareness of the reduced accuracy and adjusted their uncertainty
estimates accordingly.

4.1.4. Uncertainty recalibration

The calibration curves (Fig. 8) confirmed the findings from Sec-
tion 4.1.3, namely that the models tended towards underconfidence.
This was again especially true for the random split and WD scenarios,
as well as for acpou(675) and ayap(675). Consequently, most PNNs,
notably except the RNN, displayed large (> 0.1) miscalibration areas
(MA; Fig. 9).

Recalibration (Section 3.5) proved beneficial in the random split
and WD scenarios, yielding coverage values close to 68% (k = 1) across
the IOPs, albeit with residual underconfidence and occasional overcon-
fidence (Fig. 7). Measured by MA (Fig. 9), the random split scenario
showed the highest percentage of beneficial recalibrations (96.7%),
with a median improvement of —0.110 (CI —0.189 to —0.035). Similarly,
the median coverage decreased from extremely underconfident (88%)
to mildly underconfident (median 74%; CI 68%-79%). Recalibration
was similarly effective for the WD split, decreasing the MA in 90.7% of
the cases, with a median decrease of —0.145 (CI —0.253 to —0.026), and
lowering the median coverage from 90% to 61% (CI 54%-69%), more
closely matching the desired 68%.

Already well-calibrated uncertainties rendered recalibration less ef-
fective in the OOD scenario. As a result, only 70.8% of the OOD model
instances showed improvement, with a median difference in MA of
—0.094 (CI —0.272 to 0.064). These values suggest that recalibration was
detrimental to many PNN instances. The median coverage shifted from
underconfident (88%; CI 71%-98%) to mildly overconfident (53%; CI
44%—-67%), in both cases with much wider CIs than the random split
and WD scenarios.

To determine a threshold for recalibration efficacy, we analyzed
the MA difference as a function of the MA without recalibration.
For simplicity, we compared non-recalibrated and recalibrated models
in a 1-to-1 manner (e.g., the first OOD RNN instance a,,(443) MA
vs. the first recalibrated OOD RNN instance a,,(443) MA). Although
the model instances were trained independently, meaning there was
no true 1-to-1 relationship, this comparison effectively samples the
underlying populations randomly 25 times. A more rigorous analysis
would involve comparing all 25 x 25 pairs of model instances, but the
present approach yielded an adequate estimate.

Analysis of the MA difference, binned in 0.01 MA intervals and
aggregated across all scenarios, PNNs, and IOPs, revealed a clear re-
lationship (Fig. 10). The binned CI upper limit was < 0, indicating
recalibration benefited a clear majority of comparisons, when the initial
MA was > 0.13.

Despite recalibration reducing the training set size by a fifth, no
notable decrease in accuracy was observed (Table 1). The difference
in MdSA between non-recalibrated and recalibrated models generally
fell within the range of variation observed among the 25 instances of
each model (Section 4.1.1). This finding aligns with the large aleatoric
uncertainty fraction, indicating that the quantity of available measure-
ments is not the primary source of inaccuracy. The MDN, exhibiting
higher epistemic uncertainty, showed larger changes when the training
dataset was reduced.
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Table 1
Difference in MdSA [%] between the average-performing PNNs (see Section 3.2 for an explanation) without and with recalibration. A positive
number, meaning an increase in MdSA, indicates a decrease in accuracy.

Scenario PNN a,, 443 a,,675 acpom443 acpom675 ayap443 ayap675
Random BNN-MCD 0 0 -2 0 -3 8
Random BNN-DC -1 —4 -1 =3 -1 -9
Random MDN 27 -2 8 11 29 15
Random ENS-NN 1 1 1 1 2 4
Random RNN 3 -2 1 9 2 11
WD BNN-MCD -6 -13 -2 =3 -6 -17
WD BNN-DC -16 -30 —14 4 9 7
WD MDN —-16 7 =59 =76 -84 —44
WD ENS-NN -2 =5 -1 =3 -9 4
WD RNN 6 3 -7 0 -15 =57
OO0D BNN-MCD -2 -5 8 -5 -9 —-16
00D BNN-DC =35 =25 24 -17 11 25
00D MDN 26 —249 -69 -26 -97 —-150
00D ENS-NN -14 -16 -18 -9 -12 -28
00D RNN 7 3 5 =5 3 36
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Fig. 9. Miscalibration area for the average-performing models without recalibration (left), with recalibration applied (middle), and the calibration difference (right) for the in situ
scenarios. A negative calibration difference represents a beneficial recalibration outcome (Section 3.4.2).

4.2. PRISMA application

4.2.1. Estimation accuracy

Model accuracy was evaluated across three PRISMA scenarios. In
the general and local knowledge scenarios, models were tested using
both L2C and ACOLITE AC methods, resulting in five distinct scenario
outcomes (Table 2). In the in situ vs. in situ baseline scenario, the
combined median MdSA for non-MDN models was 67% (CI 56%-84%)
in aph(443) and 60% (CI 44%-94%) in aph(675), comparable to the WD
and OOD in situ scenarios (Section 4.1.1).

Estimation accuracy was worse in the general scenario using re-
flectance spectra obtained through AC, although the outliers over-
lapped (Fig. 11). The median MdSA for ay,(443) was similar between
PRISMA imagery processed with L2C (82%; CI 67%-109%) and ACO-
LITE (86%; CI 65%-115%). The difference was more noticeable for
aph(675), at 104% (CI 76%-142%) vs. 75% (CI 53%-132%). This trend
can also be seen in Fig. 11. The MdSA for acpoy and ayap in the
PRISMA general AC scenario was often more than twice the values
observed in the in situ scenarios.

Incorporating local in situ measurements into the training set had
mixed effects on the estimation accuracy. The median MdSA in a, (443)

for the L2C (82%; CI 61%-99%) and ACOLITE (80%; CI 57%-106%)
satellite-derived datasets were comparable to the general scenario. In
aph(675), the MdSA decreased to 95% (CI 63%-125%) and 66% (CI
46%-98%), respectively, the latter (ACOLITE) being comparable to the
baseline scenario.

Compared to the in situ scenarios (Section 4.1.1), the MDN was more
in line with the other four PNNs in terms of accuracy (Table 2) and
variability (Fig. 11). Based on the large epistemic uncertainty in the in
situ scenarios, the improvement in accuracy can be attributed to the fact
that the training set was much larger — incorporating the entire in situ
dataset rather than only half — in the PRISMA application. This need for
more observations can in turn be explained by the MDN methodology,
since it estimates covariance matrices rather than mean-variance pairs.
The discrepancy in accuracy in the in situ scenarios can therefore be
attributed to the splitting properties. This result underlines the need for
a large dataset when training MDNs for simultaneous IOP estimation.

4.2.2. Estimated uncertainty

The estimated uncertainties for a,, varied widely across the PNN
architectures and PRISMA scenarios (Fig. 12), typically larger than
100% but with some outliers in either direction. The MDN estimated
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Table 2
MdSA [%] of the average-performing PNNs (see Section 3.2 for an explanation) for the PRISMA scenarios.
Model Scenario AC a,,443 a,,675 acpom443 acpom 675 anap443 ayap675
BNN-MCD in situ vs. in situ - 68 53 68 136 110 325
BNN-MCD General L2C 87 56 125 175 74 286
BNN-MCD General ACOLITE 81 67 82 179 132 511
BNN-MCD Local knowledge L2C 73 101 110 147 83 243
BNN-MCD Local knowledge ACOLITE 88 41 99 152 98 326
BNN-DC in situ vs. in situ - 69 64 78 134 126 549
BNN-DC General L2C 89 105 97 197 108 367
BNN-DC General ACOLITE 78 69 84 174 137 533
BNN-DC Local knowledge L2C 89 81 82 180 103 304
BNN-DC Local knowledge ACOLITE 106 43 79 159 67 205
MDN in situ vs. in situ - 111 85 89 127 92 492
MDN General L2C 90 117 92 180 170 1219
MDN General ACOLITE 98 222 139 430 89 160
MDN Local knowledge L2C 101 70 112 158 139 223
MDN Local knowledge ACOLITE 89 68 115 165 86 458
ENS-NN in situ vs. in situ - 68 67 59 120 101 321
ENS-NN General L2C 90 103 149 158 90 249
ENS-NN General ACOLITE 57 64 105 179 94 468
ENS-NN Local knowledge L2C 91 114 160 153 64 245
ENS-NN Local knowledge ACOLITE 71 35 89 143 71 201
RNN in situ vs. in situ - 83 159 49 123 156 825
RNN General L2C 84 69 114 104 127 523
RNN General ACOLITE 148 92 73 138 171 768
RNN Local knowledge L2C 50 53 121 123 116 584
RNN Local knowledge ACOLITE 81 138 94 162 156 1043
T vidual 83%-94%); some outlier RNN instances were well-calibrated or even
ndividua ;
0.4 " comparisons overconfident.
' = Binned median 4.2.3. Uncertai librati
. .2.3. Uncertainty recalibration
s =3 Binned Cl wertainty . . .
o Recalibration substantially reduced the estimated uncertainty for
2 most models in all scenarios (Fig. 12). Correspondingly, the calibra-
o 0.2 tion curves for recalibrated models were much closer to and more
o symmetrically distributed around the diagonal (Fig. 14).
— . . .
) The coverage was drastically reduced in most cases (Fig. 13). For
r_g the in situ vs. in situ (58%; CI 46%-68%), general L2C (50%, CI
n 0.0 38%-68%) and ACOLITE (54%, CI 38%-68%) scenarios, this reduction
S resulted in slight overconfidence. The recalibrated models in the local
£ knowledge scenarios with L2C (62%; CI 52%-74%) and ACOLITE (70%;
v CI 54%-80%) were on average close to k = 1. In all cases, the coverage
5 —0.2 remained widely dispersed between the 25 instances of each PNN
o architecture.
& The percentage of beneficial recalibrations was 80%-92% across the
a five scenarios (Appendix G). This percentage was highest for the MDN
—0.4 - (97%), followed by the ENS-NN and BNN-MCD (both 92%), BNN-DC
’ (90%), and distantly the RNN (61%), mirroring the coverage factor
trend. The range of changes in MA was similar across the five scenarios,
T T
with an overall median of —0.178 (CI —0.306 to —0.017). Lastly, the
0.0 0.2 0.4 ( ). Lastly,

Miscalibration area
(without recalibration)

Fig. 10. Difference in miscalibration area due to recalibration, as a function of
miscalibration area. Negative values on the vertical axis indicate improvement.

extremely large uncertainties (> 3000%) in the general case for ACOL-
ITE but not in the in situ vs. in situ or local knowledge scenarios. Both
of these patterns resemble the random split, WD, and OOD scenarios
(Section 4.1.3), with increasing uncertainty moving from interpolation
to extrapolation. A third similarity is the dominance of aleatoric un-
certainty, representing > 83% of the total uncertainty with only two
exceptions from the MDN.

The coverage (Fig. 13) again indicated a large degree of under-
confidence. Aggregated over both a,, wavelengths and all five PNN
architectures, the median coverage in each of the five scenarios was
96%-98%. The RNN was closest to, but still far from, k = 1 at 90% (CI
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threshold in miscalibration area at which recalibration was beneficial
for the majority of model instances was MA > 0.20 and > 0.15 in the
general and local knowledge scenarios (Fig. 15), respectively, higher
than the in situ threshold of 0.13. The difference is likely caused by
the increase in observations available to train the PNNs and to fit the
recalibration functions.

4.2.4. Spatial variability

We assessed spatial variability in model accuracy, uncertainty, and
recalibration efficacy using two PRISMA scenes of the Venetian Lagoon
and surrounding waters. These scenes were selected both for their
optically complex water conditions and for the availability of multiple
in situ measurement locations, with seven sampling points for a scene
in May 2023 and thirteen for September 2023. The September dataset’s
larger sample size enabled us to evaluate not only PNN spatial accuracy
but also model calibration through calculation of coverage (Eq. (7))
with and without recalibration of model uncertainties.

The Venetian Lagoon is characterized by shallow depths and dy-
namic sediment loads (Braga et al., 2020, 2022). Although benthic
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uncertainty. Middle row: aleatoric fraction of the total uncertainty. Bottom row: total uncertainty for recalibrated models.

albedo effects on both in situ and atmospheric correction-derived R
cannot be completely excluded, we explicitly assessed their influence
on PNN-derived IOP retrievals. Specifically, in the September scene,
four locations were identified as optically shallow as the Secchi depth
remained visible down to the bottom, and we quantified how these
areas affected model accuracy and uncertainty estimates.

The average-performing general-case models ENS-NN and BNN-
MCD were applied under notably turbid conditions, as indicated by
R,(446) values above 0.020 sr~! in many pixels of the May 2023
scene (Fig. 16a). For this first scene (Fig. 16), the atmospherically
corrected and in situ match-up R, measurements agreed well, with
MdSA typically 8%-22% by wavelength, 5% at 446 nm (Fig. 16a),
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and 17% overall. The ENS-NN and BNN-MCD estimates of aph(443)
agreed to 31% and 49% MGdSA, respectively, being more accurate for
this subset of match-ups than the overall match-up accuracy reported
in Section 4.2.1. Estimates of a,,(675) and other IOPs were much less
accurate, with MdSA > 100% particularly for ay,p, matching Appendix
G. In all cases, however, there was clear visual agreement between
spatial patterns in R, and IOPs.

Similar to the first scene, the second scene from September 2023
exhibited strong agreement between atmospherically corrected and in
situ R, with an MdSA of 7% at 674 nm (Fig. 17a) and 12% overall.
Across all match-ups in this scene, aph(675) was retrieved with an
MdSA of 37% by the MDN model and 44% by the RNN model (Fig.
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Fig. 13. Coverage of the uncertainty estimates for the PRISMA scenarios, analogous to Fig. 7.

17). To quantify the influence of optically shallow water on retrieval
accuracy, we used median absolute error (MAE; Seegers et al. (2018)),
a robust linear metric suitable for small sample sizes, where outliers
could disproportionately impact logarithmic metrics such as MdSA.

MAE values for aph(675) were lower in optically deep waters (MDN:
MAEge, = 0.008 m~'; RNN: MAEg., = 0.015 m~') compared to
shallow waters (MDN: MAEg .jjow = 0.024 m~!; RNN: MAEg jjo =
0.107 m~'). Both models consistently overestimated app (675) at the four
optically shallow stations. Excluding these shallow-water observations
significantly improved MdSA from 37% to 29% (MDN) and from 44%
to 26% (RNN). In contrast, MdSA values for acpon(675) and ayap(675)
exceeded 200%. For acpoy(675), both models showed large MAE val-
ues, approximately MAE .., = 0.028 m~! and MAE o,y = 0.048 m~!,
consistently underestimating the in situ measurements. For ay,p(675),
MAE values remained around 0.010 m~! for both models, with neg-
ligible differences between optically shallow and deep waters. These
observations for acpom(675) and ayap(675) align well with broader
accuracy patterns detailed in Section 4.2.1 and Appendix G.

In this Venetian Lagoon scene, benthic reflectance impacts the
IOP retrieval, with a,;,(675) showing the highest sensitivity. Notably,
after excluding optically shallow water stations, model performance
approached interpolation accuracy levels documented for random splits
and within-distribution in situ scenarios (Section 4.1.1).

Uncertainty estimates were generally high (>100%; Figs. 16, 17),
comparable to Section 4.2.2. We used the thirteen match-ups to calcu-
late coverage, which revealed that the MDN was highly underconfident
for ay, (92%) and ayap (100%), but overconfident for acpoy (38%)
compared to the 68% expected from a well-calibrated model. The RNN
performed similarly for aph (85%) and ayap (100%), but was relatively
well-calibrated for acpoy (62%). Spatial patterns in uncertainty corre-
sponded to patterns in R, and IOP, as well as to physical features, and
in some cases (e.g., Figs. 16e, 17m) appeared to show banding parallel
to the sensor geometry. Since the models estimated each pixel inde-
pendently, these patterns propagating into the uncertainty estimates
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showcases the ability of PNNs to recognize, with limitations, their own
domain knowledge.

Recalibration significantly reduced estimated uncertainties while
preserving spatial patterns (Fig. 18). The recalibrated MDN had 69%
coverage for aph(675) and 62% for ayap(675), both well-calibrated.
However, at 23%, it was even more overconfident in its acpom(675)
estimates than the non-recalibrated MDN. Results for the recalibrated
RNN were more varied, at 54% (apy), 46% (acpom), and 85% (ayap)-
The retrieval accuracy for aph(675) was 44% for the recalibrated
MDN and 54% for the RNN, and this difference relative to the non-
recalibrated models was smaller than the typical variations between
model instances (Fig. 11). Consistent with Section 4.2.3, we conclude
that recalibration can substantially improve uncertainty estimation,
with some limitations, and does not compromise retrieval accuracy.

5. Discussion
5.1. Generalization ability

Random split estimates for apy, agpom, and ayap at 443 nm, with
MdSA values of 25%-34%, aligned well with previous studies (O’Shea
et al., 2023; Pahlevan et al., 2022; Saranathan et al., 2024). Similarly,
our PRISMA scenario results matched the decline in accuracy observed
by O’Shea et al. (2023). Said study reported an increase in MdSA
of 37-63%pt., partially overlapping with the 15-44%pt. increase in
aph(443, 675) MdSA we found in the general AC PRISMA scenario
for the two AC processors. Retrieval errors in acpgy and aysp were
similarly elevated.

Retrieval of acpoy and ayap is inherently more sensitive to input
perturbations than ap,, as their absorption spectra are dominated by
features at 443 nm with an exponential decay towards the red. As
established in the literature, uncertainties from AC disproportionately
affect the blue region (Braga et al., 2022; Gilerson et al., 2022; Warren
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Fig. 14. Calibration curves for the PRISMA scenarios without (left) and with (right) recalibration. The average-performing model for each combination of scenario and architecture
is displayed. As in Fig. 8, underconfident models fall below the diagonal line and overconfident ones above it.

et al., 2019), thereby amplifying IOP retrieval errors. Furthermore,
because the PNNs were trained exclusively on in situ measurements,
which represent a distinct domain compared to satellite-derived R,
the models were faced with a domain shift when applied to PRISMA
observations, forcing them to generalize to conditions (e.g., spectral
noise, sensor artifacts, AC-induced uncertainties) not encountered dur-
ing training. Notably, adding local knowledge to the training set did
not substantially reduce the impact of this domain shift on retrieval
accuracy. After recalibration, however, the models were well-calibrated
(close to k = 1), suggesting that regional measurements can effectively
produce well-calibrated models for local applications. For a comprehen-
sive analysis of all PRISMA scenario results, including those for acpon
and ay,p, see Appendix G.

PNNs trained on in situ datasets showed a clear deterioration in
estimation accuracy from the random split to the WD and OOD sce-
narios. The median MdSA per architecture in aph(443), aph(675), and
acpom(443) increased by up to 20%pt. and 40%pt. in the WD and OOD
scenarios, respectively. This decline highlights the challenges PNNs face
when encountering unknown conditions, as models underestimated
IOPs due to extrapolation in OOD scenarios. These findings were cor-
roborated by the PRISMA in situ vs. in situ comparison (Section 4.2.1),
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where the PRISMA in situ measurements were partially WD and par-
tially OOD relative to the primary in situ dataset, resulting in similar
accuracy metrics.

Our findings underscore the critical role of independent dataset
splitting for assessing model generalization effectively. Evaluation meth-
ods must account for both the variability across independent water
bodies and the underlying water constituent or IOP distribution sce-
narios, including spatial autocorrelations, which are often overlooked
in conventional approaches (Stock and Subramaniam, 2022). Our WD
and OOD dataset splitting approaches (Section 3.1, Appendix B) satisfy
these criteria. The PNNs exhibited high consistency in random split con-
ditions, with minimal variation between model instances. In contrast,
WD and OOD scenarios caused pronounced fluctuations in performance
across PNN architectures and IOPs. Since real-world applications are
generally WD or OOD, these results demonstrate major limitations
in the capability of random splits and LOO cross-validation to assess
model performance.

The MDN sensitivity analysis (Section 4.1.1, Appendix F) reveals a
further advantage of the 50/50 WD and OOD split approach, showing
that the MDNs were knowledge-limited — an observation that would be
undetectable in LOO splits, where the training set vastly outnumbers
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the test set. Random splits suffer from knowledge leakage (Stock et al.,
2023), making the amount of training observations a poor indicator of
epistemic uncertainty (lack of knowledge). Therefore, we recommend
using random splits and LOO evaluations in their current form only
for representing optimal-scenario performance, initial experimentation
with model architectures and hyperparameter tuning.

The scarcity of quality-controlled match-up datasets linking satel-
lite R, with reference IOPs often restricts model evaluations to WD
scenarios, meaning models are only evaluated for their interpolation
capability. This limitation helps explain the erratic behavior of (P)NNs
applied to unknown conditions requiring extrapolation (Mouw et al.,
2013; Neil et al., 2019; Saranathan et al., 2024; Werther et al., 2022).
These issues can be mitigated if studies employing (P)NNs for IOP and
water constituent retrieval more explicitly delineate the application
limits of their models through domain checks (D’Alimonte et al., 2003)
or uncertainty quantification (Sections Section 5.2, 5.3).

The consistency between BNN-MCD, BNN-DC, ENS-NN, and RNN
suggests that selecting a different NN architecture, given similar access
to training observations, is unlikely to substantially improve retrieval
accuracy. Variability among instances of the same PNN architecture
under identical scenarios is common in NNs and arises from factors
such as random initialization, the sequence of training observations,
model convergence issues, and the varying effectiveness of regulariza-
tion techniques (Smith et al., 2021). An ensemble approach can help
mitigate some of these inconsistencies (Pahlevan et al., 2022; Werther
et al., 2021).

The MDNs initially showed significant retrieval errors in the in
situ scenarios, which were explained through sensitivity analysis (Sec-
tion 4.1.2) and application to PRISMA using a larger training dataset.
It is unclear to what extent the difference was caused by the specific
choice of IOPs left out versus the difference in dimensionality in
general. Although estimating fewer IOPs brought the MDN closer to
the other PNNs, it remained an outlier in the WD and OOD scenarios.

Assessing the relative importance of each wavelength band for
IOP retrieval in the PNN architectures could advance the understand-
ing of how PNNs leverage hyperspectral information from sensors
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like PRISMA. Such an analysis may highlight bands that mainly con-
tribute noise or are strongly impacted by prior AC, potentially justifying
their removal. Additionally, mapping the most influential bands to
known absorption and scattering features could improve the physical
interpretability of the results. However, multiple practical barriers
exist. First, there is no universally accepted framework for determin-
ing feature importance in NNs, especially for PNNs. Second, because
multiple methods exist, such as SHapley Additive exPlanations (SHAP;
Lundberg and Lee (2017)), Local Interpretable Model-agnostic Expla-
nations (LIME; Ribeiro et al. (2016)), permutation importance, and
gradient-based approaches, their outcomes must be compared to obtain
reliable insights. Third, feature importance methods often disagree in
practice (Krishna et al., 2024), implying that a comprehensive, multi-
method analysis across our 25 PNN instances would require novel
methodological development to yield meaningful outcomes.

5.2. Extrapolation indication

Recognizing when NNs are forced to extrapolate beyond their train-
ing domain is critical for ensuring their reliability in remote sensing
applications. While recent efforts have emphasized the importance
of determining retrieval uncertainties for assessing the applicability
of an approach (IOCCG, 2019; Saranathan et al., 2023; Werther and
Burggraaff, 2023), there remains a gap in methodologies specifically
designed to detect and handle OOD scenarios, especially in the context
of PNNs and IOP estimations. Our results showed that uncertainty
estimates may lack proper calibration (Sections Section 4.1.4, 4.2.3,
4.2.4), potentially leading to misplaced confidence — or lack thereof —
when models are forced to extrapolate.

The ability to recognize extrapolation has been a subject of interest
since the earliest research on NNs in aquatic remote sensing (Doerffer
and Schiller, 1998; Schiller and Doerffer, 1999). These early studies
employed a combination of forward and inverse NNs to determine
whether encountered conditions fell within or outside the scope of
the training distribution (Schiller and Krasnopolsky, 2001). This dual
network approach not only aimed to make it possible to restrict NN
application to interpolation conditions, but also provided a quality
metric 6. This metric was defined as 6§ = ||y — fNN(f;;}v(J’))”’ with y
the observed values and fy and f;U‘V NNs emulating the forward and
inverse models, respectively. The value of § quantifies the consistency
between observed and reconstructed values, serving as an indicator
of the inversion quality. This methodology was integrated into the
ENVISAT Medium Resolution Imaging Spectrometer (MERIS) Case 2
processor (Doerffer and Schiller, 2007) and evolved into the C2RCC
processor (Brockmann et al., 2016), now part of EUMETSAT’s Sentinel-
3 Ocean and Land Color Instrument (OLCI) operational processing
chain. However, many complex NN processors do not implement do-
main checks. Without these checks, users may not know whether the
underlying models are operating under interpolation or extrapolation,
which, as our results demonstrate, can severely impact performance.

The implications of our findings extend to water constituent re-
trieval approaches that use Optical Water Type (OWT) classification
schemes. OWTs represent clusters of similar water bodies based on their
optical properties (Moore et al., 2001, 2014) and OWT classification is
commonly used for estimating variables like chlorophyll-a (Liu et al.,
2021) and total suspended matter concentration (Jiang et al., 2023).
Since OWT classifications are designed from limited datasets (Bi and Hi-
eronymi, 2024; Spyrakos et al., 2018), the underlying retrieval models
used within each OWT are likely to encounter extrapolation conditions
when applied to satellite imagery. Although recent schemes have begun
to address the extrapolation scenario for chlorophyll-a (Liu et al.,
2021), their performance stills need to be systematically evaluated. Fur-
thermore, classifying R, spectra into OWTs does not inherently resolve
the optical ambiguities that affect all retrieval algorithms (Defoin-
Platel and Chami, 2007), including PNNs. However, OWTs can assist
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Fig. 16. PNN application to a PRISMA scene of the Venetian Lagoon on 2023-05-24, atmospherically corrected using the standard L2C processor. Panel (a) shows the input R;
panels (b-d) and (h—j) display the estimated IOPs; panels (e-g) and (k-m) present the corresponding estimated uncertainties. Diamonds indicate locations of in situ match-up
observations. Land pixels were masked using an ad-hoc normalized difference water index (NDWI) based on R, (559) and R, (860) with a threshold of NDWI > 0 for water, and

are shown in grayscale based on an approximate luminance.
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Fig. 17. PNN application to a PRISMA scene of the Venetian Lagoon on 2023-09-11, atmospherically corrected using ACOLITE. Similar to Fig. 16, with optically shallow match-up
locations indicated by orange-outlined diamonds.

in selecting optimal AC methods (Pahlevan et al., 2021), potentially 5.3. Uncertainty estimation
mitigating associated uncertainties.

Therefore, our study underscores the critical need for more robust The predominance (> 80%) of aleatoric uncertainty — inherent to
methodologies capable of simultaneously indicating extrapolation con- the observations — suggests that we may have reached the predictability
ditions and addressing optical ambiguities between R,y and IOPs, which limit for IOPs, imposed by fundamental characteristics (variability and
vary in degree and can occur concurrently. error) of the measurements and the longstanding issue that no unique
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Fig. 18. Uncertainty estimates for the scene displayed in Fig. 17 for the average-performing (a—c, g-i) and average-performing recalibrated (d—f, j-1) PNN instances. Each column

corresponds to an IOP, as shown at the bottom.

relationship exists between IOPs and R, (Zaneveld, 1994; Defoin-Platel
and Chami, 2007). While Defoin-Platel and Chami (2007) advocated
for Bayesian approaches and MDNs to address ambiguity, our findings
suggest that data-driven models alone do not overcome this inherent
limitation. This underscores the need to incorporate physical con-
straints or prior knowledge into retrieval methods to enhance their
accuracy.

Epistemic uncertainty — arising from a lack of knowledge — can
be reduced by expanding the training set with more diverse mea-
surements, particularly in under-sampled or OOD scenarios. Notably,
MDN uncertainty estimates improved in the PRISMA application ow-
ing to the larger training set (Section 4.2.2), which also improved
model accuracy. However, there are practical constraints, as acquiring
new in situ samples, particularly in remote or inaccessible regions,
remains logistically and financially challenging (Jha and Chowdary,
2007; Meyer et al., 2024; Palmer et al., 2015). This persistent limitation
implies that OOD scenarios will continue to present challenges for
model generalization. Therefore, it is essential to adopt uncertainty
quantification methods that adequately account for epistemic uncer-
tainty in the absence of comprehensive training sets. Techniques like
active learning, which allow models to identify and prioritize areas of
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high uncertainty for further collection of training observations, offer
promising avenues for future research.

Recalibration improved the quality of uncertainty estimates, thereby
increasing model trustworthiness (Section 4.1.4, 4.2.3, 4.2.4). Impor-
tantly, the effectiveness of recalibration depended on the degree of
initial miscalibration, proving beneficial when the miscalibration area
exceeded certain thresholds, namely > 0.13 for in situ data and > 0.15
or > 0.20 for PRISMA. These thresholds offer practical guidelines for
determining when recalibration is useful.

While adding more measurements will not linearly improve IOP
retrieval accuracy, it can increase model trustworthiness through recali-
bration. For medium-to-large datasets, re-allocating part of the training
set to recalibration can enhance model reliability without sacrific-
ing accuracy (Table 1, Section 4.2.4). This observation highlights the
value of explicitly considering sources of uncertainty when developing
strategies for model improvement (Werther and Burggraaff, 2023).

6. Conclusions & future work

This study rigorously assessed PNN performance for hyperspectral
estimation of absorption IOPs in optically complex waters. While PNNs
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achieved favorable accuracy (MdSA as low as 25%) when in situ train-
ing and test sets shared similar IOP distributions, accuracy substantially
degraded for independent water bodies and satellite applications. In the
PRISMA general application scenario, MdSA exceeded 80% for a,,;,(443)
through both L2C and ACOLITE ACs, while for aph(675), it exceeded
100% through L2C and reached approximately 75% with ACOLITE (see
Section 4.2.1). We therefore conclude that the worsened IOP retrieval
inaccuracy from PRISMA imagery is systematic, reflecting inherent
limitations associated with data-driven NN-based approaches rather
than being attributable solely to a particular PNN architecture, training
setup, or the choice of the AC method. These results demonstrate
the limited generalization capacity of PNNs to estimate IOPs in novel
conditions.

To systematically evaluate generalization ability, we introduced a
novel dataset splitting strategy that distinguishes between interpolation
(in situ, within-distribution) and extrapolation (out-of-distribution) set-
tings. This approach addresses a critical gap in previous methodologies
that conflated interpolation with true extrapolation, revealing that stan-
dard assessment approaches (such as random split) tend to overestimate
PNN generalization.

Our systematic comparison of various PNN architectures further
uncovered significant variations in model calibration. Models with
miscalibration beyond a defined threshold (0.13) benefited consis-
tently from post-hoc uncertainty recalibration, while well-calibrated
models did not. This represents the first systematic demonstration in
aquatic remote sensing of how miscalibration analysis and recalibration
techniques can improve model reliability.

Crucially, our findings reveal that aleatoric uncertainty dominates
in IOP retrieval, implying fundamental limitations in resolving the
reflectance-IOP relationship solely through data-driven approaches.
Simply expanding the training dataset with similar observations is
unlikely to overcome this inherent uncertainty, and alternative ma-
chine learning methods (including decision trees or other neural net-
work variants) are unlikely to offer substantial improvements over the
evaluated PNNs.

Real advancement in applying machine learning in our field will
have to come from novel methods that integrate physical principles
governing the relationship between IOPs and reflectance into neural
network architectures, thereby creating physics-informed neural networks
(PINNSs). PINNs have already been applied across different disciplines
of aquatic research, such as lake temperature profiling (Jia et al.,
2019), underwater imaging polarimetry (Hu et al., 2022), and reservoir
pressure management (Donnelly et al.,, 2024). However, the use of
PINNSs to retrieve IOPs or other variables from remote sensing is thus
far undocumented in literature. We recommend three strategies to be
explored for developing PINNs for IOP estimation:

1. Physics-constrained loss functions: One approach involves
incorporating physical constraints directly into the loss function
of the neural network (Raissi et al., 2019). In the context of IOP
estimation, this could mean penalizing the network for violating
known physical relationships between IOPs and apparent optical
properties like R,,. Such an approach ensures that the network
produces estimates grounded in fundamental optical principles,
potentially reducing errors in OOD scenarios by improving its
ability to generalize across diverse water conditions.

2. Physics-inspired architecture design: The neural network ar-
chitecture itself can be designed to reflect the underlying phys-
ical processes of light propagation through water. For instance,
different layers or sub-networks could be structured to rep-
resent various components of the radiative transfer equation,
with their interactions guided by established physical princi-
ples (Chattopadhyay et al., 2022). This physics-inspired archi-
tecture could provide insights into the physical processes during
IOP inference. Although not explicitly physics-informed, the
forward-inverse framework developed by Schiller and Doerffer

21

Remote Sensing of Environment 328 (2025) 114820

in the late 1990s, which forms the basis for C2RCC, was clearly
physics-inspired and should be regarded as an early attempt to
incorporate physical principles into model architecture.

3. Hybrid physics-ML integration: A highly ambitious approach
involves the integration of established radiative transfer mod-
els for optical oceanography, such as HydroLight (Hedley and
Mobley, 2021) or WASI (Gege, 2014), directly into the PINN
framework. This could be achieved by creating differentiable
versions of these models, either through neural network surro-
gates/emulators (Raissi et al., 2019) or automatic differentiation
techniques (Baydin et al., 2018). The resulting hybrid architec-
ture would allow for seamless integration of physics-based simu-
lations within the neural network, enabling end-to-end training
that leverages both data-driven learning and well-established
physical principles. This approach could not only enhance gen-
eralization but also enable both forward and inverse modeling
within a unified framework, increasing the versatility of PINNs
across diverse IOP estimation scenarios.

By pursuing these strategies to integrate physical principles into
PNNs, we can address current limitations and achieve more robust
and accurate IOP estimation across optically complex waters, thereby
enhancing the use of hyperspectral remote sensing for aquatic research.
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Appendix A. Datasets

The GLORIA dataset was expanded with additional IOPs for existing
samples (n 1605) and new samples (n 461) that included hy-
perspectral R, IOPs, and water constituent concentrations (in total:
n =2066) (Table A.3). These additions came from various contributors
and repositories:

+ SeaBASS repository (n = 50): Observations from Cota and Zim-
merman (2000), Carder and Mitchell (1999), Muller-Karger (2015),
Hu and Muller-Karger (2012), Carder (1998) extending sampling
locations in Bahamian and U.S. coastal waters.

+ PANGAEA repository (n = 364): Observations from Casey et al.
(2020) and Goncalves-Araujo et al. (2018), introducing new sam-
pling locations in:

- U.S. coastal waters of the Gulf of Mexico (n = 356)
— International oceanic waters of the Arctic Ocean (n = 8)

+ Additional lake observations (n = 47): Complementing existing
GLORIA datasets for Chinese and Japanese lakes (Lehmann et al.,
2023) with observations for:

— Taihu Lake, China (n = 39)
— Lake Suwa, Japan (n = 8)

For more information on the dataset extension and additional IOPs,
please refer to O’Shea et al. (2023), Pahlevan et al. (2022).

Appendix B. Dataset splitting algorithm

The developed algorithm partitions a dataset with splitting vari-
ables (e.g., IOPs, water constituents) into within-distribution (WD)
and out-of-distribution (OOD) training and test sets. The algorithm
ensures unique water bodies in each set while optimizing for different
distribution characteristics.

The algorithm uses dual annealing optimization to find the best split
by minimizing an objective function over multiple iterations. For WD
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datasets, the aim is to maximize similarity between train and test sets,
while for OOD the algorithm maximizes their dissimilarity.
The WD objective function is defined as:

fWD(X) = SWD(Dtrain! Dtest) + P(Dtraim Dtest)' ®)
The OOD objective function is:
fOOD(X) = _Sa)D(Dtrain’ Dtest) + P(Dtrain! Dtest)' 9

Here, Syp and Syp are similarity and dissimilarity scores, respec-
tively, and P is a penalty term for dataset size imbalance to obtain equal
training and test sets.

The WD similarity score is calculated as:

Swp(Dy, D) = Y 1#(Dy) = w(Dy)l.

i=1
The OOD dissimilarity score is:

10$)

Saop(D1, Dy) = Y Y 10%(Dy) - 0V(D,)]. an
i=1 peP

In these equations, y;(D) is the mean of the ith IOP column at
443 nm in dataset D, Q{.’ (D) is the pth percentile of the ith IOP column
at 443 nm, n» is the number of IOP columns, and P is a set of specified
percentiles (10%-90%).

The balance penalty is defined as:

P(Dirain: Diest) = | Nirain — Neestl- 12)

where Ny, and N, are the numbers of observations in the train and
test sets, respectively.

Please see the Code Availability section for the implementation in
Python.

Appendix C. Scaling of input and target variables

C.1. Input variables: R

We used Sklearn’s RobustScaler to scale the R, input values. The
RobustScaler subtracts the median and scales R, according to the
interquartile range. The RobustScaler is independently trained on and
applied to each input feature, i.e. each wavelength of R.

C.2. Target variables: IOPs

Because the target variables (apy, acpom» anap) span several orders
of magnitude (10~* to 10! m~1), they are first log-transformed as in Eq.
(13). Here y; is the original vector of 6 target values for sample i, with
yf its log-transformed counterpart; the natural logarithm is applied
element-wise. The log transformation ensures that the network treats
observations at different orders of magnitude with equal weight, rather
than optimizing for the highest values only:

y! = log(y,). (13)

All logarithms in this work are natural logarithms, i.e. log = log,, unless
otherwise specified. The log-transformed observations are then scaled
using Sklearn’s MinMax scaler. This scaler transforms the observations
to a fixed range, in this case between —1 and 1. While not strictly
necessary, this scaling is beneficial to the training process. First, it
ensures numerical stability and accelerates the gradient descent process
by presenting the network with a consistent range of values. Second,
for simultaneous estimation of multiple target variables, it ensures that
each variable is treated equally and prevents any single target from
dominating the learning process. Scaling is especially critical in the
context of PNNs, as it directly influences the estimation of variance,
and thus uncertainty.

The MinMax scaling to the range [—1, 1] is defined in Eq. (14). Here
yf is the vector of log-transformed target observations for sample i,
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Table A.3
GLORIA subsets including additional ay,(443), a,,(675), acpom(443), acpom(675), anap(443) and ay,p(675) observations from individual contributors and SeaBASS used in this study.
Dataset ID Water system(s) Number of Author(s)
unique observation(s)
water (n = 1605)
system(s)
(n = 151)
AlikasK_EE_UT-TO Estonian and Finnish lakes 27 57 Alikas, K.; Kangro, K.; Ligi M.
AnsteeJ_ AU_CSIRO Australian lakes and water treatment plant ponds 13 104 Anstee, J.; Drayson, N.
DekkerAG_NL_VU Dutch lakes and rivers 16 20 Dekker, A. G.; Malthus, T. J.
FicekD_PL_APSL Polish lakes 13 97 Ficek, D.
GiardinoC_IT_CNR-IREA Italian lakes 6 60 Giardino, C.; Bresciani, M.
GitelsonAA_US_UNL U.S. lakes 12 178 Gitelson, A. A.; Gurlin, D.; Moses, W. J.
GrebSR_US_WDNR U.S. lakes and rivers 34 195 Greb, S. R.; Gurlin, D.
LehmannMK _NZ_ New Zealand lakes 3 12 Lehmann, M. K.; Reed, L.
UOW_NZ_LK
LiL_US_IUPUI U.S. lakes 3 141 Li, L.
MatsushitaB_JP_ Japanese lakes 1 26 Matsushita, B.; Jiang, D.
Tsukuba
MishraDR_US_MSU U.S. aquaculture ponds 1 41 Mishra, D. R.; Mishra, S.
O’DonnellDM_US_UFI Canadian and U.S. lakes 3 41 O’Donnell, D. M.
Ruiz-VerduA_ES_UVEG- Spanish lakes 4 16 Ruiz Verdd, A.
CEDEX
SeaBASS_US_ODU U.S. coastal waters 1 45 Cota and Zimmerman (2000)
SeaBASS_US_USF U.S. coastal waters 1 97 Hu (2010a)
SeaBASS_US_USF U.S. coastal waters 1 38 Hooker et al. (2011)
SeaBASS_US_USF U.S. coastal waters 1 201 Carder and Mitchell (1999)
SeaBASS_US_USF U.S. lakes 1 10 Carder (1997)
SeaBASS_US_USF U.S. coastal waters 1 11 Carder and Kirkpatrick (1998)
SeaBASS_US_USF U.S. coastal waters 1 16 Hu (2010b)
SeaBASS_US_USF U.S. coastal waters 1 75 Hu (2008)
SeaBASS_US_USF Bahamian and U.S. coastal waters 2 13 Carder (1998)
SeaBASS_US_USF U.S. coastal waters 1 67 Carder and Hu (2005)
SeaBASS_US_USF U.S. coastal waters 1 1 Hu and Muller-Karger (2012)
SeaBASS_US_USF U.S. coastal waters 1 12 Muller-Karger (2015)
SimisSGH_NL_NIOO- Dutch lakes 2 31 Simis, S. G. H.

KNAW

y; its rescaled counterpart, and y.

¢
min’ Ymax

are the vectors with the

minimum and maximum values across all samples, again evaluated
independently for each of the 6 targets:

4 t
Yi — ymin
3 3
Ymax ~ ymin

yi=2

C.3. Inverse scaling of the output means and variances

- 1.

(14)

As discussed above, the model estimates are in log-transformed and
MinMax-scaled units. To obtain the estimates in real units, the estimates

must pass through the inverse transformations.

C.4. MinMax scaling

The estimated means and variances describe a normal distribution
in MinMax-scaled units, so that j; ~ N (4,67 )?). Since this scaling is a
linear transformation, so is its inverse, meaning the resulting estimates
in log-transformed units are also normally distributed. Recall Eq. (14):

3 ¢
Yi — ymin
4 2
Ymax = ¥Ymin

yi =2

- 1.

The mean of the new distribution is obtained by inverting Eq. (14):

N3 2

The variance follows from uncertainty propagation:

N\ 2
w7=(%) e

1. s ¢
= Z(ymax ~ Ymin

1 "
H = z(yrtl;ax - ymin)(ll[s +D+ Ymin

¢

)*(67).

(15)

(16)

a7
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C.5. Log transform

Since the estimates are normally distributed in log-transformed
units, i.e. 37 ~ N i/, (67)?), the corresponding estimates in real units
follow a lognormal distribution: y; ~ Lognormal(ﬁf ,(c‘;)’.f )2). Since the
lognormal distribution is naturally skewed, there are multiple options
for the mean and variance. We use the geometric mean of the lognormal
distribution, which equals the median, to transform ﬁf back to real
units, as in Eq. (18). This is the direct inverse of the original log
transformation:

f; = exp(f). (18)

For the variance &[2, we use the arithmetic variance, as in Eq. (19).

This is not strictly the most accurate choice, since it represents the
typical variation around the arithmetic mean, rather than around the
geometric mean. The geometric variance would more fairly represent
the variation around the geometric mean as well as the asymmetry
of the distribution. However, asymmetric uncertainties are notoriously
difficult to propagate, and the arithmetic variance is more similar to
typical uncertainty metrics reported in the literature. In practice, this
choice will lead to a slight overestimation in the uncertainty in real
units, but Monte Carlo simulations for various IOP samples used in this
study showed that the difference is very minor, on the order of a few
percent points:

&7 = exp(2] +(6])") X (exp((6])") = D). 19)

Appendix D. PNN hyperparameters

The architectural parameters of the models, including the number
of neurons and hidden layers, were informed by prior studies that used
R, as the input variable for estimating aquatic variables (Pahlevan
et al., 2020, 2022; O’Shea et al., 2023; Saranathan et al., 2024).
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Table D.4

PNN hyperparameters and their values as used in this study.
Hyperparameter Value Comment
PNN instances per scenario 25

Neurons input layer
Hidden layers 5
Neurons in hidden layers

61 (in situ), 36 (PRISMA)

100 - 100 - 100 - 100 - 100

Neurons in output layer 12 6 means and 6 variances
Batch size 32

Activation function Rectified Linear Unit (ReLU)

Drop rate 25% BNN-MCD, BNN-DC, RNN
Monte Carlo samples 100 BNN-MCD, BNN-DC, RNN
Ensemble members 10 ENS-NN only

L2 regularization 1073

Learning rate 1074

Optimizer Adam

Loss function Negative log-likelihood (NLL)

Mixture components 5 MDN only

During training, each model was monitored for convergence using an
internal validation set comprising 10% of the training observations in
each scenario, which was randomly partitioned and reserved exclu-
sively for early stopping. Training was terminated when the validation
loss ceased to improve, thereby preventing overfitting to the training
dataset. Since a validation set was part of a training set, it was distinct
from the independent test set in each scenario used for final model
evaluation.

To further mitigate overfitting, L2 regularization (weight decay)
was applied to all PNNs (Krogh and Hertz, 1991). For BNN-DC, BNN-
MCD and RNN, the Dropout or DropConnect layers provide additional
regularization (Wager et al., 2013).

Appendix E. Negative log-likelihood loss function

The negative log-likelihood (NLL) loss function is used to estimate
both the mean and variance of the target variables in the PNNs (except
for MDN). The NLL for a target with an observed value y and an esti-
mate  described by a Gaussian distribution $ ~ N (4, 62) is given in Eq.
(20). This derivation of this equation from the normal distribution is
provided below. In this work, the NLL is applied to the scaled data y;,
meaning the model estimates are also in scaled units: 4} and (&;’)2:

+log(2n)| .

A2
(y 6-2/4) (20)

NLL = % log(6%) +
The specific choice for the NLL loss function serves several impor-
tant purposes in the context of PNNs:

(1) Quantifying uncertainty: Unlike traditional loss functions that
only estimate the mean, the NLL also estimates a variance, from
which an uncertainty estimate can be derived.

Robustness to noise: By explicitly modeling the variance, the
NLL loss function can account for noise in the observations.
Higher estimated variance in noisier regions reduces the penal-
ization of estimation errors, which should lead to more robust
models.

@

(3) Improving estimation quality: The NLL loss encourages the
model to provide both accurate and confident estimates. It pe-
nalizes estimates that are both far from the true values and have

low estimated variance, improving overall estimate quality.

In this work, the NNs are trained in batches of 32 samples (Table D.4),
with 6 features each, so the average NLL across those 32 x 6 = 192
samples is used as the loss function, which the training process aims
to minimize. The softplus function softplus(x) = log(1 + exp(x)) ensures
that the estimated variance is positive.

24

E.1. Derivation

The probability density function (PDF) of a Gaussian distribution
with mean y and variance o2 is:

Y
Py 1.6%) = ——exp (—1 L ) : @1
Var T\2 e
The log-likelihood is the natural logarithm of this PDF:
2 = L _lo=w?
log [p(y | u,0%)] = log [ WCXP( i (22)
_ 1 _lo-w’

=log [\/ﬁ] + log [exp( 32 >] (23)

_! 2y 1o=-w?
=-3 log(2zc?) SR 24)

_ 2
-1 [log(Zﬂ'oz) + M] (25)

2 o2
_ 2
= ~iogo?) + Y21 4 10g2m)] . (26)
2 o2
The negative log-likelihood is therefore:
Y

NLL = —log [p(y | p,09)] = % [1og(62) + (y—z") + 10g(27r)] . @7

[

The NLL has a scaling factor 1 and a constant term log(2x), which
follow from the normalization of the Gaussian PDF. Being constant,
these terms do not affect the network optimization; we choose to keep
them for consistency with the definition. The (y — u)> term is the
classic mean square error (MSE) metric, which penalizes models that
diverge too far from the ‘true’ observed values. Dividing the MSE by
the variance o2 allows the model to account for uncertainty, lowering
the weight of estimates that are far from y but also uncertain. By itself,
this could lead to a runaway effect where the model simply increases
o2 arbitrarily to lower the loss function; however, the additive log(c?)
prevents this by penalizing large uncertainty estimates, and conversely
rewarding models with high confidence.

Appendix F. Model sensitivity t0 a.q,,m(675) and a,,,(675)

A model sensitivity study was conducted to investigate the large
differences between estimates from the MDN vs. the other architectures
(Section 4.1.1), as well as to evaluate the influence of the relatively
error-prone variables acpoy(675) and ayap(675) on the overall results.
25 new instances of each PNN architecture were trained on the in situ
dataset, this time only estimating aph(443), aph(675), acpom(443) and
anap(443).

The accuracy of the BNN-MCD, BNN-DC, ENS-NN, and RNN es-
timates differed little between the 6-I0P (Fig. 5) and 4-IOP (Fig.
19) studies. For example, the random split BNN-MCD aph(443) MdSA
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Fig. 19. Accuracy metrics for the PNNs trained without acpoy(675) and ay,p(675), analogous to Fig. 5.

was 32% (CI 31%-33%) when trained on 6 target IOPs and 31%
(CI 30%-32%) when trained on 4 target IOPs. The differences were
similarly negligible for the other scenarios, networks, IOPs, and metrics.

The MDN, on the contrary, showed large differences. Notably, the
MDN accuracy metrics were much more in line with those from the
other architectures when trained on 4 IOPs (Fig. 19). As a numer-
ical example, the random split MDN aph(443) MdSA was 52% (CI
41%-75%) with 6 IOPs and 36% (CI 33%-42%) with 4 IOPs; the WD
MDN a,(443) MdSA was 89% (CI 65%-111%) with 6 IOPs and 55%
(CI 45%-74%) with 4 IOPs. Some results changed more extremely,
such as the WD MDN acpoy(443) MdASA decreasing from 123% (CI
63%-196%) to 34% (CI 31%-42%), a significant difference. The 4-
IOP MDN generally displayed much less variability between model
instances than the 6-I0P one.

The estimated uncertainty (Fig. 20) displayed patterns similar to
the 6-IOP study (Fig. 6). Notably, the MDN aleatoric fraction for OOD
a,, (443) estimates was only 63%, corresponding to relatively high vari-
ability between model instances. In the other combinations of scenario
and IOP, the 4-I0P MDN was in line with the other architectures.
There were no systematic differences in coverage between the 6-I0P
and 4-IOP studies.

We conclude from this sensitivity study that only the MDN is
significantly affected by the inclusion of acpoy(675) and ayap(675)
as outputs. The difference with the other four architectures is likely

25

due to the different principle of operation and loss function (Sec-
tion 3.2); while all five perform simultaneous estimation of the IOPs,
only the MDN estimates the full covariance matrix through Cholesky
decomposition. Further work should be done to determine to what
extent the MDN accuracy is sensitive to the inclusion of additional
variables in general (increased dimensionality) vs. the inclusion of
acpom(675) and ay,p(675) specifically. Notably, the MDN accuracy
differed and varied most in the WD and OOD scenarios, indicating a
lower generalization ability that has not been adequately studied or
accounted for in previous studies (Section 1).

Appendix G. PRISMA: additional results for a.qom and ag,,

This appendix includes additional PRISMA estimates for acpoy and
anap (see Figs. 21-26), omitted in the results due to consistently worse
PNN accuracy compared to a,;, at 443 and 675 nm.

Data availability

The dataset is made available on ZENODO. Please see the Code
availability section of the manuscript.
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