

Node clustering in complex networks based on structural similarity Feng, D.; Li, M.; Zhang, Q.

Citation

Feng, D., Li, M., & Zhang, Q. (2025). Node clustering in complex networks based on structural similarity. *Physical Review A*, 658. doi:10.1016/j.physa.2024.130274

Version: Publisher's Version

License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/4281715

Note: To cite this publication please use the final published version (if applicable).

Physica A: Statistical Mechanics and its

[4], it also a new tool that can be applied in different research fields, such as biology [5], [6], neuroscience [7], [8], financial systems [9], [10], and even social sciences [11], [12]. Over time, various researchers have invested significant efforts in understanding the deep implications of complex networks, covering explorations of node centrality [13], [14], [15], self-similarity [16], [17], [18], statistical mechanics properties [19], [20], [21], [22], [23], and dynamic behavior [24], [25], [26], [27]. These studies delve into the rich connotations of complex network structures, providing important theoretical foundations for

Reading Assistant

Questions you could ask:

Actions you could take:

in the <u>topological structure</u> is a core problem. These structural information], [30], quantifying <u>structural similarities</u> between nodes [31], [32], and k [14], [33], [34], [35]. Among those researches, the detection of community role.

ysis of networks, network community detection is the automated discovery of re similar features or roles [36]. This involves <u>partitioning nodes</u> in the groups are densely connected while nodes between groups are sparsely in complex networks builds a bridge to understanding the <u>structural</u> ucture to the macro characteristics. Thus, studying the <u>structural properties</u> of nodes can reveal the organizational principles and operational functions of n methods have been proposed [37], including clustering [38], <u>divisive</u> 40], [41], [42], dynamic algorithms [43], [44], and statistical inference [45], ods try to find the groups of nodes that are strongly connected. Only a few is that share similar features or roles, which is important for the macroscopic

ity structure in complex networks is analogy with the <u>clustering algorithm</u> in armation of each data point (nodes) and their neighbors and try to find the letecting of the community in complex networks can be treated as finding the and gather those nodes with the same structural information into a same set of the order of those evidential structural information carried by those nodes

<u>ustering algorithm</u> and nodes' structural information to cluster the nodes in ormation about the whole network. Traditional computer <u>clustering methods</u> relocation [52], [53], and density-based clustering [38], [54]. When combining in complex networks, the k-means++ method is easy to apply. Compared to the dispersed when selecting initial cluster centers, which helps avoid the etter robustness and stability. Thus, we chose K-means++ to cluster the nodes imilarity, which is defined by the topological similarity of the <u>local network</u> <u>lative entropy</u> [31], [55], [56].

ion 2 introduces the preliminary work on calculating the structural <u>relative</u> roposes a node clustering method based on network structure and relative es to guide the growth of core–periphery and randomly distributed seed to networks using the proposed method and provide results and analysis.

des' similarity is an important metric, which is crucial for many research thas node classification, network community structure detection, and network nodes' similarity quantification based on the topological structure similarity ode is a unique one [31]. This method is based on the local network of each dges between them, and each node itself is also included in its local network,

Sign in to unlock the full response and ask your own questions.

Sign in

; probability sets, calculating <u>relative entropy</u>, and quantifying node similarity. re N represents the set of nodes in the local network and D represents the set ee in the entire network is defined as D_{\max} . P(i) denotes the probability set

for node *i*. Considering that each node's local network includes its neighbors and itself, The size of the probability set, denoted as *m*, is as follows:

$$m = D_{max} + 1. (1)$$

].

The probability set associated with node i is defined as:

Reading Assistant

(2)

Questions you could ask:

Lent in the probability set P(i) is determined based on the degree set D in the owever, the degrees of most nodes are smaller than D_{max} . Consequently, when nents in the probability set are set to zero. The definition of p(i, k) under this tee of node i, D(k) is the degree of node k in the local network $L_i(N, D)$.

(3)

ects the <u>relative entropy</u> and the accuracy of the similarity measure. Before the probability set, we first order the elements, denoting the sorted set as illows:

(4)

Actions you could take:

he local structure of the node 3. Network A is shown in sub-figure (a), while 3 in network A.

may be equal to 0, and when the value of P'(j, k) is equal to 0, there will be we redefine relative entropy as

(5)

(6)

presents the difference in their local structure distributions. The relative gnificant difference in the local structure between the corresponding nodes. tes a higher similarity in the local structure between nodes. Therefore, based ir of nodes, we will have the <u>incidence matrix</u> \boldsymbol{R} of the network as

(7)

r of nodes, but the relative entropy is not symmetric. Therefore, the associated

Sign in to unlock the full response and ask your own questions.

Sign in

(8)

 ι pair of nodes, we can establish an <u>association matrix</u> R to describe the

similarity relationship between nodes in complex networks. The entries in this association matrix reflect the relative entropy values between nodes, depending on their local structures. If the relative entropy value between nodes is large, the corresponding value in the association matrix will also be large, and vice versa. Therefore, by observing the values in the association matrix, we can understand the degree of similarity between nodes in the network.

Reading Assistant

milarity

Questions you could ask:

s section, we propose a new node <u>clustering method</u> based on the similarity r method draws inspiration from and improves upon the k-means++ <u>clustering gorithm</u> relies on the coordinate representation of data points, whereas our similarity, eliminating the need to directly access the coordinates of data ple. To address this issue, we enhance the k-means++ algorithm and apply it to ween nodes in complex networks using local network information and the nal k-means++ algorithm, which employs <u>Euclidean distance</u> to evaluate the <u>pids</u>, our method better captures the intrinsic structure and patterns of the r updating rules, distance calculation between sample points and <u>cluster</u> noing the algorithm's performance and stability. The algorithm process is as

Actions you could take:

reviously proposed methods of relative entropy and node local structure, we se it as a measure of similarity denoted as D(i, j), where r_{ij} represents the

(9)

ion process introduced earlier, we obtained the <u>correlation matrix</u> \mathbf{R} of each element represents the similarity between corresponding nodes. These $\mathbf{E} D(\mathbf{i}, \mathbf{j})$ in the subsequent clustering algorithm.

tions, we will use the first five nodes of Network A as an example to detail the e values of the <u>distance matrix</u> are shown in <u>Table 1</u>.

lomly select a node as the initial cluster center c_1 . In the subsequent process quared distance from each node x in the dataset to the currently selected peen selected, we will compare the distance of each node to all the selected ag the squared distance. Subsequently, we construct the probability at cluster center based on the calculated squared distance values. The specific

(10)

ance from node x' to its nearest centroid, while X is the set of all nodes in the est hat are farther from the existing centroids have a higher probability of used on the constructed probability distribution, we randomly select the next ress until k cluster centers are selected: $C = \{C_1, C_2, \ldots, C_k\}$. The detailed lgorithm 1.

ork A and set k = 2. First, we randomly select a node as the initial cluster ate the squared distances from each of the other nodes to Node 1:

. 399,
$$D_{14}^2 = (0.782)^2 = 0.611$$
,

Sign in to unlock the full response and ask your own questions.

Sign in

. 774

According to the K-Means++ algorithm, the probability of a node being selected as the next center is proportional to the square of its distance. The probabilities of each node being selected as a center are calculated as follows:

$$P_2=rac{0.251}{2.774}pprox 0.0905, \quad P_3=rac{0.399}{2.774}pprox 0.1439, \quad P_4=rac{0.611}{2.774}pprox 0.2203, \ P_5=rac{1.513}{2.774}pprox 0.5453.$$

Reading Assistant

re more likely to be selected as cluster centers. According to the calculation, as the next cluster center, updating the set of cluster centers to $C = \{1, 5\}$.

Questions you could ask:

ances from the remaining nodes (Nodes 2, 3, and 4) to each of the current nearest center. Based on these distances, we then construct the d distances from Node 2 to Nodes 1 and 5 are as follows:

.031

as the nearest center for Node 2. Similarly, we calculate the squared distances mine their respective nearest centers. Based on the squared distances from pability distribution that gives nodes further from any center a higher ter. Using this probability distribution, we then choose the next cluster center,

Actions you could take:

d cluster centers

 $eger(1, length(\mathbf{D}))$

1:i-1],:]

ension=1)

(min_dists2)

 $nple(1 \text{ to length}(\boldsymbol{D}), 1, true, probabilities)$

ce from each data point to each cluster center using the distance matrix D, and xt, for each cluster C_j , identify the data point that best represents the cluster ation of the iterative update algorithm is shown in Algorithm 2.

rinciple of minimizing the internal distances of the clusters. Specifically, we ninimizes the average distance to all other points in the cluster. This can be blem:

er C_j , compute its distance to the other nodes using the

eighbor of node x_i , i.e., the node with the minimum distance to sing the following formula:

(11)

Sign in to unlock the full response and ask your own questions.

Sign in

ium value", which means finding the node k that minimizes the node that is nearest to node x_i within cluster C_j , which is used

3. **Count Frequency**: Record the nearest neighbor indices k_j of all nodes x_j . Calculate the occurrence frequency of each index in the array $\{k_1, k_2, \ldots\}$ and select the node with the highest frequency as the new cluster center. If multiple nodes have the same frequency, randomly select one as the new cluster center to ensure that the newly selected center best represents the current category.

Reading Assistant	s until the cluster centers no longer change significantly or until this point, the <u>clustering process</u> is complete, and all sample
Questions you could ask:	
	ization(D, K)
Actions you could take:	
	ırest centers based on dists
	ters) do
	do
	ned to cluster i
	clusterNodes] + I
	inimum distances from subDists es of minDistIndex
	most occurrences in counts
	;)
	iteration ≥ max_iterations then
	cluster centers set as Node 1 and Node 5. Based on the distance matrix $m{D}$, we
Sign in to unlock the full response and ask your	/arious cluster centers and assign the data points to the nearest cluster center.

 $\{1\}, C_2 = \{2, 3, 4, 5\}.$

r 5. Continuing to calculate the distances of nodes 3 and 4 to the initial cluster

https://www.sciencedirect.com/science/article/pii/S0378437124007842?via%3Dihub

own questions.

For the update of the cluster centers, we find the nearest neighbor nodes for each node in $C_2 = \{2, 3, 4, 5\}$ based on the distance matrix D. The distance between node 2 and node 3 is 0.051, making node 3 the nearest neighbor node of node 2. Similarly, the nearest neighbor node of node 3 is node 2, the nearest neighbor node of node 4 is node 3, and the nearest neighbor nodes of node 5 are node 3 and node 4. Next, we count the frequency of each node appearing as the nearest neighbor node and select the node with the highest frequency as the new cluster center. The statistical results show that node 3 has the highest frequency

Reading Assistant

Questions you could ask:

In d 5), thus node 3 is chosen as the new cluster center. The updated cluster tered at node 1, while C_2 is updated to be centered at node 3. This process will $\overline{}$ or the maximum number of iterations is reached. The <u>final clustering</u> result is

ully clustered it into three classes. To illustrate the clustering results more ire graph and scatter plot in Fig. 2, where the horizontal and vertical axes <u>ntrality</u>, respectively. By observation, we can clearly see the distribution of the nodes in both the network's structure and functionality.

Actions you could take:

osition of nodes in network A with different clusters is shown in the left subults is shown in the right sub-figure. In the right sub-figure, the horizontal axis is represents betweenness centrality.

fewer connections in the network and play relatively marginalized roles, with the the core nodes, which hold the most critical positions and functions in the thin the network and exhibit significant closeness centrality and betweenness the network and are crucial for its stability and functionality. We also identify ipheral and core nodes in the network. These nodes act as bridges between l exchange of information within the network. From the test of our method on reveals the distribution and roles of different types of nodes in the network, r research and analysis of network structure.

i

section shows that the clustering of the nodes based on the k-means++ ister the nodes in different groups, and each group of nodes has its own vork's topological structure will be illustrated by the change of the clusters iteresting question needs to be answered: if the change of the clusters of nodes nat rules guide the network's growth? In other words, can the change in the be used as a general tool for the structural analysis of complex networks?

ict two different structured seed networks and grow them under two different rent structures and sizes. Subsequently, we will use the method mentioned <u>ustering results</u>. Our goal is to elucidate how the clustering results of the e networks and the structural characteristics of the nodes in the networks or different rules.

Sign in to unlock the full response and ask your own questions.

S

We build four different network growth processes to reveal the <u>strong link</u> between network clustering outcomes and changes in network structure. <u>Special attention</u> is paid to how the network structure evolves with different seed networks and growth rules. Before delving into structural changes in networks, we want to introduce two key factors: the definition of seed networks and how network growth rules guide network evolution. The growth process of the network is influenced by these two key conditions. The first is the initial structure of the seed network, which determines how the network growth rules are applied

Reading Assistant

guide the seed network's growth further shape the way the network's rstanding these two critical factors, we can better explain the relationship twork structure.

Questions you could ask:

a clear differentiation of their structures, which is shown in Fig. 3.

consisting of <u>core nodes</u> and peripheral nodes, with a distinct centrality re nodes have higher connectivity and importance in the network, while have relatively lower connectivity and status. In contrast, the seed network B as have randomly connected to the same extent. In network B, there are no not position in the <u>network topology</u>. Such design ensures significant structural rovides a clear starting point for the subsequent study of network growth and ining 100 nodes, and provided corresponding diagrams, illustrating their

Actions you could take:

Seed-Network B

tworks. Seed network A has a Core–Periphery structure, with only a few nodes degree. Seed network B is a random network. Each of its nodes has almost the ed networks are different, several different structural changes will occur ks of different structures, we can observe the relationship between the

key steps: introducing new nodes and attempting to establish connections ill attempt to establish connections with nodes in the seed network according a structural change paths, in our study, we introduce two kinds of rules based a BA rule and the ER rule.

the Barabasi–Albert (BA) model [2], an important method for generating scalenly connected to a few other nodes, while a very small number of core nodes. The <u>degree distribution</u> of this network follows a power-law form, meaning vast majority of nodes have relatively low degrees, exhibiting highly unevened nodes are more likely to connect to the core nodes in the network, i.e., those onnecting to low-degree peripheral nodes. Specifically, the probability $P_{\rm BA}$ (i) proportional to the degree d (i) of node i. Its mathematical expression is as

Sign in to unlock the full response and ask your own questions.

$$P_{\mathrm{BA}}\left(i\right) = \frac{d(i)}{\sum_{i=1}^{\tilde{n}} d(i)},\tag{12}$$

where n is the total number of nodes in the network at the current time.

The second rule is the ER rule, originating from the Erdős–Rényi (ER) model [57]. In the ER model, network generation is

Reading Assistant

nerated randomly, and connections between nodes are independent, with the nodes being equal.

Questions you could ask:

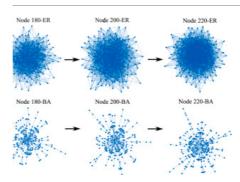
(13)

etwork model that does not consider any specific structure or properties of a new node connecting to existing nodes is equal and independent of the lity of establishing a connection between any two nodes is fixed and ing networks using the ER rule, we specify a connection probability of 0.1 for

Actions you could take:

nder the guide of the BA rule to a network with 100 nodes. Obviously, it is a BA I this result. Therefore, when Seed Network A continues to grow under of the variations in the topological structure of Seed Network A under different ture will be affected by the growth rules. The detailed topological structure iles are shown in Fig. 4.

ale, the network presents the characteristics of homogeneity. The connections ider the BA rule, newly added nodes are more inclined to connect to core ig in a small number of hub nodes with very high degrees. These hub nodes while other nodes form the periphery of the network. Therefore, the network iery structure under the BA rule. The change of the Seed-Network A's er different rules can also be found in the change of degree distribution of each

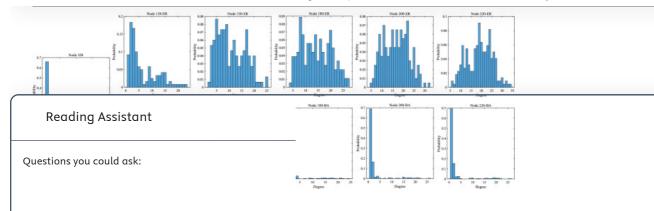


l BA rules. subfigures in the top line show the change of networks' topological aw the topological structure of change under the BA rule.

degree distribution under ER rules gradually changes from power law to hower-law distribution, and a few nodes have higher degrees. With the growth e random, resulting in the degree distribution gradually becoming uniform. stribution always maintains the <u>power law distribution</u>. With the growth of onnect to the existing highly connected nodes, which maintains the uneven

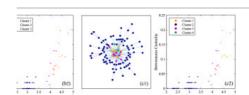
Sign in to unlock the full response and ask your own questions.

Actions you could take:



are grown from the Seed-Network A under different rules. The top line shows wth is under the ER rule. The bottom line shows the degree distribution of the 1sly, Seed Network A is a BA network, and its power-law degree distribution is les.

ork A and its performance under different growth rules, we conducted a Fig. 6. The clustering results successfully partitioned the seed network into distribution. In the subsequent chapters, we will continue to explore the

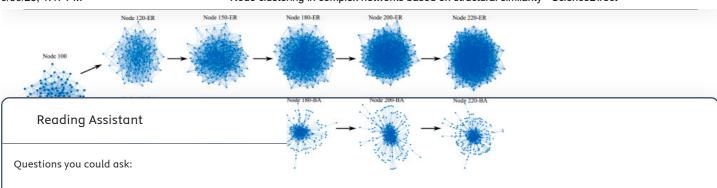


A. The clustering results of Seed Network A clearly delineate the core nodes form the network core, while scattered nodes constitute the periphery. The pre-periphery structure in Seed Network A.

wing from 1 node to 100 nodes guided by the ER rule. When the following it rules, then the topological structural change will illustrate the relationship in the topological structure changes of Seed Network B under different rules.

ule, there is no obvious core nodes. The probability of connection between rk structure keeps the characteristics of uniform distribution. In contrast, nnect to the hub node. Since the nodes in the seed network have similar 1g with most nodes in the initial network is also equal, resulting in the initial vs, it becomes easier for new nodes to connect to these core nodes, making the ed structure to a core–periphery structure. There is a core community when ructure changes are also illustrated in those networks' degree distribution as

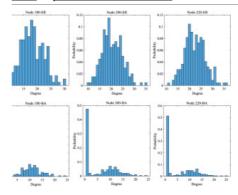
Sign in to unlock the full response and ask your own questions.



Etwork B under ER and BA rules. There is a core community in the bottom

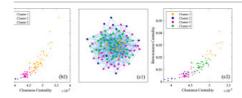
ise of network size, the degree distribution of seed networks with uniform This shows that the connections of nodes show uniformity throughout the scale of the network increases, new nodes are more inclined to connect to aggravating the inhomogeneity of the network and the degree distribution of ation to power law distribution.

Actions you could take:



B's growth. Obviously, the is a special bulge in the degree distribution of

twork B, as shown in Fig. 9. The clustering results indicate that as the number ely uniformly distributed, reflecting its homogeneity characteristics. analysis during the growth process to gain a more comprehensive: h rules influence the overall characteristics of the network.



ases, the node distribution in seed network B gradually becomes more ominent central nodes.

sis in the networks' growth

orks formed by different seed networks under various growth rules. We apply help us gain a <u>deeper understanding</u> of the characteristics of network ore the analysis, we will focus on the following aspects: Firstly, we will the structural characteristics of the network. Secondly, we will explore

Sign in to unlock the full response and ask your own questions.

whether the changes in clustering results can reflect the differences between different network growth rules. By comparing clustering results under different growth rules, we will seek patterns influencing network structures and infer the evolutionary paths and mechanisms of networks under different growth rules. Finally, we will discuss whether clustering categories can indicate different node structural characteristics.

Reading Assistant

Questions you could ask:

Actions you could take:

hange of the seed network A

n the nodes' clustering in the process of the Seed Network A's growth under re based on the ER rule.

the network contains <u>essential nodes</u> in the core and edge nodes. When the r show that the network is divided into core and peripheral nodes, which the increase in network size, the proportion of o matter what size the number of network nodes grows to, there will always e other categories have a relatively small percentage. This shows that with the ures of the core and edge nodes of the network grown by the BA rule become an clearly reflect the center-edge characteristics of the network. The change in vn in Table 2.

eed Network A is growing under the BA rule. The binary clustering has divided 1 the periphery nodes. They are labeled by class 1 and class 2. When the merge, but the biggest class is still class 2, which represents the periphery

vork A.

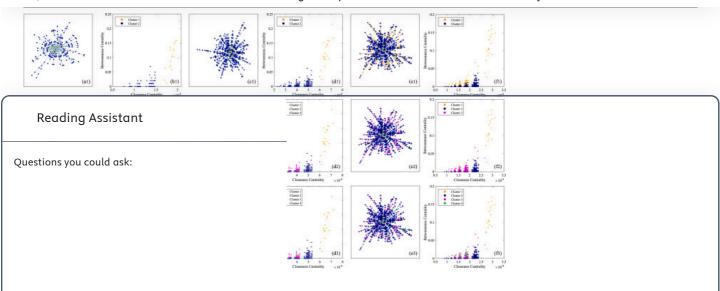
Node 3	Node 4	Node 5
0.632	0.782	1.230
0.051	0.100	0.176
0.000	0.028	0.061
0.028	0.000	0.061
0.061	0.061	0.000

Results of Seed Network A under BA Rule.

cluster			Four-cluster				
	Class 2	Class 3	Class 1	Class 2	Class 3	Class 4	
;)	171 (85.5%)	9 (4.5%)	17 (8.5%)	171 (85.5%)	9 (4.5%)	3 (1.5%)	
٤)	438 (87.6%)	43 (8.6%)	19 (3.8%)	438 (87.6%)	39 (7.8%)	4 (0.8%)	
٤)	848 (84.8%)	131 (13.1%)	20 (2%)	848 (84.8%)	107 (10.7%)	25 (2.5%)	

, new nodes tend to connect to existing, more tightly connected nodes, thus nodes. This becomes particularly evident when we divide the network into

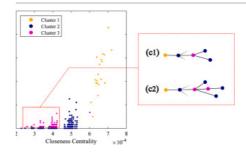
Sign in to unlock the full response and ask your own questions.



Actions you could take:

k A under the BA model. In the Two-cluster, nodes with high closeness ew class is the bridge nodes.

rst category of peripheral node clusters is located on the left side of the core to the core nodes, thus possessing high closeness and <u>betweenness centrality</u>. (a). In contrast, the second category of peripheral nodes is distributed at the y connected to the core nodes but maintain indirect connections through the nodes. Their betweenness centrality is relatively low, and the structural



es clustered into three categories and the structural characteristics of the node

nediary nodes, which play a crucial bridging role in the network by connecting or network structures, the pink nodes are connected at one end to the first to the second category of peripheral nodes, forming an important transitional bridging function facilitates the flow of information between core nodes and sectivity of the network, as illustrated in Fig. 11(c1).

complex, the pink intermediary nodes continue to play a bridging role, heral nodes, as shown in Fig. 11(c2). Regardless of the complexity of the onnectivity and stability by linking peripheral nodes of different hierarchies to termediate nodes act as bridges between most peripheral nodes and core

Sign in to unlock the full response and ask your own questions.

Sign in

r the ER rule, the structure changes, and the nodes' clustering is totally the core–periphery network under the ER growth mechanism, each new node vious nodes, resulting in a more evenly distributed structure. Through cluster rule growth, the network structure gradually tends to be uniformly

distributed, the existing core–edge structure gradually weakens, and the node connections show the characteristics of uniform distribution. This trend can be found in the percentage of nodes into different classes as shown in Table 3.

For networks with a core–periphery structure growing under the ER rule, we observe that the structural characteristics of the network and the performance of the scatter plot are very similar to those of random networks under the ER rule, as shown in Fig.

Reading Assistant

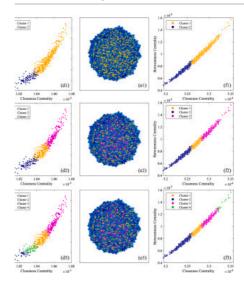
Results of Seed Network A under ER Rule.

Questions you could ask:

ıster			Four-cluster				
	Class 2	Class 3	Class 1	Class 2	Class 3	Class 4	
	56 (28%)	30 (15%)	114 (57%)	53 (26.5%)	30 (15%)	3 (1.5%)	
ı	93 (18.6%)	182 (36.4%)	225 (45%)	37 (7.4%)	182 (36.4%)	56 (11.2%)	
ć)	380 (38%)	247 (24.7%)	373 (37.3%)	380 (38%)	227 (22.7%)	20 (2%)	

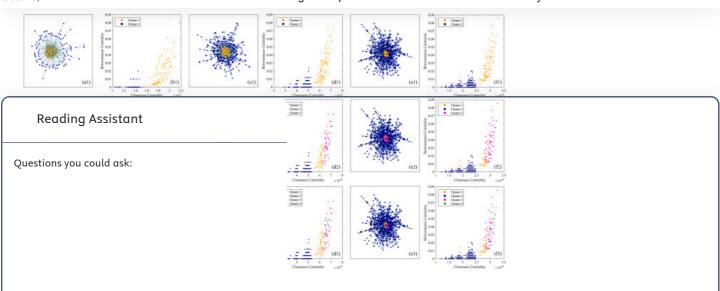
categories of nodes are classified may vary, but clustering analysis still reveals nub, and central nodes in the network. Specific explanations are provided as zes the dominant role of the ER rule in shaping network structure formation. R rule has a greater influence on networks' overall structure and organization, lexities exhibiting similar structural characteristics.

Actions you could take:



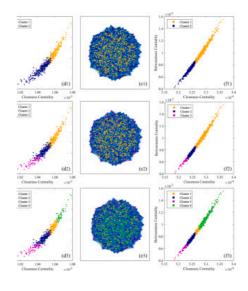
ring of Seed Network A under the ER model. The new classes come from the uted uniformly.

Sign in to unlock the full response and ask your own questions.



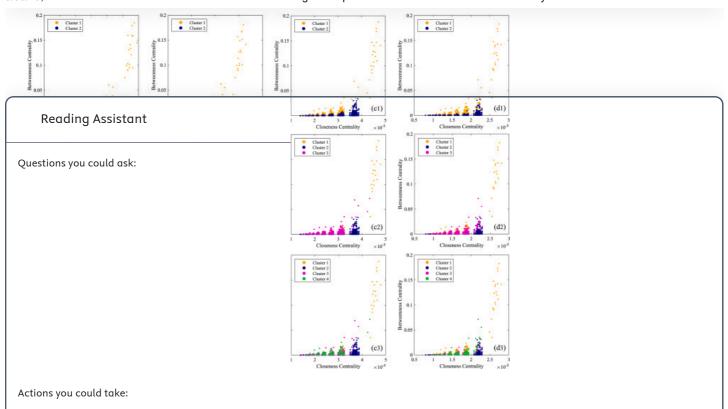
Actions you could take:

of Seed Network B under the BA rule. The initial Seed Network B works as the *r*th. The periphery nodes are always clustered into the same class. And the core community.

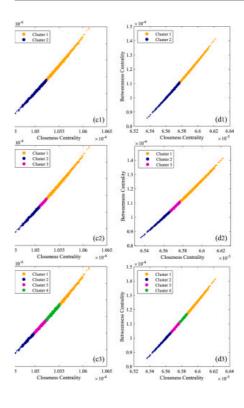


der the ER rule. Each class has the same size, and there is no special class in

Sign in to unlock the full response and ask your own questions.

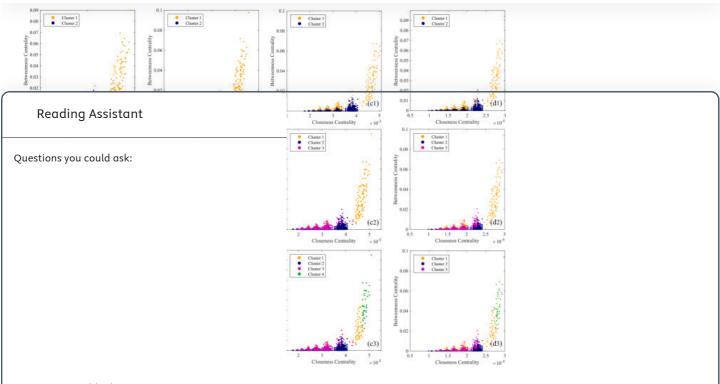


are generated from a BA seed network under BA rule, with node number



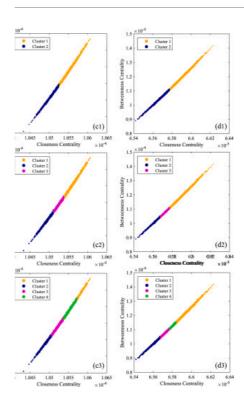
are generated from a BA seed network under ER rule, with node number

Sign in to unlock the full response and ask your own questions.



Actions you could take:

te from ER seed networks under BA rule, with node number 2000, 3000, 5000



generated from a ER seed network under ER rule, with node number 2000,

Sign in to unlock the full response and ask your own questions.

Sign in

hange of the seed network B

les, and its degree distribution is a Poisson distribution. When it is under topological structure of those networks will be different, and so will the

When the Seed Network B is under the BA rule, the distribution of nodes in the initial stage is relatively uniform. following the increase of the network size, the probability of the occurrence of centralized nodes gradually increases. This is due to the growth mechanism under the BA rule, that is, newly added nodes are more likely to connect to nodes with higher degrees of existing nodes, resulting in a small number of nodes in the network with more connections, forming a centralized node. With the increase of network scale, node connections gradually show a trend of uneven distribution, and dominant node categories

Reading Assistant

Questions you could ask:

Actions you could take:

vth rule, in which new nodes are more inclined to connect to nodes with g the centrality of a few nodes in the network. The change of the number of topological structure change in Seed Network B's growth, as shown in Table 4.

, when Seed Network B grows to 200 nodes, class 1 has 100 nodes, and class 2 ave the same size. The initial seed network has 100 nodes, which means the ame class. Actually, when Seed Network B's size reaches node numbers 500 of class 2 is increased. When the number of classes increases from 2 to 3 and 4, iter. It looks like there is a community in the network with 100 nodes, and the unity, i.e., there is a core in the network, and the core is the initial Seed

Results of Seed Network B under BA Rule.

cluster			Four-cluster				
	Class 2	Class 3	Class 1	Class 2	Class 3	Class 4	
%)	100 (50%)	42 (21%)	58 (29%)	100 (50%)	35 (17.5%)	7 (3.5%)	
6%)	400 (80%)	47 (9.4%)	53 (10.6%)	400 (80%)	37 (7.4%)	10 (2%)	
%)	896 (89.6%)	63 (6.3%)	41 (4.1%)	896 (89.6%)	46 (4.6%)	17 (1.7%)	

:s of the initial seed network and the BA model. Under the BA model, new nodes. However, due to the uniform degree distribution of the nodes in the connecting with nodes in the initial seed network is equal. This results in new ally forming new categories. Meanwhile, the nodes in the initial seed network lters the structure of the core nodes but also complicates the relationships 3 among the core nodes continue to increase, further enhancing the

new categories are often subsets of the core community. This transition from finement within the core reveals the evolutionary process of network structure ore community play a crucial role in the network; they are centrally located, , and have strong connections with other nodes, leading to efficient ot only facilitates rapid information propagation but also effectively connects exchange of information within the network, making it a key hub. The high d of network centralization and the phenomenon of "the rich get richer". This ling the structure of complex networks.

he growth of random seed networks growing under the ER rule is different the size of the network increases, there will usually be one category of nodes rule, we observe that with the gradual increase of cluster categories, there is ate. Instead, we find that the proportion of node categories is relatively t categories are not significant. Even in the case of large differences in the ease of cluster categories, this part of nodes will be divided into new ller. This shows that the random network formed under the ER rule has a

nary clustering, and quaternary clustering, which is shown in Table 5.

iral features, the structural characteristics of the networks can be reflected. We ed networks with core-periphery structures grown under the BA rule and Ve examined networks with different numbers of nodes and the number of

Sign in to unlock the full response and ask your own questions.

The first Two-cluster works on the network with 200 nodes. Class 1 has nearly 100 nodes, and class 2 also has nearly 100 nodes. There is no clear difference between the two classes. This phenomenon continues to network with 500 nodes in it. The two classes are still the same size. However, when the network's size reaches 1000 nodes, class 1 is bigger than class 2. The difference in the topological structure of those nodes emerges. This finding is also verified in Fig. 14.

Reading Assistant	r Re	⁻ Results of Seed Network B under ER Rule.					
	ıste	r		Four-cluster			
Questions you could ask:		Class 2	Class 3	Class 1	Class 2	Class 3	Class 4
)	74 (37%)	20 (10%)	74 (37%)	74 (37%)	20 (10%)	32 (16%)
	%)	213 (42.6%)	68 (13.6%)	160 (32%)	213 (42.6%)	68 (13.6%)	59 (11.8%)
	%)	296 (29.6%)	78 (7.8%)	233 (23.3%)	296 (29.6%)	78 (7.8%)	393 (39.3%)

rule in its process of growth; the whole process is equivalent to the classical ER t model has the same local structure, so this clustering of nodes based on the ode will be homogeneity.

node number 2000, 3000, 5000 and 8000. We can find that from left to right, odes, nodes in the same cluster still located in the same position will the 1g of networks size have not show a distinguish difference on their node 15, Fig. 16, Fig. 17, Fig. 18).

chod based on structural similarity, utilizing the local structure of the network veen nodes. We consider the structural characteristics of each node as a to measure the differences between these pieces of information, thereby s. Compared to traditional methods based on local structure, our method not ier to use than methods based on global structure. Our clustering method is improved the update rules for cluster centers, the distance calculation the initialization process, thus better capturing the intrinsic structure and

works with different <u>initial configurations</u>: core–periphery structure and e-periphery seed network features a structure with identifiable central and structure approximates real-world random networks. These seed networks es that newly introduced nodes are more likely to connect to the core nodes in the degrees, rather than to low-degree peripheral nodes. The ER rule indicates isting nodes is equal, regardless of the existing nodes' degrees. By growing s with different structures exhibiting significant differences in topology and <u>is</u> on these networks, and the results show that our clustering method the networks.

It network structures effectively reflect the structural characteristics of the of core—periphery structured networks grown under the BA rule and random se two structural networks into different categories and recorded the number s significant differences in the distribution characteristics of different types of eriphery network, when clustered into two categories, one category dominates momenon becomes more pronounced as the network size and clustering the category with fewer nodes corresponds to core nodes, while the category This indicates the "rich get richer" phenomenon, where core nodes become size increases. Important nodes are in the minority, but they have high luence further strengthens. In contrast, the proportion of node categories in this feature remains unchanged as the network size increases. Furthermore, h patterns of the network. By comparing random networks under the BA rule e found that different growth rules have a significant impact on the network

Actions you could take:

Sign in to unlock the full response and ask your own questions.

structure. Under the BA rule, as the network size increases, the probability of central nodes appearing in a uniformly distributed network gradually increases. In contrast, in core–periphery structured networks grown under the ER rule, the network structure tends to be more uniform, with no obvious central nodes. This suggests that the structural characteristics of the network are mainly determined by its growth rules rather than the initial structure. All the results show us that the clustering of nodes in the networks based on the topological structure similarity is a reliable method that can be used to check the rules that guide the

Reading Assistant	es.
Questions you could ask:	nt , Formal analysis, <u>Data curation</u> . Meizhu Li: Writing – review & editing, . <u>Qi</u> Zhang: Writing – review & editing, Writing – original draft, Supervision, , Funding acquisition.
	peting financial interests or personal relationships that could have appeared to
Actions you could take:	e Foundation of China (Grant No. 62303198), Research Initiation Fund for 01170008) and the Scientific Research Fund ing of Jiangsu University of Science
	tworks
	א זנ
	tructural correlations in weighted networks
	el, Michael Cornell, Stephen G Oliver, Stanley Fields, Peer Bork data sets of protein-protein interactions
Sign in to unlock the full response and ask your own questions. Sign in	ulio Superti-Furga interdisciplinary signaling approaches

View in Scopus 🛪 Google Scholar 🛪

[7] Elad Schneidman, Michael J Berry, Ronen Segev, William Bialek

Weak pairwise correlations imply strongly correlated network states in a neural population

Nature, 440 (7087) (2006), pp. 1007-1012

Crossref 7 View in Scopus 7 Google Scholar 7

Reading Assistant		
Questions you could ask:		
	ar ∌	
	he, Diego Garlaschelli, Andrew G Haldane, Hans Heesterbeek, Cars Hommes, Car	lo
	tion	
	ur a	
	mics and finance	
	or a	
actions you could take:	0	
	nd new challenges	
	л Google Scholar л	
	Misako Takayasu, Ivan Romić, Zhen Wang, Sunčana Geček, Tomislav Lipić, Boris	
	я Google Scholar я	
	x networks	
	n networks	
	82	
	ır ⊼	
	degree-correlation biases	
	ur ⊼	
	se	
	ar a	
	Sankaran Mahadevan ex networks	
Sign in to unlock the full response and ask your	pogle Scholar ⊅	
own questions.	n, Hernán A Makse	
Sign in	of a complex network: the box covering algorithm	

```
View in Scopus 7 Google Scholar 7
        Réka Albert, Albert-László Barabási
        Statistical mechanics of complex networks
        Rev. Modern Phys., 74 (1) (2002), p. 47
        View in Scopus A Google Scholar A
    Reading Assistant
                                                   tworks based on nonextensive statistical mechanics
                                                   1650118
Questions you could ask:
                                                   ns for pattern identification
                                                   ar a
                                                   m permutation set
                                                       Google Scholar 7
                                                   tems with local constraints
Actions you could take:
                                                   ar a
                                                   ] Watts
                                                   ks
                                                   1artin Chavez, D.-U. Hwang
                                                   mics
                                                       Google Scholar 7
                                                   Shlomo Havlin
                                                   networks
                                                   ar a
                                                   es' betweenness centrality in complex networks
                                                       Google Scholar ↗
                                                   iodes in network of networks
                                                   ıl of complex networks
                                                       Google Scholar ↗
                                                   , Fredrik Liljeros, Lev Muchnik, H Eugene Stanley, Hernán A Makse
 Sign in to unlock the full response and ask your
                                                   1 complex networks
 own questions.
      Sign in
                                                   ar a
```

[31] Qi Zhang, Meizhu Li, Yong Deng

> Measure the structure similarity of nodes in complex networks based on relative entropy Phys. A, 491 (2018), pp. 749-763

View PDF View article

View in Scopus ↗

Google Scholar ↗

nen, Y.-Z. Ni Reading Assistant ers via local structural similarity ar a Questions you could ask: icture in networks , Guohua Wu ew in Scopus ↗ Google Scholar 🛪 community structure in networks Actions you could take: ar 🗷 ion ar a Google Scholar 7 niques ces in Clustering, Springer (2006), pp. 25-71 ar a ogical networks Wang, Xiao Wang, Weixiong Zhang 1 with deep learning icant communities and hierarchies, using message passing for 149 ar a Sign in to unlock the full response and ask your ries forecasting based on visibility graph own questions. Sign in Google Scholar 7

[43] Sidney J Blatt, Charles A Sanislow, III, David C Zuroff, Paul A Pilkonis
Characteristics of effective therapists: further analyses of data from the national institute of mental health
treatment of depression collaborative research program

J. Consult. Clin. Psychol., 64 (6) (1996), p. 1276

View in Scopus a Google Scholar a Reading Assistant in complex networks with a potts model Questions you could ask: Sham M Kakade embership community models geneous link communities in complex networks Intelligence, vol. 29 (2015) Actions you could take: mplex networks Google Scholar 7 1109/TPAMI.2024.3438349 7 ıg eneralized information dimension Google Scholar 🤊 ıi, Ming Gao, Jidong Qian, Minjie Liang Google Scholar ↗ seeding aowei Xu, et al. ing clusters in large spatial databases with noise Sign in to unlock the full response and ask your own questions. Sign in

A new distance measure between two basic probability assignments based on penalty coefficient Inform. Sci. (2024), Article 120883

View PDF View article View in Scopus ↗ Google Scholar 🤊

Jason Lu, Michael Small [56]

A mutual information	statistic for assess	ing state space	partitions of d	vnamical systems
			-	

Reading Assistant	sessing state space partitions of dynamical systems
Reduing Assistant	_
Questions you could ask:	andom graph
	on the euclidean distance of structural characteristics
Actions you could take:	Radius Constrained Arc-Limited Penetrable Visibility Graph: Concepts
	and data mining, AI training, and similar technologies.
	ાી rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the
Sign in to unlock the full response and ask your own questions. Sign in	