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2 Revisiting the extreme
clustering of z ≈ 4
quasars with large
volume cosmological
simulations

Abstract

Observations from wide-field quasar surveys indicate that the quasar auto-
correlation length increases dramatically from z ≈ 2.5 to z ≈ 4. This large
clustering amplitude at z ≈ 4 has proven hard to interpret theoretically, as
it implies that quasars are hosted by the most massive dark matter halos
residing in the most extreme environments at that redshift. In this work, we
present a model that simultaneously reproduces both the observed quasar
auto-correlation and quasar luminosity functions. The spatial distribution
of halos and their relative abundance are obtained via a novel method that
computes the halo mass and halo cross-correlation functions by combin-
ing multiple large-volume dark-matter-only cosmological simulations with
different box sizes and resolutions. Armed with these halo properties, our
model exploits the conditional luminosity function framework to describe
the stochastic relationship between quasar luminosity, L, and halo mass, M .
Assuming a simple power-law relation L ∝ Mγ with log-normal scatter, σ,
we are able to reproduce observations at z ∼ 4 and find that: (a) the quasar
luminosity-halo mass relation is highly non-linear (γ ≳ 2), with very little
scatter (σ ≲ 0.3 dex); (b) luminous quasars (log10 L/erg s−1 ≳ 46.5 − 47)
are hosted by halos with mass log10 M/M⊙ ≳ 13− 13.5; and (c) the implied
duty cycle for quasar activity approaches unity (εDC ≈ 10− 60%). We also
consider observations at z ≈ 2.5 and find that the quasar luminosity-halo
mass relation evolves significantly with cosmic time, implying a rapid change
in quasar host halo masses and duty cycles, which in turn suggests concurrent
evolution in black hole scaling relations and/or accretion efficiency.

Published in: EP, Joseph F Hennawi, Joop Schaye, Matthieu Schaller, Revisiting
the extreme clustering of z ≈ 4 quasars with large volume cosmological simulations,
Monthly Notices of the Royal Astronomical Society, Volume 528, Issue 3, March
2024, Pages 4466–4489, doi.org/10.1093/mnras/stae329
Reprinted here in its entirety.
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38 2.1. INTRODUCTION

2.1 Introduction

Quasars are extreme manifestations of the supermassive black holes (SMBHs)
that are thought to reside at the center of almost every massive galaxy (e.g.,
Salpeter 1964; Zel’dovich & Novikov 1967; Lynden-Bell 1969; Magorrian et al.
1998; Ferrarese & Merritt 2000; Kormendy & Ho 2013). Investigating the
characteristics of these luminous objects has been an active area of research
for more than half a century (Schmidt 1963). In the last few years, it has
become possible to trace their evolution up to redshift z ≈ 7 (Yang et al.
2020; Bañados et al. 2018; Wang et al. 2021; see also Fan et al. 2023 for a
review). Understanding the properties of quasars such as their abundance,
luminosity, and spatial distribution, as well as their evolution with redshift,
is a key step in order to study the interplay between supermassive black
holes, their host galaxies, and the intergalactic medium (IGM) over cosmic
time.

In particular, measuring the clustering of quasars is crucial for gaining
information on the large-scale environment in which these objects reside.
Like their host halos, quasars are biased tracers of the underlying distri-
bution of dark matter (e.g., Kaiser 1984; Bardeen et al. 1986). For this
reason, obtaining an estimate for the linear bias factor of quasars (e.g., by
measuring the quasar auto-correlation function) makes it possible to infer
the characteristic masses of the halos hosting active quasars. In turn, these
masses can shed light on the large-scale environment that quasars inhabit,
and – by comparing the number density of quasars with that of the hosting
halos – on the fraction of time SMBHs are shining as active quasars (known
as the quasar duty cycle; see e.g. Martini & Weinberg 2001; Haiman & Hui
2001; Martini 2004).

Thanks to large-sky surveys such as the Sloan Digital Sky Survey (SDSS,
York et al. 2000) and the 2dF QSO redshift survey (2QZ, Croom et al. 2004),
measurements of large-scale quasar clustering up to z ≈ 4 have been available
for more than a decade. However, a satisfactory theoretical interpretation
of these data at all redshifts is still lacking. This is mainly due to the
surprising evidence that the bias factor of quasars is a steep function of
redshift (Porciani et al. 2004; Croom et al. 2005; Porciani & Norberg 2006;
Shen et al. 2007; Ross et al. 2009; Eftekharzadeh et al. 2015; McGreer et al.
2016; Yue et al. 2021; Arita et al. 2023). While in the local universe quasars
trace halos in a way that is similar to optically selected galaxies, with a
bias factor close to unity (Croom et al. 2005; Ross et al. 2009), at z ≈ 4
they are the most highly clustered objects known at that epoch, with a bias
factor as high as b ≈ 15 (or, equivalently, a quasar auto-correlation length of
r0 ≈ 24 cMpch−1; Shen et al. 2007, hereafter S07). Such a large correlation
length implies that quasars are rare objects, arising only in the most massive
halos and shining for a large fraction of the Hubble time.
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Several theoretical studies have tried to reproduce the results of S07 at
z ≈ 4. White et al. (2008) developed a simple model for quasar demographics
that builds on a linear relation between quasar luminosity and host halos
mass. They showed that to match the bias measured in S07, the scatter
in this relation must be very small (≲ 0.3 dex). This conclusion poses two
fundamental problems. Firstly, such a low scatter in the quasar luminosity-
halo mass relation would be very surprising. In fact, the conventional wisdom
on the coevolution of quasars and host galaxies/halos implies that there are
multiple sources of scatter contributing to determining the luminosity of a
quasar at fixed halo mass (the scatter in the relations between black hole
mass and quasar luminosity, black hole mass and bulge mass and between
bulge mass and halo mass). A second concern is that low scatter in the
luminosity of quasars seems to be in contrast with measurements of the
relative abundance of quasars at different luminosities (the so-called quasar
luminosity function, QLF). It has long been established that the bright end of
the QLF is well-fitted by a power-law (e.g., Boyle et al. 2000; Richards et al.
2006), which stands in contrast with the exponentially-declining halo mass
and galaxy luminosity functions (Press & Schechter 1974; Schechter 1976).
The easiest way to connect these different shapes is via significant scatter
in the luminosity of quasars at fixed halo/galaxy mass. Indeed, a number
of demographic models have been developed to interpret the abundance of
bright quasars and link them to their host halos (e.g., Croton 2009; Conroy
& White 2013; Fanidakis et al. 2013; Veale et al. 2014; Ren et al. 2020; Ren
& Trenti 2021; Zhang et al. 2023b). All of these studies (sometimes only
implicitly) explain the relatively large number of very luminous quasars by
demanding a broad range of possible quasar luminosities at a given host
mass so that the more abundant population of lower-mass halos can also
host a significant (or even dominant; e.g., Zhang et al. 2023a) fraction of the
very bright quasars. As pointed out by some of these same studies, however,
the masses of the quasar hosts implied by this picture are in plain contrast
with the high masses necessary to account for the S07 bias measurement.

In summary, the very strong clustering measured by S07 implies a very
small scatter in the luminosity of quasars at a given halo mass, and this is
in tension with the large scatter required by physical models of the quasar
luminosity function. A first attempt at solving the tension was made by
Shankar et al. (2010b), using a model that connects quasar luminosities and
black hole masses while accounting for the growth of black holes during
cosmic time in a self-consistent way. The authors of this study tried to match
simultaneously the value of the bias inferred by S07 and several measurements
of the QLF at z = 3− 6 (Shankar & Mathur 2007; Shankar 2009). Assuming
a non-linear relation between halo mass and quasar luminosity, they find that
a low value of the scatter in this relation can reproduce the measurements
of the bright end of the QLF. Even when assuming that all massive halos
contribute to the clustering of quasars (i.e., a quasar duty cycle for massive
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systems equal to unity), however, their prediction for the z = 4 quasar
clustering is ≈ 2 standard deviations below the value measured by S07.
Wyithe & Loeb (2009) also find that the S07 bias measurement cannot
be reproduced when assuming that the bias of dark matter halos is solely
a function of their mass, and suggest that stronger clustering could be
obtained if quasar activity was sparked by recent mergers (the so-called
“assembly/merger bias”, see e.g., Furlanetto & Kamionkowski 2006; Wetzel
et al. 2009; see also Wechsler & Tinker 2018). However, Bonoli et al. (2010)
(see also Cen & Safarzadeh 2015) used the Millennium Simulation (Springel
et al. 2005) to study whether recently merged massive halos were clustered
more strongly than other halos of the same mass, but found no evidence for
that.

Numerous other studies have compared their predictions for the quasar
clustering to the S07 measurements, using a variety of different approaches
such as empirical models of quasar-galaxy coevolution (Kauffmann & Haehnelt
2002; Hopkins et al. 2007b; Croton 2009; Shankar et al. 2010a; Conroy &
White 2013; Aversa et al. 2015; Shankar et al. 2020), semi-analytic models of
galaxy formation (Bonoli et al. 2009; Fanidakis et al. 2013; Oogi et al. 2016)
and cosmological hydrodynamical simulations (DeGraf et al. 2012; DeGraf
& Sijacki 2017). While these studies are generally successful in reproducing
the quasar auto-correlation function (or, equivalently, the quasar linear bias)
at lower redshift (z ≲ 3), none of these studies have been shown to be
compatible with the strong clustering observed by S07.

In conclusion, despite the efforts that have been devoted to interpret-
ing the auto-correlation function of quasars at high redshift, a number of
questions remain open: (a) is the S07 measurement compatible with the
standard cosmological model in which clustering is dictated by halo mass or
is something akin to assembly bias playing an important role? (b) What is
the scatter in the quasar luminosity-halo mass relation? Can small (large)
scatter be reconciled with the observed quasar luminosity function (auto-
correlation function)? (c) What are the physical properties that can be
inferred from jointly modeling the QLF and quasar clustering? Can the
characteristic mass of host halos and the quasar duty cycle be determined
precisely?

One of the reasons why we have not been able to give definitive answers
to these questions in more than a decade, is that modeling the clustering of
high redshift quasars is difficult. The works of White et al. (2008), Shankar
et al. (2010b), and Wyithe & Loeb (2009) clearly show that the results of
their theoretical models are strongly dependent on the assumed functional
form for the linear bias-halo mass relation. This is because the different
analytical predictions for this relation based on linear theory (e.g. Mo &
White 1996; Jing 1998; Sheth et al. 2001) diverge significantly at masses that
correspond to peaks in the density perturbations that are already very non-
linear (Barkana & Loeb 2001). For the case considered here, a bias of b ≈ 15,
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i.e., the value measured by S07 for z ≈ 4 quasars, corresponds to a value
of the peak height ν = δc/σ(M, z) – with δc ≈ 1.69 and σ2(M, z) being the
variance of the smoothed linear density field – equal to ν ≈ 4− 6, depending
on the specific linear bias-halo mass relation and cosmology considered. Such
values are rather extreme, implying that the systems contributing to the
clustering of z = 4 quasars live in very rare and massive environments that
depart very early from the behavior expected for a linear density field.

Improving the accuracy of the linear bias-halo mass relation via empirical
fits to cosmological N-body simulations (e.g., Shankar et al. 2010b; Tinker
et al. 2010; Comparat et al. 2017) does not provide a complete solution to
the problem. In fact, the key point here is that the use of the large-scale
linear bias as a proxy for the clustering of quasars assumes that the measured
data are on quasi-linear scales, where the distribution of quasars is related
to the underlying matter distribution by a scale-independent factor. This
assumption breaks down for the small scales (as low as ≈ 5 cMpc) and for
the highly non-linear environments probed by the S07 data. For the same
reason, an approach based on the (analytical) halo model framework (Cooray
& Sheth 2002) would also be problematic, as the non-linear bias plays a
relevant role in the transition region between the one-halo and the two-halo
contributions (e.g., Mead & Verde 2021; Nishimichi et al. 2021).

In this paper, we aim to directly reproduce the observed z = 4 quasar
auto-correlation function (S07) in its entirety by making use of large-volume
cosmological simulations. This is a challenging numerical problem: in order
to model the auto-correlation function properly, we need to obtain a large
statistical sample of halos with masses up to M ≈ 1013 − 1014 M⊙ (which
correspond, at z = 4, to the peak heights mentioned above, i.e., ν ≈ 4− 6).
Given the fact that the mass function declines exponentially at large masses,
these halos are extremely rare (1− 10 cGpc−3), and therefore a very large
simulated volume of more than ≈ 100 cGpc3 is needed to obtain a sample
of at least ≈ 102 − 103 massive halos, that can be used to properly model
the quasar auto-correlation function even at the highest masses. This is
in agreement with the fact that the comoving volume probed by the SDSS
observations used by S07 is around ≈ 50 cGpc3. A volume larger than the
observational one is necessary to build a model for the quasar auto-correlation
function that has higher signal-to-noise ratio than the data. At the same
time, however, we also want to resolve halos down to M ≈ 1011 − 1012 M⊙
in order to explore the different possible distributions of quasars in halos
that can give rise to the observed clustering. To probe these very different
halo masses, we make use of a new semi-analytical framework (Sec. 2.2.2.2
and Appendix 2.B) that allows us to employ multiple simulated boxes to
widen the range of masses that can be properly modeled by our simulations.

We employ the dark-matter-only versions of the FLAMINGO suite of
cosmological simulations (Schaye et al. 2023; Kugel et al. 2023) and focus on
two specific box sizes: L = 2.8 cGpc and L = 5.6 cGpc. On top of reproduc-
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ing the clustering measurements at z = 4, we also consider the constraints
coming from the relative abundance of quasars at the same redshift. In other
words, we aim to match the observed quasar auto-correlation and luminosity
functions simultaneously. We make use of the spatial and mass distribution
of halos in the simulated volumes to build a simple quasar population model
that can be directly compared with observations. In this way, we are able to
investigate the predictive power of quasar observables in a ΛCDM framework
and obtain physical constraints on the halo mass distribution of quasar hosts
and the quasar duty cycle. We also use our model to analyze the clustering
and luminosity function data at a lower redshift (z ≈ 2 − 3), where the
tension between theoretical models and data is not as strong (e.g., Croton
2009; Conroy & White 2013; Aversa et al. 2015). This serves as a benchmark
of the validity of our model and allows us to discuss the evolution of the
physical properties of quasars with redshift.

The paper is structured as follows. In Sec. 2.2 we discuss the basic
assumptions of the model, outline the cosmological simulations employed
in our work, and describe how we extract the physical quantities that are
necessary to model the quasar correlation function and luminosity function
simultaneously. Sec. 2.3 gives a brief overview of the data we compare our
model with, and it provides details on the statistical methodology underlying
that comparison. Sec. 2.4 presents the main results of our analysis, while
Sec. 2.5 contains a discussion of the implications of our findings and their
connections to previous work. Conclusions are provided in Sec. 2.6.

2.2 Methods

In this Section, we describe our model for the distribution of quasars in space
and luminosity. We start by outlining the basic framework (Sec. 2.2.1); then,
we describe the FLAMINGO cosmological simulations and detail how we
extract the mass function and the cross-correlation functions of halos (Sec.
2.2.2). Figure 2.1 shows a summary of the various quantities involved in our
analysis, together with a reference to the equations where they are defined.

2.2.1 The conditional luminosity function

We adopt an empirical model that is agnostic to the physics underlying the
quasar emission/black hole accretion mechanisms. The only assumptions we
make are: (a) every halo above some mass Mmin hosts a SMBH at its center,
emitting at some luminosity L; (b) the luminosity of a SMBH depends only
on the mass of the host halo, M . Therefore, we can employ a conditional
luminosity function approach (CLF; see e.g., Yang et al. 2003; Ren et al.
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Figure 2.1: Summary of the various quantities involved in the analysis. We choose
a model for the Conditional Luminosity Function (CLF) that depends on a set of free
parameters. We then combine this with the halo mass function and the halo cross-
correlation functions taken from the FLAMINGO cosmological simulations to obtain the
two main observables of interest, the quasar luminosity function and auto-correlation
function, together with other key properties such as the quasar-host mass function, the
halo occupation distribution (HOD), and the quasar duty cycle.

2020) and write the 2-d distribution in the black hole luminosity-host halo
mass plane, n(L,M), as:

n(L,M) = CLF(L|M)nHMF(M), (2.1)

where nHMF(M) is the halo mass function.
Note that the luminosity of a SMBH, L, can be interpreted as either a

bolometric luminosity or a luminosity in a specific band of the spectrum.
The framework that we are introducing here is agnostic to this choice and
can be formulated to describe the emission coming from any region of the
spectrum. However, for clarity and consistency with previous work on the
subject (e.g., White et al. 2008; Shankar et al. 2010b; Conroy & White
2013; Zhang et al. 2023b), in this paper we choose to work with bolometric
luminosities. Henceforth, L will always refer to the bolometric luminosity,
i.e., L ≡ Lbol

1.
Within this framework, the Quasar Luminosity Function – nQLF(L) – is

simply the marginalization of n(L,M) over halo mass, M :

nQLF(L) =

∫ Mmax

Mmin

CLF(L|M)nHMF(M) dM. (2.2)

1However, note that the data considered in this paper always refer to type I, UV-bright
quasars (e.g., Padovani et al. 2017). Hence, the model presented in this work describes
only this specific population of active SMBHs.
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Therefore, assuming that the halo mass function is known, the QLF can be
easily determined once a conditional luminosity function has been adopted.
The two limits of integrations, Mmin and Mmax, represent the minimum/
maximum mass of a halo that can host a SMBH. In principle, we could
have SMBHs in any halos, and set this integration range to be as wide as
possible. However, given that the simulations employed in our analysis span
a wide but finite range of masses (Sec. 2.2.2), we adopt the following limits:
log10 Mmin/M⊙ = 11.5, and log10 Mmax/M⊙ = 14 (log10 Mmax/M⊙ = 14.5)
at redshift z = 4 (z = 2.5). These limits enclose a range in masses that is
sufficiently broad for our redshifts of interest (Sec. 2.4), so that expanding
the range would have a negligible impact on our final results.

We use a model for the CLF in which the distribution in luminosity is
log-normal at fixed mass (see also Ren et al. 2020; Ren & Trenti 2021):

CLF(L|M) dL =
fon√
2πσ

exp

(
(log10 L− log10 Lc(M))2

2σ2

)
d log10 L. (2.3)

We then assume a power-law dependence of the characteristic luminosity,
Lc, on mass:

Lc(M) = Lref

(
M

Mref

)γ

, (2.4)

or, in terms of logarithmic quantities:

log10 Lc(M) = log10 Lref + γ (log10 M − log10 Mref) , (2.5)

where Mref is simply a reference mass that is associated with the reference
luminosity Lref . We fix log10 Mref/M⊙ = 12.5. The free parameters of the
model are: σ, Lref , γ, and fon. In the following, we assume that these
parameters do not depend on the other variables such as halo mass or quasar
luminosity, and let them assume different values for the different redshifts
we consider in Sec. 2.4.

The factor fon accounts for the fact that not all black holes may be active
as quasars at any given time. Therefore, we are implicitly assuming that
the CLF is bimodal: the first mode accounts for all luminous quasars and is
log-normally distributed, whereas the second mode (not accounted for in eq.
2.3) describes the behavior of the black holes that are too dim to be probed by
any observations and is therefore completely irrelevant to our analysis. This
bimodality in the CLF has a well-defined physical meaning: black holes are
either active as luminous quasars or they are dormant, with a luminosity that
is orders of magnitudes lower than any observational limits. However, it is
not clear whether the luminosity distribution of black holes is indeed bimodal,
or rather shows a continuum between active sources and inactive/faint ones.
Observations of very faint quasars (log10 L/erg s−1 ≈ 42− 45) can shed light
on this question2. We will return to this point in Sec. 2.5.3.
2Such observations become very difficult in the distant universe, as faint quasars are often
outshined by their host galaxies.
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2.2.1.1 The quasar auto-correlation function

In our framework, the correlation function of quasars is identical to the
correlation function of the halos that host them, as quasars are temporally
subsampling the underlying halo distribution. However, we have to consider
that only quasars above some luminosity threshold Lthr are accounted
for when measuring the correlation function in a survey. Therefore, we are
effectively considering a “biased” halo mass distribution traced by the quasars
above this luminosity threshold: we will refer to it as the “Quasar-Host Mass
Function” (QHMF). This quantity can be expressed in terms of the halo
mass function and another marginalization integral of the CLF:

nQHMF(M |L > Lthr) = nHMF(M)

∫ ∞

Lthr

CLF(L|M) dL. (2.6)

The clustering of quasars can then be determined by computing the cor-
relation function of a sample of halos that are distributed according to
nQHMF(M |L > Lthr). Here, we use an approach that allows us to quickly
determine the quasar auto-correlation function for different nQHMF(M) dis-
tributions: we create different mass bins, and – selecting halos in these bins
– extract the cross-correlation functions for halos with different masses from
a cosmological simulation (see Sec. 2.2.2 for more details). Let us call these
cross-correlation terms ξh(Mj ,Mk; r), with Mj,k being the centers of the
mass bins. We can then compute the quasar auto-correlation function, ξ(r),
by simply weighting the cross-correlations terms, ξh(Mj ,Mk; r), according
to the quasar-host mass function, nQHMF:

ξ(r) =
∑
j,k

pjpkξh(Mj ,Mk; r), (2.7)

where the weights pj,k are defined as:

pi =
nQHMF(Mi|L > Lthr)∆M∫Mmax

0
nQHMF(M |L > Lthr) dM

, (2.8)

with ∆M being the width of the mass bins. We present how to derive these
equations in Appendix 2.A.

Once ξ(r) is known, other related quantities such as the projected auto-
correlation function, wp(rp), can be easily obtained by integrating along the
parallel direction π. The projected auto-correlation function is relevant since
it can be directly compared to observational data (see Sec. 2.3.1). Setting a
maximum value for the parallel distance πmax, which is chosen in accordance
with the one used for observational data, e.g. πmax = 100 cMpch−1 for the
S07 measurements, the projected auto-correlation function reads:

wp(rp) =

∫ πmax

−πmax

ξ(rp, π) dπ = 2

∫ √
r2p+π2

max

rp

rξ(r)√
r2 − r2p

dr. (2.9)
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2.2.1.2 Halo occupation distribution and duty cycle

From the CLF, we can extract other quantities that will be relevant to
our analysis. In particular, the integral of the CLF above some threshold
luminosity Lthr represents the aggregate probability for a halo of mass M
to host a quasar with a luminosity above the threshold value. Therefore, it
is equivalent to a Halo Occupation Distribution (HOD; see e.g., Berlind &
Weinberg 2002):

HOD(M) =
nQHMF(M |L > Lthr)

nHMF(M)
=

∫ ∞

Lthr

CLF(L|M) dL. (2.10)

The HOD is also closely related to the idea of a quasar duty cycle. In
fact, the duty cycle is defined as the fraction of active quasars (i.e., with a
luminosity above the threshold) divided by the fraction of halos that are able
to host these quasars. In the standard picture (e.g., Martini & Weinberg
2001; Haiman & Hui 2001) this fraction is well defined, as it is implicitly
assumed that there is a minimum halo mass M̃min above which all halos can
host quasars, and only a fraction of them is active at the present moment.
In other words, the QHMF is:

nQHMF(M) = εDCnHMF(M)Θ(log10 M − log10 M̃min), (2.11)

with εDC being the duty cycle and Θ the Heaviside step function. However,
this definition of the duty cycle is not well-posed in our approach. As
described above, we do not assume a specific functional form for the QHMF,
but rather we infer this quantity from the CLF (eq. 2.6). As a consequence,
we do not define a minimum mass M̃min for halos to host bright quasars, but
rather consider all halos and compute a probability for them to host bright
quasars given their mass, M . This implies that, in principle, even halos with
a very low mass could have a small but non-zero probability to host bright
quasars. As a result, the above definition of the quasar duty cycle would
return artificially small values. Therefore, we opt here for an alternative
definition (see also Ren & Trenti 2021): the duty cycle, εDC, is the weighted
average of the HOD above a threshold mass that is given by the median of
the QHMF, nQHMF(M |L > Lthr). In other words, if we define the median
of the QHMF as the mass Mmed satisfying the relation:

∫ Mmax

Mmed

nQHMF(M) = 0.5

∫ Mmax

Mmin

nQHMF(M), (2.12)
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then εDC can be expressed as:

εDC =

∫Mmax

Mmed
nHMF(M)HOD(M) dM∫Mmax

Mmed
nHMF(M) dM

=

=

∫Mmax

Mmed
nQHMF(M |L > Lthr) dM∫Mmax

Mmed
nHMF(M) dM

.
(2.13)

2.2.2 Dark matter only simulation setup
In the last section, we have shown how we can make use of the CLF formalism
to compute the quasar luminosity and auto-correlation functions – together
with other relevant quantities such as the QHMF and the quasar duty cycle
– using two fundamental ingredients: the mass function of halos and the
cross-correlation functions of halos with different masses (see Figure 2.1 for
a summary of this workflow). In this section, we provide details on how we
obtain these two ingredients using the Dark-Matter-Only (DMO) version of
the FLAMINGO suite of cosmological simulations.

FLAMINGO (Schaye et al. 2023; Kugel et al. 2023) is a suite of state-of-
the-art, large-volume cosmological simulations run with the N-body gravity
and smooth particle hydrodynamics (SPH) solver swift (Schaller et al.
2024). Gravity is solved using the Fast Multiple Method (Greengard &
Rokhlin 1987). The cosmology adopted in FLAMINGO is the “3x2pt + all”
cosmology from Abbott et al. (2022) (Ωm = 0.306, Ωb = 0.0486, σ8 = 0.807,
H0 = 68.1 km s−1 Mpc−1, ns = 0.967), with a summed neutrino mass of
0.06 eV. Massive neutrinos are included in the simulation via the δf method
of Elbers et al. (2021). Initial conditions (ICs) are set using multi-fluid
third-order Lagrangian perturbation theory (3LPT). Partially fixed ICs are
used to limit the impact of cosmic variance (Angulo & Pontzen 2016) by
setting the amplitudes of modes with (kL)2 < 1025 to the mean variance (k
is the wavenumber and L the box size).

In this work, we focus on two specific DMO simulations with box sizes
L = 2800 cMpc and L = 5600 cMpc, respectively. Both simulations have
50403 cold dark matter (CDM) particles and 28003 neutrino particles. The
CDM particle masses are Mdm = 6.72× 109 M⊙ and Mdm = 5.38× 1010 M⊙
for the L = 2800 cMpc and L = 5600 cMpc boxes, respectively. We focus
on the DMO version of the simulations because no hydrodynamic version
is available for the largest box, and because we are only interested in the
spatial distribution of halos, that, in the ΛCDM model, is primarily dictated
by gravitational interactions of dark-matter particles only.

We identify halos in the simulated snapshots using the 6-d friends-of-
friends code velociraptor (Elahi et al. 2019). Once halos have been
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Figure 2.2: Left: Halo mass function at z = 4 from the simulations considered: L =
2800 cMpc (teal diamonds) and L = 5600 cMpc (red circles). The gray solid line represents
the analytical fit to the simulations (see Sec. 2.2.2.1 for more details). The shaded regions
highlight which masses in each simulation are considered for the fit. The bottom panel
shows the relative difference between the fit and the two simulations (with the horizontal
shaded grey band highlighting the 10% limit). Right: Auto-correlation function of halos
in different mass bins at z = 4. We create 8 mass bins ranging from log10 M/M⊙ = 11.5
to log10 M/M⊙ = 13.5 and 0.25 dex wide. Lower mass bins correspond to lower values
of the correlation functions, and vice-versa. Teal diamonds refer to the L = 2800 cMpc
simulation, while red circles refer to the L = 5600 cMpc one. Points are staggered in the
x-direction for visualization purposes. The gray solid lines represent the fits to the auto-
correlation functions (from the lowest mass bin on the bottom to the highest mass bin on
top), as described in Appendix 2.B. Relative differences between the fits and the simulated
correlation functions are shown in the bottom panel. These differences are generally ≲ 10%,
with the exception of the highest mass bin considered (i.e., log10 M/M⊙ = 13.25− 13.5),
for which the measurements are noisy due to the small number of halos in that mass
range. The gray dashed lines in the top panel show extrapolations of the auto-correlation
functions based on our fit for even higher mass bins (log10 M/M⊙ = 13.5 − 13.75 and
log10 M/M⊙ = 13.75− 14.0) where measurements from the simulations are not available.
More details can be found in Sec. 2.2.2.2 and Appendix 2.B.
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identified, their masses are computed using a spherical-overdensity definition
based on their density profile. We perform this task using the code SOAP3.
We define the radius of a halo as the distance from the most bound particle
within which the density reaches a value of 200 times the critical density
of the universe (200ρc). We only include central halos in the analysis and
exclude the contribution of sub-halos. As discussed in Sec. 2.5.3, we do not
expect this to influence our results significantly.

Once we have obtained a catalogue with the positions and masses of halos
in the simulation at a given redshift, we can easily compute key statistical
properties such as the halo mass function and the (cross-)correlation functions
of halos with different masses. However, this approach is not directly suitable
for our purposes. In fact, an important limitation of cosmological simulations
is that they give reliable results only in a finite range of masses. The lower
limit of this mass range is imposed by resolution: halos with fewer than
50 − 100 dark-matter particles are not well resolved, and thus cannot be
trusted. The upper limit, on the other hand, is set by the box size of the
simulation: if the number of halos with mass greater than some threshold M
is small, these halos are too rare to get a reliable estimate of their statistical
properties (e.g., their clustering).

For the problem we are facing here, we need to be able to reproduce
the relative abundance of halos and their spatial distribution for a vast
range of masses. For this reason, employing a single halo catalogue obtained
using a simulation with a fixed box size is not the optimal strategy. Instead,
we use here an approach consisting of two key steps: we first compute
the quantities of interest (i.e., the halo mass function and the halo cross-
correlation functions) from multiple simulations with different box sizes
(and mass resolutions), and then we combine these different simulations by
making use of analytical fitting functions. In this way, we can predict the
abundance and spatial distribution of halos for all the masses that are well
captured by the different simulations considered.

Table 2.1 summarizes the properties of the simulations we employ. In
brief, we use the two different box sizes L = 2800 cMpc and L = 5600 cMpc
to study the properties of low-mass and high-mass halos, respectively. For
the 2800 cMpc box, we select halos in the range of masses log10 M/M⊙ =
11.5−13.0; for L = 5600 cMpc, we focus on halos in the range log10 M/M⊙ =
12.5− 13.5. The lower limits are set to select only halos with at least ≈ 50
particles, whereas the upper limits are set to ensure overlap between the two
mass ranges and to guarantee that all mass bins (up to at least z = 4) are
populated with at least 5000 halos. In the following we describe in detail
how we combine these simulations to obtain an analytical description of
the halo mass function and of the cross-correlation function of halos with
different masses.

3https://github.com/SWIFTSIM/SOAP

https://github.com/SWIFTSIM/SOAP
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2.2.2.1 Fitting the halo mass function

Following Tinker et al. (2008) (see also Jenkins et al. 2001; White 2001;
Warren et al. 2006), we write the halo mass function in terms of the peak
height of the density perturbations, ν = δc/σ(M, z), where δc ≈ 1.69 is the
critical linear density for collapse and σ(M, z) is the variance of the linear
density field smoothed on a scale R(M) (see Press & Schechter 1974; Sheth
& Tormen 1999). According to this formalism, the mass function can be
parametrized in terms of a universal function f(σ):

f(σ;A, a, b, c) = A

((σ
b

)−a

+ 1

)
e−c/σ2

, (2.14)

where f(σ) is related to the mass function via the expression

dn

dM
(M, z) = f(σ)

ρm,0

M

d lnσ−1

dM
, (2.15)

with ρm,0 being the mass density at z = 0.
We use the python package colossus (Diemer 2018) to compute the

value of σ(M, z) using the same cosmology as the FLAMINGO simulation
(Sec. 2.2.2). We then use χ2-minimization to find the best-fitting parameters
(A, a, b, c) for the analytical form of the halo mass function. We fit the
number density of halos in different mass bins using halo catalogues from
two different simulations, using two different (but partially overlapping)
mass ranges (see Table 2.1). We assign Poissonian counting errors to every
mass bin considered. We also experiment with changing these errors, and
find that we achieve a better fit to the data by doubling the errors for
the L = 2800 cMpc simulation, and halving the ones associated with the
L = 5600 cMpc box. Note that this choice is arbitrary: our goal is not to
provide a physically-motivated fit to the data, but simply to find a good
analytical description of the halo mass function coming from simulations.

Figure 2.2 (left panel) shows the best-fitting mass function for z = 4,
together with the data obtained from the simulations. Analogous results
for z = 2.5 are shown in Appendix 2.C. The optimal parameter values for
this mass function are: A = 5.68 × 10−5, a = 1.65, b = 257, c = 1.16. As
shown in the lower left panel of Fig. 2.2, the fit provides a description of the
simulated data with an accuracy of ≈ 5−10% up to log10 M/M⊙ ≲ 13.5. As
we will discuss in Sec. 2.5.3, this level of accuracy for the model is enough
to provide a satisfactory description of the observed data.

Finally, we note that the reason why we have performed the fitting of
the halo mass functions extracted from our simulations and did not consider
the best-fitting parameters provided by Tinker et al. (2008) is because we
found that, at z ≥ 4, differences between the Tinker et al. (2008) model and
our simulations were as high as 100% (see also Yung et al. 2023).
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2.2.2.2 Obtaining the cross-correlation functions

We want to obtain the cross-correlation functions of halos with masses
Mj and Mk, ξh(Mj ,Mk; r). In order to achieve this, we create a grid
in mass and distance by considering 8 uniformly spaced bins in log10 M ,
with a minimum halo mass of log10 Mmin/M⊙ = 11.5 and a maximum of
log10 Mmax/M⊙ = 13.5, and 8 (logarithmically-spaced) bins in the radial
direction with a minimum radial distance of log10 rmin/cMpc = 0.4 and a
maximum of log10 rmax/cMpc = 2.25 We then use the package corrfunc
(Sinha & Garrison 2020) to compute the number of halo pairs in the simulated
catalogues for every combination of masses and distance, together with the
number of pairs obtained assuming that these halos are distributed randomly.
The values of the cross-correlation terms are obtained using the Landy &
Szalay (1993) estimator:

ξh(Mj ,Mk; r) = ξj,k(r) =
DjDk −DjRk −DkRj +RjRk

RjRk
, (2.16)

where DjDk stands for the number of pairs of halos in the mass bin j with
halos in the mass bin k, whereas RjDk, DjRk, and RjRk refer to the number
of pairs when comparing to a random distribution of the same halos.

We end up with 36 different cross-correlation functions – i.e., the number
of independent elements for a symmetric 64-element matrix – which can be
used to determine the quasar auto-correlation function according to eq. 2.7.
However, once again, we must account for the fact that different simulations
probe different mass ranges. We thus fit a parametric analytical function to
these cross-correlation functions in a way that allows us to combine different
simulated boxes.

Furthermore, in this case the fitting procedure has another critical pur-
pose. Despite the large volume of the simulations employed, the number
of simulated halos at the very high mass end is limited by the finite size
of the box. For this reason, the obtained cross-correlation terms for the
very high-mass halo pairs will suffer from significant uncertainties due to
the limited sample size in the simulation. Even for the largest box we
consider (i.e., L = 5600 cMpc), at z = 4 this effect starts to be significant for
log10 M/M⊙ ≈ 13.2− 13.5. This is an important limitation for our analysis:
in the inference routine we will undertake in the next Section, we want to be
able to explore the full parameter space and consider models for which this
range of masses (or even higher) plays a significant role. For this reason, we
fit the cross-correlation terms with two key objectives: reducing the noise
associated with the poor statistics at the high mass end of the halo mass
function, and providing a means to sensibly extrapolate the behavior of the
cross-correlation functions up to log10 M/M⊙ = 14.0 (log10 M/M⊙ = 14.5)
at z = 4 (z = 2.5). This extrapolation allows us to recover well-behaved
posterior distributions (see Sec. 2.4) that provide a complete description
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of the different models described by our parameters. Its validity and the
associated caveats are discussed in detail in Sec. 2.5.3

We provide details on the fitting of the cross-correlation terms ξh(Mj ,Mk; r)
in Appendix 2.B. In short, we divide all the cross-correlation terms, ξh(Mj ,Mk; r),
by a reference correlation function, ξref(r), and fit the results with a 3-d
polynomial to capture the residual dependencies on the two masses and on
radius. In the rest of this Section, we show the results of the fits for the auto-
correlation functions in different mass bins at z = 4 (Figure 2.2, right panel;
the same plot for z = 2.5 is shown in Appendix 2.C). In other words, we plot
the correlation functions for bins of equal mass, ξh(Mj ,Mj ; r), together with
the fits that are meant to reproduce these functions, ξh,fit(Mj ,Mj ; r) (gray
lines)4. Lower mass bins correspond to lower values of the auto-correlation
functions, and vice-versa.

We assign errors to the ξh(Mj ,Mj ; r) points based on the Poissonian
statistics of the pair counts; note that in this way we are underestimating the
real uncertainties on the data points because we are not including the effects
of cosmic variance and of other sources of systematics. For this reason, when
assessing the robustness of our fits, it makes little sense to discuss them in
terms of statistical errors. We therefore compare the simulated data and
the model fits in terms of relative differences between the two (lower right
panel of Figure 2.2). These differences are generally at the level of ≲ 10%
for all bins but the highest one (i.e., log10 M/M⊙ = 13.25− 13.5), which is
easily recognizable because it has the largest Poissonian uncertainties. As
already mentioned before, at very large masses correlation measurements
from simulations become noisy (and thus unreliable) due to the small number
of halos in the snapshots. Even in this extreme case, however, the fit provides
a satisfactory description of the shape and normalization of the correlation
function in the simulations, with a relative difference that is still smaller
than the uncertainties on the S07 observed data (which are at the level of
50− 100%; see Sec. 2.3.1).

Using dashed grey lines, we also plot in Fig. 2.2 the auto-correlations
functions for the two bins log10 M/M⊙ = 13.5− 13.75 and log10 M/M⊙ =
13.75− 14.0, as obtained by extrapolating our fitting functions to masses
higher than the ones probed by the simulations. We see that the trend
of the auto-correlation functions with halo mass is well preserved by these
extrapolations; further discussion on this can be found in Sec. 2.5.3 and
Appendix 2.C.

Finally, we note that relative differences between our fits and the values
of correlation functions extracted from simulations tend to be larger at very
large scales (r ≳ 100 cMpc). This is also due to the fact that simulation-based
values become less reliable in this regime. There are two reasons for that:

4The global fits to all the cross-correlation terms ξh(Mj ,Mk; r) at both redshifts are
shown in Appendix 2.B.
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first, the finite size of the box reduces the number of very large-scale pairs
that are available. Secondly, at r ≳ 100 cMpc the behavior of correlation
functions becomes non-trivial due to the presence of the baryon acoustic
oscillations (BAO) peak. This is especially difficult to model given the very
coarse radial bins we have chosen. Due to these limitations of our model, we
simply exclude scales larger than r ≳ 100 cMpc from our analysis.

2.3 Data-model comparison

In the previous Section, we have described how to obtain the two observables
of interest (i.e., the QLF and the quasar auto-correlation function) starting
from a CLF and a simulation-based analytical description of the halo mass
function and of the halo cross-correlation functions. We now provide more
details on the actual comparison between our model and observational data.

2.3.1 Overview of observational data

We start by giving a brief description of the data that we compare the model
with. Our main goal is to explain the very strong quasar clustering measured
by S07 at z ≈ 4. Thus, we make use of the S07 data for the projected
auto-correlation function (wp/rp). Note that the authors assume that the
data points are independent (because the quality of the data is not good
enough to extract a covariance matrix), so we will do the same and use the
S07 errors assuming that the covariance matrix for the data is diagonal. We
use the “good fields” data (see S07 for the definition) as they are supposed
to be more reliable and – since they show stronger clustering – have proven
to be the hardest to reproduce theoretically (e.g., Shankar et al. 2010b). As
already mentioned, we exclude the data at very large scales (r > 100 cMpc)
from our analysis because they are particularly challenging to measure both
in observations (e.g., Eftekharzadeh et al. 2015) and in simulations (see the
end of the last Section).

In the subsequent analysis, we are also interested in reproducing the
quasar clustering at lower redshift. For this purpose, we use data from the
Baryon Oscillation Spectroscopic Survey (BOSS, Eftekharzadeh et al. 2015;
hereafter, E15). We focus on the redshift range z = 2.2 − 2.8, where the
majority of the BOSS quasars reside. We use the data for the projected corre-
lation function, wp(rp), in the radial range 4 cMpch−1 < rp < 25 cMpch−1.
In this region, the E15 data are considered more reliable by the authors and
an estimate for the error covariance matrix is available.

One of the key points of our analysis is that, while the QLF includes all
quasars known in a given redshift bin, the quasar auto-correlation function
is usually measured by considering only quasars above a given luminosity
threshold Lthr. This is an important point to take into account in our model
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(see eq. 2.6-2.10), as the presence of such a threshold may bias the inferred
clustering significantly. The flux limit employed for the S07 measurements
is mi = 20.2 (where mi is the apparent magnitude in the i band). In order
to convert this to a value of Lthr, we first convert the apparent magnitude
mi to an absolute magnitude, M1450, using the K(z) correction5 (see, e.g.,
Kulkarni et al. 2019 and references therein). We obtain that mi = 20.2
corresponds to M1450 = −25.72 at z = 4. We then convert this value to a
bolometric luminosity by applying the bolometric corrections provided by
Runnoe et al. (2012a)6. We get a value for the S07 luminosity threshold
equal to log10 Lthr/erg s

−1 = 46.7.
As for the E15 clustering data at z ≈ 2.5, the luminosity threshold that

we should employ is more subtle. While the authors consider the entirety
of the BOSS sample (Ross et al. 2013) for their clustering analysis, they
also show that this sample is highly incomplete at low luminosities. This
is an issue in the context of our model, as, when setting a threshold Lthr,
we are implicitly assuming that the sample is complete above the threshold.
Given that properly modeling completeness in the E15 sample is outside
the scope of this work, we set the value of Lthr to the 25th percentile
of the luminosity distribution of the observed quasars at z = 2.5. This
value represents a compromise between taking into account part of the
highly incomplete sample of faint quasars that are included in the clustering
analysis and minimizing the bias that these quasars generate in the predicted
clustering. By considering Figure 3 in E15, we set this threshold value to a
Mi(z = 2) magnitude of −25.3. Following Lusso et al. (2015), we convert
this to M1450 = Mi(z = 2) + 1.28 = −24.02, and finally to a bolometric
threshold of log10 Lthr/erg s

−1 = 46.1.
As for the QLF, there are many different estimates available. For the

sake of consistency with the clustering measurements, we choose to employ
the UV-bright quasar catalogue compiled by Kulkarni et al. (2019, hereafter
K19). These authors provide a homogenised catalogue of 80,000 color-selected
AGN from redshift z = 0 to 7.5, together with MCMC-based estimates of
the QLF at all redshifts. We employ this dataset and select quasars at
different redshifts according to our models. For the model at z = 4, we
set 3.5 < z < 4.5 (largely consistent with the S07 high-z sample); in this
range, the bright end of the QLF is determined by the same SDSS quasars
that are used to compute the clustering (Schneider et al. 2010), whereas the
low-luminosity quasars are presented in Glikman et al. (2011). The model

5The conversion between mi and M1450 can be made using Ki,1450(z), which is defined as:
M1450(z) = mi−5 log10 (dL(z)/Mpc)−25−Ki,1450(z), with dL(z) being the luminosity
distance at redshift z. Following Lusso et al. (2015), we set Ki,1450(z = 4) ≈ −1.9.

6The bolometric correction for λ = 1450 Å is log10 Liso/erg s
−1 = 4.745 +

0.910 log10 λLλ/erg s
−1. Liso is the bolometric luminosity calculated under the as-

sumption of isotropy, and it is related to the real bolometric luminosity L via a factor
that accounts for the viewing angle, L = 0.75Liso
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at z = 2.5, instead, is entirely determined by quasars observed by the BOSS
survey (Ross et al. 2013).

Quasars in the K19 dataset are binned according to their M1450 magni-
tude, and the uncertainties are computed using Poisson statistics. However,
as also discussed in K19, the QLF data always present significant systematic
errors due to, e.g., uncertainties in the quasar selection. This implies that the
quoted uncertainties on the QLF data may be significantly underestimated,
as is also evident from the large scatter (up to ≈ 1 dex) between different
estimates of the QLF that are available in the literature (e.g., Shen et al.
2020; Grazian et al. 2023). These issues are particularly problematic in our
framework, as our goal is to perform statistical inference by simultaneously
matching the quasar luminosity and auto-correlation functions, and that can
only be done properly if the associated uncertainties are well understood
and treated. Therefore, in order to avoid biases in our inference analysis
owing to very small formal statistical uncertainties on the QLF, we add a
systematic error to every QLF measurement in quadrature to the Poisson
ones determined by K19. That is, the uncertainties on our QLF data points
are set to be σ2 = σ2

sys+σ2
count, where σ2

sys (σ2
count) stands for the systematic

(statistical) uncertainty. We adopt a constant systematic uncertainty of
0.2 dex for the z ≈ 4 dataset and of 0.05 dex for the z ≈ 2.5 one. This
implies a systematic relative uncertainty of ≈ 45% (≈ 10%) for z = 4
(z = 2.5). These values are chosen to be similar to the average relative
statistical uncertainties at the two redshifts considered (≈ 40% and ≈ 5% at
z = 4 and z = 2.5, respectively).

As the final step, we convert the values of the quasars’ absolute mag-
nitudes in K19, M1450, to bolometric luminosities using the Runnoe et al.
(2012a) bolometric corrections. We stress the fact that our results are inde-
pendent of the adopted bolometric corrections, as our model could easily be
expressed in terms of quasars’ UV magnitudes only. However, as discussed
in Sec. 2.2.1, we choose to convert everything to bolometric luminosities for
consistency with previous work on the subject.

2.3.2 Likelihood functions

We employ a Bayesian framework to write the posterior distributions for
our model parameters. As described in Sec. 2.2.1, the model consists
of a log-normal CLF centered on a power-law dependence of the quasar
luminosity on halo mass. The free parameters are the normalization and
slope of the quasar luminosity-halo mass relation (Lref and γ, respectively),
the logarithmic scatter around this relation (σ), and the fraction of quasars
that are active at any given moment (fon). The final set of parameters, Θ,
is then: (σ, Lref , γ, fon).

We set flat priors on σ and γ, and flat priors on the logarithm of Lref

and fon (see e.g. Jeffreys 1946). Our priors span the following parameter
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ranges: σ ∈ (0.1 dex, 1.5 dex); log10 Lref/erg s
−1 ∈ (44.0, 46.6); γ ∈ (0.5, 3);

log10 fon ∈ (−3, 0). These limits are chosen in order to focus on the region of
the parameter space where models are physically motivated (e.g., the scatter
in the Lc −M relation is unlikely to be smaller than 0.1 dex).

In what follows, we want to fit the QLF and the auto-correlation function
both independently and simultaneously. We can get constraints on these
two observables by setting the following likelihood functions:

L(k)(d(k) |Θ) =
1

(2π)n/2|Σ|1/2 exp

(
−1

2
(y − µ)⊤Σ−1(y − µ)

)
, (2.17)

where k ∈ {QLF, corr} stands either for the quasar luminosity function data
or for the auto-correlation function data. As for the other variables, d(k)

stands for the set of n data points with means y and covariance Σ coming
from observations, whereas µ stands for the set of values predicted by our
models.

With the above likelihood, the results for the correlation function (“corr")
are found to not be very constraining, as there is a large set of models that
produce the correct clustering but substantially under(over)-estimate the
number density of bright quasars. Therefore, when quoting results for the
correlation function only, we provide an additional integral constraint by
imposing that the model matches the observed number density of bright
quasars. We integrate the QLF above the luminosity limit used for the
clustering measurements (see Sec. 2.3.1), and obtain an estimate for the
number density of bright quasars, nbright. The associated uncertainty, σbright,
is determined by using different realizations of the QLF fits from K19. Then,
we predict the number of quasars with a luminosity above this threshold,
Lthr, based on our model (nmodel), and use the following likelihood:

L(corr+nden) =
exp−(nbright−nmodel)

2/σ2
bright

√
2πσbright

L(corr). (2.18)

Note that we do not fit to the shape of the QLF, but only to the total
abundance of quasars above Lthr. This is an integral constraint that favors
models producing a physically reasonable total number of bright quasars.

Finally, we provide joint constraints on the parameters by fitting the
QLF and the auto-correlation function simultaneously. In other words, we
write the joint likelihood distribution as the product of the two likelihoods
(we assume that the two measurements are independent, and weigh the two
dataset equally):

L(joint) = L(QLF) L(corr). (2.19)

Note that for the joint likelihood distribution, we consider L(corr) (rather
than L(corr+nden)), as the QLF already provides an implicit constraint on
the total abundance of luminous sources.
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Table 2.2: Best-fitting parameter values for our model-data comparison at z = 4 (see
the main text for definitions of the different parameters, as well as eq. 2.17-2.19). “QLF
only” refers to the quasar luminosity function data only, “corr+nden” refers to the auto-
correlation function data in conjunction with the number density of bright quasars, and
“joint” refers to the combined QLF+auto-correlation function data. The last column shows
the minimum value of the normalized chi-squared (see text for details).

Quantity σ log10 Lref [erg s−1] γ fon [%] χ2
norm

QLF only 0.38 46.4 0.78 0.2 2.2/5

corr+nden 0.10 44.4 2.99 100 4.6/4

joint 0.11 45.1 2.07 66 12.9/12

2.4 Results

In this section, we describe the results we obtain by fitting our model
to the observed quasar luminosity and auto-correlation functions, both
independently (“QLF” and “corr+nden” cases) and simultaneously (“joint”
case; see Sec. 2.3.2 for the definitions). Henceforth, we will refer to the
“QLF” model as “QLF only” in order to distinguish our model from the QLF
itself. We first consider the z = 4 case – which is the main focus of this
paper – and then discuss the results at lower redshift (z = 2.5) as well.

2.4.1 Analysis at z ≈ 4

As a first step, we are interested to know whether our model can reproduce
the two observables. We can answer this question by employing a simple
optimization algorithm to find the maximum of the likelihood distributions
(or, equivalently, of the posterior distributions) for the three cases of interest:
quasar luminosity function only (“QLF only”), correlation function + number
density of bright quasars (“corr+nden”), and quasar luminosity and correla-
tion functions together (“joint”). The maxima of the likelihoods represent our
best-fitting models, which we can then compare directly with observations
(see Section 2.4.1.1 for the results of the full parameter inference).

In Table 2.2, we report these best-fitting parameters for the cases men-
tioned above. Figure 2.3 shows our model predictions at the maximum
likelihood parameter values for the CLF, the HOD, the QHMF, the QLF,
and the projected quasar autocorrelation function (wp/rp); see Fig. 2.1 for
a schematic overview of these quantities.

In the top right panel of Fig. 2.3, we show the conditional luminosity
functions, CLF(L|M), as a function of the quasar luminosity L and the halo
mass M . The three cases “QLF only”, “corr+nden”, and “joint” are shown
with different colors (blue, orange, and green, respectively). The associated
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Figure 2.4: Left: Corner plots of the 4-d posterior distributions for the different cases
described in Sec. 2.4.1 (blue for the “QLF” model, orange for “corr+nden”, and green
for “joint”). Contours in the 2-d histograms highlight the 1σ and 2σ regions, whereas
the dashed lines in the 1-d histograms represent the median values of the parameters
(with 1σ errors shown as shaded regions). Best-fitting parameters from Table 2.2 (see
also Fig. 2.3) are shown with star symbols in each corner plot. Right : Comparison of
the predicted quasar luminosity (top) and auto-correlation (bottom) functions with the
observational data from K19 and S07, respectively. The color coding is the same as in
the left panel. Median values (solid lines) and 1σ uncertainty regions (shaded areas) are
obtained by randomly sampling the Markov chains for the posterior distribution 100 times.
Data points for the auto-correlation function that are outside of our fitting range (see
Sec. 2.3.1) are shown as semi-transparent points in the bottom right panel. The vertical
dot-dashed line in the upper right panel is the luminosity threshold for quasar clustering,
Lthr (see Sec. 2.3).
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color bars at the bottom of the Figure represent the probability densities
for the different CLF cases. Integrating the CLF above the luminosity
threshold Lthr (gray dashed-dotted line in the CLF panel), we obtain the
halo occupation distribution (HOD; middle right panel; eq. 2.10). Combining
the HOD with the halo mass function (HMF), we get the Quasar-Host Mass
Function (QHMF; eq. 2.6); this is shown in the bottom right panel, together
with the z = 4 HMF (gray line). The two left panels show the predictions
for the observable quantities: the auto-correlation function is shown on the
bottom left, together with data from S07; the quasar luminosity function
(eq. 2.2) is shown on top (data are from K19). While the auto-correlation
function is obtained from the QHMF via eq. 2.7-2.9, the QLF is the result of
integrating along the mass axis of the CLF weighted by the HMF (eq. 2.2).

Overall, looking at the two left panels of Figure 2.3, we conclude that in
all cases the models constitute very good fits to the data they are meant to
reproduce (see below for the caveat on the “QLF only” case). In order to
quantify this, we use reduced chi-squared statistics, χ2

norm = χ2/νndof , where
νndof is the number of degrees of freedom (i.e., the number of data points
minus the number of parameters). We find χ2

norm = 2.2/5, χ2
norm = 4.6/4,

and χ2
norm = 12.9/12 for the “QLF only”, “corr+nden”, and “joint” cases,

respectively. These values are also shown in Table 2.2 for reference.
One striking feature of the best-fitting models is that they have very

different properties, as can be seen in the top right panel of Fig. 2.3 and the
best-fitting parameters shown in Table 2.2. All of them are characterized
by low values of the scatter in the quasar luminosity-halo mass relation, σ,
but the offset, slope, and normalization of this relation vary significantly
between the models.

The “QLF only” model shows an approximately linear relation with a high
value of the reference luminosity Lref . As a result, the characteristic mass of
halos hosting quasars with a luminosity above Lthr is low (log10 M/M⊙ ≈
12.35, lower right panel of Fig. 2.3). This has two consequences. Firstly,
halos with log10 M/M⊙ ≈ 12 − 12.5 are much more abundant than the
number of observed quasars, and thus a very low active fraction (fon ≈ 0.1%)
is needed to match the QLF. Secondly, such a low characteristic mass for
the halos hosting luminous quasars implies a low value for the quasar auto-
correlation function, in conflict with the S07 measurements (lower left panel).
In fact, we see that the best-fitting model for the “QLF only” case does not
fare well when compared with the clustering data.

The “corr+nden” model, instead, finds a much larger characteristic host
mass for bright quasars (log10 M/M⊙ ≈ 13 − 13.5). Such a large mass is
achieved by packing quasars in almost all the most massive halos. This is
done thanks to a few key ingredients (upper right panel of Fig. 2.3): a low
value of the quasar luminosity at the reference mass of log10 Mref/M⊙ = 12.5,
a highly non-linear relation between quasar luminosity and halo mass (γ ≈ 3)
and a very low scatter in this relation σ ≈ 0.1. The first two parameters
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determine the mass, log10 M̃ , at which the quasar luminosity – halo mass
relation crosses the luminosity limit Lthr. The second and third parameters,
instead, determine how sharply the HOD drops at masses lower than log10 M̃
(middle right panel of Fig. 2.3). The extreme scenario implied by our best-
fitting model is needed to reproduce the measured auto-correlation function.
Indeed, the shape and normalization of the S07 data are very well reproduced
by our model (Fig. 2.3, lower panel) at the scales considered in the analysis
(3 cMpc ≲ rp ≲ 100 cMpc).

Besides fitting the auto-correlation function, the “corr+nden” model aims
to reproduce the number density of quasars above the luminosity threshold
log10 Lthr. This is also achieved by the best-fitting model, which predicts
a number density nmodel = 3.18 × 10−8 cMpc−3, 0.5 standard deviations
higher than the observational value of nbright = 2.73× 10−8 cMpc−3. The
shape of the QLF, however, is not well reproduced by the model, because
it overpredicts the abundance of very bright systems and underpredicts
the abundance of log10 L/erg s

−1 ≈ 46 − 47 quasars. This is due to the
fact, despite the very low value of σ, the strong non-linearity in the quasar
luminosity-halo mass relation (γ ≈ 3) associates a large fraction of the
massive halos to the brightest observable quasars.

When we simultaneously fit both the quasar auto-correlation and the
luminosity function (“joint” model), we obtain results that are quite similar
to the “corr+nden” case, and are compatible with the same extreme scenario
in which quasars are packed in the most massive halos, i.e., a non-linear
quasar luminosity-halo mass relation with a steep slope and very small
scatter, low value of the quasar luminosity at the reference mass, and a large
active fraction of quasars. The quasar luminosity-halo mass relation for
the “joint” model is however not as extreme as the one for the “corr+nden”
model, as it is characterized by a lower value of the power-law exponent,
γ ≈ 2. This has very little impact on the auto-correlation function, as the
quasar-host mass functions (lower right panel of Fig. 2.3) are very similar
in the two cases. It does have an effect, however, on the shape of the QLF,
with the “joint” model providing a better fit, especially at the very bright
end.

Overall, the QLF is very well reproduced by the “joint” model, with the
exception of the low-luminosity end (logL/erg s−1 ≈ 45.5). In this region,
the largest differences between the “QLF only” and the “joint” model appear,
with the “QLF only” model faring better at predicting a flattening of the
shape of the QLF. This flattening, however, is an artificial feature of our
model, originating from the prior assumption that halos with a mass lower
than log10 M/M⊙ = 11.5 do not host quasars. We consider this issue not
worthy of further investigation, as the faint-end of the QLF is still largely
unconstrained by data, and deeper observations are needed to probe its
behavior at the high redshift (e.g., Akiyama et al. 2018; Parsa et al. 2018;
Giallongo et al. 2019; Harikane et al. 2023; Grazian et al. 2023). Furthermore,
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our primary focus here is to interpret the bright quasars that are also probed
by clustering surveys. It is possible that a more flexible quasar luminosity-
halo mass relation is necessary to account for the abundance of low-luminosity
systems.

2.4.1.1 MCMC analysis

Given that our models are a good representation of the observational data, we
can proceed further with inference and determine how well the data constrain
the model parameters. We explore the posterior distributions using a Markov-
Chain Monte Carlo (MCMC) approach. We employ the Python package
emcee (Foreman-Mackey et al. 2013) to sample the posteriors using the
affine-invariant ensemble prescription (Goodman & Weare 2010). We place
m = 48 walkers distributed randomly in the parameter space and evolve
them for N > 105 steps. We set the final number of steps so that our
chains are at least 100 times longer than the auto-correlation time τ (see
e.g., Sharma 2017), and thin the chains considering only one element every
τ steps in order to account for auto-correlations. We also discard the first
103 elements of every chain to account for the burn-in phase.

Figure 2.4 (left panel) shows the corner plot for the 4-d posterior dis-
tributions (as a function of σ, Lref , γ, fon) for the three cases considered in
the analysis (“QLF”, “corr+nden”, and “joint”). The best-fitting model for
each of these cases, which was discussed above and shown in Fig. 2.3, is
highlighted with a star symbol in the corner plots. The samples of the pos-
terior distributions obtained by the Markov Chains are then used to obtain
predictions for the quasar luminosity and the auto-correlation functions; we
compare these quantities with the data in the right panels of Figure 2.4.

As expected, the “QLF only” and “corr+nden” models peak in very
different regions of the parameter space. The “corr+nden” model constrains
the parameters to the region with σ ≲ 0.5, γ ≳ 2, log10 Lref/erg s

−1 ≈
44.5 − 45.5, and fon close to unity. This region of the parameter space is
the only one that is compatible with the above-mentioned scenario in which
bright quasars are active only in the most massive halos. This is also the
reason why there are no models predicting stronger quasar clustering than
observed (Figure 2.4, right panel), as our models are already predicting the
strongest possible clustering compatible with the observed abundance of
bright systems.

The “QLF only” model, on the other hand, peaks at lower γ and fon,
larger log10 Lref , and a value of σ which is larger than the “corr+nden” but
still moderately low (σ ≈ 0.3− 0.5). However, the distribution for the “QLF
only” case is much more complex, and therefore the resulting constraints on
the parameters are not as straightforward. In particular, there is a region
of the parameter space that is well within the constraints given by the
auto-correlation function, and for which the “QLF only” model also has a
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good match with the QLF data (at the ≲ 2σ level). Unsurprisingly, this is
the region where the “joint” posterior distribution is located (green contours
in Fig. 2.4).

The reason why this region of parameter space can reproduce both the
QLF and the auto-correlation function can be understood as follows. As
mentioned in the introduction, the behavior of the QLF at the bright end is
very different from the one of the HMF, with the latter being characterized
by an exponential cutoff that is not present in the QLF. This is usually
explained by assuming that the more abundant population of lower-mass
halos can also contribute to the population of luminous quasars (see e.g.,
Ren et al. 2020). Indeed, this is what our fiducial “QLF only” model seems
to suggest (see also Fig. 2.3), as the very high quasar luminosity predicted
for the 1012.5 M⊙ halo population implies that even with ≈ 0.4 dex of scatter
the correct shape of the luminosity function can be reproduced. In this
picture, quasars are relatively common phenomena arising in the bulk of the
halo population at that redshift, with a very low duty cycle of εDC ≈ 0.1%.
However, even a scenario in which only the most massive halos are active
as bright quasars (with a duty cycle εDC ≳ 50%) can be compatible with
the observed shape of the QLF. In this second case, the non-linearity in
the quasar luminosity–halo mass relation plays a key role in mapping the
exponential cutoff of the HMF into the power-law bright end slope of the
QLF, while at the same time packing bright quasars only in the most massive
hosts. While both of these scenarios provide a good description of the QLF
– differing significantly only at lower luminosities – only the latter is also
compatible with a very large clustering length of quasars.

In conclusion, despite the fact that the quasar luminosity and auto-
correlation functions alone provide relatively loose constraints on the shape of
the Conditional Luminosity Function (CLF), when considered in conjunction
they are able to determine a very well-defined region in the parameter space
for which a good agreement with all observational data is achieved (right
panel of Fig. 2.4). This is the most significant conclusion of our analysis,
and we will discuss it further in Sec 2.5.

2.4.2 Comparison with z ≈ 2.5

Having applied our model to z ≈ 4 data, it is also important to test whether
the model is flexible enough to reproduce observations at lower redshifts,
where the observed strength of quasar clustering is not as extreme. We note
that our goal in this paper is not to provide a complete and self-consistent
evolutionary description of quasar properties across cosmic time, but simply
to strengthen the conclusions we have drawn in the previous section by
showing that the same framework can also be applied to describe the spatial
and luminosity distributions of quasars at different epochs. In particular, we
focus on the redshift range z = 2.2− 2.8, where the the BOSS survey (Ross



CHAPTER 2 65

Figure 2.5: Same as Fig. 2.4, but for different redshifts (z = 4 in green and z = 2.5 in
purple). The results always refer to the “joint” model (Sec. 2.4.1). The vertical dot-dashed
lines in the upper right panel are the luminosity thresholds, Lthr, used to measure quasar
clustering at the two redshifts. Data points for the auto-correlation function that are
outside of our fitting range because they are considered not reliable (see Sec. 2.3.1) are
shown with semi-transparent colours in the bottom right panel.



66 2.4. RESULTS

et al. 2013; Eftekharzadeh et al. 2015) has provided solid measurements of
the quasar luminosity and auto-correlation functions. We choose this data
set because it is sufficiently different from the one at z ≈ 4 to suggest that
the properties of quasars may have varied significantly in a relatively short
amount of time.

For simplicity, we focus here on the “joint” models only. In other words,
we run the MCMC-based algorithm with the same setup as in Sec. 2.4.1.1
fitting the quasar luminosity function and the auto-correlation function
simultaneously. Figure 2.5 shows the resulting corner plots for the posterior
distribution of the “joint” model at z = 2.5 (purple), together with the one
at z = 4.0 (green; same as Fig. 2.4) for comparison. We report the values
of the resulting 1-d constraints on the model parameters for both redshifts
in Table 2.3. In the right panel of Figure 2.5, we show the predictions of
our models based on randomly sampling the Markov chains for the posterior
distributions, together with the data that we aim to reproduce. We note that,
as mentioned in Sec. 2.3.1, we only include the data points for the E15 auto-
correlation function at z ≈ 2.5 in the range 6 cMpc ≲ rp ≲ 40 cMpch−1.
This is because data outside this range are not considered reliable and not
included in the covariance matrix estimation (see E15). Indeed, we find
that our model provides a good match to the E15 data within the fitting
range, but it is significantly lower than the measured data at larger scales.
Given the strong biases that may be associated with large-scale estimates
of the correlation function, we do not consider this issue worthy of further
investigation.

The corner plots in Figure 2.5 show that the regions of the parameter
space constrained by the two redshifts are quite different. Interestingly, the
shape of the z = 2.5 posterior distribution exhibits non-trivial behavior in
the 2-d projections, yielding tight constraints on the γ parameter, but also
strong degeneracies between σ, log10 Lref , and fon. In general, however, the
different parameters are well constrained, even better than at z = 4 due to
the higher sensitivity of the data. The resulting 1-d posteriors for z = 2.5
and z = 4 peak at a similar value of log10 Lref , but they are quite different
for the other parameters. Lower-z results are characterized by a lower value
of γ (≈ 1.15) and fon (≈ 0.01), and a higher value of the scatter in the
L−M relation, σ.

The top panel of Figure 2.6 shows how these posteriors translate into
distributions for the QHMFs (eq. 2.6). In this plot, the QHMFs for z = 2.5
and z = 4 are shown, together with the HMFs at the same redshifts (semi-
transparent lines). Uncertainties on the QHMFs are computed by randomly
subsampling the Markov chains for the posterior distributions. The two
QHMFs are quite different, reflecting the differences in the level of clustering
measured at the two redshifts. In the z = 4 case, quasars only reside in
the most massive systems (log10 M/M⊙ ≳ 13), with the QHMF distribution
tightly following the HMF (see also Fig. 2.3 for the best-fitting model).
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At z = 2.5, instead, the QHMF distribution has a lower median value
(log10 M/M⊙ ≈ 12.5) and it is much broader, with a large range of halos of
different masses capable of hosting quasars.

The differences in the QHMF translate directly into different measure-
ments for the quasar duty cycle. As discussed in Sec. 2.2.1, we define the
quasar duty cycle (eq. 2.13) as the ratio between the QHMF integrated
above the median value of its distribution, Mmed (eq. 2.12), and the HMF
integrated above the same threshold. For z = 2.5, we find a value of the duty
cycle equal to εDC = 0.4± 0.1%, whereas for z = 4 we find εDC = 33+34

−23 %.
We note that these values are closely related to the values of the fon param-
eter (Table 2.3), which describes the active fraction of quasars at any given
moment. Only in the case of a perfectly deterministic L−M relation (i.e.,
with zero scatter), however, would we find a duty cycle exactly equal to fon.
In the presence of scatter in the L−M relation, the shape of the QHMF
can vary significantly with respect to the one of the HMF, and this changes
the fraction of quasars that are above the threshold luminosity, Lthr, at any
given mass, and hence the quasar duty cycle.

However, we should mention the caveat that these results are obtained
by setting two different luminosity thresholds, Lthr, at the two redshifts
considered, according to the minimum luminosities imposed in the respective
clustering measurements. As shown in the top right panel of Figure 2.5, the
z = 2.5 luminosity threshold is ≈ 0.6 dex lower than the one at z = 4 (Lthr =
46.1 erg s−1 and Lthr = 46.7 erg s−1 at z = 2.5 and z = 4, respectively).
Changing the value of Lthr may have direct consequences for the QHMF,
HOD, and quasar duty cycle, since all these quantities have an explicit
dependence on Lthr (eq. 2.6-2.13).

In order to provide a fair comparison between these quantities at the
two redshifts considered in the analysis, we impose the same Lthr at both
redshifts by using the z = 4 luminosity threshold (i.e., Lthr = 46.7 erg s−1) to
recompute the above-mentioned quantities at z = 2.5. While the duty cycle
remains unchanged (within uncertainties), we find that although the QHMF
is still very broad, its normalization and median value are lower and higher,
respectively. In particular, the median value of the QHMF, Mmed (eq. 2.12)
shifts from log10 Mmed/M⊙ ≈ 12.5 to log10 Mmed/M⊙ ≈ 12.8. This suggests
a mild dependence of clustering on luminosity, as more luminous quasars
tend to be hosted by more massive halos. However, given that the QHMF
distribution is very broad in both cases, there is a strong overlap between the
populations of very bright (log10 L/erg s−1 ≳ 46.5) and moderately luminous
(log10 L/erg s−1 ≈ 46− 46.5) quasars in terms of their host halo masses.

We leave a detailed analysis of the implications of our model in terms
of the luminosity dependence of quasar clustering for future work. Here,
we simply note that even when adopting the same luminosity threshold, we
find a remarkable difference between z = 4 and z = 2.5 quasars. The former
are very extreme objects, hosted only by the most massive halos that are
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Table 2.3: Constraints on the model parameters based on the corner plots shown in
Figure 2.5.

Redshift σ log10 Lref [erg s−1] γ fon [%]

z = 2.5 0.52+0.18
−0.22 45.7+0.46

−0.61 1.15+0.06
−0.07 1.01+1.59

−0.04

z = 4 0.20+0.13
−0.08 45.2+0.3

−0.3 2.00+0.22
−0.23 51+32

−31

present at that redshift, representing 4− 5σ peaks in Gaussian random fields
(Diemer 2018; see also Sec. 2.1). The latter, instead, are hosted by much
more common halos at z = 2.5, which are only slightly over-massive with
respect to the bulk of the halo population at that redshift (2− 3σ peaks).
For this reason, despite the increase in the quasar number density between
z = 4 and z = 2.5, the quasar duty cycle – which measures how abundant
quasars are with respect to their host population – decreases by two orders
of magnitudes between the same two redshifts.

In conclusion, our data-model comparison reveals that the same parametriza-
tion of the CLF employed at z = 4 is also able to reproduce the data at
lower-z, with a significant evolution of the CLF parameters reflecting a
remarkable change in the physical properties of quasars with cosmic time.
In the following, we further discuss the implications of these findings.

2.5 Discussion

In the analysis performed above, we could successfully match the quasar
luminosity and auto-correlation functions at two different redshifts provided
that: (a) there exists a non-linear relation between quasar luminosity and
halo mass, and the non-linearity increases with redshift; (b) the scatter in this
relation is fairly small (σ ≲ 0.3−0.6) and decreases significantly with redshift;
(c) in accordance with this relation, luminous quasars (log10 L/erg s−1 ≳ 46.5)
are hosted by halos with mass log10 M/M⊙ ≈ 13 − 13.5 (log10 M/M⊙ ≈
12.5−13) at z = 4 (z = 2.5); (d) the quasar duty cycle is a strong function of
redshift, with a very low εDC ≈ 0.4% at low-z that increases to εDC ≈ 30% at
z = 4. In the following, we further elaborate on this picture by investigating
its implications for SMBH accretion and growth and by placing it in the
context of previous work on the subject. We end the section by highlighting
the main strengths and weaknesses of our analysis.
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2.5.1 Implications for quasars’ physical properties

2.5.1.1 Black hole mass and accretion efficiency

The CLF posits an empirical relation between quasar luminosity and halo
mass. However, many quasar population models (e.g., Conroy & White 2013;
Veale et al. 2014; Zhang et al. 2023b) built this relation on physical grounds
by relating the quasar luminosity to the mass of the central black hole, and
this latter mass to the mass of either the host halo or the host galaxy/bulge.
We can relate these two approaches by introducing the Eddington ratio η,
which is defined by the following relation:

L = ζ ηMBH, (2.20)

where MBH is the mass of the black hole, and ζ = 3.67× 104 L⊙/M⊙ is a
constant factor.

Then, we assume, e.g., that the mass of a black hole is determined solely
by the mass of the host halo. In other words, we introduce a probability
P (MBH|M) for the mass of the black hole given the halo mass. If we also
write the “Eddington ratio distribution” ERDF(η|MBH,M) in terms of the
other quantities considered, the conditional luminosity function reads:

CLF(L|M) =

∫
dMBH

ξMBH
ERDF

(
L

ξMBH

∣∣∣∣MBH,M

)
P (MBH|M). (2.21)

In this way, we have related the CLF – which is an empirically determined
stochastic relationship between quasar luminosity and halo mass – to two
other distribution functions (the ERDF and the black hole mass distribution)
that have a clear physical meaning, being related to the physics of black
hole accretion and growth.

In order to make this relationship explicit in our analysis, we can simply
rewrite the quasar luminosity as the product of the Eddington ratio and the
black hole mass (eq. 2.20). In this way, we can explicitly study how these two
parameters – albeit completely degenerate – depend on the mass of the host
halo, M , according to our model. The middle panel of Figure 2.6 illustrates
this dependence. In this panel, we employ the CLF(L|M) relation given
by our model to write the probability distribution for the product of the
Eddington ratio and the black hole mass-halo mass ratio, P (ηMBH/M |M).
Note that we divide the product ηMBH = L/ζ by the halo mass, M , because
we expect black hole mass and halo mass to be approximately proportional
based on local scaling relations (e.g., Efstathiou & Rees 1988; White et al.
2008; Booth & Schaye 2010; Marasco et al. 2021) and because we can then
work with a dimensionless quantity. Redshifts in the middle panel of Figure
2.6 are color-coded as in the top panel and in Figure 2.5. Median values and
uncertainties for P (ηMBH/M |M) are extracted by randomly sampling the
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Markov chains for the posterior distributions, as well as the L−M relation
given by our model (see the caption for details).

While at z = 2.5 the median value of ηMBH/M shows only a weak trend
with halo mass, the situation is much different at z = 4, with the product
ηMBH/M strongly correlating with M . This can be achieved by assuming
that either the black hole mass, the Eddington ratio, or both increase with
halo mass. In other words, for very massive hosts black holes are either
particularly massive (with a black hole mass-halo mass ratio higher than for
lower-mass counterparts) or efficiently accreting (i.e., with large Eddington
ratios). This trend is driven by the fact that the measured strong clustering
at z ≈ 4 requires that the most luminous quasar population is completely
dominated by high-mass hosts.

It is also useful to cast these constraints in terms of galaxy stellar masses.
This can be done by exploiting one of the parameterizations of the halo
mass-stellar mass relation that are available in the literature. Here, we
use the redshift-dependent halo mass-stellar mass relation from Behroozi
et al. (2013) to rewrite P (ηMBH/M |M) in terms of the galaxy mass M∗, i.e.,
P (ηMBH/M∗|M). For simplicity, we neglect the scatter between stellar mass
and halo mass in this conversion. The bottom panel of Figure 2.6 shows how
the product of the Eddington ratio and the black hole mass-galaxy mass ratio
varies as a function of halo mass. This is especially interesting in light of the
fact that there is long-standing evidence in favor of a linear (or quasi-linear)
relation between black hole and galaxy masses in the local universe (the
so-called MBH − M∗ relation, see e.g., Magorrian et al. 1998; Kormendy
& Ho 2013; Reines & Volonteri 2015). In the same panel (Figure 2.6), we
plot with a dashed red line the expectation for the product ηMBH/M∗ as a
function of M , based on assuming the local MBH −M∗ relation as measured
by Reines & Volonteri (2015), converting galaxy masses to halo masses
according to Behroozi et al. (2013), and setting a fixed Eddington ratio of
η = 1. The scatter around this quantity (red shaded region) only considers
the scatter in the MBH − M∗ relation as quoted by Reines & Volonteri
(2015). Due to the fact that the MBH −M∗ relation is almost linear, the
product between the Eddington ratio and the black hole mass-galaxy mass
ratio is almost independent of halo mass, with an average constant value of
ηMBH/M∗ ≈ −3.5.

Comparing this expectation based on local relations to the predictions of
our model for z = 2.5, 4, we find that for low halo masses (log10 M/M⊙ ≲
12.5) the predictions tend to agree within the uncertainties (see below for
the caveat on extrapolating below log10 M/M⊙ ≈ 12). For larger masses,
however, the difference between local predictions and our models becomes
quite significant. At z = 2.5, there is a mild but significant positive trend
of increasing ηMBH/M∗ with M . This trend becomes even steeper and
tighter at z = 4, with the product ηMBH/M∗ ranging from ≈ −3.5 for
log10 M/M⊙ ≲ 12.5 to ≈ −2 for log10 M/M⊙ ≲ 13.5. The trend can be
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interpreted considering that the galaxy formation efficiency at z = 2−4 peaks
at halo masses around log10 Mpeak/M⊙ ≈ 12− 12.5; as a consequence, the
stellar mass-halo mass relation flattens at masses higher than log10 Mpeak

(Behroozi et al. 2013, 2019). Our model, on the other hand, does not
predict any flattening in the quasar luminosity-halo mass relation for masses
log10 M > log10 Mpeak. Hence, the product ηMBH/M∗ becomes a steep
function of halo mass for log10 M/M⊙ ≳ 12.5. We believe the absence of
a flattening in the quasar luminosity-halo mass relation at the high mass
end is not simply a consequence of the chosen parametrization for the
CLF. By experimenting with different parameterizations of the CLF, we
found that any departure from a steep, non-linear relation between quasar
luminosity and halo mass is incompatible with the measured value of the
clustering (especially at z = 4), as a flattening of this relation would lower
the characteristic halo mass of bright-quasar hosts. Therefore, we conclude
that while galaxy growth appears to be quenched at the high mass end, even
at high redshifts (e.g., Behroozi et al. 2019), this does not seem to be the
case for black hole growth, as black holes in very massive halos need to be
very massive and/or accreting efficiently. Indeed, observational evidence for
an evolution of the MBH −M∗ relation has been found repeatedly at high-z
(implying over-massive black holes) together with signs of an increase in the
median value of the ERDF with redshift (e.g., Vestergaard & Osmer 2009;
Wu et al. 2022; Maiolino et al. 2024; Pacucci et al. 2023; Stone et al. 2023;
however, see Li et al. 2022; Zhang et al. 2023c for a discussion of selection
biases).

We conclude by noting that, in our analysis, the shape of the CLF is
actually constrained by data only in a limited range of halo masses. For
low halo masses, the corresponding quasar luminosities fall in a range where
quasar clustering has never been measured and estimates for the QLF are
not available (or highly uncertain). On the other hand, for very high halo
masses (and hence very high quasar luminosities), quasars become so rare
that estimates for the QLF are once again very uncertain. Moreover, if the
quasars are luminous enough to be completely above the luminosity threshold
for clustering, then the exact behavior of the luminosity as a function of
halo mass becomes irrelevant. Therefore, in all panels of Figure 2.6, we show
the regions in halo mass where our constraints on the CLF are based purely
on extrapolations as dotted lines. This mainly concerns low halo masses
(log10 M/M⊙ ≲ 12.5) at z = 4, and both very low (log10 M/M⊙ ≲ 12) and
very high (log10 M/M⊙ ≳ 13.5) masses at z = 2.5.

2.5.1.2 Quasar lifetime and the growth of high-z black holes

While the empirical relation between quasar luminosity and halo mass gives
valuable information on the connection between black holes, their accretion
efficiency, and their host halos/galaxies, another key piece of the puzzle
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resides in the inferred values of the quasar duty cycle, εDC. This quantity is
defined as the fraction of halos that are hosting bright quasars at any given
time (see Sec. 2.2.1). If quasar activity is a stochastic process, however, the
duty cycle is also equal to the total fraction of time in which a black hole
is active as a bright quasar during the lifetime of an average host halo. In
other words, the duty cycle is an average constraint on the total lifetime
of a quasar, tQ. Following Martini & Weinberg (2001) (see also Martini
2004, Haiman & Hui 2001), we can simply assume that the characteristic
lifetime of a halo is roughly equal to the age of the universe tU(z), and get
an estimate for the quasar lifetime by writing tQ = tU(z) εDC. Using the
values of εDC obtained in Sec. 2.4.2, we get tQ ≈ 0.1− 1 Gyr at z ≈ 4, and
tQ ≈ 10− 15 Myr at z ≈ 2.5.

The quasar lifetime is one of the most fundamental quantities for under-
standing the role that SMBHs play in a cosmological context. According to
the standard picture of SMBH growth (e.g., Lynden-Bell 1969), luminous
quasars are powered by gas accretion onto a SMBH, and the rest mass
energy of this material is divided between the small fraction (≈ 10%) of
radiation that we observe, and the growth of the black hole. In this picture,
a phase of luminous quasar activity translates directly into a buildup of mass
for the central SMBH. This provides a direct connection between the total
luminosity emitted by quasars over cosmic time and the total mass residing
in SMBHs in the local Universe (the so-called “Soltan argument”, Soltan
1982). If the quasar lifetime is long compared to the Hubble timescale (i.e.,
the duty cycle is large), then the buildup of the total SMBH mass has taken
place in only a small fraction of host galaxies that were active as bright
quasars for a large fraction of their lifetimes. A short quasar lifetime, on the
other hand, implies that most galaxies have undergone a brief bright quasar
phase during their evolution history. The results of our analysis suggest that
the latter scenario is valid at cosmic noon (z ≈ 1 − 3), when most of the
SMBH growth has taken place (e.g., Shen et al. 2020). The short quasar
lifetime we find at z ≈ 2.5 is, in fact, a direct consequence of the fact that
quasar activity at that redshift takes place in relatively common halos with
a broad distribution of host halo masses (top panel of Figure 2.6). Opposite
conclusions can be obtained by considering our z ≈ 4 results. In this case,
we find that the large duty cycle translates into a quasar lifetime that is
a large fraction of the Hubble time (tQ ≈ 0.1 − 1 Gyr). This implies that
SMBH growth may be radically different in the young Universe as compared
to cosmic noon. As suggested by the z ≈ 4 QHMF in Figure 2.6 (top panel),
quasar activity at high z takes place only in the few most massive halos that
are present at that redshift, and hence these systems are active as bright
quasars for a large fraction of cosmic time.

Estimating the quasar lifetime at high z is even more compelling in
light of the fact that observations of very massive black holes powering
luminous quasars at z ≳ 5 challenge our standard paradigm for black hole
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formation and growth (Mazzucchelli et al. 2017b; Farina et al. 2022). In
the standard picture, black holes follow an Eddington-limited exponential
growth with a timescale that is equal to the “Salpeter time”, tS ≈ 40 Myr.
At high z, models suggest that there is just enough cosmic time to grow
the observed SMBH masses starting from massive seeds of ≈ 103 − 105 M⊙
(e.g., Inayoshi et al. 2020). For this reason, gauging the quasar lifetime is
important because it offers an indirect probe of whether sustained accretion
on SMBHs can take place at high z in the form of bright quasar activity.
The long lifetime we infer at z ≈ 4 is indeed consistent with this picture,
providing an argument in support of models for Eddington-limited growth
of high-z black holes. We can provide a rough estimate for this argument
by considering as a characteristic host halo mass the median value of the
z ≈ 4 QHMF (Figure 2.6, top panel), log10 Mmed/M⊙ ≈ 13.3. If we assume
accretion at the Eddington rate (η = 1), we can translate this characteristic
halo mass into a black hole mass using the relation between ηMBH/M and
M (middle panel of Figure 2.6): we get log10 MBH/M⊙ ≈ 9 (Kollmeier et al.
2006). By assuming a seed mass of 102 M⊙ (105 M⊙), we find that a total
quasar lifetime of ≈ 600Myr (≈ 350Myr) is required to grow the black
holes under the assumption of Eddington-limited accretion. This is in good
agreement with the estimate for tQ obtained above7. This simple argument
shows how studying the demographic properties of quasars (such as their
abundance and clustering) can place indirect constraints on the formation
and evolution history of SMBHs.

Alternative estimates for the quasar lifetime can be obtained by a number
of other methods (for an overview, see Martini 2004). Interestingly, results
from studies of the quasar proximity effect at high z (Khrykin et al. 2016,
2019) paint a rather different picture than the one suggested here, finding
values of the quasar lifetime that are several orders of magnitudes smaller
(see also Davies et al. 2019; Eilers et al. 2021). Khrykin et al. (2021) compiled
a set of HeII proximity zone measurements for z ≈ 3−4 quasars, and inferred
a log-normal quasar lifetime distribution with a mean of tQ ≈ 0.2Myr and
a standard deviation of ≈ 0.8 dex. It is important to note, however, that
proximity zone measurements are sensitive only to a fraction of the past
quasar lightcurve (up to ≈ 30Myr for HeII). Clustering measurements, on
the other hand, provide integral constraints on the total lightcurve emitted
by quasars over the entire history of the Universe. In other words, they are

7This estimate assumes that black holes grow at the Eddington limit for their entire
history. The demographic properties of quasars at the present time, however, do not
constrain black hole growth on a timescale larger than the inferred value of tQ. We can
provide an alternative argument to link the quasar duty cycle to the growth of black
hole mass by considering the characteristic luminosity of our quasar sample L ≳ Lthr,
and convert that to an accreted black hole mass by assuming a radiative efficiency of
≈ 10% and a total lifetime tQ. We get log10 MBH/M⊙ ≈ 8.7− 9.7 for tQ = 0.1− 1Gyr,
which again points to the fact that black holes can grow out to very high masses based
on our inferred duty cycle.
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only sensitive to the zeroth moment of the quasar lightcurve distribution
(i.e., the aggregate probability of the lightcurve). The discrepancy between
lifetime estimates for proximity zone sizes and clustering measurements,
then, may suggest that quasar lightcurves exhibit non-trivial variations on
timescales close to the ones probed by proximity zones. With this respect,
exploring the full probability distribution associated with quasar lightcurves
in the context of our quasar demographic model would provide a way to
connect these very different observational probes of quasar activity in a
single consistent picture. We will investigate this point in future work.

2.5.2 Comparison with previous work

The model presented in this work builds on a long-standing tradition of inter-
preting quasar observables via population modeling, i.e., by linking quasars
to the well-known population of halos (or sometimes galaxies) according to
some empirical/phenomenological prescriptions. Explaining the observed
relative abundance of quasars at different luminosities (i.e., the QLF) within
such frameworks has been achieved many times, with a large variety of em-
pirical models and physical prescriptions employed (e.g., Efstathiou & Rees
1988; Wyithe & Loeb 2003; Croton 2009; Conroy & White 2013; Fanidakis
et al. 2013; Veale et al. 2014; Caplar et al. 2015; Weigel et al. 2017; Ren &
Trenti 2021; Zhang et al. 2023b). The bottom line is that the QLF is pretty
straightforward to model starting from the hierarchical growth of structures
predicted in the ΛCDM framework. On the other hand, the QLF alone
does not place tight constraints on key properties of quasars such as their
black hole mass, accretion rate, lifetime, and host halo mass, not even in the
context of redshift-dependent models (e.g., Wyithe & Padmanabhan 2006;
Wyithe & Loeb 2009; Veale et al. 2014). Indeed, our analysis in Sec. 2.4.1
(Fig. 2.4) suggests that a very wide variety of model parameters can be in
good agreement with the QLF. As shown by Veale et al. (2014), alternative
parametrizations would fare nearly equally well at all redshifts. The large
uncertainties on the actual shape and normalization of the QLF that are
due to the significant systematics involved in these measurements (Kulkarni
et al. 2019) exacerbate this issue, especially at high redshift.

For this reason, considering the independent constraints coming from
quasar clustering is extremely useful, as they provide constraints on the
masses of the halos that are capable of hosting quasars. Reproducing the
clustering of low-redshift (z ≲ 2.5) quasars has been shown to be possible
both in empirical models (e.g., Kauffmann & Haehnelt 2002; Hopkins et al.
2007b; Croton 2009; Shankar et al. 2010a; Conroy & White 2013; Aversa et al.
2015; Shankar et al. 2020), semi-analytic models (e.g., Bonoli et al. 2009;
Fanidakis et al. 2013; Oogi et al. 2016) and cosmological hydrodynamical
simulations (e.g., DeGraf & Sijacki 2017). All of these studies, however, show
a significant tension with the clustering measurements at redshift z ≳ 3.
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Figure 2.6: Top: Quasar-host mass function (QHMF) at z = 2.5 (solid purple line) and
z = 4 (green), according to our model. These functions and their respective uncertainties
are the median and the 16th and 84th percentiles of the distributions obtained by randomly
subsampling the Markov chains of the posteriors shown in Figure 2.5. The halo mass
functions (HMFs) for both redshifts are shown with semi-transparent lines, whereas the
dashed-dotted lines indicate the median values of the QHMF distributions. In all panels,
regions in the halo mass spectrum where the behavior of the conditional luminosity
function (CLF) is purely extrapolated and not explicitly constrained by data are shown
with dotted lines. Middle: Same as the top panel, but showing the dependence on halo
mass of the product between the Eddington ratio (η) and the black hole-halo mass ratio
(MBH/M). In this case, there are two sources of scatter: the uncertainty on the model
given by the posterior distribution and the intrinsic scatter coming from the σ parameter
in the CLF. We plot the former with a darker shading, whereas the total contribution of
the two sources of scatter is shown with a lighter shading. Bottom: Same as the middle
panel, but showing the quantity ηMBH/M∗ instead (with M∗ being the galaxy mass).
The relation between halo mass and galaxy mass is taken from Behroozi et al. (2013).
The red dashed line shows the prediction for ηMBH/M∗ assuming the Reines & Volonteri
(2015) relation between black hole and galaxy masses (with the shading showing the
scatter in the relation), and setting η = 1.
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The implications for the strong clustering measured by S07 at z ≈ 3− 4,
in particular, have been discussed by White et al. 2008, Wyithe & Loeb
2009, and Shankar et al. 2010b. White et al. (2008) assume that the quasar
luminosity-halo mass relation is linear, and find that the total number density
of bright quasars can be reconciled with the linear bias measured by S07 only
if the scatter about this linear relation is very small (σ ≲ 0.3 dex). They also
find that their conclusions are strongly dependent on the specific functional
form assumed for the linear bias-halo mass relation b(M): the Mo & White
bias (Mo & White 1996; Jing 1998) is found to be marginally compatible
with data, whereas the Sheth, Mo, & Tormen one (Sheth et al. 2001) is
inconsistent with the measured bias at the ≈ 2σ level. Adopting the Sheth,
Mo, & Tormen functional form of b(M) after showing that it is a better fit
to N-body simulations, Shankar et al. (2010b) interpret the S07 data in the
context of an evolutionary model for supermassive black holes, and they
strengthen the conclusion that there is tension between the measured bias
and the theoretical predictions at z = 4. Similar results are found by Wyithe
& Loeb (2009), who advocate for a contribution of a merger-driven bias to
the z = 4 clustering (see also Bonoli et al. 2010; Cen & Safarzadeh 2015 for
a discussion of the impact of assembly bias on quasar clustering).

Our work shares some similarities with the three studies mentioned
above: we also assume a direct relation between quasar luminosity and halo
mass and use the quasar clustering data to infer the specific shape of this
relation. Key conclusions of our analysis can also be found in these former
attempts to explain the S07 observations: in Sec. 2.4.2, we find that bright
quasars need to be hosted by very massive (log10 M/M⊙ ≳ 13) halos, and,
as a consequence, the quasar duty cycle is a significant fraction of unity
(εDC ≈ 10 − 100%). In agreement with White et al. (2008) and Shankar
et al. (2010b), we conclude that a relatively small scatter (σ ≲ 0.3; Table
2.3) in the quasar luminosity-halo mass relation is necessary to explain the
S07 measurement. As also done by Wyithe & Loeb (2009), we adopt a
more flexible parametrization of this relation by assuming that it can be
non-linear, and find that a steep slope (γ ≳ 2) achieves a much better fit to
the data.

The major novelty that our work brings to the understanding of this
problem, however, does not reside in the interpretation of the results, but
rather in the framework we use to build our model. As explained in Sec. 2.2,
we extract the correlation function and the relative abundance of quasars
directly from extremely large-volume cosmological N-body simulations, using
a novel method to quickly compute the quasar auto-correlation function for
any quasar-host mass distribution. In this way, we can directly compare
our predictions for the quasar projected correlation function with the S07
observational data. Our model – being based on N-body simulations –
naturally accounts for the non-linear contributions to quasar clustering
that are essential to interpret the S07 clustering measurements correctly,
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especially at scales r ≲ 10−15 cMpc. Using this approach, we thus achieve a
much more solid data-model comparison, as we do not have to resort to the
notion of large-scale linear bias, which is significantly uncertain for strongly
biased systems (Diemer 2018) and which discards the information about the
shape and the physical features that lie in the S07 data points.

Indeed, according to the statistical analysis performed in Sec. 2.4.1, we
find our model can match the data with a satisfactory level of accuracy (i.e.,
reduced chi-squared ≈ 1), suggesting that, despite being rather extreme,
the S07 data can be explained in the context of the standard framework
in which clustering of dark matter halos is solely dictated by their mass,
without the need to invoke any contributions from assembly/merger bias.
We note that we cannot exclude, of course, that such a contribution is
present. If that is the case, it would imply that the mass function of z = 4
bright-quasar hosts may be somewhat less skewed towards very large halo
masses (log10 M/M⊙ ≳ 13). We leave an assessment of the role that merger
bias plays in cosmological simulations to future work.

Finally, we note that several measurements of the characteristic mass
of quasar-hosting halos at z = 2 − 4 are available in the literature. They
employ quasar-quasar (S07; E15; Timlin et al. 2018) and quasar-galaxy
(Trainor & Steidel 2012; Ikeda et al. 2015; García-Vergara et al. 2017; He
et al. 2018; García-Vergara et al. 2019) clustering, as well as gas kinematics
in the circumgalactic medium (CGM) of quasar-hosting galaxies (Fossati
et al. 2021; de Beer et al. 2023). While the host halo masses predicted
by these studies vary significantly, in the present work we have decided
to focus on the S07 and E15 measurements of SDSS/BOSS quasars only,
because these quasar samples are entirely spectroscopic and thus free from
any low-redshift contaminants. However, the same analysis described in this
paper could also be performed by taking into account the other clustering
measurements mentioned above.

2.5.3 Caveats and final remarks

As shown schematically in Fig. 2.1, the results presented in this work depend
on two key ingredients: the choice of the CLF, and the extraction of the halo
mass function and the halo (cross-)correlation functions from cosmological
N-body simulations. In the following, we will discuss the strengths and
weaknesses of our method by considering these components in turn. Let us
start with the latter: there are multiple sources of uncertainty in the final
estimates we obtain for the halo mass function and the halo cross-correlation
functions. First, despite the fact that the box sizes of the simulations
employed here are among the largest ever run (Angulo & Hahn 2022), halos
are so rare at the very massive end (4− 7σ peaks in the density field) that
the results of simulations at these masses suffer from significant noise. In
order to circumvent this issue – and to extrapolate the results of simulations



78 2.5. DISCUSSION

to the highest mass possible – we used analytical functions to fit the data
extracted from the simulations (Sec. 2.2.2). These analytical fits, however,
are not perfectly accurate and contribute some systematic errors to our final
model predictions.

Nonetheless, we believe that these sources of error can be neglected in
our data-model comparison (Sec. 2.4). This is because – as also noted
in Sec. 2.2.2 – the observables we are trying to reproduce, i.e., the QLF
and the projected correlation function, suffer from significant statistical
and systematic uncertainties (as high as ≈ 100% at z = 4 and ≈ 30% at
z = 2.5). In Sec. 2.2.2.1-2.2.2.2 and Appendix 2.B, we assess how well
our fitting functions reproduce simulations, and show that their relative
accuracy is generally ≲ 5 − 10% for both the halo mass function and
the cross-correlation functions. For very small (r ≲ 5 cMpc) and very
large (r ≳ 100 cMpc) scales, measuring the cross-correlation functions in
simulations is particularly challenging, especially at the high mass end. The
small-scale behavior is highly affected by halo exclusion effects, whereas at
large scales the finite size of the simulated boxes reduces the number of
pairs, and the baryon acoustic oscillation (BAO) peak makes the shape of
correlation functions difficult to capture with our coarse radial bins. As a
consequence, our fitting functions are also subject to larger errors at both
of these scales. However, these errors do not have a significant impact on
our final results, as observational data are also very uncertain at the same
scales; for this very same reason, we have excluded the S07 measurements at
very large scales (r > 100 cMpc) from our analysis (see Sec. 2.3.1).

As for the extrapolation of cross-correlations functions to masses higher
than the ones that we can probe with our simulations, we have argued that
such extrapolation is well motivated by considering the case of z = 2.5 in
Appendix 2.C. Furthermore, we note that the accuracy of this extrapolation
does not have a significant impact on our results: this can be determined
by looking at the QHMFs in Figure 2.6 (top panel). At both redshifts, the
quasars hosted by halos whose mass is not well represented in simulations
are only a small fraction of the total number of quasars (e.g., ≲ 5% at z = 4).
This implies that their actual contribution to the quasar auto-correlation
function is negligible compared to the uncertainty in the data.

Other possible sources of uncertainty in our model predictions that
we have not discussed yet are the cosmology assumed in the simulations
and the exclusion of sub-halos in the creation of the halo cross-correlation
functions. Cosmological parameters such as σ8 and Ωm are predicted to have
a significant effect on the collapse of structures in the standard ΛCDM model,
and consequently on the spatial distribution of very massive halos at all
reshifts. Studying the impact of these parameters on our final predictions for
the clustering of quasars is beyond the scope of this work. Given the current
large relative uncertainty on the data, however, we believe that including
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variations of the cosmological parameters in our inference procedure would
have little effect on our final results.

The exclusion of sub-halos is motivated by the fact that we are only
considering clustering measurements at medium-large scales, which are not
affected by the distribution of quasars inside a single halo – the so-called
one-halo term in HOD models (e.g., Cooray & Sheth 2002). In principle,
including the contribution of sub-haloes may boost the large-scale clustering
too, as having multiple quasars living in the same dark matter halo implies
a larger number of large-scale pairs. In practice, however, sub-haloes are less
massive than centrals, and thus they do not tend to host very bright quasars
according to the CLF found in Sec. 2.4. We have included sub-haloes in
some test runs and verified that large-scale clustering changes only at the
percent level, and significant differences are only present at r ≲ 1− 2 cMpc
even for the most massive halos. On top of that, we note that all of the
effects discussed here go in the direction of an enhancement of the predicted
clustering, and do not affect the main conclusion of this paper, i.e., that the
very strong clustering measured at z = 4 can be reproduced with standard
assumptions of bright quasars inhabiting massive halos.

In this work, we have assumed one, very simple parametrization for the
CLF. We believe that this simple framework is a strength of our model, as it
provides very clear physical insight into the formation of quasars and their
connection with the hierarchical growth of structures in the context of a
ΛCDM universe. On the other hand, we have tested this basic parametriza-
tion on a relatively small amount of (very uncertain) data. We have done
this on purpose: the main focus of this paper is on reproducing quasar
clustering at z = 4, and given the quality of the data we have at the present
moment, a more sophisticated choice for the CLF would likely have been too
flexible to be constrained. However, it is possible that extending our model
to a larger/higher signal-to-noise ratio (S/N) dataset, e.g. at z = 0 − 2,
would be possible only with a more sophisticated parametrization for the
CLF. We leave a thorough examination of different prescriptions for the CLF
for future work. In particular, we plan to apply our model to the multiple
measurements of quasar clustering available at low-z (e.g., Porciani et al.
2004; Croom et al. 2005; Ross et al. 2009) as well as to the analyses of the
dependence of clustering on luminosity at the same redshifts (e.g., Porciani
& Norberg 2006; Shen et al. 2009; Eftekharzadeh et al. 2015).

2.6 Summary

We have introduced a novel framework that makes use of multiple cosmolog-
ical N-body simulations to efficiently predict quasar observables such as the
quasar luminosity function (QLF) and the quasar auto-correlation function.
The halo mass function and the cross-correlation functions of halos with
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different masses are extracted from the dark-matter-only (DMO) versions of
the FLAMINGO simulations and used to inform analytical fitting functions.
These form the backbone of the model, which is then completed by the choice
of a conditional luminosity function (CLF) that links halo masses to quasar
luminosities. With these ingredients, we are able to predict the clustering
and the luminosity function of quasars, as well as other key properties such
as the mass distribution of quasar-hosting halos and the quasar duty cycle
(Figure 2.1).

We focus our analysis on the extremely strong clustering measured by
Shen et al. (2007) at z ≈ 4, with the goal of determining whether we can
reproduce this measurement in the context of our model. We use a simple
parametrization for the CLF, assuming a power-law dependence of quasar
luminosity on halo mass (L ∝ Mγ) with a log-normal scatter σ. We fit
the z = 4 QLF and projected correlation function both independently and
jointly, in order to gain insight into the best-fitting parameters for each of
the cases considered. We then turn our attention to lower-z data, and show
that our model can also match the measurements of the same quantities at
z ≈ 2.5 (Ross et al. 2009; Eftekharzadeh et al. 2015), albeit with significantly
different values of the model parameters.

We summarise here the main findings of the analysis described above:

• Quasar clustering and abundance measurements at z ≈ 4 require
quasars to reside in the most massive halos at that redshift, with a
characteristic mass of log10 M/M⊙ ≳ 13 (Figure 2.3). This implies that
the relation between quasar luminosity and halo mass (L−M) is highly
non-linear (γ ≳ 2) with a very small amount of scatter (σ ≲ 0.3 dex).

• Many different combinations of model parameters can achieve a good
fit to the measured QLF at z ≈ 4 (Figure 2.4). This is because very
different empirical prescriptions for the quasar luminosity-halo mass
relation (e.g., large scatter and shallow slope or vice-versa) are able
to map the exponentially declining end of the halo mass function
into the shallower bright end of the QLF. However, the only set of
parameters which is also compatible with clustering measurements
is the one mentioned above (i.e, a highly non-linear L −M relation
with very small scatter), as an increase in the scatter would lower
the characteristic mass of quasar-hosting halos, and thus decrease the
clustering predicted by our model.

• In order to match the total number density of bright z ≈ 4 quasars
in models in which quasars reside in sufficiently high halo masses to
reproduce the observed clustering, the active fraction of quasars (fon)
has to be close to unity. This implies that high-z quasars shine for
a large fraction of the Hubble time, with a duty cycle in the range
εDC = 10− 60%. In turn, this duty cycle results in a large total quasar
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lifetime tQ ≈ 108 − 109 yr, consistent with the standard picture of
black hole growth in the young universe.

• The steep z ≈ 4 relation between quasar luminosity and halo mass
contrasts with the well-known prediction of a flattening in the stellar
mass-halo mass relation at high mass at every epoch (e.g. Behroozi
et al. 2013). This implies that in very massive high-z halos – while the
star formation may have been quenched already – the supermassive
black hole at the center of the galaxy needs to be either over-massive
and/or highly accreting. This may have an impact on the shape and
normalization of the black hole mass-galaxy mass relation at high
redshift (see e.g., Maiolino et al. 2024; Stone et al. 2023).

• Furthermore, the extremely small scatter (σ ≈ 0.1− 0.3 dex) inferred
for the L − M relation at z ≈ 4 points to some physical processes
enforcing a tight relationship between quasars and their dark matter
halo hosts. In other words, the relation between black hole mass and
stellar and/or halo mass, together with the distribution of Eddington
ratios, all conspire to yield a remarkably low scatter.

• The clustering and relative abundance of quasars at lower redshift
(z ≈ 2.5) can be explained by the same parametric relation between
quasar luminosity and halo mass. However, the parameters describing
this relation show a significant evolution with redshift (Figure 2.5):
the slope of the L −M is significantly shallower (γ ≈ 1.15) than at
z ≈ 4, and the scatter larger (σ ≈ 0.5 dex).

• Overall, our comparison between z ≈ 2.5 and z ≈ 4 reveals two
radically different pictures in terms of the connection between quasars
and their host halo population (Figure 2.6). High-z (z ≈ 4) quasars
are hosted by very massive halos, with a very large occupation fraction
(i.e., a large fraction of these halos host bright quasars at any given
time). At lower redshift (z ≈ 2.5), instead, quasars reside in halos
with a broad range of masses, with the bulk of the population being
characterized by relatively common, log10 M/M⊙ ≈ 12.5 mass halos.
As a consequence, only a small fraction of low-z quasars are actively
shining at any given moment, with a quasar duty cycle of εDC ≈ 0.5%.
These conclusions are consistent with the standard picture of “cosmic
downsizing” of quasars and AGN (e.g., Merloni 2004; Scannapieco et al.
2005; Fanidakis et al. 2012), as the bulk of the quasar population is
hosted by progressively smaller halos as redshift decreases.

The framework presented here can be readily applied to interpret quasar
clustering measurements at all redshifts. In particular, focusing on very
high redshift is especially interesting in light of the fact that the large-scale
environment of very bright quasars has been proven hard to pinpoint in
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the early universe (e.g., Fan et al. 2023). For example, Arita et al. (2023)
recently measured the quasar auto-correlation function at z ≈ 6 for the
first time, finding results broadly consistent with the very strong clustering
measured at z ≈ 4. On top of that, several JWST programs such as ASPIRE
(Wang et al. 2023) and EIGER (Kashino et al. 2023; Eilers et al. 2023)
are starting to deliver measurements of quasar clustering by probing the
distribution of line emitters around bright, z ≈ 6−7 quasars. Connecting the
framework presented here to the upcoming quasar-galaxy cross-correlation
measurements from JWST will offer a clear and comprehensive picture of the
large-scale environments in which the first quasars formed (see also Costa
2024 for an alternative approach).

As suggested by the results obtained in this work, interpreting quasar
properties within a consistent framework that takes into account both their
demographics and their spatial distribution can give great insight into the
relationship between the hierarchical growth of structures in the Universe
and the evolution of supermassive black holes over cosmic time.

2.A Appendix: Obtaining the quasar auto-
correlation from the halo cross-correlation func-
tions

Let us consider a stochastic process N (q), describing – in our case of interest
– the spatial distribution of quasars. This distribution is discrete: following
Peebles (1980), we divide the volume of interest into infinitesimal elements
δVi, and – given the average quasar density n̄q – we can write the probability
of having a quasar in the volume element δV1 as:

δP1 = ⟨N (q)
1 ⟩ = n̄q δV1. (2.22)

Similarly, we define the two-point correlation function, ξ(r12) ≡ ξ12, via the
probability of having a quasar in the volume element δV1 and another one
in the volume element δV2:

δP12 = ⟨N (q)
1 N (q)

2 ⟩ ≡ n̄2
q δV1δV2 (1 + ξ12) . (2.23)

We introduce now the continuous number density field n(q)(x), which we
define via the expression:

δP12 = ⟨N (q)
1 N (q)

2 ⟩ ≡ ⟨n(q)(x1)n
(q)(x2)⟩ δV1δV2, (2.24)

and write this equation in terms of the density contrast field δ(q) – defined
as n(q)(x) = n̄q

(
1 + δ(q)(x)

)
:

δP12 = n̄2
q δV1δV2

(
1 + ⟨δ(q)(x1)δ

(q)(x2)⟩
)
. (2.25)



CHAPTER 2 83

By comparing this to eq. 2.23, we find that the correlation function can also
be expressed as:

ξ12 = ⟨δ(q)(x1)δ
(q)(x2)⟩ ≡ ⟨δ(q)1 δ

(q)
2 ⟩. (2.26)

We want to split the different contributions of quasars to the density field
n(q) based on the mass of their host halos. We introduce a set of continuous
fields {n(h)(Mk)}, which represent the distributions of halos for different
mass bins centered on Mk and with a width ∆M .

We now make the key hypothesis that the distribution of quasars with
a host halo mass in the range [Mk −∆M/2,Mk +∆M/2] is an unbiased
tracer of the underlying distribution of halos, n(h)(Mk). In other words, the
quasars at a given host halo mass are just undersampling the distribution of
halos, and they are thus described by the same stochastic process. This is the
case if the presence of a quasar depends solely on the mass of its host. Thus,
we can write the quasar distribution, n(q) in terms of the distributions of
halos with different masses by simply weighing them by the relative number
of quasars at those masses:

n(q) =
∑
k

pk n
(h)(Mk), (2.27)

where pk represents the probability that a quasar has a host-halo mass in
the bin Mk. Using the “quasar-host mass function” (QHMF) introduced in
Sec. 2.2.1 (eq. 2.6), we can express this probability as (n̄q,k is the average
number density of quasars in the host mass bin Mk):

pk =
n̄q,k

n̄q
=

nQHMF(Mk)∆M∫∞
0

nQHMF(M) dM
. (2.28)

Introducing the overdensity definitions for the distributions at different
masses, n(h)(Mk) = n̄q,k

(
1 + δ(h)(Mk)

)
we can write:

⟨n(q)
1 n

(q)
2 ⟩ =

∑
j

∑
k

pjpkn̄
2
q

(
1 + ⟨δ(h)1 (Mj)δ

(h)
2 (Mk)⟩

)
=

= n̄2
q

1 +
∑
j

∑
k

pjpk⟨δ(h)1 (Mj)δ
(h)
2 (Mk)⟩

 ,

(2.29)

where we have made use of the fact that
∑

k pk = 1. Introducing the
cross-correlation functions for halos of different masses, ξ

(h)
12 (Mj ,Mk) =

⟨δ(h)1 (Mj)δ
(h)
2 (Mk)⟩, we can express the quasar auto-correlation as:

ξ12 = ⟨δ(q)1 δ
(q)
2 ⟩ = ⟨n(q)

1 n
(q)
2 ⟩

n̄2
q

− 1 =
∑
j,k

pjpk ξ
(h)
12 (Mj ,Mk). (2.30)
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This proves eq. 2.7, which relates the quasar auto-correlation function
ξ(r12) ≡ ξ12 to the cross-correlation functions of halos with different masses,
ξh(Mj ,Mk; r12) ≡ ξ

(h)
12 (Mj ,Mk).

2.B Appendix: Fitting the cross-correlation
terms from simulations

In this Section, we provide details on the fitting we perform to the values of
the halo cross-correlation functions, ξh(Mj ,Mk; r), extracted from simula-
tions. As described in Sec. 2.2.2 and 2.2.2.2, we extract these values from
two simulations with box sizes equal to L = 2800 cMpc and L = 5600 cMpc,
respectively. For each simulation, we consider only halos in a specific range
of masses, so that all the mass bins considered are populated by a suf-
ficient number of well-resolved halos. In particular, we set the following
ranges (Sec. 2.2.2): log10 M/M⊙ = 11.5 − 13.0 for L = 2800 cMpc, and
log10 M/M⊙ = 12.5−13.5 for L = 5600 cMpc. We choose a bin width of 0.25
in log10 M , so that we have 6× 6 cross-correlation terms for L = 2800 cMpc,
and 4× 4 cross-correlation terms for L = 5600 cMpc. Note that the masses
Mj and Mk in the expression ξh(Mj ,Mk; r) do not refer to the center of their
respective bins, but rather to the median value of the halo mass function in
those bins.

Our goal is then to find a single analytical description of these cross-
correlation functions that can represent the two simulations simultane-
ously. In order to do that, we first divide all the cross-correlation func-
tions ξh(Mj ,Mk; r) by a reference correlation ξref(r); in formulae, we define
ρ(Mj ,Mk; r) to be:

ρ(Mj ,Mk; r) = ξh(Mj ,Mk; r)/ξref(r). (2.31)

In this way, we hope that ρ(Mj ,Mk; r) will be only marginally dependent
on the scale r. We set ξref(r) ≡ ξh(M̃, M̃ ; r), with M̃ representing the
log10 M = 12.5− 12.75 bin. This choice is arbitrary, but it is made to ensure
that the mass bin sits in the overlap between the mass ranges of the two
different simulations we use. We also attempt to minimize any dependences
of the cross-correlation functions on cosmology and redshift by expressing
all the masses in terms of peak heights ν(M) (see also Sec. 2.2.2.1).

Finally, we fit a 3-d polynomial ρfit(νj , νk, r) to the values extracted
from the simulations. We empirically find that a second-degree polynomial
in mass and third-degree in the radial dimension fits the data points well
enough and at the same time attains a smooth behavior with respect to all
three variables (i.e., we prevent overfitting). The errors on the data points
are assigned based on the Poisson statistics of the pair counts (eq. 2.16).
As also done in Sec. 2.2.2.1, we weigh the errors associated with the two
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simulations differently in order to achieve a better fit. In particular, we
double the values of the Poisson errors for the L = 2800 cMpc simulation,
and we halve the ones associated with the L = 5600 cMpc box.

Figures 2.7–2.8 show the results of the fitting for the two redshifts
considered in this work: z = 4 (Fig. 2.7) and z = 2.5 (Fig. 2.8). The first
row of each plot displays the resulting fitting function ρfit(ν(Mj), ν(Mk), r).
Each panel in this row shows the values of ρfit(ν(Mj), ν(Mk), r̄) as a function
of the two masses Mj and Mk at a different scale r̄. The second and
third rows show the relative differences (ρ/ρfit − 1) between our fit and
the two simulations considered. The mass ranges that are selected in each
simulation are shown as grey boxes in the 2-d mass planes. According to these
figures, our simple analytical framework can describe the behavior of cross-
correlation functions in a wide mass range with a good degree of accuracy
(≲ 5− 10%). Notable exceptions to this can be found for very high masses
(log10 M/M⊙ ≳ 13.2− 13.3) and very large scales (r ≳ 100 cMpc). However,
these are both expected, as both at large masses and large scales correlation
functions are difficult to measure in simulations. Further discussion of this
can be found in Sec. 2.2.2.2 and Sec. 2.5.3. Similar conclusions on the
quality of our fits can be drawn by looking at the right panels of Figure 2.2
and Figure 2.9, where predictions from our fitting functions are compared
to auto-correlation functions extracted from the simulations.

2.C Appendix: Halo mass function and corre-
lation functions for redshift z = 2.5

In the main text (Sec. 2.2.2.1–2.2.2.2), we discussed our predictions for the
halo mass function and the halo (cross-)correlation functions at z = 4. We
show here the same results for the other redshift that we consider in our
analysis, z = 2.5. In Figure 2.9 (left panel), we show the halo mass function
extracted from the two simulations (L = 2800 cMpc and L = 5600 cMpc in
teal and red, respectively), as well as our fitting function (eq. 2.14-2.15, gray
line). The best-fitting parameter values for z = 2.5 are: A = 0.464; a = 3.43;
b = 0.847; c = 1.31. Note that for the fitting we employ the same mass
ranges as we used for z = 4 (Table 2.1). This choice is clearly sub-optimal,
as halos are much more abundant at lower-z, and therefore mass bins with
log10 M/M⊙ > 13.5 are well populated even for the smallest box considered
(L = 2800 cMpc). However, we choose to not take into account masses larger
than log10 M/M⊙ > 13.5 for the fitting so that we can benchmark how well
our fitting function fares if extrapolated to masses larger than this limit. In
this way, we can test whether our fitting framework is valid to interpret the
behavior of the halo mass function up to masses higher than the ones we
can simulate. As shown in Fig. 2.C (left panel), the trend of the halo mass
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function at large masses is well described by the extrapolation of our fitting
up to log10 M/M⊙ ≳ 14; at higher masses, halos become very rare even at
z = 2.5, and the halo mass function becomes quite noisy and its behavior
highly uncertain.

The right panel of Figure 2.9 shows the halo auto-correlation functions
for different mass bins obtained both from simulations (colored points) and
from our fitting function (gray lines; see Appendix 2.B). We use 8 mass bins
ranging from log10 M/M⊙ = 11.5 to log10 M/M⊙ = 13.5 and with a width
of 0.25 dex. Lower mass bins correspond in Fig. 2.C to lower values of the
correlation functions, and vice-versa. Once again, the mass ranges employed
for our fitting are the same for both z = 2.5 and z = 4, and do not go higher
than log10 M/M⊙ = 13.5. This gives us the possibility of testing how the
extrapolation of ξh,fit(Mj ,Mk; r) fares at larger masses. As explained in Sec.
2.2.2.2, ensuring that our theoretical framework can be extended to very
high masses (log10 M/M⊙ ≈ 14) is quite important, as – especially at z = 4
– a significant fraction of quasars are hosted by this population of massive
halos that is not well represented in our simulations.

Extrapolations from our fits are shown in Fig. 2.9 (right panel) with
dashed lines. We also extract halo auto-correlation functions from the
L = 5600 cMpc box for the mass bin log10 M/M⊙ = 13.5− 13.75; we show
these values with golden crosses in Fig. 2.9 (right panel). We see that the
extrapolation agrees with simulations at the same level as the points that
are used for fitting, with the only exceptions being very small (r ≲ 5 cMpc)
and very large (r ≳ 100 cMpc) scales. Further discussion on the implications
of these results can be found in Sec. 2.5.3.
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Figure 2.9: Same as Fig. 2.2 but for the snapshots at redshift z = 2.5. Golden
crosses in the right panel represent the auto-correlation functions measured in the mass
bin log10 M/M⊙ = 13.5 − 13.75, in the L = 5600 cMpc simulation. This is used as a
benchmark to assess how well our fits (dashed grey lines) can be extrapolated to higher
masses.
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