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6 Towards inference of
overlapping gravitational
wave signals

Abstract

Merger rates of binary black holes, binary neutron stars, and neutron star-
black hole binaries in the local Universe (i.e., redshift z = 0), inferred from
the Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo,
are 16–130 Gpc−3 yr−1, 13–1900 Gpc−3 yr−1, and 7.4–320 Gpc−3 yr−1,
respectively. These rates suggest that there is a significant chance that two
or more of these signals will overlap with each other during their lifetime
in the sensitivity-band of future gravitational-wave detectors such as the
Cosmic Explorer and Einstein Telescope. The detection pipelines provide
the coalescence time of each signal with an accuracy O(10ms). We show
that using a prior on the coalescence time from a detection pipeline, it is
possible to correctly infer the properties of these overlapping signals with
the current data-analysis infrastructure. We study different configurations of
two overlapping signals created by non-spinning binaries, varying their time
and phase at coalescence, as well as their signal-to-noise ratios. We conclude
that, for the scenarios considered in this work, parameter inference is robust
provided that their coalescence times in the detector frame are more than
∼ 1–2s. Signals whose coalescence epochs lie within ∼ 0.5 s of each other
suffer from significant biases in parameter inference, and new strategies and
algorithms would be required to overcome such biases.
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224 6.1. INTRODUCTION

6.1 Introduction

The advent of the third generation (3G) gravitational-wave (GW) observato-
ries, such as the Cosmic Explorer (CE) (Evans et al. 2021; Reitze et al. 2019a;
Reitze et al. 2019b) and the Einstein Telescope (ET) (Punturo et al. 2010),
will offer the possibility to observe binary coalescence events from redshifts
z ∼ 10–50, thanks to an order of magnitude improved strain and frequency
sensitivity compared to the current generation of detectors of Advanced
LIGO (Aasi et al. 2015), Advanced Virgo (Acernese et al. 2015), and KA-
GRA (Akutsu et al. 2019). Indeed, 3G observatories will have unprecedented
sensitivity to detect coalescence events from an epoch when the Universe
was still in its infancy assembling its first stars and will routinely detect
mergers with stupendously large signal-to-noise ratios of several thousands
(Sathyaprakash et al. 2012; Vitale & Evans 2017; Maggiore et al. 2020; Evans
et al. 2021). An order of magnitude greater redshift reach and access to
extremely high-fidelity signals compared to current interferometers promises
many new discoveries, while allowing completely independent, precision
tests of cosmological models, alternative gravity theories, and astrophysical
scenarios of compact binary formation and evolution (Evans et al. 2021;
Maggiore et al. 2020). With an expected rate of hundreds of thousands of
binary coalescence signals each year (Baibhav et al. 2019; Sachdev et al.
2020; Maggiore et al. 2020; Evans et al. 2021) on top of weak, but persistent,
radiation from isolated neutron stars (Sathyaprakash et al. 2012), rare bursts
from supernova and other transient sources and stochastic backgrounds
(Regimbau et al. 2017), 3G observatories demand novel algorithms for signal
detection and characterization. Therefore, a proper understanding of sys-
tematics arising from overlapping loud and quiet signals alike will answer a
range of scientific questions that are at the forefront of fundamental physics
and astronomy, as well as a realistic estimation of the computational cost.

According to current estimates, 3G observatories are expected to detect
hundreds of thousands of binary black hole (BBH) and binary neutron star
(BNS) mergers each year (Baibhav et al. 2019; Sachdev et al. 2020; Maggiore
et al. 2020; Evans et al. 2021). If we take account of the fact that signals
will last longer due to a lower starting frequency (3Hz for ET and 5Hz for
CE), then it is clear that 3G data will be dominated by many overlapping
signals (Regimbau et al. 2012; Meacher et al. 2016; Regimbau et al. 2017;
Samajdar et al. 2021; Relton & Raymond 2021). The problem of overlapping
signals producing a confusion background in future terrestrial detectors was
identified more than a decade ago (Regimbau & Hughes 2009). The problem
poses two challenges: first, the detection of individual signals could, in
principle, be affected by the presence of multiple signals. Second, the current
Bayesian inference methods (Veitch et al. 2015; Ashton et al. 2019) may
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not guarantee unbiased estimation of source parameters, which is crucial to
deliver the science promises of 3G observatories.

A similar issue has been tackled, in a different context, by the LISA (Laser
Interferometer Space Antenna) community. LISA is expected to produce a
data set containing many overlapping astrophysical signals: galactic white
dwarf binaries are persistent sources of gravitational waves and they produce
a “foreground” noise (Crowder & Cornish 2004) that could masquerade the
detection and parameter estimation of other astrophysical signals. Several
authors have studied the problem of both detection (Cornish & Porter 2007;
Littenberg 2011; Babak et al. 2010) and Bayesian inference (Cornish &
Crowder 2005; Crowder & Cornish 2007) in this context, while others have
focused on searching for the global solution to the full family of potential
signals (Littenberg et al. 2020; Robson & Cornish 2017; Petiteau et al. 2013).
A parallel effort has been made by other studies (Cornish & Littenberg
2015; Chatziioannou et al. 2021; Cornish et al. 2021) to characterize the
overlapping between GW signals and glitches in the context of LIGO/Virgo
data analysis. These studies represent a useful reference that could guide the
development of new algorithms specifically suited to deal with the parameter
estimation of multiple signals in the context of terrestrial detectors.

However, no effort to study the problem of inference in the case of
3G terrestrial detectors has so far been made. Given the relevance of
this specific problem, an exploratory study of the capabilities of current
parameter estimation methods in the context of overlapping signals in
terrestrial detectors appears to be necessary. With this consideration in
mind, we aim to characterize the conditions for which parameter estimation
is possible with the current algorithms for overlapping signals and to identify
regions in the signal parameter space that create significant biases in the
inference process, for which novel algorithms would be required.

Detecting overlapping GW signals has been shown to be possible by two
ET mock data challenges (Regimbau et al. 2012; Meacher et al. 2016). These
studies were able to correctly identify and recover signals even when they
were overlapping with multiple others. Even though the signal detection may
provide unbiased results, however, there is no guarantee that the parameter
inference in the case of overlapping signals is possible within the current
framework. This is because current methods heavily rely on the efficiency of
sampling algorithms, which are used to explore the posterior distribution of
parameters. If we analyze overlapping signals with the current parameter
estimation (PE) procedures (i.e., the assumption that the parameter space
for multiple signals is the same as in the case of data containing only one
signal at a time), we expect Markov Chains and the posterior distribution
to exhibit a non-trivial behavior such as slowly or non-convergence of chains,
multi-modal and biased posterior distributions, etc.

To this end, we deploy the Fisher information matrix formalism to gauge
the limit between the region where overlapping signals could lead to biases in
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Figure 6.1: Contour diagram showing the number of times two or more signals have
their epoch of coalescence occurring within an interval ∆t in a year’s worth of data as a
function of the chunk size ∆t and the Poisson rate r. Also shown are the detection rate of
BBH and BNS signals in 3G observatories of one ET and 2 CEs (Samajdar et al. 2021).
As an example, if the detection rate is 8 mHz then we can expect in one year’s of data
1000 one-second long chunks in which two or more mergers would occur. For a pair of
signals whose coalescence times differ by an interval of ∆t > 1 s we do not expect to see
any biases in their parameter estimation, although the signals themselves might overlap.
Biases begin to show up for ∆t < 1 s and become severe as ∆t → 0.

parameter inference and the region where they don’t. The Fisher study tells
us that as long as the difference in the merger time ∆tC of two overlapping
signals is larger than the accuracy δt with which their merger times can be
measured (i.e., ∆tC ≫ δt), irrespective of how long the individual signals
are, parameter inference will not cause significant biases. We exploit this
result in the Bayesian analysis of mock data by choosing the prior on the
merger epoch as determined by the signal detection pipelines, which is about
δtC ∼ O(10ms) (Liting et al. 2014). Indeed, most signals are recovered by
search pipelines with a bias of δtC < 20 ms. A conservative prior on the
merger time could be a factor of 10 to 20 larger or at most 500 ms. Thus,
two overlapping signals with their merger times separated by larger than
about ≈ 2 s are not expected to suffer from any systematic biases. Hence, it
suffices to consider the extent to which overlapping signals pose a problem
for ∆tC ≲ 2 s.

The rest of the paper is organized as follows: in Sec. 6.2, we compute the
number of chunks in a year’s worth of data containing more than one merger.
Section 6.3 is devoted to studying the covariance between overlapping signals
using the Fisher information matrix with the emphasis on what we might
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expect for parameter inference in case of overlaps. Bayesian inference of
overlapping signals is presented in Sec. 6.4. Our main conclusions and a brief
discussion of the type of problems that should be addressed in future studies
is presented in Sec. 6.5.

6.2 Number of overlapping signals

The number of overlapping signals depends on (a) the typical duration of
signals and (b) the rate at which they arrive at the detector. At the leading
order, the length ξ of a coalescing compact binary signal starting from a
gravitational-wave frequency fs until merger is given by

ξ =
5

256

(
GM/c3

)−5/3
(πfs)

−8/3
, (6.1)

where G is Newton’s constant, c is the speed of light and the chirp mass M
is related to the component masses m1 and m2 via M ≡ (m1 m2)

3/5/(m1 +
m2)

1/5. A BNS system consisting of a pair of 1.4M⊙ would last for ξ ≃ 103 s
starting from a frequency of fs = 10Hz (relevant for Advanced LIGO and
Advanced Virgo), 1.8 hr for fs = 5Hz (CE) and almost 7 hr for fs = 3Hz
(ET). A source of intrinsic chirp mass M at a cosmological redshift of z
would appear in the detector to have a chirp mass of (1 + z)M, and hence
lives for a shorter duration in a detector’s sensitivity band. Thus, BNSs
(1M⊙ ≤ m1,m2 ≤ 3M⊙) could last for tens of minutes to several hours in
band while BBH signals (3M⊙ ≤ m1,m2 ≤ 50M⊙) could last for tens of
seconds to thousands of seconds.

The cosmic merger rate of compact binary coalescences determined by
the first two observing runs of LIGO and Virgo (Abbott et al. 2019b, 2021)
implies that in a network of 3G observatories the detection rate r, defined
as the number of signals whose matched filter signal-to-noise ratio is larger
than 12, lies in the range rBBH ∈ [5 × 104, 1.5 × 105] yr−1 for BBHs and
rBNS ∈ [105, 106] yr−1 for BNSs (Samajdar et al. 2021; Abbott et al. 2018b,
2016b). Thus, given that signals last for several hours, 3G data would
contain several loud overlapping signals at any one time. We shall see below
that for the purpose of parameter inference the relevant quantity is not how
many overlapping signals there are at any one time but if two or more signals
have their merger times lie within a duration ∆t. This is what we will set
out to compute next.
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6.2.1 Overlapping signals of the same family
Let r denote the Poisson detection rate of a given signal family (BBH or
BNS). In an interval ∆t, the expected Poisson rate is ν = r∆t and the
probability of observing exactly k mergers during ∆t is given by

Pk(ν) =
νk e−ν

k!
. (6.2)

Thus, the probability of observing two or more mergers during ∆t is

Pk≥2 =

∞∑
k=2

Pk(ν) =

∞∑
k=2

νk e−ν

k!
= 1− e−ν(1 + ν). (6.3)

We have made use of the fact that the Poisson distribution is normalized,
namely

∑∞
k=0 Pk(ν) = 1. To compute the number of chunks Nk≥2 in which

two or more mergers will be observed we must multiply the probability Pk≥2

by the number of chunks n∆t = T/∆t in an observational period T :

Nk≥2 ≡ Pk≥2n∆t =
[
1− e−ν(1 + ν)

] T

∆t
. (6.4)

Substituting ∆t = ν/r and noting that NT ≡ r T is the total number of
signals detected during the period T, we get

Nk≥2 =
[
1− e−ν(1 + ν)

] NT

ν
. (6.5)

It is easy to see that in the limit ∆t → 0 (equivalently, ν → 0), Nk≥2 ≃
νNT /2. The factor of 1/2 assures that the number of instances when two
or more signals are found in a chunk is never greater than half of the total
number of observed signals but it is also weighed down by the Poisson rate
ν. In the other limit, when ∆t → T (and ν ≫ 1), Nk≥2 ≃ 1 but less than 1.

Figure 6.1 plots the number of chunks Nk≥2 in which we can expect to
find two or more mergers in a year’s worth of data (i.e., using T = 1yr
and ν = r∆t). Also indicated in the plot are the detection rate of BBH
(BNS) which is expected to be in the range rBBH ∈ [1.6, 4.8] × 10−3 s−1

(rBNS ∈ [3.5, 35] × 10−3 s−1, respectively) (Samajdar et al. 2021) in a 3G
detector network comprising of one ET and two CEs (one in north America
and the other in Australia). As we shall see in Sec. 6.3, parameter inference
should not be a problem if the difference in coalescence times of a pair of
signals is larger than ∼ 1 s; this is indicated in Fig. 6.1 by the horizontal
line drawn at ∆t = 1 s. Thus, in Sec. 6.4 we will focus on Bayesian inference
of signals whose merger times differ by about one second. We see that at the
higher end of the BNS rate, we expect ∼ 15, 000 one-second long chunks with
two or more mergers while at the lower end of the BNS rate this number
is ∼ 200. Likewise, ∼ 300 chunks will contain two or more BBH mergers at



CHAPTER 6 229

the higher end of the BBH detection rate while this number is ∼ 40 at the
lower end of the BBH rate. Although the vast majority of events will have
their merger times larger than 1 s from their nearest neighbor, the number
of events with their merger times within a second is quite large.

The detection rate of BBH signals in the current detector network of
LIGO, Virgo and KAGRA at their design sensitivity is at best r ∼ 2.3 ×
10−5 s−1 (or 730 yr−1) (Abbott et al. 2021). Thus, the probability of
observing multiple mergers in a chuck of size 1 s or less is negligibly small in
the Advanced detector era. This will also be the case in the A+ era (Abbott
et al. 2018a) where the detection rates are expected to be 3 times larger.

6.2.2 Overlapping signals from two different families

If the detection rate of signal families A and B are rA and rB , then probability
that one or more mergers of each of these signal families would occur during
an interval ∆t is

PA,k≥1 = 1− e−∆t rA , PB,k≥1 = 1− e−∆t rB . (6.6)

Thus, the probability PAB that an interval ∆t contains one or more from
each of the two signal families is simply the product PAB = PA,k≥1 PB,k≥1.

If the rates are small, this reduces to PAB = (∆t)2 rA rB and the number of
such chunks over a period T is NAB = (∆t)2rA rB T = NA NB/n∆t, where
NA and NB are the total number of mergers during the period T of families
A and B, respectively, and n∆t = T/∆t is the number of chunks of width
∆t during T. Using the range of BNS and BBH rates quoted before, we find
that NAB would lie in the range 170–5100 for T = 1yr and ∆t = 1 s.

From the foregoing discussions it is clear that a small but significant
fraction of signals would have their coalescence time within an interval of 1 s.
As we shall see in the next Section, due to their long duration, overlapping
BNS signals are far less correlated with each other than overlapping BBH
signals. For the same reason, a pair of overlapping BNS and BBH signals
are poorly correlated. Hence, in the Bayesian inference problem (Sec. 6.4)
we will only consider overlapping BBH signals.

6.3 Covariance among overlapping signals

If two signals are well separated then the covariance between their parameters
is zero and we do not expect one signal to affect the parameter inference
of the other. As we bring the two signals closer together in time, at some
point the presence of one of the signals will begin to bias the estimation of
parameters of the other. In this Section we estimate the covariance between
the parameters of a pair of overlapping signals using the Fisher matrix
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Figure 6.2: Plot shows the correlation coefficients, i.e., normalized covariances as defined
by Eq. (6.16) between the parameters of the two overlapping signals as a function of the
difference in merger times τ = tBC − tAC . The left panel is for Advanced LIGO and right for
Cosmic Explorer. Top row is for BBHs and bottom row BNSs. We assume the parameter
inference of overlapping signals to be negligibly affected when (the absolute value of) the
correlation coefficients are less than 10% (grey shaded regions).
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formalism. Although Fisher matrix is valid in the limit of large signal-to-
noise ratios, any inferences we can draw from the correlation will guide us in
choosing the parameter space of compact binaries where systematic biases
could be large.

To this end, we assume that the data contains a pair of signals sA and
sB buried in stationary, Gaussian noise n. The detector output is a sum of
the overlapping signals buried in detector noise:

x(t) = n(t) + sA(t, λ
(A)
α ) + sB(t, λ

(B)
α ). (6.7)

where λ
(A)
α , λ

(B)
α , for α = 1, . . . , p, are the set of parameters corresponding

to signals sA and sB , respectively. Note that since both sA and sB are
assumed to belong to the same signal family they are specified by the same
number of parameters. Furthermore, we shall only consider a single detector
for this exercise. The relevant parameters for a binary with non-spinning
companions are the chirp mass M, symmetric mass ratio η, the epoch tC
when the signal amplitude reaches its peak and the phase ϕC of the signal
at that epoch and so: λ(A)

α = (M(A), η(A), t
(A)
C , ϕ

(A)
C ) and similarly for signal

sB . We assume the IMRPhenomPv2 waveform model.
For the computation of the covariance matrix it is more convenient to

consider that the data contains only one signal, i.e., the sum of the two
signals s = sA+sB , and it is characterized by a double number of parameters:
θa = λ

(A)
a for a = 1, . . . , p and θa = λ

(B)
a−p for a = p+ 1, . . . , 2p. For a noise

background that is stationary and Gaussian the covariance matrix C, which
is inverse of the Fisher matrix Γ, is given by:

Cab = Γ−1
ab , Γab =

〈
∂s

∂θa
,
∂s

∂θb

〉
. (6.8)

Here the scalar product of two waveforms (or any pair of functions of time
for that matter) h and g is defined as

⟨h, g⟩ ≡ 4ℜ
∫ fhigh

flow

h̃(f) g̃∗(f)

Sh(f)
df, (6.9)

where ℜ stands for the real part of the integral, h̃ and g̃ are the Fourier
transforms of the signals h and g, respectively, g∗ denotes the complex
conjugate of g and Sh(f) is the one-sided noise spectral density of the detector.
In our study we will use either the noise spectral density of Advanced LIGO
(Aasi et al. 2015) or that of the Cosmic Explorer (Reitze et al. 2019b). The
lower frequency cutoff flow is chosen to be 20 Hz for Advanced LIGO and
5 Hz for Cosmic Explorer. For BNSs, the upper frequency cutoff fhigh is
assumed to be the larger of the inner-most stable circular orbit frequency
of the two overlapping signals, i.e., fhigh = max[(63/2πM1)

−1, (63/2πM2)
−1],

where M1 and M2 are the total mass of the two overlapping signals. For
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BBHs, the upper frequency cutoff is chosen to be the Nyquist frequency of
1024 Hz.

The Fisher matrix contains interference terms of the following type:

Γα, β+p =

〈
∂sA

∂λ
(A)
α

,
∂sB

∂λ
(B)
β

〉
. (6.10)

Covariances are of primary interest in this Section as they can tell us the
degree to which the presence of one signal affects the parameter inference of
the other. In order to measure the extent of covariance we consider two sets
of overlapping signals (masses are specified in the detector frame):

1. overlapping BBHs with masses:

(m
(A)
1 , m

(A)
2 ) = (21M⊙, 15M⊙) (6.11)

(m
(B)
1 , m

(B)
2 ) = (33M⊙, 29M⊙). (6.12)

2. overlapping BNSs with companion masses:

(m
(A)
1 , m

(A)
2 ) = (1.45M⊙, 1.35M⊙) (6.13)

(m
(B)
1 , m

(B)
2 ) = (1.50M⊙, 1.40M⊙). (6.14)

Furthermore, in all cases we choose

(t
(A)
C , ϕ

(A)
C ) = (0, 0), (t

(B)
C , ϕ

(B)
C ) = (τ, 0), (6.15)

and vary τ over the range [−3, 3] s.
The covariances between the chirpmass, symmetric mass ratio and epoch

of coalescence are plotted in Fig. 6.2 as a function of the parameter τ for
overlapping BBHs (top panels) and BNSs (bottom panels) for noise spectral
densities of Advanced LIGO (left panels) and Cosmic Explorer (right panels).
Other cross-covariances are negligibly small and not shown. What we plot are
the normalized covariances, i.e., a combination of the correlation coefficients
defined as:

σab ≡
Cab√
CaaCbb

, a ̸= b. (6.16)

This quantity is strictly bounded between −1 and +1. A correlation coefficient
of +1 implies that the parameters are perfectly correlated, −1 implies they are
perfectly anti-correlated, and a value of 0 would imply they are uncorrelated.
We will take σab ∼ 0.1 (grey shaded region in the plot) to be small enough
to indicate that the presence of the second signal does not significantly
bias parameter inference of the other signal. This threshold is inevitably
arbitrary, as a thorough analysis of the connection between the values of
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the correlation coefficients and the presence of biases in parameter inference
is beyond the scope of this paper. However, as we show in Sec. 6.4.4, the
regions of the parameter space where biases in PE arise are compatible with
the ones for which σab ≳ 0.1.

The correlations displayed in Fig. 6.2 show a range of different behaviours.
In all cases, they have a peak for |τ | ≲ 0.5 s. This is expected, as the
interaction between the signals is enhanced when the two signals coalesce
very close to each other. For |τ | > 0.5 s, all the different configurations stay
always below the threshold σab = 0.1, with the significant exception of BBH
in Advanced LIGO detectors. In this latter case, correlations remain very
high in the range −1.5 s < τ < 0 s, and become small only for τ ≲ −2 s. The
fact that correlations are not symmetric in τ can be easily explained by the
different form of the two signals considered (see also Fig. 6.3).

Finally, we note that in the case of BNS, the correlation remains always
below the threshold both in Advanced LIGO and Cosmic Explorer, except
when τ ≃ 0. This implies that parameter inference of overlapping BNS
signals is likely to be less severe than that of overlapping BBH signals. We
will, therefore, consider only the latter class of signals in the remainder of
this paper, leaving the parameter estimation of overlapping BNS signals for
future work.

The analysis presented in this section is limited by the fact that we have
explored only for a few particular sets of source parameters. Therefore, we
cannot conclude that parameter estimation will never be a problem in the
case of overlapping BNSs. Indeed, very similar values of the chirp masses (as
well as other relevant parameters) will likely increase the correlation between
the two signals, especially in the proximity of τ = 0 s.

In addition, we note that further work is necessary to assess the validity
of the correlation threshold we have considered here, especially in light of
the fact that sinusoidal features with amplitudes σab ≈ 0.05−0.1 are present
in the case of the Cosmic Explorer detector, even for large values of |τ |.
Despite the fact that these correlations are very low, their effects on the
results of parameter inference need to be evaluated quantitatively.

6.4 Bayesian inference of overlapping signals

In this Section, we support the results we have derived using the Fisher
information matrix formalism (Sec. 6.3) with a full Bayesian inference
procedure. With this parameter estimation (PE) process, we are able to
fully explore the posterior distribution of the parameters that generated
the signals. This is important, because it allows us to confirm the presence
(expected from the Fisher study) of distinct maxima in the posterior, one for
each signal coalescing within the time chunk considered. Moreover, thanks
to this numerical approach, we can explore more carefully the region where
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biases are expected assessing their significance and gauging the conditions
for which they seem to happen.

Within the Bayesian framework, given a set of parameters λ describing
a compact binary coalescence (CBC) waveform h(λ, t), we can write the
posterior distribution for λ as:

P (λ |x, h) = π(λ)L(x |λ, h)
Z(x)

, (6.17)

where x is the detector output. This posterior can be explored by using a
sampling algorithm (e.g., MCMC, nested sampling). As in Sec. 6.3, assuming
that the data x contains two overlapping signals sA (signal A) and sB (signal
B), then it can be written as:

x = n+ sA + sB , (6.18)

where n is the noise of the interferometer. Note that, in principle, to perform
a Bayesian analysis of two or more overlapping signals we should broaden the
parameter space, e.g., θ = {λA, λB}, in order to account for the presence of
multiple overlapping signals. However, since running a sampling algorithm
requires significant amount of computational resources, in most cases this is
not required. In fact, as argued in Sec. 6.3, if the signals’ coalescence times
are wide apart we do not expect the presence of one signals to influence
posterior distribution of parameters of the other. For this reason, in what
follows we consider the parameter space of a single CBC signal. We will
return to this point later on when discussing possible biases arising because
of this choice.

6.4.1 Choice of signal families
As already mentioned, in this analysis we focus only on BBH signals. This
choice is motivated by the fact that: (a) covariances among overlapping
BNS signals are smaller than the BBH ones (Sec. 6.3), and, therefore, biases
in the BNS case are expected to be less important; (b) BNS signals last
for several hours in 3G detectors and tens of minutes in Advanced LIGO
and Virgo, implying that Bayesian inference takes a formidable amount of
computational resources (although new algorithms are already showing the
promise of greatly reducing the computational requirement (Zackay et al.
2018; Cornish 2010; Finstad & Brown 2020)).

Furthermore, we also restrict our analysis using Advanced LIGO sensi-
tivity. As argued before, LIGO is not affected by the problem of overlapping
signals, because the rate and the duration of the signals are far too small to
create any overlap. Nonetheless, in this work we are not really interested
in reproducing a realistic set of overlapping data; instead, we want to focus
on the parameter estimation process. To do so, there is no substantial
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Figure 6.3: Signals in the time domain, for four different values of the time shift τ .
signal A, signal B, and the resulting overlapping signal are plotted. The waveforms are
generated using the approximant IMRPhenomPv2. The two luminosity distances are
fixed to d

(A)
L = 1Gpc, d

(B)
L = 1Gpc. Note that, if we neglect the effects of cosmological

redshift, then changing these distances just results on a scaling of the signals’ amplitude.

advantage in using 3G mock data: we expect that our conclusions will be
valid even if they are based on the analysis of Advanced LIGO mock data.

The parameters of the overlapping BBH signals used in Bayesian in-
ferences is the same as what we used in Sec. 6.3: nonspinning BBHs with
masses as given in Eq. (6.12) and coalescence times and phases as given
in Eq. (6.15). We ignore the position of the sources in the sky and their
orientation relative to the detectors (setting all angles to zero). We do,
however, include in our analysis the luminosity distance dL of the source.
The parameter space we use in our analysis is thus:

λ = {m1,m2, ϕC , tC , dL}

Note that our choice of sky position is the worst case scenario, because we are
considering the two sources to have the same exact location in the celestial
sphere. In reality, if overlapping signals arrive from different directions in the
sky, they will have different phase coherence amongst a network of detectors
and thus easier to discriminate. Thus, since our choice of sky position is the
worst case scenario, the parameter estimation problem can only be better
when sky position and orientation are taken into account.

To explore different configurations of the parameters, we vary the time
shift τ - defined in Eq. (6.15) as the epoch coalescence of signal B - in the
range τ ∈ {−2.0 s, 0.5 s}. Along with the time shift, we also vary the two
luminosity distances of the sources d

(A)
L and d

(B)
L , and their phases ϕ

(A)
C

and ϕ
(B)
C . In the first set of runs, we fix ϕ

(A)
C = ϕ

(B)
C = 0 and vary the two
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distances. We keep the distance of one of the sources fixed to 1Gpc and set
the other at either 500 Mpc, 1 Gpc, or 2 Gpc. In the second set of runs,
we vary the phase of signal B (ϕ(B)

C ∈ {0, π/3, 2π/3}), keeping ϕ
(A)
C fixed to

zero and the two luminosity distances to d
(A)
L = d

(B)
L = 1Gpc.

The resulting variations in the parameter sets are:

τ = {−2.0 s,−1.5 s,−1.0 s,−0.5 s, 0.0 s, 0.5 s} (6.19)

d
(B)
L , d

(A)
L = {500Mpc, 1Gpc, 2Gpc} (6.20)

ϕ
(B)
C = {0, π/3, 2π/3} (6.21)

With these choices, there are 48 different possible configurations, each of
which is analyzed for Bayesian parameter inference.

In the inference problem we use a signal model that accurately represents
the BBH waveforms. As in Sec. 6.3, we use the IMRPhenomPv2 approxi-
mant to create waveforms in the frequency domain, fixing the low frequency
cutoff to be 20Hz, which is consistent with the minimum frequency used
in the LIGO/Virgo PE. In Fig. 6.3, we plot the two waveforms in the time
domain, for the different configurations of the time shift τ . The resulting
overlapping waveform is plotted as well. In Table 6.1, we compute the
expected matched filter SNR for the different possible configurations of the
parameters, focusing on the distances, since neither the coalescence time nor
the phase affect the SNR value.

Table 6.1: SNRs for the two signals we have chosen to focus on in our analysis (considering
the two LIGO interferometers network), created with different values of the luminosity
distances dL. Note that applying a time shift to the signals do not change the value of
the SNR.

SNR dL = 0.5Gpc dL = 1Gpc dL = 2Gpc
signal A 54.2 27.1 13.5
signal B 82.8 41.5 20.7

6.4.2 Setting up Bayesian inference runs

Having created the mock data with overlapping signals we next focus on
parameter inference. Our analysis uses two LIGO interferometers, but our
conclusions are not significantly affected by this choice: considering a different
detector network would simply result in different SNRs for the signals as we
are not focusing on the sky position of the source. Although this could in
principle change the heights of the peaks in the posterior distribution, we
do expect it to influence their relative ratios significantly, and hence the PE
process we consider is expected to hold for any network.
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The data set consists of 4 s of mock data from the two LIGO interfer-
ometers. 4 s is large enough to span the full length of the longer signal. We
do not add any noise to the data – i.e., we set n = 0 in Eq. (6.18) –, as
we want to highlight the presence of biases created by the overlap between
the signals, and these biases could be covered by the statistical uncertainty
created by the presence of noise.

We use the bilby package to perform Bayesian parameter inference of
the two signals, running the dynesty sampler (Speagle 2020). dynesty is a
dynamic, nested sampling algorithm (Skilling 2006; Higson et al. 2018), which
is well suited for our purposes because it quickly achieves convergence, but
at the same time it is able to handle non-trivial, multi-modal distributions
better than MCMC-based algorithms (Speagle 2020). We allow the sampler
to explore the likelihood surface with respect to all the parameters except
ϕC , over which the likelihood is analytically marginalized, and dL, over
which the likelihood is numerically maximized. Marginalization over ϕC and
dL correctly accounts for the effects of the parameters ϕC and dL on the
resulting 3-d posterior (Veitch et al. 2015; Singer & Price 2016).

6.4.3 Bayesian priors

At the beginning of the analysis, we have to set the priors on the various
parameters. We consider a uniform prior on the phase ϕC , with periodic
boundary conditions, a power-law prior on the luminosity distance, p(dL) ∝
dαL with α = 2, and a uniform prior on the two masses m1 and m2 over
the range [10M⊙, 50M⊙]. As for the coalescence time, selecting the best
possible prior turns out to be a game-changing strategy. In fact, running a
simulation with a wide prior on the time tC that spans the merger times of
the two overlapping signals leads to significant problems: while one of the
two signals is always recovered correctly, the other is completely ignored by
the sampling algorithm. A wide prior on tC , therefore, would only allow us
to infer the parameters of the louder signal, without access to the weaker
one.

However, as already pointed out, previous work suggests that signals
can always be detected, even if they are overlapping, and their merger time
correctly identified (Regimbau et al. 2012; Meacher et al. 2016). Although
these studies dealt only with BNS signals, we do expect that similar con-
clusions hold also in the case of BBH. This is because (as we show in Sec.
6.4.4, Fig. 6.5) biases on the values of tc recovered from our PE analysis are
minor (at the ms level) and the presence of the overlap does not seem to
hamper the time recovery of the signals. However, future efforts will need to
back up this assumption and confirm that BBH overlapping signals can be
correctly recovered in time domain. From current pipelines, we know that
the detection of a signal allows us to know its epoch of coalescence with very
low uncertainty (at the order of 10ms). We then assume to know the time
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of coalescence of the two overlapping signals with a good degree of accuracy,
and constrain our parameter space choosing a prior on the coalescence time
which is centered on the (fiducial) true value of the time tC , with a width
of 100ms. In this way, for each of the signals we can isolate the region of
the parameter space where we expect to find the true values of the injection
parameters. This choice allows us to recover the correct parameters for both
signal A and signal B.

Therefore, for each of the 48 injections, we run the Bayesian inference
procedure two times: the first one (we refer to it as run A) aims to recover
the true values of the parameters of signal A; to this end, since t

(A)
C = 0.0 s,

we set the prior on the coalescence time centered around zero. Run B, on
the other hand, focuses on the signal B peak in the parameter space; thus,
the prior is chosen to be centered in tC = τ .

6.4.4 Results

In this section, we study the posterior distributions obtained for the different
runs described in Sec. 6.4.1 and we compare them with the same results
obtained when only a single signal is present in the data. This comparison
allows us to assess the presence of biases created by the overlap of the signals.
In this analysis, we focus on the results for the two masses m1 and m2

(which we can rewrite also as chirp mass M and mass ratio q), and for the
coalescence time tC .

We start by plotting four different corner plots for specific values of the
parameters (Fig. 6.4). In the top row, we show the posterior distributions
for run A (left panel) and run B (right) for the following parameters:
d
(A)
L = d

(B)
L = 1Gpc; ϕ

(A)
C = ϕ

(B)
C = 0; τ = −1.0s. The blue contours

represent the results obtained when the two signals are overlapping, while
the green ones are the results for a run where only signal A (B) is present
in the data. The agreement between these two posteriors (upper panels) is
remarkably good, and biases, if any, are negligible. The recovered values
of the parameters in the case of run A (run B) are perfectly compatible
with the injected ones λ(A) = {m1 = 21M⊙,m2 = 15M⊙, tC = 0.0 s}
(λ(A) = {m1 = 33M⊙,m2 = 29M⊙, tC = τ}). This proves that using the
current parameter inference methods to deal with overlapping signals is
possible.

These results also imply that the posterior distribution for a run with
wider priors would be (at least) bi-modal, as the two peaks identified by
the two runs (corresponding to the true values of the parameters λA and
λB) with narrower priors would be preserved when the priors are extended
coherently to a larger parameter space. However, as already mentioned in
Sec. 6.4.3, when we try to extend the prior on the time shift τ , we find that
the sampling algorithm can identify only one peak in the posterior. This
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Figure 6.4: Corner plots for two runs A (left side) and two runs B (right side);
all the overlapping signals are created with the following choice of the parameters:
d
(A)
L = d

(B)
L = 1Gpc, ϕ(A)

C = ϕ
(B)
C = 0. The top row shows the case τ = −1.0 s, while the

bottom one shows τ = 0.0 s. The three parameters considered here are the two masses m1

and m2, and the coalescence time tC . The true values of these parameters are highlighted
with red dashed lines in the corner plots. The blue histograms refer to the actual runs,
while the green ones are shown for comparison and they are obtained by injecting only
one signal in the data. The dashed vertical lines represent the 1σ error on the parameters.
On top of each panel, the median values (and the 1σ errors) of the parameters are shown.
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behavior is due to the fact that the heights of the two peaks differ by many
orders of magnitude, since the peak of logL scales as the SNR squared, and
the SNRs for signal A and signal B are SNR(A) = 27.1 and SNR(B) = 41.5,
respectively (see also Table 6.1). Clearly, the sampling algorithm is not
able to sample such a subdominant peak in the posterior. Thus, setting the
appropriate prior on the coalescence time tC , as determined by the search
pipeline, is critical in determining the parameters of both of the signals.

We note that a different approach could consist of imposing narrower
priors on the two masses m1 and m2 (or, equivalently, on the chirp mass
M) in order to isolate one peak and exclude the other. This is also a viable
alternative, provided that the information on the masses recovered from the
detection pipeline is accurate enough to give effective constraints for the
priors. Ultimately, combining the information on the coalescence time with
the one on the masses may be the best strategy in order to isolate the two
peaks even when the two signals are coalescing very close to each other. It
is, however, important to ascertain the extent to which such constraints can
imposed by carrying out the detection problem on a large sample of injections
and the accuracy with which detection pipelines are able to measure chirp
mass.

In fact, our approach fails when the two signals are overlapping within
100ms. In the bottom row of Figure 6.4, we show exactly this case: we
take the same distances and phases as described above, but we impose a
zero time shift between the two signals. Therefore, in this case the two runs
run A and run B yield the exact same results (as both the priors and the
likelihood are the same). As expected, only the louder signal (i.e., signal B)
is correctly recovered, with the posterior distribution resembling very closely
(although not perfectly matching) the one obtained in the single signal case.
We conclude that, once again, the bias is negligible for run B. As for signal
A, the peak corresponding to λ(A) is completely neglected by our inference
pipeline, and thus there is no way we can reconstruct the parameters of
signal A correctly. This is an intrinsic limitation of our method: different
inference prescriptions need to be devised in order to deal with the case of
closely coalescing signals.

6.4.4.1 Dependence on the luminosity distance

We now analyze the results of the other runs, where we changed the time
shift, luminosity distance, and phase of coalescence of the two signals (as
described in Sec. 6.4.1). The top row of Fig. 6.5 shows the posterior
distributions for the chirp mass M, the mass ratio q, and the coalescence
time tC , for different combinations of luminosity distances d

(A)
L , d

(B)
L and

coalescence times tC ; the phase at coalescence of the two signals are set to
ϕ
(A)
C = ϕ

(B)
C = 0.
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Figure 6.5: Summary of the results for the set of 48 runs, each one with a different
configuration of the parameters τ , d(A)

L and d
(B)
L (top panels), ϕ(A)

C and ϕ
(B)
C (bottom);

for details about the parameters choice, see Sec. 6.4.1. A runs are shown on the left
panels, and B runs are on the right panel. Posterior distributions for the chirp mass M,
mass ratio q, and coalescence time tC − τ are shown in the form of violin plots. Along
with the results for overlapping signals, posteriors for the “single signal" case (i.e., only
one signal is present in the data) are shown in the rightmost side of each panel in grey.
The true values of the masses and times for signal A and signal B are highlighted with
dashed horizontal lines. Note that the distributions in the plots referring to the same
time shift τ are slightly shifted with respect to their exact value of τ so that they do not
overlap with each other. The τ = 0.0 s runs are highlighted with a dark grey shadowed
band; other regions where non-negligible biases are present (see discussion in Sec. 6.4.4)
are highlighted in the same way with a lighter shade of grey. Note that in the τ = 0.0 s
case, part of the recovered values for the chirp masses are out of the range and thus not
shown.
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Posteriors are shown in the form of violin plots, and the results for a single
injection are shown in light grey color for reference on the right side of each
panel. In order to make the plots more accessible, we identify three different
regions, highlighted by the shaded grey boxes. In the first region (no shade),
biases are negligible: posteriors for run A (run B) closely resemble the ones
obtained by injecting only one signal with the same luminosity distance d(A)

(d(B)). In this region, the presence of overlapping signal does not create any
biases to parameter inference, and both signals can be recovered correctly.
As expected from our Fisher analysis (Sec. 6.3), this happens when the two
signals are not coalescing too close to each other. In particular, we find that
parameter inference is robust in the regions tC ≲ −0.75 s and tC ≳ 0.25 s.
Note that the asymmetry of these boundary values are expected, as the
correlation between the two signals is not symmetric in τ (Fig. 6.2).

When tC = −0.5 s (light shaded region), we find that small biases (at
the 1− 2σ level) arise: this implies that the presence of the overlap causes a
shift of the posterior peak in the parameter space, preventing the correct
recovery of the true parameters λ(A) and λ(B) for the two signals. We note,
however that these relatively small biases may not be a problem in reality,
because the presence of the noise may create even larger biases, making
these effects totally irrelevant. This depends, of course, on the noise level in
the interferometer.

It is also interesting to note that intensity of the biases vary with the
relative strengths of the two signals (which are determined by the luminosity
distances). In particular, biases for run A (run B) are smaller whenever
signal A (signal B) is louder: this can be observed in the left (right) panel of
Fig. 6.5, top row, as the posteriors colored in yellow and purple (red, blue,
and green) are closer to the ones obtained in the case of a single signal.

Finally, in the last region (darker shade, τ = 0.0 s), two relevant effects
take place at the same time. First, as already discussed, only the parameters
of the louder signal can be recovered correctly. Since the results for run A
and run B are perfectly identical (because they have identical settings), this
implies that chirp masses are close to the one of signal A for the yellow and
purple cases (as seen in the left panel), and close to the one of signal B in
the red, blue, and green cases (as seen in the right one). On top of that, we
note that even the louder signal seems to suffer from significant bias in the
τ = 0.0 s case. This is again expected from our Fisher analysis (Fig. 6.2), as
the correlations between the signals have a peak at zero time shift.

6.4.4.2 Dependence on the phase

In the bottom row of Fig. 6.5, we show the results for the runs with
varying ϕC . As described in Sec. 6.4.1, we fix the luminosity distances to
d
(A)
L = d

(B)
L = 1Gpc and the phase at coalescence of signal A to ϕ

(A)
C = 0,
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and vary ϕ
(B)
C in the set ϕ

(B)
C = {0, π/3, 2π/3}. Results are presented in the

same form as the top row of Fig. 6.5 (Sec. 6.4.4.1).
We find that the phase at coalescence plays an important role in deter-

mining whether inference suffers from significant biases or not. In particular,
biases are greater for the two configurations ϕ

(B)
C = π/3 and ϕ

(B)
C = 2π/3.

On top of that, they extend in a larger time span: the region where 2σ
biases are present extend out to τ = −1.0 s; for τ = −1.5 s and τ = −2.0 s,
they progressively become less severe until they become hardly detectable.
Again, we find that biases arise only for negative values of the time shift τ ,
in accordance with the asymmetric correlation amplitudes found in Fig. 6.2.

Overall, our Bayesian inference analysis confirms the results we found in
Sec. 6.3 for BBH in Advanced LIGO detectors (Fig. 6.2, upper left panel).
If the two BBH signals do not coalesce too close in the time domain (i.e.,
their coalescence times are separated by more than ≈ 1.5 s), then inference
results are robust: two distinct peaks are present in the posterior, and they
can be well-sampled if a suitable prior on the coalescence time is chosen.
This is an interesting conclusion, as the vast majority of BBH signals are
expected to belong to this category: from Fig. 6.1, we can estimate that
only 0.01% of the signals are expected to coalesce within 1 s.

When the BBH signals do coalesce very close to each other (|τ | ≲ 1 s),
though, biases at the 2− 3σ level may arise, as the correlation between the
two signals increases. These biases become even more dramatic as the time
shift approaches to zero.

6.5 Discussion and Outlook

We presented a Bayesian inference analysis in the case of overlapping grav-
itational waves signals. Our goal was to assess the capabilities of current
Bayesian inference infrastructure to handle the non-trivial case of one or
multiple overlaps taking place within a data segment. This problem is
destined to play a major role in 3G detector planning, since the dramatic
increase in sensitivity will result in a great number of signals coalescing
within a few seconds.

We started from a study based on the Fisher matrix formalism, in which
we analyzed the correlation between two overlapping signals. In this way, we
were able to determine whether in some regions of the parameter space the
overlapping signals were strongly correlated with each other, thus preventing
a distinct inference procedure for one signal at a time. We found that
BNS signals are less strongly correlated, and that their inference will likely
be a problem only for coalescence times really close to each other (at the
10− 100ms level). BBHs, instead, suffer from the presence of a correlation
starting from a much greater time shift τ (i.e., the difference between the
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two coalescence times). In particular, in the Advanced LIGO BBH scenario,
correlations are significant up until |τ | ≈ 2 s.

We investigated these issues further with a full Bayesian analysis of the
two overlapping BBHs. The analysis used the dynesty sampling algorithm
to describe the posterior distribution for the parameters considered. We
showed that, in order to sample a single peak without worrying for the
presence of the other one, a possible solution is to impose a narrow prior
around the fiducial value (provided by the signal detection pipeline) of the
coalescence time of the signal of interest. This procedure allows to isolate
one single peak at a time, and works well in the configurations we explored.
However, as the time shift approaches zero, isolating one single peak at a
time is not possible, and within our framework we can recover only the
parameters for the louder signal (i.e., the highest peak in the posterior). In
our approach, we are implicitly assuming that signal detection will return
the coalescence times of the two signals with an uncertainty lower then
O(10 − 100) ms. This is a reasonable assumption, which, however, needs
to be tested by a dedicated analysis dealing with BBH signals’ recovery in
the context of 3G detectors (see also (Regimbau et al. 2012; Meacher et al.
2016) for the BNS case).

We also studied the emergence of biases in the overlapping signals sce-
narios considered, by varying some key parameters of the two signals such as
their coalescence time, coalescence phase, and luminosity distance. We found
that significant biases (at the 2− 3σ level) arise in the range −1 s < τ < 0 s,
and that these biases are caused primarily by the relative phase of the
two signals and only marginally by the relative difference of the SNRs. As
suggested by our Fisher analysis (Fig. 6.2, upper left panel), these biases
tend to become minor for τ < −1.5 s and τ > 0 s.

Dealing with these biases needs a different approach that we did not
attempt in this work. One possible solution is to broaden the parameter
space searching for multiple signals in the same Bayesian inference run.
This is the approach that previous works have shown to be feasible in the
context of LISA data analysis (e.g., see (Cornish & Crowder 2005; Littenberg
et al. 2020)). Such approach could significantly increase the computational
costs of the Bayesian algorithms; however, this is compensated by the fact
that - as suggested here - novel algorithms may be needed only for closely-
coalescing signals, that are a very small minority of the total number of
signals expected in 3G detectors. Using current estimates for the BBH rates
in future detectors, we find that signals coalescing within 1 s are expected to
be at most hundreds per year.

Another possible solution to the biases would be to create an iterative
procedure where one hierarchically determines the parameters of louder
signals (as inferred from search algorithms) and subtracts them from the
data before analysing weaker ones (Cutler & Harms 2006; Sachdev et al.
2020). Currently, it is unclear which approach will perform better in the
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context of 3G detectors, and further work is needed to gauge the potential
of both approaches.

In our exploratory study we did not deal with the consequences of varying
the mass parameters of the two signals, nor did we include in our analysis
other source parameters such as companion spins, the position of the source
in the sky and the orientation of the binary relative to the detector frame.
The SNR range explored in our study (20-100; see also Tab. 6.1) is also
limited compared to the range expected to be covered by 3G detectors
(Punturo et al. 2010; Reitze et al. 2019b; Borhanian & Sathyaprakash 2022).
In particular, when overlapping signals arrive from different positions in the
sky then they would, in general, have different coalescence times in different
detectors, which might help to isolate one of the peaks better (Christian et al.
2018). The inclusion of spins, on the other hand, introduces new physics in
the formation of these overlapping signals such as spin precession, and may
introduce another layer of complexity in the parameter inference problem
(Fairhurst et al. 2020). These and related problems will be explored in a
future study.
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