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CONSTRAINING TURBULENCE
IN PROTOPLANETARY DISCS
USING THE GAP CONTRAST:
AN APPLICATION TO THE
DSHARP SAMPLE

Abstract

Constraining the strength of gas turbulence in protoplanetary discs is an
open problem that has relevant implications for the physics of gas accretion
and planet formation. In this work, we gauge the amount of turbulence in 6
of the discs observed in the DSHARP programme by indirectly measuring
the vertical distribution of their dust component. We employ the differences
in the gap contrasts observed along the major and the minor axes due to
projection effects, and build a radiative transfer model to reproduce these
features for different values of the dust scale heights. We find that (a) the
scale heights that yield a better agreement with data are generally low
(S 4AU at a radial distance of 100 AU), and in almost all cases we are only
able to place upper limits on their exact values; these conclusions imply
(assuming an average Stokes number of ~ 10~2) low turbulence levels of
ass < 1073 —107%; (b) for the 9 other systems we considered out of the
DSHARP sample, our method yields no significant constraints on the disc
vertical structure; we conclude that this is because these discs have either a
low inclination or gaps that are not deep enough. Based on our analysis we
provide an empirical criterion to assess whether a given disc is suitable to
measure the vertical scale height.

Published in: EP, Giovanni P Rosotti, Benoit Tabone, Constraining turbulence
in protoplanetary discs using the gap contrast: an application to the DSHARP
sample, Monthly Notices of the Royal Astronomical Society, Volume 524, Issue 2,
September 2023, Pages 3184-3200, doi.org/10.1093 /mnras/stad2057
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248 7.1. INTRODUCTION

7.1 Introduction

Characterising the magnitude of turbulence in accretion discs is a classical
problem in astrophysics. This is because turbulence is often invoked (see
historical discussion in Pringle 1981) as the mechanism responsible for
powering accretion. On the one hand, therefore, the first scientific question
that any such study seeks to address is whether the level of turbulence,
commonly quantified through the agg parameter (Shakura & Sunyaev 1973),
is high enough to explain the observed accretion rates. For the specific
case of proto-planetary discs we study in this paper, this is a particularly
important question: the cold conditions of these discs, which are clearly in
the non-ideal magnetohydrodynamics regime, make it far from obvious to
understand whether the magneto-rotational instability (Balbus & Hawley
1991) can be a mechanism respounsible for generating the required level of
turbulence. Addressing this question, and studying in parallel other processes
that could generate turbulence in proto-planetary discs, is a subject of many
studies (see Lesur et al. 2022 for a recent review).

For proto-planetary discs, the issue runs even deeper than the question
about accretion; even if turbulence was ultimately found not to be responsible
for accretion, it would still affect a wealth of processes and therefore have
a strong impact on planet formation. A non-exhaustive list of processes
affected by turbulence includes the heating and cooling balance in the
terrestrial planet-forming region due to the importance of viscous heating
(Min et al. 2011), the diffusion of molecular species radially (Owen 2014)
and vertically (Semenov & Wiebe 2011; Krijt et al. 2020), the diffusion of
dust, setting both the dust disc vertical extent (Dubrulle et al. 1995) and the
leakiness of dust traps (e.g., Zormpas et al. 2022). For what concerns planets
in particular, turbulence has a profound impact on disc-planet interaction;
its magnitude affects (Paardekooper et al. 2022) the ability of planets to
open gaps in the disc and how fast they migrate by exchanging angular
momentum with the disc. Turbulence is also a crucial parameter setting how
quickly planets accrete gas (Bodenheimer et al. 2013) and dust (Johansen &
Lambrechts 2017) from the disc, determining the final masses of planetary
systems. Last but not least, turbulence controls the onset of the streaming
instability (Drazkowska et al. 2022), one of the best known mechanisms for
creating planetesimals and kick-starting the planet formation process.

It would thus be beneficial to have a method to constrain turbulence
observationally. Thankfully, in the last few years, the field has been com-
pletely transformed by the Atacama Large Millimeter Array (ALMA), which
provided order-of-magnitude improvements in sensitivity and angular resolu-
tion. First of all, by studying line broadening of emission lines, ALMA has
allowed to directly detect turbulence in two discs (Flaherty et al. 2020), and
only yielding upper limits in a limited number of other cases (Pinte et al.
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2022). In addition, ALMA has opened up many other observational routes
(recently reviewed in Rosotti 2023) for indirectly constraining turbulence.
These routes include the study of the disc vertical thickness, the radial extent
of dust and gas rings, and population studies that use disc demographics
studies (see Manara et al. 2022 for a review), that is, catalogues of the
fundamental disc properties (such as mass, radius and mass accretion rate)
for large disc samples. In this way, in the last few years the study of disc
turbulence has moved from an almost theoretical subject to an observational
one.

In this paper, we constrain turbulence by measuring the disc vertical
thickness. The vertical equilibrium of dust grains is a competition between
settling, which is determined by the joint action of gas drag and gravity,
and turbulence, which stirs up the grains in the vertical direction. In simple
terms, then, the more turbulent the disc is, the thicker it is, but it should be
highlighted that the presence of drag implies that the aerodynamic coupling
between gas and dust (normally parametrized by the Stokes number St) also
influences the thickness. Indeed, as we will recap in Sec. 7.5, the method is
only sensitive to agg/St.

We apply the technique developed by Pinte et al. (2016) in their study
of HL Tau. The technique relies on the fact that many observed discs (Bae
et al. 2022) present an emission pattern characterised by bright rings and
dark gaps. Pinte et al. (2016) realised that due to projection effects in a disc
with finite thickness the line of sight will intercept sections of the disc that
are out of the midplane. In a gap, this has the effect that the adjacent bright
regions partially contaminate the dark gap, lowering the gap depth. We will
refer to this in the rest of the paper as the gap-filling effect. It is easy to
realise that the geometry of projection is such that this filling effect is much
larger along the minor axis of the disc than along the major axis. Once the
image is deprojected in polar coordinates, as commonly done in the field,
the resulting effect is that the gaps are more “filled” (i.e., shallower) along
the disc minor axis and more “empty” (i.e., deeper) along the disc major
axis. The difference between minor and major axes increases with the disc
thickness and therefore it is a way to probe the vertical structure of the disc.
A simple sketch in Figure 7.1 shows the simple geometrical argument behind
the gap-filling effect. Extracting quantitative measurements from this effect
requires building radiative transfer models of the emission.

So far, in addition to HL Tau, the method has been applied to HD163296
(Liu et al. 2022) and to Oph163131 (Villenave et al. 2022). The goal of this
paper is to significantly expand this observational sample. For this purpose
we selected the sample of the Large Programme DSHARP (Andrews et al.
2018), which consists of twenty discs imaged at 0.05" resolution, since it
constitutes the largest homogeneous high-resolution survey of proto-planetary
discs. We aim to determine in which cases this technique is successful in
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Figure 7.1: Sketch of the gap-filling effect. The lines of sight intercept the disc’s plane
with an angle that depends on the disc inclination. In the presence of a gap, lines of
sights piercing through the gap (e.g., the one highlighted in green in the sketch) may still
intercept sections of the disc that are far from the mid-plane due to simple geometrical
effects. Therefore, the gap will be seen as partially filled by the observer. If the disc is
thicker (thinner), this filling effect is stronger (weaker); this implies that the gap-filling
effect can be used to indirectly gauge the vertical extension of the disc.

gauging the disc thickness, and, whenever possible, to place meaningful
constraints on the disc scale heights.

This paper is structured as follows: in Sec. 7.2, we discuss the basic
assumptions of our model and describe the steps of the analysis we perform
to match DSHARP data. A description of the data sample is presented in
Sec. 7.3. Sec. 7.4 presents the main results of the analysis, while Sec. 7.5
contains a discussion on the implications of our findings. Conclusions are
given in Sec. 7.6.

7.2  Methods

In this section, we describe the basic assumptions of the model and provide
details on the methodology we employ to compare our synthetic images with
DSHARP observations.
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7.2.1 Disc structure

In the following, we are only interested in modelling the dust component of
the protoplanetary discs, as the ALMA observations we use are only focusing
on the dust continuum emission. Therefore, in this section — whenever not
stated otherwise — we refer with the term “disc” to the dust component only.
In Sec. 7.5, we will discuss further how our results can be employed to
study the relationship between dust and gas in the disc, and ultimately to
constrain the amount of gas turbulence.

We model the disc as a cylindrically-symmetric system with a minimum
radius 7y, and a maximum radius 7.,;. We assume for the vertical density
distribution a Gaussian profile of the form:

_ X(n) oxn [ — 22
pd(T’Z)_\/%hd(’l“) p( Zhd(r)Q)’ (71)

where X(r) is the dust surface density and hqy(r) is the dust scale height.

This profile originates from an analogy to the gas component, which can
be assumed to be in hydrostatic equilibrium along the vertical direction and
thus follows a Gaussian profile identical to eq. 7.1. Formally, the dust has a
different equilibrium solution, but eq. 7.1 is a close approximation (Dubrulle
et al. 1995). Furthermore, defining the dust density in this way is convenient
as we can consider the ratio between gas and dust scale-heights, which will
be important to estimate turbulence.

In Sec. 7.2.2, we discuss our procedure to determine the disc surface
density 3(r). As for the dust scale height profile, we assume a simple flaring
model:

r

ha(r) = Hq ()125, (7.2)

To

In what follows, we set the reference radius r¢ to 100 AU and take the value
of the dust scale height at this radius, Hq = hg(r = 100 AU), as the only
free parameter of our model. The goal of our work is to gauge the value of
H, using the gap-filling effect on the disc minor axis.

In order to predict the observed surface brightness of the disc, we need to
determine the dust temperature profile. For this, we assume that the dust is
passively heated by the central star, and that a fraction ¢g,x of the total flux
emitted by the star is intercepted by the disc. Following radiative-transfer
models (e.g., Chiang & Goldreich 1997; D’Alessio et al. 1998; Dullemond
et al. 2001, 2018), we set ¢gux = 0.02 and write (o is the Stefan-Boltzmann

constant):
) 0‘5¢ﬂuxL* 1/4 Tin 0.5
ro- () o, (),

where we have expressed everything in terms of the temperature at the inner
radius, Tj,. For the sake of simplicity, we use this analytical description of
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the disc temperature for our model — instead of self-consistently computing
the temperature using a Montecarlo approach (see e.g., Liu et al. 2022). In
Sec. 7.5.4, we discuss the reasons for such choice and the caveats that come
with it.

The expected surface brightness of the disc can then be determined
assuming dust thermal emission. In order to create mock images of our disc
models, we use the code RADMC-3D'. We set the extrinsic parameters (such
as the distance, sky coordinates, inclination, position angle) in accordance
with observations (see Sec. 7.3), and we produce synthetic images of the
discs according to the radiative transfer computation. Then, we use the
CASA package (CASA Team et al. 2022) to produce mock observations with
the same beam and antennae configuration of the original ALMA data. In
order to do this we have retrieved from the DSHARP Data Release webpage”
the visibility files of the DSHARP observations. In our analysis we use
the same version of CASA used by the DSHARP team (v 5.1.1-5) to ensure
that the data and the models have been processed in the same way®. We
created synthetic visibilities from the radiative transfer image at the uv
coordinates of the observations using the CASA task ft. We then apply the
CLEAN algorithm to generate a synthetic ALMA image to compare with the
observed image. We use the scripts provided by the DSHARP team in order
to make sure that we use the same CLEAN parameters as the observations.
To reduce the computational time, it is common in the field to employ the
simpler approach of a convolution with a Gaussian beam. While this is often
satisfactory, we noticed in early tests that the detailed shape of the emission
profile in the gap is different from images produced by the CLEAN algorithm.
In addition, some of the DSHARP sources have clear CLEAN artefacts such
as negative emission that cannot be reproduced with a simple Gaussian
convolution. Therefore, we adopt here a consistent approach to include the
contribution of these cleaning artifacts.

7.2.2 Inferring the disc surface density

In order to proceed further with our analysis, we need to infer the surface
density X(r) of the observed disc. This is not straightforward, as simple
power-law models are not capable to reproduce the wealth of substructures
(gaps and rings) that are observed in the DSHARP images. Given that
our goal is to use the gap-filling effect as a probe of the disc vertical size,
modeling these substructures within a reliable framework is of paramount
importance. Therefore, similarly to what was done in Pinte et al. (2016), we

lhttp://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/

2https://almascience.eso.org/almadata/1p/DSHARP/

3That being said, for safety we have recomputed the CLEAN images for the data starting
from the visibility files, in order to be sure that we use the same CLEAN parameters in
the data as in the models.


http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
https://almascience.eso.org/almadata/lp/DSHARP/
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employ here an iterative procedure to find the correct surface density of our
discs. We outline the procedure in the following paragraphs, and provide an
overview of the different steps involved in the iteration cycle in Figure 7.2.

The fundamental idea we adopt in this procedure is that the intensity
observed along the major axis is a good proxy for the real surface density of
the disc. This is because, as already discussed in Sec. 7.1, the gap-filling
effect affects only marginally the major axis, whereas it has the strongest
effect on the minor axis. Therefore, our goal is to find via multiple iterations
a surface density profile that is able to match the intensity observed along
the major axis.

The procedure can be summarized as follows. First of all, we need to
extract the intensity along the major axis, Ir(lf:jta) (r), from the 2D images. In
order to do that, for every disc we analyze, deproject the image and average
two opposite slices of 1/8 (i.e., with a width of 7/4) of the disc centered on
the major axis. When deprojecting the disc emission maps, we make sure
that the images are aligned with the discs’ centres by using the offsets in
the = and y coordinates reported by Huang et al. (2018) (see their Tab. 2).
The resulting IS:J-m) (r) represents our benchmark profile that we aim to
reproduce with a suitable choice of the disc surface density.

Then, we use as a first guess for the surface density profile the output
of the FRANKENSTEIN (Jennings et al. 2020) fit of the DSHARP sources
presented in Jennings et al. (2022). FRANKENSTEIN is a code that uses
Gaussian processing to fit disc emission profiles in visibility space, using
the assumption that the emission is azimuthally symmetric. This gives a
good starting point for the initial surface density since FRANKENSTEIN can
achieve a spatial resolution higher than the CLEANed images we analyse in
this paper. While this gives us the shape of the surface density, note that we
also need a normalisation constant: Frankestein fits for the emission profile
(giving a profile IﬁFRANK)(T) as an output), while we need a surface density
to give as input to RADMC-3D. In order to convert the intensity profile into a
surface density, we use as a constraint the formula often employed (Beckwith
et al. 1990) to estimate the disc mass Mg,st from sub-mm observations:

F,d?
Mgt = ——20 7.4
dust HVBV(TdIISt) ( )

where F,, is the flux in the image, d the distance to the source; for Ty,s; we
take a temperature of 20 K and x, is the opacity of the dust we employ.
Since we consider a single grain population, the physical quantity we are
constraining is the dust optical depth (given the prescribed temperature
profile), and not the dust surface density. This implies that the value of the
opacity only acts as a normalisation for the dust surface density and does
not have any influence on our conclusions - with a different dust opacity we
would simply need to change the dust surface density accordingly in order
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to have the same optical depth. Notice also that the formula is only an
approximation (the emission is not guaranteed to be optically thin and 20
K may not be the correct value); however the value reported above is only
needed to kickstart the iteration and the iterative procedure will take care
of reaching the correct values, both for the normalisation and for the shape
of the surface density. Finally, because we fitted for the emission profile
but need the surface density, we multiply the resulting profile by /2 to
take into account the variation in disc temperature with radius’. Let us
call £ (r) the surface density we have obtained in this way. We use
this guess to define our disc structure (setting also the dust scale height
parameter H, to a fixed value) and produce synthetic observations using
RADMC3D + CASA (see Sec. 7.2.1).

Subsequently, we apply the same procedure as described above to de-
project these mock observations and to extract a mock intensity profile
along the major axis®, I (guess) (r). This profile can be directly compared

maj,0
to the observational one, Ingjm)(r). This comparison outputs a ratio,
éo(r) = Ifr?;.ta) /Ir(f;ﬁ(s)s) that parametrizes how well the initial guess for

the surface density is able to reproduce observations. We can improve this
match simply by multiplying the initial guess for the surface density profile,
2 (1) for the ratio &(r), finding a new guess for the disc surface den-
sity Zggucss) (r). To prevent large variations of the surface density from one
iteration to the next, we do not allow variations larger than a factor 4 in a
single iteration. We then iterate this procedure by using this new surface

density profile to produce mock observations Irglg;fis) and update the surface
density using the sequence:
( | I(da.ta)
uess uess ma, uess
SES (1) = ,(r)SE) (r) =~ i) () (7.5)
maj,n

We stop the iteration when a value of |{(r) — 1| < 0.05 is reached for
every radius 7. On average, this takes around 10 — 15 cycles. As expected,
the convergence is very easily achieved where the intensity profile is smooth,
whereas it takes more iterations in the regions where gaps and rings are
present, especially when they are narrow and deep. For a few systems, this
implies that convergence is not reached at the bottom of the deepest gaps
even after 15 iterations, with the difference between the model and data
being in the range 5—10%. We empirically find that increasing the number of
iterations does not give any significant advantage for these peculiar systems,
with only minimal gains in terms of model-data accordance despite the large

4In the same way as for the normalisation, this is only a first order correction; the iterative
procedure will better refine this radial scaling.

5With the exception of AS 209, where the procedure described here uses the azimuthally
averaged intensity profile rather than the major axis (see also Tab. 7.1).
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Figure 7.2: Overview of the iteration procedure we employ to extract the disc surface
density, (7). As described in Sec. 7.2.2, we choose the profile for the surface density
that matches the observed intenstity profile along the major axis. The various quantities
appearing in the sketch are defined in the main text. The top part of the sketch refers to
the kickstarting of the process (where we find a first guess for the surface density profile),
while the bottom part shows an instance of a single iteration.

number of iterations employed. Therefore, we decide to set a maximum
iteration number n = 15 and insert a caveat for the systems that are not
converged inside the gaps according to our criteria (Sec. 7.3).

7.2.3 Analysis of the gaps filling effect on the minor
axis

At the end of the iteration cycle described in Sec. 7.2.2, we obtain, for a
fixed value of dust scale height Hy, a fiducial profile for the disc surface
density, X(™de) (- ;). Note that the dependence of X(™m°dD (r: H,;) on Hy
is very mild, as the surface density is obtained by comparing the model with
the data along the major axis, where the vertical structure of the disc has
only a small effect on the final intensity. This X(model) (r; Hg) corresponds

to an intensity profile along the major axis — Ir(nn;?del) (r; Hq) — that matches

the observed one — I(data)(r) (see also the sketch in Fig. 7.2).

maj
Our goal is then to extract, both from the observational data and from
our fiducial model, the intensity profiles along the minor axis — I, (data) (r)

min
and Ir(nnllr? del)(r; H,), respectively. Similarly to what described in Sec. 7.2.2,
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in order to do this, we take the deprojected 2D images and average two
opposite slices of 1/8 of the disc centered on the minor axis.

Along the minor axis, the predicted intensity can depend quite strongly
on the value of the dust scale height Hy, as the vertical thickness of the
disc directly influences the gap filling along the minor axis. Therefore,
a simple comparison between Ix(fiita) (r) and Ir(rﬁ‘r?del) (r; Hy) offers a way to
place constraints on the vertical structure of the disc. A quantitative analysis
of this comparison and the implications of the results we find are presented
in Sec. 7.4 and 7.5.

DSHARP data sample

In this section, we describe the systems we use for our analysis. DSHARP
is a very high resolution (~0.035", or 5 AU) observational campaign that
targeted 20 proto-planetary discs with the goal of finding and characterising
substructures in the dust continuum emission at 240 GHz. We examined the
entire DSHARP catalogue and excluded the systems that are not suitable for
our study of the gap-filling effect. These include 3 single systems that show
signs of spirals (i.e, IM Lup, Elias 27, and WaOph 6) and two binary systems
(HT Lup and AS 205), where the individual discs either show signs of spirals
or lack clear substructure. Spirals are not compatible with the assumption
of perfect azimuthal symmetry in our disc model and we therefore discard
the discs showing this signature.

For the remaining 15 systems, we run our model to find the best matching
value(s) of the dust scale height Hy. We describe the results of this analysis
in the following section. Here, we provide more details on the properties
of these systems. In Table 7.1, we report the parameters of the systems as
listed by Andrews et al. (2018): these include the mass and luminosity of the
central star, the distance of the system, the inclination angle, the position
angle (PA), the outer radius of the disc, and the beam size. The inner radius
cannot be determined easily from observations, and thus we always set it to
rin = 2 AU. This choice has no relevant impact on the final results since we
are only interested here in radial locations with gaps.

Results

In this section, we apply the analysis described in Sec. 7.2 to the data
sample presented in Sec. 7.3. In order to follow in detail the different steps
of our analysis, we first focus on a single instance (i.e., GW Lup), and then
we provide an overview of the global results for the rest of the sample we
considered.
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Figure 7.3: Left: Intensity profiles of GW Lup along the minor (I, ™’; salmon line)

and major (IS:Fa); brick) axes, together with the azimuthally averaged profile (gray line).

Profiles along tJhe two axes are extracted according to the procedure described in Sec.
7.2.2. Errors are computed according to what outlined in Sec. 7.4.1. Right: Surface
density profiles »(model) (r; Hg) predicted by our model for different disc scale heights Hy.
The profiles are obtained by using the iteration procedure described in Sec. 7.2.2.

7.4.1 GW Lup as a case study

GW Lup is a disc with an average inclination of ¢ ~ 40° and a major structure
composed by a gap at r &~ 74 AU and a ring at r ~ 85 AU (Huang et al. 2018).
Because of these properties, it is very well suited for an exemplification of
our methodology.

In the first step of our analysis, we take the observational image and
extract the profiles along the major and the minor axes as described in Sec.
7.2 (i.e., by averaging the deprojected images in slices that are centred on
the axes and have an angular size of w/4). The resulting profiles are shown
in Fig. 7.3 (left panel). We also show the profile obtained by averaging the
deprojected image in concentric rings (i.e., the azimuthally-averaged profile).
All the different profiles clearly show the characteristic structure of the gap
+ ring feature. However, as expected, the intensity contrast along the minor
axes is smaller due to the gap-filling effect.

In order to quantify the statistical uncertainty on the three profiles, we
simply compute the standard deviation o of the data in the deprojected
images along the slices (or rings) considered, and divide it by the square root
of the number of independent data points considered (v/Npeams). This latter
quantity is simply the azimuthal extent of the slice/ring A¢R, divided by the
size of the beam — which we obtain by averaging the two axes of the beam:;
along the minor axis, we increase the size of the beam by a factor cosi to
take projection into account. In formula, we get: oprofie = 04/beam/A@R.
In Fig. 7.3 (left panel), we plot the error bars only every Npeams, so that
they are independent of each other. Note that these errors are very small,
and therefore hardly visible in the scale of the plot.
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As a second step, we choose a value for the dust scale height parameter
H,. In what follows (where not stated otherwise), we consider the following
set of values for Hy: {0.5,1,2,4,6,8} AU. For each of these values, then, we
apply an iteration procedure to match the intensity along the major axis,
with the goal of finding the best surface density for the disc (see Sec. 7.2 for
details on this iteration procedure). The right panel of Figure 7.3 shows the
fiducial surface density output by our iteration cycle for different H;. As
expected, the predicted surface density is almost identical for different Hy
values (with the notable exception of Hy = 0.5 AU).

Using these fiducial profiles for the surface density, we can produce mock
observations setting the same observational parameters as in Tab. 7.1 and
using the same configuration as the data (see Sec. 7.2.1 for more details
on mock images generation). Figure 7.4 shows these mock images for the
two extreme H, values of H; = 0.5 AU and Hy; = 8 AU, together with the
real observations from DSHARP. Even a quick look at the figures allows us
to appreciate how the different systems have a similar intensity along the
major axis, whereas they present a different gap filling along the minor one,
with the image of the thick disc being significantly more blurred than the
one referring to the thin disc.

This difference can be quantified by deprojecting the images and extract-
ing the profiles along the major and the minor axes in the same way as done
with the observational data (i.e., averaging two 1/8-slices of the deprojected
images centered along the axes). The resulting profiles for the major (minor)
axis are shown in the left (right) panel of Fig. 7.5, together with the same
observational data that are also shown in Fig. 7.3 (left panel). Given that
we are interested in the gap-filling effect, in the following, we focus only on
the region where the gap-+ring structure resides (i.e., between 70 and 95
AU).

As expected, the intensity along the major axis is almost the same
for any values of the disc scale height Hy: all of the different profiles are
perfectly compatible with the data. The azimuthally-average intensity from
observations is also shown as a reference, in order to highlight how the data
vary along different azimuthal axes. The intensity along the minor axis
(right panel), on the other hand, strongly varies with Hy. In this plot, we
can appreciate the predictive power of our method: the gap-filling effect
implies that for large values of the disc scale height Hy 2 6 AU the resulting
profile is much smoother (i.e., the gap is much more filled) with respect to
the thin disc cases (Hy < 4 AU). Given that the gap in the original data
image (salmon data points) is considerably empty, we can conclude that the
latter case is to be preferred by observations. Indeed, only the lines with
H; < 4 AU are compatible with the intensity profile of the gap + ring shown
by the data. Therefore, we can conclude that the disc GW Lup is thinner
than ~ 4 AU at » = 100 AU. In the last columns of Tab. 7.1, we report this
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conclusion by indicating the constraints we get on the scale height parameter
Hy.

In order to quantify the agreement between observations and our mock
profiles along the minor axis, we choose to employ the x? statistics. However,
we caveat that our aim is not to compare models and data in a way that sits
on solid statistical bases. This is because, although our iterative procedure
works quite well, discrepancies at the level of few percent from the observed
emission remain (even along the semi-major axis). These discrepancies are
significant given the signal to noise of the observations; in other words,
the noise in the data is smaller than our ability to build radiative transfer
models that reproduce them. This is a systematic source of error that is
not accounted for in a statistics like the x2. This does not entail that our
method is flawed: in practice, the difference brought upon by the gap-filling
effect is much larger than the residual discrepancy between data and model.
However, given the issues with a detailed comparison between our model and
data, we note that the absolute value of x2? should not be used to accept or
reject models, as it would be the case in a regular statistic test. Nevertheless,
for completeness, we report the minimum value of the reduced chi-squared
(X2.;m) in the second to last column of Table 7.1. This is the chi-squared
divided by the number of degree of freedom (i.e., the number of independent
data points + the number of free parameters in the model). We stress the
fact that this number, however, does not have statistical validity and it is
not a good parameter to accept/reject our model.

Instead, it is useful to employ the x? as a way to test which of the values
of H, considered in the analysis has a better quantitative agreement with
the data. In Fig. 7.7, we plot the logarithm of the likelihood function (i.e.,
log £ < —x2/2) normalized to its peak value, for different values of the
parameter Hy. GW Lup is shown in blue, whereas all the other systems for
which we get meaningful constraints on the scale height (see Sec. 7.4.2) are
shown in the same plot with different colours.

From Fig. 7.7, we can confirm visually that the best fitting value of the
disc scale height is H; = 4 AU. However, values that are smaller than 4 AU
are also compatible with data, as the value of the likelihood is smaller but
still comparable, especially for Hy = 1 AU and Hy = 2 AU. Values of Hy
greater than 4 AU have significantly smaller likelihoods, and therefore are
rejected by our analysis.

7.4.2 Overview of the other systems

In this section, we present the results of our analysis for the remaining
systems considered in Sec. 7.3. In Tab. 7.1 (last columns), we show the
constraints we are able to place on the values of the disc scale height based
on the comparison between our model and the data along the minor axis.
For most of the systems, however, we find that we are unable to place any
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Figure 7.4: Original image of GW Lup (top left) from the DSHARP survey (Andrews
et al. 2018), together with our mock images created using two extreme values of Hy
(Hg = 0.5AU and Hy = 8 AU) as well as the surface density profiles shown in Fig. 7.4.
All images are plotted using an asinh stretch. Mock images are obtained using the same
CLEAN settings as used for the data in DSHARP (Andrews et al. 2018).
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Figure 7.5: Left: Comparison of the intensity profiles for GW Lup predicted by our disc
model along the major axis (for different values of the disc scale height Hg; see color bar)
and the one extracted from data (firebrick points). For reference, the observed intensity
averaged over the whole azimuthal angle is also plotted with a transparent grey line. The
plot only shows a small section of the disc between r = 70 AU and r = 95 AU, where the
major substructures (gap + ring) of GW Lup are present. Predicted intensities align very
well with data points, and therefore are almost indistinguishable in the plot. Right: Same
as the left panel, but for the predicted (see color bar) and observed (salmon data points)
intensities along the minor axis. Different values of Hy are connected with very different
predicted intensities, and this allows us to constrain the true value of H,.
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Figure 7.6: Same as the right panel of Fig. 7.5, but for the systems discussed in Sec.
7.4.2: DoAr 25 (top left), Elias 24 (top right), AS 209 (middle left), HD 163296 (middle
right), MY Lup (bottom left).
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constraints. This is because the gap-filling effect in those systems is not
strong enough to produce significant effects on the final predicted intensities.
Indeed, we find that for those systems different H; values produce very
similar profiles even along the minor axis. This implies that our approach
is not effective in these cases given the structure of the emission and the
resolution of observations. We discuss further in Sec. 7.5.3 under which
conditions our method is effective in determining the discs’ vertical structure.

We choose to focus our discussion in this section only on the systems
that yield relevant constraints on Hy. The remaining systems — where our
method fails to apply — are presented in Appendix 7.A.

Figure 7.6 shows the model intensities along the minor axes for the
systems where our method is successful in gauging H,, together with the
observed intensities along the same axis (see also the right panel of Fig. 7.5
for the case of GW Lup). In all of these plots (and in the fitting routine), we
focus only on the sections of the discs that are relevant for the application of
our method and allow us to constrain the value of Hy (e.g., major gaps/rings).

Analogue plots are shown in Appendix 7.8 (Fig. 7.10) for the same
systems, but focusing on the major axis instead of the minor one — same as
the left panel of Fig. 7.5, where we focus on the results of GW Lup only.
Intensities along the major axis are generally well recovered by our model
because the aim of the convergence procedure described in Sec. 7.2.2 is to
correctly reproduce the observed intensity along this axis. Therefore, this
figure serves as a reference in order to test the validity of our approach. For
completeness, we also include mock images of these systems for H; = 0.5 AU
and H; = 8 AU and compare them with observations in Appendix 7.B.

In Fig. 7.7, instead, we show the log-likelihood as a function of the
parameter Hy (normalized to the peak value) for all the systems together.
The log-likelihood is computed according to the models and data profiles
that are shown in Figure 7.6 (i.e., the intensities along the minor axis).

In the following, we discuss the results of these figures for each system
individually.

7.4.2.1 DoAr 25

Due to its large inclination angle (i &~ 67°) and to the presence of a major gap
structure, DoAr 25 is a disc where the gap-filling effect is quite prominent.
Therefore, we expect our method to be effective in discerning which disc
scale height is compatible with the observed emission. Indeed, we see (Fig.
7.6) that different scale heights give rise to very different intensity profiles
along the minor axes. However, none of these profiles is perfectly compatible
with the observed emission. In fact, the observed gap + ring structure
presents an offset with respect to all of the synthetic ones, making it hard to
achieve a fair comparison between observations and models. The origin of
this offset is unclear; we remark that all the models are converged and can
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well reproduce the emission profile along the major axis, as can be seen in
Fig. 7.10, at least out to 150 AU — beyond which the observations became
relatively noisy. The offset may be due to an intrinsic asymmetry in the disc,
whereas in our approach we had to assume that the disc is symmetric and
any asymmetry is coming from radiative transfer and projection effects °.

Nonetheless, we note that the presence of an observable gap in the minor
axis’ intensity profile is already a significant probe of a very small disc scale
height. This is because, due to the high inclination of the disc, any values of
H, that are 2 4 AU would result in an almost complete filling of the gap.
Therefore, we conclude that only Hy < 2 AU values are compatible with
the observed gap + ring structure along the minor axis. This conclusion is
supported by the x? analysis (Fig. 7.7), in which we find that the best fitting
value of the disc scale height is H; = 2 AU, with small values significantly
preferred to larger ones.

7.4.2.2 Elias 24

Elias 24 has a very wide and deep gap around r ~ 57 AU. The gap is so
deep that, even along the minor axis, the intensity profile presents some
negative values. These negatives are due to artefacts created by the CLEAN
algorithm; it is notable that they are not present along the major axis and
in the averaged profile (gray transparent line). However, given the fact that
we adopt the same cleaning procedure as the one used for the data, we can
correctly reproduce the profile even when it becomes negative.

Such a deep gap implies, once again, that the disc scale height is very
small: only the profiles for Hy < 2AU show an intensity that becomes
negative in the gap centre, whereas larger values of Hy imply at least a
partial gap filling along the minor axis and fail to reproduce the CLEANing
artefacts. The best x? value, as expected, sits in the range Hy = 0.5 — 2 AU.

7.4.2.3 AS 209

The intensity profile of AS 209 is particularly complex: many substructures
can be identified both in the inner region of the disc and in the outer one
(Huang et al. 2018). However, only three outer gaps are deep enough to be
considered for our analysis of the filling effect. A first major gap is present
at 7 = 61 AU, whereas two other gaps » ~ 90 AU and r ~ 105 AU form a
large, single structure that is delimited by two bright rings at r ~ 74 AU
and r = 120 AU, respectively. Therefore, in our analysis, we use this region
(40 AU < r < 130 AU) to study how the predicted intensities compare with
the data.

6We have also tried to vary the disc optical depth by changing the normalization of the
temperature profile by a factor 2 in either direction, in order to investigate whether
optical depth effects could be the cause of the offset. However, we found it to not be the
case: results presented here are valid for all the models we experimented with.
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Due to the complexity of the observed intensity profile, however, it is
hard to tell which profile fits the data better by simply looking at Fig. 7.6.
One thing that is particularly easy to observe is that gaps are fairly deep
(and rings fairly bright), and thus very large values of Hy — represented by
green/yellow lines — are to be excluded. See for example how the green line
(Hq = 6 AU) fails significantly to reproduce the depth of the gap along the
minor axis at 105 AU (Fig. 7.6), while being a good fit to the major axis
(Fig. 7.10). The x? analysis can quantify this, and it confirms that very
small values of the disc scale height (H < 2 AU) are preferred over larger
ones.

7.4.2.4 HD 163296

HD 163296 is another disc whose morphology is very promising for the
application of our method. It has an inclination of i ~ 47 deg, and two
major gaps at 7 &= 48 AU and r ~ 86 AU. The first gap is quite peculiar, as
the emission map shows a sizeable blob in the gap along the major axis. This
blob represents an issue for our disc modelling, as it is an obvious breaking of
azimuthal symmetry. Therefore, we choose to exclude the region containing
the blob from our analysis. In order to do that, whenever computing the
intensity along the major axis (e.g., to find the surface density with the
iteration procedure outlined in Sec. 7.2.2), we select only the slice on the
side where the blob is not present. We double-check that this choice does
not have an influence on the results we find for the outer gap by running a
model that includes both sides of the major axis (therefore including the
blob, so that the model is only meaningful for the outer gap) and confirming
that we obtain very similar emission profiles along the minor axis for the
outer gap region.

Looking at the intensity profiles along the minor axis (Fig. 7.6), we note
that there is a broad agreement with data for values of the disc scale height
in the range 1 AU < Hy < 6 AU, depending on the exact gap/ring considered.
As a rule of thumb, both gaps are well-fitted by relatively large scale heights
(Hy ~ 4 — 6 AU), whereas the two rings seem to be compatible with lower
values of Hy. The overall agreement is captured by our x? analysis, which
reveals a very strong preference for an intermediate value of the disc scale
height (Hq = 4 AU). Therefore, this disc is the only one for which we can
place relatively solid constraints on both the upper and the lower limits of
the disc thickness. We caveat the reader, however, that the strength of this
constraint should be not overestimated. In fact, as also discussed in Sec.
7.4.1, our x? analysis does not take into account the uncertainty associated
with our model and relies on some arbitrary assumptions such as the fact
that Hy does not vary in different gaps. Indeed, the value of Hy =~ 4 AU
seems to be a compromise between a slightly larger value of Hy in gaps and
a smaller value in rings (see Fig. 7.6). Therefore, we interpret this result as
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implying that our results do indeed show that HD 163296 is characterized by
an intermediate value of Hy ~ 2 — 6 AU (and take Hy ~ 4 AU as our final
results), but we do not explore further the exact range of values that are
allowed by our x? fitting.

Quite encouragingly, HD 163296 was also analyzed recently by Liu et al.
(2022). The authors of that study use an analogue method to constrain the
vertical structure of the disc, and try to find the best-fitting disc scale height
both globally and on every disc/gap separately. In both cases, we see that
the values of H, they find are in broad agreement with the one found here.
In particular, we can make a quantitative comparison with their former
method, since it is essentially the same as the one used here. Transforming
their parametrization of the disc thickness into values of Hy (we do this by
assuming a value for the scale height of the gas component, see Sec. 7.5.1),
they find that the best-fitting profile is the one with Hy ~ 3 AU. This value
is very close to the one we find in our analysis.

7.4.2.5 MY Lup

MY Lup is a very simple disc that does not show any major substructures.
The gap-filling effect here is thus totally absent. However, the outer edge
of the disc is still subject to the same projection effect, and therefore it
can be used to determine whether different scale heights produce significant
differences in the intensity profile. In other terms, even the outer edge of
the disc can be considered part of an "infinitely wide gap" that extends out
to infinity starting from the edge of the disc.

Thanks to the high inclination of MY Lup (i &~ 73°), we indeed find
that there is a significant difference in the predicted intensity profiles for
different values of H;. As shown in Fig. 7.6, larger H,; values correspond
to profiles that are significantly shallower than the observed ones. On the
other hand, small scale height (Hy; < 4 AU) profiles present a slope that is
generally compatible with data. Therefore, despite the absence of gaps, we
can still use MY Lup observations to constrain its disc scale height.

Discussion

In the last section, we applied the method outlined in Sec. 7.2 to gauge
the dust scale height of DSHARP discs by using the gap-filling effect. We
have found that: (a) only ~ 40% of discs yield significant constraints on
their dust scale height; (b) for the discs where these constraints are available,
we find that the dust scale height (parametrized by Hy) is generally low
(Hq S 4AU), with almost all systems yielding only upper limits to its value.
In this section, we discuss the implications of these findings, and we put our
results in a broader context by comparing them with previous relevant work
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Figure 7.7: Logarithm of the likelihood (log £ oc —x2/2) normalised to its peak value,
for the values of the parameter H,; considered in our analysis. The systems discussed in
Sec. 7.4 are shown with different colours.

Table 7.2: Summary of the constraints on the vertical scale-height and turbulence. Note
that, as described in the main text, we have assumed St = 10~2 to break the degeneracy
between agg and St.

1D ‘ Hd [AU] Hd/T‘ ] Ozss/st ass
GW Lup <4 <004 <044 <024 <24x1073
DoAr 25 <2 <002 <027 <0079 <79x107*
Elias 24 <2 <002 <020 <0042 <42x107*
AS 209 <2 <002 <025 <0065 <6.5x107*
HD 163296 ~ ~0.04 =056 =~045 =~45x1073
MY Lup <4 <004 <048 <029 <29x1073

on the subject. We conclude by highlighting a few caveats that need to be
kept in mind when interpreting our results.

7.5.1 Relative dust and gas scale heights

As mentioned at the start of Sec. 7.2, we have focused so far only on the
dust component of discs because this is the one that can be probed directly
by (sub-)mm observations. However, in order to get constraints on the level
of turbulence in the disc, we need to consider the vertical structure of the
gas component too.
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This can be done by assuming that the characteristic value of the gas
scale height hy is set by hydrostatic equilibrium (M, is the mass of the

central star):
| kKTr3
hg =4 57— 7.6
g GM*,ump ( )

where £ is the Boltzmann’s constant, G is the gravitational constant, m,, is
the mass of the proton, and p = 2.3 is the mean molecular weight.

Assuming the gas temperature follows the same relation we already
adopted for the dust (eq. 7.3), then, we can compute the gas temperature
everywhere in the disc. With the choice we have made for the radial
dependence of the dust scale height (eq 7.2), it can be shown that the gas
scale height follows the same dependence, and we can therefore introduce
a single parameter O, defined as the ratio between the two scale-heights:
hq(r) = ©hgy(r). Hereafter, we refer to the parameter © as the scale height
ratio.

Given the constraints on H; we have presented in the previous section,
we can use the values of M, and L, given in Table 7.1 and compute the
value of hy at r = 100 AU, and, subsequently, the scale height ratio ©. We
list the resulting values of © in Table 7.2. It is easy to note how in all cases
the dust scale height is smaller than the gas scale height, as expected from
dust settling.

7.5.2 Implications for turbulence

The ultimate goal of this work is to put constraints on the magnitude of
disc turbulence. In order to do this, we follow Dubrulle et al. (1995), who

showed that
St —1/2
o - (1 + ) | (7.7)
Qass

We list the resulting values of ags/St in Table 7.2. Note that turning these
constraints into a constraint on agg requires a measurement of St, which
at the moment is not available for our whole sample. In the future this
may become possible through multi-wavelength observations which measure
the spectral index, though significant uncertainties about the dust opacity
still remain (e.g., Sierra et al. 2021; Guidi et al. 2022). For the sake of
the discussion, we assume here a typical St = 1072, but we stress this is
not a measurement and this is an uncertainty that is carried over to the
measurement of agg.

The first thing to note is that all our measurements are incompatible
with a value of agg = 1072. This is in line with recent findings in the
field that turbulence in proto-planetary discs is relatively weak (see Rosotti
2023 for a review) and also in line with theoretical expectations in the cold
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conditions of proto-planetary discs, which are not capable to sustain the
magneto-rotational instability (Balbus & Hawley 1991). For 3 discs, namely
half of the sample where we can get constraints, we find even lower upper
limits, namely that agg < 1073, reinforcing the statement that turbulence
is weak in proto-planetary discs. Only for one case, HD 163296, our method
provides a measurement and not only upper limits, implying that turbulence
is (indirectly) detected in this disc. As already discussed, this is in line with
the study of Liu et al. (2022), who found similar results.

The other aspect we can investigate with our results is whether turbulence
is isotropic. In addition to HD163296, which was already discussed by Liu
et al. (2022), some of our sources have also constraints on turbulence in the
radial direction: namely AS209 (Rosotti et al. 2020), GW Lup and Elias 24
(Dullemond et al. 2018). Note that these constraints are also obtained by
indirectly measuring asg/St. Thus, a comparison between the turbulence
level measured in the radial direction and in the vertical one is independent of
the assumed Stokes number, St. It is notable that in all three cases the upper
limit we derive on agg/St is lower than the value derived by Rosotti et al.
(2020) for AS209 (0.06 with respect to 0.18 and 0.13, depending on which
gap/ring we consider) or the lower limit for the range derived by Dullemond
et al. (2018) for GW Lup and Elias 24 (0.3 and 0.08, respectively). At face
value, this would imply that turbulence in the vertical direction is in fact
weaker than in the radial direction. This could have implications regarding
the debate on the origin of turbulence, since for example mechanisms like the
Vertical Shear Instability (VSI, see Lesur et al. 2022 for a review) predict the
opposite behaviour because they are particularly effective at lifting particles
(e.g., Stoll & Kley 2016; Flock et al. 2017; Lin 2019; Dullemond et al. 2022).
Note however that the opposite behaviour is found for HD163296, although
the fact it is the only disc in our sample for which we are able to measure
the vertical scale height may mean it is exceptionally thick. Considering
the small sample size, we are not currently able to draw any conclusions on
turbulence anisotropy, but this aspect should be revisited in the future with
larger samples.

7.5.3 When does the method yield constraints on the
scale height?

As we already discussed, for a significant fraction of our discs we are not able
to get constraints on the dust scale height. It is worth asking under which
conditions the method we use in this paper can give constraints. Considering
the method relies on projection effects, we expect it to require discs to have
moderate inclinations to be effective. On the other hand, we also expect the
method to require deep gaps to work, in order to introduce an appreciable
difference between models with different scale heights. On the contrary,
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Figure 7.8: Gap depth (as defined in Huang et al. (2018)) as a function of the disc
inclination angle (as reported in Tab. 7.1) for all the gaps of the DSHARP sample
considered in this work for which it is possible to measure a gap depth (for more details,
see Huang et al. 2018). Different colours refer to different systems in the sample. Filled
(empty) circles stand for the gap that we (did not) use to measure the dust scale height
effectively. The gray shaded region is defined by the two conditions inclination > 25° and
gap depth < 0.65, and it marks the region where we find that our method proves to be
effective in constraining H.

shallow gaps are already filled by definition and there is less room for the
gap-filling effect to introduce a difference between the models.

In order to quantify more our expectations, we plot in Figure 7.8 the
properties of gaps in the DSHARP discs listed in Table 7.1. For every gap in
these discs, we plot on the x-axis the disc’s inclination, and on the y-axis the
gap depth taken from Huang et al. (2018). This latter quantity is defined
as the ratio between the (azimuthally-averaged) intensity in the radial bin
containing the centre of the gap and the intensity in the bin containing the
centre of the adjacent ring (for more details, see Huang et al. 2018). If the
gap depth could not be measured, we discard the gap from our sample. We
use filled (empty) circles to highlight gaps that we (did not) use to effectively
constrain the dust scale height. Different systems are plotted using different
colours. Note that some of the systems (i.e., AS 209, HD 163296, and GW
Lup) have gaps belonging to both of these categories. This is because, in
the analysis of these systems (Sec. 7.4), we have focused only on the regions
where the major (i.e., deeper and larger) gaps reside. Other secondary gaps
that were not considered in Sec. 7.4 are included in Fig. 7.8 with empty
circles.

The figure fully confirms our expectations: gaps that can constrain the
dust scale height effectively are all residing in a (gray-shaded) region for
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which ¢ > 25° and the gap depth is lower than 0.65. On the other hand,
gaps for which our method proves not to be effective are all outside this
region, and thus they have either a small inclination or a large gap depth.
The sole exception to this is a gap in AS 209 (red empty circle) which has a
gap depth of ~ 0.45 and thus fall in the gray shaded region; however, this
gap is located very close to the inner radius (r ~ 9 AU), and therefore it is
likely affected by limited spatial resolution.

We stress that the criterion in which the gray shaded was defined —
although it works well for our sample — is empirical and should not be taken
literally. It is conceivable for example that the specific conditions may vary
with the spatial resolution of the observations, as well as with the emission
morphology (whose potential variation is presumably larger than what the
simple gap depth parameter we introduced can catch).

Here, we have analysed only the DSHARP sample, as the largest and
most homogeneous sample of high-resolution continuum observations. It
is unlikely that a single programme will produce a larger sample of high-
resolution observations; however, ALMA is conducting more high-resolution
campaigns from many programs targeting smaller samples, and combining
them one may eventually have a comparable or larger sample than the one
we analysed here. The empirical criterion we have derived here may be
useful for deciding which ones of those would be worth investigating using
the gap-filling effect.

7.5.4 Caveats

The strongest caveat to make regarding this work is that we have implicitly
assumed that the disc is azimuthally symmetric. The fact that strong
asymmetries are relatively rare is indeed one of the main results of DSHARP
(Jennings et al. 2022; Andrews et al. 2021), which partially justifies our
assumption. We should caveat, however, that here we are interested in rather
subtle differences in the azimuthal angle. Therefore, we cannot exclude that
asymmetries are indeed present in the discs we observe, but weaker than
the obvious ones such as horseshoes, crescents and spirals. This caveat is
somehow mitigated by the fact that in the vast majority of cases we can
only put upper limits on the dust scale-height, implying that in fact that
emission is much more symmetrical (once the different spatial resolution
along the major and minor axis is taken into account) than it would be if the
disc were thick. The caveat remains however for the example we highlighted
of DoAr 25 — where we are not able to reproduce the emission with an
azimuthally symmetric disc — and for HD 163296 — where we do measure a
scale-height. Though this seems unlikely, we are not able to exclude that the
weak asymmetry introduced by the gap-filling effect is instead introduced
by an intrinsic asymmetry, and the disc is actually thinner.
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Another caveat is that we have taken here a greatly simplified disc tem-
perature structure and we have not set up a realistic grain size distribution.
This is done for the sake of simplicity; doing otherwise would introduce many
other free parameters regarding the choice of dust opacity, size distribution
and disc vertical structure. It is reassuring, though, that for HD163296 our
method produces similar results to Liu et al. (2022), who did take the more
complex route. This is probably because the method we use here is due to
projection effects, and as such it should not depend directly on the details
of the dust opacity or temperature.

Finally, we stress the fact that our method can gauge the value of the
disc scale height (and hence of agg/St) only locally, where substructures
such as gaps and rings reside. Despite the fact that we can reproduce the
observed intensity profiles everywhere, it may be that our assumption of a
single, global value for the disc scale height does not correspond to reality.
In principle, the vertical structure of the disc may vary from one gap to
the other one; physical processes such as vortexes at the edge of gaps or
meridional flows could also amplify the scale height in the proximity of gaps,
biasing the inferred value of the gas turbulence. Therefore, the reader should
keep in mind that our conclusions are based on a local effect, and that the
knowledge of the behaviour of the scale height globally is an assumption of
our model.

Summary

In this work, we have used the gap-filling effect to measure the dust scale
height in DSHARP discs, with the goal of constraining the amount of
turbulence they have. This effect originates from the fact that, in the
presence of substructures such as gaps and rings, the intensity profile along
the major axis differs from the profile along the minor one. This is because,
if the disc inclination is not too small, line-of-sights piercing through the
minor axis intercept a larger fraction of the disc’s external layers — which
are far from the midplane —, creating a projection effect that “fills" the gaps
along that axis.

Since this effect is stronger if the disc vertical size is larger, we can
probe the value of the disc scale height by building a model whose goal is
to reproduce the intensity profiles along the two principal axes. Following
previous work by Pinte et al. (2016) and Liu et al. (2022), we use radiative
transfer to predict the resulting emission maps based on our model. The disc
surface density is obtained via an iteration procedure that aims at matching
the intensity observed along the major axis. This procedure is successful
and convergence is reached at a satisfactory level in almost all cases (see
also Fig. 7.10).
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The values of the disc scale height (Hg; see eq. 7.2 for the definition) we
find with our analysis can be related to the level of gas turbulence, because
the vertical structure of dust grains is set by a competition between gravity
and turbulence. Assuming hydrostatic equilibrium for the gas component,
we can turn the value of Hy into an estimate for agg/St, and finally into an
estimate for the turbulence parameter agg by assuming a conventional value
St = 1072 (see Sec. 7.5.1 for more details).

We summarise here the main findings of this paper:

e We apply our method to 15 discs from the DSHARP survey (Andrews
et al. 2018). We manage to successfully constrain the value of disc
scale height in 6 of these discs: GW Lup, DoAr 25, Elias 24, AS 209,
HD163296, and MY Lup.

e The values of Hy we find are generally very low (Hy; < 4 AU), and
most estimates are upper limits only. In the single case of HD 163296,
we can gauge the value of Hy to Hy = 4 AU (in very good agreement

with Liu et al. 2022).

e Turning these values of the disc scale height into constraints for the
strength of turbulence (see Table 7.2), we find ags < 5 x 1073, For 3
dises (i.e., half of our sample) we find even lower constraints (ags <
1073). These values are in line with recent findings that suggest a
relatively low level of turbulence in protoplanetary discs (for more
details, see Rosotti 2023).

e For the remaining 9 systems in our sample, we find that our method is
not effective in constraining the value of the disc scale height: models
with very different values of Hy give rise to identical intensity profiles
along the minor axes (see Fig. 7.9). We find that all of these 9 systems
(=~ 60% of our sample) are either not very inclined (i < 25°) or they
host gaps that are not deep enough — i.e., the intensity at the bottom
of the gap is not much smaller than the one in the adjacent ring.
We provide an empirical criterion specifying in which region of the
inclination-gap depth plane (see Fig. 7.8) the method we employ here
can be successfully applied.

Looking at the future, the empirical criterion we derive can be used
to select from the ever-growing sample (see e.g. the catalogue assembled
by Bae et al. 2022) of high-resolution disc observations those where this
methodology can be applied, and in this way expand the disc sample with
constraints on the vertical scale-height.

Future observations should also focus on gauging the value of the Stokes
number. As we have shown in this work, the current sensitivity of observa-
tions make it possible to get good constraints on the disc vertical structure
(and hence on agg/St). However, the values we obtain for the level of gas
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turbulence are subject to our lack of knowledge about the value of the Stokes
number, St. Therefore, it is essential in the near future to have complemen-
tary multiwavelength observations (see e.g., Carrasco-Gonzalez et al. 2019;
Guidi et al. 2022) that can probe the dust grain size distribution - a sub-field
that should expand in the next few years thanks to the development of band
1 on ALMA.

Appendix: Discs with no constraints

We show here the results for the discs for which our method is not able to
place any constraints on the value of the disc scale height. These are (see
also Tab. 7.1): HD 142666, Elias 20, Sz 129, HD 143006, SR 4, RU Lup,
Sz 114, WSB 52, DoAr 33. A discussion on why these systems yield no
constraints on Hy is made in Sec. 7.5.3.

In Fig. 7.9, we show the intensity profiles along the minor axis extracted
from data (salmon lines) together with the ones predicted by our model for
different values of the disc scale height Hy (coloured lines). As it is clear
from all of the plots, the reason why it is not possible to constrain H; using
our method is that all models with different values of H; give rise to very
similar profiles.

Thus, despite the fact that these profiles are generally in good agreement
with data — apart from some specific cases where major asymmetries are
present, e.g., the outer region of HD 143006 —, we cannot draw any conclusions
on the vertical structure of the discs.

A significant exception to this is the outer region of HD 142666. Similarly
to what described in the case of MY Lup (Sec. 7.4.2), profiles with a small
(large) value of H; are much (steeper) shallower due to the same projection
effect that takes place in gaps and/or rings. However, in the case of HD
142666, the noise is to high to distinguish which of the different profiles is in
better agreement with the data points.

Appendix: Convergence along the major
axis and emission maps

In this section, we show the results of our model-data comparison for what
concerns the intensity profiles along the major axis (Figure 7.10) as well as
the full mock images of the discs for the two extreme cases H; = 0.05 AU
and Hy; = 8 AU (Figure 7.11- 7.12). We focus on the systems that yield
significant constraints on the value of the disc scale height (see also Sec. 7.4
for more details), with the exception of GW Lup which is discussed entirely
in the main text (results are in Fig. 7.5).
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Figure 7.9: Same as Fig. 7.6, but for the systems of Tab. 7.1 for which no constraints
on H,; can be placed.
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Figure 7.10: Same as the left panel of Fig. 7.5, but for the systems discussed in Sec.
7.4.2: DoAr 25 (top left), Elias 24 (top right), AS 209 (middle left), HD 163296 (middle
right), MY Lup (bottom left). The same figure focusing on intensity profiles along the
minor axis is in the main text (Fig. 7.6).
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Figure 7.11: Same as Fig. 7.4, but for the systems discussed in Sec. 7.4.2 (from top to
bottom): DoAr 25, Elias 24, and AS 209.
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Figure 7.12: Same as Fig. and Fig. , for the remaining systems: HD 163296
(top), MY Lup (bottom).
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