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Questions you could ask:

> How do clustering results reflect the
structural characteristics of the networks?

s What aspects will be investigated to
understand the relationship between
clustering states and network structure?

> What role does community structure
detection play in understanding complex

networks?
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}= Summiarize this article

Summarize experiments
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ex networks based on structural

Full text access

ydes based on the k-means

ructural similarity of the

| to community detection.

le clustering is a method that identifying nodes with the same function or
mmunity detection. In this work, based on the structural similarity of nodes
de clustering is proposed. This method can easily divide the hub nodes and
heral structure into two sets. We also find that the changes in the number of
rules that guide the growth of the network under different conditions.

e Erdés-Rényi model, the cluster of nodes is homogeneous. When the
nodel, the peripheral nodes are the majority, and this trend will not change
v that the clustering of nodes in the networks based on the nodes’ structural
h on the structural analysis of complex networks.

Next | >

plex networks

l-world’ [1]and ’scale-free’ [2] have been found in networks, triggering
x networks are not only a new kind of models for physics or mathematics [3],
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[4], it also a new tool that can be applied in different research fields, such as biology [5], [6], neuroscience [7], 8], financial

systems [9], [10], and even social sciences [11], [12]. Over time, various researchers have invested significant efforts in

understanding the deep implications of complex networks, covering explorations of node centrality [13], [14], [15], self-similarity
[16], [17], 18], statistical mechanics properties [19], [20], [21], [22], [23], and dynamic behavior [24], [25], [26], [27]. These
studies delve into the rich connotations of complex network structures, providing important theoretical foundations for
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onents of complex network research. In the analysis of complex network
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in the topological structure is a core problem. These structural information
|, [30], quantifying structural similarities between nodes [31], [32], and

k[14], [33], [34], [35]. Among those researches, the detection of community
role.

ysis of networks, network community detection is the automated discovery of
re similar features or roles [36]. This involves partitioning nodes in the

1 groups are densely connected while nodes between groups are sparsely
2 in complex networks builds a bridge to understanding the structural
ucture to the macro characteristics. Thus, studying the structural properties of

“nodes can reveal the organizational principles and operational functions of
n methods have been proposed [37], including clustering [38], divisive

40], [41], [42], dynamic algorithms [43], [44], and statistical inference [45],
)ds try to find the groups of nodes that are strongly connected. Only a few

's that share similar features or roles, which is important for the macroscopic

ity structure in complex networks is analogy with the clustering algorithm in
yrmation of each data point (nodes) and their neighbors and try to find the
letecting of the community in complex networks can be treated as finding the
nd gather those nodes with the same structural information into a same set
-of the order of those evidential structural information carried by those nodes

lustering algorithm and nodes’ structural information to cluster the nodes in

ormation about the whole network. Traditional computer clustering methods

relocation [52], [53], and density-based clustering [38], [54]. When combining
in complex networks, the k-means++ method is easy to apply. Compared to the
dispersed when selecting initial cluster centers, which helps avoid the

'tter robustness and stability. Thus, we chose K-means++ to cluster the nodes
‘milarity, which is defined by the topological similarity of the local network
lative entropy [31], [55], [56].

ion 2 introduces the preliminary work on calculating the structural relative
roposes a node clustering method based on network structure and relative
es to guide the growth of core-periphery and randomly distributed seed

1le networks using the proposed method and provide results and analysis.

les’ similarity is an important metric, which is crucial for many research
‘h as node classification, network community structure detection, and network

> nodes’ similarity quantification based on the topological structure similarity
ode is a unique one [31]. This method is based on the local network of each
dges between them, and each node itself is also included in its local network,

; probability sets, calculating relative entropy, and quantifying node similarity.
re N represents the set of nodes in the local network and D represents the set
ee in the entire network is defined as Dpax. P (£) denotes the probability set
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for node 4. Considering that each node’s local network includes its neighbors and itself, The size of the probability set, denoted as
m, is as follows:

m = Digs + 1. (1)
The nrahahilityv set assaciated with nade 9.is defined as:
Reading Assistant ]. 2)

Questi d ask ilent in the probability set P(i) is determined based on the degree set D in the
uestions you could ask:
ywever, the degrees of most nodes are smaller than D,,,,. Consequently, when
nents in the probability set are set to zero. The definition of p(i, k) under this

‘ee of node i, D(k) is the degree of node k in the local networkZ; (IV, D).

(3)
ects the relative entropy and the accuracy of the similarity measure. Before
the probability set, we first order the elements, denoting the sorted set as
llows:

(4)

Actions you could take:

he local structure of the node 3. Network A is shown in sub-figure (a), while
3 in network A.

may be equal to 0, and when the value of P '(j, k) is equal to 0, there will be
we redefine relative entropy as

(6)

'presents the difference in their local structure distributions. The relative
znificant difference in the local structure between the corresponding nodes.
tes a higher similarity in the local structure between nodes. Therefore, based
ir of nodes, we will have the incidence matrix R of the network as

(7)

r of nodes, but the relative entropy is not symmetric. Therefore, the associated
Sign in to unlock the full response and ask your

own questions.
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| pair of nodes, we can establish an association matrix R to describe the
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similarity relationship between nodes in complex networks. The entries in this association matrix reflect the relative entropy

values between nodes, depending on their local structures. If the relative entropy value between nodes is large, the

corresponding value in the association matrix will also be large, and vice versa. Therefore, by observing the values in the

association matrix, we can understand the degree of similarity between nodes in the network.

Reading Assistant
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thod for measuring node similarity in complex networks based on relative
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s section, we propose a new node clustering method based on the similarity

r method draws inspiration from and improves upon the k-means++ clustering
zorithm relies on the coordinate representation of data points, whereas our
similarity, eliminating the need to directly access the coordinates of data

dle. To address this issue, we enhance the k-means++ algorithm and apply it to
~veen nodes in complex networks using local network information and the

nal k-means++ algorithm, which employs Euclidean distance to evaluate the

iids, our method better captures the intrinsic structure and patterns of the
r updating rules, distance calculation between sample points and cluster
1cing the algorithm’s performance and stability. The algorithm process is as

reviously proposed methods of relative entropy and node local structure, we
se it as a measure of similarity denoted as D (i, j), where r;; represents the

(9)

ion process introduced earlier, we obtained the correlation matrix R of
each element represents the similarity between corresponding nodes. These
3 D (4, 7) in the subsequent clustering algorithm.

tions, we will use the first five nodes of Network A as an example to detail the
e values of the distance matrix are shown in Table 1.

lomly select a node as the initial cluster center ¢;. In the subsequent process
juared distance from each node z in the dataset to the currently selected
seen selected, we will compare the distance of each node to all the selected
1g the squared distance. Subsequently, we construct the probability

tt cluster center based on the calculated squared distance values. The specific

(10)

ance from node z' to its nearest centroid, while X is the set of all nodes in the
2s that are farther from the existing centroids have a higher probability of
1sed on the constructed probability distribution, we randomly select the next
icess until k cluster centers are selected: C = {C1, Ca, ..., Ck}. The detailed
Igorithm 1.

ork A and set k = 2. First, we randomly select a node as the initial cluster
ate the squared distances from each of the other nodes to Node 1:

.399, D?, =(0.782)* =0.611,

L T4
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According to the K-Means++ algorithm, the probability of a node being selected as the next center is proportional to the square of
its distance. The probabilities of each node being selected as a center are calculated as follows:

Py = 20 ~0.0005, P;=§3%~0.1439, P, = 3 ~0.2203,

2.774 2.774 2.774
) P; = 1513 ~0.5453.
Reading Assistant re more likely to be selected as cluster centers. According to the calculation,
as the next cluster center, updating the set of cluster centers to C = {1, 5}.
Questions you could ask: -ances from the remaining nodes (Nodes 2, 3, and 4) to each of the current

'nearest center. Based on these distances, we then construct the
d distances from Node 2 to Nodes 1 and 5 are as follows:

.031

as the nearest center for Node 2. Similarly, we calculate the squared distances
mine their respective nearest centers. Based on the squared distances from
aability distribution that gives nodes further from any center a higher

ter. Using this probability distribution, we then choose the next cluster center,

Actions you could take:

d cluster centers

eger(1, length(D))

1:¢-1],]
ension=1)
(min_dists?)

nple(1 to length(D), 1, true, probabilities)

ce from each data point to each cluster center using the distance matrix D, and
«t, for each cluster C, identify the data point that best represents the cluster
ition of the iterative update algorithm is shown in Algorithm 2.

rinciple of minimizing the internal distances of the clusters. Specifically, we
ninimizes the average distance to all other points in the cluster. This can be
blem:

ar Cj, compute its distance to the other nodes using the

eighbor of node z;, i.e., the node with the minimum distance to
sing the following formula:

1
Sign in to unlock the full response and ask your (1
own questions.
wm value”, which means finding the node k that minimizes the
S 10de that is nearest to node @; within cluster Cj, which is used
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3. Count Frequency: Record the nearest neighbor indices k; of all nodes ;. Calculate the occurrence frequency
of each index in the array {ky, k2, ...} and select the node with the highest frequency as the new cluster
center. If multiple nodes have the same frequency, randomly select one as the new cluster center to ensure

Node clustering in complex networks based on structural similarity - ScienceDirect

that the newly selected center best represents the current category.
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s until the cluster centers no longer change significantly or until

this point, the clustering process is complete, and all sample
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ization(D, K)

irest centers based on dists

ters) do

do

1ed to cluster i

clusterNodes] + I

inimum distances from subDists
es of minDistIndex

most occurrences in counts

)

iteration > max_iterations then

cluster centers set as Node 1 and Node 5. Based on the distance matrix D, we

sarious cluster centers and assign the data points to the nearest cluster center.
1node 2 to node 1 is 0.501, while the distance to node 5 is 0.176, thus node 2 is
r 5. Continuing to calculate the distances of nodes 3 and 4 to the initial cluster

: {1}. C = {2, 3,4, 5}
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For the update of the cluster centers, we find the nearest neighbor nodes for each node in C; = {2, 3,4, 5} based on the distance

matrix D. The distance between node 2 and node 3 is 0.051, making node 3 the nearest neighbor node of node 2. Similarly, the

nearest neighbor node of node 3 is node 2, the nearest neighbor node of node 4 is node 3, and the nearest neighbor nodes of

node 5 are node 3 and node 4. Next, we count the frequency of each node appearing as the nearest neighbor node and select the

node with the highest frequency as the new cluster center. The statistical results show that node 3 has the highest frequency

Reading Assistant

id 5), thus node 3 is chosen as the new cluster center. The updated cluster
tered at node 1, while C5 is updated to be centered at node 3. This process will
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» or the maximum number of iterations is reached. The final clustering result is

ully clustered it into three classes. To illustrate the clustering results more

ire graph and scatter plot in Fig. 2, where the horizontal and vertical axes
ntrality, respectively. By observation, we can clearly see the distribution of the
“nodes in both the network’s structure and functionality.

(Bl [

102 0.025 0.03 0035
eness Centrality

ysition of nodes in network A with different clusters is shown in the left sub-
1lts is shown in the right sub-figure. In the right sub-figure, the horizontal axis
is represents betweenness centrality.

fewer connections in the network and play relatively marginalized roles, with
‘e the core nodes, which hold the most critical positions and functions in the
‘hin the network and exhibit significant closeness centrality and betweenness
the network and are crucial for its stability and functionality. We also identify
‘ipheral and core nodes in the network. These nodes act as bridges between

1 exchange of information within the network. From the test of our method on
' reveals the distribution and roles of different types of nodes in the network,
rresearch and analysis of network structure.

section shows that the clustering of the nodes based on the k-means++

1ster the nodes in different groups, and each group of nodes has its own

vork’s topological structure will be illustrated by the change of the clusters
iteresting question needs to be answered: if the change of the clusters of nodes
1at rules guide the network’s growth? In other words, can the change in the

1 be used as a general tool for the structural analysis of complex networks?

ict two different structured seed networks and grow them under two different
rent structures and sizes. Subsequently, we will use the method mentioned
ustering results. Our goal is to elucidate how the clustering results of the

ie networks and the structural characteristics of the nodes in the networks
'r different rules.

'S
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We build four different network growth processes to reveal the strong link between network clustering outcomes and changes in

network structure. Special attention is paid to how the network structure evolves with different seed networks and growth rules.

Before delving into structural changes in networks, we want to introduce two key factors: the definition of seed networks and

how network growth rules guide network evolution. The growth process of the network is influenced by these two key

conditions. The first is the initial structure of the seed network, which determines how the network growth rules are applied

Reading Assistant

guide the seed network’s growth further shape the way the network’s
rstanding these two critical factors, we can better explain the relationship
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twork structure.

a clear differentiation of their structures, which is shown in Fig. 3.

consisting of core nodes and peripheral nodes, with a distinct centrality

re nodes have higher connectivity and importance in the network, while

1ave relatively lower connectivity and status. In contrast, the seed network B
>s have randomly connected to the same extent. In network B, there are no

1t position in the network topology. Such design ensures significant structural
‘ovides a clear starting point for the subsequent study of network growth and
ining 100 nodes, and provided corresponding diagrams, illustrating their

Seed-Network B

tworks. Seed network A has a Core-Periphery structure, with only a few nodes
degree. Seed network B is a random network. Each of its nodes has almost the
2d networks are different, several different structural changes will occur

ks of different structures, we can observe the relationship between the

) key steps: introducing new nodes and attempting to establish connections
ill attempt to establish connections with nodes in the seed network according
1 structural change paths, in our study, we introduce two kinds of rules based
2 BA rule and the ER rule.

the Barabasi-Albert (BA) model [2], an important method for generating scale-
nly connected to a few other nodes, while a very small number of core nodes

. The degree distribution of this network follows a power-law form, meaning
vast majority of nodes have relatively low degrees, exhibiting highly uneven
'd nodes are more likely to connect to the core nodes in the network, i.e., those
onnecting to low-degree peripheral nodes. Specifically, the probability Pgy ()
rroportional to the degree d () of node i. Its mathematical expression is as
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) = 20 (12)
For ()= 52

where 7 is the total number of nodes in the network at the current time.

The second rule is the ER rule, originating from the Erdés-Rényi (ER) model [57]. In the ER model, network generation is

‘nerated randomly, and connections between nodes are independent, with the
Reading Assistant “nodes being equal.

(13)

Questions you could ask:
'twork model that does not consider any specific structure or properties
of a new node connecting to existing nodes is equal and independent of the
lity of establishing a connection between any two nodes is fixed and
ing networks using the ER rule, we specify a connection probability of 0.1 for

1der the guide of the BA rule to a network with 100 nodes. Obviously, it is a BA

[ this result. Therefore, when Seed Network A continues to grow under

of the variations in the topological structure of Seed Network A under different

ture will be affected by the growth rules. The detailed topological structure
Actions you could take: iles are shown in Fig. 4.

ale, the network presents the characteristics of homogeneity. The connections
ider the BA rule, newly added nodes are more inclined to connect to core

ig in a small number of hub nodes with very high degrees. These hub nodes
while other nodes form the periphery of the network. Therefore, the network
lery structure under the BA rule. The change of the Seed-Network A’s

2r different rules can also be found in the change of degree distribution of each

Mode 180-ER

&y

Naode 1B0-BA

| BA rules. subfigures in the top line show the change of networks’ topological
ww the topological structure of change under the BA rule.

-degree distribution under ER rules gradually changes from power law to
yower-law distribution, and a few nodes have higher degrees. With the growth
e random, resulting in the degree distribution gradually becoming uniform.
stribution always maintains the power law distribution. With the growth of

onnect to the existing highly connected nodes, which maintains the uneven
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-are grown from the Seed-Network A under different rules. The top line shows
wth is under the ER rule. The bottom line shows the degree distribution of the
1sly, Seed Network A is a BA network, and its power-law degree distribution is
les.

ork A and its performance under different growth rules, we conducted a
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\. The clustering results of Seed Network A clearly delineate the core nodes
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rre-periphery structure in Seed Network A.
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5. The topological structure changes of Seed Network B under different rules
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1g with most nodes in the initial network is also equal, resulting in the initial
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whether the changes in clustering results can reflect the differences between different network growth rules. By comparing

clustering results under different growth rules, we will seek patterns influencing network structures and infer the evolutionary

paths and mechanisms of networks under different growth rules. Finally, we will discuss whether clustering categories can

indicate different node structural characteristics.
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vn in Table 2.
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- Results of Seed Network A under BA Rule.
cluster Four-cluster

Class 2 Class 3 Class 1 Class 2 Class 3 Class 4
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(a). In contrast, the second category of peripheral nodes is distributed at the
y connected to the core nodes but maintain indirect connections through the
nodes. Their betweenness centrality is relatively low, and the structural

Clustes 1|
®  Cluoael
®  Clumsd|

(cl) o o "HT-'.:.

(@) —aele—s
-

Claseness Centrality o p0

»s clustered into three categories and the structural characteristics of the node

1ediary nodes, which play a crucial bridging role in the network by connecting
T network structures, the pink nodes are connected at one end to the first

‘0 the second category of peripheral nodes, forming an important transitional
bridging function facilitates the flow of information between core nodes and
iectivity of the network, as illustrated in Fig. 11(c1).

‘complex, the pink intermediary nodes continue to play a bridging role,

heral nodes, as shown in Fig. 11(c2). Regardless of the complexity of the
annectivity and stability by linking peripheral nodes of different hierarchies to
termediate nodes act as bridges between most peripheral nodes and core

r the ER rule, the structure changes, and the nodes’ clustering is totally

the core-periphery network under the ER growth mechanism, each new node
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distributed, the existing core-edge structure gradually weakens, and the node connections show the characteristics of uniform
distribution. This trend can be found in the percentage of nodes into different classes as shown in Table 3.

For networks with a core-periphery structure growing under the ER rule, we observe that the structural characteristics of the

network and the performance of the scatter plot are very similar to those of random networks under the ER rule, as shown in Fig.
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5) 380(38%) 247(24.7%) 373(37.3%) 380(38%) 227(22.7%) 20(2%)

categories of nodes are classified may vary, but clustering analysis still reveals

1ub, and central nodes in the network. Specific explanations are provided as

zes the dominant role of the ER rule in shaping network structure formation.

R rule has a greater influence on networks’ overall structure and organization,
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When the Seed Network B is under the BA rule, the distribution of nodes in the initial stage is relatively uniform. following the

increase of the network size, the probability of the occurrence of centralized nodes gradually increases. This is due to the growth

mechanism under the BA rule, that is, newly added nodes are more likely to connect to nodes with higher degrees of existing

nodes, resulting in a small number of nodes in the network with more connections, forming a centralized node. With the

increase of network scale, node connections gradually show a trend of uneven distribution, and dominant node categories
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z the centrality of a few nodes in the network. The change of the number of
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topological structure change in Seed Network B’s growth, as shown in Table 4.

, when Seed Network B grows to 200 nodes, class 1 has 100 nodes, and class 2
\ave the same size. The initial seed network has 100 nodes, which means the
ime class. Actually, when Seed Network B’s size reaches node numbers 500

f class 2 is increased. When the number of classes increases from 2 to 3 and 4,
iter. It looks like there is a community in the network with 100 nodes, and the
1nity, i.e., there is a core in the network, and the core is the initial Seed

- Results of Seed Network B under BA Rule.

cluster Four-cluster

Class 2 Class 3 Class 1 Class 2 Class 3 Class 4

%) 100 (50%) 42(21%)  58(29%) 100 (50%) 35(17.5%)  7(3.5%)
6%) 400(80%)  47(9.4%) 53(10.6%) 400 (80%) 37(74%)  10(2%)

%)  896(89.6%) 63(63%) 41(41%)  896(89.6%) 46 (4.6%)  17(1.7%)

s of the initial seed network and the BA model. Under the BA model, new
nodes. However, due to the uniform degree distribution of the nodes in the
connecting with nodes in the initial seed network is equal. This results in new
lally forming new categories. Meanwhile, the nodes in the initial seed network
lters the structure of the core nodes but also complicates the relationships

s among the core nodes continue to increase, further enhancing the

new categories are often subsets of the core community. This transition from
‘inement within the core reveals the evolutionary process of network structure
yre community play a crucial role in the network; they are centrally located,

, and have strong connections with other nodes, leading to efficient

ot only facilitates rapid information propagation but also effectively connects
exchange of information within the network, making it a key hub. The high

d of network centralization and the phenomenon of “the rich get richer”. This
ling the structure of complex networks.

he growth of random seed networks growing under the ER rule is different
the size of the network increases, there will usually be one category of nodes
rule, we observe that with the gradual increase of cluster categories, there is
ate. Instead, we find that the proportion of node categories is relatively

t categories are not significant. Even in the case of large differences in the
ease of cluster categories, this part of nodes will be divided into new

ller. This shows that the random network formed under the ER rule has a

wral features, the structural characteristics of the networks can be reflected. We
-ed networks with core-periphery structures grown under the BA rule and

Ve examined networks with different numbers of nodes and the number of
‘nary clustering, and quaternary clustering, which is shown in Table 5.
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The first Two-cluster works on the network with 200 nodes. Class 1 has nearly 100 nodes, and class 2 also has nearly 100 nodes.

There is no clear difference between the two classes. This phenomenon continues to network with 500 nodes in it. The two

classes are still the same size. However, when the network’s size reaches 1000 nodes, class 1 is bigger than class 2. The difference

in the topological structure of those nodes emerges. This finding is also verified in Fig. 14.
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Class 2 Class 3 Class 1 Class 2 Class 3 Class 4

) 74(37%) 20(10%) 74 (37%) 74 (37%) 20(10%) 32 (16%)
%) 213(42.6%) 68(13.6%) 160(32%) 213 (42.6%) 68(13.6%) 59 (11.8%)

%) 296(29.6%) 78(7.8%)  233(23.3%) 296(29.6%) 78(7.8%) 393 (39.3%)

rule in its process of growth; the whole process is equivalent to the classical ER
t model has the same local structure, so this clustering of nodes based on the
ode will be homogeneity.

node number 2000, 3000, 5000 and 8000. We can find that from left to right,
ades, nodes in the same cluster still located in the same position will the

1g of networks size have not show a distinguish difference on their node

15, Fig. 16, Fig. 17, Fig. 18).

‘hod based on structural similarity, utilizing the local structure of the network
veen nodes. We consider the structural characteristics of each node as a

' to measure the differences between these pieces of information, thereby

5. Compared to traditional methods based on local structure, our method not
ier to use than methods based on global structure. Our clustering method is
»improved the update rules for cluster centers, the distance calculation

the initialization process, thus better capturing the intrinsic structure and

works with different initial configurations: core-periphery structure and

:—periphery seed network features a structure with identifiable central and
structure approximates real-world random networks. These seed networks

2s that newly introduced nodes are more likely to connect to the core nodes in
'h degrees, rather than to low-degree peripheral nodes. The ER rule indicates
isting nodes is equal, regardless of the existing nodes’ degrees. By growing

s with different structures exhibiting significant differences in topology and

is on these networks, and the results show that our clustering method

the networks.

it network structures effectively reflect the structural characteristics of the

of core-periphery structured networks grown under the BA rule and random
se two structural networks into different categories and recorded the number
s significant differences in the distribution characteristics of different types of
riphery network, when clustered into two categories, one category dominates
'nomenon becomes more pronounced as the network size and clustering

1e category with fewer nodes corresponds to core nodes, while the category
This indicates the “rich get richer” phenomenon, where core nodes become
size increases. Important nodes are in the minority, but they have high

Tuence further strengthens. In contrast, the proportion of node categories in
this feature remains unchanged as the network size increases. Furthermore,

h patterns of the network. By comparing random networks under the BA rule
e found that different growth rules have a significant impact on the network
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structure. Under the BA rule, as the network size increases, the probability of central nodes appearing in a uniformly distributed
network gradually increases. In contrast, in core-periphery structured networks grown under the ER rule, the network structure
tends to be more uniform, with no obvious central nodes. This suggests that the structural characteristics of the network are
mainly determined by its growth rules rather than the initial structure. All the results show us that the clustering of nodes in the
networks based on the topological structure similarity is a reliable method that can be used to check the rules that guide the

es.
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