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"lei signora Ph(i)NK,, quella che in mezzo al chiuso nostro mondo meschino
era stata capace d'uno slancio generoso, il primo, “Ragazzi, che tagliatelle vi
farei mangiare!”, un vero slancio d’amore generale, dando inizio nello stesso
momento al concetto di spazio, e allo spazio propriamente detto, e al tempo,
e alla gravitazione universale, e all’'universo gravitante"

— Le cosmicomiche, Ttalo Calvino

"she, Mrs. Ph(i)Nk,, she who in the midst of our closed, petty world had
been capable of a generous impulse — the very first one — “Boys, the
tagliatelle I would make for you!”, a true outburst of general love, initiating
at the same moment the concept of space and, properly speaking, space
itself, and time, and universal gravitation, and the gravitating universe"

— Cosmicomics, Italo Calvino
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INTRODUCTION

Being born at the end of the last century, it’s difficult for me to fully appreci-
ate just how dramatic — and how recent — the progress in our understanding
of the Universe has been. For millennia, civilizations devised myths to
explain the origins of the cosmos and its fate. Today, however, we possess a
well-tested theoretical framework that describes the evolution of the Universe
from about one second after the Big Bang to the present day and beyond.
Known as the standard model of cosmology, or the ACDM model, this
framework is rooted in Einstein’s theory of general relativity and has been
refined through a series of paradigm shifts, some of the most consequential
occurring only in the past few decades.

Much like the Standard Model of particle physics, ACDM is powerful
precisely because it explains a vast range of observations using only a small
number of parameters. It has withstood numerous experimental tests and
challenges. While it is not the final word — offering limited insight into
the true nature of dark matter, dark energy, or the physics of inflation — it
remains the most robust and predictive model for describing the large-scale
evolution of the Universe.

ACDM provides the backbone: a model of the Universe on the largest
scales. On top of this framework, however, lies the rich tapestry of structure
formation: the growth of stars, galaxies, and black holes. Research in
physical cosmology today is often split along two broad directions. On one
side is the pursuit of ever more precise tests of the ACDM model, a field
now driven by percent-level measurements that seek signs of new physics
in the smallest deviations from theoretical predictions. This often relies
on observations of the largest cosmic scales, where the imprint of complex
astrophysical processes is negligible or can be marginalized effectively. On
the other side lies the study of those very astrophysical processes — nonlinear,
chaotic, and often poorly understood. This is not a percent-level science, but
an order-of-magnitude one. Yet, it is precisely this limited understanding
of galaxy evolution that has made the field ripe for discovery, and indeed,
some of the most transformative progress in recent years has come from this
domain.

A crucial driver of this recent progress has been the advent of new
observatories capable of probing ever earlier cosmic times. By pushing
the limits of our observations to higher redshifts', these instruments are
extending the frontiers of our knowledge and opening up new regimes for
discovery. The most prominent recent example is the James Webb Space

1The cosmological redshift, z, is a measure of cosmic time: higher redshifts correspond to
earlier times in the history of the Universe.



Telescope (JWST), launched in 2021. With its unprecedented sensitivity
and resolution, JWST is already reshaping our understanding of the early
Universe by revealing surprising properties of the first galaxies and black holes
and challenging established theoretical models. It has been an instructive
experience to witness this chaotic yet inspiring transformative process taking
place during my Ph.D. — progress that also shapes the core of this thesis.

Among the most important findings in the context of galaxy formation is
the central role played by supermassive black holes (SMBHs). Initially pro-
posed in the 1960s to explain the immense energy output of quasars, SMBHs
quickly became a cornerstone of active galactic nuclei (AGN) theory. By the
1990s, high-resolution observations showed that SMBHs are ubiquitous in
the Universe, inhabiting all massive galaxies even in the absence of AGN
activity. Tight empirical correlations were discovered between the mass of
SMBHs and several properties of the host galaxies, suggesting a scenario of
coevolution, or, at the very least, a deep physical connection between black
hole growth and galaxy evolution. More recently, the detection of luminous
quasars at redshifts beyond z > 6 has shown that billion-solar-mass black
holes were already in place less than a billion years after the Big Bang,
posing significant challenges to our understanding of early black hole growth.

This thesis explores these themes — among others — through a focused
investigation of SMBHs as traced by the properties of quasars, particularly
in the high-redshift Universe where the earliest stages of SMBH and quasar
evolution unfold. Chapters 2-5 are dedicated to this topic. The central idea
driving these chapters is that the ACDM model provides a robust cosmo-
logical framework for describing the large-scale structure and its evolution
across cosmic time. By building upon this foundation, we can construct
models to understand how SMBHs and quasars form, grow, and evolve, and
connect them to observations across a range of redshifts. The overarching
goal is to determine how complex astrophysical processes — such as black
hole accretion and quasar activity — can be consistently embedded within
the standard cosmological paradigm, using a phenomenologically driven
approach that bridges theory and data.

Chapters 6 and 7 focus on distinct research directions that fall outside the
main scope of this thesis but reflect other projects I pursued before and during
my Ph.D., in collaboration with researchers from other subfields. Chapter
6 shifts attention to the opposite end of the black hole mass spectrum:
stellar-mass black holes, whose mergers have been detected by gravitational
wave observatories such as LIGO, Virgo, and KAGRA. This chapter presents
a first step toward addressing a key challenge for the next generation of
gravitational wave detectors — expected to operate in the 2030s — which will
be so sensitive that overlapping signals in the time domain may complicate
the inference of source parameters. Our work quantifies and assesses the
impact of this overlap on parameter estimation.
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Chapter 7 explores a different class of astrophysical discs — not those
around SMBHs, but the protoplanetary discs surrounding young stars, which
are the birthplaces of planetary systems. These structures have been ex-
tensively studied with the Atacama Large Millimeter /submillimeter Array
(ALMA), which provides high-resolution observations in the far infrared. In
this chapter, we use ALMA data to infer the vertical structure of protoplan-
etary discs, shedding light on the early stages of planet formation.

While this introduction focuses primarily on supermassive black holes
and extragalactic astrophysics, a complete overview of the contents of all
chapters is provided in Section 1.5.

Why this title

What links bright quasars in galaxies far, far away to mergers of stellar-mass
black holes in the nearby Universe — detected through their gravitational-wave
emission — to the protoplanetary discs we observe in our solar neighbourhood?
I asked myself this question when searching for a title for this thesis. While
many connections can be drawn, one in particular stood out to me: the idea
that, in different ways, this thesis revolves around the concept of bias.

Chapter 1 opens by discussing how quasars at z ~ 4 appear to be among
the most biased tracers of structure in the early Universe. There, we are
talking about cosmological bias — a concept introduced in Sec. 1.1. In this
context, bias quantifies how the spatial distribution of certain astrophysical
objects, like quasars, relates to the underlying distribution of dark matter.
Because they tend to reside in massive structures, quasars are more clustered
than the matter field as a whole, and thus are said to be “biased” tracers of the
large-scale distribution of matter. Understanding how different populations
of quasars and galaxies trace this distribution is central to embedding black
hole and galaxy evolution within a cosmological framework.

Cosmological bias is a somewhat niche but well-defined concept. Later
in the thesis, a different kind of bias takes the stage — one that is more
familiar to anyone working in data analysis or modeling. Chapter 6 deals
with bias in parameter inference: how assumptions, modelling choices, and
incomplete information can systematically skew the results we extract from
data. In this specific case, we assess the bias that can arise from the overlap
of multiple gravitational wave signals in the time domain.

Finally, there’s a broader, more implicit sense in which bias plays a
role: the idea that our window on the Universe is inevitably a biased point
of observation. This observational bias lies at the core of astronomy as a
science. As we show in Chapter 7, however, this bias can also be turned into
an advantage. Protoplanetary discs, which are approximately azimuthally
symmetric in three dimensions, appear as ellipses on the sky due to projection
effects. These same effects distort the apparent shape of substructures —
such as the rings and gaps that often characterize discs — breaking their
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symmetry in a predictable way that depends on the disc’s inclination and
intrinsic morphology. As a result, our particular vantage point allows us to
constrain the three-dimensional structure of discs, using the bias introduced
by projection as a diagnostic tool rather than a limitation.

“From a biased perspective” also reflects my own path through astro-
physics. It has been a biased one — shaped by curiosity, but also by chance
encounters, guidance from mentors, and the particular set of tools and
questions I ended up gravitating towards. There is no single pattern or
overarching plan, no carefully laid-out roadmap guiding the journey.

Bias, in its many forms, is something we must acknowledge — whether we
aim to model it, correct for it, or simply be aware of it. It shapes what we
see, how we interpret it, and what we conclude. But it also reflects who we
are: our interests, our choices, our perspective on the Universe. This thesis
is one such perspective — a biased one, certainly, but hopefully one worth
telling.

Setting the stage: ACDM cosmology and
the large-scale structure of our Universe

The ACDM model is founded on the “cosmological principle”, which posits
that, on sufficiently large scales, the Universe is both homogeneous (the
same everywhere) and isotropic (the same in all directions). This principle
allows a great simplification of Einstein’s field equations in general relativity,
yielding dynamic solutions that describe a Universe whose overall scale
evolves with time, either expanding or contracting according to a scale factor
a(t). The corresponding spacetime geometry is captured by the Friedmann-
Lemaitre-Robertson-Walker (FLRW) metric, which underpins the standard
cosmological model. The Friedmann equations relate the dynamics of the
scale factor, a(t), to the energy content of the Universe (Friedmann 1922,
1924).

Observational support for this framework came with Edwin Hubble’s
discovery that distant galaxies exhibit a systematic redshift, indicating that
the Universe is indeed expanding (Hubble 1929). This interpretation was
further reinforced by Georges Lemaitre, who proposed that such expansion
implies a finite age and a primordial, hot, and dense origin — a concept
that would later be termed the “Big Bang” (Lemaitre 1931). In the context
of modern cosmology, this singular beginning marks the onset of cosmic
time and the starting point for the formation and evolution of all known
structures in the Universe.

A cornerstone of the ACDM model is the realization that the energy
content of the Universe is not composed solely of ordinary (baryonic) matter.
Rather, baryons account for only ~ 5% of the total energy density of
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FLAMINGO-10K
DMO 2.8 Gpe
1'199'808!512'000 Particles

200 Mpe

Figure 1.1: The large-scale structure of the Universe as predicted by the FLAMINGO-
10k dark-matter-only (DMO) cosmological simulation (Schaller et al., in prep.; see also
Chapter 3). This simulation was run by evolving over one trillion particles within a box
measuring 2.8 cGpc per side, making it one of the largest simulations ever performed.
A version of this image was turned into a puzzle — courtesy of Matthieu Schaller — and
shared with the Leiden Observatory community. In assembling it, Ph.D. students at
Leiden were reminded of Einstein’s cosmological principle the hard way: the Universe
gets surprisingly boring when you zoom out too far.
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the Universe at the present epoch. The remaining components include
dark energy (A, which can be associated with the cosmological constant
in Einstein’s field equations), cold dark matter (CDM), radiation, and
neutrinos. While dark energy drives the accelerated expansion of the Universe
at late times, cold dark matter — a non-luminous, collisionless form of
matter — is essential for the formation and growth of cosmic structures.
Although its precise nature remains unknown and direct detection has not
yet been achieved, the gravitational influence of dark matter is indispensable
for reconciling theoretical predictions with a wide range of astrophysical
observations, including the dynamics of galaxies, gravitational lensing, and
the large-scale clustering of matter.

Even though the Friedmann equations assume a perfectly smooth Uni-
verse, we know that in reality, it contains small Gaussian density perturba-
tions. The origin of these fluctuations is still not fully understood — likely,
they arise from quantum fluctuations in the very early Universe, which were
stretched to macroscopic scales during a brief period of cosmic inflation. But
we know for a fact that these fluctuations exist: we see them imprinted in
the Cosmic Microwave Background (CMB), which offers a direct snapshot
of the Universe at a redshift z ~ 1100. The exquisite measurements of the
CMB — particularly by missions such as WMAP and Planck (Spergel et al.
2007; Planck Collaboration et al. 2014) — provide strong evidence for the
statistical properties of these primordial fluctuations.

These small overdensities in the primordial density field act as the
seeds from which all cosmic structures emerge. In the early Universe,
these perturbations evolve linearly: fluctuations at different scales grow
independently and proportionally to a common, time-dependent growth
factor. Within this regime, linear perturbation theory provides an accurate
analytic description of the evolution of the matter density field (e.g., Peebles
1980). As cosmic time progresses, however, overdensities grow under the
influence of gravity and eventually reach the threshold at which linear theory
ceases to be valid. This transition marks the onset of the non-linear regime
of structure formation. Gravitational collapse proceeds anisotropically —
typically beginning along the shortest axis of a perturbation — giving rise
to the complex filamentary pattern known as the cosmic web (see Fig. 1.1;
Bond et al. 1996). When matter collapses along all three spatial dimensions,
it forms bound, virialized structures known as halos. These halos are made
of dark matter, which collapses earlier than their baryonic counterparts due
to its collisionless nature. Once halos form, they act as gravitational wells
that attract baryonic gas, allowing it to cool, condense, and eventually form
stars and galaxies (Barkana & Loeb 2001; Dayal & Ferrara 2018).

To study the non-linear regime of structure formation, cosmologists
employ N-body simulations, which numerically evolve a system of particles
under their mutual gravitational interactions. Since dark matter dominates
the mass budget of the Universe and drives the formation of structures, these
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simulations typically include only dark matter (and, in some cases, massive
neutrinos). They are therefore commonly referred to as dark-matter-only
simulations. In contrast, baryonic processes — such as gas dynamics, radiative
cooling, star formation, and feedback from supernovae and AGN — introduce
considerable physical complexity and are associated with significant modeling
uncertainties (Vogelsberger et al. 2020). These effects become prominent
mainly at the scale of dark matter halos, where non-gravitational forces
play a critical role. On larger scales, however, the influence of baryons
is subdominant, allowing the large-scale structure of the Universe to be
accurately described using gravity alone.

Since the pioneering efforts in the early 1980s (e.g., Efstathiou et al. 1985;
Davis et al. 1985), the field of N-body simulations has evolved significantly,
driven by advances in algorithms and computational capabilities (Angulo
& Hahn 2022). Modern simulations are able to capture the formation and
evolution of structures with remarkable accuracy, extending from ~Gpc
scales down to the ~kpc scale of subhalos. Figure 1.1 presents an example
of the projected matter density field from the FLAMINGO-10k cosmological
simulation (Schaller et al., in prep.). With more than 10'? dark matter
(CDM) particles evolved in a 2.8 cGpe box, it represents one of the largest
simulations ever run.

1.1.1 Dark matter halos as the building blocks of cosmic
structure formation

By acting as gravitational wells that attract baryons, dark matter halos
are the fundamental environments within which visible structures in the
Universe originate. Infalling gas cools radiatively and condenses at the centre
of halos, eventually giving rise to stars, galaxies, and supermassive black
holes. Consequently, there exists a close connection between the hierarchical
assembly of dark matter halos and the formation and evolution of galaxies.
This correspondence forms the basis of theoretical frameworks such as semi-
analytic models (SAMs) and semi-empirical approaches, which model galaxy
formation and evolution by tracking the distribution and merging histories
of halos and subhalos (i.e., satellite halos contained within a larger halo)
across cosmic time (Somerville & Davé 2015; Lapi et al. 2025).

The distribution and evolution of (sub)halos can be extracted from N-
body cosmological simulations using (sub)halo finder algorithms. These
algorithms analyze the particle data output from simulations to identify
gravitationally bound structures. Typically, halo finders first locate candidate
halos based on density peaks or groups of particles connected in configuration,
phase, or history space, and then apply an unbinding procedure to remove
particles that are not gravitationally bound (Onions et al. 2012; Forouhar
Moreno et al. 2025).
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An alternative to explicitly identifying halos in simulations is provided
by the halo model (e.g., Cooray & Sheth 2002). This empirical framework
assumes that all matter resides in dark matter halos and uses analytic
prescriptions for halo properties, abundances, and spatial distributions to
statistically describe the large-scale matter field. Rather than tracking
individual halos, the halo model predicts ensemble-averaged quantities —
such as correlation functions or power spectra — by extending linear theory
using analytic prescriptions (Asgari et al. 2023). While effective at quasi-
linear scales (r 2 10 cMpc), the halo model becomes increasingly inaccurate
at small scales, high redshifts, and large halo masses, due to its simplified
assumptions about halo profiles, substructure, and non-linear effects (e.g.,
Mead & Verde 2021). These limitations make it unsuitable for the regimes
explored in this thesis. For this reason, we rely on large-volume N-body
simulations to extract accurate halo statistics in Chapters 2-5.

The most fundamental statistic describing the halo population is the
halo mass function (HMF), which quantifies the comoving number density
of halos as a function of mass. In its simplest analytical form, the HMF can
be derived using the Press—Schechter formalism (Press & Schechter 1974).
This approach assumes that halos form from regions in the initial density
field where the linearly extrapolated density contrast, smoothed on some
scale, exceeds a critical threshold for collapse. This allows one to relate the
abundance of halos to the statistical properties of the initial Gaussian density
field. While the Press—Schechter model captures the essential physics of
hierarchical collapse, it relies on simplifying assumptions and underestimates
halo abundances at both the low- and high-mass ends. Modern N-body
simulations offer precise empirical descriptions of the HMF over a wide range
of halo masses and redshifts, accounting for the full non-linear dynamics of
structure formation (e.g., Tinker et al. 2008; Bocquet et al. 2016).

Another key property of halos is their spatial clustering. Because halos
form from peaks in the initial density field, their distribution is biased
relative to the underlying matter distribution. This phenomenon, known as
cosmological halo bias, is scale-dependent in general, but on large (linear)
scales, it is well described by a mass- and redshift-dependent bias factor.

The origin of halo bias can be understood through the statistics of
Gaussian random fields. Rarer peaks — associated with more massive halos
— require the constructive interference of more Fourier modes and are thus
more clustered than typical regions. More quantitatively, a halo of mass M
at redshift z corresponds to a peak in the smoothed linear density field whose
height is given by v(M, z) = 6.(z)/o(M), where §.(z) is the critical linear
overdensity for collapse, and o(M) is the standard deviation of the density
field smoothed on the scale corresponding to mass M. Higher peak heights
(v > 1) correspond to rarer, more strongly clustered halos. This implies
that halo clustering strength increases with both halo mass and redshift.
For instance, at fixed mass, halos forming at earlier times must come from
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higher peaks, since the growth factor is smaller and fluctuations must be
intrinsically larger to collapse by that time. Similarly, at fixed redshift, more
massive halos form from rarer, higher peaks, and are therefore more strongly
biased.

This connection between halo clustering and mass enables a powerful
technique in galaxy formation studies: by comparing the observed clustering
of a galaxy population to theoretical predictions for the clustering of halos,
one can infer the typical mass of the halos that host those galaxies (e.g., Mo
& White 1996). This provides crucial insight into the connection between
galaxies and their large-scale environments. In Chapters 2-5, we will apply
the same idea to connect quasars to halos and galaxies by using their
measured clustering properties (see Sec. 1.3.2).

Galaxies and their central black holes

In 1925, Edwin Hubble used the period-luminosity relation of Cepheid
variables — originally discovered by Henrietta Leavitt — to demonstrate that
the Andromeda Nebula lies well beyond the boundaries of the Milky Way
(Hubble 1925). This discovery resolved the “Great Debate” and marked
the beginning of extragalactic astronomy: the Universe consists not just of
stars within our own galaxy, but of countless other galaxies scattered across
cosmic space (Trimble 1995).

One century later, our view of the cosmos has dramatically expanded.
We now routinely observe hundreds of billions of galaxies, tracking their
formation and evolution from the earliest epochs (up to z ~ 14, Carniani et al.
2024) to the present day. The classical picture of galaxies as isolated “island
universes”, a concept popularized by Immanuel Kant, has been replaced by
a far more dynamic one. Galaxies are not self-contained or static — they are
complex, interconnected ecosystems, shaped by both their internal processes
and their interactions with the surrounding cosmic environment.

In recent years, theoretical models of galaxy formation have been com-
plemented by the development of large-scale hydrodynamical simulations,
which now serve as key tools for studying galaxy evolution in a cosmologi-
cal setting. Landmark projects such as Illustris (Vogelsberger et al. 2014),
EAGLE (Schaye et al. 2015), and HlustrisTNG (Nelson et al. 2019) have
demonstrated that it is possible to reproduce a broad range of observed
galaxy properties across cosmic time within large cosmological volumes
(100 — 300 ¢cMpc). These simulations go beyond N-body models by solving
the coupled equations of gravity and hydrodynamics for baryonic matter,
while also incorporating subgrid models for key processes such as star for-
mation and feedback from supernovae and AGN. With the progressive
refinement of such models, simulations have reached a stage where they
can successfully reproduce numerous observables, including the stellar mass
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Figure 1.2: Left: Black hole mass—stellar mass relation in the local Universe, illustrating the overall connection between galaxy growth and
the assembly of their central supermassive black holes (SMBHs). SMBH masses are derived using a range of observational techniques, including
dynamical modeling, reverberation mapping, and virial estimates from broad emission lines. Different galaxy types and measurement methods
are indicated with distinct colors and markers (measurements are taken from Reines & Volonteri 2015; Greene et al. 2020; Davis et al. 2019;
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function, star formation rates, morphologies, sizes, colors, and the spatial
clustering of galaxies (Vogelsberger et al. 2020; Crain & van de Voort 2023).

One of the most significant insights to emerge from both theoretical
models and cosmological hydrodynamical simulations is the central role
played by supermassive black holes (SMBHs) in shaping the evolution of their
host galaxies. Residing at galactic centers, SMBHs are far from being passive
end-products of galaxy formation. Instead, they exert a profound influence
on their large-scale environment through energetic feedback processes. In
particular, AGN and quasar feedback — driven by gas accretion onto SMBHs
— plays a pivotal role in regulating star formation, heating and ejecting gas,
and ultimately quenching the growth of massive galaxies (Croton et al. 2006;
Hopkins et al. 2006; Sijacki et al. 2007; Booth & Schaye 2009).

These feedback mechanisms are now recognized as essential components
in explaining a wide range of observed galaxy properties. They help resolve
long-standing discrepancies between theoretical predictions and observations,
such as the cutoff in the high-mass end of the stellar mass function, the
color bimodality of galaxies, and the existence of massive quiescent systems
at relatively early cosmic epochs (Sazonov et al. 2005; Fabian 2012; Bower
et al. 2006; Somerville & Davé 2015). By linking small-scale black hole
accretion physics to large-scale galaxy evolution, AGN feedback has become
a cornerstone of modern galaxy formation theory.

Perhaps the clearest observational evidence for the co-evolution of galaxies
and their central black holes is the existence of empirical correlations between
SMBH mass and several key galaxy properties — such as bulge mass, stellar
mass, and circular velocity (Fig. 1.2, left panel). First identified about
two decades ago (Magorrian et al. 1998; Gebhardt et al. 2000; Ferrarese
& Merritt 2000), these relations imply that the assembly of SMBHs and
galaxies is not independent, but regulated by coupled physical processes.
As such, they provide key constraints for both semi-analytic models and
cosmological simulations, informing prescriptions for black hole seeding,
growth, and feedback (Sec. 1.2.2).

At the same time, the origin of these relations, particularly their emer-
gence and evolution at high redshift, remains an open question and a key
focus of ongoing research (Volonteri et al. 2021; Greene et al. 2020). Probing
how these relations evolved across cosmic time can reveal when and how
the coupling between SMBHs and their host galaxies was established, and
what are the key drivers of this process. Recent high-redshift observations
from JWST have opened a new observational window into this regime. Fig.
1.2 (right panel) presents a compilation of SMBH-host galaxy mass mea-
surements from AGN and quasars at z > 4, offering early constraints on
the redshift evolution of the scaling relation. Whether the normalization of
this relation increases with redshift — suggesting that SMBHs outpace their
hosts in early growth — or remains constant, is still a subject of considerable
debate (Pacucci et al. 2023; Li et al. 2025b).
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In summary, the last few decades have marked a paradigm shift in
our understanding of black holes: from abstract mathematical solutions
of Einstein’s equations to fundamental agents in shaping galaxies and the
large-scale structure of the Universe.

1.2.1 Black holes: a journey through ten orders of
magnitude in the mass spectrum

The history of black holes as astrophysical objects begins with one of the
most remarkable discoveries in observational astronomy: quasars. In 1963,
Maarten Schmidt investigated the radio source 3C 273 and realized that its
optical spectrum contained redshifted hydrogen emission lines (Schmidt 1963).
According to Hubble’s law, this redshift implied a cosmological distance of
several hundred cMpc, placing it far beyond the local Universe. Given this
distance, its observed flux corresponded to a luminosity exceeding that of
entire galaxies. Moreover, the rapid variability of its emission constrained the
size of the emitting region to less than a parsec, implying an extraordinarily
compact and dense energy source.

To account for such features, Edwin Salpeter and Yakov Zeldovich inde-
pendently proposed in 1964 that the energy source powering quasars must
be gravitational accretion of matter onto a massive, compact object — what
we now call a supermassive black hole (Salpeter 1964; Zel’dovich & Novikov
1967). Donald Lynden-Bell further developed this idea in 1969, arguing
that the infalling material would form a rotating disk, funnelling into what
he described as a “Schwarzschild throat” (Lynden-Bell 1969). He went on
to suggest that inactive galactic nuclei are simply the fossil remnants of
once-luminous quasars, now harboring SMBHs at their cores.

Additional dynamical evidence began to support the existence of SMBHs.
In 1970, Wolfe and Burbidge showed that the large stellar velocity disper-
sions observed in elliptical galaxy nuclei required a mass concentration far
exceeding what could be attributed to normal stars (Wolfe & Burbidge
1970). They concluded that a central black hole as massive as ~ 10° M,
or a swarm of smaller black holes, could account for the data. The first
concrete dynamical detection of such a massive dark object came in 1978
in the galaxy M87, where the core was inferred to host a ~ 5 x 10° Mg,
black hole (Sargent et al. 1978). Similar measurements in other galaxies
soon followed (e.g., Kormendy 1988).

Closer to home, Lynden-Bell and Rees hypothesized in 1971 that the
Milky Way’s center should host a massive black hole (Lynden-Bell & Rees
1971). This idea gained traction after the discovery of the compact, bright
radio source Sagittarius A* (Sgr A*) in 1974 by Balick & Brown (1974).
Follow-up infrared observations over the following decades measured the
orbits of individual stars near the Galactic Center with exquisite precision
(Eckart & Genzel 1996; Ghez et al. 2008). These showed that Sgr A* must
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contain a mass of ~ 4 x 10 M, confined within a region smaller than the
Solar System — evidence so compelling that it earned the 2020 Nobel Prize
in Physics for Genzel, Ghez, and Penrose.

Today, it is well established that SMBHs are ubiquitous in the local
Universe. Observational surveys show that essentially all galaxies with a
bulge component host a central SMBH (Kormendy & Ho 2013). In recent
years, the Event Horizon Telescope has provided even more direct evidence:
the first resolved images of the event horizons of two SMBHs, in M87 (Event
Horizon Telescope Collaboration et al. 2019) and our own Milky Way (Event
Horizon Telescope Collaboration et al. 2022).

In parallel to the discovery of quasars and the growing realization that
SMBHs reside in galactic nuclei, a different class of black holes was being
uncovered with the rise of X-ray astronomy. In the early 1970s, observations
with balloon-borne and satellite-based detectors revealed bright X-ray sources
in the Milky Way. Among the most notable was Cygnus X-1, whose X-
ray variability and association with a massive O-type star pointed to the
presence of an unseen, compact companion. Detailed dynamical studies
confirmed that the mass of this dark object exceeded the theoretical limit
for a neutron star, providing the first compelling evidence for a stellar-mass
black hole (Bolton 1972). These black holes are now understood to form as
the end products of massive stellar evolution, when the core of a massive
star collapses under its own gravity after exhausting its nuclear fuel.

While a handful of stellar-mass black holes were known from X-ray
binaries in the late 20th century, the true diversity and abundance of this
population remained elusive until the advent of gravitational wave astronomy.
Beginning in 2015 with the landmark detection of GW150914, the LIGO and
Virgo observatories have opened a new window onto the Universe, directly
detecting the mergers of binary black hole systems through their gravitational
wave emission (Abbott et al. 2016a). These discoveries unveiled a surprising
population of stellar-mass black holes, with masses ranging from a few to
over 100 solar masses — challenging preexisting models of stellar evolution
and compact object formation (Abbott et al. 2019a). The growing catalog
of gravitational wave events now offers an independent, dynamical probe of
black hole demographics, complementing electromagnetic observations and
revealing regions of parameter space previously inaccessible.

Taken together, black holes span over ten orders of magnitude in mass,
from a few solar masses to tens of billions. While solid observational evi-
dence remains limited to the regimes of stellar-mass (~ 1 — 100 Mg) and
supermassive (~ 10% — 101° M) black holes, the mass distribution of these
systems is thought to form a continuum, shaped by diverse evolutionary and
growth pathways and possibly by multiple formation channels. The elusive
population of intermediate-mass black holes (IMBHs; ~ 102 — 10° M) re-
mains poorly constrained observationally, but evidence for their existence is
gradually accumulating. This includes the detection of very massive mergers
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of stellar-mass black holes (The LIGO Scientific Collaboration et al. 2025),
the identification of candidate low-luminosity AGN potentially powered
by IMBHs (Greene et al. 2020), and alternative signatures such as tidal
disruption events (Zhang et al. 2025) or dynamical studies of dense stellar
systems, with recent claims involving systems like w Centauri (Hiberle et al.
2024).

1.2.2 Quasars as tracers of SMBH growth

The journey of black holes across the mass spectrum remains largely mys-
terious — particularly at the low-mass end, where formation pathways and
early evolution are still poorly constrained by observations. At the opposite
end of the spectrum, however, the formation and evolution of SMBHs is
illuminated by a simple and elegant argument first articulated by Soltan
(1982). The “Soltan argument” asserts that the same accretion processes
powering luminous quasars naturally account for the buildup of SMBH mass
over cosmic time.

The key idea is as follows: when gas is accreted onto a black hole at a
rate Macc, a fraction e (known as radiative efficiency) of its rest-mass energy
is converted into radiation. This results in a bolometric luminosity given by:

Lbol = 6—]\.4accc2~ (11)

General relativity predicts values of € ~ 0.05—0.3, depending on the spin of
the black hole. This efficiency far exceeds that of nuclear fusion and gives
rise to the extreme luminosities of quasars, with Lo ~ 10%°—10% ergs™!.

At the same time, the remainder of the accreted mass — i.e., the fraction
not radiated away — contributes to the growth of the black hole itself:

Mgy = (1 — €) M. (1.2)

By combining the two above equations, we can directly link the observed
luminosity of quasars to the rate at which black holes grow during their active
accretion phases, with the only conversion parameter being the radiative
efficiency.

What Soltan (1982) recognized is that if one integrates the total light
emitted by all quasars over cosmic time, and converts the resulting energy
into an accreted mass using a plausible value of €, the result should match
the local SMBH mass density inferred from galaxy bulge—black hole scaling
relations. For a typical efficiency of € ~ 0.1, the agreement is striking —
providing strong evidence that most of the mass in today’s SMBHs was
assembled through luminous accretion.

This argument leads to a compelling picture in which quasars are direct
signposts of black hole growth. The radiation we observe from distant quasars
reflects the very process by which SMBHs gain mass. According to this view,
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Figure 1.3: Growth histories of SMBHs in the early Universe. Data points indicate
black hole masses inferred from observations of quasars at z > 5.9. Solid lines show the
corresponding growth tracks for the three most distant quasars, assuming continuous,
Eddington-limited accretion. Even under this idealized scenario, the observed SMBH
masses can only be reached if the initial seed mass Myeeq is at least ~ 10% Mg by z ~ 30.
The shaded blue regions illustrate the typical mass ranges associated with different SMBH
seed formation channels. Figure adapted from Fan et al. (2023).

luminous quasars trace the peak phases of SMBH accretion, and their cosmic
distribution encodes the history of black hole growth across the Universe. In
this way, the Soltan argument establishes a direct connection between the
quasar population observed at high redshift and the “relic’ SMBHs we find
in the centers of galaxies today — as first predicted by Lynden-Bell (1969).

An important consequence of accretion-powered growth is that the ra-
diation emitted by infalling material exerts an outward force — radiation
pressure — that counteracts gravity. This interplay naturally sets an upper
bound on the accretion rate, beyond which radiation pressure would halt
further inflow of gas. This theoretical limit is known as the Eddington limit,
and it defines the maximum luminosity an accreting black hole can sustain
under the assumption of spherical symmetry and steady inflow.

The Eddington luminosity is derived by equating the outward radiation
force on electrons (via Thomson scattering) with the inward gravitational
pull on protons:

A7 G M, M,
Loy = TGMampe o g gas (_BH) ergs, (1.3)
or M@
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where G is the gravitational constant, m, is the proton mass, o7 is the
Thomson cross-section, and Mgy is the black hole mass. Because Lggq
Mgy, the maximum allowed accretion rate increases linearly with the black
hole’s mass.

Quasars are observed to radiate at a wide range of Eddington ratios,
defined as the ratio of bolometric luminosity to the Eddington luminosity,
1 = Lyo1/Lgad, with the peak of the distribution ranging between n =~ 0.1 —1
depending on the quasars’ luminosity and redshift (Wu & Shen 2022). For
theoretical modeling, it is common to assume that SMBHs grow at a constant
Eddington ratio n, which allows one to derive a characteristic exponential
growth law. If a black hole begins with a seed mass Mgeoq at time tgeeq and
accretes continuously at a fixed 7, its mass at a later time ¢ is given by:

Mgy (t) = Maoq e(t_tseed)/TSalp7 (1'4)

where Tg,1p, is the Salpeter time, the e-folding timescale for black hole growth
under Eddington-limited accretion:

Tsalp ~ 45 Myt (01(16_6)) (?)_1. (1.5)

This simple model offers valuable intuition: SMBHs can, in principle, grow
from light seed BHs — e.g., Myeeq = 102 — 10% M, formed from the collapse
of the first generation of stars (PoplII stars, Heger et al. 2003) — to billions of
solar masses within less than a billion years if accretion proceeds continuously
near the Eddington rate.

However, the model also rests on idealized assumptions that likely break
down in realistic environments. The complex interplay between accretion and
feedback processes makes it unlikely that SMBHs accrete continuously at the
same rate. Instead, simulations and physical models show that SMBHs likely
grow during discrete, episodic phases (e.g., Novak et al. 2011; Anglés-Alcazar
et al. 2015; Trinca et al. 2024). This is often parametrized by introducing
an effective duty cycle for quasar activity, which accounts for the fraction of
time SMBHs spend in radiatively efficient accretion phases, as opposed to
quiescent or inefficient states (Shankar et al. 2009; Pacucci & Loeb 2022).
As discussed in Sec. 1.3.2; indirect probes of this intermittent behavior
of quasar activity are recently becoming available in the early Universe,
opening up the possibility of testing more realistic growth histories against
observations (see also Chapter 5).

Additionally, purely accretion-driven models neglect the contribution of
black hole mergers. When two SMBHs merge, the resulting remnant has
a mass that is approximately equal to the sum of the progenitor masses —
reduced by the small fraction of energy radiated away as gravitational waves
during the coalescence. While mergers do not alter the integrated black
hole mass density that enters the Soltan argument, they can significantly
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affect the individual growth histories of SMBHs. This contribution may
be particularly important at high redshift and low masses — where merger
rates are high — and at low redshift for the most massive black holes whose
accretion has been quenched (Volonteri et al. 2003; Pacucci & Loeb 2020;
Zou et al. 2024).

1.2.3 The high-redshift frontier

As observational capabilities have pushed the detection of quasars to increas-
ingly earlier cosmic times, a striking realization has emerged: although the
number density of quasars declines steeply with redshift (Figure 1.4), some
SMBHs with masses My 2 10° M, are already in place within the first
few hundred million years after the Big Bang. These objects, observed at
redshifts z 2 6, rival the most massive black holes found in the centers of
present-day galaxies (Fan et al. 2023).

The discovery of ever earlier quasars powered by billion-solar-mass black
holes — the current record-holder is at z ~ 7.64 (Wang ct al. 2021) — has
significantly increased the tension with standard models of SMBH formation
and growth. The core challenge is straightforward: there appears to be
insufficient cosmic time for these black holes to grow from the ~ 100 Mg, seeds
expected from PoplII stellar remnants (Heger et al. 2003) — even under the
most optimistic scenario of continuous, Eddington-limited accretion (Haiman
& Loeb 2001). This issue is illustrated in Figure 1.3, which compares the
expected growth tracks for Eddington-limited accretion to the observed
SMBH masses at high redshift.

To resolve this challenge, several massive seed formation scenarios have
been proposed (Inayoshi et al. 2020). One leading pathway is the direct
collapse of pristine gas clouds into black holes with masses in the range
10*—10% Mg, under specific conditions that suppress fragmentation and
prevent star formation (Bromm & Loeb 2003; Volonteri et al. 2008; Latif &
Ferrara 2016; Lupi et al. 2021). Another possibility is the runaway collapse
of dense stellar clusters, particularly those composed of PoplII stars, where
repeated stellar collisions and mergers can lead to the formation of IMBHs
(Omukai et al. 2008; Devecchi & Volonteri 2009). These scenarios ease
the growth timescale constraints by starting with more massive seeds, but
they rely on specific environmental conditions and remain difficult to test
observationally.

An alternative route to alleviating the timing problem is to relax the
assumption of Eddington-limited accretion. If black holes can grow through
super-critical accretion — i.e., with accretion rates higher than the Eddington
rate, MEdd = Lgqa/ ec® — the stringent time constraints for SMBH growth
are considerably relaxed (Volonteri & Rees 2006). Numerical simulations
suggest that in dense, gas-rich environments, black holes can exceed the
classical Eddington rate under specific physical conditions. Mechanisms
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Figure 1.4: Evolution of the number density of bright quasars as a function of redshift.
The solid line represents the number density of UV-luminous quasars that are brighter
than Mj450 < —25.7, adapted from the global QLF evolution model of Kulkarni et al.
(2019) as described in Pizzati et al. (2025). Data points are obtained by integrating
UV-optical QLF models at different redshifts. The dotted line shows the number density
of bright quasars as estimated from the bolometric QLF model of Shen et al. (2020), by
assuming a Ly, threshold consistent with the UV magnitude limit mentioned above. The
gap between the solid and dotted lines arises from the UV-obscured quasar population.
Figure adapted from Schindler et al. (2023) and Pizzati et al. (2025, Chapter 4).

such as photon trapping, slim accretion disks, and anisotropic radiation
fields allow accretion to proceed at super-Eddington rates without unbinding
the inflowing material (Sadowski et al. 2014; Volonteri et al. 2015; Inayoshi
et al. 2020). However, because such accretion is expected to be radiatively
inefficient, direct observational confirmation remains challenging. So far,
empirical evidence is limited to a few high-redshift quasars with Eddington
ratios modestly above unity (Wu et al. 2022). Nonetheless, a growing body
of work is investigating indirect signatures of super-critical accretion, either
through spectral diagnostics of AGN (Pacucci & Narayan 2024; Lambrides
et al. 2024a; Liu et al. 2025; Quadri et al. 2025) or through empirical
arguments based on quasar growth timescales and duty cycles (Davies et al.
2019; Eilers et al. 2021, 2024).

Despite substantial theoretical efforts to uncover the growth history of
SMBHs, progress remains limited by two persistent challenges: the difficulty
of constructing predictive, first-principles models (see Sec. 1.4) and the lack
of direct observational constraints beyond the (relatively uncertain) black
hole mass estimates. At present, the problem remains highly degenerate —
vastly different combinations of seed mass, accretion rate, duty cycle, and
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merger history can be fine-tuned to match the observed SMBH masses at
a given redshift. As a result, the mere existence of billion-solar-mass black
holes in the early Universe is a necessary, but insufficient, condition to
distinguish between competing formation and growth scenarios.

Encouragingly, recent and upcoming observations promise to break this
impasse and shed new light on SMBH evolution across cosmic time. New
AGN candidates uncovered at even higher redshifts by JWST are already
putting pressure on existing evolutionary models. Although the nature of
these candidates remains uncertain (see Sec. 1.3.4), the advent of wide-field
missions such as Euclid and the Roman Space Telescope will soon provide
statistically robust samples of luminous quasars at the highest redshifts. At
the same time, quasar observables — including luminosity functions, clustering
measurements, and proximity zone sizes — are being extended to earlier
epochs, offering complementary constraints on black hole accretion physics
and environments. Looking further ahead, gravitational wave detections
from merging SMBHs will open a fundamentally new observational window
into the merger-driven component of black hole growth.

In the following section, I review these recent advancements and highlight
the key observational tools — particularly those most relevant to the focus
of this thesis — that are currently shaping our understanding of SMBH
formation and growth across cosmic time.

Observations: the evolution of quasars and
SMBHs across cosmic times

A major leap forward in quasar studies came with the advent of optical
wide-field spectroscopic surveys, which transformed quasars from rare, exotic
sources into a population with robust statistical power. Landmark efforts
such as the Sloan Digital Sky Survey (SDSS; York et al. 2000), the 2dF QSO
Redshift Survey (2QZ; Croom et al. 2004), the Baryon Oscillation Spectro-
scopic Survey (BOSS; Dawson et al. 2013), and its successor, the extended
BOSS (eBOSS; Dawson et al. 2016), have collectively catalogued hundreds of
thousands of UV-bright quasars across a wide redshift range. These surveys
have provided an unprecedented view of the statistical properties and cosmic
evolution of quasars and their central SMBHs.

In parallel, multi-wavelength observations have significantly expanded the
AGN census beyond optically selected quasars. Owing to their broadband
emission, AGN can be detected across the entire electromagnetic spectrum,
and surveys at other wavelengths — X-ray missions (e.g., Chandra, XMM-
Newton), radio surveys (e.g., FIRST, NVSS, LOFAR), and mid-infrared
campaigns (e.g., Spitzer, WISE) — have uncovered substantial populations
of AGN that are obscured in the UV-optical. These datasets have been
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instrumental in tracing black hole accretion across a wide range of host
galaxy environments and evolutionary stages. Together, they provide a
critical foundation for building a more complete and less biased picture of
SMBH growth across cosmic history (Padovani et al. 2017).

1.3.1 The quasar luminosity function

The most basic metric for characterizing the demographic properties of
the quasar population is the quasar luminosity function (QLF). The QLF
describes the comoving number density of quasars as a function of luminosity
and has been extensively measured across multiple wavelengths and over a
wide range of redshifts (e.g., Boyle et al. 2000; Richards et al. 2006; Ross
et al. 2013; Akiyama et al. 2018).

Empirically, the QLF is typically modeled as a broken power law, with the
normalization, faint-end slope, and characteristic break luminosity evolving
strongly with redshift. This evolution reflects the cosmic history of black hole
accretion, with a pronounced peak at z ~ 2 — 3 — the so-called “cosmic noon”
— when both quasar activity and global star formation reach their maximum
(Shen et al. 2020). The striking similarity between the redshift evolution of
the QLF and that of the cosmic star formation rate density (Ciotti et al.
2003) supports the widely discussed scenario of co-evolution between SMBHs
and their host galaxies (Merloni & Heinz 2008; Heckman & Best 2014).
Figure 1.4 illustrates the evolution of the bright quasar population across
cosmic time, highlighting its rise from the epoch of reionization, peak activity
around cosmic noon, and subsequent decline.

The most robust constraints on the QLF come from optical and UV-
selected quasar samples, where the luminosity function is often expressed
in terms of absolute UV magnitude (e.g., Migs0; Kulkarni et al. 2019).
However, these measurements are inherently biased toward unobscured
quasars, as obscuration from dust and gas can significantly attenuate emission
in the UV and optical bands. This bias complicates the interpretation of
QLF measurements, particularly because the fraction of obscured AGN
is observed to vary with both luminosity and redshift (Aird et al. 2015;
Buchner et al. 2015). These effects introduce systematic uncertainties when
comparing observations with theoretical models, which typically predict
intrinsic, bolometric luminosities.

To overcome these limitations, recent efforts have focused on constructing
multi-wavelength AGN samples that combine X-ray, mid-infrared, UV-
optical, and radio observations. These datasets are essential for recovering
obscured quasars that are systematically missed in UV-only surveys. In
particular, X-ray data allow for population-level obscuration corrections
through measurements of hydrogen column densities (Ueda et al. 2014),
enabling estimates of intrinsic AGN luminosities even for heavily absorbed
systems. By applying these corrections and synthesizing observations across
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multiple bands, several studies have reconstructed the bolometric QLF,
providing a more comprehensive benchmark for models of black hole growth
(Hopkins et al. 2007a; Shen et al. 2020). In Figure 1.4, we compare a UV-
selected QLF model (solid line) with a bolometric QLF derived from multi-
wavelength data (dashed line). While these bolometric reconstructions offer
a substantially improved census of AGN activity, significant uncertainties
persist — especially at high redshift, where obscuration properties remain
poorly constrained and the number of detected sources is still limited.

1.3.2 Quasar clustering and the duty cycle of quasars

In addition to the QLF, another key statistical observable for characterizing
quasars in a cosmological context is their large-scale clustering. As discussed
in Section 1.1.1, the ACDM paradigm predicts a strong dependence of halo
clustering on mass. This implies that measuring the clustering strength of a
population provides a powerful way to infer the characteristic mass of its
host dark matter halos. By comparing the clustering amplitude of quasars
to that of halos across a range of masses, one can constrain the typical
environments in which quasars reside. In Chapters 2 and 3, we will build on
this approach by jointly modeling the QLF and quasar clustering to infer
the full mass distribution of quasar host halos — a quantity we refer to as
the quasar—host mass function (QHMF).

The advent of large spectroscopic quasar surveys has enabled precise
measurements of the quasar two-point auto-correlation function, the most
direct probe of quasar clustering on cosmological scales. Numerous studies
have characterized this clustering across a wide range of redshifts (e.g.,
Porciani et al. 2004; Croom et al. 2005; Porciani & Norberg 2006; Shen et al.
2007; da Angela et al. 2008; Ross et al. 2009; White et al. 2012; Eftekharzadeh
et al. 2015), consistently finding that quasars typically inhabit dark matter
halos with masses around 10'2-10*3 M. This characteristic halo mass
appears to be largely independent of quasar luminosity and evolves only
mildly with redshift (see Figure 1.5). A possible exception to this is the
large host halo mass inferred by Shen et al. (2007) at z ~ 4, which suggests
a rapid evolution of the quasar properties at high redshift and provides very
tight constraints on the inferred host mass distribution (Pizzati et al. 2024a).
Chapters 2 and 3 discuss in detail the implications of this measurement,
building up on previous work from White et al. (2008); Wyithe & Loeb
(2009); Shankar et al. (2010Db).

Interestingly, quasar clustering measurements not only constrain the
typical mass of quasar host halos but also offer insights into the integrated
timescale of quasar activity by estimating the quasar duty cycle (Martini &
Weinberg 2001; Haiman & Hui 2001). The concept is illustrated in Figure 1.6:
if SMBH accretion proceeds as a stochastic process, then the observed quasar
population at any given epoch represents a random, luminous subset of the
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Figure 1.5: Redshift evolution of three key quasar properties: the autocorrelation length
(top), host dark matter halo mass (middle), and duty cycle (bottom), as a function of
redshift. Measurements at z ~ 6 are all based on recent work and obtained using different
methods. The halo mass estimate from Chen et al. (2022) is based on transmitted flux
measurements along quasar sightlines, and the duty cycle measurements from Davies et al.
(2019); Durovéikova et al. (2024) are obtained from Lyo damping wing analyses. The
remaining data are based on clustering measurements: Arita et al. (2023) measured the
auto-correlation function of faint z &~ 6 quasars, while Eilers et al. (2024) used JWST
WF'SS observations to estimate the quasar-galaxy cross-correlation function at the same
redshift. Gray dotted lines in the bottom panel correspond to constant quasar lifetimes.
The results show that the characteristic host halo mass of quasars sits between ~ 1012 M,
and ~ 1013 Mg at all redshifts. The corresponding duty cycle, however, shows a significant
redshift evolution. At z 2 6, fqusy is found to be < 1% using independent methods.
Figure taken from Eilers et al. (2024).
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Figure 1.6: Schematic illustration of how quasar clustering measurements can be used
to infer the quasar duty cycle. The full population of dark matter halos is shown as
gray circles. Quasars (yellow stars) occupy only a subset of these halos, representing a
stochastic sampling of the underlying SMBH population. By measuring the clustering of
quasars, one can infer the typical mass — and hence number density — of their host halos
(highlighted in green). Comparing the observed number density of quasars (nquasar) to
the number density of similarly clustered halos (npests) yields an estimate of the quasar
duty cycle: the average fraction of time a SMBH is observed as an active quasar. This
duty cycle is commonly expressed as the ratio between the integrated quasar lifetime, tq,
and the cosmic timescale over which halos exist, approximated by the Hubble time, ty;.

full SMBH population. Subsampling a population does not change its
clustering: hence, by measuring the clustering of quasars we can infer the
clustering of the dark matter halos hosting SMBHs. Using the connection
between clustering and halo mass, we can then infer the characteristic mass
and number density of these SMBH-host halos. We are implicitly assuming
here that all massive halos host a SMBH (which can be either active or
dormant) at their center, as it is the case in the local Universe. Comparing
the number density of SMBH hosts (npest) to the observed number density
of quasars (nquasar) yields the fraction of SMBHs that are active (i.e., visible
as quasars) at a given time. This fraction corresponds to the average time a
black hole spends in an active, luminous quasar phase over cosmic time: the
so-called quasar duty cycle (fduty)-

Recent efforts have extended clustering and duty cycle measurements
into the epoch of reionization, a long-sought goal given the importance of
understanding the environments of early quasars. While many studies have
attempted to assess whether high-redshift quasars reside in overdense regions
(e.g., Kim et al. 2009; Simpson et al. 2014), the first robust measurements
of quasar clustering at z 2 6 have only recently emerged. These include
the quasar auto-correlation analysis by Arita et al. (2023), based on faint
quasars from the SHELLQs survey, and the quasar—galaxy cross-correlation
study by FEilers et al. (2024), enabled by JWST’s Wide Field Slitless Spec-
troscopy (WFSS) mode. The primary focus of Chapter 3 is to model these
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measurements” and study their implications for quasar activity and SMBH
growth in the early Universe. Intriguingly, the inferred duty cycle at z ~ 6
is fauty S 1%, in agreement with independent estimates of quasar activity
timescales from Lya damping wing and proximity zone analyses (Davies
et al. 2019; Durovéikova et al. 2024). This poses a challenge to standard
scenarios of continuous, Eddington-limited black hole growth that are often
invoked to explain the rapid emergence of > 10° M, SMBHs in the early
Universe.

1.3.3 SMBH mergers and gravitational waves

While electromagnetic observations of quasars trace the accretion-driven
growth of SMBHs, gravitational wave (GW) observatories offer a comple-
mentary probe by directly accessing the merger-driven channel of black hole
growth. As discussed in Sec. 1.2.1, ground-based GW detectors such as
LIGO and Virgo have already provided a wealth of information about the
stellar-mass black hole population through detections of compact binary
coalescences (Abbott et al. 2023). In contrast, progress in the regime of
SMBHs is more recent, but has accelerated markedly with the advent of
pulsar timing array (PTA) experiments and will mature substantially in the
next decade.

A landmark step forward has been the recent detection of a stochastic
gravitational wave background (GWB) by multiple PTA collaborations,
including NANOGrav (Agazie et al. 2023), the European PTA (EPTA
Collaboration et al. 2023), the Parkes PTA (Reardon et al. 2023), and
the Chinese PTA (Xu et al. 2023). These detections reveal a common-
spectrum red noise process in pulsar timing residuals with evidence for
spatial correlations consistent with the Hellings & Downs (1983) signature
expected from gravitational waves in general relativity (Burke-Spolaor et al.
2019). The detected GWB is broadly consistent with the combined emission
from inspiraling supermassive black hole binaries, typically with masses of
order ~ 108-10'° M, at redshifts z < 2. This detection provides the first
direct GW evidence for the prevalence of SMBH mergers in the nanohertz
frequency regime, marking a pivotal step for the field of SMBH evolution.

Looking ahead, PTAs are expected to move beyond statistical detections
of a stochastic background to the resolution of individual SMBH binary
systems. These future detections will be most sensitive to the most massive
binaries (Mo, > 10° M) at relatively low redshifts (z < 1), and could
enable the measurement of dynamical properties such as orbital eccentricity,
mass ratios, and the nature of the merger environment. Concurrently, im-
provements in PTA sensitivity will enhance constraints on the unresolved

2In Appendix D of Chapter 3, I demonstrate that the halo mass and duty cycle estimates
reported by Arita et al. (2023) are subject to methodological issues and are therefore
unreliable.
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Figure 1.7: A broad overview of the black hole mass-redshift landscape and the
observational capabilities expected to probe it. The figure shows the sensitivity ranges
(i.e., the expected signal-to-noise curves for non-spinning binaries with mass ratio 0.5) of
various gravitational wave (GW) observatories, such as LISA and future third-generation
ground-based interferometers like the Einstein Telescope (ET), for detecting black hole
mergers across a wide range of masses (~ 10'~107 M) and cosmic epochs. These GW
detectors will enable full-sky surveys, reaching from the local Universe to the era of the first
black holes. Overlaid are the approximate reach of current and planned electromagnetic
(EM) facilities — such as JWST, Roman, Rubin, the ELT, and next-generation X-ray
observatories like Athena, LynX, and AXIS — highlighting the synergy between EM and
GW observations. Taken from Volonteri et al. (2021).

gravitational wave background, offering a critical test of theoretical models
of SMBH evolution. Intriguingly, several recent studies have reported emerg-
ing discrepancies between the amplitude of the detected background and
predictions from leading semi-analytic and hydrodynamic models of SMBH
assembly (e.g., Lapi et al. 2025). These tensions may reflect previously
unmodeled physical processes, such as stalling of SMBH binaries due to
inefficient hardening, coupling with circumbinary gas disks, or inaccuracies
in merger rate prescriptions. As PTA datasets continue to grow in precision
and temporal coverage, they will provide an increasingly powerful probe
of the physics driving SMBH mergers and their role in cosmic structure
formation.

At the opposite end of the SMBH mass spectrum lies the future space-
based mission LISA (Laser Interferometer Space Antenna). Unlike PTAs,
which are sensitive to the mergers of the most massive SMBHs at low
redshift, LISA will probe the coalescence of lower-mass SMBHs and IMBHs
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in the range 10*—~107 M, reaching out to redshifts as high as z > 10 with
exceptional signal-to-noise. This makes LISA uniquely suited to explore
the early formation and assembly of SMBHs, as well as the long-sought
IMBH population. In particular, LISA will offer key insights into seed
formation channels, early merger rates, and black hole occupation fractions
in low-mass galaxies — regimes currently inaccessible to electromagnetic or
PTA observations. Numerous studies have forecasted LISA’s potential to
constrain black hole demographics and binary environments (e.g., Sesana
et al. 2007; Tanaka & Haiman 2009; Amaro-Seoane et al. 2023; Wang et al.
2025), but the field remains highly uncertain, with predicted detection rates
spanning several orders of magnitude.

Figure 1.7 offers a schematic view of the observational landscape, mapping
the redshift and black hole mass ranges accessible to current and upcoming
gravitational wave and electromagnetic observatories. Alongside LISA, it
includes the Einstein Telescope (ET) as a representative of the planned third
generation (3G) of ground-based GW interferometers. These instruments
will extend sensitivity to stellar-mass/IMBH mergers at high redshift, com-
plementing LISA’s reach and contributing to a unified picture of black hole
growth across cosmic history. The design and associated challenges of 3G
detectors are discussed in more detail in Chapter 6.

1.3.4 New challenges in the JWST era: the nature of
“little red dots” and other broad-line AGN

The launch of the James Webb Space Telescope (JWST) has ushered in
a transformative era for the study of AGN and quasars at high redshift.
Thanks to its unprecedented sensitivity in the infrared, JWST can detect
AGN that were previously invisible to traditional rest-frame UV and optical
surveys, which until now have dominated our view of the AGN population
during the epoch of reionization (Fan et al. 2023).

The first few years of observations with JWST have indeed uncovered
a surprisingly rich population of faint AGN candidates at z ~ 4-10 (e.g.,
Harikane et al. 2023; Maiolino et al. 2024; Ubler et al. 2023; Kocevski et al.
2023; Matthee et al. 2024b; Greene et al. 2024; Bogdan et al. 2024). Many
of these sources are identified via the presence of broad rest-frame optical
emission lines such as Ha or Hf, accessible for the first time at high redshift
thanks to JWST’s NIRSpec and NIRCam instruments. These features enable
black hole mass estimates of Mpy = 10578 My and bolometric luminosities
of Lol 2 1043 46 ergs—1 extending the census of actively accreting SMBHs
well below the luminosities of previously known quasars at comparable
redshifts. The emergence of this population opens new avenues to address key
questions in early black hole and galaxy evolution, including the co-evolution
of SMBHs and their hosts (e.g., Pacucci et al. 2023), the contribution of
faint AGN to hydrogen reionization (e.g., Dayal et al. 2024; Madau et al.
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Figure 1.8: Left: False-color NIRCam images of two representative “little red dots”
(LRDs) from the broad-line AGN sample of Matthee et al. (2024b), showcasing their
compact, red morphology. Right: Prism/NIRSpec spectrum (black line) of a representative
LRD (object MSAID4286), exhibiting the characteristic “V-shaped” spectral energy
distribution. The steep red continuum is explained by a heavily reddened AGN template
(red line), while the rising UV slope cannot be accounted for by the intrinsic AGN
continuum alone. Two alternative components are shown to model the UV excess: (i)
scattered AGN light at the ~2.5% level (light blue), and (ii) moderate star formation
from a stellar population model. Figure taken from Greene et al. (2024).

2024), and the underlying seeding and growth pathways of SMBHs in the
early Universe (e.g., Li et al. 2024).

A particularly intriguing subset of the JWST AGN candidates — estimated
to comprise = 20% of the sample (Harikane et al. 2023; Taylor et al. 2024) —
exhibits unusually steep, red continua in the rest-frame optical, along with
compact morphologies. These objects have become known as “little red dots”
(LRDs). Figure 1.8 presents two representative NIRCam images of such
sources from Matthee et al. (2024b), as well as a PRISM /NIRSpec spectrum
of an LRD from Greene et al. (2024). The latter illustrates the characteristic
“V-shaped” spectral energy distribution (SED), which is created by the
combination of a blue component in the rest-frame UV and the rising red
continuum in the rest-frame optical. In the pioneering work of Greene et al.
(2024), this is interpreted as a combination of a reddened quasar template
— accounting for the steeply rising red continuum — and an additional blue
component, attributed either to starlight from the host galaxy or to quasar
light scattered into our line of sight.

Interestingly, this and other interpretations suggest moderate levels of
dust attenuation, typically in the range Ay ~ 1—4 (Kokorev et al. 2024a;
Greene et al. 2024). When the SEDs and emission lines of LRDs are corrected
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for this extinction, the inferred bolometric luminosities and black hole masses
are found to be comparable to those of UV-selected, unobscured quasars
identified in pre-JWST surveys (e.g., Fan et al. 2023; Matsuoka et al. 2022).
This similarity is striking given the vastly different selection strategies and
survey volumes. While UV-luminous quasars at z 2 6 have been discovered
in wide-field surveys covering ~ 1400 deg? (Matsuoka et al. 2022), the
JWST-detected LRDs are emerging from pencil-beam or small fields totaling
only ~ 300-600 arcmin? (e.g., Matthee et al. 2024b; Kokorev et al. 2024a).
This implies an apparent overabundance of LRDs by factors of 103-10%,
assuming the populations are otherwise comparable — a discrepancy that
cannot be easily explained.

This dramatic difference in inferred number densities raises fundamental
questions about the nature of LRDs and JWST-selected AGN candidates
more broadly. The possibility that they trace a large population of obscured,
broad-line quasars that was previously undetected is challenged further by
the unusual SED properties of LRDs beyond the rest-frame UV-optical.
Multiple studies have reported a set of anomalous features that distinguish
LRDs and other JWST AGN candidates from classical quasars, including
apparent X-ray weakness (e.g., Yue et al. 2024Db), the abundant presence of
Balmer absorption features as well as strong Balmer breaks (e.g., Juodzbalis
et al. 2024; de Graaff et al. 2025), a potential lack of variability (Kokubo &
Harikane 2024), and unexpectedly faint dust emission in both the mid- and
far-infrared (e.g., Pérez-Gonzilez et al. 2024; Casey et al. 2025).

The enigmatic nature of these sources has sparked widespread interest
within the community, leading to a steady stream of papers proposing a broad
spectrum of theoretical interpretations for the nature of LRDs — ranging from
exotic scenarios to more conservative models invoking complex geometries
and radiative transfer effects. A simple NASA/ADS search reveals that
over ~150 preprints and peer-reviewed articles in the last two years mention
“little red dots” in their title or abstract, underscoring both the scale of
engagement and the unsettled nature of this emerging field. While this is not
the place to review the full breadth of this rapidly growing literature, the
sheer diversity of proposed explanations highlights just how far we remain
from a definitive understanding.

Nevertheless, some common themes are beginning to crystallize. Several
recent studies suggest that the Balmer absorption features, pronounced
Balmer break, and — in some cases — the steep rest-frame optical continua
observed in LRDs may arise from dense, cool gas enshrouding a rapidly
accreting SMBH (Inayoshi & Maiolino 2025; Naidu et al. 2025) — potentially
indicative of super-Eddington accretion flows (e.g., Liu et al. 2025) or even
SMBH seeding in the early Universe (e.g., Begelman & Dexter 2025). On
the other hand, some studies have questioned whether LRDs host SMBHs
at all. In these cases, the broad emission lines — typically seen as signatures
of AGN activity — could instead be powered by compact gas in extreme
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starburst or rare transient phenomena unrelated to SMBH accretion (e.g.,
Baggen et al. 2024; Sacchi & Bogdan 2025).

Chapter 4 of this thesis is dedicated to investigating LRDs. Rather
than attempting to define what they are, I take a complementary approach
— arguing what they are mot. Using an argument that combines quasar
clustering with the observed number density of LRDs, I demonstrate that
LRDs cannot merely be obscured counterparts of UV-luminous quasars.
The reason is simple: LRDs are too abundant to reside in the same halos
where UV-luminous quasars live. Thus, they need to follow intrinsically
different scaling relations between SMBHs, host galaxies, and halos than
those established for quasars. This conclusion is now supported by emerging
clustering measurements, which show that LRDs exhibit spatial correlations
consistent with typical field galaxies, in stark contrast to the strong clustering
seen in quasars at similar redshifts (Arita et al. 2025; Matthee et al. 2024a;
Lin et al. 2025). These results strongly suggest that LRDs are not just dust-
obscured versions of the quasars we already know — but instead represent a
fundamentally distinct population. They may trace a different evolutionary
pathway in SMBH and galaxy growth, or reflect a phase of black hole
formation or evolution driven by fundamentally different physical mechanisms.
Perhaps they are not accreting SMBHs at all, and could instead reveal
something new about extreme stellar processes. Uncovering their true nature
remains an exciting and urgent challenge for the field.

1.4 Theoretical models: key uncertainties and
future directions
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Figure 1.9: Schematic illustration of an AGN (vertical axis is not to scale) embedded
within its larger-scale host galaxy and dark matter halo environment, spanning (logarith-
mic) scales from milli-parsecs to mega-parsecs along the horizontal axis. Key components
are marked, including the regions dominated by the SMBH’s gravitational influence — the
AGN itself: accretion disk, X-ray “corona,” possible winds or jets from the disk, broad-line
region (BLR), and dusty molecular “torus” — as well as the surrounding host galaxy and
halo. Figure adapted from Alexander et al. (2025).

The biggest challenge faced by any first-principles model of SMBH
growth in a cosmological context is that of scale. This is illustrated in
Figure 1.9, which sketches the vast range of spatial scales involved in SMBH
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evolution. Accretion onto SMBHs occurs in a disk that extends from just a
few Schwarzschild radii (Rs”) out to a few hundred Rs. The AGN central
engine also comprises a compact broad-line region (BLR) and a dusty
molecular torus — together rarely extending beyond ~ 1 pc. Even so, most of
the intrinsic UV-optical /X-ray emission in a type I AGN is confined within
the innermost ~ 0.01 pc, a region not much larger than our Solar System.

Although accretion is regulated by processes on the smallest scales, the
long-term growth of SMBHs is ultimately driven by galactic and cosmological
mechanisms operating across kpc to tens-of-Mpc scales. The enormous energy
output from accretion further couples the central AGN regions to the large-
scale environment: AGN radiation and feedback can impact structures that
are several Mpc away. Reproducing the formation and evolution of SMBHs
and quasars in a cosmological framework would thus require resolving both
the minuscule scales of accretion and the vast cosmic volumes where such
rare objects statistically arise — a task that spans twelve orders of magnitude
and will remain computationally unfeasible in the foreseeable future. Even
the most advanced zoom-in cosmological hydrodynamical simulations, which
focus computational resources on selected halos, typically achieve resolutions
no better than ~ 1 pc in the nuclear region®, and must therefore rely on
sub-grid prescriptions to model the unresolved physics of AGN fueling and
feedback (Anglés-Alcazar et al. 2021).

Given the extreme range of spatial and physical scales involved, it is
perhaps unsurprising that, despite major progress over the past decade in
reproducing global galaxy populations and their evolution (see Vogelsberger
et al. 2020, for a review), hydrodynamical simulations still struggle to
match observational constraints on SMBHs. Most large-scale simulations are
calibrated to reproduce local SMBH—galaxy scaling relations — and generally
do so with reasonable accuracy (e.g., Di Matteo et al. 2005; Booth & Schaye
2009) — but they diverge widely in their predictions for how SMBHs grow and
evolve over cosmic time (Habouzit et al. 2021, 2022; Porras-Valverde et al.
2025). While the sub-grid treatments of star formation — operating on scales
of giant molecular clouds, i.e., ~ 10 — 100 pc — are relatively well studied and
established, physical models for SMBH growth and AGN feedback remain
much more rudimentary and vary substantially across different simulation
frameworks.

In recent years, the simulation community has invested considerable effort
in refining the treatment of AGN within cosmological simulations, aiming to
better connect the physics of SMBH accretion with the broader processes

3The Schwarzschild radius of a black hole is given by Rg = 2Mpy/c2.

4Recent advances now make it possible to resolve the accretion disc of a SMBH within a
cosmological simulation by recursively refining the central region (see, e.g., Hopkins et al.
2025). Such simulations, however, can only follow the system over very short timescales,
in contrast to standard zoom-in simulations that capture the full cosmological evolution
of selected halos.
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of galaxy formation and evolution. Notable progress has been made, with
important developments proposed in the modeling of black hole seeding
(e.g., Bhowmick et al. 2024), dynamics (e.g., Genina et al. 2024), accretion
(e.g., Koudmani et al. 2024; Weinberger et al. 2025), and feedback (e.g.,
Husko et al. 2024). However, despite these advances, significant uncertainties
remain, and the predictive power of current simulations for SMBH evolution
remains limited.

An alternative to modeling SMBH evolution through first-principles
physics is the use of phenomenological or empirical models. These models
are agnostic to the detailed physical mechanisms driving black hole growth,
instead aiming to capture the observed evolution of SMBHs through simple,
parametric formulations that are constrained directly by data. By relying on
observations, these models seek to empirically characterize the demographics
of SMBHs and their connection to host galaxies in a self-consistent way.
While they have limited predictive power beyond the range of the observa-
tional constraints they are built upon, they are powerful tools for identifying
the key empirical trends that any physical model must reproduce.

Empirical models involving SMBHs can be broadly divided into two
main categories. The first class focuses on the evolution of the SMBH mass
function by solving the continuity equation. These models rely on two key
ingredients: the local observed SMBH masses and the redshift-dependent
QLFs. They extend the Soltan (1982) argument to reconstruct the evolution
of the SMBH population by linking their growth history to the observed
energy output, yielding estimates of key quantities such as the average
radiative efficiency, duty cycle, and the distribution of Eddington ratios.
Seminal work in this area includes studies by Yu & Tremaine (2002); Merloni
& Heinz (2008); Shankar et al. (2009), as well as the more recent models
by, e.g., Aversa et al. (2015); Tucci & Volonteri (2017). Collectively, these
studies helped to build a statistical picture of SMBH growth across cosmic
time.

The second class of models centers on the co-evolution of galaxies and
SMBHs, leveraging the empirical relations between galaxy and black hole
properties. These models often build upon semi-empirical frameworks origi-
nally developed for galaxy evolution, extending them to incorporate SMBHs
and AGN activity by assuming a (redshift-dependent) SMBH-galaxy relation.
Classic implementations of this approach include Croton (2009), Conroy
& White (2013), and Caplar et al. (2015). A notable recent example is
TRINITY (Zhang et al. 2023b), which extends the halo-galaxy connection
formalism of Behroozi et al. (2013) to simultaneously model the evolution of
dark matter halos, galaxies, and SMBHs. TRINITY assumes that SMBH
growth follows a redshift-evolving relation with galaxy properties and con-
strains average black hole evolution histories by requiring consistency with a
broad range of SMBH and galaxy observables.
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Phenomenological models are inherently constrained by the quality and
completeness of the observational data they are built upon. In this sense,
they reflect the current limits of our ability to probe SMBH evolution.
Yet this dependence on data also offers a key strength: as observations
improve — particularly at high redshift — these models can be continually
refined, allowing for more accurate and insightful reconstructions of black
hole growth across cosmic time.

Motivated by the growing body of current and upcoming observations
targeting quasars and SMBHs in the early Universe, in Chapter 5 I develop
an empirical modeling framework designed to flexibly and self-consistently
interpret a wide range of quasar observables. These include luminosity
functions, Eddington ratio distributions, and large-scale clustering — including
new measurements at high redshift (Sec. 1.3) — all integrated within a unified
model built upon a large-volume, dark-matter-only cosmological simulation.
By reproducing the diversity of individual black hole growth histories and
quasar light curves, this approach enables a systematic exploration of the
physical mechanisms that drive SMBH evolution and sheds light on the key
processes shaping the high-redshift quasar population.

This thesis

This thesis presents six studies conducted in collaboration with my co-
authors, covering a broad range of topics: the clustering and evolution of
high-redshift quasars and supermassive black holes (SMBHs), the emerging
population of “little red dots” and JWST-selected AGN candidates, the study
of parameter inference for third-generation gravitational wave detectors, and
the morphology of protoplanetary discs. While most chapters have already
been introduced in earlier sections, I provide below a summary of each chapter
— highlighting its objectives and main results — to serve as a reference for
navigating the structure of this thesis.

Chapter 2 presents a framework we developed to jointly model the
clustering and luminosity function of quasars at arbitrary redshifts. This
framework is built on large-volume, dark-matter-only cosmological simula-
tions, and includes a method to extract the relevant halo statistics — i.e., the
halo mass function and the cross-correlation of halos with different masses —
while combining multiple simulations to increase the dynamic range. With
this method, we can effectively probe the largest scales which are needed
to find rare, massive halos while retaining the capability of modeling less
massive and more common systems.

The primary goal of this chapter is to revisit the quasar clustering
measurements reported by Shen et al. (2007), which revealed an unusually
strong clustering signal at z &~ 4. We demonstrate that reproducing both
the quasar luminosity function (QLF) and the clustering amplitude at this
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redshift is possible, but only under the extreme assumption that nearly
all quasars occupy the most massive dark matter halos. While modeling
the QLF or clustering separately admits a wide range of parameter choices,
jointly fitting the two observables substantially tightens the constraints —
pointing to a quasar duty cycle close to unity and a remarkably small scatter
in the luminosity-halo mass relation. These conclusions are both striking
and challenging, underscoring the need for new observational campaigns to
either confirm or refute the Shen et al. (2007) results. Finally, we highlight
the flexibility of our framework by applying it to the quasar clustering
measurements at z & 2.5 from Eftekharzadeh et al. (2015), which provide
some of the most precise constraints on quasar clustering currently available.

In Chapter 3, we extend the model introduced in Chapter 2 to incor-
porate the population of line-emitting galaxies observed in JWST WFSS/
NIRCam surveys. In particular, we focus on [O 111] emitters identified in
JWST surveys such as EIGER (Kashino et al. 2023). Capturing both
quasars and galaxies within a unified framework requires an exceptionally
large cosmological volume, which we achieve using the FLAMINGO-10k
dark-matter-only simulation (Schaller et al., in prep.), specifically designed
for this purpose. Leveraging this simulation, we successfully reproduce
several key observables at z &~ 6: the luminosity functions of quasars and
[O 111] emitters (Schindler et al. 2023; Matthee et al. 2023), their respective
auto-correlation functions (Arita et al. 2023; Eilers et al. 2024), and the
quasar—galaxy cross-correlation function (Eilers et al. 2024).

The model yields predictions for the luminosity—halo mass relation, host
halo mass distributions, and duty cycles for both quasars and [O 111] emitters.
To our knowledge, this is the first study to constrain the properties of these
populations at such high redshifts using clustering measurements. Notably,
our results point to a very low quasar duty cycle at z = 6 (fauty S 1%).
We discuss the implications of these findings for early SMBH and galaxy
formation, and highlight the puzzling evolution of quasar properties implied
by measurements of quasars clustering at different cosmic epochs.

Chapter 4 investigates a newly emerging population of broad-line AGN
candidates identified in deep JWST imaging and spectroscopy — some of
which exhibit a steep rest-frame optical continuum and are thus referred
to as “little red dots” (LRDs; Matthee et al. 2024b). After correcting for
obscuration, many LRDs exhibit bolometric luminosities comparable to UV-
selected quasars, despite being detected in surveys covering areas thousands
of times smaller (Greene et al. 2024). This striking contrast implies that
LRDs are significantly more abundant than unobscured quasars of similar
luminosity, posing a major challenge to existing models of SMBH growth
and AGN activity in the early Universe (Inayoshi & Ichikawa 2024).

Through a detailed comparison between JWST-selected AGN/LRDs
and UV-selected quasars, we conclude that LRDs outnumber quasars by a
large and rapidly evolving factor with redshift. Interestingly, this suggests
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that the large population of LRDs cannot be accommodated in the same
halos where unobscured quasars live, suggesting that LRDs represent a
distinct evolutionary phase of SMBH growth, governed by different black
hole—galaxy—halo scaling relations. Supporting this interpretation, recent
clustering measurements show that LRDs exhibit spatial correlations con-
sistent with typical star-forming galaxies, in stark contrast to the strong
clustering seen in quasars at similar redshifts (Arita et al. 2025; Matthee
et al. 2024a; Lin et al. 2025). Together, these findings indicate that LRDs
are not merely obscured versions of known quasars, but instead constitute a
fundamentally distinct population in the early AGN landscape — or possibly,
that they are not AGN at all.

Chapter 5 builds on the models developed in Chapters 2 and 3 by
introducing an evolutionary framework for SMBHs and quasars embedded
within a large dark-matter-only cosmological simulation. As in previous
chapters, the model is constrained by key quasar observables — namely,
the luminosity function and large-scale clustering — but is now applied
consistently across all redshifts within a unified framework. Additionally,
SMBH mass measurements (or equivalently, the Eddington ratio distribution
function) are incorporated as an independent constraint, in a way that
mitigates biases due to the limited completeness of current observations. At
its core, the model connects the growth history of each SMBH to that of
its host halo through parametric functions that account for both average
evolutionary trends and stochastic variability. SMBH growth is treated
self-consistently, with accretion directly driving quasar activity.

Despite its simplicity, the model successfully reproduces a broad range
of observables from the epoch of reionization (z = 7) down to cosmic noon
(z &~ 2). We focus in particular on the early buildup of the most massive
SMBHs (2 10° M, by z ~ 7), and investigate the primary drivers of this
growth — including the relative contributions of accretion and mergers, as
well as the role of the accretion coherence timescale. Future extensions
of this framework will target lower redshifts and incorporate additional
observational constraints, such as quasar proximity zones and damping wing
measurements, and the gravitational wave background detected by pulsar
timing array (PTA) experiments.

Chapter 6 focuses on parameter inference for gravitational wave (GW)
signals in the era of third-generation detectors, such as the Cosmic Explorer
(CE; Reitze et al. 2019a) and the Einstein Telescope (ET; Punturo et al.
2010). These future observatories will offer unprecedented sensitivity, capable
of detecting compact binary coalescences from the earliest epochs of cosmic
history. They will routinely observe events with extraordinarily high signal-
to-noise ratios (SNRs) reaching several thousand. This leap in sensitivity —
along with a redshift reach an order of magnitude beyond current detectors
— will open new windows into precision cosmology, tests of gravity, and
astrophysical models of binary formation and evolution (Abac et al. 2025).
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However, with this increased detection capability come new challenges. One
of the most pressing is the overlap of multiple GW signals in the time domain
due to the high event rate (Baibhav et al. 2019). When signals overlap in
time or frequency, standard data analysis pipelines may no longer be reliable,
potentially introducing significant biases in the inferred source parameters.

In our exploratory study, we were among the first (see also the indepen-
dent analysis by Samajdar et al. 2021) to quantify these biases by testing
existing parameter inference pipelines in the presence of overlapping GW
signals. We simulate various configurations of two overlapping signals from
non-spinning binaries, systematically varying their relative SNRs, coales-
cence times, and merger phases. We show that — by setting a prior on the
coalescence time using the information from detection pipelines, which are
typically accurate to within ~ 10 ms (Regimbau et al. 2012; Meacher et al.
2016) — it is possible to correctly infer the properties of multiple overlapping
signals even with the current data-analysis infrastructure, provided that
the coalescence times of the signals in the detector frame are more than
~ 1 — 2 seconds apart. However, if the coalescence times differ by less than
~ 0.5 seconds, significant biases arise, highlighting the need for new analysis
strategies and algorithms (e.g., Baka et al. 2025).

Chapter 7 shifts focus to the physics of protoplanetary discs. As in
the case of accretion discs around SMBHs, gas turbulence plays a central
role in driving accretion and the secular evolution of protoplanetary discs.
However, in this context, its influence extends well beyond accretion alone
— it affects a wide range of processes that are crucial for planet formation.
Quantifying the level of gas turbulence in discs is therefore one of the key
open questions in the field (Rosotti 2023).

A promising approach to constraining turbulence is to measure the
vertical scale height of the dust layer in discs, which is expected to trace the
gas structure through gas—dust coupling. This has become feasible thanks
to the unprecedented resolution of ALMA observations, which have revealed
detailed substructures — such as rings and gaps — in the 2D emission profiles
of protoplanetary discs (Bae et al. 2022). As shown by Pinte et al. (2016), it
is possible to exploit these features to uncover the 3D morphology of discs.
The idea is simple: due to projection effects, a gap in a disc’s emission profile
will be partly filled by the emission coming from the neighbouring regions.
This effect is stronger along the minor axis of the disc, whereas the major
axis is only marginally affected. Hence, one can compare the gap contrast
along the major and minor axes to infer the degree of this “filling”, which in
turn depends on the disc’s vertical thickness.

In our study, we applied this technique to high-resolution ALMA data
from the DSHARP survey (Andrews et al. 2018), constructing radiative
transfer models to reproduce the observed gap contrast for varying dust scale
heights. We find that, in discs where constraints are possible, the preferred
models favor small scale heights, indicating low levels of gas turbulence. For
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the remaining nine systems in our sample, our method yields no meaningful
constraints, likely due to either low disc inclination or insufficiently deep
gaps. Based on our analysis, we propose an empirical criterion to assess
whether a given disc is suitable for this technique, offering a valuable tool
for guiding future observational efforts.
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Abstract

Observations from wide-field quasar surveys indicate that the quasar auto-
correlation length increases dramatically from z ~ 2.5 to z & 4. This large
clustering amplitude at z ~ 4 has proven hard to interpret theoretically, as
it implies that quasars are hosted by the most massive dark matter halos
residing in the most extreme environments at that redshift. In this work, we
present a model that simultaneously reproduces both the observed quasar
auto-correlation and quasar luminosity functions. The spatial distribution
of halos and their relative abundance are obtained via a novel method that
computes the halo mass and halo cross-correlation functions by combin-
ing multiple large-volume dark-matter-only cosmological simulations with
different box sizes and resolutions. Armed with these halo properties, our
model exploits the conditional luminosity function framework to describe
the stochastic relationship between quasar luminosity, L, and halo mass, M.
Assuming a simple power-law relation L oc M7 with log-normal scatter, o,
we are able to reproduce observations at z ~ 4 and find that: (a) the quasar
luminosity-halo mass relation is highly non-linear (v 2 2), with very little
scatter (o < 0.3 dex); (b) luminous quasars (log,, L/ergs™! > 46.5 — 47)
are hosted by halos with mass log,;, M/Mg 2 13 — 13.5; and (c) the implied
duty cycle for quasar activity approaches unity (epc &~ 10 — 60%). We also
consider observations at z ~ 2.5 and find that the quasar luminosity-halo
mass relation evolves significantly with cosmic time, implying a rapid change
in quasar host halo masses and duty cycles, which in turn suggests concurrent
evolution in black hole scaling relations and/or accretion efficiency.
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2.1 Introduction

Quasars are extreme manifestations of the supermassive black holes (SMBHs)
that are thought to reside at the center of almost every massive galaxy (e.g.,
Salpeter 1964; Zel’dovich & Novikov 1967; Lynden-Bell 1969; Magorrian et al.
1998; Ferrarese & Merritt 2000; Kormendy & Ho 2013). Investigating the
characteristics of these luminous objects has been an active area of research
for more than half a century (Schmidt 1963). In the last few years, it has
become possible to trace their evolution up to redshift z ~ 7 (Yang et al.
2020; Banados et al. 2018; Wang et al. 2021; see also Fan et al. 2023 for a
review). Understanding the properties of quasars such as their abundance,
luminosity, and spatial distribution, as well as their evolution with redshift,
is a key step in order to study the interplay between supermassive black
holes, their host galaxies, and the intergalactic medium (IGM) over cosmic
time.

In particular, measuring the clustering of quasars is crucial for gaining
information on the large-scale environment in which these objects reside.
Like their host halos, quasars are biased tracers of the underlying distri-
bution of dark matter (e.g., Kaiser 1984; Bardeen et al. 1986). For this
reason, obtaining an estimate for the linear bias factor of quasars (e.g., by
measuring the quasar auto-correlation function) makes it possible to infer
the characteristic masses of the halos hosting active quasars. In turn, these
masses can shed light on the large-scale environment that quasars inhabit,
and — by comparing the number density of quasars with that of the hosting
halos — on the fraction of time SMBHs are shining as active quasars (known
as the quasar duty cycle; see e.g. Martini & Weinberg 2001; Haiman & Hui
2001; Martini 2004).

Thanks to large-sky surveys such as the Sloan Digital Sky Survey (SDSS,
York et al. 2000) and the 2dF QSO redshift survey (2QZ, Croom et al. 2004),
measurements of large-scale quasar clustering up to z ~ 4 have been available
for more than a decade. However, a satisfactory theoretical interpretation
of these data at all redshifts is still lacking. This is mainly due to the
surprising evidence that the bias factor of quasars is a steep function of
redshift (Porciani et al. 2004; Croom et al. 2005; Porciani & Norberg 2006;
Shen et al. 2007; Ross et al. 2009; Eftekharzadeh et al. 2015; McGreer et al.
2016; Yue et al. 2021; Arita et al. 2023). While in the local universe quasars
trace halos in a way that is similar to optically selected galaxies, with a
bias factor close to unity (Croom et al. 2005; Ross et al. 2009), at z &~ 4
they are the most highly clustered objects known at that epoch, with a bias
factor as high as b ~ 15 (or, equivalently, a quasar auto-correlation length of
ro &~ 24cMpch™1; Shen et al. 2007, hereafter S07). Such a large correlation
length implies that quasars are rare objects, arising only in the most massive
halos and shining for a large fraction of the Hubble time.
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Several theoretical studies have tried to reproduce the results of SO7 at
z & 4. White et al. (2008) developed a simple model for quasar demographics
that builds on a linear relation between quasar luminosity and host halos
mass. They showed that to match the bias measured in S07, the scatter
in this relation must be very small (< 0.3 dex). This conclusion poses two
fundamental problems. Firstly, such a low scatter in the quasar luminosity-
halo mass relation would be very surprising. In fact, the conventional wisdom
on the coevolution of quasars and host galaxies/halos implies that there are
multiple sources of scatter contributing to determining the luminosity of a
quasar at fixed halo mass (the scatter in the relations between black hole
mass and quasar luminosity, black hole mass and bulge mass and between
bulge mass and halo mass). A second concern is that low scatter in the
luminosity of quasars seems to be in contrast with measurements of the
relative abundance of quasars at different luminosities (the so-called quasar
luminosity function, QLF). It has long been established that the bright end of
the QLF is well-fitted by a power-law (e.g., Boyle et al. 2000; Richards et al.
2006), which stands in contrast with the exponentially-declining halo mass
and galaxy luminosity functions (Press & Schechter 1974; Schechter 1976).
The easiest way to connect these different shapes is via significant scatter
in the luminosity of quasars at fixed halo/galaxy mass. Indeed, a number
of demographic models have been developed to interpret the abundance of
bright quasars and link them to their host halos (e.g., Croton 2009; Conroy
& White 2013; Fanidakis et al. 2013; Veale et al. 2014; Ren et al. 2020; Ren
& Trenti 2021; Zhang et al. 2023b). All of these studies (sometimes only
implicitly) explain the relatively large number of very luminous quasars by
demanding a broad range of possible quasar luminosities at a given host
mass so that the more abundant population of lower-mass halos can also
host a significant (or even dominant; e.g., Zhang et al. 2023a) fraction of the
very bright quasars. As pointed out by some of these same studies, however,
the masses of the quasar hosts implied by this picture are in plain contrast
with the high masses necessary to account for the SO7 bias measurement.

In summary, the very strong clustering measured by S07 implies a very
small scatter in the luminosity of quasars at a given halo mass, and this is
in tension with the large scatter required by physical models of the quasar
luminosity function. A first attempt at solving the tension was made by
Shankar et al. (2010b), using a model that connects quasar luminosities and
black hole masses while accounting for the growth of black holes during
cosmic time in a self-consistent way. The authors of this study tried to match
simultaneously the value of the bias inferred by S07 and several measurements
of the QLF at z = 3 —6 (Shankar & Mathur 2007; Shankar 2009). Assuming
a non-linear relation between halo mass and quasar luminosity, they find that
a low value of the scatter in this relation can reproduce the measurements
of the bright end of the QLF. Even when assuming that all massive halos
contribute to the clustering of quasars (i.e., a quasar duty cycle for massive
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systems equal to unity), however, their prediction for the z = 4 quasar
clustering is ~ 2 standard deviations below the value measured by S07.
Wyithe & Loeb (2009) also find that the SO7 bias measurement cannot
be reproduced when assuming that the bias of dark matter halos is solely
a function of their mass, and suggest that stronger clustering could be
obtained if quasar activity was sparked by recent mergers (the so-called
“assembly /merger bias”, see e.g., Furlanetto & Kamionkowski 2006; Wetzel
et al. 2009; see also Wechsler & Tinker 2018). However, Bonoli et al. (2010)
(see also Cen & Safarzadeh 2015) used the Millennium Simulation (Springel
et al. 2005) to study whether recently merged massive halos were clustered
more strongly than other halos of the same mass, but found no evidence for
that.

Numerous other studies have compared their predictions for the quasar
clustering to the S07 measurements, using a variety of different approaches
such as empirical models of quasar-galaxy coevolution (Kauffmann & Haehnelt
2002; Hopkins et al. 2007b; Croton 2009; Shankar et al. 2010a; Conroy &
White 2013; Aversa et al. 2015; Shankar et al. 2020), semi-analytic models of
galaxy formation (Bonoli et al. 2009; Fanidakis et al. 2013; Oogi et al. 2016)
and cosmological hydrodynamical simulations (DeGraf et al. 2012; DeGraf
& Sijacki 2017). While these studies are generally successful in reproducing
the quasar auto-correlation function (or, equivalently, the quasar linear bias)
at lower redshift (z < 3), none of these studies have been shown to be
compatible with the strong clustering observed by S07.

In conclusion, despite the efforts that have been devoted to interpret-
ing the auto-correlation function of quasars at high redshift, a number of
questions remain open: (a) is the SO7 measurement compatible with the
standard cosmological model in which clustering is dictated by halo mass or
is something akin to assembly bias playing an important role? (b) What is
the scatter in the quasar luminosity-halo mass relation? Can small (large)
scatter be reconciled with the observed quasar luminosity function (auto-
correlation function)? (c¢) What are the physical properties that can be
inferred from jointly modeling the QLF and quasar clustering? Can the
characteristic mass of host halos and the quasar duty cycle be determined
precisely?

One of the reasons why we have not been able to give definitive answers
to these questions in more than a decade, is that modeling the clustering of
high redshift quasars is difficult. The works of White et al. (2008), Shankar
et al. (2010b), and Wyithe & Loeb (2009) clearly show that the results of
their theoretical models are strongly dependent on the assumed functional
form for the linear bias-halo mass relation. This is because the different
analytical predictions for this relation based on linear theory (e.g. Mo &
White 1996; Jing 1998; Sheth et al. 2001) diverge significantly at masses that
correspond to peaks in the density perturbations that are already very non-
linear (Barkana & Loeb 2001). For the case considered here, a bias of b = 15,
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i.e., the value measured by SO07 for z ~ 4 quasars, corresponds to a value
of the peak height v = 6./a(M, z) — with 6. ~ 1.69 and o%(M, 2) being the
variance of the smoothed linear density field — equal to v ~ 4 — 6, depending
on the specific linear bias-halo mass relation and cosmology considered. Such
values are rather extreme, implying that the systems contributing to the
clustering of z = 4 quasars live in very rare and massive environments that
depart very early from the behavior expected for a linear density field.

Improving the accuracy of the linear bias-halo mass relation via empirical
fits to cosmological N-body simulations (e.g., Shankar et al. 2010b; Tinker
et al. 2010; Comparat et al. 2017) does not provide a complete solution to
the problem. In fact, the key point here is that the use of the large-scale
linear bias as a proxy for the clustering of quasars assumes that the measured
data are on quasi-linear scales, where the distribution of quasars is related
to the underlying matter distribution by a scale-independent factor. This
assumption breaks down for the small scales (as low as ~ 5cMpc) and for
the highly non-linear environments probed by the S07 data. For the same
reason, an approach based on the (analytical) halo model framework (Cooray
& Sheth 2002) would also be problematic, as the non-linear bias plays a
relevant role in the transition region between the one-halo and the two-halo
contributions (e.g., Mead & Verde 2021; Nishimichi et al. 2021).

In this paper, we aim to directly reproduce the observed z = 4 quasar
auto-correlation function (S07) in its entirety by making use of large-volume
cosmological simulations. This is a challenging numerical problem: in order
to model the auto-correlation function properly, we need to obtain a large
statistical sample of halos with masses up to M ~ 10'3 — 10 Mg, (which
correspond, at z = 4, to the peak heights mentioned above, i.e., v &~ 4 — 6).
Given the fact that the mass function declines exponentially at large masses,
these halos are extremely rare (1 — 10 CGpcfg), and therefore a very large
simulated volume of more than ~ 100 cGpc? is needed to obtain a sample
of at least ~ 102 — 10? massive halos, that can be used to properly model
the quasar auto-correlation function even at the highest masses. This is
in agreement with the fact that the comoving volume probed by the SDSS
observations used by S07 is around ~ 50 cGpc®. A volume larger than the
observational one is necessary to build a model for the quasar auto-correlation
function that has higher signal-to-noise ratio than the data. At the same
time, however, we also want to resolve halos down to M ~ 10'* — 10'2 M,
in order to explore the different possible distributions of quasars in halos
that can give rise to the observed clustering. To probe these very different
halo masses, we make use of a new semi-analytical framework (Sec. 2.2.2.2
and Appendix 2.B) that allows us to employ multiple simulated boxes to
widen the range of masses that can be properly modeled by our simulations.

We employ the dark-matter-only versions of the FLAMINGO suite of
cosmological simulations (Schaye et al. 2023; Kugel et al. 2023) and focus on
two specific box sizes: L = 2.8 cGpc and L = 5.6 cGpc. On top of reproduc-
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ing the clustering measurements at z = 4, we also consider the constraints
coming from the relative abundance of quasars at the same redshift. In other
words, we aim to match the observed quasar auto-correlation and luminosity
functions simultaneously. We make use of the spatial and mass distribution
of halos in the simulated volumes to build a simple quasar population model
that can be directly compared with observations. In this way, we are able to
investigate the predictive power of quasar observables in a ACDM framework
and obtain physical constraints on the halo mass distribution of quasar hosts
and the quasar duty cycle. We also use our model to analyze the clustering
and luminosity function data at a lower redshift (z ~ 2 — 3), where the
tension between theoretical models and data is not as strong (e.g., Croton
2009; Conroy & White 2013; Aversa et al. 2015). This serves as a benchmark
of the validity of our model and allows us to discuss the evolution of the
physical properties of quasars with redshift.

The paper is structured as follows. In Sec. 2.2 we discuss the basic
assumptions of the model, outline the cosmological simulations employed
in our work, and describe how we extract the physical quantities that are
necessary to model the quasar correlation function and luminosity function
simultaneously. Sec. 2.3 gives a brief overview of the data we compare our
model with, and it provides details on the statistical methodology underlying
that comparison. Sec. 2.4 presents the main results of our analysis, while
Sec. 2.5 contains a discussion of the implications of our findings and their
connections to previous work. Conclusions are provided in Sec. 2.6.

Methods

In this Section, we describe our model for the distribution of quasars in space
and luminosity. We start by outlining the basic framework (Sec. 2.2.1); then,
we describe the FLAMINGO cosmological simulations and detail how we
extract the mass function and the cross-correlation functions of halos (Sec.
2.2.2). Figure 2.1 shows a summary of the various quantities involved in our
analysis, together with a reference to the equations where they are defined.

2.2.1 The conditional luminosity function

We adopt an empirical model that is agnostic to the physics underlying the
quasar emission/black hole accretion mechanisms. The only assumptions we
make are: (a) every halo above some mass M,;, hosts a SMBH at its center,
emitting at some luminosity L; (b) the luminosity of a SMBH depends only
on the mass of the host halo, M. Therefore, we can employ a conditional
luminosity function approach (CLF; see e.g., Yang et al. 2003; Ren et al.
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Figure 2.1: Summary of the various quantities involved in the analysis. We choose
a model for the Conditional Luminosity Function (CLF) that depends on a set of free
parameters. We then combine this with the halo mass function and the halo cross-
correlation functions taken from the FLAMINGO cosmological simulations to obtain the
two main observables of interest, the quasar luminosity function and auto-correlation
function, together with other key properties such as the quasar-host mass function, the
halo occupation distribution (HOD), and the quasar duty cycle.

2020) and write the 2-d distribution in the black hole luminosity-host halo
mass plane, n(L, M), as:

n(L, M) = CLE(L| M) ngur (M), (2.1)

where npyvr (M) is the halo mass function.

Note that the luminosity of a SMBH, L, can be interpreted as either a
bolometric luminosity or a luminosity in a specific band of the spectrum.
The framework that we are introducing here is agnostic to this choice and
can be formulated to describe the emission coming from any region of the
spectrum. However, for clarity and consistency with previous work on the
subject (e.g., White et al. 2008; Shankar et al. 2010b; Conroy & White
2013; Zhang et al. 2023b), in this paper we choose to work with bolometric
luminosities. Henceforth, L will always refer to the bolometric luminosity,
i.e., L= Lboll.

Within this framework, the Quasar Luminosity Function — nqrr(L) — is
simply the marginalization of n(L, M) over halo mass, M:

Mmax
naue(L) = / CLF(L|M) ngange (M) dM. (2.2)
Mmin

1However, note that the data considered in this paper always refer to type I, UV-bright
quasars (e.g., Padovani et al. 2017). Hence, the model presented in this work describes
only this specific population of active SMBHs.
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Therefore, assuming that the halo mass function is known, the QLF can be
easily determined once a conditional luminosity function has been adopted.
The two limits of integrations, My, and Mpyax, represent the minimum/
maximum mass of a halo that can host a SMBH. In principle, we could
have SMBHs in any halos, and set this integration range to be as wide as
possible. However, given that the simulations employed in our analysis span
a wide but finite range of masses (Sec. 2.2.2), we adopt the following limits:
log1g Mmin/Me = 11.5, and log;q Mmax /Mg = 14 (logyg Mmax/Me = 14.5)
at redshift z = 4 (z = 2.5). These limits enclose a range in masses that is
sufficiently broad for our redshifts of interest (Sec. 2.4), so that expanding
the range would have a negligible impact on our final results.

We use a model for the CLF in which the distribution in luminosity is
log-normal at fixed mass (see also Ren et al. 2020; Ren & Trenti 2021):

Jon (logyo L —logy, Lc(M))2
dl L. (2.3
ma exp 20_2 0810 ( )

We then assume a power-law dependence of the characteristic luminosity,
L., on mass:

CLF(L|M)dL =

Lo(M) = Lt (Aff) (2.4

or, in terms of logarithmic quantities:
logyg Le(M) = logyg Lyet + (logig M —logyg Myet) (255)

where M,¢f is simply a reference mass that is associated with the reference
luminosity Lyet. We fix log,g Myesr/Me = 12.5. The free parameters of the
model are: o, Ly, 7, and fo,. In the following, we assume that these
parameters do not depend on the other variables such as halo mass or quasar
luminosity, and let them assume different values for the different redshifts
we consider in Sec. 2.4.

The factor f,, accounts for the fact that not all black holes may be active
as quasars at any given time. Therefore, we are implicitly assuming that
the CLF is bimodal: the first mode accounts for all luminous quasars and is
log-normally distributed, whereas the second mode (not accounted for in eq.
2.3) describes the behavior of the black holes that are too dim to be probed by
any observations and is therefore completely irrelevant to our analysis. This
bimodality in the CLF has a well-defined physical meaning: black holes are
either active as luminous quasars or they are dormant, with a luminosity that
is orders of magnitudes lower than any observational limits. However, it is
not clear whether the luminosity distribution of black holes is indeed bimodal,
or rather shows a continuum between active sources and inactive/faint ones.
Observations of very faint quasars (log; L/ergs™! a2 42 — 45) can shed light
on this question’. We will return to this point in Sec. 2.5.3.

2Such observations become very difficult in the distant universe, as faint quasars are often
outshined by their host galaxies.
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2.2.1.1 The quasar auto-correlation function

In our framework, the correlation function of quasars is identical to the
correlation function of the halos that host them, as quasars are temporally
subsampling the underlying halo distribution. However, we have to consider
that only quasars above some luminosity threshold Ly, are accounted
for when measuring the correlation function in a survey. Therefore, we are
effectively considering a “biased” halo mass distribution traced by the quasars
above this luminosity threshold: we will refer to it as the “Quasar-Host Mass
Function” (QHMF). This quantity can be expressed in terms of the halo
mass function and another marginalization integral of the CLF:
o0
thr

The clustering of quasars can then be determined by computing the cor-
relation function of a sample of halos that are distributed according to
nqumr (M|L > Ly, ). Here, we use an approach that allows us to quickly
determine the quasar auto-correlation function for different nqumr (M) dis-
tributions: we create different mass bins, and — selecting halos in these bins
— extract the cross-correlation functions for halos with different masses from
a cosmological simulation (see Sec. 2.2.2 for more details). Let us call these
cross-correlation terms &, (M;, My;r), with M being the centers of the
mass bins. We can then compute the quasar auto-correlation function, £(r),
by simply weighting the cross-correlations terms, &, (M;, My;r), according
to the quasar-host mass function, nqumr:

£(r) = ijpkfh(Mj,Mk;r), (2.7)
jk

where the weights p; i are defined as:
nqumr (M;|L > L) AM

Di = Mnox ;
fO : TLQHMF(M|L > Lthr) dM

with AM being the width of the mass bins. We present how to derive these
equations in Appendix 2.A.

Once &(r) is known, other related quantities such as the projected auto-
correlation function, wy (), can be easily obtained by integrating along the
parallel direction 7. The projected auto-correlation function is relevant since
it can be directly compared to observational data (see Sec. 2.3.1). Setting a
maximum value for the parallel distance 7.y, Which is chosen in accordance
with the one used for observational data, e.g. Tyax = 100 cMpch ™! for the
S07 measurements, the projected auto-correlation function reads:

wp(rp) =/ E(rp, m)dr = 2/ e g, (2.9)

—Tmax Tp r? —r2

(2.8)
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2.2.1.2 Halo occupation distribution and duty cycle

From the CLF, we can extract other quantities that will be relevant to
our analysis. In particular, the integral of the CLF above some threshold
luminosity Ly, represents the aggregate probability for a halo of mass M
to host a quasar with a luminosity above the threshold value. Therefore, it
is equivalent to a Halo Occupation Distribution (HOD; see e.g., Berlind &
Weinberg 2002):

HoD(a) = temeMIE > Lw) [ cyporanan. (210)
namr (M) Lt

The HOD is also closely related to the idea of a quasar duty cycle. In
fact, the duty cycle is defined as the fraction of active quasars (i.e., with a
luminosity above the threshold) divided by the fraction of halos that are able
to host these quasars. In the standard picture (e.g., Martini & Weinberg
2001; Haiman & Hui 2001) this fraction is well defined, as it is implicitly
assumed that there is a minimum halo mass My, above which all halos can
host quasars, and only a fraction of them is active at the present moment.
In other words, the QHMF is:

NQHMF (M) = EDCnHMF(M)@(10g10 M — loglo Mmin)7 (2.11)

with epc being the duty cycle and © the Heaviside step function. However,
this definition of the duty cycle is not well-posed in our approach. As
described above, we do not assume a specific functional form for the QHMF,
but rather we infer this quantity from the CLF (eq. 2.6). As a consequence,
we do not define a minimum mass Mmin for halos to host bright quasars, but
rather consider all halos and compute a probability for them to host bright
quasars given their mass, M. This implies that, in principle, even halos with
a very low mass could have a small but non-zero probability to host bright
quasars. As a result, the above definition of the quasar duty cycle would
return artificially small values. Therefore, we opt here for an alternative
definition (see also Ren & Trenti 2021): the duty cycle, epc, is the weighted
average of the HOD above a threshold mass that is given by the median of
the QHMF, nqume(M|L > Lyn,). In other words, if we define the median
of the QHMF as the mass M,0q satisfying the relation:

Mmax Mmax
/ nqumr(M) = 0.5 / nqumre (M), (2.12)
]\/[med Mmin
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then epc can be expressed as:

ff‘f"‘j numr (M) HOD(M) dM
EDC = Y- _
me " navr (M) dM

Mmax
Mgy PQEME (ML > Liny) dM (2.13)
Moo .
meed nvr (M) dM

2.2.2 Dark matter only simulation setup

In the last section, we have shown how we can make use of the CLF formalism
to compute the quasar luminosity and auto-correlation functions — together
with other relevant quantities such as the QHMF and the quasar duty cycle
— using two fundamental ingredients: the mass function of halos and the
cross-correlation functions of halos with different masses (see Figure 2.1 for
a summary of this workflow). In this section, we provide details on how we
obtain these two ingredients using the Dark-Matter-Only (DMO) version of
the FLAMINGO suite of cosmological simulations.

FLAMINGO (Schaye et al. 2023; Kugel et al. 2023) is a suite of state-of-
the-art, large-volume cosmological simulations run with the N-body gravity
and smooth particle hydrodynamics (SPH) solver SWIFT (Schaller et al.
2024). Gravity is solved using the Fast Multiple Method (Greengard &
Rokhlin 1987). The cosmology adopted in FLAMINGO is the “3x2pt + all”
cosmology from Abbott et al. (2022) (£, = 0.306, £, = 0.0486, o5 = 0.807,
Hy = 68.1 kms™! Mpc_l, ng = 0.967), with a summed neutrino mass of
0.06 eV. Massive neutrinos are included in the simulation via the § f method
of Elbers et al. (2021). Initial conditions (ICs) are set using multi-fluid
third-order Lagrangian perturbation theory (3LPT). Partially fixed ICs are
used to limit the impact of cosmic variance (Angulo & Pontzen 2016) by
setting the amplitudes of modes with (kL)? < 1025 to the mean variance (k
is the wavenumber and L the box size).

In this work, we focus on two specific DMO simulations with box sizes
L = 2800 cMpc and L = 5600 cMpc, respectively. Both simulations have
50403 cold dark matter (CDM) particles and 2800° neutrino particles. The
CDM particle masses are Mgy = 6.72 x 10° Mg and Mgy, = 5.38 X 1010 Mg
for the L = 2800 cMpc and L = 5600 cMpc boxes, respectively. We focus
on the DMO version of the simulations because no hydrodynamic version
is available for the largest box, and because we are only interested in the
spatial distribution of halos, that, in the ACDM model, is primarily dictated
by gravitational interactions of dark-matter particles only.

We identify halos in the simulated snapshots using the 6-d friends-of-
friends code VELOCIRAPTOR (Elahi et al. 2019). Once halos have been
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Figure 2.2: Left: Halo mass function at z = 4 from the simulations considered: L =
2800 cMpc (teal diamonds) and L = 5600 cMpc (red circles). The gray solid line represents
the analytical fit to the simulations (see Sec. 2.2.2.1 for more details). The shaded regions
highlight which masses in each simulation are considered for the fit. The bottom panel
shows the relative difference between the fit and the two simulations (with the horizontal
shaded grey band highlighting the 10% limit). Right: Auto-correlation function of halos
in different mass bins at z = 4. We create 8 mass bins ranging from log;q M /Mg = 11.5
to log g M/Mg = 13.5 and 0.25 dex wide. Lower mass bins correspond to lower values
of the correlation functions, and vice-versa. Teal diamonds refer to the L = 2800 cMpc
simulation, while red circles refer to the L = 5600 cMpc one. Points are staggered in the
x-direction for visualization purposes. The gray solid lines represent the fits to the auto-
correlation functions (from the lowest mass bin on the bottom to the highest mass bin on
top), as described in Appendix 2.B. Relative differences between the fits and the simulated
correlation functions are shown in the bottom panel. These differences are generally < 10%,
with the exception of the highest mass bin considered (i.e., log;g M/M = 13.25 — 13.5),
for which the measurements are noisy due to the small number of halos in that mass
range. The gray dashed lines in the top panel show extrapolations of the auto-correlation
functions based on our fit for even higher mass bins (log;q M /Mg = 13.5 — 13.75 and
logyo M /M@ = 13.75 — 14.0) where measurements from the simulations are not available.
More details can be found in Sec. 2.2.2.2 and Appendix 2.B.
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identified, their masses are computed using a spherical-overdensity definition
based on their density profile. We perform this task using the code SOAP?.
We define the radius of a halo as the distance from the most bound particle
within which the density reaches a value of 200 times the critical density
of the universe (200p.). We only include central halos in the analysis and
exclude the contribution of sub-halos. As discussed in Sec. 2.5.3, we do not
expect this to influence our results significantly.

Once we have obtained a catalogue with the positions and masses of halos
in the simulation at a given redshift, we can easily compute key statistical
properties such as the halo mass function and the (cross-)correlation functions
of halos with different masses. However, this approach is not directly suitable
for our purposes. In fact, an important limitation of cosmological simulations
is that they give reliable results only in a finite range of masses. The lower
limit of this mass range is imposed by resolution: halos with fewer than
50 — 100 dark-matter particles are not well resolved, and thus cannot be
trusted. The upper limit, on the other hand, is set by the box size of the
simulation: if the number of halos with mass greater than some threshold M
is small, these halos are too rare to get a reliable estimate of their statistical
properties (e.g., their clustering).

For the problem we are facing here, we need to be able to reproduce
the relative abundance of halos and their spatial distribution for a vast
range of masses. For this reason, employing a single halo catalogue obtained
using a simulation with a fixed box size is not the optimal strategy. Instead,
we use here an approach consisting of two key steps: we first compute
the quantities of interest (i.e., the halo mass function and the halo cross-
correlation functions) from multiple simulations with different box sizes
(and mass resolutions), and then we combine these different simulations by
making use of analytical fitting functions. In this way, we can predict the
abundance and spatial distribution of halos for all the masses that are well
captured by the different simulations considered.

Table 2.1 summarizes the properties of the simulations we employ. In
brief, we use the two different box sizes L = 2800 cMpc and L = 5600 cMpc
to study the properties of low-mass and high-mass halos, respectively. For
the 2800 cMpc box, we select halos in the range of masses log;, M/Mg =
11.5—13.0; for L = 5600 cMpc, we focus on halos in the range log,, M/Mg =
12.5 — 13.5. The lower limits are set to select only halos with at least ~ 50
particles, whereas the upper limits are set to ensure overlap between the two
mass ranges and to guarantee that all mass bins (up to at least z = 4) are
populated with at least 5000 halos. In the following we describe in detail
how we combine these simulations to obtain an analytical description of
the halo mass function and of the cross-correlation function of halos with
different masses.

Shttps://github.com /SWIFTSIM /SOAP
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Table 2.1: Summary of the different FLAMINGO cosmological simulations employed in the analysis. The “fitting mass range” refers to the
mass range selected for the fits of the halo mass function and the cross-correlation functions (Sec. 2.2.2.1 and 2.2.2.2, respectively). The
redshifts considered in the analysis are z = 4.0 (high-redshift data; see Figure 2.2), and z = 2.5 (low-redshift data; see Figure 2.9).

Box size | Number of CDM particles CDM particle mass Fitting mass range Snapshots considered (z)

[cMpc] [logo M) [log1o M|
2800 50403 9.83 11.5 - 13.0 2.5, 4.0
5600 50403 10.77 12.5 — 13.5 2.5, 4.0
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2.2.2.1 Fitting the halo mass function

Following Tinker et al. (2008) (see also Jenkins et al. 2001; White 2001;
Warren et al. 2006), we write the halo mass function in terms of the peak
height of the density perturbations, v = §./0(M, z), where §. ~ 1.69 is the
critical linear density for collapse and o(M, z) is the variance of the linear
density field smoothed on a scale R(M) (see Press & Schechter 1974; Sheth
& Tormen 1999). According to this formalism, the mass function can be
parametrized in terms of a universal function f(o):

flosA,a,b,¢) = A ((Z)_ + 1) e=c/o", (2.14)
where f(o) is related to the mass function via the expression
dn B pmo dlno~?
diM(M’Z)if(J)WdiM’ (2.15)

with pm o being the mass density at z = 0.

We use the python package coLossus (Diemer 2018) to compute the
value of o(M, z) using the same cosmology as the FLAMINGO simulation
(Sec. 2.2.2). We then use y?-minimization to find the best-fitting parameters
(A,a,b,c) for the analytical form of the halo mass function. We fit the
number density of halos in different mass bins using halo catalogues from
two different simulations, using two different (but partially overlapping)
mass ranges (see Table 2.1). We assign Poissonian counting errors to every
mass bin considered. We also experiment with changing these errors, and
find that we achieve a better fit to the data by doubling the errors for
the L = 2800 cMpc simulation, and halving the ones associated with the
L = 5600 cMpc box. Note that this choice is arbitrary: our goal is not to
provide a physically-motivated fit to the data, but simply to find a good
analytical description of the halo mass function coming from simulations.

Figure 2.2 (left panel) shows the best-fitting mass function for z = 4,
together with the data obtained from the simulations. Analogous results
for z = 2.5 are shown in Appendix 2.C. The optimal parameter values for
this mass function are: A = 5.68 x 107°, @ = 1.65, b = 257, ¢ = 1.16. As
shown in the lower left panel of Fig. 2.2, the fit provides a description of the
simulated data with an accuracy of &~ 5—10% up to log;o M /Mg < 13.5. As
we will discuss in Sec. 2.5.3, this level of accuracy for the model is enough
to provide a satisfactory description of the observed data.

Finally, we note that the reason why we have performed the fitting of
the halo mass functions extracted from our simulations and did not consider
the best-fitting parameters provided by Tinker et al. (2008) is because we
found that, at z > 4, differences between the Tinker et al. (2008) model and
our simulations were as high as 100% (see also Yung et al. 2023).
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2.2.2.2 Obtaining the cross-correlation functions

We want to obtain the cross-correlation functions of halos with masses
M; and My, &,(M;, My;r). In order to achieve this, we create a grid
in mass and distance by considering 8 uniformly spaced bins in log;, M,
with a minimum halo mass of log;; Mmin/Me = 11.5 and a maximum of
logg Mmax/Mg = 13.5, and 8 (logarithmically-spaced) bins in the radial
direction with a minimum radial distance of log;q rmin/cMpc = 0.4 and a
maximum of 10g;( Tmax/cMpc = 2.25 We then use the package CORRFUNC
(Sinha & Garrison 2020) to compute the number of halo pairs in the simulated
catalogues for every combination of masses and distance, together with the
number of pairs obtained assuming that these halos are distributed randomly.
The values of the cross-correlation terms are obtained using the Landy &
Szalay (1993) estimator:

D;Dy — DR, — Dy R; + R; Ry,

En(Mj, My;r) = & (1) = R, Rs

(2.16)

where D; D), stands for the number of pairs of halos in the mass bin j with
halos in the mass bin k, whereas R; Dy, D; Ry, and R; Ry, refer to the number
of pairs when comparing to a random distribution of the same halos.

We end up with 36 different cross-correlation functions — i.e., the number
of independent elements for a symmetric 64-element matrix — which can be
used to determine the quasar auto-correlation function according to eq. 2.7.
However, once again, we must account for the fact that different simulations
probe different mass ranges. We thus fit a parametric analytical function to
these cross-correlation functions in a way that allows us to combine different
simulated boxes.

Furthermore, in this case the fitting procedure has another critical pur-
pose. Despite the large volume of the simulations employed, the number
of simulated halos at the very high mass end is limited by the finite size
of the box. For this reason, the obtained cross-correlation terms for the
very high-mass halo pairs will suffer from significant uncertainties due to
the limited sample size in the simulation. Even for the largest box we
consider (i.e., L = 5600 cMpc), at z = 4 this effect starts to be significant for
log;g M /Mg = 13.2 — 13.5. This is an important limitation for our analysis:
in the inference routine we will undertake in the next Section, we want to be
able to explore the full parameter space and consider models for which this
range of masses (or even higher) plays a significant role. For this reason, we
fit the cross-correlation terms with two key objectives: reducing the noise
associated with the poor statistics at the high mass end of the halo mass
function, and providing a means to sensibly extrapolate the behavior of the
cross-correlation functions up to log;q M/Mg = 14.0 (log,, M /Mg = 14.5)
at z = 4 (z = 2.5). This extrapolation allows us to recover well-behaved
posterior distributions (see Sec. 2.4) that provide a complete description
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of the different models described by our parameters. Its validity and the
associated caveats are discussed in detail in Sec. 2.5.3

We provide details on the fitting of the cross-correlation terms &, (M, My; )
in Appendix 2.B. In short, we divide all the cross-correlation terms, &, (M;, My;r),
by a reference correlation function, &..¢(r), and fit the results with a 3-d
polynomial to capture the residual dependencies on the two masses and on
radius. In the rest of this Section, we show the results of the fits for the auto-
correlation functions in different mass bins at z = 4 (Figure 2.2, right panel;
the same plot for z = 2.5 is shown in Appendix 2.C). In other words, we plot
the correlation functions for bins of equal mass, £, (M, M;; ), together with
the fits that are meant to reproduce these functions, &, st (M;, M;;r) (gray
lines)*. Lower mass bins correspond to lower values of the auto-correlation
functions, and vice-versa.

We assign errors to the &,(M;, M;;r) points based on the Poissonian
statistics of the pair counts; note that in this way we are underestimating the
real uncertainties on the data points because we are not including the effects
of cosmic variance and of other sources of systematics. For this reason, when
assessing the robustness of our fits, it makes little sense to discuss them in
terms of statistical errors. We therefore compare the simulated data and
the model fits in terms of relative differences between the two (lower right
panel of Figure 2.2). These differences are generally at the level of < 10%
for all bins but the highest one (i.e., log;, M/Mg = 13.25 — 13.5), which is
easily recognizable because it has the largest Poissonian uncertainties. As
already mentioned before, at very large masses correlation measurements
from simulations become noisy (and thus unreliable) due to the small number
of halos in the snapshots. Even in this extreme case, however, the fit provides
a satisfactory description of the shape and normalization of the correlation
function in the simulations, with a relative difference that is still smaller
than the uncertainties on the SO7 observed data (which are at the level of
50 — 100 %; see Sec. 2.3.1).

Using dashed grey lines, we also plot in Fig. 2.2 the auto-correlations
functions for the two bins log;y M/Mg = 13.5 — 13.75 and log;y M /Mg =
13.75 — 14.0, as obtained by extrapolating our fitting functions to masses
higher than the ones probed by the simulations. We see that the trend
of the auto-correlation functions with halo mass is well preserved by these
extrapolations; further discussion on this can be found in Sec. 2.5.3 and
Appendix 2.C.

Finally, we note that relative differences between our fits and the values
of correlation functions extracted from simulations tend to be larger at very
large scales (r 2 100 cMpc). This is also due to the fact that simulation-based
values become less reliable in this regime. There are two reasons for that:

4The global fits to all the cross-correlation terms En(Mj, My;T) at both redshifts are
shown in Appendix 2.B.
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first, the finite size of the box reduces the number of very large-scale pairs
that are available. Secondly, at » 2 100 cMpc the behavior of correlation
functions becomes non-trivial due to the presence of the baryon acoustic
oscillations (BAO) peak. This is especially difficult to model given the very
coarse radial bins we have chosen. Due to these limitations of our model, we
simply exclude scales larger than r 2 100 cMpc from our analysis.

Data-model comparison

In the previous Section, we have described how to obtain the two observables
of interest (i.e., the QLF and the quasar auto-correlation function) starting
from a CLF and a simulation-based analytical description of the halo mass
function and of the halo cross-correlation functions. We now provide more
details on the actual comparison between our model and observational data.

2.3.1 Overview of observational data

We start by giving a brief description of the data that we compare the model
with. Our main goal is to explain the very strong quasar clustering measured
by S07 at z =~ 4. Thus, we make use of the S07 data for the projected
auto-correlation function (wp,/r,). Note that the authors assume that the
data points are independent (because the quality of the data is not good
enough to extract a covariance matrix), so we will do the same and use the
S07 errors assuming that the covariance matrix for the data is diagonal. We
use the “good fields” data (see SO7 for the definition) as they are supposed
to be more reliable and — since they show stronger clustering — have proven
to be the hardest to reproduce theoretically (e.g., Shankar et al. 2010b). As
already mentioned, we exclude the data at very large scales (r > 100 cMpc)
from our analysis because they are particularly challenging to measure both
in observations (e.g., Eftekharzadeh et al. 2015) and in simulations (see the
end of the last Section).

In the subsequent analysis, we are also interested in reproducing the
quasar clustering at lower redshift. For this purpose, we use data from the
Baryon Oscillation Spectroscopic Survey (BOSS, Eftekharzadeh et al. 2015;
hereafter, £15). We focus on the redshift range z = 2.2 — 2.8, where the
majority of the BOSS quasars reside. We use the data for the projected corre-
lation function, wy,(r), in the radial range 4 cMpch™! < r, < 25cMpch~1.
In this region, the E15 data are considered more reliable by the authors and
an estimate for the error covariance matrix is available.

One of the key points of our analysis is that, while the QLF includes all
quasars known in a given redshift bin, the quasar auto-correlation function
is usually measured by considering only quasars above a given luminosity
threshold Lyy,. This is an important point to take into account in our model
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(see eq. 2.6-2.10), as the presence of such a threshold may bias the inferred
clustering significantly. The flux limit employed for the S07 measurements
is m; = 20.2 (where m; is the apparent magnitude in the ¢ band). In order
to convert this to a value of Lyy,, we first convert the apparent magnitude
m; to an absolute magnitude, M50, using the K(z) correction” (see, e.g.,
Kulkarni et al. 2019 and references therein). We obtain that m; = 20.2
corresponds to M50 = —25.72 at z = 4. We then convert this value to a
bolometric luminosity by applying the bolometric corrections provided by
Runnoe et al. (2012a)°. We get a value for the S07 luminosity threshold
equal to log,o Ly, /ergs™! = 46.7.

As for the E15 clustering data at z ~ 2.5, the luminosity threshold that
we should employ is more subtle. While the authors consider the entirety
of the BOSS sample (Ross et al. 2013) for their clustering analysis, they
also show that this sample is highly incomplete at low luminosities. This
is an issue in the context of our model, as, when setting a threshold Ly,
we are implicitly assuming that the sample is complete above the threshold.
Given that properly modeling completeness in the E15 sample is outside
the scope of this work, we set the value of Ly, to the 25th percentile
of the luminosity distribution of the observed quasars at z = 2.5. This
value represents a compromise between taking into account part of the
highly incomplete sample of faint quasars that are included in the clustering
analysis and minimizing the bias that these quasars generate in the predicted
clustering. By considering Figure 3 in E15, we set this threshold value to a
M;(z = 2) magnitude of —25.3. Following Lusso et al. (2015), we convert
this to My450 = M;(z = 2) + 1.28 = —24.02, and finally to a bolometric
threshold of logy Lin, /ergs™" = 46.1.

As for the QLF, there are many different estimates available. For the
sake of consistency with the clustering measurements, we choose to employ
the UV-bright quasar catalogue compiled by Kulkarni et al. (2019, hereafter
K19). These authors provide a homogenised catalogue of 80,000 color-selected
AGN from redshift z = 0 to 7.5, together with MCMC-based estimates of
the QLF at all redshifts. We employ this dataset and select quasars at
different redshifts according to our models. For the model at z = 4, we
set 3.5 < z < 4.5 (largely consistent with the SO7 high-z sample); in this
range, the bright end of the QLF is determined by the same SDSS quasars
that are used to compute the clustering (Schneider et al. 2010), whereas the
low-luminosity quasars are presented in Glikman et al. (2011). The model

5The conversion between m; and Mi450 can be made using K 1450(2), which is defined as:
Mi450(z) = m; —5logyq (dr,(z)/Mpc) — 25 — K 1450(2), with dr, (z) being the luminosity
distance at redshift z. Following Lusso et al. (2015), we set K; 1450(z = 4) =~ —1.9.

6The bolometric correction for A = 1450 A is log;o Liso/ergs™' = 4.745 +
0.910log g ALy /erg s™1. Lis is the bolometric luminosity calculated under the as-
sumption of isotropy, and it is related to the real bolometric luminosity L via a factor
that accounts for the viewing angle, L = 0.75 Lig,
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at z = 2.5, instead, is entirely determined by quasars observed by the BOSS
survey (Ross et al. 2013).

Quasars in the K19 dataset are binned according to their Mj459 magni-
tude, and the uncertainties are computed using Poisson statistics. However,
as also discussed in K19, the QLF data always present significant systematic
errors due to, e.g., uncertainties in the quasar selection. This implies that the
quoted uncertainties on the QLF data may be significantly underestimated,
as is also evident from the large scatter (up to ~ 1dex) between different
estimates of the QLF that are available in the literature (e.g., Shen et al.
2020; Grazian et al. 2023). These issues are particularly problematic in our
framework, as our goal is to perform statistical inference by simultaneously
matching the quasar luminosity and auto-correlation functions, and that can
only be done properly if the associated uncertainties are well understood
and treated. Therefore, in order to avoid biases in our inference analysis
owing to very small formal statistical uncertainties on the QLF, we add a
systematic error to every QLF measurement in quadrature to the Poisson
ones determined by K19. That is, the uncertainties on our QLF data points
are set to be 0% = 02, + 02, Where 02, (02,,,¢) stands for the systematic
(statistical) uncertainty. We adopt a constant systematic uncertainty of
0.2 dex for the z ~ 4 dataset and of 0.05 dex for the z ~ 2.5 one. This
implies a systematic relative uncertainty of ~ 45% (=~ 10%) for z = 4
(z = 2.5). These values are chosen to be similar to the average relative
statistical uncertainties at the two redshifts considered (= 40% and =~ 5% at
z =4 and z = 2.5, respectively).

As the final step, we convert the values of the quasars’ absolute mag-
nitudes in K19, M1450, to bolometric luminosities using the Runnoe et al.
(2012a) bolometric corrections. We stress the fact that our results are inde-
pendent of the adopted bolometric corrections, as our model could easily be
expressed in terms of quasars’ UV magnitudes only. However, as discussed
in Sec. 2.2.1, we choose to convert everything to bolometric luminosities for
consistency with previous work on the subject.

2.3.2 Likelihood functions

We employ a Bayesian framework to write the posterior distributions for
our model parameters. As described in Sec. 2.2.1, the model consists
of a log-normal CLF centered on a power-law dependence of the quasar
luminosity on halo mass. The free parameters are the normalization and
slope of the quasar luminosity-halo mass relation (L. and -, respectively),
the logarithmic scatter around this relation (o), and the fraction of quasars
that are active at any given moment (fo,). The final set of parameters, ©,
is then: (o, Lyet, 7, fon)-

We set flat priors on ¢ and ~y, and flat priors on the logarithm of Lt
and fon (see e.g. Jeffreys 1946). Our priors span the following parameter
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ranges: o € (0.1dex, 1.5dex); log;q Lyer/ergs™! € (44.0,46.6); v € (0.5, 3);
logo fon € (—3,0). These limits are chosen in order to focus on the region of
the parameter space where models are physically motivated (e.g., the scatter
in the L. — M relation is unlikely to be smaller than 0.1 dex).

In what follows, we want to fit the QLF and the auto-correlation function
both independently and simultaneously. We can get constraints on these
two observables by setting the following likelihood functions:

£9@10) = e (5 - WS - ) (21D

where k € {QLF, corr} stands either for the quasar luminosity function data
or for the auto-correlation function data. As for the other variables, d(*)
stands for the set of n data points with means y and covariance ¥ coming
from observations, whereas p stands for the set of values predicted by our
models.

With the above likelihood, the results for the correlation function (“corr")
are found to not be very constraining, as there is a large set of models that
produce the correct clustering but substantially under(over)-estimate the
number density of bright quasars. Therefore, when quoting results for the
correlation function only, we provide an additional integral constraint by
imposing that the model matches the observed number density of bright
quasars. We integrate the QLF above the luminosity limit used for the
clustering measurements (see Sec. 2.3.1), and obtain an estimate for the
number density of bright quasars, nprignt. The associated uncertainty, opright,
is determined by using different realizations of the QLF fits from K19. Then,
we predict the number of quasars with a luminosity above this threshold,
Linr, based on our model (nmoqel1), and use the following likelihood:

expf (nbright 7nnlodel)2 /Jiright
\% 27TUbright

Note that we do not fit to the shape of the QLF, but only to the total
abundance of quasars above Liy,. This is an integral constraint that favors
models producing a physically reasonable total number of bright quasars.

Finally, we provide joint constraints on the parameters by fitting the
QLF and the auto-correlation function simultaneously. In other words, we
write the joint likelihood distribution as the product of the two likelihoods
(we assume that the two measurements are independent, and weigh the two
dataset equally):

E(corr+nden) _ E(COI‘I‘) ) (218)

(oint) _ ~(QLF) p(corr) (2.19)

Note that for the joint likelihood distribution, we consider £ (rather
than E(Corr+“de“)), as the QLF already provides an implicit constraint on
the total abundance of luminous sources.
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Table 2.2: Best-fitting parameter values for our model-data comparison at z = 4 (see
the main text for definitions of the different parameters, as well as eq. 2.17-2.19). “QLF
only” refers to the quasar luminosity function data only, “corr+nden” refers to the auto-
correlation function data in conjunction with the number density of bright quasars, and
“joint” refers to the combined QLF-+auto-correlation function data. The last column shows
the minimum value of the normalized chi-squared (see text for details).

Quantity \ o logg Luet lergs™] v fon [%]\ Xiorm

QLF only | 0.38 46.4 0.78 0.2 2.2/5
corr+nden | 0.10 44.4 2.99 100 4.6/4
joint 0.11 45.1 207 66 12.9/12
Results

In this section, we describe the results we obtain by fitting our model
to the observed quasar luminosity and auto-correlation functions, both
independently (“QLF” and “corr+nden” cases) and simultaneously (“joint”
case; see Sec. 2.3.2 for the definitions). Henceforth, we will refer to the
“QLF” model as “QLF only” in order to distinguish our model from the QLF
itself. We first consider the z = 4 case — which is the main focus of this
paper — and then discuss the results at lower redshift (z = 2.5) as well.

2.4.1 Analysis at z =4

As a first step, we are interested to know whether our model can reproduce
the two observables. We can answer this question by employing a simple
optimization algorithm to find the maximum of the likelihood distributions
(or, equivalently, of the posterior distributions) for the three cases of interest:
quasar luminosity function only (“QLF only”), correlation function + number
density of bright quasars (“corr+nden”), and quasar luminosity and correla-
tion functions together (“joint”). The maxima of the likelihoods represent our
best-fitting models, which we can then compare directly with observations
(see Section 2.4.1.1 for the results of the full parameter inference).

In Table 2.2, we report these best-fitting parameters for the cases men-
tioned above. Figure 2.3 shows our model predictions at the maximum
likelihood parameter values for the CLF, the HOD, the QHMF, the QLF,
and the projected quasar autocorrelation function (wy/7p); see Fig. 2.1 for
a schematic overview of these quantities.

In the top right panel of Fig. 2.3, we show the conditional luminosity
functions, CLF(L|M), as a function of the quasar luminosity L and the halo
mass M. The three cases “QLF only”, “corr+nden”, and “joint” are shown
with different colors (blue, orange, and green, respectively). The associated
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Figure 2.4: Left: Corner plots of the 4-d posterior distributions for the different cases
described in Sec. 2.4.1 (blue for the “QLF” model, orange for “corr+nden”, and green
for “joint”). Contours in the 2-d histograms highlight the 1o and 20 regions, whereas
the dashed lines in the 1-d histograms represent the median values of the parameters
(with 1o errors shown as shaded regions). Best-fitting parameters from Table 2.2 (see
also Fig. 2.3) are shown with star symbols in each corner plot. Right: Comparison of
the predicted quasar luminosity (top) and auto-correlation (bottom) functions with the
observational data from K19 and S07, respectively. The color coding is the same as in
the left panel. Median values (solid lines) and 1o uncertainty regions (shaded areas) are
obtained by randomly sampling the Markov chains for the posterior distribution 100 times.
Data points for the auto-correlation function that are outside of our fitting range (see
Sec. 2.3.1) are shown as semi-transparent points in the bottom right panel. The vertical
dot-dashed line in the upper right panel is the luminosity threshold for quasar clustering,
Liny (see Sec. 2.3).



CHAPTER 2 61

color bars at the bottom of the Figure represent the probability densities
for the different CLF cases. Integrating the CLF above the luminosity
threshold Ly, (gray dashed-dotted line in the CLF panel), we obtain the
halo occupation distribution (HOD; middle right panel; eq. 2.10). Combining
the HOD with the halo mass function (HMF), we get the Quasar-Host Mass
Function (QHMF; eq. 2.6); this is shown in the bottom right panel, together
with the z =4 HMF (gray line). The two left panels show the predictions
for the observable quantities: the auto-correlation function is shown on the
bottom left, together with data from S07; the quasar luminosity function
(eq. 2.2) is shown on top (data are from K19). While the auto-correlation
function is obtained from the QHMF via eq. 2.7-2.9, the QLF is the result of
integrating along the mass axis of the CLF weighted by the HMF (eq. 2.2).

Overall, looking at the two left panels of Figure 2.3, we conclude that in
all cases the models constitute very good fits to the data they are meant to
reproduce (see below for the caveat on the “QLF only” case). In order to
quantify this, we use reduced chi-squared statistics, x2,.., = X?/Vndof, Where
Vndof 18 the number of degrees of freedom (i.e., the number of data points
minus the number of parameters). We find x2_,,, = 2.2/5, x2,,m = 4.6/4,
and x2,.., = 12.9/12 for the “QLF only”, “corr+nden”, and “joint” cases,
respectively. These values are also shown in Table 2.2 for reference.

One striking feature of the best-fitting models is that they have very
different properties, as can be seen in the top right panel of Fig. 2.3 and the
best-fitting parameters shown in Table 2.2. All of them are characterized
by low values of the scatter in the quasar luminosity-halo mass relation, o,
but the offset, slope, and normalization of this relation vary significantly
between the models.

The “QLF only” model shows an approximately linear relation with a high
value of the reference luminosity L,ct. As a result, the characteristic mass of
halos hosting quasars with a luminosity above Ly, is low (log,q M /Mg =~
12.35, lower right panel of Fig. 2.3). This has two consequences. Firstly,
halos with log;q M /Mg =~ 12 — 12.5 are much more abundant than the
number of observed quasars, and thus a very low active fraction (fon =~ 0.1%)
is needed to match the QLF. Secondly, such a low characteristic mass for
the halos hosting luminous quasars implies a low value for the quasar auto-
correlation function, in conflict with the SO7 measurements (lower left panel).
In fact, we see that the best-fitting model for the “QLF only” case does not
fare well when compared with the clustering data.

The “corr+nden” model, instead, finds a much larger characteristic host
mass for bright quasars (log,;; M/Mg = 13 — 13.5). Such a large mass is
achieved by packing quasars in almost all the most massive halos. This is
done thanks to a few key ingredients (upper right panel of Fig. 2.3): a low
value of the quasar luminosity at the reference mass of log, g Myer/Mg = 12.5,
a highly non-linear relation between quasar luminosity and halo mass (y ~ 3)
and a very low scatter in this relation ¢ ~ 0.1. The first two parameters
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determine the mass, log;, M, at which the quasar luminosity — halo mass
relation crosses the luminosity limit Lyy,. The second and third parameters,
instead, determine how sharply the HOD drops at masses lower than log;, M
(middle right panel of Fig. 2.3). The extreme scenario implied by our best-
fitting model is needed to reproduce the measured auto-correlation function.
Indeed, the shape and normalization of the S07 data are very well reproduced
by our model (Fig. 2.3, lower panel) at the scales considered in the analysis
(3cMpce < rp < 100 cMpe).

Besides fitting the auto-correlation function, the “corr+nden” model aims
to reproduce the number density of quasars above the luminosity threshold
log;o Lenr- This is also achieved by the best-fitting model, which predicts
a number density Nmodel = 3.18 x 1078 cMpc—3, 0.5 standard deviations
higher than the observational value of nyyight = 2.73 X 108 chc_g. The
shape of the QLF, however, is not well reproduced by the model, because
it overpredicts the abundance of very bright systems and underpredicts
the abundance of log;, L/ergs™! ~ 46 — 47 quasars. This is due to the
fact, despite the very low value of o, the strong non-linearity in the quasar
luminosity-halo mass relation (y = 3) associates a large fraction of the
massive halos to the brightest observable quasars.

When we simultaneously fit both the quasar auto-correlation and the
luminosity function (“joint” model), we obtain results that are quite similar
to the “corr+nden” case, and are compatible with the same extreme scenario
in which quasars are packed in the most massive halos, i.e., a non-linear
quasar luminosity-halo mass relation with a steep slope and very small
scatter, low value of the quasar luminosity at the reference mass, and a large
active fraction of quasars. The quasar luminosity-halo mass relation for
the “joint” model is however not as extreme as the one for the “corr+nden’
model, as it is characterized by a lower value of the power-law exponent,
~ & 2. This has very little impact on the auto-correlation function, as the
quasar-host mass functions (lower right panel of Fig. 2.3) are very similar
in the two cases. It does have an effect, however, on the shape of the QLF,
with the “joint” model providing a better fit, especially at the very bright
end.

Overall, the QLF is very well reproduced by the “joint” model, with the
exception of the low-luminosity end (log L/ergs™! ~ 45.5). In this region,
the largest differences between the “QLF only” and the “joint” model appear,
with the “QLF only” model faring better at predicting a flattening of the
shape of the QLF. This flattening, however, is an artificial feature of our
model, originating from the prior assumption that halos with a mass lower
than log;g M /Mg = 11.5 do not host quasars. We consider this issue not
worthy of further investigation, as the faint-end of the QLF is still largely
unconstrained by data, and deeper observations are needed to probe its
behavior at the high redshift (e.g., Akiyama et al. 2018; Parsa et al. 2018;
Giallongo et al. 2019; Harikane et al. 2023; Grazian et al. 2023). Furthermore,

)
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our primary focus here is to interpret the bright quasars that are also probed
by clustering surveys. It is possible that a more flexible quasar luminosity-
halo mass relation is necessary to account for the abundance of low-luminosity
systems.

2.4.1.1 MCMC analysis

Given that our models are a good representation of the observational data, we
can proceed further with inference and determine how well the data constrain
the model parameters. We explore the posterior distributions using a Markov-
Chain Monte Carlo (MCMC) approach. We employ the Python package
EMCEE (Foreman-Mackey et al. 2013) to sample the posteriors using the
affine-invariant ensemble prescription (Goodman & Weare 2010). We place
m = 48 walkers distributed randomly in the parameter space and evolve
them for N > 10° steps. We set the final number of steps so that our
chains are at least 100 times longer than the auto-correlation time 7 (see
e.g., Sharma 2017), and thin the chains considering only one element every
T steps in order to account for auto-correlations. We also discard the first
103 elements of every chain to account for the burn-in phase.

Figure 2.4 (left panel) shows the corner plot for the 4-d posterior dis-
tributions (as a function of o, Lyet, 7, fon) for the three cases considered in
the analysis (“QLF”, “corr+nden”, and “joint”). The best-fitting model for
each of these cases, which was discussed above and shown in Fig. 2.3, is
highlighted with a star symbol in the corner plots. The samples of the pos-
terior distributions obtained by the Markov Chains are then used to obtain
predictions for the quasar luminosity and the auto-correlation functions; we
compare these quantities with the data in the right panels of Figure 2.4.

As expected, the “QLF only” and “corr+nden” models peak in very
different regions of the parameter space. The “corr+nden” model constrains
the parameters to the region with o < 0.5, v > 2, log;y Lyet/ergs ™! =
44.5 — 45.5, and f,, close to unity. This region of the parameter space is
the only one that is compatible with the above-mentioned scenario in which
bright quasars are active only in the most massive halos. This is also the
reason why there are no models predicting stronger quasar clustering than
observed (Figure 2.4, right panel), as our models are already predicting the
strongest possible clustering compatible with the observed abundance of
bright systems.

The “QLF only” model, on the other hand, peaks at lower v and f,,,
larger log;g Lyet, and a value of o which is larger than the “corr+nden” but
still moderately low (o = 0.3 — 0.5). However, the distribution for the “QLF
only” case is much more complex, and therefore the resulting constraints on
the parameters are not as straightforward. In particular, there is a region
of the parameter space that is well within the constraints given by the
auto-correlation function, and for which the “QLF only” model also has a
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good match with the QLF data (at the < 20 level). Unsurprisingly, this is
the region where the “joint” posterior distribution is located (green contours
in Fig. 2.4).

The reason why this region of parameter space can reproduce both the
QLF and the auto-correlation function can be understood as follows. As
mentioned in the introduction, the behavior of the QLF at the bright end is
very different from the one of the HMF, with the latter being characterized
by an exponential cutoff that is not present in the QLF. This is usually
explained by assuming that the more abundant population of lower-mass
halos can also contribute to the population of luminous quasars (see e.g.,
Ren et al. 2020). Indeed, this is what our fiducial “QLF only” model seems
to suggest (see also Fig. 2.3), as the very high quasar luminosity predicted
for the 1012-5 M, halo population implies that even with ~ 0.4 dex of scatter
the correct shape of the luminosity function can be reproduced. In this
picture, quasars are relatively common phenomena arising in the bulk of the
halo population at that redshift, with a very low duty cycle of epc ~ 0.1%.
However, even a scenario in which only the most massive halos are active
as bright quasars (with a duty cycle epc 2 50%) can be compatible with
the observed shape of the QLF. In this second case, the non-linearity in
the quasar luminosity—halo mass relation plays a key role in mapping the
exponential cutoff of the HMF into the power-law bright end slope of the
QLF, while at the same time packing bright quasars only in the most massive
hosts. While both of these scenarios provide a good description of the QLF
— differing significantly only at lower luminosities — only the latter is also
compatible with a very large clustering length of quasars.

In conclusion, despite the fact that the quasar luminosity and auto-
correlation functions alone provide relatively loose constraints on the shape of
the Conditional Luminosity Function (CLF), when considered in conjunction
they are able to determine a very well-defined region in the parameter space
for which a good agreement with all observational data is achieved (right
panel of Fig. 2.4). This is the most significant conclusion of our analysis,
and we will discuss it further in Sec 2.5.

2.4.2 Comparison with z ~ 2.5

Having applied our model to z ~ 4 data, it is also important to test whether
the model is flexible enough to reproduce observations at lower redshifts,
where the observed strength of quasar clustering is not as extreme. We note
that our goal in this paper is not to provide a complete and self-consistent
evolutionary description of quasar properties across cosmic time, but simply
to strengthen the conclusions we have drawn in the previous section by
showing that the same framework can also be applied to describe the spatial
and luminosity distributions of quasars at different epochs. In particular, we
focus on the redshift range z = 2.2 — 2.8, where the the BOSS survey (Ross
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Figure 2.5: Same as Fig. 2.4, but for different redshifts (z = 4 in green and z = 2.5 in
purple). The results always refer to the “joint” model (Sec. 2.4.1). The vertical dot-dashed
lines in the upper right panel are the luminosity thresholds, L}, used to measure quasar
clustering at the two redshifts. Data points for the auto-correlation function that are
outside of our fitting range because they are considered not reliable (see Sec. 2.3.1) are
shown with semi-transparent colours in the bottom right panel.
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et al. 2013; Eftekharzadeh et al. 2015) has provided solid measurements of
the quasar luminosity and auto-correlation functions. We choose this data
set because it is sufficiently different from the one at z ~ 4 to suggest that
the properties of quasars may have varied significantly in a relatively short
amount of time.

For simplicity, we focus here on the “joint” models only. In other words,
we run the MCMC-based algorithm with the same setup as in Sec. 2.4.1.1
fitting the quasar luminosity function and the auto-correlation function
simultaneously. Figure 2.5 shows the resulting corner plots for the posterior
distribution of the “joint” model at z = 2.5 (purple), together with the one
at z = 4.0 (green; same as Fig. 2.4) for comparison. We report the values
of the resulting 1-d constraints on the model parameters for both redshifts
in Table 2.3. In the right panel of Figure 2.5, we show the predictions of
our models based on randomly sampling the Markov chains for the posterior
distributions, together with the data that we aim to reproduce. We note that,
as mentioned in Sec. 2.3.1, we only include the data points for the E15 auto-
correlation function at z ~ 2.5 in the range 6 cMpc < r, < 40 cMpch™t.
This is because data outside this range are not considered reliable and not
included in the covariance matrix estimation (see E15). Indeed, we find
that our model provides a good match to the E15 data within the fitting
range, but it is significantly lower than the measured data at larger scales.
Given the strong biases that may be associated with large-scale estimates
of the correlation function, we do not consider this issue worthy of further
investigation.

The corner plots in Figure 2.5 show that the regions of the parameter
space constrained by the two redshifts are quite different. Interestingly, the
shape of the z = 2.5 posterior distribution exhibits non-trivial behavior in
the 2-d projections, yielding tight constraints on the + parameter, but also
strong degeneracies between o, log;q Lyef, and fon. In general, however, the
different parameters are well constrained, even better than at z = 4 due to
the higher sensitivity of the data. The resulting 1-d posteriors for z = 2.5
and z = 4 peak at a similar value of log,y Lyet, but they are quite different
for the other parameters. Lower-z results are characterized by a lower value
of v (= 1.15) and fo, (= 0.01), and a higher value of the scatter in the
L — M relation, o.

The top panel of Figure 2.6 shows how these posteriors translate into
distributions for the QHMFs (eq. 2.6). In this plot, the QHMFs for z = 2.5
and z = 4 are shown, together with the HMFs at the same redshifts (semi-
transparent lines). Uncertainties on the QHMFs are computed by randomly
subsampling the Markov chains for the posterior distributions. The two
QHMFs are quite different, reflecting the differences in the level of clustering
measured at the two redshifts. In the z = 4 case, quasars only reside in
the most massive systems (logyo M/Mg 2 13), with the QHMF distribution
tightly following the HMF (see also Fig. 2.3 for the best-fitting model).
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At z = 2.5, instead, the QHMF distribution has a lower median value
(logyg M /Mg =~ 12.5) and it is much broader, with a large range of halos of
different masses capable of hosting quasars.

The differences in the QHMF translate directly into different measure-
ments for the quasar duty cycle. As discussed in Sec. 2.2.1, we define the
quasar duty cycle (eq. 2.13) as the ratio between the QHMF integrated
above the median value of its distribution, Myeq (eq. 2.12), and the HMF
integrated above the same threshold. For z = 2.5, we find a value of the duty
cycle equal to epc = 0.4 & 0.1 %, whereas for z = 4 we find epc = 33753 %.
We note that these values are closely related to the values of the f,, param-
eter (Table 2.3), which describes the active fraction of quasars at any given
moment. Only in the case of a perfectly deterministic L — M relation (i.e.,
with zero scatter), however, would we find a duty cycle exactly equal to fo,.
In the presence of scatter in the L — M relation, the shape of the QHMF
can vary significantly with respect to the one of the HMF, and this changes
the fraction of quasars that are above the threshold luminosity, Ly, at any
given mass, and hence the quasar duty cycle.

However, we should mention the caveat that these results are obtained
by setting two different luminosity thresholds, Liy,, at the two redshifts
considered, according to the minimum luminosities imposed in the respective
clustering measurements. As shown in the top right panel of Figure 2.5, the
z = 2.5 luminosity threshold is = 0.6 dex lower than the one at z = 4 (L, =
46.1ergs™! and Ly, = 46.Tergs™! at 2z = 2.5 and 2z = 4, respectively).
Changing the value of Ly, may have direct consequences for the QHMF,
HOD, and quasar duty cycle, since all these quantities have an explicit
dependence on Ly, (eq. 2.6-2.13).

In order to provide a fair comparison between these quantities at the
two redshifts considered in the analysis, we impose the same Ly, at both
redshifts by using the z = 4 luminosity threshold (i.e., Ly, = 46.7ergs™ 1) to
recompute the above-mentioned quantities at z = 2.5. While the duty cycle
remains unchanged (within uncertainties), we find that although the QHMF
is still very broad, its normalization and median value are lower and higher,
respectively. In particular, the median value of the QHMF, My,eq (eq. 2.12)
shifts from log;y Mmed/Mg = 12.5 to log;y Mmed/Mg =~ 12.8. This suggests
a mild dependence of clustering on luminosity, as more luminous quasars
tend to be hosted by more massive halos. However, given that the QHMF
distribution is very broad in both cases, there is a strong overlap between the
populations of very bright (log;, L/ergs™! > 46.5) and moderately luminous
(logyo L/ergs™! ~ 46 — 46.5) quasars in terms of their host halo masses.

We leave a detailed analysis of the implications of our model in terms
of the luminosity dependence of quasar clustering for future work. Here,
we simply note that even when adopting the same luminosity threshold, we
find a remarkable difference between z = 4 and z = 2.5 quasars. The former
are very extreme objects, hosted only by the most massive halos that are
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Table 2.3: Constraints on the model parameters based on the corner plots shown in
Figure 2.5.

Redshift ‘ 1% logyo Lyet [ergs™!] y fon [%]
2=25 | 0528918 4571046 1.1540:06 1 g1+1.59
s=4 | 020102 45.2103 2007922 51792

present at that redshift, representing 4 — 5 peaks in Gaussian random fields
(Diemer 2018; see also Sec. 2.1). The latter, instead, are hosted by much
more common halos at z = 2.5, which are only slightly over-massive with
respect to the bulk of the halo population at that redshift (2 — 30 peaks).
For this reason, despite the increase in the quasar number density between
z =4 and z = 2.5, the quasar duty cycle — which measures how abundant
quasars are with respect to their host population — decreases by two orders
of magnitudes between the same two redshifts.

In conclusion, our data-model comparison reveals that the same parametriza-
tion of the CLF employed at z = 4 is also able to reproduce the data at
lower-z, with a significant evolution of the CLF parameters reflecting a
remarkable change in the physical properties of quasars with cosmic time.
In the following, we further discuss the implications of these findings.

Discussion

In the analysis performed above, we could successfully match the quasar
luminosity and auto-correlation functions at two different redshifts provided
that: (a) there exists a non-linear relation between quasar luminosity and
halo mass, and the non-linearity increases with redshift; (b) the scatter in this
relation is fairly small (o < 0.3—0.6) and decreases significantly with redshift;
(c) in accordance with this relation, luminous quasars (log,, L/ergs™! > 46.5)
are hosted by halos with mass log;q M/Mg =~ 13 — 13.5 (logyo M /Mg =
12.5—13) at z =4 (z = 2.5); (d) the quasar duty cycle is a strong function of
redshift, with a very low epc ~ 0.4% at low-z that increases to epc &~ 30% at
z = 4. In the following, we further elaborate on this picture by investigating
its implications for SMBH accretion and growth and by placing it in the
context of previous work on the subject. We end the section by highlighting
the main strengths and weaknesses of our analysis.
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2.5.1 Implications for quasars’ physical properties

2.5.1.1 Black hole mass and accretion efficiency

The CLF posits an empirical relation between quasar luminosity and halo
mass. However, many quasar population models (e.g., Conroy & White 2013;
Veale et al. 2014; Zhang et al. 2023b) built this relation on physical grounds
by relating the quasar luminosity to the mass of the central black hole, and
this latter mass to the mass of either the host halo or the host galaxy/bulge.
We can relate these two approaches by introducing the Eddington ratio 7,
which is defined by the following relation:

L =({nMgyu, (2.20)

where Mgy is the mass of the black hole, and ¢ = 3.67 x 10*Lo /Mg, is a
constant factor.

Then, we assume, e.g., that the mass of a black hole is determined solely
by the mass of the host halo. In other words, we introduce a probability
P(Mpu|M) for the mass of the black hole given the halo mass. If we also
write the “Eddington ratio distribution” ERDF (n|Mpu, M) in terms of the
other quantities considered, the conditional luminosity function reads:

dMsu
§Mpu

CLF(L|M) = / ERDF <

G MBH,M> P(Mgg|M). (2.21)

In this way, we have related the CLF — which is an empirically determined
stochastic relationship between quasar luminosity and halo mass — to two
other distribution functions (the ERDF and the black hole mass distribution)
that have a clear physical meaning, being related to the physics of black
hole accretion and growth.

In order to make this relationship explicit in our analysis, we can simply
rewrite the quasar luminosity as the product of the Eddington ratio and the
black hole mass (eq. 2.20). In this way, we can explicitly study how these two
parameters — albeit completely degenerate — depend on the mass of the host
halo, M, according to our model. The middle panel of Figure 2.6 illustrates
this dependence. In this panel, we employ the CLF(L|M) relation given
by our model to write the probability distribution for the product of the
Eddington ratio and the black hole mass-halo mass ratio, P(nMpu/M|M).
Note that we divide the product nMpp = L/¢ by the halo mass, M, because
we expect black hole mass and halo mass to be approximately proportional
based on local scaling relations (e.g., Efstathiou & Rees 1988; White et al.
2008; Booth & Schaye 2010; Marasco et al. 2021) and because we can then
work with a dimensionless quantity. Redshifts in the middle panel of Figure
2.6 are color-coded as in the top panel and in Figure 2.5. Median values and
uncertainties for P(nMpn/M|M) are extracted by randomly sampling the
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Markov chains for the posterior distributions, as well as the L — M relation
given by our model (see the caption for details).

While at z = 2.5 the median value of nMpy /M shows only a weak trend
with halo mass, the situation is much different at z = 4, with the product
nMpu /M strongly correlating with M. This can be achieved by assuming
that either the black hole mass, the Eddington ratio, or both increase with
halo mass. In other words, for very massive hosts black holes are either
particularly massive (with a black hole mass-halo mass ratio higher than for
lower-mass counterparts) or efficiently accreting (i.e., with large Eddington
ratios). This trend is driven by the fact that the measured strong clustering
at z = 4 requires that the most luminous quasar population is completely
dominated by high-mass hosts.

It is also useful to cast these constraints in terms of galaxy stellar masses.
This can be done by exploiting one of the parameterizations of the halo
mass-stellar mass relation that are available in the literature. Here, we
use the redshift-dependent halo mass-stellar mass relation from Behroozi
et al. (2013) to rewrite P(nMpu/M|M) in terms of the galaxy mass M., i.e.,
P(nMgu/M.,.|M). For simplicity, we neglect the scatter between stellar mass
and halo mass in this conversion. The bottom panel of Figure 2.6 shows how
the product of the Eddington ratio and the black hole mass-galaxy mass ratio
varies as a function of halo mass. This is especially interesting in light of the
fact that there is long-standing evidence in favor of a linear (or quasi-linear)
relation between black hole and galaxy masses in the local universe (the
so-called My — M, relation, see e.g., Magorrian et al. 1998; Kormendy
& Ho 2013; Reines & Volonteri 2015). In the same panel (Figure 2.6), we
plot with a dashed red line the expectation for the product nMpu /M, as a
function of M, based on assuming the local My — M, relation as measured
by Reines & Volonteri (2015), converting galaxy masses to halo masses
according to Behroozi et al. (2013), and setting a fixed Eddington ratio of
n = 1. The scatter around this quantity (red shaded region) only considers
the scatter in the Mgy — M, relation as quoted by Reines & Volonteri
(2015). Due to the fact that the Mgy — M, relation is almost linear, the
product between the Eddington ratio and the black hole mass-galaxy mass
ratio is almost independent of halo mass, with an average constant value of
nMBH/M* ~ —3.5.

Comparing this expectation based on local relations to the predictions of
our model for z = 2.5,4, we find that for low halo masses (log,q M/Mg <
12.5) the predictions tend to agree within the uncertainties (see below for
the caveat on extrapolating below log;y M /Mg = 12). For larger masses,
however, the difference between local predictions and our models becomes
quite significant. At z = 2.5, there is a mild but significant positive trend
of increasing nMpn /M, with M. This trend becomes even steeper and
tighter at z = 4, with the product nMpn/M, ranging from ~ —3.5 for
log;g M/Mg < 12.5 to &~ —2 for log;; M/Mg < 13.5. The trend can be
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interpreted considering that the galaxy formation efficiency at z = 2—4 peaks
at halo masses around log;q Mpeak/M@e ~ 12 — 12.5; as a consequence, the
stellar mass-halo mass relation flattens at masses higher than log;, Mpeak
(Behroozi et al. 2013, 2019). Our model, on the other hand, does not
predict any flattening in the quasar luminosity-halo mass relation for masses
logio M > logyg Mpeax. Hence, the product nMgu /M. becomes a steep
function of halo mass for log,, M/Mg 2 12.5. We believe the absence of
a flattening in the quasar luminosity-halo mass relation at the high mass
end is not simply a consequence of the chosen parametrization for the
CLF. By experimenting with different parameterizations of the CLF, we
found that any departure from a steep, non-linear relation between quasar
luminosity and halo mass is incompatible with the measured value of the
clustering (especially at z = 4), as a flattening of this relation would lower
the characteristic halo mass of bright-quasar hosts. Therefore, we conclude
that while galaxy growth appears to be quenched at the high mass end, even
at high redshifts (e.g., Behroozi et al. 2019), this does not seem to be the
case for black hole growth, as black holes in very massive halos need to be
very massive and/or accreting efficiently. Indeed, observational evidence for
an evolution of the Mgy — M, relation has been found repeatedly at high-z
(implying over-massive black holes) together with signs of an increase in the
median value of the ERDF with redshift (e.g., Vestergaard & Osmer 2009;
Wu et al. 2022; Maiolino et al. 2024; Pacucci et al. 2023; Stone et al. 2023;
however, see Li et al. 2022; Zhang et al. 2023c for a discussion of selection
biases).

We conclude by noting that, in our analysis, the shape of the CLF is
actually constrained by data only in a limited range of halo masses. For
low halo masses, the corresponding quasar luminosities fall in a range where
quasar clustering has never been measured and estimates for the QLF are
not available (or highly uncertain). On the other hand, for very high halo
masses (and hence very high quasar luminosities), quasars become so rare
that estimates for the QLF are once again very uncertain. Moreover, if the
quasars are luminous enough to be completely above the luminosity threshold
for clustering, then the exact behavior of the luminosity as a function of
halo mass becomes irrelevant. Therefore, in all panels of Figure 2.6, we show
the regions in halo mass where our constraints on the CLF are based purely
on extrapolations as dotted lines. This mainly concerns low halo masses
(logyg M/Mg < 12.5) at z = 4, and both very low (log,o M/Mg < 12) and
very high (log,q M /Mg 2 13.5) masses at z = 2.5.

2.5.1.2 Quasar lifetime and the growth of high-z black holes

While the empirical relation between quasar luminosity and halo mass gives
valuable information on the connection between black holes, their accretion
efficiency, and their host halos/galaxies, another key piece of the puzzle
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resides in the inferred values of the quasar duty cycle, epc. This quantity is
defined as the fraction of halos that are hosting bright quasars at any given
time (see Sec. 2.2.1). If quasar activity is a stochastic process, however, the
duty cycle is also equal to the total fraction of time in which a black hole
is active as a bright quasar during the lifetime of an average host halo. In
other words, the duty cycle is an average constraint on the total lifetime
of a quasar, tq. Following Martini & Weinberg (2001) (see also Martini
2004, Haiman & Hui 2001), we can simply assume that the characteristic
lifetime of a halo is roughly equal to the age of the universe ty(z), and get
an estimate for the quasar lifetime by writing tq = ty(2) epc. Using the
values of epc obtained in Sec. 2.4.2, we get tq =~ 0.1 — 1 Gyr at z ~ 4, and
tq ~ 10 — 15 Myr at z =~ 2.5.

The quasar lifetime is one of the most fundamental quantities for under-
standing the role that SMBHs play in a cosmological context. According to
the standard picture of SMBH growth (e.g., Lynden-Bell 1969), luminous
quasars are powered by gas accretion onto a SMBH, and the rest mass
energy of this material is divided between the small fraction (= 10%) of
radiation that we observe, and the growth of the black hole. In this picture,
a phase of luminous quasar activity translates directly into a buildup of mass
for the central SMBH. This provides a direct connection between the total
luminosity emitted by quasars over cosmic time and the total mass residing
in SMBHs in the local Universe (the so-called “Soltan argument”, Soltan
1982). If the quasar lifetime is long compared to the Hubble timescale (i.e.,
the duty cycle is large), then the buildup of the total SMBH mass has taken
place in only a small fraction of host galaxies that were active as bright
quasars for a large fraction of their lifetimes. A short quasar lifetime, on the
other hand, implies that most galaxies have undergone a brief bright quasar
phase during their evolution history. The results of our analysis suggest that
the latter scenario is valid at cosmic noon (z ~ 1 — 3), when most of the
SMBH growth has taken place (e.g., Shen et al. 2020). The short quasar
lifetime we find at z ~ 2.5 is, in fact, a direct consequence of the fact that
quasar activity at that redshift takes place in relatively common halos with
a broad distribution of host halo masses (top panel of Figure 2.6). Opposite
conclusions can be obtained by considering our z ~ 4 results. In this case,
we find that the large duty cycle translates into a quasar lifetime that is
a large fraction of the Hubble time (tq ~ 0.1 — 1 Gyr). This implies that
SMBH growth may be radically different in the young Universe as compared
to cosmic noon. As suggested by the z = 4 QHMF in Figure 2.6 (top panel),
quasar activity at high z takes place only in the few most massive halos that
are present at that redshift, and hence these systems are active as bright
quasars for a large fraction of cosmic time.

Estimating the quasar lifetime at high z is even more compelling in
light of the fact that observations of very massive black holes powering
luminous quasars at z 2 5 challenge our standard paradigm for black hole
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formation and growth (Mazzucchelli et al. 2017b; Farina et al. 2022). In
the standard picture, black holes follow an Eddington-limited exponential
growth with a timescale that is equal to the “Salpeter time”, tg ~ 40 Myr.
At high z, models suggest that there is just enough cosmic time to grow
the observed SMBH masses starting from massive seeds of ~ 103 — 10° M,
(e.g., Inayoshi et al. 2020). For this reason, gauging the quasar lifetime is
important because it offers an indirect probe of whether sustained accretion
on SMBHs can take place at high z in the form of bright quasar activity.
The long lifetime we infer at z &~ 4 is indeed consistent with this picture,
providing an argument in support of models for Eddington-limited growth
of high-z black holes. We can provide a rough estimate for this argument
by considering as a characteristic host halo mass the median value of the
z ~ 4 QHMF (Figure 2.6, top panel), log;g Mmea/Mg = 13.3. If we assume
accretion at the Eddington rate (n = 1), we can translate this characteristic
halo mass into a black hole mass using the relation between n Mpy/M and
M (middle panel of Figure 2.6): we get log;, Mpu/Mg ~ 9 (Kollmeier et al.
2006). By assuming a seed mass of 102 Mg, (10° Mg,), we find that a total
quasar lifetime of ~ 600 Myr (=~ 350 Myr) is required to grow the black
holes under the assumption of Eddington-limited accretion. This is in good
agreement with the estimate for tq obtained above’. This simple argument
shows how studying the demographic properties of quasars (such as their
abundance and clustering) can place indirect constraints on the formation
and evolution history of SMBHs.

Alternative estimates for the quasar lifetime can be obtained by a number
of other methods (for an overview, see Martini 2004). Interestingly, results
from studies of the quasar proximity effect at high z (Khrykin et al. 2016,
2019) paint a rather different picture than the one suggested here, finding
values of the quasar lifetime that are several orders of magnitudes smaller
(see also Davies et al. 2019; Eilers et al. 2021). Khrykin et al. (2021) compiled
a set of Hell proximity zone measurements for z ~ 3 —4 quasars, and inferred
a log-normal quasar lifetime distribution with a mean of tq ~ 0.2 Myr and
a standard deviation of ~ 0.8 dex. It is important to note, however, that
proximity zone measurements are sensitive only to a fraction of the past
quasar lightcurve (up to ~ 30 Myr for Hell). Clustering measurements, on
the other hand, provide integral constraints on the total lightcurve emitted
by quasars over the entire history of the Universe. In other words, they are

"This estimate assumes that black holes grow at the Eddington limit for their entire
history. The demographic properties of quasars at the present time, however, do not
constrain black hole growth on a timescale larger than the inferred value of tq. We can
provide an alternative argument to link the quasar duty cycle to the growth of black
hole mass by considering the characteristic luminosity of our quasar sample L 2 Ly,
and convert that to an accreted black hole mass by assuming a radiative efficiency of
~ 10% and a total lifetime tq. We get log,q Mpa/Me ~ 8.7 — 9.7 for tq = 0.1 — 1 Gyr,
which again points to the fact that black holes can grow out to very high masses based
on our inferred duty cycle.
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only sensitive to the zeroth moment of the quasar lightcurve distribution
(i.e., the aggregate probability of the lightcurve). The discrepancy between
lifetime estimates for proximity zone sizes and clustering measurements,
then, may suggest that quasar lightcurves exhibit non-trivial variations on
timescales close to the ones probed by proximity zones. With this respect,
exploring the full probability distribution associated with quasar lightcurves
in the context of our quasar demographic model would provide a way to
connect these very different observational probes of quasar activity in a
single consistent picture. We will investigate this point in future work.

2.5.2 Comparison with previous work

The model presented in this work builds on a long-standing tradition of inter-
preting quasar observables via population modeling, i.e., by linking quasars
to the well-known population of halos (or sometimes galaxies) according to
some empirical/phenomenological prescriptions. Explaining the observed
relative abundance of quasars at different luminosities (i.e., the QLF) within
such frameworks has been achieved many times, with a large variety of em-
pirical models and physical prescriptions employed (e.g., Efstathiou & Rees
1988; Wyithe & Loeb 2003; Croton 2009; Conroy & White 2013; Fanidakis
et al. 2013; Veale et al. 2014; Caplar et al. 2015; Weigel et al. 2017; Ren &
Trenti 2021; Zhang et al. 2023b). The bottom line is that the QLF is pretty
straightforward to model starting from the hierarchical growth of structures
predicted in the ACDM framework. On the other hand, the QLF alone
does not place tight constraints on key properties of quasars such as their
black hole mass, accretion rate, lifetime, and host halo mass, not even in the
context of redshift-dependent models (e.g., Wyithe & Padmanabhan 2006;
Wyithe & Loeb 2009; Veale et al. 2014). Indeed, our analysis in Sec. 2.4.1
(Fig. 2.4) suggests that a very wide variety of model parameters can be in
good agreement with the QLF. As shown by Veale et al. (2014), alternative
parametrizations would fare nearly equally well at all redshifts. The large
uncertainties on the actual shape and normalization of the QLF that are
due to the significant systematics involved in these measurements (Kulkarni
et al. 2019) exacerbate this issue, especially at high redshift.

For this reason, considering the independent constraints coming from
quasar clustering is extremely useful, as they provide constraints on the
masses of the halos that are capable of hosting quasars. Reproducing the
clustering of low-redshift (z < 2.5) quasars has been shown to be possible
both in empirical models (e.g., Kauffmann & Haehnelt 2002; Hopkins et al.
2007b; Croton 2009; Shankar et al. 2010a; Conroy & White 2013; Aversa et al.
2015; Shankar et al. 2020), semi-analytic models (e.g., Bonoli et al. 2009;
Fanidakis et al. 2013; Oogi et al. 2016) and cosmological hydrodynamical
simulations (e.g., DeGraf & Sijacki 2017). All of these studies, however, show
a significant tension with the clustering measurements at redshift z 2 3.
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Figure 2.6: Top: Quasar-host mass function (QHMF) at z = 2.5 (solid purple line) and
z = 4 (green), according to our model. These functions and their respective uncertainties
are the median and the 16th and 84th percentiles of the distributions obtained by randomly
subsampling the Markov chains of the posteriors shown in Figure 2.5. The halo mass
functions (HMFs) for both redshifts are shown with semi-transparent lines, whereas the
dashed-dotted lines indicate the median values of the QHMF distributions. In all panels,
regions in the halo mass spectrum where the behavior of the conditional luminosity
function (CLF) is purely extrapolated and not explicitly constrained by data are shown
with dotted lines. Middle: Same as the top panel, but showing the dependence on halo
mass of the product between the Eddington ratio (n) and the black hole-halo mass ratio
(Mpn/M). In this case, there are two sources of scatter: the uncertainty on the model
given by the posterior distribution and the intrinsic scatter coming from the o parameter
in the CLF. We plot the former with a darker shading, whereas the total contribution of
the two sources of scatter is shown with a lighter shading. Bottom: Same as the middle
panel, but showing the quantity n Mpu /M. instead (with M, being the galaxy mass).
The relation between halo mass and galaxy mass is taken from Behroozi et al. (2013).
The red dashed line shows the prediction for n My /M, assuming the Reines & Volonteri
(2015) relation between black hole and galaxy masses (with the shading showing the
scatter in the relation), and setting n = 1.
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The implications for the strong clustering measured by SO07 at z =~ 3 — 4,
in particular, have been discussed by White et al. 2008, Wyithe & Loeb
2009, and Shankar et al. 2010b. White et al. (2008) assume that the quasar
luminosity-halo mass relation is linear, and find that the total number density
of bright quasars can be reconciled with the linear bias measured by S07 only
if the scatter about this linear relation is very small (¢ < 0.3 dex). They also
find that their conclusions are strongly dependent on the specific functional
form assumed for the linear bias-halo mass relation b(M): the Mo & White
bias (Mo & White 1996; Jing 1998) is found to be marginally compatible
with data, whereas the Sheth, Mo, & Tormen one (Sheth et al. 2001) is
inconsistent with the measured bias at the ~ 20 level. Adopting the Sheth,
Mo, & Tormen functional form of (M) after showing that it is a better fit
to N-body simulations, Shankar et al. (2010b) interpret the S07 data in the
context of an evolutionary model for supermassive black holes, and they
strengthen the conclusion that there is tension between the measured bias
and the theoretical predictions at z = 4. Similar results are found by Wyithe
& Loeb (2009), who advocate for a contribution of a merger-driven bias to
the z = 4 clustering (see also Bonoli et al. 2010; Cen & Safarzadeh 2015 for
a discussion of the impact of assembly bias on quasar clustering).

Our work shares some similarities with the three studies mentioned
above: we also assume a direct relation between quasar luminosity and halo
mass and use the quasar clustering data to infer the specific shape of this
relation. Key conclusions of our analysis can also be found in these former
attempts to explain the SO7 observations: in Sec. 2.4.2, we find that bright
quasars need to be hosted by very massive (log;, M/Mg 2 13) halos, and,
as a consequence, the quasar duty cycle is a significant fraction of unity
(epc = 10 — 100%). In agreement with White et al. (2008) and Shankar
et al. (2010b), we conclude that a relatively small scatter (o < 0.3; Table
2.3) in the quasar luminosity-halo mass relation is necessary to explain the
S07 measurement. As also done by Wyithe & Loeb (2009), we adopt a
more flexible parametrization of this relation by assuming that it can be
non-linear, and find that a steep slope (v 2 2) achieves a much better fit to
the data.

The major novelty that our work brings to the understanding of this
problem, however, does not reside in the interpretation of the results, but
rather in the framework we use to build our model. As explained in Sec. 2.2,
we extract the correlation function and the relative abundance of quasars
directly from extremely large-volume cosmological N-body simulations, using
a novel method to quickly compute the quasar auto-correlation function for
any quasar-host mass distribution. In this way, we can directly compare
our predictions for the quasar projected correlation function with the S07
observational data. Our model — being based on N-body simulations —
naturally accounts for the non-linear contributions to quasar clustering
that are essential to interpret the S07 clustering measurements correctly,
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especially at scales r < 10 — 15 cMpc. Using this approach, we thus achieve a
much more solid data-model comparison, as we do not have to resort to the
notion of large-scale linear bias, which is significantly uncertain for strongly
biased systems (Diemer 2018) and which discards the information about the
shape and the physical features that lie in the SO7 data points.

Indeed, according to the statistical analysis performed in Sec. 2.4.1, we
find our model can match the data with a satisfactory level of accuracy (i.e.,
reduced chi-squared =~ 1), suggesting that, despite being rather extreme,
the SO7 data can be explained in the context of the standard framework
in which clustering of dark matter halos is solely dictated by their mass,
without the need to invoke any contributions from assembly/merger bias.
We note that we cannot exclude, of course, that such a contribution is
present. If that is the case, it would imply that the mass function of z = 4
bright-quasar hosts may be somewhat less skewed towards very large halo
masses (log;qg M /Mg 2 13). We leave an assessment of the role that merger
bias plays in cosmological simulations to future work.

Finally, we note that several measurements of the characteristic mass
of quasar-hosting halos at z = 2 — 4 are available in the literature. They
employ quasar-quasar (S07; E15; Timlin et al. 2018) and quasar-galaxy
(Trainor & Steidel 2012; Tkeda et al. 2015; Garcia-Vergara et al. 2017; He
et al. 2018; Garcia-Vergara et al. 2019) clustering, as well as gas kinematics
in the circumgalactic medium (CGM) of quasar-hosting galaxies (Fossati
et al. 2021; de Beer et al. 2023). While the host halo masses predicted
by these studies vary significantly, in the present work we have decided
to focus on the SO07 and E15 measurements of SDSS/BOSS quasars only,
because these quasar samples are entirely spectroscopic and thus free from
any low-redshift contaminants. However, the same analysis described in this
paper could also be performed by taking into account the other clustering
measurements mentioned above.

2.5.3 Caveats and final remarks

As shown schematically in Fig. 2.1, the results presented in this work depend
on two key ingredients: the choice of the CLF, and the extraction of the halo
mass function and the halo (cross-)correlation functions from cosmological
N-body simulations. In the following, we will discuss the strengths and
weaknesses of our method by considering these components in turn. Let us
start with the latter: there are multiple sources of uncertainty in the final
estimates we obtain for the halo mass function and the halo cross-correlation
functions. First, despite the fact that the box sizes of the simulations
employed here are among the largest ever run (Angulo & Hahn 2022), halos
are so rare at the very massive end (4 — 7o peaks in the density field) that
the results of simulations at these masses suffer from significant noise. In
order to circumvent this issue — and to extrapolate the results of simulations
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to the highest mass possible — we used analytical functions to fit the data
extracted from the simulations (Sec. 2.2.2). These analytical fits, however,
are not perfectly accurate and contribute some systematic errors to our final
model predictions.

Nonetheless, we believe that these sources of error can be neglected in
our data-model comparison (Sec. 2.4). This is because — as also noted
in Sec. 2.2.2 — the observables we are trying to reproduce, i.e., the QLF
and the projected correlation function, suffer from significant statistical
and systematic uncertainties (as high as &~ 100% at z = 4 and =~ 30% at
z = 2.5). In Sec. 2.2.2.1-2.2.2.2 and Appendix 2.B, we assess how well
our fitting functions reproduce simulations, and show that their relative
accuracy is generally < 5 — 10% for both the halo mass function and
the cross-correlation functions. For very small (r < 5cMpc) and very
large (r 2 100cMpc) scales, measuring the cross-correlation functions in
simulations is particularly challenging, especially at the high mass end. The
small-scale behavior is highly affected by halo exclusion effects, whereas at
large scales the finite size of the simulated boxes reduces the number of
pairs, and the baryon acoustic oscillation (BAO) peak makes the shape of
correlation functions difficult to capture with our coarse radial bins. As a
consequence, our fitting functions are also subject to larger errors at both
of these scales. However, these errors do not have a significant impact on
our final results, as observational data are also very uncertain at the same
scales; for this very same reason, we have excluded the S07 measurements at
very large scales (r > 100 cMpc) from our analysis (see Sec. 2.3.1).

As for the extrapolation of cross-correlations functions to masses higher
than the ones that we can probe with our simulations, we have argued that
such extrapolation is well motivated by considering the case of z = 2.5 in
Appendix 2.C. Furthermore, we note that the accuracy of this extrapolation
does not have a significant impact on our results: this can be determined
by looking at the QHMFs in Figure 2.6 (top panel). At both redshifts, the
quasars hosted by halos whose mass is not well represented in simulations
are only a small fraction of the total number of quasars (e.g., < 5% at z = 4).
This implies that their actual contribution to the quasar auto-correlation
function is negligible compared to the uncertainty in the data.

Other possible sources of uncertainty in our model predictions that
we have not discussed yet are the cosmology assumed in the simulations
and the exclusion of sub-halos in the creation of the halo cross-correlation
functions. Cosmological parameters such as og and €, are predicted to have
a significant effect on the collapse of structures in the standard ACDM model,
and consequently on the spatial distribution of very massive halos at all
reshifts. Studying the impact of these parameters on our final predictions for
the clustering of quasars is beyond the scope of this work. Given the current
large relative uncertainty on the data, however, we believe that including
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variations of the cosmological parameters in our inference procedure would
have little effect on our final results.

The exclusion of sub-halos is motivated by the fact that we are only
considering clustering measurements at medium-large scales, which are not
affected by the distribution of quasars inside a single halo — the so-called
one-halo term in HOD models (e.g., Cooray & Sheth 2002). In principle,
including the contribution of sub-haloes may boost the large-scale clustering
too, as having multiple quasars living in the same dark matter halo implies
a larger number of large-scale pairs. In practice, however, sub-haloes are less
massive than centrals, and thus they do not tend to host very bright quasars
according to the CLF found in Sec. 2.4. We have included sub-haloes in
some test runs and verified that large-scale clustering changes only at the
percent level, and significant differences are only present at r < 1 — 2cMpc
even for the most massive halos. On top of that, we note that all of the
effects discussed here go in the direction of an enhancement of the predicted
clustering, and do not affect the main conclusion of this paper, i.e., that the
very strong clustering measured at z = 4 can be reproduced with standard
assumptions of bright quasars inhabiting massive halos.

In this work, we have assumed one, very simple parametrization for the
CLF. We believe that this simple framework is a strength of our model, as it
provides very clear physical insight into the formation of quasars and their
connection with the hierarchical growth of structures in the context of a
ACDM universe. On the other hand, we have tested this basic parametriza-
tion on a relatively small amount of (very uncertain) data. We have done
this on purpose: the main focus of this paper is on reproducing quasar
clustering at z = 4, and given the quality of the data we have at the present
moment, a more sophisticated choice for the CLF would likely have been too
flexible to be constrained. However, it is possible that extending our model
to a larger/higher signal-to-noise ratio (S/N) dataset, e.g. at z = 0 — 2,
would be possible only with a more sophisticated parametrization for the
CLF. We leave a thorough examination of different prescriptions for the CLF
for future work. In particular, we plan to apply our model to the multiple
measurements of quasar clustering available at low-z (e.g., Porciani et al.
2004; Croom et al. 2005; Ross et al. 2009) as well as to the analyses of the
dependence of clustering on luminosity at the same redshifts (e.g., Porciani
& Norberg 2006; Shen et al. 2009; Eftekharzadeh et al. 2015).

Summary

We have introduced a novel framework that makes use of multiple cosmolog-
ical N-body simulations to efficiently predict quasar observables such as the
quasar luminosity function (QLF) and the quasar auto-correlation function.
The halo mass function and the cross-correlation functions of halos with



80 2.6. SUMMARY

different masses are extracted from the dark-matter-only (DMO) versions of
the FLAMINGO simulations and used to inform analytical fitting functions.
These form the backbone of the model, which is then completed by the choice
of a conditional luminosity function (CLF) that links halo masses to quasar
luminosities. With these ingredients, we are able to predict the clustering
and the luminosity function of quasars, as well as other key properties such
as the mass distribution of quasar-hosting halos and the quasar duty cycle
(Figure 2.1).

We focus our analysis on the extremely strong clustering measured by
Shen et al. (2007) at z = 4, with the goal of determining whether we can
reproduce this measurement in the context of our model. We use a simple
parametrization for the CLF, assuming a power-law dependence of quasar
luminosity on halo mass (L o< M7) with a log-normal scatter o. We fit
the z = 4 QLF and projected correlation function both independently and
jointly, in order to gain insight into the best-fitting parameters for each of
the cases considered. We then turn our attention to lower-z data, and show
that our model can also match the measurements of the same quantities at
z & 2.5 (Ross et al. 2009; Eftekharzadeh et al. 2015), albeit with significantly
different values of the model parameters.

We summarise here the main findings of the analysis described above:

e Quasar clustering and abundance measurements at z ~ 4 require
quasars to reside in the most massive halos at that redshift, with a
characteristic mass of log;q M /Mg 2 13 (Figure 2.3). This implies that
the relation between quasar luminosity and halo mass (L — M) is highly
non-linear (v 2 2) with a very small amount of scatter (o < 0.3 dex).

e Many different combinations of model parameters can achieve a good
fit to the measured QLF at z ~ 4 (Figure 2.4). This is because very
different empirical prescriptions for the quasar luminosity-halo mass
relation (e.g., large scatter and shallow slope or vice-versa) are able
to map the exponentially declining end of the halo mass function
into the shallower bright end of the QLF. However, the only set of
parameters which is also compatible with clustering measurements
is the one mentioned above (i.e, a highly non-linear L — M relation
with very small scatter), as an increase in the scatter would lower
the characteristic mass of quasar-hosting halos, and thus decrease the
clustering predicted by our model.

e In order to match the total number density of bright z ~ 4 quasars
in models in which quasars reside in sufficiently high halo masses to
reproduce the observed clustering, the active fraction of quasars (fon)
has to be close to unity. This implies that high-z quasars shine for
a large fraction of the Hubble time, with a duty cycle in the range
epc = 10 —60%. In turn, this duty cycle results in a large total quasar
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lifetime tq ~ 108 — 10° yr, consistent with the standard picture of
black hole growth in the young universe.

e The steep z = 4 relation between quasar luminosity and halo mass
contrasts with the well-known prediction of a flattening in the stellar
mass-halo mass relation at high mass at every epoch (e.g. Behroozi
et al. 2013). This implies that in very massive high-z halos — while the
star formation may have been quenched already — the supermassive
black hole at the center of the galaxy needs to be either over-massive
and/or highly accreting. This may have an impact on the shape and
normalization of the black hole mass-galaxy mass relation at high
redshift (see e.g., Maiolino et al. 2024; Stone et al. 2023).

e Furthermore, the extremely small scatter (o ~ 0.1 — 0.3 dex) inferred
for the L — M relation at z =~ 4 points to some physical processes
enforcing a tight relationship between quasars and their dark matter
halo hosts. In other words, the relation between black hole mass and
stellar and/or halo mass, together with the distribution of Eddington
ratios, all conspire to yield a remarkably low scatter.

e The clustering and relative abundance of quasars at lower redshift
(z &~ 2.5) can be explained by the same parametric relation between
quasar luminosity and halo mass. However, the parameters describing
this relation show a significant evolution with redshift (Figure 2.5):
the slope of the L — M is significantly shallower (v a2 1.15) than at
z /&= 4, and the scatter larger (o =~ 0.5 dex).

e Overall, our comparison between z ~ 2.5 and z ~ 4 reveals two
radically different pictures in terms of the connection between quasars
and their host halo population (Figure 2.6). High-z (z & 4) quasars
are hosted by very massive halos, with a very large occupation fraction
(i-e., a large fraction of these halos host bright quasars at any given
time). At lower redshift (z ~ 2.5), instead, quasars reside in halos
with a broad range of masses, with the bulk of the population being
characterized by relatively common, log;, M/Mg ~ 12.5 mass halos.
As a consequence, only a small fraction of low-z quasars are actively
shining at any given moment, with a quasar duty cycle of epc =~ 0.5%.
These conclusions are consistent with the standard picture of “cosmic
downsizing” of quasars and AGN (e.g., Merloni 2004; Scannapieco et al.
2005; Fanidakis et al. 2012), as the bulk of the quasar population is
hosted by progressively smaller halos as redshift decreases.

The framework presented here can be readily applied to interpret quasar
clustering measurements at all redshifts. In particular, focusing on very
high redshift is especially interesting in light of the fact that the large-scale
environment of very bright quasars has been proven hard to pinpoint in
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the early universe (e.g., Fan et al. 2023). For example, Arita et al. (2023)
recently measured the quasar auto-correlation function at z =~ 6 for the
first time, finding results broadly consistent with the very strong clustering
measured at z &~ 4. On top of that, several JWST programs such as ASPIRE
(Wang et al. 2023) and EIGER (Kashino et al. 2023; Eilers et al. 2023)
are starting to deliver measurements of quasar clustering by probing the
distribution of line emitters around bright, z ~ 6 — 7 quasars. Connecting the
framework presented here to the upcoming quasar-galaxy cross-correlation
measurements from JWST will offer a clear and comprehensive picture of the
large-scale environments in which the first quasars formed (see also Costa
2024 for an alternative approach).

As suggested by the results obtained in this work, interpreting quasar
properties within a consistent framework that takes into account both their
demographics and their spatial distribution can give great insight into the
relationship between the hierarchical growth of structures in the Universe
and the evolution of supermassive black holes over cosmic time.

Appendix: Obtaining the quasar auto-
correlation from the halo cross-correlation func-
tions

Let us consider a stochastic process N9 describing — in our case of interest
— the spatial distribution of quasars. This distribution is discrete: following
Peebles (1980), we divide the volume of interest into infinitesimal elements
0V;, and — given the average quasar density n, — we can write the probability
of having a quasar in the volume element §V; as:

5Py = N1y =, 614 (2.22)

Similarly, we define the two-point correlation function, £(r12) = £12, via the
probability of having a quasar in the volume element §V; and another one
in the volume element §V5:

Py = </\/1(Q)N2((I)> = ﬁg oV16Va (1 + &12) . (2.23)

We introduce now the continuous number density field 7(? (x), which we
define via the expression:

5Py = (NONLDY = (0D (x1)n(D (x5)) 6V 6V, (2.24)

and write this equation in terms of the density contrast field 6(2) — defined
as n(?(x) = ny (1469 (x)):

§Pry = 02 §V16V, (1 n <(5(q)(x1)6(q)(x2)>> . (2.25)
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By comparing this to eq. 2.23, we find that the correlation function can also
be expressed as:

€12 = (009 (x1)8'D (x2)) = (317 857). (2.26)

We want to split the different contributions of quasars to the density field
n(@ based on the mass of their host halos. We introduce a set of continuous
fields {n™ (M)}, which represent the distributions of halos for different
mass bins centered on M}, and with a width AM.

We now make the key hypothesis that the distribution of quasars with
a host halo mass in the range [My — AM/2, M}, + AM/2] is an unbiased
tracer of the underlying distribution of halos, n(®)(M},). In other words, the
quasars at a given host halo mass are just undersampling the distribution of
halos, and they are thus described by the same stochastic process. This is the
case if the presence of a quasar depends solely on the mass of its host. Thus,
we can write the quasar distribution, n(? in terms of the distributions of
halos with different masses by simply weighing them by the relative number
of quasars at those masses:

n@ =3 "ppnM (M), (2.27)
k

where p;, represents the probability that a quasar has a host-halo mass in
the bin Mj. Using the “quasar-host mass function” (QHMF) introduced in
Sec. 2.2.1 (eq. 2.6), we can express this probability as (7, is the average
number density of quasars in the host mass bin My):

. Ng.k . nQHMF(Mk) AM

Pk = —— = T .
Ngq fO nQHMp(M) dM

(2.28)

Introducing the overdensity definitions for the distributions at different
masses, n(") (M) = g, (1 + 6 (M) we can write:

(mPns”) = >3 papery (1+ (017 (0M5)08” (M) ) =
J k

(2.29)
= g 1+Zzpjpk<5§h)(Mj)5§h)(Mk)> ,
7 k

where we have made use of the fact that >, pr = 1. Introducing the
cross-correlation functions for halos of different masses, 55}5) (M;, My) =
<5£h)(Mj)5§h) (My)), we can express the quasar auto-correlation as:

(q),(q)
n{yn
<11‘1722> —1=> pip €4 (M;, My,). (2.30)

q gk

€12 = (0{765) =



2.B. APPENDIX: FITTING THE CROSS-CORRELATION TERMS
84 FROM SIMULATIONS

This proves eq. 2.7, which relates the quasar auto-correlation function
&(r12) = &2 to the cross-correlation functions of halos with different masses,

En(Mj, My;m2) = 5%3)(Mj>Mk)-

Appendix: Fitting the cross-correlation
terms from simulations

In this Section, we provide details on the fitting we perform to the values of
the halo cross-correlation functions, &, (M;, My;r), extracted from simula-
tions. As described in Sec. 2.2.2 and 2.2.2.2, we extract these values from
two simulations with box sizes equal to L = 2800 cMpc and L = 5600 cMpc,
respectively. For each simulation, we consider only halos in a specific range
of masses, so that all the mass bins considered are populated by a suf-
ficient number of well-resolved halos. In particular, we set the following
ranges (Sec. 2.2.2): logyy M/Mg = 11.5 — 13.0 for L = 2800 cMpc, and
log,g M /Mg = 12.5—13.5 for L = 5600 cMpc. We choose a bin width of 0.25
in log,y M, so that we have 6 x 6 cross-correlation terms for L = 2800 cMpc,
and 4 x 4 cross-correlation terms for L = 5600 cMpc. Note that the masses
M; and M, in the expression &, (M, My;r) do not refer to the center of their
respective bins, but rather to the median value of the halo mass function in
those bins.

Our goal is then to find a single analytical description of these cross-
correlation functions that can represent the two simulations simultane-
ously. In order to do that, we first divide all the cross-correlation func-
tions &5, (M, My; ) by a reference correlation &.e¢(r); in formulae, we define
p(M;, My;r) to be:

p(Mjj, Mi;r) = §1(Mjj, My; ) /&ret (1) (2.31)

In this way, we hope that p(M;, My;r) will be only marginally dependent
on the scale r. We set &.f(r) = §h(M,J\Zf;r), with M representing the
logiy M = 12.5—12.75 bin. This choice is arbitrary, but it is made to ensure
that the mass bin sits in the overlap between the mass ranges of the two
different simulations we use. We also attempt to minimize any dependences
of the cross-correlation functions on cosmology and redshift by expressing
all the masses in terms of peak heights v(M) (see also Sec. 2.2.2.1).
Finally, we fit a 3-d polynomial pg¢(v;, vk, ) to the values extracted
from the simulations. We empirically find that a second-degree polynomial
in mass and third-degree in the radial dimension fits the data points well
enough and at the same time attains a smooth behavior with respect to all
three variables (i.e., we prevent overfitting). The errors on the data points
are assigned based on the Poisson statistics of the pair counts (eq. 2.16).
As also done in Sec. 2.2.2.1, we weigh the errors associated with the two
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simulations differently in order to achieve a better fit. In particular, we
double the values of the Poisson errors for the L = 2800 cMpc simulation,
and we halve the ones associated with the L = 5600 cMpc box.

Figures 2.7-2.8 show the results of the fitting for the two redshifts
considered in this work: z =4 (Fig. 2.7) and z = 2.5 (Fig. 2.8). The first
row of each plot displays the resulting fitting function pgq(v(M;), v(My), ).
Each panel in this row shows the values of pgy (v(M;), v(My), 7) as a function
of the two masses M; and M, at a different scale 7. The second and
third rows show the relative differences (p/pas — 1) between our fit and
the two simulations considered. The mass ranges that are selected in each
simulation are shown as grey boxes in the 2-d mass planes. According to these
figures, our simple analytical framework can describe the behavior of cross-
correlation functions in a wide mass range with a good degree of accuracy
(<5 —10%). Notable exceptions to this can be found for very high masses
(logyg M/Mg 2 13.2 — 13.3) and very large scales (r 2 100 cMpc). However,
these are both expected, as both at large masses and large scales correlation
functions are difficult to measure in simulations. Further discussion of this
can be found in Sec. 2.2.2.2 and Sec. 2.5.3. Similar conclusions on the
quality of our fits can be drawn by looking at the right panels of Figure 2.2
and Figure 2.9, where predictions from our fitting functions are compared
to auto-correlation functions extracted from the simulations.

Appendix: Halo mass function and corre-
lation functions for redshift z = 2.5

In the main text (Sec. 2.2.2.1-2.2.2.2), we discussed our predictions for the
halo mass function and the halo (cross-)correlation functions at z = 4. We
show here the same results for the other redshift that we consider in our
analysis, z = 2.5. In Figure 2.9 (left panel), we show the halo mass function
extracted from the two simulations (L = 2800 cMpc and L = 5600 cMpc in
teal and red, respectively), as well as our fitting function (eq. 2.14-2.15, gray
line). The best-fitting parameter values for z = 2.5 are: A = 0.464; a = 3.43;
b = 0.847; ¢ = 1.31. Note that for the fitting we employ the same mass
ranges as we used for z =4 (Table 2.1). This choice is clearly sub-optimal,
as halos are much more abundant at lower-z, and therefore mass bins with
log,g M /Mg > 13.5 are well populated even for the smallest box considered
(L = 2800 cMpc). However, we choose to not take into account masses larger
than logyq M /Mg > 13.5 for the fitting so that we can benchmark how well
our fitting function fares if extrapolated to masses larger than this limit. In
this way, we can test whether our fitting framework is valid to interpret the
behavior of the halo mass function up to masses higher than the ones we
can simulate. As shown in Fig. 2.C (left panel), the trend of the halo mass
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function at large masses is well described by the extrapolation of our fitting
up to log,, M /Mg 2 14; at higher masses, halos become very rare even at
z = 2.5, and the halo mass function becomes quite noisy and its behavior
highly uncertain.

The right panel of Figure 2.9 shows the halo auto-correlation functions
for different mass bins obtained both from simulations (colored points) and
from our fitting function (gray lines; see Appendix 2.B). We use 8 mass bins
ranging from log,y M/Mg = 11.5 to logyy M/Mg = 13.5 and with a width
of 0.25 dex. Lower mass bins correspond in Fig. 2.C to lower values of the
correlation functions, and vice-versa. Once again, the mass ranges employed
for our fitting are the same for both z = 2.5 and z = 4, and do not go higher
than log;q M/Mg = 13.5. This gives us the possibility of testing how the
extrapolation of &, (M, My;r) fares at larger masses. As explained in Sec.

high masses (log,q M /Mg =~ 14) is quite important, as — especially at z = 4
— a significant fraction of quasars are hosted by this population of massive
halos that is not well represented in our simulations.

Extrapolations from our fits are shown in Fig. 2.9 (right panel) with
dashed lines. We also extract halo auto-correlation functions from the
L = 5600 cMpc box for the mass bin log;q M /Mg = 13.5 — 13.75; we show
these values with golden crosses in Fig. 2.9 (right panel). We see that the
extrapolation agrees with simulations at the same level as the points that
are used for fitting, with the only exceptions being very small (r < 5cMpc)
and very large (r 2 100 cMpc) scales. Further discussion on the implications
of these results can be found in Sec. 2.5.3.
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Figure 2.8: Same as Figure 2

7, but for redshift z = 2.5.
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Figure 2.9: Same as Fig. 2.2 but for the snapshots at redshift = = 2.5. Golden
crosses in the right panel represent the auto-correlation functions measured in the mass
bin log,g M/Mg = 13.5 — 13.75, in the L = 5600 cMpc simulation. This is used as a
benchmark to assess how well our fits (dashed grey lines) can be extrapolated to higher
masses.
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A UNIFIED MODEL FOR THE
CLUSTERING OF QUASARS AND
GALAXIES AT z = 6

Abstract

Recent observations from the EIGER JWST program have measured for
the first time the quasar-galaxy cross-correlation function at z =~ 6. The
auto-correlation function of faint z &~ 6 quasars was also recently estimated.
These measurements provide key insights into the properties of quasars and
galaxies at high redshift and their relation with the host dark matter halos.
In this work, we interpret these data building upon an empirical quasar
population model that has been applied successfully to quasar clustering and
demographic measurements at z &~ 2—4. We make use of a new, large-volume
N-body simulation with more than a trillion particles, FLAMINGO-10k,
to model quasars and galaxies simultaneously. We successfully reproduce
observations of z & 6 quasars and galaxies (i.e., their clustering properties
and luminosity functions), and infer key quantities such as their luminosity-
halo mass relation, the mass function of their host halos, and their duty
cycle/occupation fraction. Our key findings are: (i) quasars reside on
average in ~ 1012 M, halos (corresponding to ~ 50 fluctuations in the
initial conditions of the linear density field), but the distribution of host
halo masses is quite broad; (ii) the duty cycle of (UV-bright) quasar activity
is relatively low (=~ 1%); (iii) galaxies (that are bright in [O 111]) live in
much smaller halos (=~ 10!%- M) and have a larger duty cycle (occupation
fraction) of & 13%. Finally, we focus on the inferred properties of quasars
and present a homogeneous analysis of their evolution with redshift. The
picture that emerges reveals a strong evolution of the host halo mass and
duty cycle of quasars at z ~ 2 — 6, and calls for new investigations of the
role of quasar activity across cosmic time.
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Reprinted here in its entirety.
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3.1 Introduction

Supermassive black holes (SMBHs) are thought to be ubiquitous in the Uni-
verse, residing at the center of almost every massive galaxy (e.g., Magorrian
et al. 1998; Ferrarese & Merritt 2000; Kormendy & Ho 2013). The basic
elements of our formation story for these enigmatic objects have hardly
changed since their existence was hypothesized, triggered by the discovery
of the first quasar (Schmidt 1963). Luminous quasars are powered by accre-
tion onto a SMBH (Salpeter 1964; Zel’dovich & Novikov 1967; Lynden-Bell
1969) and the rest mass energy of this material is divided between the small
fraction (=~ 10%) of radiation that we observe, and the growth of the black
hole. This implies that the growth of black holes is directly related to the
accretion of material powering bright quasars.

But this half-century-old picture is challenged by the existence of luminous
high-z quasars powered by > 10° M SMBHs at z 2> 6, well into the epoch
of reionization (EoR; Mazzucchelli et al. 2017b; Farina et al. 2022; Fan et al.
2023). Even more puzzling, quasars with similar masses have been discovered
at z &~ 7.5, merely 700 Myr after the Big Bang (Banados et al. 2018; Yang
et al. 2020, 2021; Wang et al. 2021). The advent of the James Webb Space
Telescope (JWST) has made these findings even more compelling, with the
record-breaking discoveries of moderately massive SMBHs (= 106 — 10% M)
at even higher redshift (z ~ 8 — 11; e.g., Ubler et al. 2023; Maiolino et al.
2024; Kokorev et al. 2023; Larson et al. 2023; Bogdan et al. 2024). How
these SMBHs have formed at such early times challenges our understanding
of black hole formation and growth. There does not appear to be enough
cosmic time to grow them from the 100 Mg seed black holes expected for
Pop III stellar remnants (Heger et al. 2003), even if they accrete at the
maximal Eddington rate. This has led to an industry of speculation that
SMBHs formed from far more massive seeds forming via direct collapse (e.g.,
Bromm & Loeb 2003) or coalescence of a dense Pop III star cluster (e.g.,
Omukai et al. 2008).

Addressing this challenge requires integrating SMBH growth into our
current picture of galaxy formation and evolution. The tight local scaling
relation between SMBHs and galaxy bulges (Magorrian et al. 1998), as well
as the need to tap into SMBH accretion as a source of energetic feedback
that regulates star formation in massive galaxies (e.g., Benson et al. 2003;
Springel et al. 2005; Bower et al. 2006), has led to the modern picture that
SMBHs and their host galaxies co-evolve (Bower et al. 2017). In this context,
an assortment of cosmological simulation models can produce the massive
SMBHs (e.g., Feng et al. 2016; Khandai et al. 2015) that are powering
bright high-z quasars starting with massive > 10* M, seed black holes.
These models generically predict that such quasars are hosted by massive
(M, = 10" Mg) and highly star-forming (SFR > 100 My, yr—!) galaxies,



CHAPTER 3 93

and reside in the rarest M > 10125 M, halos situated in the most overdense
regions of the Universe (Di Matteo et al. 2012; Costa et al. 2014; Feng et al.
2016; Khandai et al. 2015; Barai et al. 2018; Valentini et al. 2021). While
these numerical studies establish the plausibility of the existence of high-z
quasars, rigorous tests of this theoretical picture have been lacking (Fan
et al. 2023; Habouzit et al. 2019).

The key to understanding high-z quasars and SMBH formation in a
cosmological context is determining how they are embedded in the evolving
cosmic web of dark matter (DM) halos that forms the backbone of all
structures in the Universe according to the hierarchical structure formation
paradigm. ACDM dictates that the clustering of a population of objects,
or equivalently the size of the cosmic over-densities that they reside in, is
directly related to their host halo masses (e.g. Kaiser 1984; Bardeen et al.
1986; Mo & White 1996). Measuring the masses of the halos that host bright
quasars gives precious information not only on the large-scale environment
that quasars inhabit, but also — by comparing the observed abundance of
quasars with that of the hosting halos — on the fraction of SMBHs that are
active as bright quasars at any given time (i.e., the quasar duty cycle). In
turn, this fraction can be related to the total time SMBHs shine as quasars
(or quasar lifetime, tq; see e.g., Martini & Weinberg 2001; Haiman & Hui
2001; Martini 2004), which is an essential quantity for determining the
growth of SMBHs and sets an upper limit to the characteristic timescale of
quasar events. For these reasons, a measurement of the clustering of quasars
at high redshift is key to unraveling their formation history (e.g., Cole &
Kaiser 1989; Efstathiou & Rees 1988).

Quasar clustering studies at lower redshifts are already a fundamental
ingredient on which we built our understanding of SMBHs, their accretion
mechanisms, and the co-evolution with their host galaxies. Large-sky surveys,
such as the Sloan Digital Sky Survey (SDSS, York et al. 2000) and the 2dF
QSO redshift survey (2QZ, Croom et al. 2004), have delivered measurements
of the auto-correlation function of quasars up to z & 4 (Porciani et al. 2004;
Croom et al. 2005; Porciani & Norberg 2006; Shen et al. 2007; Ross et al.
2009; Eftekharzadeh et al. 2015). These measurements reveal that in the last
ten billion years (z < 2), quasars have been tracing halos in a way that is
similar to optically selected galaxies, with a linear bias factor close to unity
(Croom et al. 2005; Ross et al. 2009). This implies that quasars are hosted, on
average, by common, ~ 10'2 M, halos which, incidentally, are also the ones
with the highest star formation efficiency (e.g., Eke et al. 2004; Fanidakis
et al. 2010; Fanidakis et al. 2013). At z = 2 — 4, however, the clustering of
quasars shows a dramatic change from an auto-correlation length, ro qq, of
~ 8cMpch~! at z =~ 2 — 3 (White et al. 2012; Eftekharzadeh et al. 2015)
up to ~ 24cMpch™! at z =~ 4 (Shen et al. 2007). This rapid evolution in
quasar clustering implies that quasars live in more massive halos as redshift
increases, with a duty cycle that becomes larger as the number of host halos
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drops rapidly according to the exponential decline of the halo mass function
(Press & Schechter 1974). At z & 4, the situation seems to be particularly
extreme, with host masses of > 10! M, and a quasar lifetime approaching
the Hubble time (tq &~ 10% — 109 yr) (Shen et al. 2007; Pizzati et al. 2024a).
As highlighted by several studies (White et al. 2008; Wyithe & Loeb 2009;
Shankar et al. 2010b), these values imply a steep and tight relation between
the luminosity of quasars and the mass of the host halos, with SMBHs being
either over-massive compared to their host halos/galaxies or having a large
Eddington ratio (Pizzati et al. 2024a). While these trends need to be backed
up by the higher signal-to-noise measurements that will be allowed by future
optical large-sky surveys, they paint a very interesting picture and call for
studies of quasar clustering at even higher redshifts.

Measurements of the quasar auto-correlation function at z 2 5, however,
are extremely challenging due to the rapid decline of the quasar abundance
at high redshift (e.g., Schindler et al. 2023). One alternative pathway to
determine the clustering of quasars is to cross-correlate them with some other
tracer, e.g., coeval galaxies. The idea behind these measurements is that, if we
assume that both quasars and galaxies trace the same underlying dark matter
density distribution, but with different bias factors, the cross-correlation
function between these two classes of objects is entirely determined by their
respective auto-correlation functions. Given that the clustering of high-z
galaxies can be determined more easily due to their larger abundance, one
can then measure the cross-correlation between quasars and galaxies (or,
equivalently, study the over-densities of galaxies around quasars) to infer
how strongly quasars are clustered in the high-z Universe.

Studies of the quasar-galaxy cross-correlation function are numerous at
z =~ 0 — 5, with results that overall confirm an increase in the clustering
strength with redshift (e.g., Adelberger & Steidel 2005; Shen et al. 2013;
Ikeda et al. 2015; Garcia-Vergara et al. 2017; He et al. 2018; Garcia-Vergara
et al. 2019). Nonetheless, two decades of ground- and space-based searches
for galaxy over-densities around z 2 6 quasars have yielded mixed results,
and contradictory claims have been made about the density (and clustering
strength) of the primordial environments where these quasars live (e.g.
Stiavelli et al. 2005; Willott et al. 2005; Zheng et al. 2006; Kim et al. 2009;
Morselli et al. 2014; Simpson et al. 2014; Mazzucchelli et al. 2017a; Mignoli
et al. 2020). In summary, even though the first studies on quasar clustering
date back to more than two decades ago, extending these studies into the
first billion years of cosmic history — where the link between quasar clustering
and SMBH growth is even more relevant — has been extremely challenging.

Recently, however, ground-breaking progress has been made following
both of the two independent pathways mentioned above. Exploiting the high
sensitivity of the Subaru High-z Exploration of Low-Luminosity Quasars
(SHELLQs) survey, Arita et al. (2023) have compiled a sample of & 100 faint
quasars at z &~ 6 and measured for the first time the large-scale quasar auto-
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correlation function at those redshifts. Despite the large uncertainties due
to the limited size of their sample, the authors measured an auto-correlation
length of rg qq = 24+ 11cMpc h~1, in line with the trend observed at z ~ 4.

The launch of JWST, on the other hand, has opened up the possibility
of obtaining large statistical samples of spectroscopically confirmed high-
redshift galaxies, thus promising to revolutionize the search for over-densities
around z = 6 quasars. Indeed, several independent studies (Kashino et al.
2023; Wang et al. 2023) have already used NIRCam Wide Field Slitless
Spectroscopic (WFSS) observations of z &~ 6 quasar fields to show that
these quasars reside in cMpc-scale over-densities traced by [O 11| -emitting
galaxies ([O 111] emitters). Leveraging these unprecedented capabilities of
JWST in studying the clustering and large-scale environment of high-redshift
quasars, Eilers et al. (2024, hereafter F24) used observations from the EIGER
survey (Kashino et al. 2023; Matthee et al. 2023) to compile a catalog of
[O 111] emitters in the environments of four bright z ~ 6 quasars, and
measured for the first time the quasar-galaxy cross-correlation function at
the same redshift. By also measuring the galaxy auto-correlation function,
the authors concluded that high-z quasars live on average in ~ 1023 M,
halos, although with a substantial quasar-to-quasar variance in terms of
environments. This finding implies that z ~ 6 quasars typically reside in
moderately strong over-densities but not necessarily in the rarest and most
massive environments that are present in the early Universe.

These measurements of the z ~ 6 quasar auto-/cross-correlation functions
offer a unique opportunity to study SMBHs and their properties at high-
z. In Pizzati et al. (2024a) (Chapter 2; hereafter, P24), we showed that
quasar clustering measurements can be combined with quasar demographic
properties (expressed by the quasar luminosity function, QLF) to infer
fundamental quantities such as the quasar luminosity-halo mass relation,
the mass function of halos that host active quasars (the quasar-host mass
function, QHMF), the quasar duty cycle and the quasar lifetime. P24
makes use of a novel method that combines the outputs of dark-matter-
only (DMO) cosmological simulations (specifically, the halo mass function
and the cross-correlation function of halos with different masses) with an
empirical quasar population model founded on a conditional luminosity
function (CLF) framework (e.g., Yang et al. 2003). The authors applied this
model to measurements of the quasar auto-correlation and quasar luminosity
functions at z ~ 2 — 4, tracing the rapid change in SMBHs properties taking
place at those redshifts.

In this work, we aim to extend the P24 model to interpret the new
measurements of the quasar-galaxy cross-correlation function and the auto-
correlation functions of quasars and galaxies at z ~ 6. These clustering
measurements encompass a wide range of scales (1071 < r/cMpc < 10%)
and quasar luminosities (10%%° < L/ergs™! < 10%8). Even more relevantly,
modeling z ~ 6 galaxies and quasars simultaneously to compute their cross-
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correlation statistics means that we must describe objects whose abundances
span more than seven orders of magnitude (Schindler et al. 2023; Matthee
et al. 2023). To overcome these obstacles, we extended the FLAMINGO
suite (Schaye et al. 2023; Kugel et al. 2023) with a new 2.8 cGpc dark-
matter-only simulation evolving more than a trillion particles and reaching
the same resolution as the previous FLAMINGO DMO high-resolution runs
(Schaye et al. 2023) but in a much larger volume. By employing this new,
state-of-the-art, N-body simulation, named FLAMINGO-10k, we have the
capability of modeling the clustering and demographic properties of quasars
and galaxies simultaneously, providing a simple but powerful framework
to interpret the large-scale environments of quasars and the properties of
SMBHs in the first billion years of cosmic history.

The paper is structured as follows. In Sec. 3.2, we summarize the main
features of the P24 model and describe the improvements performed in this
work. Sec. 3.2.1 lays down the general theoretical framework while the new
FLAMINGO-10k simulation is described in Sec. 3.2.2. Sec. 3.3 describes
the comparison of our model with observational data, and Sec. 3.4 presents
the main results of our analysis. These results are discussed and interpreted
in the framework of current SMBH formation and evolution theories in Sec.
3.5. Conclusions are provided in Sec. 3.6.

Methods

The P24 model takes two fundamental ingredients from cosmological sim-
ulations, i.e. the halo mass function and the cross-correlation functions
of halos with different masses, and combines these with a quasar condi-
tional luminosity function (which stochastically assigns quasars to halos) to
reproduce observations of the quasar luminosity function and the quasar
auto-correlation function, together with other relevant quantities such as
the mass function of quasar-hosting halos and the quasar duty cycle (see
Fig. 2.1 for an overview).

Here, we plan to adapt this framework to include the presence of galaxies
in the model, with the aim of reproducing their clustering and demographic
properties in conjunction with the ones of quasars. We introduce the quasar-
galaxy population modeling in Sec. 3.2.1 and Appendix 3.A, and present the
FLAMINGO-10k simulation on which the model is founded in Sec. 3.2.2.

3.2.1 Quasar and galaxy population models

The primary goal of our model is to reproduce observations of the luminosity
function and the clustering for both galaxies and quasars. In Appendix
3.A, we outline a general framework that allows us to use a conditional
luminosity function (CLF) to stochastically connect dark matter halos to
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any population of objects that are tracers of the underlying halo distribution
and emit radiation with some luminosity, L. As discussed in the Appendix,
both quasars and galaxies are suitable tracers to which this framework can
be applied. We do so simultaneously: we define a conditional luminosity
function for quasars, CLF g0 (L|M), and one for galaxies, CLF ga1(L|M) —
with L being the luminosity of quasars/galaxies and M the mass of the host
halos.

It is important to note that our definition of quasars and galaxies is
entirely empirical, and it is solely based on our objective to reproduce a
specific set of observations concerning these sources (see Introduction and
Sec. 3.3.1). For this reason, our quasar population model is intended to
describe only UV-bright, type-1 quasars (e.g., Padovani et al. 2017). As for
galaxies, our objective is to match JWST observations of [O 111] emitters
(E24), and thus — when not explicitly stated otherwise — we will use the words
“galaxies” to describe only the ones that are bright in [O 111] . Nonetheless,
we stress the fact that the framework presented here is general and can be
extended to different sub-populations of quasars/galaxies.

Another important note concerns the luminosity, L, of quasars and
galaxies, which can also be set to any arbitrary choice (e.g., the bolometric
luminosity or the luminosity of a specific line/band). As also done in P24,
we choose to work with bolometric luminosities when modeling quasars.
Therefore, the quasar conditional luminosity function, CLFqgo(L|M), will
link the mass of host halos to the bolometric luminosities of quasars (i.e.,
L = Ly). For galaxies, we use the luminosity of the [O 111|5008 line, Lot
instead, as this is the quantity that determines the detectability of the
galaxies in the (slitless) JWST surveys. Therefore, CLF g (L|M) relates
halos to [O 111] luminosities (i.e., L = Loyr). In the following, we will always
use the symbol L, but add the caveat that the specific value of this symbol
is different depending on whether we refer to quasars or galaxies.

We assume the same functional form for the two conditional luminosity
functions, CLFqso and CLFg,. Following P24, we write'

(4) (1og10 L—logio L&D (M) 2
CLF;(L|M)dL = —=2 ¢ 2002 dlogy, L, (3.1)
2o (@)

where 7 stands either for “QSO” or “Gal”. The characteristic luminosity, L((;i),
has a power-law dependence on halo mass:

,y(i)
Do = 1@ (M
oon =1 (3-) - 32

1As also discussed in P24, the factor fon accounts for the fact that not all quasars/galaxies
may be luminous at any given time. In other words, we are implicitly assuming that a
fraction of sources are inactive or simply too dim to be revealed by any observations and
therefore we do not include their contribution in the CLF.
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with M., being a reference mass that is associated with the reference
luminosity Lyer; we fix it to logg Myer/Me = 12.5. The free parameters of
the model, which we will infer directly from observations in Sec. 3.3.1-3.4,
are ¢(QSO,Gal), LE&SO’G'&I), 4(QS0.Gal) “and féSSO’Gal). Note that, as in P24,
we assume that these parameters do not depend on other variables such as
halo mass or quasar luminosity.

Using the general framework outlined in Appendix 3.A (see also P24), we
can combine each conditional luminosity function, CLFqso and CLF ga1, with
the halo mass function, nyyr, to obtain fundamental quantities describing
quasars and galaxies, such as their luminosity functions (nqrr and ngrr),
host mass functions (nquwmr and ngumr), and duty cycles (eqpc and egpe).

The quasar luminosity function (QLF) and the galaxy luminosity function
(GLF) are observable quantities, and hence the predictions from our model
for these functions can be directly compared with data. As for the quasar-
host mass function (QHMF) and the galaxy-host mass function (GHMF),
they determine the clustering properties of quasars and galaxies, respectively.

In particular, we follow here the approach described in P24 (see their
Section 1 and Appendix A) to write the clustering properties of a population
of objects given its host halo mass distribution. This approach assumes that
the cross-correlation functions of dark matter halos with different masses are
known. We describe in Sec. 3.2.2 and Appendix 3.B how to extract these
cross-correlation terms from a cosmological simulation. Here, we assume
that, after creating bins in halo mass, we can write the cross-correlation
between two mass bins as &, (M, My; ), with M; ;. being the bin centers.

The point made in P24 is that all the correlation functions concerning
quasars and galaxies are simply weighted averages of these cross-correlation
terms, with the weights (Q;,G;) determined by the specific host mass
distribution we are considering (nqumr for quasars and ngumr for galaxies).
In particular, we can define the weights @; to be:

NQHMF (Mj|L > Lthr) AM

Qj = y )
Jmex e (ML > L) dM

(3.3)

with AM being the width of the mass bins. The identical weighting for
galaxies, G5, reads:
nGHMF(MJ|L > Lthr) AM

Mmax '
In nagaMr(M|L > Ly, ) dM

G, =

(3.4)

With these definitions, we can write all correlation functions in the general
form (with A and B representing two different populations of halo tracers):

€aB(r) =Y A;Bp&n(M;, My;r). (3.5)
ik
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This expression implies that the quasar auto-correlation function, {qq(r),
can simply be written as:

€aa(r) = Y QiQuén(M;, My;r), (3.6)

Jik

with the weights set by eq. 3.3. In the same way, the galaxy auto-correlation
function, {ga(r), reads:

§aa(r) = Z GiGré&n(Mj, My; ), (3.7)
ik

Finally, the cross-correlation function between quasars and galaxies, {qa(7),
is retained by weighting over the QHMF and the GHMF simultaneously:

€qalr) =Y Q;Gr&n(M;, My;r). (3.8)

3.k

As a final step, all of these correlation functions can be integrated along
the line of sight direction to average out the contribution of redshift space
distortions. In this way, we compute quantities that can be directly matched
with data, such as the projected correlation function, w,(ry), or the volume-
averaged correlation function, xv (r,). The former follows from a simple
integration along the line of sight direction, m, with a limit 7.y that is
chosen according to observations:

wy(ry) = 2 /0 " ey, dr, (3.9)

while the latter implies that we choose a radial binning in the perpendicular
direction, r,, and a maximum distance in the parallel direction, 7.y, and
perform a spatial average of the correlation function on every cylindrical bin.
If we define r, min and 7 max as the lower and upper limits of the radial
bins, respectively, xv (rp) can be simply expressed as:

9 [Tpmax

xv(rp) = v /0 &(rp, m) 2wy drp drr. (3.10)

Tp,min

3.2.2 Simulation setup

As described in P24 (see Figure 2.1), we use dark-matter-only (DMO)
cosmological simulations to extract two fundamental quantities that are
at the core of our model: the halo mass function, ngmr, and the cross-
correlation functions of halos with masses M; and My, &, (M;, My;r).

P24 used multiple simulations with different box sizes and resolutions to
extend the range of masses that can be reliably modeled in their framework.
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The argument in support of this approach was that every different simula-
tion can describe the demographic and clustering properties of halos in a
different range of masses, and putting together these properties allows for an
exploration of a larger set of quasar-host mass distributions. This approach
was particularly suited for getting an estimate of the quasar auto-correlation
function, as this quantity primarily depends on the auto-correlation function
of the halos whose mass is the maximum of the QHMF. For this reason,
resolving very low and very high mass halos in the same simulation was
not necessary, and the terms of the cross-correlation functions &, (M;, Mj;r)
with, e.g., M; > M; were just extrapolated by appropriate analytic functions
(see P24 for more details).

The problem we are facing here, however, is intrinsically different, as we
need to model the cross-correlation function between quasars — which are
very rare and are expected to live in massive halos — and galaxies — which are
much more abundant and hence are hosted by much more common systems.
This implies that the cross-correlation functions between very massive and
less massive halos are at the core of our model, and hence they need to be
faithfully represented in our numerical setup. For this reason, we use here a
single simulation with a larger number of particles, intending to represent in
the same box halos whose range of masses is broad enough to account for the
presence of quasars and galaxies simultaneously. In the following, we give
more details about the properties of this simulation, and we then proceed
to describe how we extract from the simulated box the halo properties that
our population models require.

3.2.2.1 Extending the suite of FLAMINGO runs: FLAMINGO-
10k

FLAMINGO (Schaye et al. 2023; Kugel et al. 2023) is a suite of state-of-
the-art, large-scale structure cosmological simulations combining hydrody-
namical and dark-matter-only (DMO) runs in large volumes (> 1 Gpc).
The simulations were performed using the coupled Particle-Mesh & Fast-
Multipole-Method code SWIFT (Schaller et al. 2024). The fiducial runs
adopt the “3x2pt + all” cosmology from Abbott et al. (2022) (2, = 0.306,
Q, = 0.0486, 0g = 0.807, Hy = 68.1 kms~' Mpc ™!, ng = 0.967), with a
summed neutrino mass of 0.06eV. Initial conditions (ICs) are set using
multi-fluid third-order Lagrangian perturbation theory (3LPT) implemented
in MONOFONIC (Hahn et al. 2020; Michaux et al. 2021). Partially fixed ICs
are used to limit the impact of cosmic variance (Angulo & Pontzen 2016) by
setting the amplitudes of modes with wavelengths larger than 1/32 of the
simulation volume side-length to the mean. The most demanding simulation
in the suite (the L2p8_m9 run of Schaye et al. 2023) encompassed a volume
of side-length 2.8 cGpc with particles of mass 6.72 x 10° M.
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Whilst the volume of this flagship run is sufficient for the present study,
the resolution is not high enough to reliably characterize the halo mass and
clustering of the [OIII] emitters we seek to study. We thus ran an addi-
tional simulation, FLAMINGO-10k, which we add to the FLAMINGO suite.
FLAMINGO-10k was run on 65 536 compute cores, using the same setup
(software, cosmology, ...) as the previous DMO FLAMINGO simulations,
but with 8x higher resolution than the L2p8_m9 run and a higher starting
redshift (z = 63). The box size of this new simulation is chosen according
to the flagship FLAMINGO run, L = 2.8 cGpc, while the resolution of the
simulation reaches the one of the 1cGpc FLAMINGO DMO high-resolution
run (mcpm = 8.40 X 10® M). The simulation makes use of 10080 cold
dark matter (CDM) particles and 56003 neutrino particles, resulting in a
total number of particles close to 1.2 x 102, As detailed in Sec. 3.4, this
large number of particles will let us model halos whose masses span more
than two orders of magnitude at z ~ 6 throughout the (2.8 cGpc)? volume.
The particles and halo catalogs were stored at 145 redshifts between z = 30
and z = 0 with 31 outputs at z > 6, allowing for the precise tracing of the
growth of structures at early times.

3.2.2.2 Obtaining the sub-halo catalogue with HBT+

The first step that we take once we have the final simulated volume is to
build a halo catalogue containing the positions and masses of all (sub-)halos
in the simulation. In P24, we included only central halos in the catalogue
and discarded the contribution of satellite haloes completely. This was done
because our main focus was the auto-correlation function of quasars at large
scales (r = 5cMpc). Here, instead, we aim to reproduce correlation functions
down to r & 0.1cMpc (i.e., well within the virial radii of massive halos),
and hence the contribution of all sub-haloes must be carefully considered.
We note that in our framework (Sec. 3.2.1) we do not make any explicit
distinctions between central sub-halos and satellites. For this reason, we
build a halo catalogue that includes all kinds of sub-halos, and we use the
general term “halo” to refer to any kind of sub-halos, irrespective of whether
they are central or satellite. In general, whenever we refer to quasar/galaxy
hosts in the context of our model (e.g., in the QHMF and GHMF), we always
implicitly assume that we are talking about sub-halos, and not about the
larger groups identified by a friends-of-friends algorithms.

We select a single snapshot from FLAMINGO-10k at z = 6.14, which
represents the closest match in terms of redshift to the observations we aim
to reproduce in this work (Sec. 3.3.1). We use this snapshot together with
all the other ones at higher-z to build a halo catalogue using the upgraded
Hierachical Bound-Tracing (HBT+) code (Han et al. 2012, 2018). HBT-+
identifies sub-haloes as they form and tracks their evolution as they merge.
By consistently following sub-haloes across cosmic times HBT+ represents a
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robust solution to the problem of identifying small-scale bound structures
in DMO simulations. This is the ideal choice for the problem we are facing
here, as we aim to represent the spatial distribution of quasars and galaxies
down to very small spatial scales.

We use the bound mass definition for (sub-)halo masses. In other words,
we compute the mass of each (sub-)halo by summing up the mass of all its
bound particles. Since tidal stripping decreases the mass of satellite halos
by a significant amount, we use here the peak halo mass, Mpeak, Which is
defined as the largest bound mass that a (sub-)halo has had across cosmic
history. In practice, HBT+ saves this mass for each snapshot, and so we
can simply use the peak bound masses that are given in the output by the
code for our population model (i.e., M = Mpeak). We then complete the
catalogue by adding the position of each (sub-)halo, which we define by
looking at its centre of potential.

3.2.2.3 A simulation-based analytical description of halo proper-
ties

Once we have obtained a catalogue with the positions and masses of halos
in the simulation at a given redshift, we can easily compute the halo mass
function and the (cross-)correlation functions of halos with different masses.
However, as also done in P24, we aim to describe these quantities with
analytical functions, which we fit to the outputs of the simulation. This
approach allows us to obtain a very general description of halo properties,
independent of the specific mass bins employed. More importantly, in P24
we have shown that using these fitting functions we can smoothly extrapolate
the behavior of the cross-correlation functions even to the combinations of
mass bins for which there are very few halos available in the simulation,
and hence for which the correlation functions measured numerically are
extremely noisy and uncertain. This simple step improves the quality of our
parameter inference (Sec. 3.3) and lets us recover well-behaved posterior
distributions for a wide range of model parameters.

Fitting the halo mass function is straightforward. As in P24, we consider
the same functional form used by Tinker et al. (2008) (see also Jenkins et al.
2001; White 2001; Warren et al. 2006) for the fit, and consider all halos
above the minimum mass log Myin /Mg = 10.5, corresponding to halos with
more than = 40 particles.

As for the cross-correlation function of halos with mass M; and My,
En(M;, My;r), we first compute each correlation function numerically by
creating a grid in mass and distance made by 8 uniformly spaced bins
in log;y M, with a minimum halo mass of log;q Muin/Me = 10.5 and a
maximum of log;y Mmax/Me = 12.5, and 18 (logarithmically-spaced) bins
in the radial direction with a minimum radial distance of log;q rmin/cMpc =
—1 and a maximum of log;q rmax/cMpc = 2.2. We then use the package
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CORRFUNC (Sinha & Garrison 2020) to compute the number of halo pairs in
the simulated catalogues for every combination of masses and distance. We
use a simple estimator to obtain the halo cross-correlation functions:

_ D;Dy(r)

En(Mj, Mysr) = & x(r) = R, Ra(r)
J

~1, (3.11)

where D; D), stands for the number of pairs of halos in the mass bin j with
halos in the mass bin %, whereas R; R}, refers to the number of pairs when
comparing to a random distribution of the same halos. For a periodic box
of volume V', R; R, can be simply expressed analytically as:

RiRy = o5 (73 s — T3in) Nj Nk, (3.12)
with N; and Nj being the number of halos in the mass bins j and &,
respectively, and 7'min max the limits of the radial bin considered.

We fit &, (M, My;r) with the same setup as described in P24. In short,
we divide all the cross-correlation terms, &,(M;, My;r), by a reference
correlation function, &.¢(r), which we set equal to the auto-correlation
function of the first mass bin. Then, we fit the resulting functions with a
3-d polynomial to capture the residual dependencies on the two masses and
the distance. The fit is performed by converting masses to peak heights,
v(M) =6./c(M,z) — with 6, ~ 1.69 and o*(M, z) being the variance of the
smoothed linear density field (see also Sec. 3.5.1). We adopt this approach
in order to minimize any dependences of the cross-correlation functions on
cosmology and redshift. Errors on the cross-correlation terms are chosen by
assuming Poissonian uncertainties on the halo pair counts. Finally, we note
that, before fitting, we weigh every uniform mass bin with the halo mass
function, so that the effective mass M}, corresponding to the bin k is not the
bin center, but the median value of the halo mass function in that specific
bin.

After performing the fit, we introduce here a further step that aims
to achieve a better description of the cross-correlation functions at large
scales, r 2 20 — 40 cMpc. As noted in P24, the values of the correlation
functions extracted from simulations tend to be unreliable at large scales
for two reasons. First, the finite size of the box reduces the number of
very large-scale pairs that are available. Secondly, at » 2 100 cMpc the
behavior of correlation functions becomes non-trivial due to the presence
of the baryon acoustic oscillations (BAO) peak, which is hard to capture
with the coarse binning employed here. At large scales, however, density
perturbations are linear and they can faithfully be described by the linear
halo bias framework (Bardeen et al. 1986; Cole & Kaiser 1989; Jing 1998;
Cooray & Sheth 2002). For this reason, we follow Nishimichi et al. (2021)
and smoothly interpolate between our fit to simulations at small-to-medium



104 3.3. DATA-MODEL COMPARISON

scales and the predictions from linear theory at large scales. In practice,
we introduce a damping function D(r), and write the correlation functions
En(Mj, My;r) as:

En(Mj, My;7) = D(1)&n,a¢(Mj, Mysr) 4+ (1 — D(r))&n1in (M, My;7), (3.13)

where & gt (M, My; ) is the fit performed to simulations described above,
while & 1in (M, My; ) is the prediction coming from the linear halo bias
framework (based on linear theory, see, e.g., Murray et al. 2021):

& tin (M, Mig; ) = b(M;)b(Mp)&ram (7). (3.14)
We use the package COLOSSUS (Diemer 2018) to compute the matter auto-
correlation function, &mm (), and the linear bias factors, b(M; 1), based on
the Tinker et al. (2010) relation. As for the damping function, we choose
the following functional form:

D) = e (7)", (3.15)

with the parameters set to @ = 5 and ry;, = 20 cMpc.

In summary, we adopt here an extension of the P24 fitting framework
that uses DMO simulations to provide an analytical description of the
demographic and clustering properties of halos, expressed by the halo mass
function and the halo cross-correlation functions. Thanks to the use of fitting
functions, we can extrapolate the behavior of these quantities for a very large
range of masses (from log M /Mg = 10.5 to log M /Mg ~ 13 — 13.5), and, by
smoothly interpolating between DMO simulations at small scales and linear
theory at large scales, our correlation functions can capture more than four
orders of magnitude in scale (from r ~ 0.1cMpc out to r &~ 1cGpc). As
shown in the following Section, these properties are essential to reproduce
the large diversity of data concerning galaxies and quasars that are the focus
of the present work.

In Appendix 3.8, we show the results for the fit of the cross-correlation
function terms and elaborate on the validity of this approach in the context
of our analysis. Further discussion on the general methodology employed
here can be found in P24.

Data-Model comparison

Adopting the methodology described in the previous Section, we can obtain
all the ingredients needed to compare our model with observational data. The
model depends on eight free parameters (see Sec. 3.2.1), that we constrain
by jointly fitting the luminosity and clustering measurements of both quasars
and galaxies. We provide a brief description of the data considered in the
analysis in Sec. 3.3.1, and proceed to the comparison with our model in Sec.
3.3.2.
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3.3.1 Overview of observational data

The data we consider in this work concern the luminosity functions and
auto-correlation functions of quasars and galaxies, and the cross-correlation
function between these two different populations. In Table 3.1, we summarize
all these data and point to their respective references. The z ~ 6 quasar
luminosity function (QLF) is taken from Schindler et al. (2023), and it is
compiled including 125 quasars with —28 < My450 < —25 from the the Pan-
STARRS1 (PS1) quasar survey (Banados et al. 2016), as well as 48 fainter
(=25 < Myas0 S —22) quasars from the SHELLQs survey (Kashikawa et al.
2015; Matsuoka et al. 2018). Note that, as detailed in Sec. 3.2.1 and in P24,
we convert absolute magnitudes to quasar bolometric luminosities using the
relation from Runnoe et al. (2012a)”. The galaxy luminosity function (GLF),
based on JWST observations of [O 111] emitters, was compiled by Matthee
et al. (2023) in the context of the EIGER survey. The luminosities of galaxies
are already expressed in [O 11] line fluxes, in accordance with our population
model (Sec. 3.2.1), and cover the range 42 < log;, Lom/ergs™! < 43.5. We
discard the faintest bin in the GLF because, as discussed in Matthee et al.
(2023), its completeness is relatively low (= 40%), and hence the value of
the abundance of galaxies in that bin is particularly uncertain.

The quasar-galaxy cross-correlation function and the galaxy auto-correlation
function are also measured by the EIGER survey in E24. They both span
a spatial range 0.1 < r/cMpc < 6, sharing the same radial bins. Being
obtained with the same methodology and in the same analysis, these two
datasets are homogeneous, and it is natural to consider them jointly. The
quasar auto-correlation function (Arita et al. 2023), on the other hand, comes
from a very different dataset: it includes quasars with much fainter lumi-
nosities from the SHELLQs survey (Matsuoka et al. 2018), and it constrains
their clustering only at very large scales (r 2 40 cMpc; see Arita et al. 2023).
Further discussion on this can be found in Sec. 3.3.2 and in Appendix 3.C.

One of the key aspects to bear in mind when analysing data concerning
correlation functions is that our model is quite sensitive to the value of
the luminosity threshold, Ly, considered when measuring quasar/galaxy
clustering (see eq. 3.19-3.20). While properly modeling the effects of
observational incompleteness in the context of our framework is beyond the
scope of this work, it is important to set these threshold values carefully to
ensure that we get unbiased results. Let us start with the E24 observations.
The EIGER survey targets only five very bright quasars and detects galaxies
in their fields. This implies that the quasar population whose clustering is
being probed by EIGER counsists only of very bright (Mi450 < —27) sources.

2The bolometric correction for A = 1450 A is log;o Liso/ergs™' = 4.745 +
0.910log g ALy /erg s~1. Liso refers to the bolometric luminosity computed under the
assumption of isotropy, and it is related to the real bolometric luminosity L through the
relation L = 0.75 Ligo.



CHAPTER 3 107

For this reason, we set a value of the quasar luminosity threshold for modeling
the quasar-galaxy cross-correlation function of log;y Linr,qso/erg s™h =471,
which is consistent with the luminosity of the faintest quasar probed by
EIGER. However, we mention the caveat that setting a luminosity threshold
would only be possible for a luminosity-limited sample. In reality, the
EIGER survey targets only a few selected quasar fields and is not constructed
to reproduce the actual luminosity distribution of bright quasars. While
this may introduce a minor bias in our results, we neglect this effect here
and consider the EIGER sample to be representative of the z ~ 6 bright
(L > Liny,gso) quasar population.

As for galaxies, the minimum [O m1] luminosity that EIGER measure-
ments consider is log;, L/ergs™! ~ 42. However, the sample starts to be
significantly incomplete already at higher luminosities. This represents an
issue in our framework, as the luminosity-halo mass relations assumed in
eq. 3.2 imply that clustering is luminosity-dependent. Including a large
population of low-luminosity galaxies of which only a fraction was detected
in the observations because of low completeness would then bias our results,
since the luminosity distribution of the galaxies for which clustering was
measured would not be the same as the one resulting from our modeling
by simply setting the luminosity limit to be the lowest luminosity con-
sidered. We can alleviate this problem by setting an effective luminosity
threshold that accounts for the fact that the sample is largely incomplete at
lower luminosities. We choose the following effective threshold for galaxies:
log1 Linr,ca1/erg s~! ~ 42.4. This value corresponds to the luminosity at
which the average completeness of the EIGER sample drops below ~ 75%
(Matthee et al. 2023). We employ an analogous argument to set the lumi-
nosity threshold for the quasar auto-correlation function measurements of
Arita et al. (2023). We find the magnitude at which the completeness of the
SHELLQs survey drops below 75%, and convert this magnitude to a quasar
bolometric luminosity obtaining logyo Linr,qso/ergs™! = 45.3°.

3.3.2 Parameter inference

We employ a Bayesian framework and write down the posterior distribution
for the model parameters. As described in Sec. 3.2.1, the model has eight free
parameters, describing the conditional luminosity functions of quasars and
galaxies simultaneously. We choose the same parametrization for CLF g0
and CLFqga. As a result, the same sets of parameters account for the
two functions: these are the normalization and slope of the quasar/galaxy
luminosity-halo mass relation (L.t and ~, respectively), the logarithmic
scatter around this relation (), and the fraction of quasars/galaxies that

3As detailed in Sec. 3.3.2 and Appendix 3.C, we find that the data for the quasar auto-
correlation function are not able to constrain our model parameters. For this reason, in
this specific case, the value for the luminosity threshold we choose here is irrelevant.
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Figure 3.1: Corner plots of the 8-d posterior distribution for the joint fit described in
Sec. 3.3.2. Contours in the 2-d histograms highlight the 1o and 20 regions, whereas
the dashed lines in the 1-d histograms represent the median values of the parameters
(with 1o errors shown as shaded regions). The maximume-likelihood values are shown
with star symbols in each corner plot. The units of the reference luminosity parameters

logg ngso’Gal) are ergs~ 1.

Table 3.2: Constraints (median values and 16th-84th percentiles) on the model parameters
based on the corner plots shown in Figure 3.1. The eight parameters are divided between
the ones describing the quasar CLF (“QSO”) and the ones for the galaxy CLF (“Gal”).

Quantity | o 10gy Liet [ergs™'] g Jon %]
QSO | 0551047 46.45707 3171082 3.gt21

Gal. | 092793 45.861-60 2.331069  o5t3l




CHAPTER 3 109

-31 s 0 Schindler+23, QLF ¢
Matthee+22, GLF ¢

logio(dn/diogsol [cMpc3])

—-10 = T T T T T
42 43 44 45 46 47
logioL [erg/s]

10° 5 Eilers+24, cross-correlation function 1+
Eilers+24, auto-correlation function -
102 4
5
= 101 j
<

10° 5 ——

107! 10°
rp [cMpc]

Figure 3.2: Comparison of the predicted luminosity (top) and correlation (bottom)
functions with the observational data from Table 3.1. The galaxy luminosity function
(GLF) and auto-correlation function are shown in orange, while the quasar luminosity
function (QLF) and the quasar-galaxy cross-correlation function are shown in red. Median
values (solid lines) and 1o uncertainty regions (shaded areas) are obtained by randomly
sampling the Markov chains for the posterior distribution 2000 times. The red and orange
vertical dot-dashed lines in the upper right panel are the luminosity threshold for quasar
and galaxies (Lip;), respectively, that are used for modeling clustering measurements
(see Sec. 3.3). The dashed line in the same panel represents the median value for the
GLF when assuming that the galaxy luminosity-halo mass relation flattens for large halo
masses (see Sec. 3.4 and Figure 3.3).
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are active at any given moment (fo,). The final set of parameters, ©, is
then: (o (QS0) L(QSO) (QS0) f(QSO o (Gal) L(Gal) (Gal) f(Gal))

As in P24, we set ﬂat uninformative priors on U(QSO Gal) and ~(QS0,Gal),
and on the logarithm of L{S¥®% ang {509 We choose to ex-

plore a wide parameter space, letting the parameters vary with the fol-

lowing bounds: o(Q89:Gal) ¢ (0.1 dex, 2.0 dex); log;, LESfSO -Gal) /erg s7l e
(%048®~(%0Gwe(1®1%wf@me € (—3,0). The lower limits

on ¢(Q80:Gal) and the upper limits logy, féQSO ‘G2 are chosen because of

physical constraints (i.e., the scatter in the L — M relation is unlikely to be
smaller than 0.1 dex and the active fraction is less than unity by definition).

We provide joint constraints on the parameters by fitting the data
described in Sec. 3.3.1 (i.e., the luminosity and correlation functions for
quasars and galaxies) simultaneously. In other words, we write the joint
likelihood distribution as the product of the single Gaussian likelihoods for
each dataset (we assume that all the measurements are independent):

£lem) =TT £, (3.16)
i
where i ranges over the datasets shown in Table 3.1

When performing our analysis, we found that the data for the quasar
auto-correlation function (Arita et al. 2023) were not able to place significant
constraints on any of our model parameters. As a result, this dataset was
not informative, and could not be used to infer any of the physical properties
of quasars. This conclusion differs from the one found in Arita et al. (2023),
where the authors are able to determine the range of host-halo masses for
quasars at z &~ 6. We investigated the issue further and found that the
different conclusions arise from different assumptions made for the shape of
the auto-correlation functions at large scales. For this reason, we exclude
the Arita et al. (2023) dataset from the joint fit performed here, and defer
the analysis of this dataset to Appendix 3.C. In that Section, we compare
in detail our analysis with the one performed by Arita et al. (2023) and
conclude that, if we assume a physically-motivated choice for the shape of
the quasar auto-correlation function, we are not able to place interesting
constraints on the distribution of quasar-host halo masses.

Moving forward, we discuss the results of our parameter inference for
the “joint” model described above, including all the other datasets compiled
in Table 3.1. We explore the posterior distribution for this model using a
Markov-Chain Monte Carlo (MCMC) approach. We employ the Python
package EMCEE (Foreman-Mackey et al. 2013) to sample the posteriors using
the affine-invariant ensemble prescription (Goodman & Weare 2010). We
place m = 48 walkers distributed randomly in the parameter space and
evolve them for N = 10° steps. Figure 3.1 shows the corner plot for the 8-d
posterior distribution, while Table 3.2 summarizes the constraints we obtain
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for each of the model parameters. The samples of the posterior distribution
obtained by the Markov Chains are then used to obtain predictions for
the luminosity and correlation functions, both for quasars and galaxies at
the same time; we compare these quantities with the data in Figure 3.2.
The top right panel shows predictions for the galaxy luminosity function
(orange) and the quasar luminosity function (red), while the bottom panel
shows the quasar-galaxy cross-correlation function (red) and the galaxy
auto-correlation function (orange).

In all cases, we see that our model fares well when compared to the
observational data. As a quantitative estimate of this accordance, we take
the parameters corresponding to the maximum of the posterior distribution
(highlighted by star symbols in Figure 3.1) and measure the y? statistic
for each of the single dataset shown in Table 3.1. Values of the x? are
reported in the last column of Table 3.1. We generally find a very good
agreement between our model and every single dataset analyzed. The
only exception is the galaxy auto-correlation function, for which the x?2 is
relatively large when compared to the size of the dataset. We believe this is
due to the small reported uncertainties in the observational data, that are
likely underestimated. As discussed in E24, these uncertainties are assigned
according to the Poissonian statistics associated with the pair counts, and
they do not take into account the uncertainty coming from cosmic variance as
well as other possible systematic effects. This may be particularly relevant in
the outermost bins, for which the data drop significantly more rapidly than
what is predicted by our model. Covariance between different data points is
also neglected in the F24 analysis, even though it most likely contributes to
the total error budget significantly. This artificially increases the discrepancy
between our model and the data.

Results

In the last Section, we have shown that we can successfully reproduce the
data for the luminosity and correlation functions of quasars and galaxies
with the simple extension of the P24 framework described in Sec. 3.2.1. In
this framework, we use observations to constrain the conditional luminosity
functions of quasars and galaxies simultaneously. In turn, each conditional
luminosity function can be related to other fundamental properties such
as the luminosity-halo mass relation, the host mass function, and the duty
cycle/occupation fraction. We examine here these properties starting from
the inferred values of the parameters obtained in Figure 3.1 and Table 3.2.
We first examine quasar properties, and then turn our attention to galaxies.
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Figure 3.3: Left: Luminosity-halo mass relation for quasars (red) and galaxies (i.e.,
[O 111] emitters; orange). The quasar luminosity is the bolometric one, while the galaxy
luminosity is the one from the [O 111] line. Median values (solid lines) and 16th-84th
percentiles (dark-shaded areas) for the L — M relations are obtained by randomly sampling
the Markov chains for the posterior distribution 2000 times. The cumulative effects of
the uncertainty on the median and the intrinsic scatter in the relations, expressed by
the o parameter in the CLF, are shown with a lighter shading. The dashed orange
line corresponds to the modified galaxy luminosity-halo mass relation, with a flattening
of the relation above a threshold mass of M = 101> Mg. Right: Quasar-host mass
function (QHMF; red) and galaxy-host mass function (GHMF; orange). Median and
1o uncertainties of these functions (obtained as in the left panel) are shown with solid
lines and dark-shaded areas, respectively. The dashed-dotted lines show the median halo
masses associated with the QHMF (red) and GHMF (orange) distributions (see eq. 3.21);
light-shaded regions represent 1o uncertainties on these median masses. The halo mass
function (HMF) at the redshift of interest (z = 6.14) is shown with a gray dashed line.
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3.4.1 The quasar luminosity-halo mass relation and the
host halos of quasars at z ~ 6

Figure 3.3 shows the quasar luminosity-halo mass relation (left) and the
quasar-host mass function (QHMF; right) at z ~ 6, as inferred from our
model. We obtain a rather steep quasar L — M relation, with a slope of
4(QS0) ~ 3.2, This steep relation between quasar luminosities and halo
masses is in agreement with the results of P24, which use data at z =2 — 4
to study the evolution of this relation with redshift and find a significant
increase in the slope parameter at earlier cosmic time. Our results suggest
that this trend extends to even higher redshifts, with a close-to-linear relation
at z ~ 2 turning into a very steep relation (y(?89) ~ 2 —3) at z ~ 4 — 6.
We mention the caveat, however, that in this analysis the shape of the
L — M relation is primarily constrained by the QLF, and only marginally
by the clustering measurements. This is because the E24 clustering data
only focus on a very bright sub-sample of z ~ 6 quasars, and so they
cannot constrain the behaviour of the L — M relation below a luminosity
of log,y L/ergs™! ~ 47. Given that the shape and normalization of the
QLF at high redshift are rather uncertain, especially at the faint end (e.g.,
Giallongo et al. 2019; Maiolino et al. 2024; Harikane et al. 2023; Andika
et al. 2024), the shape of the L — M relation is inevitably also plagued by
this uncertainty.

The scatter in the quasar L — M relation, on the other hand, is constrained
both by the QLF and by the cross-correlation function simultaneously. In
our analysis, we find a rather large log-normal scatter of 0(Q59) ~ 0.64 dex
(although with a significant uncertainty of ~ 0.3 dex). This relatively large
scatter is in line with the one measured by P24 at z ~ 2.5, but it represents
a significant difference if compared to the very low scatter o(Q5°) < 0.3 dex
found by P24 at z =~ 4. Similarly, the value we obtain for the active fraction
of z &= 6 quasars fér‘?SO) (= 2%) is rather low if compared to the very high
active fraction (= 50%) found by P24 at z ~ 4. We defer the analysis of the
peculiar redshift evolution traced by these parameters to Sec. 3.5.1.

The QHMF (Figure 3.3, right panel) reveals that quasars tend to live
in log,y M /Mg = 12.5 halos (median value of log,, M/Mg =~ 12.53 £ 0.13),
with a rather broad distribution encompassing a large range of halo masses
(from log,y M/Mg =~ 12.1 to log,q M /Mg ~ 12.8 at 20). The range of host
masses we obtain is in perfect agreement with the conclusions of E24, who
pointed out that quasars tend to live in moderately strong over-densities, but
not necessarily in the most over-dense regions of the Universe (corresponding
to halo masses of log,q M /Mg 2 13).

Even more interestingly, the broad distribution of host masses that
we find from the inferred QHMF is compatible with the large quasar-to-
quasar variance in terms of over-densities found by E24. The diversity of
environments emerging from the E24 observations is likely a combination
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of cosmic variance and variance in the host halo masses of quasars and/or
galaxies. While we leave a quantitative analysis of these sources of variance
to future work, it is encouraging to find evidence for the latter in our results.
We stress the fact that our method for obtaining the QHMF does not make
use of the observed diversity in terms of environments, as it only focuses on
the global demographic and clustering properties of galaxies and quasars.
The broad distribution of host masses that we find from our QHMF follows
naturally from jointly modeling the clustering properties of quasars together
with the shape and normalization of the quasar luminosity function.

In the analysis presented in E24, the framework developed here was
used to match the quasar-galaxy cross-correlation function and the galaxy
auto-correlation function by assuming simple “step-function” halo occupation
distributions (HODs) for both quasars and galaxies. In other words, £24
populated halos and galaxies only above some minimum mass thresholds.
With this method, they inferred the minimum host halo mass for quasars
to be logyg M/Mg =~ 12.43. For a “step-function” HOD model, this value
corresponds to a median quasar host mass of log;, M/Mg ~ 12.51, in
excellent agreement with the median value of our inferred QHMF distribution.

Our conclusions on the quasar-host masses are also in line with the
ones obtained by Mackenzie et al. in prep. In this work, the authors use
the UniverseMachine (Behroozi et al. 2019) to compare the number of
satellite halos to the number of companion galaxies observed in EIGER
quasar fields. In this way, they obtain a distribution of possible host dark
matter halo masses for each observed quasar in E24. Overall, the median
value they obtain by putting together all the different mass distributions
is logyg M /Mg = 12.4 £ 0.5. The agreement with our results is significant,
considering the very different assumptions underlying this method compared
to the ones made here. Another estimate for the typical host halo masses
of EIGER quasars was also obtained in E24 by comparing the observed
xv,qc with predictions from the TRINITY model (Zhang et al. 2023b).
The resulting median host halo mass, log;y M/Mg = 12.147022 s slightly
lower than the one found here, but still marginally compatible when taking
uncertainties into account.

Finally, by relating the inferred QHMF to the halo mass function (HMF)
at the same redshift (see eq. 3.22), we can obtain an estimate for the
quasar duty cycle, eqpc. Fig. 3.4 (left panel) shows the probability density
function (PDF) for the quasar duty cycle (red) and the galaxy duty cycle
(orange) obtained by randomly sampling the Markov chains for the posterior
distribution shown in Fig. 3.1. We infer a value for the quasar duty cycle of
eqpc = 0.9722%. This relatively low value of the duty cycle implies that
only a small fraction of SMBHs are active as UV-bright, luminous quasars
at any given time, and it has relevant consequences in terms of the lifetime
of high-z quasars, their obscuration fraction, and more generally the growth
of SMBHs. We will explore this further in Sec. 3.5.2.
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3.4.2 Characterizing the properties of [OIII] emitters

Our joint model for quasars and galaxies constrains the properties of these
two populations simultaneously. As a result, all the properties that we have
presented for quasars can also be studied for the high-z galaxy population.
These are the galaxy luminosity-halo mass relation (Fig. 3.3, left panel),
the GHMF (Fig. 3.3, right), and the galaxy duty cycle (Fig. 3.4, left
panel). Before analyzing these quantities, we note that our model focuses
only on [O 111] emitters, as this sub-population of galaxies is the one that
is targeted by the JWST NIRCam-WEFSS observations from the EIGER
survey. Therefore, all results that we will quote here refer to the properties
of galaxies that are bright in the [O 111] line; at these high redshifts, these
galaxies are believed to be luminous, star-forming, and unobscured (e.g.,
Matthee et al. 2023).

The galaxy luminosity-halo mass relation (Fig. 3.3, left panel) is rather
similar to the quasar luminosity-halo mass relation. The major differences
can be found in the slope of this relation as well as in its normalization. The
logarithmic slope of the galaxy luminosity-halo mass relation is shallower
than the one concerning quasars, but steeper than linear (V(Gal) ~2 2.3). The
normalization of this relation conspires with its slope to give an average
galaxy luminosity at fixed halo mass that is brighter than the one of quasars
at log;o M /Mg < 11.5, but dimmer at larger host halo masses”. This implies
that, on average, quasars overshine galaxies at the high mass end of the
HMF, while the opposite is true for the bulk of the halo population.

Nonetheless, if we look at the comparison between the QLF and the
GLF in Fig. 3.2 (top panel), we see that our model predicts galaxies
to be more abundant than quasars at all luminosities. This is because
the scatter in the galaxy L — M relation is rather large, and the duty
cycle of galaxies is significantly larger than that of quasars (see below).
Observationally, we know that the GLF drops below the QLF at luminosities
around log;, L/ergs™! ~ 46 (e.g., Bouwens et al. 2015; Matsuoka et al.
2018), so this implies that the extrapolation of the GLF at large luminosities
based on our model is flawed. This is not a surprise, as here we assumed that
a very simple power-law relation between galaxy luminosity and halo mass
holds for the entire population of halos. This relation serves our purposes,
as we want to match data for the GLF only in a rather narrow luminosity
range, but it is probably too simplistic to capture the behaviour of the galaxy
population at even larger luminosities/host masses.

Indeed, we know that the star formation efficiency is predicted to peak
for halo masses of log;, M/Mg = 11.5 — 12.5, resulting in a break in the
stellar mass-halo mass relation (e.g., Moster et al. 2013; Behroozi et al. 2019).

4Note, however, that the luminosity of galaxies only includes the flux emitted in the
[O 111] line, hence we expect the normalization of the galaxy L — M relation to be higher
when considering the total flux emitted from galaxies.
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Figure 3.4: Left: Probability density function (PDF) for the quasar (red) and galaxy (orange) duty cycles at z &~ 6, obtained by randomly
sampling the Markov chains for the posterior distribution 2000 times. The median and 1o uncertainties for the PDFs are shown with a dot-dashed
line and shaded areas, respectively. The dashed vertical line corresponds to the maximum possible value of the duty cycle, epc = 100%. Right:
Same as the left panel, but for the quasar duty cycles at different redshifts: z s 2.5 (blue), z &~ 4 (green), and z = 6 (red). Results at redshift
lower than z = 6 are taken from P24.
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While the luminosity range of the GLF data considered here is not large
enough to constrain this break in the context of our model, we can see what
would be the effect of a more physically motivated choice for the galaxy
L — M by making the arbitrary assumption that this relation flattens above
log;g M /Mg =~ 11.5 (dashed line in the left panel of Fig. 3.3). In practice,
we assume that the galaxy CLF in eq. 3.1 remains the same, but we vary the
luminosity-mass relation on which it is based (eq. 3.2) by manually inserting
a flattening above a threshold halo mass. We find that all the quantities but
the GLF remain unchanged; the new median GLF is plotted with a dashed
line in Fig. 3.2 (top panel). Indeed, we see that with this simple assumption,
the predicted GLF drops below the QLF at roughly the observed luminosity.
A more comprehensive quasar/galaxy population model — that is outside
the scope of this paper — would include a larger set of galaxy observations
to properly constrain the shape of the break in the galaxy L — M relation.
The simple argument adopted here, however, shows that our framework is
well-suited to represent quasars and galaxies in the luminosity /mass ranges
of the data we aim to reproduce (Table 3.1).

The GHMF is shown in the right panel of Figure 3.3 (orange line).
Again, we find a broad distribution of host masses, with a median value
of log;g M /Mg ~ 10.9 (log,o M/Mg, = 10.881503) and a 1o range of +0.3.
Determining the characteristic host halo masses for [O 111] emitters is an
important result that is made possible by the analysis presented here. This
population of galaxies is a major protagonist in JWST campaigns to study
the high-z Universe via slitless spectroscopy (Kashino et al. 2023; Oesch
et al. 2023; Wang et al. 2023). For this reason, a thorough characterization
of their properties is key. Overall, the characteristic host mass that we find
for [O 111] emitters agrees well with the one measured at the same redshifts
using Lyman break galaxies (LBGs) in HST photometric campaigns (Barone-
Nugent et al. 2014; Dalmasso et al. 2024). This result strengthens the
conclusion — coming from abundance arguments (Matthee et al. 2023) — that
[O 1] emitters may trace star-forming regions in high-z galaxies in a way
that is similar to Lyman-break-selected systems.

We note that the shape of the GHMF (Fig. 3.3, right panel) is affected by
the minimum mass we assume in our model, i.e., log;g Mmin/Ma = 10.5 (see
Sec. 3.2). In other words, in our population model, we assume that galaxies
live only in halos larger than this threshold mass, and that the GHMF goes
to zero for lower masses. This choice is made in the context of our framework
because the FLAMINGO-10k simulation introduced in Sec. 3.2.2 cannot
resolve halos with lower masses. There is no physical motivation, however,
for this choice, as there could be a population of bright galaxies that are
residing in lower-mass halos. In particular, we believe that extending the
GHMF distribution to lower halo masses would bring the median value found
here (logyg M/Mg ~ 10.9) down to slightly lower values. This is because
the GHMF distribution is artificially skewed towards larger halo masses
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because of the halo mass threshold imposed in our simulation: the halo mass
corresponding to the peak of the GMHF distribution (log,o M /Mg ~ 10.7) is
lower than the median (log;y M /Mg ~ 10.9). Indeed, a lower median value
of log,y M/Mg = 10.7 is in closer agreement with the result found in 24,
where the same simulation presented here was coupled with a “step-function”
HOD model for quasars and galaxies. The authors found a minimum host
mass for [O 11| emitters of log;, M /Mg ~ 10.56, which can be translated
into a median mass of log;, M /Mg ~ 10.65. Nonetheless, we believe that
extending the model to lower halo masses would not significantly impact
the conclusions presented here: we experimented with different prescriptions
for the GHMF and always found similar results, with the median value
of the GHMF of log,, M /Mg ~ 10.8 — 10.9) and the peak of the GHMF
distribution at log;, M /Mg = 10.6 — 10.7. Using a simulation with a smaller
volume and higher resolution, one could resolve halos down to much lower
masses and hence fully capture the properties of galaxies and their host halos.
However, this is not the goal of our work, as the primary focus of our analysis
is the relation between quasars and the galaxies in their environments, which
can only be captured with a large-volume simulation given the rarity of
quasars at high-z.

The galaxy duty cycle, egpc, is a measure of how many halos host galaxies
that can be observed in [O 111] compared to the global halo population with
the same characteristic masses. In our model, we infer a value for the galaxy
duty cycle of egpc = 12.9f§‘;%. This is once again in agreement with the
duty cycle values inferred from LBG clustering analysis (e.g., Dalmasso et al.
2024). We note here that the notion of “duty cycle” is primarily utilized in the
context of quasars rather than galaxies, as gas accretion on SMBHs — that is
believed to be associated with the triggering of quasar activity — is assumed
to be episodic, and hence the whole process is cyclic in cosmic time. In the
context of galaxies, it is probably easier to talk about an “occupation fraction”
of [O 1] emitters, implying that only a fraction of halos is hosting galaxies
whose [O 111] emissions are bright enough to be detectable and not obscured
by dust. However, it is also relevant to point out that if [O 111] emitters, as
argued before, trace unobscured star formation, they may also be subject
to rapid change in their luminosity as the star formation process is also
thought to be episodic, especially at high redshifts (e.g., Faucher-Giguére
2018; Pallottini & Ferrara 2023). Indeed, UV-variability (e.g., Shen et al.
2023; Sun et al. 2023) has been argued to play a key role in explaining the
over-abundance of bright galaxies that was indicated by JWST imaging at
very high-z (e.g., Naidu et al. 2022; Finkelstein et al. 2024).

Our duty cycle measurement cannot determine the amount of variability
in the galaxy lightcurves, as it only offers an integral constraint on the total
light emitted (in the [O 111] line) by star-forming galaxies over the entire
history of the Universe. In other words, it is only sensitive to the zeroth
moment of the galaxy’s unobscured lightcurve distribution. Nonetheless, the
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value of the duty cycle inferred here represents an important independent
characterization of the star formation history of high-z galaxies, and it nicely
complements probes of the burstiness of the high-z star formation process
coming from spectral energy distribution (SED) fitting (e.g., Looser et al.
2023; Endsley et al. 2024; Cole et al. 2023).

Another interesting point to make here is that the duty cycle/occupation
fraction that we measure for galaxies sets an upper limit on the contribution
of obscured star formation to the total galaxy mass growth at early times.
This is because our measurements tell us that = 15% of z =~ 6 galaxies are
[O 111] -bright, and hence the fraction for which star formation is obscured
by dust cannot be higher than &~ 85%. This is an interesting constraint
that can be directly compared with the estimated fraction of obscured star
formation coming from ALMA observations (e.g., Algera et al. 2023). We
will return to the point of obscuration in the context of quasars and SMBH
growth in Sec. 3.5.2

Discussion

In the analysis performed above, we could successfully match the luminosity
functions and the clustering properties of quasars and galaxies at z ~ 6
provided that: (a) there exist non-linear relations between quasar/galaxy
luminosity and halo mass; (b) these relations have significant log-normal
scatter (0 ~ 0.5 — 1 dex), and the one for quasars is steeper (v(Q%°) ~ 3.2)
than the one for galaxies (7(G2) ~ 2.3); (c) following these relations, luminous
quasars (log; L/ergs™! > 47) are hosted by halos with mass log;, M /Mg, ~
12.5, while galaxies (log;q L/ergs™! > 42.5) are hosted by much smaller
halos with log;, M /Mg =~ 10.9; (d) (UV-bright) quasars occupy only a small
fraction of halos with a duty cycle eqpc &~ 0.9%, while the occupation
fraction/duty cycle of galaxies is significantly larger, eqpc = 13%.

In the following, we further elaborate on this picture by focusing on the
properties of high-z quasars, studying their implications for SMBH accretion
and growth and their evolution with cosmic time.

3.5.1 Quasar properties across cosmic time

In P24, we applied a very similar framework to the one presented here to
model the auto-correlation and luminosity functions of quasars at z ~ 2.5
and z &~ 4. As a result, we obtained the quasar luminosity-halo mass relation,
the QHMF, and the quasar duty cycle at these two different redshifts, and
discussed how the properties of quasars seem to evolve rapidly between these
two epochs. Thanks to the analysis performed here, we can now extend this
discussion to include the properties of z ~ 6 quasars, and attempt to paint
a coherent picture of quasar evolution in the first few billion years of the
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Figure 3.5: Left: Quasar-host mass function (QHMF) at z & 2.5 (solid blue line), z ~ 4 (solid green line), and z ~ 6 (solid red line) as a
function of the halo mass, M. The halo mass functions (HMFs) at the same redshifts are shown with dashed lines and color-coded in the same
way as the QHMFs. The dashed-dotted lines represent the median values of the QHMF distributions (see eq. 3.21), while shaded regions
represent 1o uncertainties on the various quantities. Right: Quasar-host mass functions (QHMFs; solid lines) and halo mass functions (HMFs;
dashed lines) as a function of the peak height, v(M), at different redshifts. Color codes and other quantities are the same as in the left panel.
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Universe. The right panel of Fig. 3.4 shows the PDFs for the inferred values
of the quasar duty cycles at z =~ 2.5 (blue), z = 4 (green), and z ~ 6 (red).
The first two curves are obtained by sampling the posterior distributions for
the parameters from P24 (see their Fig. 5), while the last one is the same
as in the left panel. The same plot but for the QHMF is shown in the left
panel of Fig. 3.5.

Quite interestingly, we see that the evolution of the QHMF and the
quasar duty cycle with redshift do not follow a monotonic trend. The duty
cycle is low (< 0.5%) at z &~ 2.5, but it increases rapidly to values 2 50% at
z ~ 4. At even higher redshifts, however, the duty cycle seems to drop again
to < 1%. Despite the relatively large uncertainty on our z & 6 measurement,
the difference with the result obtained at z ~ 4 is rather remarkable (Fig.
3.4, right panel). An analogous trend with redshift can be observed by
considering the median of the QHMF distribution, which represents the
characteristic mass for the population of halos that are hosting bright quasars
(Fig. 3.5, left panel): this median mass is ~ 10*247125 M, for z ~ 2.5 and
z ~ 6, while it grows to =~ 10133 Mg, at z ~ 4.

As discussed in P24, the rather extreme values of the duty cycle and
the host masses that we find at z =~ 4 are a consequence of the very strong
quasar clustering measured by Shen et al. (2007). Using data from the Sloan
Digital Sky Survey (SDSS), Shen et al. (2007) find a value of the quasar auto-
correlation length, 79 qq, of &~ 24 cMpc h™!, which is significantly higher than
the value ro gq &~ 8 cMpc h™! measured by Eftekharzadeh et al. (2015) (see
also Ross et al. 2009; Shen et al. 2009; White et al. 2012) at z &~ 2—3 using the
BOSS survey. The strong quasar clustering at z &~ 4, combined with a rather
large abundance of bright quasars at the same redshift (=~ 3 x 10% chc_S)7
implies that only very massive halos can host active SMBHs and a large
fraction of them are continuously shining as quasars at any given moment
(i.e., the quasar duty cycle is large). This — as discussed by several works
(P24,White et al. 2008; Shankar et al. 2010b) — is only possible provided
that the scatter in the relation between quasar luminosity and halo mass is
very low (o < 0.3 dex).

The analysis presented here shows that the trend hinted by the Shen
et al. (2007) quasar clustering measurements at z ~ 4 does not seem to
extend further to higher redshifts. Using the data from FE24, we have shown
that the characteristic host mass of quasars at z =~ 6 is not as large, and
only a small fraction of these SMBH-hosting halos are actually shining as
bright quasars at any given time. As a consequence, the tight constraints
on the scatter between quasar luminosity and halo mass are not in place
at z ~ 6, and our model finds a larger value for the scatter of o ~ 0.6 dex,
although lower values are also compatible with the data (Fig. 3.1). Overall,
these results may suggest that the measurements of quasar clustering at
z & 4 (Shen et al. 2007) may be overestimated (see also He et al. 2018;
de Beer et al. 2023), and that the constraints on the host masses, quasar
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duty cycle, and scatter in the L — M relation at z ~ 4 may need to be
relaxed to some extent. If that is the case, our results at z &~ 6 suggest that
quasars are hosted, on average, by a small fraction of the population of halos
with masses in the range ~ 102 — 1013 Mg, in line with the situation at
z ~ 2 — 3. This result may favor a picture in which there exists a range of
halo masses for which quasar activity can be supported that is independent
of cosmic time. According to this picture, halos whose masses are lower than
this range cannot be responsible for a significant fraction of the black holes
that are capable of turning into bright quasars, while for very massive hosts
(logyg M/Mg = 13) quasar activity is quenched by feedback mechanisms
(e.g., Hopkins et al. 2007b; Fanidakis et al. 2013; Caplar et al. 2015).

On the other hand, the measurements from Shen et al. (2007) appear
to be solid, being based on a large (= 5000) spectroscopic sample of high-z
quasars from SDSS, and they are also backed up by estimates of the small-
scale quasar clustering inferred from independent samples of z &~ 4 — 5 binary
quasars (Hennawi et al. 2010; McGreer et al. 2016; Yue et al. 2021). It is
thus worth taking the Shen et al. (2007) clustering data at face value, and
exploring the implications of their results in terms of the evolution of quasar
properties at early cosmic times. The Shen et al. (2007) measurements
suggest that at high redshifts quasar activity tends to take place only in the
most massive halos, tracking halo growth across cosmic time (Hopkins et al.
2007b). It is interesting to note that our z = 6 results do not necessarily
disfavor this scenario. In fact, our inferred QHMFs suggest that quasars
live in equivalent halos at z =~ 4 and z = 6, while they live in very different
environments at lower redshifts. This can be understood by looking at
the right panel of Fig. 3.5, which shows the QHMFs at different redshifts
plotted as a function of the peak height, v(M). The peak height is defined
as v(M,z) = d0./0(M, z) — with §. ~ 1.69 being the critical linear density
for spherical collapse and %(M, z) the variance of the linear density field
smoothed on a scale R(M) °. It is a way to relate the masses of halos at any
redshifts to the strength of the fluctuations in the initial conditions of the
original linear density field. Therefore, large (small) peak heights correspond
to very over(under)-dense environments, independently of redshift.

The right panel of Fig. 3.5 shows that quasars tend to be hosted by very
rare ~ 5o fluctuations both at z ~ 6 and z ~ 4. This suggests that the same
kind of rare and very biased halos host bright quasars at early cosmic times,

5We compute v(M, z) using the python package corossus (Diemer 2018) and setting the
same cosmology as the FLAMINGO-10k simulation (Sec. 3.2.2). However, we mention
the caveat that the definition of peak heights implicitly assumes that halo masses are
based on the spherical overdensity formalism, and it only applies to the current masses
of central halos (and not to satellites). In our analysis (Sec. 3.2.2.2), we assume a halo
mass definition based on peak bound masses instead, and include the contribution of
satellites as well. Nonetheless, we believe that the effects of the differences in halo mass
definition are relatively small and that the final values we obtain for the peak heights
are not impacted significantly by these factors.
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and that these host halos are more massive at z ~ 4 than at z ~ 6 only
because they grow via mergers/accretion during the ~ 700 million years of
cosmic time that separate these two redshifts. In the lower redshift Universe
(z &= 0 — 3), instead, the situation is quite different, with quasars being
hosted by a new, less biased population of halos which corresponds to < 3o
fluctuations in the density field.

In this scenario, the key difference between z =~ 6 and z ~ 4 is the duty
cycle: while at z &~ 4 almost all of the most massive halos need to host
UV-bright quasars, the fraction of these same halos that are revealed as
quasar hosts at z = 6 is dramatically smaller. This could be caused by either
much shorter and sparser accretion episodes at very early cosmic times or a
much larger obscuration fraction characterizing early SMBH accretion. It is
of great interest to relate these arguments to our current paradigm of SMBH
growth: this will be the subject of Sec. 3.5.2.

In order to discriminate between the scenarios discussed here and to paint
a complete evolution of quasar activity across cosmic time, it is essential
to investigate the clustering of quasars at high redshifts with new methods
and new observational campaigns. In this sense, the next few years promise
to bring a new wealth of data with the combined action of JWST mapping
quasar-galaxy clustering at different redshifts using NIRCam WFSS (Kashino
et al. 2023; Wang et al. 2023), and the DESI survey (DESI Collaboration
et al. 2016) using ground-based spectroscopy to unveil a new, large sample of
quasars up to z < 5 that can be used to compute the quasar auto-correlation
function with a much higher precision.

We conclude by mentioning the caveat that the QHMFs shown in Fig.
3.5 are obtained by setting luminosity thresholds that vary according to the
ones used in observational data. In other words, the definition of “bright”
quasars we employ is redshift-dependent, and it is based on the depth of the
survey that was used for the clustering measurements. In Appendix 3.D, we
show the same QHMFs obtained by setting a uniform luminosity threshold of
logyo Line/erg s~ = 46.7, which is the same luminosity threshold as used by
Shen et al. (2007) at z &~ 4 and roughly corresponds to the break of the quasar
luminosity function at all redshifts z = 2 (e.g., Khaire & Srianand 2015;
Kulkarni et al. 2019). The resulting QHMF shifts towards higher (lower)
halos masses at z = 2.5 (z & 6), due to the different luminosity thresholds
employed in observations with respect to the one at z ~ 4. Nonetheless, the
global picture that we presented in this Section remains unchanged: quasars
seem to be hosted by log,y M/Mg 2 13 — 13.5 halos only at z =~ 4, but
when relating halo masses to their large-scale environments by using the
peak height formalism, we find a direct connection between z ~ 4 and z ~ 6
and a divergent behavior at lower redshifts.
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3.5.2 The quasar duty cycle and SMBH growth

One of the key results of our analysis is that the quasar duty cycle we obtain
at z &~ 6 is rather low (= 0.9%), in stark contrast with the very high one
(Z 50%) measured at z & 4 from the Shen et al. (2007) data (Fig. 3.4, right
panel). As detailed in, e.g., P24, these duty cycles can be directly converted
into estimates of the total time SMBHs shine as bright quasars (i.e., the
integrated quasar lifetime, tq) via the simple relation tq = ty(z) epc — with
ty(z) being the age of the Universe at a given redshift. Using the values of
the duty cycles mentioned above, we obtain tq ~ 0.1 —1 Gyr at z ~ 4, and a
smaller tq ~ 10 Myr at z ~ 6. It is important to investigate the discrepancy
between the values obtained at these two redshifts further, as the study of
the timescales of quasar activity at high redshift is intrinsically connected
with the formation and evolution of SMBHs in the Universe.

As discussed in the Introduction, our current paradigm of SMBH growth
is founded on the idea that SMBHs grow by accretion, and that a small
fraction of the accreted rest mass is converted into radiation and gives rise to
the quasar phenomenon. According to this paradigm, the growth of SMBHs
is always concomitant with the formation of a bright quasar. For this reason,
the total time a SMBH shines as a quasar (i.e., the quasar lifetime) is related
to the total mass that has been accreted onto the SMBH. This argument
has been proposed in many different variations in the past (e.g., Soltan 1982;
Martini & Weinberg 2001; Yu & Tremaine 2002), and it represents one of
the cornerstones of our understanding of quasar/SMBH evolution.

At high redshift (z 2 6), the connection between the quasar lifetime and
SMBH growth is even more relevant due to the limited amount of cosmic
time (< 1Gyr) that is available to grow black holes to the observed masses
of ~ 10872 Mg, (Fan et al. 2023). Assuming Eddington-limited growth with
a standard radiative efficiency of ~ 10%, one finds that only by postulating
tq ~ 0.1 —1Gyr (i.e., a quasar duty cycle 2 10%) it is possible to explain
the presence of such black holes in the early Universe starting from massive
black hole seeds of ~ 1037° Mg, (e.g., Inayoshi et al. 2020; Pacucci & Loeb
2022). This argument agrees well with the long lifetime inferred by our
model at z & 4 (see P24 for further discussion), but it is in plain tension
with the low duty cycle at z ~ 6 that we inferred in this work.

This tension between the long timescales required by SMBH growth and
the short timescales that seem to be associated with high-z quasar activity
has already been investigated in the context of quasar proximity zones and
damping wing features. By looking at quasar rest-frame UV spectra, several
studies at z &~ 4 — 7 have argued that the inferred quasar lifetimes range
between tq ~ 0.1 — 10 Myr (e.g., Khrykin et al. 2016, 2019; Eilers et al. 2018,
2020; Davies et al. 2018, 2019, 2020; Worseck et al. 2016, 2021; Durovéikova
et al. 2024), and do not seem to reach the very large values required by
SMBH growth models. Constraints based on proximity zones/damping
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wings are sensitive to the local conditions of each quasar environment and
only probe a fraction of the past quasar lightcurve, so the direct connection
between these results and the ones related to quasar clustering — which probe
the global population of quasars and can only constrain their total lifetime —
is non-trivial in the presence of rapidly varying and/or flickering lightcurves
(e.g., Davies et al. 2020; Satyavolu et al. 2023).

Nonetheless, the cumulative evidence coming from these very different
probes of quasar activity indicates that our standard paradigm for SMBH
growth at high z may need to be thoroughly reconsidered: not only is there
very little cosmic time to grow the SMBHs to the billion solar masses that
we observe for bright z ~ 6 — 8 quasars, we also lack evidence for this
accretion taking place in the form of UV-bright quasar emission at z 2 6.
Proposed solutions to this problem include a very low radiative efficiency
< 0.1 — 1% — which implies that only a very small fraction of the accreted
mass is converted into quasar light — or a very large population of obscured
SMBHs at high-z that are not visible as UV-bright quasars but continue to
grow actively at all epochs (e.g., Davies et al. 2019). This latter hypothesis is
particularly relevant, as a large obscured fraction for z 2 6 quasars has been
proposed both in the context of cosmological simulations (e.g., Ni et al. 2020;
Vito et al. 2022; Bennett et al. 2024) and multi-wavelength observations
(Vito et al. 2018; Circosta et al. 2019; D’Amato et al. 2020; Gilli et al. 2022;
Endsley et al. 2024). Recently, JWST data have unveiled a new population
of candidate dust-obscured active galactic nuclei (AGN) that can only be
found at high redshifts (Harikane et al. 2023; Matthee et al. 2024b; Kocevski
et al. 2023; Maiolino et al. 2024; Greene et al. 2024; Kokorev et al. 2023,
2024a; Lin et al. 2024), and may suggest a rapid evolution of the obscuration
properties of AGN/quasars in the early Universe.

3.6 Summary

In this work, we have modeled the demographic and clustering properties of
quasars (i.e., type-I, UV-bright systems) and galaxies (i.e., [O 111| emitters)
at z ~ 6 using an extension of the framework introduced in Pizzati et al.
(2024a) (P24; see their Figure 1). The model presented here builds on a
new, state-of-the-art N-body simulation from the FLAMINGO suite (Schaye
et al. 2023) (the “FLAMINGO-10k” run) that has the same resolution as
the original FLAMINGO DMO high-resolution run (CDM particle mass of
8.40 x 10® M) but a much larger volume (L = 2.8 ¢cGpc).

Thanks to this simulation, we can model the properties of z = 6 quasars
and galaxies simultaneously; these include (Table 3.1): the galaxy luminosity
function (Matthee et al. 2023), the quasar luminosity function (Schindler
et al. 2023), the quasar-galaxy cross-correlation function and the galaxy
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auto-correlation function (Eilers et al. 2024), and the quasar auto-correlation
function (Arita et al. 2023, considered separately in Appendix 3.C).

The model we employ is founded on a Conditional Luminosity Function
(CLF) framework. We assume a CLF for both quasars and galaxies, with
identical parameterizations, i.e., power-law relations between quasar/galaxy
luminosity and halo mass (L o« M7) with log-normal scatter c. We also
include an active fraction, fon, to account for the fraction of quasars/galaxies
that are too dim or not active and hence cannot be detected by observations.

The CLFs effectively link the population of halos in the simulated volume
to the ones of quasars/galaxies. Therefore, once the halo mass function is
known, we can directly obtain the quasar/galaxy luminosity function and the
quasar-/galaxy-host mass function (QHMF/GHMF). The QHMF/GHMF
can be coupled to the cross-correlation functions of halos with different masses
to model the clustering properties (auto-/cross-correlations) of quasars and
galaxies simultaneously.

As detailed in P24, the halo mass function and the cross-correlation
functions of halos with different masses are extracted from the simulation
and used to construct analytical fitting functions. We stress the fact that
the framework introduced here is general, and can be used to predict the
clustering and/or demographic properties of any populations of halo tracers
(see also Appendix 3.A).

We summarise below the main findings of our analysis:

e We jointly model all the observational data in Table 3.1 except for the
quasar auto-correlation function (Arita et al. 2023), which we analyze
separately in Appendix 3.C. We find a very good match between our
predictions and observations for all the quantities considered (Fig. 3.2).
The posterior distribution for the model parameters favors relatively
large values for the scatter both in the quasar luminosity-halo mass
relation and in the galaxy luminosity-halo mass relation (o ~ 0.6 —
0.8 dex), with the relation for quasars being steeper than the one for
galaxies (Fig. 3.3, left panel). The active fraction, on the other hand, is
larger for galaxies (fon & 25%) than for quasars (=~ 4%). Interestingly,
the luminosity-halo mass relations inferred in Fig. 3.3 (left) imply that
galaxies outshine quasars (i.e, the average [O 11| luminosity of galaxies
is larger than the bolometric luminosity of quasars) at halo masses of
logyg M /Mg < 11.5.

e According to the results above, z ~ 6 quasars live on average in
~ 10'2-5 M, halos, with a mass distribution that is quite broad, from
~ 10'21 Mg, halos to =~ 10'2-® M, (according to the 20 limits of the
QHMF distribution; see right panel of Fig. 3.3). This broad QHMF
distribution implies that quasars inhabit rather diverse environments
at high-z. This, together with the contribution of cosmic variance, may
explain the large quasar-to-quasar variance in terms of environments
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that was reported by Eilers et al. (2024), as well as the contradictory
claims that have been made based on previous observations (e.g., Kim
et al. 2009; Mazzucchelli et al. 2017b; Mignoli et al. 2020).

e Despite the rather large uncertainties, we are able to constrain the

z =~ 6 (UV-bright) quasar duty cycle to eqpc < 1% (Fig. 3.4, left
panel). This relatively low value translates to quasar lifetimes of
~ 10 Myr, in stark contrast with the very long lifetimes required at
high 2z by the standard picture of SMBH formation and growth (e.g.,
Inayoshi et al. 2020). This finding challenges our paradigm for SMBH
growth at high-z, and suggests that most of the black hole mass growth
may have happened in highly obscured and/or radiatively ineflicient
environments (see also Davies et al. 2019).

e As expected, the properties of galaxies (i.e., [O 111] emitters) that we
obtain are rather different from the ones of quasars (Fig. 3.2-3.4).
The characteristic host mass for [O 11| emitters that we measure from
the GHMF is =~ 10'%? M, in line with the one estimated from LBG
clustering measurements (e.g. Barone-Nugent et al. 2014; Dalmasso
et al. 2024). This suggests that [O 111] emitters may be tracing the
population of high-z actively star-forming galaxies in a way that is
similar to what LBGs have been doing in the Hubble Space Telescope
(HST) era. The galaxy duty cycle that we infer is larger than the
one of quasars, egpc ~ 13%, suggesting that a significant fraction of
high-z galaxies are UV-bright and actively star-forming at z ~ 6. This
sets an implicit constraint on the fraction of galaxies that are quenched
and/or obscured at the same redshifts.

e By comparing the properties of quasars at z ~ 6 obtained in this
work with the ones discussed in P24 for z =~ 2.5 and z = 4, we find
that the evolution of these properties with redshift seems to follow a
non-monotonic trend (Fig. 3.5). The characteristic quasar-host mass
and the quasar duty cycle have similar values at z ~ 2.5 and z = 6, but
they increase to significantly higher values at z &~ 4 due to the strong
quasar clustering measured by Shen et al. (2007). We discuss whether
the conjunction between z ~ 2.5 and z ~ 6 may suggest that quasar
properties are more or less stable across cosmic time, which would
imply that the z ~ 4 quasar clustering measurements are overestimated.
We also present a picture, however, in which the bulk of quasar activity
takes place in very rare and over-dense environments (corresponding to
~ 5o fluctuations in the initial linear density field) at z ~ 4 and z ~ 6,
while it migrates to a larger population of less biased halos at lower-z.
Further observational work is needed to distinguish between these
scenarios and map the evolution of quasar properties across cosmic
time.
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The analysis presented in this paper lays down a simple but powerful
framework that exploits observations to characterize the properties of SMBHs
and galaxies in the early Universe. New data and more detailed modeling
can improve the constraints that we get in the context of this framework
significantly.

Observationally, the ASPIRE survey (Wang et al. 2023) will soon com-
plement observations from EIGER (Kashino et al. 2023; Eilers et al. 2024)
by measuring the cross-correlation function for a larger sample of 25 mod-
erately luminous quasars at z ~ 6.5 — 6.8. The enlarged sample provided
by ASPIRE will be extremely useful for reducing the uncertainties in our
model parameters as well as for quantifying the quasar-to-quasar variance
in the cross-correlation function. In the near future, new observations from
JWST could complement the ASPIRE and EIGER surveys by determining
the clustering properties of quasars and galaxies in a wider redshift range as
well as for the faint end of the quasar luminosity function.

In parallel with the acquisition of new observational data, the model
presented here could be developed further to study the variance of the
measured correlation function theoretically, and could be extended to take
into account the velocity information coming from direct measurements of
the redshift-space correlation function (e.g., Costa 2024). Results at different
redshifts could also be linked together by developing an evolutionary model
following the growth of supermassive black holes and the evolution of quasar
activity across cosmic time.

Appendix: Details on the conditional lu-
minosity function framework

Given any population of “tracer” (“I”) objects that are hosted by dark matter
halos and are visible in some electromagnetic band, we can write down their
2-d distribution in the tracer luminosity-host halo mass plane, n(L, M), as:

n(L, M) = CLF(L|M) ngmr (M), (3.17)

where ngype(M) is the halo mass function. The quantity CLF(L|M) is
known as the conditional luminosity function, and it links in a statistical
sense the population of dark matter halos to the population of tracer objects
(e.g., Yang et al. 2003; Ballantyne 2017a,b; Bhowmick et al. 2019; Ren et al.
2020).

In this framework, we assume that every halo between a minimum mass
Mpin and a maximum mass Myax hosts a tracer object’. The luminosity L
of this tracer can be defined arbitrarily, but it has to depend solely on the

6 Mnin and Mmax are chosen here according to the mass range that can be reliably
modeled based on the cosmological simulation employed (see Sec. 3.2.2).
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mass of the halo. Following these assumptions, a simple marginalization of
n(L, M) over halo mass gives the luminosity function of the tracer species,
NTLF:

Mmax
Mmmin

Analogously, integrating over the luminosity dimension returns the dis-
tribution in mass of the tracers. If we include only objects above some
threshold luminosity (set e.g. by the flux limit of observations), we can
obtain a mass distribution for halos whose tracer object is brighter than
Ly, N"THMF:

nTHMF(M|L > Lthr) = nHMF(M) / CLF(L|M) dL. (319)
Lnr

Likewise, the aggregate probability for a halo of mass M to host a tracer
with a luminosity above Ly, (also known as a Halo Occupation Distribution,
HOD; see e.g., Berlind & Weinberg 2002) is:

nop(ar) = "ML > Luw) ™ crppapar. (3.20)
namr (M) Lins

Following, e.g., P24 (see also Ren et al. 2020), we can define the duty
cycle of tracers above the luminosity threshold, epc, as the weighted average
of the HOD above a threshold mass that is given by the median of the
tracer-host mass function, nrayr(M|L > Ly, ). In other words, if we define
the median of the nrugyr(M|L > L) as the mass Myeq satisfying the
relation:

Mmax Mmax
/ nramr(M) = 0.5 / nramr (M), (3.21)
Mmed Mmed

then epc can be expressed as:

g nane (M) HOD (M) dM B

€DC = —
J ]]\/[Vlmnzx numr (M) dM
Mo oo (ML > Line) dM (3.22)

Jorm e (M) dM

These relations hold for any tracer populations that satisfy the assump-
tions made above. In P24, we have considered SMBHs as tracer objects,
assuming that every halo hosts a SMBH at its center emitting at some
luminosity L. If the luminosity L is high enough, the SMBH becomes an
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active quasar, and so we can use the conditional luminosity framework to
obtain the quasar luminosity function (nqrr; analogous to eq. 3.18), the
quasar-host mass function (nqumr; analogous to eq. 3.19), and the quasar
duty cycle (eqpc; analogous to 3.22).

As commonly assumed in the literature (e.g., Yang et al. 2003; van
den Bosch et al. 2003), galaxies are also tracers of the dark matter halo
distribution. Following the P24 approach, we can then assume a conditional
luminosity function for galaxies, and adapt the relations above to obtain the
galaxy luminosity function (ngrr; analogous to eq. 3.18), the galaxy-host
mass function (ngamr; analogous to eq. 3.19), and the galaxy duty cycle
(egpc; analogous to 3.22).

In Sec. 3.2.1, we write down explicitly the quasar/galaxy conditional
luminosity functions adopted in this work’, and provide more details on how
to connect the quantities defined here to observations.

Appendix: Results for the fitting of the
halo cross-correlation functions

As described in Sec. 3.2.2, we compute the cross-correlation functions
between z ~ 6 halos in different mass bins, £, (M;, My;r), and then fit the
results with a suitable parametrization of the radial and mass dependences.
The details of the fitting are summarized in the main text and described at
length in P24. Here, we focus on the results of these fits, comparing them to
the actual correlation functions computed numerically from simulations and
discussing their validity in the context of the problem we are facing here.

Figure 3.6 displays the overall results of the fit. The first two rows display
the resulting fitting function (pg¢(v(M;), v(My), 1) = En(M;, My; 1)/ Ere (1),
where &.0¢(1) is a reference correlation function, see main text for details).
Each panel in these rows show the values of pg,(v(M;),v(My),7) as a
function of the two masses M; and M}, at a different scale 7. The last two
rows show the relative difference (p/pgst — 1) between our fit and the values
of p(v(M;),v(My),r) = En(Mj, Mi; 1) /&et (1) obtained from the simulation.
According to these figures, our simple analytical framework can describe
the behavior of cross-correlation functions for a wide range of masses and
scales with a good degree of accuracy (< 5 — 10%). This level of accuracy is
sufficient for the data we aim to reproduce here, as both the auto-correlation
function of quasars and the quasar-galaxy cross-correlation functions are
only known at the 30% — 100% level. The most constrained quantity is the
galaxy auto-correlation function, which is however still uncertain at more
than > 10% (Sec. 3.3.1).

"Note that these functions depend on the specific population of “quasars”’ and “galaxies”
we model, as well as on the definition of their luminosity, L. We refer to Sec. 3.2.1 for
more details.
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The only notable exception for which our fit doesn’t perform well is the
case of high masses (log;, M, /Mg ~ 11.5) and small scales (r < 0.5 cMpc).
However, this behavior is expected as high-mass halos are quite rare, and
hence the measured correlation functions suffer in general from significant
shot noise. At small scales this is worsened by the fact that the correlation
function is dominated by the clustering of satellite halos, which are in general
less massive than log;q M /Mg &~ 11 — 12. As a result, the cross-correlation
functions of very massive systems drop at » < 0.5 cMpc because of halo
exclusion. Our fit hinges upon a smooth dependence of the correlation
functions on mass and radius, and it is not able to capture halo exclusion
properly. Nonetheless, this is not an issue for our analysis, because the data
we aim to fit do not probe this specific regime: the auto-correlation function
of quasars from Arita et al. (2023) is only measured at very large scales (r 2
40 cMpc), while the quasar-galaxy cross-correlation function and the auto-
correlation function of galaxies from K24 are dominated by the contribution
of galaxies, which live in relatively low mass halos (log,o M /Mg ~ 10.5 —11;
see Section 3.4).

Figure 3.7 shows two more comparisons between the cross-correlation
functions extracted from the simulation and our fitting functions. In the
left panel, we show the cross-correlation terms &, (M, M, ) as a function of
radius, for different values of the mass M. The mass M is chosen to represent
the bin log;, M/Mg = 10.5 — 10.75. Errors on the values extracted from
simulations are Poissonian (Sec. 3.2.2). Note that to properly reproduce the
correlations measured in simulations, we select halos in each mass bin and
weigh the fitting functions according to the mass distribution of halos (i.e.,
the halo mass function). In this way, we can take into account the actual
distribution of halo masses in our fitting framework. Overall, we confirm
that the fits and the values from simulations agree at the =~ 5 — 10% level,
with the expected exception of the most inner bin.

The right panel of Figure 3.7 shows the halo auto-correlation functions
for each mass bin, &, (M, M,r). As already mentioned above, we note that
the accordance between fits and simulations is again satisfactory with the
notable exceptions of large halo masses — for which halos are rare and the
measured correlation functions are noisy — and small scales — for which halo
exclusion plays an important role and our fit is not able to capture it properly.
Overall, this visual comparison between simulations and fits confirms the
fact that our framework can properly reproduce cross-correlation functions
at all scales, as well as auto-correlation functions, with the exception of the
high mass bins at small scales.



RESULTS FOR THE FITTING OF THE HALO

APPENDIX

CROSS-CORRELATION FUNCTIONS

r=0.3 cMpc

r=0.4 cMpc

r=0.6 cMpc

r=1.0 cMpc

r=1.5 cMpc

r=2.2 cMpc

Fit for p(M;, My, r)

Fit for p(M;, My, r)

_ r=3.3 cMpc
7 7] 7] 7] 7] 1 [0}
©
S
1 1 1 1 1 ! il
@
Q
i i i i i 1 o

125 r=5.0 cMpc r=7.5 cMpc r=11.3 cMp r=17.0 cMpc r=25.6 cMpc r=38.6 cMpc r=>58.2 cMpc r=87.6 cM

012.01 1 1 1 1 1 ”
= 2
=115 E ] ] ] ] 3
S 0
[=J o
211.01 1 1 ‘ E E «

10.5 T T T T T T T T T T T T T T T T

logi1o M/M o log10 M/M o log1o M/Mo l0g10 M/Mo l0g10 M/M o log10 M/M o l0g10 M/Mo log10 M/Mo

[ B [ EE—
107t 10° 10! 102 -04 -0.2 0.0 0.2 0.4

My, Ma, 1) = Ep(My, Ma, )/&ret

Relative difference

3.B.

132

Figure 3.6: Results for the fitting of the z &~ 6 cross-correlation terms p(Mj, My, r) = &, (M, My; 1) /éree (1) (see Appedix 3.1 for definitions).
The two top rows show the fitting function pg¢(M;, My, ) as a function of the two masses M; and My for different values of the distance 7.
The last two rows show the relative difference between the fits and the values extracted from simulation.
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Figure 3.7: Left: Cross-correlation functions of halos in different mass bins, &, (M, M, r),
at z ~ 6. The mass M is set to correspond to the log o M/Mg = 10.5 — 10.75 bin, while
the other mass is varied according to the color scale. Values extracted from simulations are
shown as data points, with error bars given by the Poissonian statistics of pair counting
(see Sec. 3.2.2). Solid lines represent the fitting functions to these simulated values.
Relative differences between the fit and the simulation are shown in the bottom panel.
Right: Same as the left panel, but for the auto-correlation functions of halos in different
mass bins, &, (M, M, r).

Appendix: Interpreting the auto-correlation
measurements of z ~ 6 quasars

In this Section, we analyze the data concerning the quasar auto-correlation
function from Arita et al. (2023). As detailed in Sec. 3.3.1, we decided to
leave this dataset out of the joint fit performed in the main analysis because
we realized that its constraining power was less strong than expected. In
particular, we found that using only the Arita et al. (2023) data, we were
not able to place significant constraints on any of our model parameters.
For this reason, we use here a much simpler model that should make
the interpretation of the data straightforward. In particular, we choose to
parameterize the quasar-host mass function (QHMF) in the following way:

nQHMF (M) = EDCnHMF(M)@(10g10 M — logw Mmin)a (323)

with eqpc being the duty cycle and © the Heaviside step function. In
practice, we assume a simple “step-function” halo occupation distribution
(HOD) model, depending only on one single parameter, the minimum host
mass, Mmin (the duty cycle eqpc is completely irrelevant for clustering
measurements).

For every value of My,;,, we can take the resulting QHMF and use it
to compute the quasar auto-correlation function, {qq(r), according to eq.
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3.6. With a simple integration along the radial direction (eq. 3.9), we can
then obtain the projected auto-correlation function, w, qq(r,), Which can be
compared directly with the Arita et al. (2023) data.

As detailed in Sec. 3.2.2.3, our model for the correlation functions consists
of two components: a fit to simulations, &, g¢, and a prediction based on the
linear halo bias formalism, & 1in (eq. 3.14). The former is used to model the
small-scale clustering (r < 20 cMpc), while the latter is used to regularize
the behaviour of simulations at large scales (r 2 20 cMpc). The key point,
here, is that the Arita et al. (2023) data we aim to interpret cover only very
large scales, with the innermost bin at r &~ 40 cMpc. For this reason, we can
safely assume that our model is entirely in the linear theory regime, and
assume &, = &p lin- In other words, the model we discuss in this context is
not unique to our simulations; instead, it is very general and solely based on
the linear growth of structures in a ACDM cosmology.

The left panel of Fig. 3.8 shows the predictions for the projected correla-
tion function according to our “linear theory” model, for different values of
the minimum host mass M,;n. These are compared with data in a quanti-
tative way by determining the y? statistics for each Mpi, in the left panel
of Fig. 3.8. The x? is computed by taking into account the covariances
between different data points. We see that we obtain values of the x?2
in the range x?> ~ 6 — 7, which are perfectly compatible with data and
translate into reduced chi-squared values of ~ 1.5 — 1.75. There is a slight
preference in our model for smaller values of the minimum host mass, but
the measurement is not statistically significant for any reasonable values of
1OglO Mmin/M® 5 13.5.

The conclusion obtained here in the context of our model differs from
the one found by Arita ct al. (2023), who analyzed the same data and
measured a rather high value of the characteristic host halo mass for quasars
at z = 6, i.e., log;, M/Mg = 12.91‘8:‘%. The striking difference between our
conclusions and the ones in the Arita et al. (2023) analysis may reside in the
different assumptions made for the shape and normalization of the correlation
functions. While we assume physically-motivated halo correlation functions
that follow linear theory, and convert these into a quasar-correlation function
in a second step, Arita et al. (2023) parametrize the quasar auto-correlation
function directly by assuming a power-law shape with a slope of —1.8 and a
normalization set by the quasar auto-correlation length, rg qq. The results
for this parametrization are also shown in Fig. 3.8 with green shadings
(with the corresponding chi-squared values shown in the right panel). It is
quite interesting to see that the power-law shaped models for the quasar
auto-correlation functions reach a better agreement with the data than the
linear theory ones, with a minimum x? < 5 corresponding to large values of
the auto-correlation length (r9qq =~ 20 — 50 cMpc), in agreement with the
findings of Arita et al. (2023).
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We conclude by noting that our model presented in the main analysis
(Sec. 3.4) is compatible with the data from Arita et al. (2023). Indeed, if
we take the best-fit parameters from Fig. 3.1 and compare the prediction
for the quasar auto-correlation function with data we find a value for the
chi-square of x? ~ 6, which is consistent with the discussion above and
implies a good match with observations. This implies that the Arita et al.
(2023) measurements are perfectly compatible with the clustering constraints
from JWST (E24). However, the Arita et al. (2023) data are very uncertain
and limited only to very large scales. As a consequence, they result in rather
weak constraints that — as shown in this Section — are very sensitive to
the exact prescription made for the shape of the quasar auto-correlation
function.

Appendix: Quasar-host halo masses with
a uniform luminosity threshold

As discussed in Sec. 3.5.1, the quasar host mass functions (QHMFs) shown
in Fig. 3.5 are obtained by setting a luminosity threshold for modeling
quasar clustering that varies with redshift according to the one employed
in observations. Here, we show (Fig. 3.9) the effect of setting a uniform
luminosity threshold of log;y Lin,/ergs™ = 46.7 at all redshifts. This
threshold corresponds to the one employed at z ~ 4, so the z & 4 results
are the same as in Fig. 3.5. The QHMF at z = 2 (z = 6) shifts to higher
(lower) masses respectively, due to the different quasar population probed
by the Eftekharzadeh et al. (2015) (E24) data. This effect, however, is not
strong enough to impact in any relevant way the discussion on the evolution
of quasar properties with redshift made in Sec. 3.5.1.
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Figure 3.8: Left: Projected z ~ 6 quasar auto-correlation function, wy/7p as a function of the distance, rp. The observational data from Arita
et al. (2023) are shown as red points. Predictions from the model based on linear theory, which is our fiducial one, are shown as blue lines,
color-coded based on the value of the My, parameter (eq. 3.23). Predictions coming from a power-law model for the correlation functions are
shown in green, color-coded according to the value of the quasar auto-correlation length, 79, qq. Right: Comparison of model predictions with
data, according to the value of the x?2 statistic. The blue line refers to the “linear theory” model, and it is parametrized by the minimum host
mass My, (top label). The green line, instead, refers to the “power-law” model and is parametrized by the quasar auto-correlation length,
ro,Qq (bottom label).
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“LITTLE RED DOTS” CANNOT
RESIDE IN THE SAME DARK
MATTER HALOS AS
COMPARABLY LUMINOUS
UNOBSCURED QUASARS

Abstract

The James Webb Space Telescope (JWST) has uncovered a new population
of candidate broad-line AGN emerging in the early Universe, named “little
red dots” (LRDs) because of their compactness and red colors at optical
wavelengths. LRDs appear to be surprisingly abundant (~ 1075 chc_S)
given that their inferred bolometric luminosities largely overlap with those
of the UV-luminous quasars identified at high z in wide-field spectroscopic
surveys. In this work, we investigate how the population of LRDs and/or
other UV-obscured AGN relates to the one of unobscured, UV-selected
quasars. By comparing their number densities, we infer an extremely large
and rapidly evolving obscured:unobscured ratio, ranging from ~ 20 : 1 at
z~ 4 to= 2300 :1at z =~ 7, and possibly extending out to very high
(=~ 107 ergs~!) bolometric luminosities. This large obscured:unobscured
ratio is incompatible with the UV-luminous duty cycle measured for unob-
scured quasars at z =~ 4 — 6, suggesting that LRDs are too abundant to be
hosted by the same halos as unobscured quasars. This implies that either
(a) the bolometric luminosities of LRDs are strongly overestimated or (b)
LRDs follow different scaling relations than those of UV-selected quasars,
representing a new population of accreting SMBHs emerging in the early
Universe. A direct comparison between the clustering of LRDs and that of
faint UV-selected quasars will ultimately confirm these findings, and shed
light on key properties of LRDs such as their host mass distribution and
duty cycle. We provide a mock analysis for the clustering of LRDs and show
that it is feasible with current and upcoming JWST surveys.

Published in: EP, Joseph F Hennawi, Joop Schaye, Anna-Christina Eilers, Jiamu
Huang, Jan-Torge Schindler, Feige Wang, “Little Red Dots” cannot reside in the
same dark matter halos as comparably luminous unobscured quasars, Monthly
Notices of the Royal Astronomical Society, Volume 539, Issue 4, June 2025, Pages
2910-2925, doi.org/10.1093 /mnras/staf660. Reprinted here in its entirety.
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4.1 Introduction

The connection between the quasar phenomenon and the accretion of material
onto a supermassive black hole (SMBH) was first hypothesized to account
for the extraordinary luminosity inherent to quasar activity (e.g., Salpeter
1964; Zel’dovich & Novikov 1967; Lynden-Bell 1969). According to this
picture, most of the accreting material contributes to growing the mass of
the SMBH, but a small fraction of this material (known as the radiative
efficiency) is converted into energy and radiated away, giving rise to the
quasar phenomenon.

The argument first proposed by Soltan (1982) embeds this connection
into a cosmological context: integrating the total energy emitted by quasars
over all cosmic time and assuming a standard radiative efficiency of ~ 10%,
one finds that the mass that has been accreted on black holes per unit of
comoving volume up until today is comparable to the total mass density of
the SMBHs we observe in the local Universe. This implies that SMBHs grew
their mass while, at the same time, they were shining as active luminous
quasars.

Extensions of this argument have been employed to relate the growth
of black holes to quasar activity at different cosmic times (e.g., Yu &
Tremaine 2002; Shankar et al. 2010a). While specific assumptions vary,
these arguments are all based on the key idea that the bulk of black hole
growth in the Universe is traced by the evolving demographic properties
of luminous quasars. Wide-field optical spectroscopic surveys such as the
Sloan Digital Sky Survey (SDSS, York et al. 2000) and the 2dF QSO redshift
survey (2QZ, Croom et al. 2004) examined the properties of UV-luminous,
type-1 quasars, and consistently showed that quasar activity peaks around
z =~ 2 and declines rapidly towards higher redshifts (e.g., Richards et al.
2006; Kulkarni et al. 2019).

UV-luminous quasars, however, are not the whole story. The radiation
emitted from accreting SMBHs can be obscured by intervening dust and
gas, resulting in a diverse population of Active Galactic Nuclei (AGN)
whose emission properties vary greatly across the electromagnetic spectrum
(e.g., Padovani et al. 2017). A general dichotomy exists, however, between
unobscured AGN/quasars, exhibiting a UV-optical continuum from the
accretion disk, and obscured/reddened AGN whose UV emission is partly
(or completely) extincted by the dust that surrounds the SMBH. Whether
this obscuration results from a viewing-angle effect (Antonucci 1993; Urry &
Padovani 1995) or signifies a distinct “dust-enshrouded” population (Sanders
et al. 1988; Hopkins et al. 2005) has been hotly debated. Nevertheless,
decades of AGN censuses across the electromagnetic spectrum (optical, X-
ray, mid-IR, radio) have allowed us to map the contribution of UV-obscured
AGN activity as a function of redshift and AGN luminosity (e.g., Ueda
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et al. 2003, 2014; Merloni et al. 2014; Aird et al. 2015; Glikman et al.
2018) The resulting consensus is that a significant fraction (= 20 — 80%) of
AGN can be obscured in the UV, even at quasar-like (intrinsic) luminosities
(Lbor = 10%%ergs™!), and that this fraction evolves mildly with redshift.
Studies that include the contribution of obscured AGN environments to the
total SMBH growth budget (e.g., Hopkins et al. 2007b; Shen et al. 2020)
support the general picture outlined by the Soltan argument, pointing to a
radiative efficiency for accretion on SMBHs close to =~ 10%, and indicating
that the bulk of SMBH growth took place during cosmic noon (z ~ 1 — 3).

While a multi-wavelength exploration of AGN activity is possible at
z < 3, our understanding of black hole growth and accretion in the high-
redshift Universe (z 2 4) has been informed almost exclusively by the
population of UV-luminous, type-1 quasars detected by optical /NIR wide-
field surveys up to z = 7.5 (e.g., Fan et al. 2023). This population is
commonly assumed to trace the underlying evolution of AGN/SMBH activity
(including UV-obscured sources) at high z by simply extrapolating the
obscuration properties of quasars from low/intermediate redshifts (e.g., Shen
et al. 2020). Whether this extrapolation is reliable and can offer an unbiased
view of SMBH growth and AGN activity in the first billion years of the
Universe is currently unclear. Several simulations (e.g., Ni et al. 2020;
Vito et al. 2022; Bennett et al. 2024) and observations (Vito et al. 2018;
Circosta et al. 2019; D’Amato et al. 2020; Gilli et al. 2022), for example, have
suggested a rapid evolution of the obscuration properties of quasars/AGN
in the early Universe, due to the presence of high-column density gas within
the innermost regions of their host galaxies.

The advent of the James Webb Space Telescope (JWST) marks a huge
step forward in the study of AGN activity and SMBH growth in the early
Universe. JWST has the sensitivity to go beyond the UV-selected quasar
population that has been studied for decades (e.g., Fan et al. 2023). Indeed,
early results are already causing a seismic shift in our understanding of AGN
populations at high z: photometric and spectroscopic JWST surveys are
uncovering surprisingly large samples of faint AGN candidates at z =~ 4 — 10
(e.g., Harikane et al. 2023; Maiolino et al. 2024; Ubler et al. 2023; Kocevski
et al. 2023; Kokorev et al. 2023; Scholtz et al. 2023; Matthee et al. 2024b;
Greene et al. 2024; Bogdéan et al. 2024; Kocevski et al. 2024; Mazzolari et al.
2024; Furtak et al. 2024; Taylor et al. 2024). Although selection methods
vary, the most reliable candidates are identified via broad Ha or HS lines.
These lines can be used to infer AGN luminosities of Ly > 10445 ergs—1!
and black hole masses of Mpy > 10°~7 M, These masses and luminosities
vastly extend the range of AGN properties that we can probe at high z,
offering key insights on the co-evolution of SMBHs and their host galaxies
(e.g., Inayoshi et al. 2022; Pacucci et al. 2023), the contribution of AGN to
hydrogen reionization (e.g., Maiolino et al. 2024; Dayal et al. 2024; Madau
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et al. 2024), and potentially also on SMBH seeding/growth models (e.g.,
Pacucci & Loeb 2022; Li et al. 2024).

Yet, relating this new population of JWST AGN to the one of UV-selected
high-z quasars has proven challenging. Even though they generally resemble
standard, type-1 quasars at rest-frame optical wavelengths, JWST broad-
line AGN appear to be much more abundant than what was expected by
extrapolating the quasar luminosity function (QLF) to faint UV luminosities
(Harikane et al. 2023). It is currently unclear whether QLF studies have been
strongly underestimating the number of faint UV quasars that are present
at high z (e.g., Giallongo et al. 2019), or whether the AGN population
revealed by JWST using broad optical lines presents substantially different
properties from those of UV-selected, type-1 quasars, as also suggested by
their peculiar Spectral Energy Distribution (SED) features such as X-ray
weakness (Maiolino et al. 2024; Lambrides et al. 2024a) and (tentative)
lack of variability (Kokubo & Harikane 2024). Upcoming JWST surveys
will probe the properties of these broad-line AGN in the rest-frame UV,
providing key insight into their nature and allowing a direct comparison to
the UV-selected quasar population.

Interestingly, however, some of the AGN revealed by JWST are even
more remarkable: a significant fraction of them (2 20%; Harikane et al. 2023;
Taylor et al. 2024) show a steep red continuum in the rest-frame optical
pointing to moderate dust reddening values of Ay =~ 1 — 4 (Kokorev et al.
2024a; Greene et al. 2024). When correcting for the attenuation of dust to
the continuum and/or broad-line emission, these obscured/reddened AGN
have inferred bolometric luminosities of Lo ~ 10*®~46 ergs~! and SMBH
masses up to ~ 10”78 Mg (Greene et al. 2024; Kocevski et al. 2024; Harikane
et al. 2023). Hence, they largely overlap in luminosity and SMBH mass with
the population of UV-selected, type-1 quasars revealed in pre-JWST surveys
(Fan et al. 2023; Matsuoka et al. 2022). This is incredibly surprising, since
these UV-luminous quasars with comparable luminosities (and redshifts)
were selected from wide-field 1400 deg? deep imaging surveys probing volumes
of ~ 1010 cMpc?® (Matsuoka et al. 2022), whereas JWST AGN are identified
in surveys of not more than ~ 300 — 600 arcmin® probing a volume not
greater than ~ 106 —107 cMpc? (Matthee et al. 2024b; Kokorev et al. 2024a).
Such a massive difference indicates that these AGN may be tracing a new
population of broad-line, obscured sources’ that are far more abundant than

1Standard AGN classifications (e.g., Padovani et al. 2017) divide low-z quasars in type-1
(showing broad emission lines in their spectra) and type-2 (showing only narrow emission
lines). Type-2 quasars are generally identified with obscured sources whose broad lines
are extincted by dust. Even though their continuum is heavily reddened at optical and
UV wavelengths, JWST AGN are always revealed by broad optical lines, and hence
they officially belong to the type-1 quasar category. While examples of type-1, reddened
quasars exist at low redshifts, they are rare compared to the global quasar population
(Wang et al., in prep.), making the interpretation of these new JWST AGN sources even
more challenging.
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comparably luminous UV-unobscured quasars. According to this picture,
our understanding of SMBH growth and quasar/AGN activity at high-z —
which was entirely based on the demographic properties of UV-luminous
quasars — needs to be thoroughly revised to account for this new, large AGN
population that is in place in the early Universe (e.g., Inayoshi & Ichikawa
2024; Li et al. 2025a).

As shown by Greene et al. (2024), the reddened broad-line AGN in JWST
surveys tend to have a characteristic v-shaped SED, with the red continuum
in the rest-frame optical transitioning to relatively blue colors in the rest-
frame UV. While the physical origin of this SED shape is currently unclear
(e.g., Killi et al. 2024; Li et al. 2025a; Wang et al. 2024; Kokorev et al. 2024b;
Inayoshi & Maiolino 2025), several studies have exploited these peculiar
SED features and applied specific color and compactness cuts to NIRCam
photometry to isolate obscured broad-line AGN photometrically (e.g., Labbe
et al. 2025; Pérez-Gonzéalez et al. 2024; Kokorev et al. 2024a; Kocevski et al.
2024; Akins et al. 2024). By applying similar photometric selections, Greene
et al. (2024) and Kocevski et al. (2024) have proved that a large fraction
of the selected sources (= 70 — 80%) is indeed comprised of reddened, high-
redshift (z ~ 4 — 8), broad-line AGN. Sources selected using these methods
have become known as “Little Red Dots” (LRDs henceforth; Matthee et al.
2024Db) because of their compactness and peculiar colors in NIRCam imaging.
We note that this term has been used in the literature to refer to samples
obtained following different spectroscopic and photometric criteria. Here,
with the term “Little Red Dots” we refer to the above-mentioned population
of candidate broad-line AGN that are red at optical wavelengths, and hence
have quasar-like inferred bolometric luminosities and black hole masses.
We include in our analysis both spectroscopic (Greene et al. 2024) and
photometric (Kokorev et al. 2024a) samples: while the latter may be subject
to a significant degree of contamination (e.g., Taylor et al. 2024), their
number densities agree well with the ones from spectroscopy (Greene et al.
2024)?. We mention the caveat, however, that even for spectroscopically
confirmed broad-line LRDs, the presence of an accreting SMBH and the
nature of the observed SED are still heavily debated (e.g., Durodola et al.
2024; Li et al. 2025a; Pérez-Gonzalez et al. 2024; Ananna et al. 2024; Yue
et al. 2024b; Maiolino et al. 2024; Kokubo & Harikane 2024; Baggen et al.
2024; Inayoshi & Maiolino 2025). In the following, we assume that LRDs
are obscured, broad-line AGN, and examine the consequences of the large
obscured:unobscured ratio at quasar-like bolometric luminosities that is
implied by this assumption. We defer the reader to Sec. 4.5 for a discussion
on the nature of LRDs and the conclusions we can draw from our results.
There, we will also examine how the general population of faint (unobscured)

20n top of that, a moderate degree of contamination does not impact the main conclusions
of our analysis (see Sec. 4.5 for further discussion).
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broad-line AGN revealed by JWST (e.g., Harikane et al. 2023; Maiolino et al.
2024; Taylor et al. 2024) fits in the discussion presented in this work.

If a huge obscured LRD population is indeed present at high redshifts,
the first question that awaits to be answered is: how does this population
compare to that of comparably luminous, UV-selected quasars in terms of
SMBH mass and accretion rate, host environments, and evolution history?
Are LRDs standard, actively accreting quasars whose emission is attenuated
by intervening dust and gas, or do they represent a different evolutionary
stage in the accretion history of SMBHs? Are UV-luminous quasars and
LRDs drawn from the same population of halos/galaxies?

In this work, we take a first step towards answering these questions
by studying the properties of quasars and LRDs in terms of their number
density and large-scale environment /host halo mass. In particular, we argue
that the extreme abundance of LRDs/obscured AGN is at odds with the
duty cycle of UV-luminous quasar activity at z ~ 4 — 6 inferred from the
combination of quasar clustering and luminosity function measurements
(Shen et al. 2007; Eilers et al. 2024; Pizzati et al. 2024a,b). This indicates
that LRDs cannot be drawn from the same population of dark matter halos
as UV-selected quasars, notwithstanding that quasars and LRDs have the
same inferred bolometric luminosities and SMBH masses. Hence, provided
that these luminosities and masses are indeed correct, LRDs would need
to obey fundamentally different scaling relations than the ones holding for
quasars, as the same SMBH masses are linked to smaller host halo masses.
Possibly, this points to the fact that LRDs represent a different evolutionary
stage in the accretion history of SMBHs at early cosmic time.

In order to support these conclusions and unveil the accretion history
and large-scale environment of LRDs, measuring the clustering of these
sources is key. Here, we suggest that a convincing measurement of the duty
cycle and host halo mass of LRDs can be obtained by using NIRCam/WFSS
observations of LRD fields and measuring the cross-correlation between
LRDs and [O 1] line emitters, with a similar setup and strategy to current
JWST programs targeting UV-luminous, high-z quasars, such as EIGER
(Kashino et al. 2023; Eilers et al. 2024) and ASPIRE (Wang et al. 2023).
Using the methodology developed in previous work (Pizzati et al. 2024a,b,
Chapters 2-3), we provide a mock analysis for these clustering measurements
and discuss the prospect of undertaking this measurement with current and
future JWST programs.

The paper is structured as follows. In Sec. 4.2, we compare the abundance
of LRDs/obscured AGN with the one of the UV-luminous high-z quasar
population, inferring a large and rapidly evolving obscured:unobscured ratio
at z = 4 — 8. Sec. 4.3 studies the implications of this large ratio in terms of
host dark matter halo populations, and points to clustering studies as a way
to determine the nature of LRDs. Sec. 4.4 provides a mock analysis of this
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clustering measurement. The results are discussed and summarized in Sec.
1.5.

The staggeringly high abundance of UV-
obscured AGN implied by little red dots

In this section, we compare the luminosity function of the UV-luminous,
unobscured population of quasars to that of the new population of UV-
obscured “Little Red Dots” (LRDs) uncovered in JWST surveys. Our goal
is to study the abundance of these two populations across cosmic time, and
infer an estimate of the AGN obscured fraction at different redshifts.

To this end, we use bolometric luminosities as a way to probe the intrinsic
radiation emitted by the different quasar/AGN populations prior to any
obscuration effects. The bolometric luminosities of UV-luminous, type-1
quasars can be easily inferred from their UV-continuum absolute magnitude
by assuming standard bolometric correction factors that are available in the
literature (e.g., Richards et al. 2006; Runnoe et al. 2012a; Shen et al. 2020).
In this work, we use the relation between the Mj450 absolute magnitude
and the bolometric luminosity Ly, presented in Runnoe et al. (2()12;1):)’.
While other bolometric correction factors may return slightly different results
because of the choices made for the quasar SED and the parametrization of
the UV-bolometric relation, the uncertainty in the bolometric correction for
UV-selected, type-1 quasars is relatively small and has little impact on our
conclusions.

Estimating the intrinsic bolometric luminosity of the LRD population,
instead, is much more challenging. While bolometric luminosities are easy to
constrain for UV-selected quasars because one directly probes the big-blue-
bump (where the bulk of the emission comes out, Sanders et al. 1989), dust
obscuration prevents a direct determination of the LRD luminosities from
their UV emission. For low-z, dust-obscured quasars, it is usually possible to
constrain the radiation reprocessed by dust in the mid-IR with Spitzer (e.g.,
Lacy et al. 2015). However, this is currently not a viable option for LRDs, as
they appear to manifest only at high z and the bulk of their expected mid-IR
emission is redshifted to wavelengths of ~ 70um, which are not accessible
from the ground and are only probed by shallow surveys (e.g., Herschel). The
only option that remains available for estimating the bolometric luminosities
of LRDs is to use the emission in the optical continuum and/or broad
optical lines and convert that to a bolometric luminosity using some scaling
relations (e.g., Richards et al. 2006; Runnoe et al. 2012b), which are however

3The bolometric correction for A = 1450 A is log;o Liso/ergs™' = 4.745 +
0.910log g ALy /erg s~1. Liso refers to the bolometric luminosity computed under the
assumption of isotropy, and it is related to the observed bolometric luminosity Ly
through the relation L = 0.75 Ljs-
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Figure 4.1: Left: Luminosity function (LF) of UV-selected quasars, expressed in terms of bolometric luminosities, compared to the bolometric
LF of Little Red Dots (LRDs) at different redshifts. Solid lines show the fits to the unobscured quasar luminosity functions (QLFs) at z ~ 5
(Niida et al. 2020; golden color) and z & 7 (Matsuoka et al. 2023; red). Data points for these QLFs are also shown as circles. The bolometric
QLF compiled by Shen et al. (2020) at z & 5 is shown with a dotted line. Bolometric LFs for LRDs are shown with square (Greene et al. 2024)
and diamond (Kokorev et al. 2024a) symbols. Golden (red) symbols refer in this case to the redshift range 4.5 < z < 6.5 (6.5 < z < 8.5).
The number density implied by the single source identified by Endsley et al. (2022, 2023) at z &~ 7 (see main text) is shown as a red hexagon.
Vertical arrows show by how much the QLF fits (solid lines) need to be rescaled to match the LRD LF. Dashed lines show the rescaled
QLFs: the z & 5 (2 & 7) QLF is rescaled by a factor of 40 (2300). The light (dark) grey shaded region highlights the luminosity range
10459 ergs™! < Ly < 10465 ergs™! (Ly,o1 > 10465 ergs™1!). Right: Evolution of the number density of quasar/AGN (above the luminosity
threshold Ly, > 104%-% ergs—1) with redshift. Gray points show the number densities obtained by integrating individual fits to the unobscured
QLFs above the luminosity threshold (partly adapted from the compilation in Schindler et al. 2023). The solid line shows an evolutionary
model for the unobscured quasar number density obtained by smoothly interpolating between the fit of Kulkarni et al. (2019) at z < 4,
and an exponential decline ® oc 10~%%, with k = 0.7, at higher redshifts. The gray shaded area and the two lines at z > 3 are meant to
bracket our uncertainty on the number density of high-z unobscured quasars. Dotted lines show the number density evolution predicted by
the bolometric QLF of Shen et al. (2020) (see their “global fit B”). Colored star symbols show the number density for the LRDs obtained by
integrating the rescaled QLFs from the left panel. The flat evolution of the LRD number density implied by the data points is highlighted with
a horizontal dashed line, while the (light+dark) purple-shaded areas show the AGN obscured:unobscured ratio inferred from LRDs and low-z
multi-wavelength observations.
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fairly uncertain. Even more relevantly, one has to properly account for
the effects of dust obscuration on the observed optical emission. Current
estimates of the bolometric luminosities for the LRD population (e.g., Greene
et al. 2024; Kokorev et al. 2024a; Akins et al. 2024) rely on the assumption
that the optical continuum of LRDs is dominated by dust-reddened AGN
radiation and use the slope of the SED in the optical continuum to infer
the amount of obscuration in place. However, this continuum emission
could be contaminated by radiation from the host galaxy: disentangling
the contributions of the central SMBH and the stellar light to the SED of
LRDs is currently a hotly debated problem (e.g., Durodola et al. 2024; Li
et al. 2025a; Pérez-Gonzalez et al. 2024; Baggen et al. 2024; Inayoshi &
Maiolino 2025). As mentioned before, here we simply assume that bolometric
luminosity estimates for LRDs are correct. A discussion on how our results
are impacted by uncertainties in the bolometric luminosities of LRDs can
be found in Sec. 4.5.

In the left panel of Figure 4.1, we show the luminosity function of UV-
luminous, unobscured quasars (expressed in terms of bolometric luminosities)
at two sample redshifts of z ~ 5 (Niida et al. 2020; golden solid line and
points) and z & 7 (Matsuoka et al. 2023; red solid line and points). These
luminosity functions can be compared to the bolometric luminosity functions
of LRDs measured by Greene et al. (2024) (squares) and Kokorev et al.
(2024a) (diamonds)’. Golden (red) symbols refer to the redshift range
4.5 < z < 6.5 (6.5 < z < 85). This plot highlights the strikingly different
abundance of LRDs compared to the UV-luminous quasar population. As
also mentioned in the introduction, this difference reflects the fact that
LRDs are common in the small fields (= 300 — 600 arcmin?) probed by
JWST surveys, whereas unobscured quasars are notoriously rare and can be
sampled only by wide-field surveys of ~ 2000 deg?.

By directly comparing the luminosity functions of UV-luminous quasars
and LRDs, we can quantify the different abundances of these two populations
as a function of their luminosity. Interestingly, we find that the shape of

4The Greene et al. (2024) luminosity function is obtained from a small sample of
spectroscopically-confirmed broad-line LRDs in the UNCOVER field (Bezanson et al.
2024). The work of Kokorev et al. (2024a) applies the photometric selection suggested
by Labbe et al. (2025) and Greene et al. (2024) to a larger sample of JWST blank
fields, identifying 260 AGN candidates in ~ 640 arcmin? of JWST imaging. While
several other LRD luminosity functions have been published in the literature (see e.g.,
Matthee et al. 2024b; Kocevski et al. 2024; Lin et al. 2024), none of these are based
on unattenuated bolometric luminosities. Accounting for the effect of dust attenuation
is key if our goal is to compare the luminosities of LRDs to the ones of UV-luminous
quasars. The only exception is the recent work of Akins et al. (2024), who also published
an LRD bolometric luminosity function corrected for obscuration effects. However, their
photometric selection differs significantly from the one presented in Greene et al. (2024)
and Kokorev et al. (2024a), and hence we do not include their sample in the analysis.
We note however that they find even larger number densities for LRDs, which would
strengthen our conclusion on the presence of a large obscured high-z AGN population.
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the LRD luminosity function resembles the one of the UV-luminous quasar
luminosity function (QLF) at both redshifts. Indeed, if we scale up the
Niida et al. (2020) fit to the z & 5 QLF by a factor of & 40, we get a good
match to the LRD luminosity function in the redshift range 4.5 < z < 6.5.
This suggests that LRDs may constitute a new, obscured population of
accreting SMBHs at z &~ 5, outnumbering unobscured quasars by =40:1 at
all luminosities. Similar — but even more extreme — conclusions can be drawn
at z = 7. In this case, the fit to the Matsuoka et al. (2023) QLF needs to be
scaled up by a factor of ~ 2300 to match the LRD luminosity function at
6.5 < z < 8.5, implying an even larger obscured:unobscured ratio, roughly
independent of luminosity.

We note that care must be taken to extend these conclusions to a
large range of bolometric luminosities. Most LRDs have inferred (dust-
corrected) bolometric luminosities in the range ~ 10**~%6ergs=!. The
faintest high-z unobscured quasars identified in wide field surveys have
luminosities of ~ 10**3 ergs™! (e.g., Matsuoka et al. 2022). Hence, a proper
comparison between LRD and quasar number densities can be carried out
only for the bright population of LRDs with Ly, =~ 104527463 ergs—!,
At lower bolometric luminosities, the UV-luminous QLFs are only based
on extrapolations; hence, conclusions on the obscured fraction of faint
(Lpor £ 10*° ergs™!) AGN are only tentative. At very bright luminosities of
Lyo =~ 10%7 ergs™!, the number density of UV-luminous quasars is very well
constrained (e.g., Schindler et al. 2023). Very bright LRDs, on the other
hand, are hard to find in the small field of views (FoVs) probed by JWST
surveys and the only constraints we have on their number density come from
the work of Kokorev et al. (2024a) (see also Akins et al. 2024), which is
however only based on photometry with no spectroscopic confirmation.

Interestingly, signs of a large obscured AGN population at high bolometric
luminosities (Lo = 1047 ergs™!) come from different data. Using multi-
wavelength observations in mid-/far-IR, sub-mm, and radio, Endsley et al.
(2022, 2023) (see also Lambrides et al. 2024b) discovered an extremely
luminous (Lpe = (2.0 4 0.2) x 1047 ergs—!) obscured, radio-loud quasar at
z = 6.83 in just 1.5deg? of COSMOS imaging, and argued for an extremely
large obscured:unobscured ratio of ~ 2000 : 1. We can get an estimate
of the number density implied by this source by simply computing the
total comoving volume in the COSMOS field for the redshift range 6.6 <
z < 6.9 (in which the source was photometrically selected; see Endsley
et al. 2022). We get a volume of 3.8 x 10 cMpc® and a number density
of 2.6 x 10~7 cMpc 2. For reference, we add this source to the luminosity
function plot of Fig. 4.1 (left), by assuming a 1 dex bin in bolometric
luminosity centered on the quasar’s measured Ly,,. Upper and lower limits
are computed assuming Poisson statistics for a single source (see Gehrels
1986). Despite the large uncertainties, this source supports the existence of
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a large obscured population at the bright end of the QLF compatible with
the one found for LRDs.

In what follows, we will consider two separate hypotheses: (a) there
is a large obscured AGN/quasar population at bolometric luminosities
Lol ~ 10%° — 10% ergs™! (i.e., at the faint end of the quasar luminos-
ity function; light-grey shaded area in the left panel of Fig. 4.1); (b) this
large obscured population extends to very large bolometric luminosities
of Lye =~ 1047 ergs™! (dark-grey shaded area). While the former is sup-
ported by a fairly large sample of LRDs that have been argued to overlap
in luminosity with the faint quasar population (e.g., Greene et al. 2024;
Matthee et al. 2024b; Lin et al. 2024; Taylor et al. 2024; Schindler et al, in
prep.), the latter is currently based only on a handful of sources (i.e., the
photometrically-selected LRDs in Kokorev et al. 2024a; Akins et al. 2024
and the obscured quasars from Endsley et al. 2022, 2023; Lambrides et al.
2024b) and thus it is only tentative (see Sec. 4.5 for further discussion).

In the right panel of Figure 4.1, we show how the quasar/AGN number
density evolves with redshift by integrating the QLF above a bolometric
luminosity threshold of Ly, = 10**®ergs™! (light grey vertical line in
the left panel). The cosmological evolution of the UV-luminous, type-1
quasar population has been analyzed in the recent work of Kulkarni et al.
(2019). The solid grey line in Fig. 4.1 (right) shows their best-fitting model
at z < 4. For higher redshifts, the Kulkarni et al. (2019) model is very
uncertain and does not agree well with the data. For this reason, at z > 4
we assume that the cosmic number density of unobscured high-z quasars
declines exponentially as ®(z) o< 107%%, and set k¥ = 0.7 for our fiducial
model (Schindler et al. 2023). We then smoothly interpolate between the
fit of Kulkarni et al. (2019) at z < 4 and this exponential decrease at
higher redshift. Together with this global evolution model, we also show
individual (gray) points obtained by integrating local fits to the QLFs above
the luminosity threshold (fits are taken from Yang et al. 2016; Akiyama
et al. 2018; McGreer et al. 2018; Matsuoka et al. 2018; Schindler et al. 2019;
Kulkarni et al. 2019; Niida et al. 2020; Onken et al. 2022; Pan et al. 2022;
Schindler et al. 2023; Matsuoka et al. 2023). Overall, these individual data
points agree with the global evolutionary model, but a significant spread is
present due to uncertainties in the QLF measurements (especially at the faint
end, Ly, < 10%ergs™!). To quantify this uncertainty, we plot two gray
lines corresponding to different exponential declines of the quasar number
density, k = 0.65 and k& = 0.78 (e.g., Wang et al. 2019; Matsuoka et al. 2023);
these two lines are normalized at z = 4 to twice and half of the fiducial
model, respectively.

Together with the measurements for the UV-luminous quasar number
density, we show (Fig. 4.1, right panel) with a dotted line the model for the
evolution of the AGN bolometric number density from Shen et al. (2020).
This work employs multi-wavelength observations (from X-rays to mid-IR) to
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include the contribution of all quasars/AGN to the number density budget.
In particular, by exploiting X-ray observations at 0 < z < 3 (e.g., Ueda et al.
2003, 2014; Merloni et al. 2014; Aird et al. 2015), they include a model for
AGN obscuration, and account for the obscured fraction of quasars/AGN
in their luminosity function estimates. As mentioned in the introduction,
observations generally constrain the AGN obscured fraction only at z < 3,
so the Shen et al. (2020) model is effectively extrapolating the behaviour
of the AGN obscured populations from cosmic noon to the high z Universe.
Nonetheless, the work of Shen et al. (2020) represents our best guess (prior
to JWST observations) for how the global AGN/SMBH population evolves
as a function of redshift. By comparing the number density of UV-selected
quasars (solid grey line in the right panel of Fig. 4.1) with the number
density from Shen et al. (2020) (which includes obscured sources), we can
estimate the obscured:unobscured ratio of AGN as a function of redshift. The
same ratio can be studied as a function of intrinsic luminosity by considering
the UV-luminous and the bolometric QLFs at a single redshift. As an
example, we do this in the left panel of Fig. 4.1 by showing the Shen et al.
(2020) predictions for the bolometric QLF at z = 5 with a golden dotted
line. In general, the obscured:unobscured ratio implied by comparing the
bolometric (Shen et al. 2020) to the UV (Kulkarni et al. 2019) QLFs evolves
moderately with redshift and luminosity, ranging from ~ a few: 1 up to
~ 20 : 1 for the case of high redshift and low bolometric luminosity. We note
that these values are inevitably very uncertain, as the method employed here
is subject to the exact parametrizations employed by Kulkarni et al. (2019)
and Shen et al. (2020) for their respective QLFs. Nevertheless, we present
this comparison between UV-selected and bolometric models to outline the
conventional wisdom on AGN /quasar populations that is being challenged by
the new population of LRDs/broad line AGN uncovered in JWST surveys.

The number density evolution of LRDs can be estimated by integrating
their bolometric luminosity functions in the left panel of Fig. 4.1 above the
same Ly, threshold of 10%°° ergs~! employed before (vertical light grey
line). In practice, given that the rescaled UV QLFs (dashed lines in the left
panel of Fig. 4.1) are good fits to the LRD bolometric luminosity functions,
we can simply rescale the unobscured quasar number density obtained at
z=>5and z = 7 to get the LRD number densities at the same redshifts.
We show as colored star symbols (Fig. 4.1, right panel) the LRD number
densities obtained after this rescaling. Following Greene et al. (2024), we
plot these symbols as lower limits.

As argued before, the AGN number density implied by JWST obser-
vations of LRDs is surprisingly large and non-evolving. To highlight this
behavior, we plot (Fig. 4.1, right panel) a horizontal dashed line for z 2 3
corresponding to the abundance ®pgp ~ 1.3 x 107° cMpc 2. At z = 6,
this abundance is many orders of magnitude higher than the one measured
for unobscured quasars, implying that our general understanding of SMBH
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accretion and quasar activity in the early Universe may need to be deeply
revised. Inayoshi & Ichikawa (2024) (see also Akins et al. 2024) have al-
ready examined the challenges that these LRD number densities pose to
our paradigm of SMBH growth as well as the co-evolution of SMBHs and
galaxies. In this work, we focus on the consequences of the large and rapidly
evolving AGN obscured fraction that can be inferred by comparing LRDs
to unobscured quasars. In Fig. 4.1 (right), we show with a light purple
shading the region between the unobscured quasar evolution model and the
bolometric (obscured-+unobscured) model of Shen et al. (2020). A darker
shading highlights the dramatic increase in the obscured fraction at z 2 4
that is needed to match LRD measurements.

Dividing the LRD number density, ®1rp (which, to a first approxima-
tion, is not evolving with redshift), by the number density of UV-luminous
quasars (solid grey line in the left panel of Fig. 4.1), we infer an ob-
scured:unobscured ratio that increases from rgpg. ~ 201'%8 :lat z=4to
Tobse ~ 23001‘?288 : 1 at z = 7. In the following section, we will also make use
of the obscured:unobscured ratio at z = 6.25, which is ropgc & 8151“%2?0 1.
The uncertainties on these obscured ratios are computed by considering
the grey shaded area (and grey lines) in Fig. 4.1 (right), and are meant
to quantify the scatter (coming from systematics in the QLF modeling)
between different number density measurements for the unobscured quasar
population. Given the challenges with interpreting and contextualizing LRD
measurements, we currently do not attempt to model uncertainties for the
LRD population, and defer to Sec. 4.5 for a discussion of the significance of
our results.

Little red dots and UV-selected quasars:
do they belong to the same population?

From the analysis performed in the previous section, we concluded that:
(a) LRDs imply the existence of a large and rapidly evolving obscured
AGN population (at redshifts z ~ 4 — 7 and bolometric luminosities Ly ~
10%5 —10% erg s~!) which outnumbers UV-luminous quasars by several orders
of magnitude (Fig. 4.1, right); (b) there is tentative evidence (Fig. 4.1, left)
that this obscured population extends to even higher bolometric luminosities
(Lpor = 10*7 ergs™1). In this section, we examine the implications of these
findings in the context of AGN host dark matter halo masses and duty
cycles.
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Figure 4.2: Quasar-host mass functions (QHMFS) at z ~ 6 (left panel) and z ~ 4 (right) as a function of the (sub)halo mass, M, and the
peak height, v(My,) (see text for definitions). Darker (lighter) colors represent QMHFs obtained by setting a bolometric luminosity threshold
corresponding to that of bright (faint) quasars, i.e., Lo = 10%6-7 ergs™! (Lpo) = 10%5-% ergs—1). Median and 1o uncertainties (obtained by
randomly sampling the posterior distributions shown in Pizzati et al. 2024a,b), are represented with solid lines and shaded areas, respectively.
The dashed-dotted lines highlight the median values of the QHMF distributions. The (sub)halo mass functions (HMFs) at the respective redshifts
are plotted with dashed grey lines in both panels. Purple colors show the QHMFs distributions when scaled up by the obscured:unobscured
ratios (ropsc) derived in Sec. 4.2, and represent the host mass distribution of LRDs under the hypothesis that they are drawn from the same
halo population as UV-selected quasars. Dark (light) purple is associated with bright (faint) quasar bolometric luminosities. The colored arrows
represent the values of ropsc by which the QHMFs are scaled up. The (purple) shaded regions represent the effect of the uncertainties on ropsc
(see Sec. 4.2). The host mass distributions for LRDs overshoot the HMFs at the massive end, implying that LRDs are too abundant to reside in
the same dark matter halos as comparably luminous, unobscured quasars.
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4.3.1 The host dark matter halos and duty cycles of
high-2 unobscured quasars and their luminosity
dependence

Determining which halos can host quasar activity as a function of cosmic
time is one of the main questions in the field, as it is key to embedding
quasars in the structure formation picture: this sheds light on the processes
governing SMBH accretion and growth, as well as the co-evolution between
SMBHs and their host halos/galaxies. In this context, quasar clustering
measurements have been widely used to estimate the masses of the halos
hosting UV-luminous quasars at different redshifts (Porciani et al. 2004;
Croom et al. 2005; Porciani & Norberg 2006; Shen et al. 2007; Ross et al.
2009; Eftekharzadeh et al. 2015; Arita et al. 2023; Eilers et al. 2024). The
idea behind these measurements is straightforward: according to the ACDM
cosmology, the clustering of any populations of objects increases with the
masses of the dark matter halos they reside in (e.g. Kaiser 1984; Bardeen
et al. 1986; Mo & White 1996).

As pointed out by, e.g., Martini & Weinberg (2001); Haiman & Hui
(2001), determining the quasars’ characteristic host halo masses can also
give us insight into their accretion history. Suppose that — as routinely
assumed — all massive halos host a SMBH at their center. The duty cycle of
quasar activity determines what fraction of these SMBHs, on average, are
active as UV-luminous quasars at any given moment. By comparing the
number density of potential quasar hosts — obtained from quasar clustering
measurements — to the observed unobscured quasar number density, one
can constrain this UV-luminous quasar duty cycle. Given the connection
between quasar activity and SMBH accretion and growth, the quasar duty
cycle offers a direct view into the growth mode of SMBHs at a given cosmic
epoch.

In Pizzati et al. (2024a,b), we developed a method to constrain the
UV-luminous quasar duty cycle (qso) as well as the mass distribution of
the (sub)halos that host unobscured quasars (the so-called “quasar host mass
function”; QHMF) by simultaneously fitting the clustering of quasars and
their luminosity function. The method builds on a conditional luminosity
function (CLF) framework, which links in a statistical sense the population
of dark matter subhalos to that of quasars (e.g., Yang et al. 2003; Ren et al.
2020). We employ a description for the CLF based on an empirical relation
between the quasar bolometric luminosity, Ly, and the host (sub)halo mass,
My, with log-normal scatter, 0. This relation is also normalized by an active
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fraction, fon uv, which accounts for the fact that not all quasars are actively
accreting and UV-luminous at a given time:

CLF(Lpol|My) dLper =
o fon,UV ( (loglo Lbol - loglo Lc(Mh))2
= exp 5
V2o 20

We assume a power-law L.(M)y,) relation, parametrized by a slope, 7, and a
normalization L,e. In terms of logarithmic quantities:

(4.1)

> d loglo Lbol-

log Lc(Mh) = logyg Lret + ¥ (10g10 My, —logyg Mret) (4-2)

with Myer fixed to logyq Myet /Mg = 12.5.

By fitting the quasar clustering and the QLF at any given redshift,
we have enough information to constrain the quasar luminosity-halo mass
relation (v and Lyef), its intrinsic scatter (o), and the active fraction of
quasars (fon,uv) — see Table 4.1. Once these quantities are known, the
QHMEF can be obtained by statistically assigning quasars to subhalos and
selecting only the subhalos whose quasars are brighter than some luminosity
threshold, Ly, (which is usually set according to observations):

o0

QHMF (M, |Lyor > Liny) = HMF(M,,) CLF(Lbo|My) dLpor, (4.3)

Liny

where HMF stands for the (sub)halo mass function. A comparison between
the QHMF and the HMF can then return the value of the UV-luminous
quasar duty cycle, eqso:

Jar.. QHMF (M | Lot > Liny) dM

€ = = )
as0 Jir. HMF(M)dM (4.4)

The lower integration limit is set to the median value’ of the QHMF, M ,cq
(see, e.g., Ren et al. 2020). For more details on the parametrization employed
for the CLF and the definition of the various quantities at play, we refer the
reader to Sec. 2 in Pizzati et al. (2024a) and Sec. 2 and Appendix A in
Pizzati et al. (2024b).

The framework developed in these works builds on large-volume, dark-
matter-only cosmological simulations. In particular, Pizzati et al. (2024D)
uses the new FLAMINGO-10k simulation (part of the FLAMINGO project,
Schaye et al. 2023; Kugel et al. 2023), which evolves 100803 cold dark matter
(CDM) particles and 5600% neutrino particles in a box size of L = 2.8 cGpc

5The median of the QHMF is defined as the halo mass M,,.q satisfying the relation
Jor QHMF(My) = 0.5 [ QHMF(My,).
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Table 4.1: Constraints (median values and 16th-84th percentiles) on the parameters
describing the conditional luminosity function (CLF; eq. 4.1) of quasars at z ~ 4 and
z &~ 6. Taken from Pizzati et al. (2024a,b).

Redshift ‘ o log o Lret [erg S_I] Y fon [%]
z~d | 0207988 452103 2.0070:22  51+32
2~6 | 055799 46.45+0°79 3171032 3g+2l

assuming the “3x2pt + all” cosmology from Abbott et al. (2022)°. The
model includes subhalos, which are found using the upgraded Hierachical
Bound-Tracing (HBT+) code (Han et al. 2012, 2018). Subhalo masses, My,
are defined as peak bound masses’.

In the analysis performed in Pizzati et al. (2024a), we applied this frame-
work to the quasar auto-correlation functions measured by Eftekharzadeh
et al. (2015) (2 =~ 2.5) and Shen et al. (2007) (z = 4) using wide-field
spectroscopic surveys such as SDSS (York et al. 2000) and BOSS (Ross et al.
2013). In particular, we showed that the z ~ 4 clustering measurements
of Shen et al. (2007) imply a characteristic host halo mass for quasars of
log,g Mp /Mg = 13.3, corresponding to a very large UV-luminous quasar
duty cycle of eqso = 33133 %. In Pizzati et al. (2024b), we extended the
framework to interpret the quasar-galaxy cross-correlation function recently
measured by Eilers et al. (2024) at z = 6.25. This work exploited the JWST
NIRCam wide-field slitless spectroscopic mode to pick up [O 111] emitting
galaxies in quasars fields, and inferred the clustering of quasars by mea-
suring the cross-correlation function between quasars and [O 111] emitting
galaxies in conjunction with the auto-correlation function of these galaxies.
By simultaneously fitting these two quantities, Pizzati et al. (2024b) found
a characteristic host mass for z ~ 6 quasars of log,, My /Mg =~ 12.5, lower
than the one found at z &~ 4 and in line with results at z =~ 2.5.

However, when converting these host halo masses into peak heights®,
v(My) — which measure how rare the large-scale over-density fluctuations
are in the original linear field — we find that quasar clustering measurements
at z ~ 4 and z =~ 6 point to similar values of v =~ 4 — 6. This implies that
high-z, UV-luminous quasars seem to live in similarly biased and over-dense

6The cosmology parameters are: Qn = 0.306, Q, = 0.0486, oz = 0.807, Hy =
68.1 kms~! Mpc~!, ng = 0.967; the summed neutrino mass is 0.06eV.

"In practice, we compute the mass of each (sub)halo by summing up the mass of all its
bound particles and consider the largest mass that a (sub)halo has had across cosmic
history.

8The peak height v(My,, 2) is formally defined as v(My,, z) = dc/0(My, z) — with §c = 1.69
being the critical linear density for spherical collapse and o2(My,, z) the variance of the
linear density field smoothed on a scale R(M),); we compute v(My, z) using the python
package coLossus (Diemer 2018, see Sec. 5 in Pizzati et al. 2024Db).
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environments, corresponding to (4 — 6)o peaks in the initial linear density
field (see also, e.g., Costa 2024). Due to the rapid decline of the unobscured
quasar number density with redshift (solid gray line in the right panel of
Fig. 4.1), these similar environments lead to very different values for the
quasar UV-luminous duty cycles at z ~ 4 and z ~ 6: while UV-luminous
z &~ 4 quasars are sufficiently abundant to occupy a large fraction of the
coeval v =~ 4 — 6 halos, at z =~ 6 quasars are so rare that the same occupation
fraction drops by more than an order of magnitude, with an implied duty
cycle of eqso = 0.9723%.

We report the inferred values of the parameters describing the CLF and
the L¢(M) relation (eq. 4.1-4.2) at z &~ 4 and z = 6 in Table 4.1. Further
discussion on the comparison between quasar clustering results at these two
redshifts can be found in Sec. 5 of Pizzati et al. (2024b) (see also Eilers
et al. 2024). We mention the caveat, however, that the strong clustering
measured at z &~ 4 is rather surprising and it is yet to be fully accounted
for by any evolutionary models of quasar activity (Pizzati et al. 2024a, and
references therein). Additionally, several other studies (e.g., Timlin et al.
2018; He et al. 2018; Garcia-Vergara et al. 2019) have also attempted to
measure quasar clustering at z ~ 4, challenging the exceptionally strong
clustering inferred by Shen et al. (2007). Nevertheless, the Shen et al. (2007)
measurement remains the most robust, as it is based on a large sample of
spectroscopically-selected quasars. Future spectroscopic surveys (such as
DESI, Yang et al. 2023) will further refine these measurements and provide
more stringent constraints on the quasar auto-correlation function up to
z = 5. Here, we take the Shen et al. (2007) result at face value, but stress the
fact that our conclusions for z =~ 4 and z = 6 are completely independent.

In Fig. 4.2, we show the QHMFs obtained by our model at z ~ 4 and
z ~ 6, together with HMFs at the respective redshifts. As discussed above,
the QHMF can be obtained only once a bolometric luminosity threshold
for quasars has been set. Both quasar clustering measurements on which
our work is based (Shen et al. 2007; Eilers et al. 2024) focus on very bright
unobscured quasars with Ly, ~ 10%7 ergs™!, with the work of Shen et al.
(2007) extending down to slightly fainter objects of Ly > 10467 ergs™!. For
consistency (see also Appendix D of Pizzati et al. 2024b), we show our z ~ 6
QHMEF results setting the same bolometric luminosity threshold employed
by Shen et al. (2007) at z ~ 4 (i.e., Lpol = 10%6-7ergs=!). The QHMFs
obtained in this way are plotted in Fig. 4.2 with red (z ~ 6) and green
(z = 4) lines, and labeled as “bright quasars” as they only refer to the bright
end of the unobscured quasar population.

Fainter, unobscured quasars are found at both z ~ 4 and z ~ 6 down to
Lpo = 10*33 ergs™! (Akiyama et al. 2018; Kulkarni et al. 2019; Matsuoka
et al. 2022). However, the clustering of this fainter population is still largely
unconstrained in the high-z Universe. A first attempt at measuring the
clustering of z & 6 faint quasars was made by Arita et al. (2023): despite the
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large uncertainties at play, these authors find a relatively large characteristic
host halo mass of M), = 7fé1 x 1012 Mg (but see Appendix C of Pizzati
et al. 2024b, where it is shown that different assumptions on the quasar
correlation function make these constraints much weaker). The relatively
large inferred host mass for the faint quasar population would be in line
with results at lower redshift (z < 2.5), which generally predict little to no
dependence of quasar clustering with bolometric luminosity (e.g., Shen et al.
2009; Eftekharzadeh et al. 2015).

As our model is based on an empirical relation between quasar luminosi-
ties and (sub)halo masses, it can be used to predict the clustering of faint
unobscured quasars at high redshift. With light-colored lines in Fig. 4.2, we
plot the predictions for the “faint quasars” QHMFs at the two redshifts of
interest. These QHMFs are obtained by lowering the bolometric luminosity
threshold, Ly, in eq. 4.3, down to Lpe = 10%°5 ergs~!. We note that such
a low bolometric luminosity threshold implies that the results are sensitive
to the relation between faint quasar luminosities and host halo masses. This
relation is based on the extrapolation of our CLF parametrization down
to low Ly, and it currently lacks support by constraints on the clustering
of faint unobscured quasars. However, our fitting framework matches the
unobscured QLF over the entire range of magnitudes, from the very bright
to the very faint end, with a minimal number of parameters. Therefore,
while faint quasar clustering studies will ultimately test our predictions, the
QHMFs shown in Fig. 4.2 for faint quasars represent our best knowledge of
how faint quasars populate the host halo mass spectrum, and are informed
by our current understanding of unobscured quasar demographics.

At z = 6 (left panel of Fig. 4.2), we predict that the “faint quasars’
QHMF peaks at log;q My /Mg ~ 12.15, with a rather large spread in the
host mass distribution (0.5 dex at 1 standard deviation). This implies a
very mild dependence of clustering on bolometric luminosity, as a change of
~ 1 dex in Ly, results in a change of ~ 0.3 dex in the median of the host
mass distribution, My,eq. This mild dependence is driven by two factors: a
steep Lo — My relation and a large scatter around this relation”. These
results are in broad agreement with clustering studies at low redshift, which
find little to no dependence of clustering strength on luminosity (Croom
et al. 2005; Myers et al. 2006; Shen et al. 2009) and attribute that to a large
scatter in quasar luminosities at fixed halo mass (e.g., Adelberger & Steidel
2005; Lidz et al. 2006).

The strong clustering measured for bright quasars at z ~ 4 implies a
slightly different dependence of quasar clustering on luminosity, with ~ 1 dex
in Ly, corresponding to ~ 0.5 dex in M,eq. Such a luminosity dependence
is a consequence of the large duty cycle measured for bright quasars: if

y

9The slope of the Ly, — M, relation and its scatter are directly constrained by a
combination of the quasar clustering strength and the shape of the quasar luminosity
function (Pizzati et al. 2024a).
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these quasars occupy a large fraction of the available massive halos, fainter
quasars will inevitably need to reside in less massive hosts. In practice, this is
achieved in our model with a small predicted scatter for the z ~ 4 Ly, — My
relation (also found by White et al. 2008; Wyithe & Loeb 2009; Shankar
et al. 2010b). The slightly different dependence of clustering on luminosity
at the two redshifts considered, while interesting, has little impact on the
conclusions presented in this work: at both redshifts, faint quasars also live
in massive halos corresponding to highly biased environments which trace
back to rare ~ 40 fluctuations in the linear density field.

4.3.2 Connecting the UV-luminous duty cycle to the
AGN obscured population

Having described current constraints on the duty cycle and host mass
distribution of UV-luminous, unobscured quasars, we turn our attention to
the large population of LRDs/obscured AGN discussed in Sec. 4.2. The most
general question connected to this obscured high-z population is how it fits
into our understanding of SMBH accretion/AGN activity across the history
of the Universe. In this context, determining whether LRDs and UV-selected
quasars are drawn from the same population of dark matter halos can offer
key insights into the nature of these sources. According to AGN unification
models (e.g., Antonucci 1993; Padovani et al. 2017), the diversity of AGN
emission across the electromagnetic spectrum can be entirely explained by
a viewing-angle effect: the intrinsic emission from a quasar/AGN varies
for different lines of sight because of, e.g., dust and gas obscuration. The
natural consequence of this model is that all types of AGN (irrespective
of their observed SEDs) share the same intrinsic properties, such as the
bolometric luminosity, SMBH mass, and host halo mass distributions. Hence,
if LRDs fit into this AGN unification picture, we expect them to reside in the
same halos as comparably luminous UV-selected quasars. However, several
studies at low z have challenged this AGN unification scenario by showing
that obscured (type-2 or reddened type-1) quasars live in different dark
matter halos than those of UV-luminous, type-1 quasars (e.g., Hickox et al.
2011; Allevato et al. 2014; Petter et al. 2023; Cordova Rosado et al. 2024).
According to these studies, obscured quasars/AGN represent a different stage
in the co-evolution between accreting SMBHs and their host galaxies/halos.
Analogously, LRDs could also represent a different evolutionary phase in
the accretion history of SMBHs. If that is the case, the host halo mass
distribution of LRDs could be different than the one of unobscured quasars,
even when matching their bolometric luminosities and SMBH masses. An
obvious consequence of this hypothesis is that LRDs would be described by
very different scaling relations (e.g., SMBH mass-halo/galaxy mass) than
those in place for UV-luminous quasars, as identical SMBH masses would
correspond to very different host halo/galaxy masses.
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In this work, we point out that an indirect answer to whether LRDs and
UV-selected quasars reside in the same dark matter halos comes from current
constraints on the clustering of quasars at z &~ 4 —6 (Sec. 4.3.1). From these
constraints, we conclude that LRDs and unobscured quasars cannot be drawn
from the same host halo distribution. Hence, their different SED properties
reveal fundamental differences in their scaling relations. Our argument
is simple: clustering measurements determine the host mass distribution
of unobscured quasars; if LRDs followed the same distribution, the large
obscured fraction derived in Sec. 4.2 implies that LCDM cosmology would
not produce enough halos at these masses to accommodate this abundant
population.

The argument can be visualized in Fig. 4.2: using dark (light) purple
lines, we show the QHMFs of bright (faint) quasars scaled up by the ob-
scured:unobscured ratios, ropsc, determined in Sec. 4.2 (plotted with colored
arrows for reference). These obscured ratios are independent of bolometric
luminosities, and increase rapidly with redshift from ropse ~ 20f?8 : 1 at
2 =410 ropse & 815fé2g0 : 1 at z = 6.25. By multiplying the QHMF by 7opsc,
we are effectively computing the host mass distribution for LRDs/obscured
AGN under the hypothesis that they reside in the same kind of halos as
UV-luminous quasars. At both z = 6.25 (left panel in Fig. 4.2) and z =4
(right), the host halo mass distributions for LRDs exceed the respective
halo mass functions (HMFs). This is unphysical: cosmology sets hard (and
well-constrained) limits on the number of (sub)halos that are available as
quasar hosts as a function of mass, and the LRD number densities appear
to be incompatible with these limits'".

We can quantify this by considering the UV-luminous active fraction,
fon,uv, which is a parameter in our CLF model (see eq. 4.1) and is closely
related to the UV-luminous duty cycle (Pizzati et al. 2024a). The parameter
fon,uv represents the fraction of SMBHs that are actively accreting and
unobscured at the same time. If we multiply this UV-luminous active
fraction by the obscured:unobscured ratio ropsc, we are effectively computing
an “obscured” active fraction (i.e., the fraction of halos hosting actively
accreting LRDs/obscured AGN). The physical limit set by the number of
available sub(halo) hosts can be then rephrased as fon,uv - Tobse < 1. In
Table 4.2, we report the values of fon, uv and ropsc and of their product at
the two redshifts of interest, z = 6.25 and z = 4. We find that, despite
the large uncertainties at play, these products are significantly larger than
unity, with a value of fon uv - Tobsc = 10 at z =4 and fon,Uv - Tobsc = 36 at
z = 6.25. Coming back to the visual representation in Fig. 4.2, the product

10Note that this argument is valid only for a maximum occupation fraction of unity.
Given that we model the distribution of all subhalos, however, it is natural to assume
that each subhalo can host at most one accreting SMBH at its center.
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fon, UV * Tobse represents the maximum ratio between the scaled-up QHMFs
(purple lines; see also eq. 4.3) and the HMFs (dashed lines).

An even simpler way to present this argument is to consider the median
mass values, Meq, for, e.g., the faint-quasar QMHFs (Fig. 4.2, light-colored
lines). In the right-hand columns of Table 4.2, we report these ngém)

values at the two redshifts of interest, together with the number density of
halos above these mass thresholds, n, (> M, (famt)). When compared to the

number density of LRDs, ®1.rp ~ 1.3x107° (I:rll\‘il(i)cf3 (which is approximately
constant with redshift; see Sec. 4.2), these number densities are a factor of
~ 8.1 (= 18) smaller at z =4 (z = 6.25). This confirms the fact that LRDs
are simply too numerous to live in the same (sub)halos as UV-luminous
quasars. As discussed in Sec. 4.3.1, these halo masses correspond to similar
environments at z ~ 4 and z = 6 (i.e., (4 — 6)o peaks in the linear density
field; Fig. 4.2). Since the number density of these environments is roughly
constant with redshift (e.g., Tinker et al. 2008) (and so is Prrp), LRDs
outnumber their candidate host halos by similar factors at the two redshifts
considered.

As a final note, we point out that our results are valid for any values
of the quasar bolometric luminosities. Yet, in Sec. 4.2 and 4.3.1 we con-
sidered bright (Lper > 10467 ergs™!) and faint (10**®ergs™! < Lpq <
1046 ergs~!) quasars separately because their properties are constrained
differently. In particular, the abundance of obscured AGN is better con-
strained at faint bolometric luminosities by the large sample of LRDs with
Lyo ~ 10%* ergs™!; the evidence for an analog obscured population at large
bolometric luminosities is instead only tentative (Sec. 4.2). On the other
hand, the clustering of bright unobscured quasars has been directly measured
(Sec. 4.3), but the QHMF and duty cycle for the faint quasar population
is solely based on the extrapolation of our model to fainter bolometric lu-
minosities — which constrained to match the faint end of the QLF. For this
reason, the results presented lead to different conclusions depending on the
bolometric luminosities considered. If a large obscured population is indeed
present at Lio &= 1047 ergs™!, then this is already in direct conflict with with
constraints on the host masses and duty cycle of bright unobscured quasars
(Shen et al. 2007; Eilers et al. 2024). A measurement of quasar clustering at
the faint end of the QLF (Lyo 2> 10**® ergs™!), on the other hand, would
provide support for our predictions for the properties of faint unobscured
quasars, and will make it possible to directly compare the properties of
UV-luminous quasars and LRDs at the same bolometric luminosities.
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Figure 4.3: Left: Mock measurements (colored data points) for the LRD-galaxy cross-correlation functions obtained for different values of the
minimum host mass for LRDs, Myin, LrD- The measurements are obtained by putting together 10 different LRD fields, and extracting galaxy
counts by setting a minimum host mass for galaxies (i.e., [O 111] emitters) of Min o111 = 1010-56 Mg and a background galaxy number density
of notrr = 7.84 x 10~4 cMpc~3. The theoretical predictions for these cross-correlation functions are coming from the model of Pizzati et al.
(2024b) and are shown as solid colored lines. Error bars are computed by assuming Poisson uncertainties on the galaxy number counts. Gray
points refer to the UV-luminous quasar-galaxy cross-correlation function measurements from the EIGER survey (Eilers et al. 2024). Top right:
Mock inference analysis for the LRD-galaxy cross-correlation function measurements, as a function of the minimum host LRD mass, Myin LRD-
Values of Mpin,1,Rp considered for the mock measurements are color-coded as in the other panels. The posterior distributions are obtained
by computing the agreement between the mock measurements and the theoretical models for different minimum host LRD masses. Shaded
regions show the 16th and 84th percentiles of their respective posterior distributions. Bottom right: Number density of z = 6.25 halos above
My, ny (> My), as a function of halo mass My, (solid gray line). The values of My ,rD considered in the analysis are highlighted with colored
vertical lines. The dashed horizontal line corresponds to the LRD number density, ®1,gp. The purple (gray) shaded area shows the region for
which My < 10177 Mg (M}, > 10117 Mg). In the purple region, ®1,rp < nn(> My) and hence the number of LRDs is less than the number of
host halos available, whereas the gray region is unphysical as LRDs are too abundant for the number of host (sub)halos (assuming a maximum
occupation fraction of unity).
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The host mass and duty cycle of little red
dots: a mock analysis

The indirect arguments presented in the previous section suggest that LRDs
cannot live in the same dark matter halos as unobscured UV-luminous
quasars, and hence — provided their bolometric luminosities are correctly
estimated — they may constitute a fundamentally different population of
accreting SMBHs. How do we determine this new population’s host halo
masses and duty cycle? In this section, we argue that this can be done using
current (and upcoming) JWST observations.

Existing JWST programs such as EIGER (Kashino et al. 2023; Eilers
et al. 2024) and ASPIRE (Wang et al. 2023) have already shown that the
clustering of luminous, UV-selected quasars can be effectively measured
using JWST NIRCam slitless spectroscopy to study the distribution of
[O 111] line emitting galaxies in the neighboring regions of the quasars. The
same strategy can be applied to any other population of objects: the cross-
correlation between this population and [O 111] line emitters at a certain
redshift can be measured, and the clustering of this said population can be
inferred by simultaneously constraining the auto-correlation function of the
[O 111] line emitters.

In the following, we examine a simple proof-of-concept analysis that
aims to measure the clustering of LRDs using JWST''. We focus here on
z = 6.25, which is the redshift at which the clustering of UV-luminous
quasars with [O 11] emitters has already been measured by the EIGER
survey (Eilers et al. 2024, see also Sec. 4.3.1). Following Eilers et al. (2024)
(see also, e.g., Kaiser 1984; Martini & Weinberg 2001; Haiman & Hui 2001),
we postulate that LRDs inhabit a fraction of all the (sub)halos whose mass
is larger than some minimum mass threshold, My, Lrp'”. This fraction is
equal to the LRD duty cycle, ep.grp, and can be determined by comparing
the LRD number density (®1rp in Sec. 4.2) to the abundance of halos
with My > Mpin. We note that we only consider LRDs with quasar-like
bolometric luminosities (i.e., with the same bolometric luminosities as faint
z ~ 6 quasars, Lo > 10%%ergs™1), as we are interested in matching LRDs
and UV-luminous quasars in Ly, space.

1 An alternative approach would be to directly measure the auto-correlation function of
LRDs. Even though LRDs have a relatively high number density, however, measuring
an autocorrelation function would require very large samples that are challenging to
obtain given the small FoV of JWST.

121n other words, we do not model the LRD host mass distribution parametrically as
described in Sec. 4.3 for unobscured quasars, but we assume that such a distribution can
be obtained by rescaling the HMF above the minimum mass threshold Myin 1,RD- A
more sophisticated parametrization would result in large degeneracies in the parameter
space that could not be resolved by clustering measurements alone (e.g., Pizzati et al.
2024a; Munoz et al. 2023).
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We consider five different values of the minimum host (sub)halo mass
for LRDs: log,g Mmin,LrD/Me = 10.9,11.3,11.7,12.1,12.5. In the bottom
right panel of Fig. 4.3, we put these values into context by showing the
number density of z = 6.25 halos above My, n,(> My,), as a function of halo
mass (solid grey line); we highlight the values of My,in ,rp considered with
colored vertical lines. By comparing the LRD number density (®rrp, dashed
horizontal line) to the integrated halo mass function (ny(> My,)) for different
minimum halo masses, we can directly relate the abundance of LRDs to
that of available host dark matter halos. We find that the number of LRDs
equals the number of host halos (i.e., the duty cycle is equal to unity) for a
minimum host mass of MyinLrp &~ 10117 Mg. Assuming that there can be
only one LRD per (sub)halo, values of Muyin rrD above this threshold mass
are unphysical. Values significantly lower than this threshold, on the other
hand, imply a low duty cycle for LRDs, as only very few (sub)halos host
LRDs at any given time.

Based on this discussion, we refer to the five different My .rD cases con-
sidered in the following way (see Fig. 4.3): “low duty-cycle” (Mmin,LrD/ Mg =
1099 Mg), “high duty-cycle” (Mmin,Lrp/Me = 1013 Mg), “LCDM limit”
(Mmin,LrD /Mg = 10113 Mg,), “faint quasar-like” (Mpin Lrp/Me = 1012 M),
“bright quasar-like” (Mmin LkD/Me = 1012 Mg). The first case (“low duty-
cycle”) corresponds to a duty cycle of eprp & 1%, which is close to the duty
cycle measured by Pizzati et al. (2024b) for UV-luminous quasar activity at
the same redshift. In the second case, the implied LRD duty cycle increases to
eLrp ~ 10%. The third case corresponds to the physical limit of a duty cycle
of = 100%. The last two cases, instead, would imply a duty cycle above unity,
and correspond to host masses characteristic of UV-luminous quasars. Based
on the discussion of Sec. 4.3.1, we associate the case Mpin Lrp = 101! Mg
to faint (Lpe = 10%%° ergs—!) quasars — which have the same Ly as LRDs
—, while the larger mass of Myin Lrp = 10'%° Mg, is close to the one found for
luminous (Lpel &~ 1047 ergs~1) unobscured quasars by Eilers et al. (2024).

The question we want to address here is whether we can use clustering
measurements based on JWST slitless spectroscopy data to distinguish
between these different Myin ,rp cases. We consider the following mock
setup: JWST/NIRCam grism is used to image 10 different LRD fields.
The distribution of [O 111] line emitters in these fields can be employed to
measure a LRD-galaxy cross-correlation function, from which the host mass
and duty cycle of LRDs can be determined by exploiting the constraints on
the galaxy-galaxy auto-correlation function (Eilers et al. 2024, Huang et al.,
in prep.).

In practice, we use the framework developed in Pizzati et al. (2024b),
which outputs the cross-correlation function of any populations of objects that
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are tracers of the underlying distribution of dark matter halos'®. We employ
this model to predict the LRD-galaxy cross-correlations for the different
values of Mpin,Lrp- [O 111] line emitters are assumed to live in halos with a
fixed threshold mass of Myin o1 = 1006 M, which is set according to the
results of Filers et al. (2024) (see also Huang et al., in prep.). Based on these
cross-correlation functions, we generate mock measurements by computing
the expected number of galaxies as a function of the projected distance
in each LRD field. The expected galaxy counts are obtained by setting a
background galaxy number density of nor = 7.84 x 1074 ¢cMpc ™3, which is
obtained by integrating the [O 1] emitter luminosity function of Matthee
et al. (2023) down to the threshold luminosity of Lo soos = 10%% ergs™!.
We put together the 10 mock LRD fields and we compute the volume-averaged
cross-correlation function, xy, by projecting the galaxy 3-d distributions
over a comoving distance of Ty, = 9.8 cMpc, corresponding to a line-of-sight
velocity of 1000 kms~! at the redshift considered.

In the left panel of Fig. 4.3, we show the mock LRD-galaxy cross-
correlation functions for different values of Mpyinrp. We also show for
reference the UV-luminous quasar-galaxy cross-correlation function mea-
sured by Eilers et al. (2024) by putting together 4 different quasars fields
from the EIGER survey (Kashino et al. 2023). We note that, as also done
in Filers et al. (2024), the error bars we show are computed by considering
only the contribution of Poisson uncertainties on the number counts. Other
contributions to the error budget, such as cosmic variance or possible corre-
lations between different data points, are neglected in this work and will be
analyzed in a forthcoming study (Huang et al., in prep.).

The precision of our inference analysis is shown in the bottom left panel
of Fig. 4.3. These posterior distributions are obtained by fitting the mock
data with the LRD-galaxy cross-correlation function models obtained by
varying the LRD mass threshold parameter, log;, Muyin,Lrp/Mg. For each
of these models, we compute the value of the x? and plot in Fig. 4.3 the
quantity exp(—x?/2) (normalized to unity). By looking at the different
posterior distributions, we learn that by putting together 10 LRD fields we
can already constrain the values of Muyin,Lrp (and hence the characteristic
host mass of LRDs) with an uncertainty of ~ 0.1 — 0.3 in log;, M),. The
posteriors are narrower and more peaked for larger Muyin,,rp- This follows
from the fact that high-mass halos are more strongly clustered, and hence
the clustering signal is stronger for large Muin,rp (left panel of Fig. 4.3).
In all cases considered, the uncertainty in Myin,Lrp is small enough that,

13We use the FLAMINGO-10k large-volume cosmological simulation (Sec. 4.3) to build
an analytical model for the cross-correlation function of any sets of halos with masses
M; and My, &,(Mj, My;r). An appropriate weighting scheme can then return the
cross-correlation function between two different halo tracer populations. For more
details on the model and the cosmological simulation employed, we refer the reader to
Pizzati et al. (2024b).
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in principle, it could be possible to tell apart the different scenarios. A
larger number of LRD fields would be necessary, however, to reduce the
uncertainties on Mpin L,rp even further, and pinpoint its value even for the
case of low Mmin LRD-

The discussion presented here shows that, by measuring how galaxies
cluster in LRD fields, it is indeed possible to determine whether LRDs live
in the same dark matter halos as unobscured quasars (in agreement with,
e.g., the AGN unification framework) or whether they are hosted by more
common and less-biased environments, as it appears to be necessary given
their large number density (see Sec. 4.3). In this latter case, measuring the
host mass distribution of LRDs would also provide a way to quantify their
duty cycle (eLrp), which is a fundamental quantity that can help us to shed
light on the accretion history of these enigmatic objects. A large value of
eLrp ~ 10% would suggest that LRDs have been actively accreting for a
large fraction of cosmic time (2 100 Myr), and hence — assuming a standard
value for the radiative efficiency — that they would be able to build the
relatively large black hole masses that have been inferred from their broad
optical lines (up to > 10% My; e.g., Greene et al. 2024; Kocevski et al. 2024).
In particular, an accretion timescale of 2 100 Myr corresponds to 2 2tg,
where tg ~ 45 Myr is the Salpeter time for exponential black hole mass
growth (Salpeter 1964). This implies that LRDs are detectable above the
observational luminosity threshold for at least a few Salpeter times, which
is expected if the survey spans about one order of magnitude in luminosity.
We point out that, for the same reason, large duty cycles of 2 50% are
not to be expected, because they would imply that almost all LRDs shine
above the observational threshold for a time that is much longer than the
Salpeter timescale. Considering again a survey spanning about one order of
magnitude in luminosity, a standard Eddington-limited growth that remains
above the observational threshold for a time ¢t > 2tg5 would result in black
holes that grow much more than one order of magnitude, and hence end
up being more massive than what is actually observed. For this reason,
while the threshold mass of Mpyin LrD = 1017 Mg represents a limit set by
cosmological constraints on the number of available (sub)halos, black hole
formation physics suggests an even more stringent limit on Mpyn Lrp: if
we require eprp S 30%, this implies that My Lrp needs to be lower than
~ 1015 M.

A very low LRD duty cycle eLrp < 1%, on the other hand, would also
be puzzling, as it would raise the question of how to reconcile the large black
hole masses measured for LRDs with their inherently sporadic activity. This
is the same problem that has been brought up for the high-z UV-luminous
quasar population, for which different methods generally infer low values
of the quasar duty cycle and/or quasar lifetime (e.g., Khrykin et al. 2016,
2019; Eilers et al. 2018, 2020; Davies et al. 2018, 2019, 2020; Worseck et al.
2016, 2021; Durovéikova et al. 2024; Eilers et al. 2024) that appear to be in
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tension with their large, > 10° M, black hole masses. A possible solution
to explain a low value of the duty cycle is super-Eddington accretion: if
accretion on black holes takes place in short, radiatively inefficient bursts,
then we expect a lower er,gp because the Salpeter timescale for black hole
accretion becomes shorter than ~ 45 Myr. Interestingly, several studies have
invoked super-Eddington accretion to explain the puzzling SED features of
LRDs (e.g., Greene et al. 2024; Pacucci & Narayan 2024; Lambrides et al.
2024a). Measuring the clustering of LRDs and inferring their duty cycle
would provide an independent way to support these claims.

Finally, if bright LRDs have large black hole masses (= 108 Mg) but
live in much smaller halos than UV-selected quasars, they need to obey
fundamentally different scaling relations. Constraining the clustering of
LRDs would provide insights into these relations: the lower the mass of the
host halos, for instance, the more overmassive LRDs need to be with respect
to the black hole mass-halo mass relation holding for unobscured quasars.
We can also cast this in terms of the black hole mass-stellar mass relation —
which has been extensively discussed in the recent literature (e.g., Pacucci
et al. 2023; Yue et al. 2024a) — by converting halo masses to stellar masses
using the relation provided by Behroozi et al. (2019). We find that halo
masses in the range My, ~ 10'! — 1015 M, correspond — at the redshift of
interest — to stellar masses of M, ~ 1084 — 104 M. This implies that,
assuming black hole mass measurements are not significantly overestimated,
LRDs are highly overmassive with respect to the coeval black hole mass-
stellar mass relation, as the ratio between black hole and galaxy masses
would be in the range ~ 10% — 100% (see also, e.g., Durodola et al. 2024).

4.5 Discussion and summary

In this work, we have examined how the new population of Little Red Dots
(LRDs) revealed by JWST compares to the one of UV-luminous quasars that
have been studied for decades using wide-field spectroscopic surveys (e.g. Fan
et al. 2023). The basic observational evidence on which our work is based, is
that a large fraction of LRDs exhibits broad emission lines in their spectra,
whose properties directly point to the presence of AGN that are (at least
partially) responsible for the observed emission (Greene et al. 2024; Kocevski
et al. 2024). This, together with their very red colors at optical wavelengths,
has led to the interpretation that LRDs could be standard, UV-luminous
type-1 quasars whose radiation is (partially) obscured by intervening dust
and gas. By correcting for the effects of this obscuration, it is possible to use
broad lines to estimate the bolometric luminosities of the SMBHs accreting
at the center of LRDs. Several works (e.g., Greene et al. 2024; Kokorev et al.
2024a; Akins et al. 2024) have shown that such (unattenuated) bolometric
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luminosities extend up to ~ 10*6 — 10*” ergs™!, well in the range that is
characteristic of unobscured, type-1 quasars (Fig. 4.1, left panel).

Yet, the abundances of LRDs and UV-luminous quasars are remarkably
different. In Fig. 4.1, we have directly compared the redshift evolution
for the number density of UV-luminous quasars to the one for LRDs at
the same bolometric luminosities. It is well-established that the abundance
of unobscured quasars drops exponentially with increasing redshift (e.g.,
Richards et al. 2006; Schindler et al. 2023). Spectroscopic (Greene et al.
2024) and photometric (Kokorev et al. 2024a) surveys of LRDs, instead, find
little to no evolution in their number density over a wide redshift range (z ~
4 — 8), with an approximately constant value of ®rp ~ 1.3 x 107° cMpc ™3
(Lpor > 10%% ergs™!). By comparing the number density of LRDs to that of
UV-luminous quasars as a function of redshift, we can estimate the obscured
fraction of AGN implied by this LRD population. We infer a large and
rapidly evolving obscured fraction, ranging from =~ 20 : 1 at z = 4 to
~2300:1at z~T7.

While this obscured fraction is mostly constrained at the bolometric
luminosities for which a significant overlap between LRDs and unobscured
quasars is present (i.e., Lpo = 10%° —10%6 ergs~!), we find tentative evidence
for it to extend to even larger bolometric luminosities (Lo = 1017 ergs™1).
There are two arguments in support of this evidence: (a) photometric obser-
vations (Kokorev et al. 2024a) constrain the shape of the LRD bolometric
luminosity functions to closely resemble that of UV-luminous quasars (Ni-
ida et al. 2020; Schindler et al. 2023; Matsuoka et al. 2023), implying an
obscured fraction that is constant with bolometric luminosity (Fig. 4.1, left
panel); (b) recent observations of the COSMOS field have revealed candidate
radio-loud AGN at z =~ 7 — 8 that are obscured in the UV (Endsley et al.
2022, 2023; Lambrides et al. 2024b); the very large bolometric luminosities
of these sources (Lpo =~ 10% erg sfl) together with the small FoV of the
observations, implies an AGN obscured fraction that is consistent to the one
inferred for bright LRDs.

The large abundance of LRDs/obscured AGN has implications for their
host halo masses. If obscuration were solely a viewing angle effect (e.g.,
Antonucci 1993), then we would expect LRDs to reside in the same en-
vironments as (equally bolometrically bright) UV-luminous quasars. Two
decades of quasar clustering studies have constrained the masses of the dark
matter halos hosting UV-luminous quasars at 0 < z < 6 to be in the range
My, =~ 102 -10%3-5 Mg, (e.g., Porciani et al. 2004; Croom et al. 2005; Porciani
& Norberg 2006; Shen et al. 2007, 2009; Ross et al. 2013; Eftekharzadeh
et al. 2015; Arita et al. 2023; Eilers et al. 2024), with little to no dependence
on quasar luminosity (e.g., Adelberger & Steidel 2005; Porciani & Norberg
2006; Shen et al. 2009). Several models have been put forward to interpret
this host mass range in physical terms (e.g., Hopkins et al. 2007b; Fanidakis
et al. 2013; Caplar et al. 2015). Whatever the reason for these characteristic
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host masses, it is striking that the number density of available host halos at
these masses drops very quickly below the measured abundance of LRDs as
redshift increases. At z ~ 6, for example, LRDs (with Ly, > 1055 ergs™1)
are ~ 5x more abundant than 10'2 My, halos (Fig. 4.3, top right panel) and
can occupy all halos above the threshold mass of M}, > 1017 M. This
implies that at these redshifts the host masses of LRDs are likely lower than
the ones of UV-luminous quasars, even when matching them in Ly space.

In Fig. 4.2, we have presented a quantitative analysis of this argument
at the two redshifts for which we have constraints on the clustering of bright
(Lbol &~ 10*7 ergs~1), high-2 unobscured quasars: z = 4 (Shen et al. 2007)
and z = 6.25 (Eilers et al. 2024). We used the model developed in Pizzati
et al. (2024a,b) to measure the UV-luminous quasar host mass functions
(QHMEFs) at these two redshifts. While these QHMFs are well-constrained by
clustering measurements only for the bright quasar population, we can extend
them to also include the contribution of faint (L, = 10455 ergs~!) quasars
by using the empirical quasar luminosity-halo mass relations obtained by
Pizzati et al. (2024a,b). These relations are fit to the faint end of the quasar
luminosity function, and hence they correctly reproduce the demographic
properties of the faint quasar population. While we find minor differences in
the luminosity dependence of the QHMFs at the two redshifts considered,
we reach a general fundamental conclusion that is valid for faint and bright
sources alike: the dark matter halos hosting UV-luminous quasars at z 2 4
are too rare to accommodate the large number density of LRDs.

What are the implications of these findings? If LRDs live in more common
and hence less biased halos than those of unobscured quasars, then they may
represent an intrinsically different population of accreting SMBHs arising
in the early Universe. This population may be tracing a distinct phase in
the co-evolutionary sequence of SMBHs and galaxies, similarly to what has
been argued for type-2/reddened quasars at low redshifts (e.g., Allevato et al.
2014; Cordova Rosado et al. 2024). In this scenario, the scaling relations
between, e.g., black hole and halo/galaxy host masses need to be intrinsically
different for LRDs and standard unobscured quasars, because similar black
hole masses correspond to very different halo (and hence galaxy) masses. In
particular, LRDs likely host SMBHs that are overmassive with respect to the
coeval black hole-halo/galaxy mass scaling relations for unobscured quasars.
Another possibility that has been put forward by several independent works
to explain the enigmatic features of LRD SEDs (e.g., Greene et al. 2024;
Pacucci & Narayan 2024; Lambrides et al. 2024a) is that LRDs are accreting
at rates that are larger than the critical Eddington limit. In this latter case,
LRDs could represent the early stages of black hole accretion and growth
that are predicted by many theoretical models of SMBH evolution (e.g.,
Trinca et al. 2023; Li et al. 2024; Lupi et al. 2024). Interestingly, this would
have direct implications for the clustering of LRDs, because a low duty cycle
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(that is necessary for super-Eddington accretion) would only be possible if
LRDs lived in very low mass halos (M, ~ 101 Mg, at 2 = 6; Sec. 4.4).

Alternatively, these results may be telling us that key properties of
LRDs, such as their bolometric luminosities and the relative contribution
of the central AGN and the host galaxy to their observed SEDs, have
yet to be properly characterized. Indeed, the assumption on which our
discussion is based, is that LRDs have the same bolometric luminosities
as high-z UV-luminous quasars (Lpe ~ 10% — 10%7 ergs™!). Currently,
the bolometric luminosities of LRDs are estimated by their (dereddened)
broad emission lines or by fitting AGN templates to their SEDs. In both
cases, the resulting Ly, hinge on the assumption that the rest-frame optical
continuum is dominated by AGN light (see e.g., Akins et al. 2024). If the
contribution of the host galaxy to the rest-frame optical continuum emission
(and possibly broad lines; see, e.g., Baggen et al. 2024) is non-negligible,
then the inferred black hole masses and bolometric luminosities could change
significantly. Several puzzling features of LRDs, such as their X-ray weakness
(Ananna et al. 2024; Yue et al. 2024b; Maiolino et al. 2024) and (possibly)
the lack of a hot dust torus (Wang et al. 2024; Pérez-Gonzalez et al. 2024;
Akins et al. 2024; Tani et al. 2024) and UV variability (Kokubo & Harikane
2024), point to the fact that LRD bolometric luminosities could be vastly
overestimated. The presence of an evolved stellar population dominating
(part of) the rest-frame optical is also suggested by the detection of a Balmer
break in some LRD spectra (e.g., Wang et al. 2024; Kokorev et al. 2024b,
but see Inayoshi & Maiolino 2025), although the large densities and stellar
masses required to match the observed LRD luminosities remain a significant
challenge to a purely stellar interpretation of LRD SEDs (e.g., Greene et al.
2024; Akins et al. 2024, but see Baggen et al. 2024). Regardless of the exact
AGN contribution to these SEDs, if LRDs are not as bright as standard,
UV-luminous quasars then they would naturally reside in lower mass halos,
and they could easily be accommodated in the large number of z 2 6 host
halos with masses of M, ~ 10'* — 1015 M.

In this work, we have primarily focused on the population of LRDs
whose inferred SMBH masses and bolometric luminosities largely overlap
with those of UV-luminous quasars. However, JWST has uncovered a much
larger population of AGN with broad optical (Ha or HB) lines, which are
not necessarily reddened at optical wavelengths and hence do not respect
the LRD selection criteria. Interestingly, the abundance of these broad-line
AGN are even larger than the ones of LRDs: Maiolino et al. (2024), Harikane
et al. (2023), and Taylor et al. (2024) find the number densities for these
sources to be in the range 1073 — 10~° cMpc ®mag~" (4 < z < 7). The
intrinsic bolometric luminosities and SMBH masses of these broad-line AGN
(that are not reddened in the rest-frame optical) are not as extreme as
the ones of LRDs/reddened AGN (e.g., Harikane et al. 2023; Taylor et al.
2024). However, these sources can still reach UV magnitudes of Myy ~ —22
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and bolometric luminosities of Ly, ~ 1 ergs™ ", which are close to the
ones of the faintest UV-selected quasars known at z 2 4 (Matsuoka et al.
2022). Given their number densities, these broad-line AGN overshoot the
extrapolation of the UV-selected quasar luminosity functions by factors that
are comparable to (or even higher than) those found for LRDs (Sec. 4.2).
Hence, similar arguments to the ones presented in our analysis apply to
this larger AGN population: their abundance suggests that they live in
halos that are likely less massive than those of comparably luminous UV-
selected quasars, implying that they obey fundamentally different scaling
relations. While a proper comparison between UV-selected quasars and
JWST AGN is only possible for the LRD population with large inferred
bolometric luminosities and SMBH masses, it is interesting to investigate
the host mass distributions, duty cycles, and scaling relations of this larger
population of faint broad-line AGN.

Ultimately, a measurement of the clustering of LRDs and other broad-
line AGN will constrain such properties and test the conclusions that we
have drawn in this work. Recent arguments on the clustering of these
objects rely on single detections of AGN in close proximity (Lin et al. 2024;
Tanaka et al. 2024), on spectroscopic detections of galaxies in a single
LRD field (Schindler et al. 2024), and on cross-correlating photometrically-
selected galaxies and LRDs (Arita et al. 2025). In this work (Fig. 4.3),
we have shown that a convincing measurement of LRD clustering can be
made by using JWST NIRCam/WFSS observations of several LRD fields to
extract a cross-correlation function between LRDs and [O 111] line-emitting
galaxies (see also Matthee et al. 2024a for recent results based on a similar
approach). We have suggested that, by putting together ~ 10 different
fields, it is possible to infer the characteristic host halo mass of LRDs with
an accuracy of log;o Mp =~ 0.1 — 0.3. In order to perform this kind of
measurement, one would need to observe several fields containing LRDs
using a NIRCam grism filter covering the [O 111] doublet. Interestingly, such
observations already exist for a fraction of the broad-line AGN in the sample
of Matthee et al. (2024b): JWST surveys such as CONGRESS (GO3577)
and GT04540/GT0O4549 are performing NIRCam/WFSS observations of
the GOODS-N and GOODS-S fields, which contains = 10 broad-line AGN
from the Matthee et al. (2024b) sample. So a first step towards determining
the clustering of these enigmatic sources at z 2 5 is already feasible with
current data. Future JWST programs will be able to deliver the same kind
of observations for samples of LRDs with quasar-like inferred bolometric
luminosities and SMBH masses. By comparing the host halo masses resulting
from these measurements to the different scenarios discussed in Sec. 4.4,
it will be possible to get fundamental insights into the properties of these
objects.

At the same time, the clustering of the faint, UV-luminous quasar pop-
ulation at high redshifts is also largely unconstrained. By using the same
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strategy and targeting faint quasar fields with NIRCam/WFSS, it will also
be possible to determine their clustering and host masses. This would test
our model predictions (Fig. 4.2) and determine the luminosity dependence
of quasar clustering at high-z, effectively constraining the scaling relation
between the quasar bolometric luminosity and the host halo mass. Even
more importantly, it would create a benchmark to which the LRD population
can be effectively compared, allowing us to investigate the nature of quasar
activity and SMBH populations in the early Universe.
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TRACING INDIVIDUAL BLACK
HOLE GROWTH HISTORIES
AND QUASAR LIGHTCURVES IN
AN N-BODY UNIVERSE

Abstract

We present a new model for the evolution of supermassive black holes
(SMBHs) and quasars across cosmic time. The framework builds on merger
trees from the FLAMINGO large-volume dark-matter-only simulation, link-
ing SMBH growth histories to those of their host halos through parametric
prescriptions that capture both average trends and stochastic variability.
SMBH accretion is modeled self-consistently and directly drives quasar ac-
tivity, with the goal of reproducing the observed evolution of the luminous
quasar population. Our model is designed to match three key observables:
the bolometric quasar luminosity function (QLF), the conditional Eddington
ratio distribution function (cERDF) at fixed bolometric luminosity, and the
clustering of UV-luminous quasars. Despite residual discrepancies at the
faint end of the QLF, in the mean of the cERDF, and in quasar clustering
at z = 4, our model provides a close match to the most robust observational
constraints currently available. Additionally, we find that: (a) SMBHs grow
primarily through bursts of super-critical accretion (Mpy > Mgaq); (b)
these bursts must be sufficiently long-lived, making the coherence timescale
of accretion a key parameter in shaping the SMBH mass distribution; (c) the
predicted Mgp—Mha1o relation remains approximately constant with redshift,
with relatively tight scatter (< 0.3 dex) but extended high-SMBH-mass
tails that give rise to luminous quasars; and (d) mergers contribute only
marginally to SMBH growth compared to accretion, even under optimistic
assumptions about merger timescales and remnant survival. The resulting
SMBH growth histories, merger trees, and quasar light curves provide a
versatile framework for future comparisons with the expanding range of
observational constraints.

Work in preparation: EP, Joseph F Hennawi, Joop Schaye, et al., Tracing individual
black hole growth histories and quasar lightcurves in an N-body Universe, Monthly
Notices of the Royal Astronomical Society, to be submitted.

Reprinted here in its entirety.
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5.1 Introduction

Understanding the growth and evolution of supermassive black holes (SMBHs)
remains a central challenge in astrophysics. These objects are believed to
reside at the centers of nearly all massive galaxies (e.g., Magorrian et al. 1998;
Ferrarese & Merritt 2000; Kormendy & Ho 2013), where their accretion-
powered emission gives rise to Active Galactic Nuclei (AGN) and quasars —
some of the most luminous objects in the Universe (Salpeter 1964; Zel’dovich
& Novikov 1967; Lynden-Bell 1969). Since the discovery of the first quasar
(Schmidt 1963), a robust theoretical framework has emerged: the observed
quasar radiation originates from the release of gravitational energy as matter
accretes onto the black hole, with a small fraction of this rest-mass energy
(known as radiative efficiency) converted into radiation, and the rest fueling
SMBH growth.

Building on this theoretical framework, a foundational link between
quasar activity and black hole growth was established by Soltan (1982).
The Soltan argument posits that the redshift evolution of the quasar lumi-
nosity function (QLF) directly traces the accretion history of SMBHs. By
integrating the observed quasar emission over cosmic time and assuming a
value for the radiative efficiency, one can estimate the total black hole mass
density accumulated during luminous accretion phases. This insight laid
the foundation for a broader class of empirical models for SMBH evolution,
which describe the growth of the black hole mass function by solving a
continuity equation. These models constrain key physical parameters — such
as radiative efficiency, duty cycle, and the Eddington ratio distribution — by
requiring consistency between the observed quasar population across cosmic
time and the local census of dormant black holes (e.g., Yu & Tremaine 2002;
Merloni & Heinz 2008; Shankar et al. 2009; Aversa et al. 2015; Tucci &
Volonteri 2017).

A complementary class of empirical models extends the treatment of
SMBH evolution by explicitly linking it to galaxy formation, typically by
assuming a redshift-dependent relationship between black hole and galaxy
properties. These models build on well-established empirical connections
between dark matter halos, galaxies, and SMBHs (e.g., Kormendy & Ho
2013; Reines & Volonteri 2015), and often adopt semi-empirical galaxy—halo
frameworks (e.g., Behroozi et al. 2013) as a foundation. They then incorpo-
rate SMBH growth and quasar activity in a way that is consistent with both
galaxy and black hole observables (e.g., Croton 2009; Conroy & White 2013;
Caplar et al. 2015). A notable recent example is the TRINITY model (Zhang
et al. 2023b), which jointly evolves the average properties of halos, galaxies,
and SMBHs within a unified, data-constrained framework. By reproducing
a wide range of observables — including galaxy stellar mass functions, quasar
luminosity functions, and black hole—galaxy scaling relations — these models
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provide powerful tools to investigate the co-evolution of halos, galaxies, and
black holes across cosmic time.

The rationale behind empirical models stems from the recognition that
a first-principles treatment of SMBH accretion in a cosmological context
remains fundamentally out of reach. While supermassive black holes are
routinely included in both semi-analytic models (SAMs) and cosmological
hydrodynamical simulations — and AGN feedback is widely acknowledged as
a key driver of galaxy evolution (e.g., Somerville & Davé 2015) — current
theoretical frameworks are still limited in their ability to model SMBH
growth in a self-consistent, physically grounded way. The core difficulty
lies in the extreme dynamic range involved: black hole accretion unfolds
on scales much smaller than a parsec (pc), yet it is regulated by — and
feeds back into — processes acting on kiloparsec to tens-of-megaparsec scales.
Bridging these disparate scales in a physically accurate manner remains
computationally unfeasible, complicating the development of robust sub-grid
(physical) models that can be reliably implemented in large-scale simulations
and SAMs.

As a result, while sub-grid prescriptions for star formation processes
have reached a relatively mature and consistent formulation, the modeling
of black hole seeding, accretion, and feedback remains coarse and exhibits
substantial variation across simulation platforms (Habouzit et al. 2021). It is
therefore not surprising that even state-of-the-art cosmological simulations —
despite their success in reproducing galaxy populations across cosmic epochs
(Vogelsberger et al. 2020) — continue to struggle with matching SMBH and
AGN observables. Most are calibrated to reproduce local SMBH-galaxy
scaling relations (e.g., Di Matteo et al. 2005; Booth & Schaye 2009), yet
yield widely divergent predictions for black hole growth and evolution at
earlier times (Habouzit et al. 2021, 2022; Porras-Valverde et al. 2025).

To address these shortcomings, significant effort in recent years has gone
into refining the treatment of AGN in cosmological simulations, with the
goal of more accurately connecting black hole growth to the broader context
of galaxy formation and evolution. Advances have been made across multiple
fronts, including improved models for black hole seeding (e.g., Bhowmick
et al. 2024), more accurate prescriptions for black hole dynamics (e.g., Genina
et al. 2024), revised accretion models that go beyond the classical Bondi-
Hoyle approach (e.g., Koudmani et al. 2024; Weinberger et al. 2025), and
increasingly sophisticated implementations of AGN feedback (e.g., Husko
et al. 2024). Nevertheless, fundamental uncertainties remain — particularly
in the high-redshift regime — underscoring the continued need for flexible,
data-driven models. In this landscape, empirical approaches serve as a
valuable counterpart to simulations, extracting physical constraints directly
from observations and offering an efficient means to explore parameter
space. Ultimately, the combination of improved simulations and empirically
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anchored models offers a promising path toward unraveling the complex
history of SMBH growth across cosmic time.

In parallel with theoretical progress, the observational frontier has been
advancing rapidly — particularly at high redshifts. Over the past few decades,
large-scale spectroscopic surveys have revealed luminous quasars powered by
SMBHs with masses > 10° M, at z 2 6, during the epoch of reionization
(Fan et al. 2006; Mazzucchelli et al. 2017b; Farina et al. 2022; Fan et al.
2023), and even out to z = 7.5, just 700 million years after the Big Bang
(Banados et al. 2018; Yang et al. 2020; Wang et al. 2021). These discoveries
pose a significant challenge to conventional models of SMBH formation and
growth. If black hole seeds originate from Population III stellar remnants
with initial masses of ~ 100 Mg (e.g., Heger et al. 2003), and accrete at
the Eddington limit, there is simply not enough time to reach > 10° My, by
zn~T.

This tension has motivated the development of alternative scenarios for
early black hole growth. Proposed pathways include the formation of massive
seeds through the direct collapse of pristine gas clouds (e.g., Bromm & Loeb
2003; Volonteri et al. 2008; Latif & Ferrara 2016), runaway stellar mergers in
dense nuclear star clusters (e.g., Omukai et al. 2008; Devecchi & Volonteri
2009), and sustained phases of super-Eddington accretion (e.g., Volonteri
et al. 2015; Lupi et al. 2016; Inayoshi et al. 2016). Despite their theoretical
appeal, however, current observations are insufficient to distinguish between
these competing models. The problem is fundamentally degenerate: widely
different combinations of initial seed masses, accretion rates, duty cycles,
and merger histories can be fine-tuned to reproduce the observed SMBH
population. Disentangling these scenarios and uncovering the early growth
history of SMBHs requires new and more detailed observations.

Interestingly, new observational probes are now beginning to emerge.
With the advent of JWST, AGN candidates hosting moderately massive
black holes (~ 105-10% M) have been identified at redshifts as high as
z 72 8-10 (e.g., Maiolino et al. 2024; Kokorev et al. 2023; Larson et al. 2023;
Bogdan et al. 2024). Although the physical nature of many of these sources
remains uncertain, ongoing and upcoming wide-field surveys with Euclid
and the Roman Space Telescope are expected to deliver statistically robust
samples of luminous quasars at the highest redshifts (e.g., Yang et al. in
prep.). At the same time, different quasar observables beyond SMBH mass
estimates — such as the luminosity function (Schindler et al. 2023; Matsuoka
et al. 2023), Eddington ratio distributions (Wu et al. 2022), clustering (Arita
et al. 2023; Eilers et al. 2024), and proximity zone sizes (Eilers et al. 2017,
2020; Durovéikova et al. 2024) — are now being extended to earlier epochs.

Emerging trends from these early data are already beginning to challenge
traditional views of SMBH growth in the high-z Universe. In particular,
recent clustering measurements indicate that luminous quasars at z ~ 6 — 7
exhibit surprisingly low duty cycles (Eilers et al. 2024; Pizzati et al. 2024b;
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Huang et al. in prep.), suggesting that only a small fraction of SMBHs are
actively accreting at any given time. These findings are consistent with
independent constraints on quasar lifetimes derived from proximity zone
sizes and damping wings in quasar spectra (Davies et al. 2019; Durovéikova
et al. 2024), as well as from the spatial extent of the Ly« nebulae powered by
quasar radiation (Durov(tikov{i et al. 2025). Taken together, these results are
difficult to reconcile with simple scenarios of continuous, Eddington-limited
growth. Instead, they point toward a more nuanced evolutionary picture,
in which SMBH accretion is stochastic and episodic, luminous phases are
short-lived, and multiple growth pathways — including obscured or radiatively
inefficient accretion — may contribute to the assembly of the most massive
black holes in the early Universe.

At the same time, the analyses presented in Pizzati et al. (2024a,b,
Chapters 2-3) embed the quasar population within a cosmological context,
leveraging luminosity functions and clustering measurements at different
redshifts — including the latest constraints at z 2 6. Using a consistent
and homogeneous empirical framework, these studies uncover a puzzling
trend: quasar properties, particularly their clustering, appear to evolve
rapidly with redshift. This behavior is largely driven by the exceptionally
strong clustering signal reported by Shen et al. (2007) at z ~ 4 using Sloan
Digital Sky Survey (SDSS) data — a result that still awaits independent
confirmation, but it nonetheless underscores our incomplete understanding
of quasar evolution beyond cosmic noon. A key limitation of the Pizzati
et al. (2024a,b) studies, however, is that each redshift is modeled in isolation,
without tracing any evolutionary connection across epochs. Constructing a
coherent, time-resolved model of SMBH growth is essential for interpreting
these redshift trends within a unified framework.

Motivated by these considerations — and by the growing body of high-
redshift observational constraints — we introduce a new empirical framework
for modeling the evolution of SMBHs and quasars. Our model, BAQARO
(Black Hole Accretion and Quasar Activity in a Realistic Observational
framework), is designed to capture the early buildup of SMBH mass and the
emergence of luminous quasars from cosmic dawn to cosmic noon. Quasar
activity and SMBH growth are treated self-consistently, incorporating con-
straints not only from quasar luminosity functions but also from clustering
measurements as well as from the distribution of SMBH masses and Edding-
ton ratios at different epochs. This integrated approach allows us to explore
a wide range of physical growth scenarios within a unified, observationally
anchored framework.

The model is built on the merger trees and halo catalogs from the dark-
matter-only (DMO) version of the FLAMINGO cosmological simulation suite
(Schaye et al. 2023; Kugel et al. 2023). Specifically, we use the (2.8 cGpc)?
volume run, which offers the statistical power needed to sample the rare,
luminous (L. = 1047 ergs—!) quasar population out to the highest redshifts.
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By leveraging the output of large N-body simulations, we are able to trace
SMBH accretion histories and quasar light curves along individual halo
growth trajectories, naturally capturing the diversity and stochasticity of
black hole evolutionary pathways. This is essential to recover the most
massive SMBHs (> 10° M) observed at early times, which are extreme
outliers in the distribution of SMBH growth histories. Furthermore, modeling
quasar clustering directly from the simulated large-scale structure eliminates
the need for linear bias or halo model prescriptions, which are known to
perform poorly for the halo mass and redshift regimes relevant to bright
quasars (e.g., Mead & Verde 2021).

The paper is structured as follows. In Section 5.2, we introduce the
key components of the BAQARO model and the data it aims to reproduce.
In Section 5.3, we present the main results of our analysis, comparing our
fiducial model with all observational constraints. Section 5.3.3 studies the
implications of our model for the growth of SMBHs at early cosmic times
and for the scaling relations between quasar/SMBH and halo properties. We
summarize our findings and discuss our results from a broader perspective
in Section 5.4.

Methods

At its core, BAQARO combines DMO cosmological simulations with a
phenomenological prescription for black hole seeding and growth. We use
the merger trees extracted from the FLAMINGO large-volume simulation to
trace the assembly histories of dark matter halos, within which we model the
evolution of SMBHs. Black holes are seeded in early halos and subsequently
grow through a combination of gas accretion and black hole mergers. The
accretion rate, together with an assumed radiative efficiency, determines the
bolometric luminosity of each SMBH, allowing us to predict quasar light
curves along with individual merger histories.

Our primary goal is to reproduce the statistical properties of the bright
quasar population from cosmic dawn to cosmic noon. To this end, we
calibrate our model to match three key observables across redshift: (i)
the quasar luminosity function (QLF), (ii) the conditional Eddington ratio
distribution function (cERDF), and (iii) the large-scale clustering of quasars.
These constraints jointly inform the underlying growth histories of SMBHs
and the physical conditions that shape quasar activity.

In the remainder of this section, we describe each component of the model
in detail, beginning with the underlying simulation and halo merger trees,
and proceeding through the prescriptions for seeding, merger, accretion, and
quasar luminosity modeling.
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5.2.1 Extracting halo mass histories and merger trees
from the FLAMINGO simulation

To model the evolution of SMBHs and quasars in a cosmological context,
we require a realistic description of the growth and assembly histories of
dark matter halos across cosmic time. This is crucial because quasars
are rare, highly biased tracers that inhabit the most massive and rapidly
evolving structures in the Universe — environments whose complexity and
stochasticity cannot be fully captured by analytic models of merger trees
or average mass accretion histories (e.g., extended Press—Schechter; Lacey
& Cole 1993). In particular, analytic approaches struggle to reproduce
the nonlinear structure formation, mergers, and diverse growth trajectories
of massive halos, especially at high redshift. Large cosmological N-body
simulations, by contrast, can track halo growth and merger histories in detail,
providing the physically grounded framework needed to model the evolution
of luminous quasars in the Universe.

We obtain these halo growth histories from the DMO version of the
FLAMINGO cosmological simulations (Schaye et al. 2023; Kugel et al. 2023),
which combine the resolution and large volume necessary to capture the
environments in which luminous quasars form and evolve. FLAMINGO is
a suite of state-of-the-art simulations run with the SWIFT code (Schaller
et al. 2024), which couples an N-body gravity solver with smooth particle
hydrodynamics (SPH). Gravitational interactions are computed using the
Fast Multipole Method (Greengard & Rokhlin 1987). The simulations
adopt the “3x2pt + all” cosmological parameters from Abbott et al. (2022):
Q. = 0.306, Q, = 0.0486, 05 = 0.807, Hy = 68.1 kms~*, Mpc~!, and
ns = 0.967, with a total neutrino mass of 0.06eV. Massive neutrinos
are included via the §f method of Elbers et al. (2021). Initial conditions
are generated with multi-fluid third-order Lagrangian perturbation theory
(3LPT), using partially fixed phases to reduce cosmic variance (Angulo &
Pontzen 2016): the amplitudes of modes with (kL)? < 1025 are set to match
the mean variance, where k is the wavenumber and L the box size.

In this work, we employ the DMO FLAMINGO run with a comoving box
size of L = 2.8cGpc, comprising 50403 cold dark matter (CDM) particles
and 28003 neutrino particles. This corresponds to a CDM particle mass of
Mepym = 6.72 x 10° Mg, which — although relatively low in resolution — is
sufficient to resolve the massive haloes expected to host luminous quasars.
In future developments of our model, we plan to address this limitation by
exploiting the newly developed FLAMINGO-10k simulation (Schaller et al.,
in prep.; Pizzati et al. 2024b), which contains eight times more particles and
will enable us to trace SMBH growth starting from significantly lower-mass
progenitors.
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Figure 5.1: Top: Probability distribution of the specific halo accretion rate (sHAR)
measured between two consecutive snapshots (Eq. 5.1). The corresponding redshifts
are shown with different colors. The median values of the distributions are highlighted
with dotted vertical lines. Bottom: Evolution of the median (solid line) and 16th-84th
percentiles (shaded region) of the specific halo accretion rate as a function of redshift. The
median specific halo accretion rate decreases by almost one order of magnitude between
z~ 8.5 and z ~ 2.5.

5.2.1.1 Subhalo masses and specific halo accretion rates

Our first step is to construct a comprehensive halo catalog across all sim-
ulation snapshots of interest. Specifically, we consider the 39 snapshots
spanning from z = 15 — the highest redshift available in the simulation —
down to z = 2. This lower redshift limit, which currently bounds our model
to cosmic noon, is chosen to reduce computational cost; it will be extended
in future iterations of the model. The snapshots are approximately evenly
spaced in time, with a mean spacing of ~ 80 Myr. The time intervals in the
redshift range considered vary from a minimum of 40 Myr to a maximum of
180 Myr.

We use the FLAMINGO halo catalogs generated with the HBT-HERONS
code (Forouhar Moreno et al. 2025), an upgraded implementation of the
Hierarchical Bound-Tracing (HBT) algorithm originally developed by Han
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et al. (2012, 2018). HBT-HERONS identifies subhalos and follows their
evolution across time by accounting for key physical processes such as mergers,
accretion, and tidal stripping. To achieve this, it tags particles associated
with a subhalo at a given snapshot based on their dynamical history, and then
propagates these associations forward in time. In later snapshots, particles
that originated from the same progenitor subhalo are regrouped to identify
descendant subhalo candidates. This approach ensures temporal consistency
and enables accurate reconstruction of merger trees for substructures in
simulations. Notably, the resulting merger trees exhibit significantly fewer
pathological failures — such as mass swapping or unphysical transients — than
those created with other tree-building algorithms (Chandro-Gomez et al.
2025). These features make HBT-HERONS particularly well suited to our
study, as capturing the hierarchical evolution of SMBHs depends critically
on the fidelity of halo merger trees.

We adopt the bound mass definition for measuring subhalo masses:
for each subhalo, the mass is computed by summing the gravitationally
bound particles. However, satellite subhalos are often subject to strong tidal
stripping, which can significantly reduce their instantaneous bound mass
and thereby obscure their past gravitational influence. For this reason, we
use the peak bound mass, Mpeak, defined as the maximum bound mass a
subhalo has reached over the course of its assembly history. Conveniently,
HBT-HERONS provides this quantity for each object by default, and we
adopt it as our fiducial subhalo mass definition — i.e., we take My, = Mpeak.
Using this convention, we construct subhalo mass histories by following each
object from the snapshot where it first appears through to the final snapshot
included in our model, currently set at z = 2.

Although HBT-HERONS is capable of identifying subhaloes down to
a minimum of 20 particles, we apply a stricter resolution cut to ensure
the robustness of our results. Specifically, we exclude any halo that never
exceeds 40 bound particles at any point between its formation and z = 2.
This threshold removes transient or poorly resolved subhaloes that could
otherwise introduce noise or instability, while retaining the well-resolved
halos that meaningfully contribute to the buildup of supermassive black
holes and the quasar population.

In addition to tracking subhalo masses, we also measure halo accretion
rates, defined as the mass growth of subhaloes per unit time. These are
computed directly from the merger trees by taking the difference in halo
mass between two consecutive snapshots and dividing by the time interval
separating them. In FLAMINGO, the typical snapshot spacing is ~ 80 Myr
(see above), which corresponds to a substantial fraction of the dynamical time
for the halos of interest at the redshifts we study. This snapshot cadence
allows us to resolve halo growth on timescales that are well-matched to
the key cosmological processes governing halo and galaxy evolution — and,
ultimately, the long-term fueling of SMBHs.
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While the time spacing between snapshots in FLAMINGO is approxi-
mately constant, it is not strictly uniform across all redshifts. As a result,
the accretion rates we compute are averaged over different time intervals at
different epochs. In this initial analysis, we do not correct for this variation.
However, because these differences are modest and the overall cadence re-
mains physically meaningful, we do not expect this to introduce significant
biases in our results. Nonetheless, we plan to implement redshift-dependent
correction factors in future iterations to more rigorously account for this
effect.

We emphasize that the computed accretion rates reflect the total mass
growth of halos, including both smooth accretion and mergers. We do not
attempt to separate these contributions, as both cosmological inflows and
merger events are expected to play important roles in triggering black hole
growth and quasar activity. For our purposes — linking SMBH accretion to
host halo evolution — this combined accretion measure provides a physically
motivated and practical proxy.

The top panel of Fig. 5.1 shows the distribution of specific accretion
rates, sMaCC, for all halos in the simulation across a range of redshifts
— corresponding to a subset of all the available snapshots. The specific
accretion rate between two consecutive snapshots ¢ and ¢ + 1 is defined as:

My i1 — My
(tig1 —ti) My’

where My, ; and t; are the halo mass and cosmic time at snapshot 4, respec-
tively. This quantity captures the relative growth rate of halos and serves as
the foundation for our SMBH accretion prescriptions (Sec. 5.2.2).

The bottom panel of Fig. 5.1 illustrates the redshift evolution of halo
growth by showing the median and scatter (standard deviation) of the specific
accretion rate distribution as a function of redshift. As expected, typical
accretion rates are higher at earlier cosmic times, reflecting the accelerated
pace of structure formation in the high-redshift Universe (e.g., McBride et al.
2009).

§Maces = (5.1)

5.2.1.2 Construction of the merger tree catalogs

Thanks to the structure of HBT-HERONS, merger trees are naturally con-
structed by following the evolution of subhalos over time through the tracker
particle method described above. To build our merger tree catalog, we
extract descendant information for each subhalo flagged as “dead” by the
halo finder. This status is assigned when a subhalo is either gravitationally
disrupted or sinks toward the center of a larger halo, meeting the merging
criterion defined in Forouhar Moreno et al. (2025).

For subhaloes that have sunk, we directly identify the halo they merge
into — referred to as the sink halo in the code. For those that are disrupted but
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Figure 5.2: Top: Fraction of cold gas accreted onto halos, f.o1q, as a function of halo
mass, Mpa1o- The cold fraction accounts for the suppression of cold inflows in massive
halos, where virial shock heating raises the gas temperature above the cooling threshold.
We adopt the parametrization of Correa et al. (2018, see Eq. 5.5), assuming a redshift-
independent f.o1q since their model shows only weak evolution beyond cosmic noon.
Bottom: Radiative efficiency, ¢, as a function of the specific black hole accretion rate,
Nace. We adopt the parametrization of Madau et al. (2014), fixing the spin parameter to
a = 0.67, which yields a sub-Eddington efficiency of eg =~ 0.1. As nacc approaches and
exceeds the Eddington limit, € decreases due to the transition to the slim-disk regime,
where photon trapping and advective processes reduce the radiative output of the accretion
flow (e.g., Sadowski et al. 2014).

not sunk, we search for a descendant subhalo that shares the majority of the
tracker particles previously bound to the disrupted object. If such a match
is found, it is designated as the descendant. If no suitable descendant can
be identified based on particle overlap, we fall back to the HBT parent—child
hierarchy, assuming the subhalo merges with its immediate parent as defined
by the algorithm.

In a very small fraction of cases (< 0.1%), no parent halo can be identified.
These cases typically involve low-mass or field haloes that become tidally
disrupted or were only transiently detected due to noise or numerical artifacts.
We classify such objects as “lost”, and we do not attempt to track the evolution
of their associated SMBHs beyond the point of disruption.

5.2.2 Modeling SMBH and quasar evolution

Our model for the growth and radiative output of SMBHs is built around
three key components: initialization, accretion (and the associated quasar
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Table 5.1: Free parameters of the model, together with their values for the fiducial run analyzed in this work

parameter, along with the corresponding equation, is also provided.

. A brief description of each

Parameter Value (fiducial model) Description Equation
Miart 5 x 105 Mg SMBH mass initialized in newly-formed halos -
Teoherence 10 Myr Coherence timescale of SMBH accretion Eq. 5.12
Nav,0 —1.12 Average sBHAR for mgooa,m% =1 Q%H.L Eq. 5.7
Tav,evol 0.95 Power-law index of the average sSBHAR — mgooaboo relation  Eq. 5.7
o) 0.52 Scatter in the sSBHAR for miooahoo =1 Q&QL Eq. 5.8
Oevol —0.17 Power-law index of the sSBHAR scatter — E&SE@% relation Eq. 5.8
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emission), and mergers. Each of these processes is detailed separately in the
subsections that follow.

5.2.2.1 Black hole initialization

For the initialization of black holes, we adopt a simple prescription: a black
hole is assigned to the center of each subhalo at the snapshot where the halo
first appears in the merger tree. The black hole is initialized with a fixed
mass, Mgtars. This mass should not be interpreted as a physical seed mass in
the early Universe, but rather as an empirical value that marks the beginning
of the SMBH growth track within our model. A physical treatment of the
seed mass regime would require either simulations with much higher mass
resolution, capable of resolving halos down to ~ 106—107 M, or an analytical
framework extending SMBH growth histories down to 102 — 10* M.

Using a uniform value of Mg, for all subhalos is, of course, a strong
simplification. In reality, SMBH masses are expected to vary with host halo
mass — which is similar for newly formed halos but not identical — as well
as with the formation environment and underlying seeding channel (e.g.,
Li et al. 2021; Jeon et al. 2025). While intrinsic scatter in Mg,y could be
easily incorporated into our framework to reflect these diverse formation
pathways, its impact on our predictions is largely degenerate with scatter in
the accretion rates. In practice, the quasar luminosities and final black hole
masses are determined primarily by the integrated accretion history rather
than the precise initial mass.

Nevertheless, the interplay between seeding and accretion remains an
important open question for SMBH evolution models. In future work, we
plan to explore alternative initialization prescriptions and to quantify the
extent to which different assumptions about M., can be disentangled from
variations in accretion.

5.2.2.2 Black hole mergers

Black hole mergers are implemented in our model using a straightforward,
mass-conserving prescription: when two host halos merge, we assume their
central SMBHs merge instantaneously, and the remnant is assigned a mass
equal to the sum of the progenitor masses. This simplifying assumption
neglects the complex dynamical processes that, in reality, delay SMBH
coalescence after the host halos (or galaxies) merge.

In hierarchical structure formation, the two SMBHs first sink toward the
common centre via dynamical friction against the surrounding dark matter,
gas, and stars (Begelman et al. 1980; Mayer et al. 2007). At kiloparsec to
parsec scales, the pair forms a bound binary that hardens further through
stellar scattering (e.g., Milosavljevi¢ & Merritt 2001) and/or interaction
with circumbinary gas discs (e.g., Dotti et al. 2012). Only once gravitational
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wave (GW) emission dominates the energy loss does the binary inspiral and
coalesce. This multi-stage process can introduce delays ranging from a few
hundred Myr to several Gyr between the halo merger and SMBH coalescence,
depending on the host properties, gas content, and redshift.

The coalescence itself can impart a GW recoil velocity to the remnant
SMBH due to the asymmetric emission of gravitational waves (Bekenstein
1973). Numerical relativity simulations show that these kicks can reach up
to several thousand km/s for particular mass ratios and spin configurations
(e.g., Herrmann et al. 2007). In massive galaxies, such velocities may cause
the SMBH to oscillate about the galactic centre for hundreds of Myr, while
in lower-mass systems they can exceed the escape speed, ejecting the SMBH
entirely from its host (e.g., Blecha & Loeb 2008).

While these processes can be incorporated into physical models via
phenomenological prescriptions (e.g., Volonteri & Rees 2006; Tanaka &
Haiman 2009; Kelley et al. 2017), here we adopt the most conservative choice
and neglect them. This effectively assumes zero delay between the subhalo
merger and SMBH coalescence, and ignores the possibility of displacement
or ejection. As such, our treatment yields an upper limit to the contribution
of mergers to SMBH mass growth. As shown in Sec. 5.3.3.3, even under
this optimistic assumption, mergers contribute only a subdominant fraction
of SMBH growth across almost all redshifts of interest. The details of the
merger prescriptions, therefore, have little influence on our main results,
although they could become important in future work where we plan to
study the SMBH merger rates and the occupation fraction of SMBHs in
galaxy populations.

5.2.2.3 Black hole accretion and quasar radiation

In contrast to seeding and mergers, modeling black hole accretion — and the
associated quasar activity — requires more detailed physical prescriptions.
Accretion is the dominant growth channel for SMBHs over most of cosmic
history and directly governs their observable luminosity output. Our ap-
proach is to connect the specific black hole accretion rate (sSBHAR) to the
specific halo accretion rate of the host subhalo, supplemented by a stochastic
component that accounts for the scatter seen in observationally inferred
accretion rates (e.g., Alexander et al. 2025).

We describe the probability distribution of the sSBHAR as a conditional
function, P(7acc | sMCOld,aCC), where 7, is the black hole accretion rate
normalized to the Eddington rate, and sMCOld’aCC is the specific cold gas
accretion rate onto the halo. The black hole specific accretion rate, nacc, is
given by

MBH,aCC (5 2)
Mgaa

Nacc =
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where ]\ZI'BH,MC is the SMBH mass accretion rate and MEdd is the Eddington
accretion rate. The latter depends on the adopted radiative efficiency ¢y = 0.1
via MEdd = Lgaa/ eoc?, with the Eddington luminosity scaling linearly with
black hole mass:

47TGMBHmpC

or

M
Ligq = ~ 1.3 x 10%® <MBH) ergs™ !, (5.3)

o}

where G is the gravitational constant, m,, is the proton mass, c is the speed
of light, or is the Thomson cross-section, and Mgy is the black hole mass.

The specific cold gas accretion rate onto halos, sMCOld,aCC, is obtained
by applying a cold fraction, f.oq, to the total specific halo accretion rate,
$Mace (Fig. 5.2, top panel):

SMcold,acc = fcold SMacc' (54)

The cold fraction encapsulates the physical suppression of cold inflows in
massive halos, where virial shock heating raises the gas temperature above
the cooling threshold (Dekel & Birnboim 2006). In contrast, low-mass halos —
particularly at high redshift — can sustain efficient cold gas accretion through
narrow filaments of the cosmic web.

We model f.o1q as a function of halo mass, My, following the phenomeno-
logical fit proposed by Correa et al. (2018). Their model, calibrated on the
EAGLE simulation (Schaye et al. 2015), reproduces the transition between
cold-mode accretion in low-mass halos and hot-mode accretion in massive
halos. While in general f.,q depends on both halo mass and redshift, the
parametrization of Correa et al. (2018) shows only weak redshift evolution
beyond cosmic noon. We therefore adopt a fixed functional form across

cosmic time: )

a”

L+ (3)
with a = —1.07 and log;((M;/2/Mg) = 12.8 fixed following Correa et al.
(2018). In this model, M;/, marks the characteristic halo mass where half
of the inflowing gas is in the cold phase, while a controls the steepness of
the transition between cold and hot accretion regimes. As shown in the top
panel of Fig. 5.2, the cold fraction declines sharply above Mj, ~ 10125 M,
reflecting the increasing dominance of virial shock heating in massive halos.
Because sMCOld,aCC is the primary driver of SMBH fueling in our frame-
work, this scaling provides a direct link between large-scale halo growth and
the small-scale accretion processes that power quasars. In this model, the
black hole accretion rate depends solely on the host halo mass — through its
cold gas fraction — and on its total accretion rate. We do not impose any
explicit redshift dependence, based on the assumption that the fundamental
physical mechanisms governing SMBH growth are not directly dictated by

feota(Mp) =1 — (5.5)
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cosmic time. Instead, redshift dependence emerges naturally through the
evolution of the specific halo accretion rate itself (Fig. 5.1, bottom panel).
As discussed in Sec. 5.3, this physically motivated, minimal prescription
captures the key trends in SMBH and quasar evolution that our model is
designed to reproduce.

The conditional accretion rate distribution, P(nacc|5Mc01d,acc), can in
principle take a variety of functional forms. We experimented with several
parametrizations, including log-normal distributions, Schechter functions,
and broken power laws. For the purposes of this work, we adopt a log-normal
form, which we find to provide an adequate fit to the data while remaining
mathematically simple. The conditional sSBHAR distribution is thus written
as

P(logl() nacc|SMcold,acc) =
1 logfo (nacc/nav(SMcold,acc)) (56)

= 0 ex — 0
Vv 271—(7(<9]\4cold,acc) P 202(5Mcold,acc)

where 7,y and o are the mean and log-normal scatter (expressed in dex) of
the distribution, respectively.

In our implementation, the mean and scatter are each parametrized as a
power-law function of the specific cold gas accretion rate:

. MNav,evol
y SMcold acc

av SMCO acc) = Tav - 5.7

Nav ($Meod ace) = 71 ,o< TGyr | ) (5.7)
. Oevol
y SMcold acc

o(sMeold ace) = 09 | ————— 5.8

( 1d,acc) 0( 1Gyr— ) (5.8)

This choice keeps the model both flexible and interpretable: 7y and o¢ set
the normalization of the distribution at a fiducial accretion rate of 1 Gyr™*,
while 7evo1 and oeyo) control how the mean and scatter respond to changes
in cold gas supply.

Although more elaborate functional forms are possible — including broken
power laws or redshift-dependent terms — we find that this simple, four-
parameter power-law scaling yields a satisfactory match to the observational
constraints considered in this work. As shown later, it captures both the
central trend and the dispersion of the SBHAR distribution across the relevant
range of halo accretion rates.

Once the sSBHAR distribution is specified, we can compute SMBH mass
growth by accretion between two consecutive simulation snapshots. Assuming
that 7, remains constant between snapshots ¢ and ¢+ 1, the black hole mass
evolves according to the exponential growth expected for Eddington-limited
accretion:

tiaz1 — t;
Mgu(tiv1) = Mpu(t:) exp [H] ; (5.9)
tacc(nacc)
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where tacc(Nace) is the Salpeter timescale corresponding to the chosen accre-
tion rate.

The Salpeter timescale quantifies the e-folding time for black hole mass
growth at a given 7,.. and radiative efficiency e:

€ orc 4.5 x 107 yr ( € ) 0.9
tace(Nace) = ~ - s 5.10
(77 ) (1 - e)nacc 471—Gmp nacc 0.1 1 — € ( )

The numerical approximation corresponds to the canonical Salpeter time for
€ =0.1 and nyec = 1.

In general, the radiative efficiency € is not a fixed quantity, but depends on
the accretion rate, 7,... Both analytic arguments and numerical simulations
indicate the existence of distinct accretion regimes with different radiative
properties (e.g., Shakura & Sunyaev 1973; Abramowicz et al. 1988; Sadowski
et al. 2014). At sub-Eddington rates (1.cc < 1), accretion flows are typically
radiatively efficient and well described by the geometrically thin, optically
thick Shakura—Sunyaev disk model (Shakura & Sunyaev 1973). In this
regime, € is approximately constant — typically ¢ ~ 0.06-0.3 depending
on black hole spin — reflecting the high efficiency with which gravitational
binding energy is converted into radiation (Thorne 1974).

As the accretion rate approaches and exceeds the Eddington limit (9acc 2
1), however, the efficiency can drop sharply. In this regime, accretion is often
described by slim-disk models (Abramowicz et al. 1988; Sadowski et al. 2014)
in which photon trapping becomes significant: radiation generated in the
inner disk is advected inward with the gas rather than escaping. Combined
with powerful radiation-driven outflows, this effect leads to a “saturated”
luminosity that increases only logarithmically with 7,.. (Ohsuga et al. 2005;
Jiang et al. 2014). Consequently, the SMBH can experience rapid mass
growth while radiating only modestly above the Eddington luminosity.

In this work, the adopted functional form of €(7)acc) is shown in Fig.
5.2 (bottom panel). It reproduces the two main regimes outlined above:
(i) a constant radiative efficiency at low and moderate accretion rates, in
agreement with thin-disk theory, and (ii) a capped luminosity at super-
Eddington rates, consistent with slim-disk prescriptions. We follow the
parametrization of Madau et al. (2014), which empirically fits the results
of general relativistic radiation-hydrodynamic simulations (Sadowski et al.
2014) as a function of black hole spin. Since our model does not track
spin evolution, we adopt the curve corresponding to a fixed dimensionless
spin parameter a = 0.67, yielding a constant sub-Eddington efficiency of
€9 ~ 0.1. This choice provides a smooth and physically motivated transition
between the sub- and super-Eddington regimes, while preserving the correct
asymptotic limits in both.

Because the time interval between consecutive simulation snapshots
is typically much longer than the characteristic variability timescales of
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SMBH accretion, assuming a fixed value of 7,.. across an entire snapshot
interval would be a poor approximation. Instead, we decide to “subcycle” the
integration of each SMBH’s mass history by introducing a shorter timescale,
Teoherence, Which we interpret as the coherence timescale of the accretion
process. Over each interval of length Tconerence, the accretion rate is held
constant; at the end of the interval, we draw a new, independent value of
7Nace from the conditional sSBHAR distribution.

In reality, SMBH accretion is a stochastic process spanning a wide hier-
archy of variability timescales, from days to hundreds of million years. By
adopting Teonerence as an effective coherence timescale, we approximate this
stochasticity in a computationally tractable way, while preserving the statis-
tical properties of the underlying accretion distribution. Further discussion
on the role of Tconerence in the growth of SMBHs can be found in Sec. 5.3.3.2.

Between two consecutive simulation snapshots, ¢ and 7 + 1, we therefore
draw

N= V“_ﬂ (5.11)

Tcoherence

independent values 7acc,j, and compute the SMBH mass at ¢;41 as:

N
MBH(tz’+1) = MBH(ti) €XP | Tcoherence Ztgclc(nacc7j) , (512)
=1

where tacc(Macc,;) i the Salpeter timescale corresponding to the j-th sampled
accretion rate.

At the same time, the sampled accretion rates determine the radiative
output of quasars. In practice, we assign the bolometric luminosity of each
SMBH at snapshot ¢ using the most recent sampled accretion rate, nacc,i,
via:

Lbol (tz) = 6("’]accj) Tacc,i MEdd C2~ (513>

This framework yields, for each subhalo in the simulation, a self-consistent
prediction for the SMBH mass, bolometric luminosity, and Eddington ratio
at every snapshot. These can then be directly compared to observational
constraints across cosmic time, enabling a joint test of both SMBH growth
and quasar demographics in our model.

5.2.3 Overview of the observational constraints

We consider three key observational constraints, all targeting the luminous
quasar population (Lpe = 10*° ergs™!): (i) the bolometric quasar luminos-
ity function (QLF), (ii) the large-scale clustering of quasars, and (iii) the
conditional Eddington ratio distribution function (cERDF) at fixed quasar
luminosity.
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Figure 5.3: Probability distribution functions of the specific black hole accretion rate,
Nace (solid lines), and the Eddington ratio, Agqq (dotted lines), shown in bins of the specific
cold accretion rate onto the halo. The 7acc distributions are drawn from the theoretical
conditional probability P(ﬂacc|5Mcold,acc) (Eq. 5.6), using the fiducial parameter values
listed in Tab. 5.1. The Agqq distributions, in contrast, are measured directly from the
model output. At sub-Eddington rates, they follow the same trend as P(nacc|sMco1d7acc)
(with minor mismatches due to the non-uniform distribution of SMcold,acc within each
bin), but they deviate markedly as Aggq approaches unity (dashed vertical line), reflecting
the drop in radiative efficiency in this regime.



192 5.2. METHODS

7.2
6.6
100 4
< 6.0
2
2 10714 " 5.4
8 7 =
"; 4.8«
% 1072 &
E 4.2
o
e 3.6
10734 |
3.0
10—+ 2.4

4 _3 5 1
l0g10 Aedd

Figure 5.4: Probability distribution functions of the Eddington ratio, Agqq, at different
redshifts (solid colored lines) for the fiducial model described in Tab. 5.1. At high
redshift, the majority of SMBHs accrete efficiently with Agqq 2 0.1, whereas at later
times accretion becomes progressively less efficient and the distribution shifts toward
lower values. The dashed vertical line indicates the Eddington limit, Agqq = 1.

Our first constraint is the bolometric QLF, which provides the most
direct observable for comparison with theoretical models of quasar evolution.
Unlike single-band surveys — particularly rest-frame UV selections, which
systematically miss obscured quasars — the bolometric QLF combines multi-
wavelength AGN datasets to reconstruct the full quasar population. Modern
compilations draw on X-ray, mid-infrared, UV-optical, and radio observations
(e.g., Hopkins et al. 2007a; Shen et al. 2020). X-ray data are especially
valuable, as measurements of hydrogen column densities enable population-
level obscuration corrections and yield intrinsic luminosities even for heavily
absorbed sources (Ueda et al. 2014). By synthesizing these corrections
across multiple bands, bolometric QLFs provide the most complete available
census of SMBH accretion and thus a robust benchmark for testing models.
In particular, using bolometric QLFs allows us to bypass the need for an
explicit obscuration prescription in our framework. Likewise, the other two
observables we consider — the clustering of quasars and the cERDF — remain
unaffected by obscuration, provided that, at fixed luminosity, obscured and
unobscured quasars represent a random subsample of the overall population.

Here, we adopt the bolometric QLF of Shen et al. (2020), which pro-

vides the most recent and comprehensive compilation of multi-wavelength
data spanning z ~ 0 — 6. Since our focus is on luminous quasars (L 2
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10*° ergs™!), the strongest constraints come from obscuration-corrected
UV-optical samples such as those presented by Kulkarni et al. (2019), sup-
plemented at high redshift by dedicated surveys (e.g., Matsuoka et al. 2018;
Wang et al. 2019).

Although bolometric QLF reconstructions provide a substantially im-
proved census of AGN activity and serve as a key benchmark for our model,
significant uncertainties remain — particularly at high redshift, where both
the fraction and physical nature of obscured quasars are still debated. In
practice, X-ray-based obscuration corrections are possible only up to z < 34
and rely on uncertain extrapolations beyond this regime. Meanwhile, recent
observations (e.g., Vito et al. 2018; Circosta et al. 2019; D’Amato et al. 2020;
Gilli et al. 2022) and cosmological simulations (e.g., Ni et al. 2020; Vito
et al. 2022; Bennett et al. 2024) suggest that quasars in the early Universe
may be embedded in dense gas environments that drive high obscuration
fractions, implying a rapid evolution of obscuration properties at z 2 4. If
so, current bolometric QLF estimates at these redshifts likely underestimate
the true space density of quasars, making them a conservative lower limit
for comparison with theoretical models.

For the clustering of quasars, we rely on measurements of the two-point
auto-correlation function from large spectroscopic surveys, which provide the
most direct probe of quasar environments on cosmological scales. Numerous
studies have characterized quasar clustering across a broad redshift range
(e.g., Porciani et al. 2004; Croom et al. 2005; Porciani & Norberg 2006;
Shen et al. 2007; da Angela et al. 2008; Ross et al. 2009; White et al.
2012; Eftekharzadeh et al. 2015), consistently finding that luminous quasars
typically reside in dark matter halos of mass ~ 10*2-10'3 M. In this work,
which focuses on cosmic noon and earlier epochs, we adopt three key datasets:
(i) the high-precision clustering constraints from the BOSS survey at cosmic
noon (z & 2.5, Eftekharzadeh et al. 2015); (ii) the strong clustering of
quasars at z = 4 reported by Shen et al. (2007) using SDSS measurements;
and (iii) the recent quasar—galaxy cross-correlation measurements at z ~ 6
from the EIGER JWST survey (Eilers et al. 2024; Pizzati et al. 2024D).
We do not include the auto-correlation function of faint quasars at z ~ 6
presented by Arita et al. (2023) because, as shown in Pizzati et al. (2024a,
see their Appendix D), these data are not sufficiently constraining.

Each of the clustering measurements we consider applies a luminosity
threshold, selecting quasars brighter than a given L. Since quasar cluster-
ing may depend on luminosity, it is essential to adopt consistent thresholds
when comparing our model predictions to the data. Accordingly, we impose
the same luminosity cuts as in the observations, denoted Ly thr. For the
Eftekharzadeh et al. (2015) and Shen et al. (2007) measurements, we follow
the thresholds used in the analysis of Pizzati et al. (2024a, see their Sec.
3.1): these are log, Luol thr/ergs™! = 46.1 and logyo Lol thr/ergs™ = 46.7,
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respectively. For the EIGER measurements of Eilers et al. (2024), we adopt
the same threshold as in Pizzati et al. (2024b): logq Lbol thr/ergs ™! = 47.1.

Finally, the cERDF is defined as the probability distribution of Eddington
ratios at fixed bolometric luminosity, P(Agad | Lbo1). We use this quantity
because it provides direct constraints on SMBH properties through broad-
line measurements, while being robust to survey incompleteness. At fixed
luminosity, the distribution of black hole mass estimates — and thus of
AEdd — is determined primarily by the widths of broad emission lines in
quasar spectra. Since these line widths are largely unaffected by survey
flux limits, the cERDF is considerably less sensitive to selection effects than
other diagnostics such as the total ERDF or the black hole mass function
(BHMF).

We estimate the cEDRF using the SDSS quasar compilation in Wu &
Shen (2022), which covers the redshift range z =~ 0 — 6. To extend the high-
redshift coverage, we also incorporate the compilation of Fan et al. (2023),
which includes all quasars known at z > 5.9 at the time of publication. In
constructing the cERDF, we restrict the sample to sources with reliable
SMBH mass estimates, and compute the Eddington ratio of each quasar as
Agdd = Lbol/Lgdaqa. Bolometric luminosities are derived from UV /optical
magnitudes using the bolometric correction of Richards et al. (2006).

5.2.4 Fiducial model and parameter inference

The ultimate goal of our framework is to perform parameter inference and as-
sess the predictive power of current quasar observables in constraining models
of SMBH evolution. We plan to do so by writing a joint likelihood func-
tion for our model parameters, O : (Mgtart, Teoherences Tav,05 Tav,evols 005 Tevol )-
The likelihood will incorporate the independent constraints coming from the
three observables described in Sec. 5.2.3 — the QLF, the quasar auto-/cross-
correlation functions (“corr”), and the cERDF:

[(total) _ ~(QLF) p(corr) o (cERDF) (514)

The first two likelihood terms have the same expression:

1

£9aD10) = s e (—5 W S -, (519

with k& € {QLF, corr}, d®) being for the set of n data points with means y
and covariance ¥ coming from observations, and p the set of values predicted
by our models.

For the third likelihood term, we directly compare the two-dimensional
distribution in the bolometric luminosity-Eddington ratio plane predicted
by our model with that measured from observations. Let d(¢FRPF) —
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Figure 5.5: Evolution of black hole mass as a function of cosmic time (bottom axis) and
redshift (top axis) for a subsample of 150 objects selected from the first 1000 halos to form
in the simulation. Each track is color-coded by the instantaneous bolometric luminosity
of the corresponding quasar. Tracks that terminate abruptly correspond to halos that
either merge with more massive systems or are lost in the merger tree (see Sec. 5.2.1.2).

{(AEdd.i» Lbol,i)} denote the set of Eddington ratios and bolometric lumi-
nosities measured observationally, and let P(Agdd, Lbol) represent the corre-
sponding probability distribution predicted by the model. The likelihood
can then be written as:

£ (cERDF) (d(cERDF) |@) _ HPO\Edd,ia Lbol,i) (5.16)

While this inference roadmap is straightforward in principle, it is chal-
lenging to implement in practice. Performing inference requires evaluating
the model many thousands of times across parameter space, which is com-
putationally prohibitive: depending on the configuration, a single run of our
model can take from several minutes to one hour. This makes direct inference
with methods such as Markov Chain Montecarlo (MCMC) unfeasible.

To overcome this limitation, our long-term strategy is to construct a
statistical emulator for the model observables, capable of reproducing the
output of the full model at negligible computational cost. Such an emulator
will enable efficient MCMC exploration of parameter space and a rigorous
inference of posterior distributions. Development of this emulator is ongoing
and will be included in future updates of this manuscript.
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In the present study, we instead adopt a simpler approach: we fix
the model parameters to fiducial values, chosen through a combination of
trial-and-error exploration and preliminary experiments with the emula-
tor. A systematic parameter inference study, together with an optimized
parametrization of the accretion and merger processes, is deferred to forth-
coming work.

The fiducial values used for all model parameters are listed in Table 5.1.
The seed black hole mass is set to Mgiary = 5 x 106 Mg: given the resolution
of the simulation, this corresponds to assigning each newly formed halo
a black hole initially ~ 5 x 10* times less massive than its host, broadly
consistent with local SMBH-halo scaling relations. The coherence timescale
of accretion, Tcoherence, 1S Set to 10 Myr. This value ensures that individual
high-accretion episodes are sufficiently long-lived to contribute meaningfully
to SMBH growth, while remaining short compared to cosmological timescales.
A more detailed discussion on T¢oherence and our prior knowledge on the
duration of SMBH accretion episodes is deferred to Sec. 5.3.3.2.

The ERDF parameters are set to the following fiducial values: 1,y 0 =
—1.12, Nayevol = 0.95,009 = 0.52,0¢vo1 = —0.17. This parametrization pro-
duces the conditional sBHAR distributions shown as dotted lines in Fig.
5.3. At high cold halo accretion rates (log, SJ\ICOMmc/Gyf1 > 0.5), the
sBHAR distribution becomes relatively narrow and centered at values close
to or above the Eddington limit. As cold accretion onto halos declines, the
distribution broadens and peaks at much lower sSBHAR values.

The corresponding conditional distributions of the observed Eddington
ratio, Agaa = Lbol/Lrdd, are shown with solid lines. Importantly, Agaq
coincides with 7,.. only if the radiative efficiency is constant. In our model,
where €(nacc) varies with accretion rate, Agqq no longer traces the intrinsic
growth rate directly. This is evident in Fig. 5.3: while the Agqq distributions
follow the sSBHAR distributions at sub-Eddington rates (where € is roughly
constant), they remain sharply peaked near the Eddington limit even when
the intrinsic sSBHAR far exceeds unity. Physically, this reflects the saturation
of radiative output in the super-Eddington regime, where SMBHs can
accrete mass at highly efficient rates without producing proportionally higher
luminosities. This effect has been invoked to explain the rapid assembly of
massive black holes in the early Universe (e.g., Madau et al. 2014; Volonteri
et al. 2015), and plays a central role also in our framework (see Sec. 5.3.1).

Figure 5.4 shows the distributions of observed Eddington ratios, binned
by redshift. The model predicts a pronounced redshift evolution in SMBH
accretion properties, driven primarily by the changing halo accretion rates
over cosmic time (Fig. 5.1, bottom). At the epoch of reionization (z 2 6),
the majority of SMBHs are actively accreting at Agqq = 0.1, consistent with
rapid and efficient growth. By cosmic noon (z ~ 2), however, only a small
fraction of SMBHs remain in the high-accretion regime, reflecting the global
decline in gas accretion rates and SMBH activity. We note that very low
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Eddington ratios (Agqq < 0.01-0.1) are only useful for theoretical modeling
as they are effectively unobservable in current quasar surveys. Consequently,
the fraction of SMBHs accreting below this threshold defines an effective
duty cycle of quasar activity in our framework. This duty cycle evolves
rapidly with redshift, in agreement with expectations from measurements of
the QLF and quasar clustering (e.g., Martini & Weinberg 2001; Haiman &
Hui 2001; Pizzati et al. 2024b).

Results

We now turn to the results of the fiducial run introduced above. We begin
by examining how SMBHs assemble their mass in our framework, focusing
on the predicted accretion histories and comparing their radiative output to
quasar observables. We then explore the broader implications of these results
for the growth of SMBHs across cosmic history, with particular attention to
the connection between black holes and the properties of their host halos.

5.3.1 The buildup of supermassive black holes across
cosmic history

Figure 5.5 illustrates the mass assembly of SMBHs for a subsample of 150
objects, selected from the first 1000 halos formed in the simulation (i.e.,
halos that form at z > 10). The growth of these early black holes is initially
rapid: within the first billion years, SMBH masses increase from the seed
value Mgy up to Mgy ~ 10° Mg by z =~ 6. This phase of accelerated
growth coincides with sustained episodes of luminous quasar activity, with
bolometric luminosities reaching Ly = 10*7 ergs—!. At lower redshifts,
however, the buildup of SMBHs slows significantly. The vigorous accretion
that characterizes the high-z regime — and enables the emergence of the first
bright quasars — gradually gives way to a more quiescent growth pattern.
By cosmic noon, quasars are powered less by rapid accretion and more by
the sheer mass of their SMBHs: even relatively modest accretion rates can
produce large luminosities once Mpy exceeds 103-10° M.

Overall, the bulk of the early-forming population grows from Mg, at
cosmic dawn to My ~ 108-10° Mg, by z ~ 2. Only a small subset of outliers
— i.e., SMBHs experiencing unusually efficient or repeated accretion episodes
— are able to reach the extreme SMBH masses associated with the brightest
quasars observed across cosmic time. Tracking these rare growth histories,
rather than focusing solely on population averages, is therefore essential for
understanding the origin of luminous quasars.

These trends can be examined in more detail by following individual
SMBH and quasar luminosity histories, as shown in Fig. 5.6. Here we select
six halos that formed in the second snapshot of the simulation (z = 12.26) and
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Figure 5.6: Individual accretion histories of SMBHs and their quasar light curves as a function of cosmic time (bottom axis) and redshift (top
axis). We select six halos that form in the second snapshot of the simulation (z = 12.26). The SMBH mass is shown in red, alongside the host
halo mass scaled down by 10° (green dotted). For reference, the steep and shallow gray lines indicate idealized SMBH growth tracks at constant
accretion rates of nacc = 1 (Eddington rate) and nacc = 0.1, respectively. The quasar bolometric luminosity is plotted in blue; the blue and red
curves intersect when quasars radiate at the Eddington limit. The bottom panels show the evolution of the specific black hole accretion rate,
Nace, for each object (purple), compared to the population median (dotted gray line) and 16th—84th percentile range (shaded gray region).
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plot their SMBH mass evolution (red) alongside the corresponding host halo
mass (green, scaled down by 10°). The associated quasar luminosity histories
are shown in blue. Red and blue curves intersect when quasars radiate at
the Eddington limit, while blue lines above the red indicate super-Eddington
radiative phases. For reference, the light gray curves represent idealized
cases of continuous SMBH growth from M., at the Eddington limit and at
0.1 MEdd. The smaller panels further show the accretion histories in terms
of the sSBHAR 7, (purple), compared against the population median and
16th-84th percentiles (gray dotted line and shaded region) across cosmic
time.

Across all examples, the same qualitative pattern emerges: rapid SMBH
growth at z 2 6, followed by a marked slowdown at later times. This
behavior is driven directly by the evolving distribution of sSBHARs. At
early times, SMBHs accrete at rates close to the Eddington limit; by lower
redshifts, the distribution broadens and shifts toward low values (... < 1%),
consistent with the decline in cosmic gas supply. In most cases, SMBH
growth closely tracks that of the host halo (green lines). However, stochastic

variations in the accretion rate lead to significant departures in some cases.

Crucially, short bursts of super-critical accretion (nacc > 1) play a decisive
role in driving SMBHs to higher masses on short timescales. For instance,
the bottom-left panel of Fig. 5.6 shows an SMBH reaching ~ 10° M, at
z =~ 6 through repeated episodes of super-critical accretion. Importantly,
because the radiative efficiency e drops steeply in the super-critical regime
(Fig.5.2, bottom), very high accretion rates do not translate into equally
high radiative output. Even when 7, > 1, the corresponding Eddington
ratio saturates only modestly above unity (Fig. 5.3). This feature allows
SMBHs in our model to gain mass rapidly at high redshift through brief
high-accretion bursts (1 < 7,.c < 10), while remaining consistent with the
empirical fact that strongly super-Eddington quasars are not observed at
any epoch. In Sec. 5.3.2, we quantify this comparison by confronting our
predicted Eddington ratio distributions with observations.

Interestingly, even with such strong accretion bursts, SMBH growth never
systematically exceeds the analytic Eddington-limited growth curve (light
gray). This highlights a central result of our model: sustained, uninterrupted
Eddington-limited accretion is not a viable growth pathway. Instead, SMBHs
grow through a stochastic sequence of accretion episodes — alternating
between super-critical bursts and long periods of less efficient, sub-Eddington
accretion. This produces growth tracks that may cluster around, but rarely
exceed, the simple Eddington-limited scenario, while still enabling a subset
of black holes to assemble the extreme masses required to power luminous
quasars at all epochs.
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Figure 5.7: Comparison between the bolometric quasar luminosity function (QLF) predicted by our model and the compilation of Shen
et al. (2020). Each panel corresponds to a different redshift, from z = 2.0 to z = 6.0, while the bottom-right panel combines all redshifts
to illustrate evolutionary trends. Model predictions for the full SMBH population are shown as solid colored lines, and those restricted to
Mgy > 108 Mg as dashed lines. Observational data — drawn from X-ray, UV-optical, infrared, and radio surveys, and corrected for obscuration
using wavelength-dependent bolometric corrections — are shown as colored points with error bars.
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5.3.2 Comparison with quasar observables

In Fig. 5.7, we compare the predictions of our fiducial model (solid lines) to
the bolometric QLF of Shen et al. (2020, see Sec. 5.2.3). Each panel shows
a different redshift slice from z = 2 to z = 6, while the bottom-right panel
combines all redshifts to highlight the overall evolutionary trend.

We find that our model reproduces the observed QLF very well for
luminous quasars (Lpe = 10%%ergs™!), which constitute the primary
targets of UV-optical surveys. The large cosmological volume of FLAMINGO
allows us to follow the quasar population up to extreme luminosities of
Lyl = 10*8 ergs™!, and down to space densities as low as n ~ 109 cMpc>.
This statistical power makes it possible to robustly probe the rarest, most
luminous quasars, and we find that the bright-end slope of the QLF is
accurately reproduced across all redshifts considered.

At the faint end, however, discrepancies arise. Observationally, the QLF
flattens significantly toward low luminosities, whereas our model predicts a
steeper continuation and thus an excess population of faint quasars/AGN,
particularly at high redshift. This tension is not unique to our framework:
many theoretical models have long struggled to reproduce the faint-end
behavior of the QLF from first principles (e.g., Degraf et al. 2010).

It is important to emphasize that the faint end of the QLF is itself
highly uncertain observationally. In UV-optical surveys, the QLF can be
probed down to Ly, ~ 10*°ergs™!, but at these luminosities quasars
become increasingly difficult to distinguish from UV-bright galaxies, and
completeness corrections are non-trivial. X-ray surveys extend coverage to
lower luminosities, Lpo ~ 10*3-10%* ergs™!, but rely heavily on uncertain
photometric redshifts and rarely extend beyond z 2 3. Moreover, the level of
obscuration at low luminosities and high redshifts is still poorly constrained:
if the obscured fraction is higher than currently assumed (e.g., Ueda et al.
2014), present-day bolometric QLF estimates may underestimate the true
space density of faint quasars.

The advent of JWST has opened a new observational window onto
the faint end of the quasar population. Early studies identifying broad-
line AGN through rest-frame optical diagnostics suggest the presence of a
more numerous faint population than previously inferred, with bolometric
luminosities of Lyo ~ 10*3 — 10% ergs~! and black hole masses of Mgy ~
10% — 108 Mg, (e.g., Harikane et al. 2023; Maiolino et al. 2024; Juodzbalis et al.
2025). Strikingly, our model naturally predicts such a population: low-mass
SMBHs that were largely invisible to pre-JWST surveys make a substantial
contribution to the faint end of the QLF. This is illustrated in Fig. 5.7
by comparing the full QLF (solid lines) with that obtained by restricting
to SMBHs with Mpy > 108 M, (dashed lines). The strong divergence of
the two curves at Ly, < 10%° ergs™! highlights the predicted dominance of
small SMBHs in this regime — consistent with the emerging JWST results.
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Figure 5.8: Comparison between the binned conditional Eddington ratio distribution functions (cERDFs) predicted by our model and those
derived from SMBH mass and quasar luminosity compilations of Wu & Shen (2022, z &~ 2-5) and Fan et al. (2023, z 2 6). Observed distributions
are shown as histograms, color-coded by bolometric luminosity, with dotted vertical lines marking their medians. Predictions from the fiducial
model are shown as thin solid lines. While the model broadly reproduces the observed trends with both redshift and luminosity, it systematically
predicts higher Eddington ratios than observed.
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However, current JWST-based estimates remain highly uncertain, and the
physical nature and demographics of these faint sources are still the subject
of active debate.

If the faint QLF measurements in Fig. 5.7 are correct, then the faint-
end excess predicted by our model reflects a genuine shortcoming of the
framework. In this scenario, the model reproduces the QLF data across
luminosities reasonably well only when restricted to Mgy > 10 My SMBHs
(dashed lines). However, the additional population of lower-mass black holes
accreting at or above the Eddington limit reaches luminosities comparable
to faint quasars, thereby altering the predicted shape of the QLF. If such a
population does not exist in reality, this would imply that SMBHs in our
model are, on average, accreting — and thus radiating — more efficiently
than is observed. This discrepancy could signal missing physical processes
that regulate accretion in low-mass systems, such as stronger radiative
or mechanical feedback, limited gas supply due to inefficient inflows, or
environmental effects that suppress sustained high-Eddington accretion.
More complex parametrizations are needed to account for these effects in
the context of our framework.

A discrepancy between our model predictions for SMBH accretion and
observations becomes indeed apparent when examining the cERDF in Fig. 5.8,
where we show the distribution of Eddington ratios in bins of bolometric
luminosity. In practice, the two-dimensional distribution P(Agqd, Lbol) is
projected into a set of one-dimensional distributions by slicing along narrow
Ly bins. Comparing the observed distributions (histograms) with those
predicted by the model (thin solid lines) reveals a systematic offset: the
model consistently produces Eddington ratio distributions skewed toward
higher values relative to the data. The difference is modest — the peaks of
the two distributions typically agree within 1o — but its persistence across
all redshifts and luminosities suggests that it reflects a genuine limitation of
the model rather than statistical noise.

This systematic bias toward higher Agqq is also what drives the large pop-
ulation of lower-mass SMBHs in our model to reach bolometric luminosities
comparable to those of faint quasars. Reducing the average accretion rates
would suppress the number of such faint sources and improve agreement
with observations, but it would also prevent SMBHs from growing rapidly
enough to reach the extreme masses required to power the brightest quasars.
This underscores a fundamental challenge: reconciling the high accretion
rates seemingly necessary to assemble billion-solar-mass black holes at early
times with the empirical evidence that most observed quasars radiate at
Eddington ratios around or below unity. Although our prescription for ra-
diative efficiency in the super-critical regime (Madau et al. 2014) suppresses
the luminosities of rapidly accreting quasars, limiting them to radiate only
modestly above the Eddington limit (Fig. 5.3), we conclude that this effect
alone does not fully reconcile the tension between modest observed Edding-
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ton ratios and the growth rates required for SMBH assembly. Resolving
this discrepancy will require further work to test whether refined param-
eter choices, alternative radiative efficiency prescriptions, or more flexible
accretion models can provide a better match.

Despite this offset, our fiducial model successfully reproduces the main
behavior of the cERDF. In particular, it captures the observed trend that the
cERDF peaks at higher Aggqq with both increasing redshift and increasing
bolometric luminosity. This agreement suggests that while the model slightly
overestimates accretion efficiencies, it nonetheless recovers the key qualitative
features of SMBH growth across cosmic time and luminosity, making it a
solid foundation for future refinements.

The last observable we consider is the clustering of quasars. As discussed
in Sec. 5.2.3, we include measurements of the quasar auto-correlation function
at z &~ 2.5 and z ~ 4, as well as the quasar—galaxy cross-correlation function
at z = 6. In principle, the auto-correlation could be computed directly
from the quasars in our model above a chosen luminosity threshold, Lboj thr-
However, this approach is not feasible for the quasar-galaxy cross-correlation,
since the FLAMINGO run used here does not resolve the majority of galaxy-
hosting halos'. To ensure consistency across all redshifts, we instead adopt
the framework developed by Pizzati et al. (2024a,b), and compute clustering
predictions from the quasar host mass function (QHMF)-.

The QHMF is defined as the halo mass distribution of quasars brighter
than Lyopthr. Given a QHMEF, the clustering can be predicted under the
assumption that halo mass alone determines the bias — i.e., neglecting any
assembly bias contributions (e.g., Wechsler et al. 2006). This assumption is
reasonable in our context, as assembly bias is expected to play a minor role,
and current quasar clustering measurements are not yet precise enough to be
dominated by such effects (e.g., Bonoli et al. 2010). Using the halo correlation
fitting framework of Pizzati et al. (2024a), we compute the quasar auto-
correlation functions at z ~ 2.5 and z & 4 given the QHMFs at the respective
redshifts (see their Eqs. 7-8). For the quasar—galaxy cross-correlation at
z = 6, we combine the QHMF with a galaxy host mass function (GHMF)
following Eqgs. 3-5 in Pizzati et al. (2024b). For the GHMF, based on
[O 11| -emitting galaxies, we adopt the measurements of Eilers et al. (2024),
and approximate it with a simple cutoff form in which the HMF is set to
zero below 10g; Mmin gal/Me = 10.56.

1By extending our framework to the larger FLAMINGO-10k simulation (Schaller et al.,
in prep.; Pizzati et al. 2024b), we will be able to compute the quasar-galaxy cross-
correlation function directly from the simulation outputs. Work on this extension is
currently underway.

2Pizzati et al. (2024a,b) also rely on the FLAMINGO suite of cosmological simulations.
In their approach, the simulations are used to calibrate a fitting model that predicts the
clustering of any halo population (both auto- and cross-correlations) directly from its
mass distribution.
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Figure 5.10: Comparison between quasar clustering predicted by our model and observational measurements at three redshifts: z ~ 2.5
(quasar auto-correlation function from Eftekharzadeh et al. 2015), z & 4 (quasar auto-correlation function from Shen et al. 2007), and z =~ 6
(quasar—galaxy cross-correlation function from Eilers et al. 2024). Model predictions are derived from the quasar host mass functions (QHMFs),
adopting luminosity thresholds matched to each dataset, as described in Sec. 5.2.3.
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Figure 5.9 shows the QHMF (solid lines) from our fiducial run, using a
uniform luminosity threshold of log;y Lpol thr/€rg s~1 = 46.5 at all redshifts.
For comparison, the halo mass function (dashed line) is also shown, illus-
trating the fraction of halos active as quasars at a given mass. This fraction
can be interpreted as the quasar duty cycle (e.g., Martini & Weinberg 2001;
Haiman & Hui 2001; Pizzati et al. 2024a). At all redshifts, the QHMF peaks
in the range Mpalo ~ 10'2-10'3 M, in good agreement with general observa-
tional trends. As redshift decreases, the QHMF peak shifts to progressively
higher halo masses, and the distribution broadens, reflecting the growing
diversity of quasar host environments.

Finally, Fig. 5.10 compares the clustering predicted by our model with the
observational measurements described in Sec. 5.2.3. To ensure consistency,
we compute clustering from the QHMFs using the same luminosity thresholds
as the data at each redshift. This differs slightly from the QHMFs shown
in Fig. 5.9 (that are obtained with a uniform luminosity threshold), but in
practice the impact is modest: in our framework, quasar clustering depends
only weakly on luminosity, in agreement with observations that find a mild or
negligible luminosity dependence (e.g., Adelberger & Steidel 2005; Porciani
et al. 2004; Shen et al. 2009; Eftekharzadeh et al. 2015).

At z = 2.5, our fiducial run reproduces very well the tight clustering
constraints from the BOSS survey (Eftekharzadeh et al. 2015). Indeed,
Pizzati et al. (2024a) derived the QHMF at this redshift by jointly fitting
the QLF and clustering, finding a broad distribution peaking at M., =
10'2° Mg, in excellent agreement with our model predictions.

At z =~ 4, by contrast, our model underpredicts the remarkably strong
clustering measured by Shen et al. (2007) from SDSS quasars. Those data
imply a very rapid evolution of quasar bias with redshift — a result that
has long posed challenges for models of quasar and SMBH evolution (e.g.,
White et al. 2008; Shankar et al. 2010b). More recent measurements at
comparable (He et al. 2018; Timlin et al. 2018) and higher redshifts (Filers
et al. 2024; Pizzati et al. 2024b) indicate weaker clustering, casting doubt
on the extreme values implied by Shen et al. (2007). It is therefore not
surprising that our model — like many other empirical models and SAMs
(e.g., Conroy & White 2013; Fanidakis et al. 2013) — predicts significantly
lower clustering at z ~ 4. Matching the Shen et al. (2007) result would
require an extremely narrow QHMF, with virtually all luminous quasars
confined to the most massive halos (Pizzati et al. 2024a). Such a scenario
is difficult to reconcile with the intrinsic stochasticity that, in our model,
drives extreme SMBH growth at early cosmic times (Sec. 5.3.3.1). The
presence of stochasticity inevitably lowers the clustering, as it implies that
even lower-mass halos can host massive, highly accreting SMBHs. This
tension highlights the need for further work to establish whether the z ~ 4
clustering measurements can be reconciled with the broader set of quasar and
SMBH constraints, and calls for new clustering analyses at similar redshifts
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— such as those anticipated from DESI (Yang et al. 2023) — which will be
essential to determine whether the strong z = 4 signal reflects genuine quasar
physics or arises from observational systematics.

At z = 6, the agreement improves again. The EIGER survey (Eilers et al.
2024) measures a clustering signal somewhat stronger than our prediction,
consistent with a QHMF peaking near ~ 1012 M, (Pizzati et al. 2024b).
Our model predicts a slightly lower peak halo mass and weaker clustering,
but the discrepancy is modest, and a refined choice of model parameters
would likely bring the results into even closer agreement. Moreover, the
EIGER result is based on only five quasar fields and is therefore highly
sensitive to cosmic variance. In future iterations, we will compare against
forthcoming results from the JWST ASPIRE survey (Wang et al. 2023,
Wang et al. in prep.), which will provide clustering measurements from a
much larger sample of 25 quasars. These data, which are largely consistent
with EIGER but significantly more robust against cosmic variance (Huang
et al. in prep.), will offer a more stringent benchmark for constraining our
model at early cosmic times.

5.3.3 Implications for SMBH growth and scaling rela-
tions

The central question we set out to address in this work is straightforward:
can a simple, physically-motivated model for black hole formation and evo-
lution reproduce the diverse properties of bright quasars observed across
cosmic time? While additional work is required to perform a full inference
analysis and refine the model parameters, the results presented in Sec. 5.3.2
demonstrate that the answer is encouragingly positive. Our framework suc-
cessfully captures the key observational benchmarks — the quasar luminosity
function, the conditional Eddington ratio distribution, and quasar clustering
— for a wide redshift range.

Building on this result, we now turn to the broader implications of the
model. In particular, we examine how our framework informs the scaling
relations between SMBHs and their host halos, and what it reveals about
the physical processes that govern SMBH growth across cosmic history. By
connecting the global quasar population to the detailed assembly histories
of halos, our model provides a natural way to probe both the average
evolutionary pathways and the stochastic variability that drive the emergence
of the most massive black holes.

5.3.3.1 The black hole mass-halo mass relation across cosmic
history

Figure 5.11 shows the black hole mass—halo mass (Mpu—Mhpalo) relation
predicted by our fiducial model. Each panel displays the full distribution of
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SMBHs at a given redshift as a two-dimensional histogram in the Mgy—Mya10
plane (with logarithmic color scaling to highlight the tails), while points and
error bars denote the median and 16th—84th percentiles of Mpy in bins of halo
mass. For reference, a linear relation with normalization My /Myalo = 105
is shown as a dashed line.

It is important to stress that the relation shown here cannot be directly
compared to observations. In reality, SMBH mass measurements are subject
to systematic uncertainties of order ~ 0.5 dex, and only a biased subset
of the population is accessible — either luminous quasars radiating above
survey thresholds or, in the nearby Universe, the most massive black holes
detectable through dynamical methods. By contrast, our model includes the
entire SMBH population, independent of observability, and assumes perfect
knowledge of their masses.

With these caveats in mind, the relation exhibits a clear, nearly linear
trend with relatively small scatter (< 0.3 dex). The very tight distribution
at low SMBH and halo masses primarily reflects our assumption of a fixed
seeding mass, Mgiart. At larger masses the scatter increases moderately, but
the relation remains well-defined, a direct consequence of our prescription
that ties SMBH growth to halo accretion. This coupling is also evident
in Fig. 5.6, where the growth of individual SMBHs broadly parallels the
assembly of their host halos.

The bottom-right panel of Fig. 5.11 highlights the redshift evolution of
the median relation and its scatter. Overall, the evolution is modest: at
Myato S 1013 Mg, both the normalization and slope of the relation increase
toward lower redshifts. At the high-mass end, by contrast, the relation shows
a clear flattening, which becomes more apparent once massive halos emerge in
significant numbers near cosmic noon. This flattening is a direct consequence
of our cold-gas accretion prescription: once halos exceed ~ 10125713 Mg,
the smaller cold gas accretion rates limit the ability of SMBHs to grow in
lockstep with their hosts. As a result, the most massive halos host SMBHs
that grow more slowly relative to halo mass assembly. This behavior mirrors
the turnover observed in the stellar-to-halo mass relation (e.g., Behroozi
et al. 2019), and underscores a common physical picture in which cooling
inefficiencies in massive halos suppress baryonic growth across both galaxies
and SMBHs.

Despite the relatively small scatter, most SMBHs in our model remain
below Mgy ~ 10%, M across all redshifts and halo mass bins, with the
median relation at high redshift reaching only Mgy ~ 10%, My even in
the most massive halos. The billion-solar-mass SMBHs powering luminous
quasars at early times are therefore not typical products of the mean relation,
but instead arise as stochastic outliers in the accretion history distribution.
Indeed, the rare objects with Mgy > 10° M are found in a wide range of
halo masses, indicating that their rapid growth is driven more by fluctuations
in accretion than by steady halo mass assembly. This finding reinforces the
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importance of tracing individual SMBH growth trajectories — rather than
relying solely on population averages — to capture the formation pathways
of luminous quasars.

This intrinsic stochasticity also explains why our model struggles to
reproduce the strong clustering signal measured at z = 4 by Shen et al.
(2007, Sec. 5.3.2). Matching such strong clustering would require the massive
SMBHs powering quasars to reside exclusively in the most massive halos
— contrary to the broad range of environments predicted here. One could,
in principle, reduce stochasticity by shifting the median relation upward
(i.e., assuming more efficient accretion on average), or by allowing SMBHs
in massive halos to continue accreting by relaxing the cold-gas suppression.
However, both approaches would likely lead to an overproduction of extremely
massive black holes at later times, in conflict with constraints in the local
Universe. While low-redshift data are not explicitly included here, future
work will explore whether low-z constraints, such as the local Mgy—Myalo
relation (e.g., Ferrarese & Merritt 2000), can help anchor the high-redshift
regime and clarify which pathways of early SMBH growth remain consistent
with observational constraints at later cosmic time.

5.3.3.2 The coherence timescale of the accretion process

A key driver of stochasticity in our SMBH growth model is the coherence
timescale of the accretion process, Teonerence- L his often-overlooked parameter
sets the degree of temporal correlation in SMBH accretion. While the
intrinsic shape of the accretion rate (sSBHAR) distribution, P(nacc|s]\./[cold’acc),
specifies only the zeroth moment of the accretion stochastic process, Teoherence
encodes its higher-order temporal structure, determining how fluctuations
are sampled and accumulated over time.

If Teonerence 1S large, accretion bursts persist for extended periods; over the
interval between two snapshots, the accretion history is then determined by
only a few draws from the P (nacc |8Mco1d7 acc) distribution, yielding substantial
object-to-object scatter in final SMBH masses. Conversely, a very small
Teoherence Yields many (approximately) independent draws in a fixed interval,
so individual histories converge toward the mean behavior of the distribution.
As Eq. 5.12 makes explicit, SMBH growth is governed by the sample mean
of the .1 (Macc) distribution. If N =~ At/Teonerence i the effective number of
independent draws over a snapshot interval At, then the standard deviation of
the sample mean distribution scales as N ~'/2 o (Teoherence/At)/? — directly
linking larger Teoherence t0 larger variance in SMBH growth.

Consequently, Tconerence has clear population-level implications. A very
short coherence timescale drives SMBHs with similar seed masses and for-
mation times to follow nearly identical, smooth growth tracks, set primarily
by their average halo accretion rate. In contrast, a longer Tcoherence induces
genuine diversity in growth paths even at fixed halo accretion rate, generating
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Figure 5.12: Black hole mass function (BHMF) for all SMBHs in the simulation. Solid
lines show the fiducial run (Tab. 5.1; Teonerence = 10 Myr) at different redshifts (colors),
while dashed lines show the results with a shorter coherence timescale of Teoherence = 1
Myr, keeping all other parameters fixed. The choice of Tcoherence has a strong impact on
the high-mass tail of the BHMF, which corresponds to the most massive SMBHs powering
bright quasars across cosmic history.

intrinsic mass scatter in addition to the stochasticity already encoded in the
distribution P(nacc|SMcold,acc). The latter primarily governs the short-term
variability seen in individual quasar light curves.

These effects are illustrated in Fig. 5.12, which shows the black hole
mass function (BHMF) for the entire SMBH population at different redshifts.
We compare two cases: our fiducial model with Teonerence = 10 Myr and
an alternative run with Teonerence = 1 Myr, keeping all other parameters
fixed (Tab. 5.1). The contrast is striking: the 1 Myr run produces a much
narrower BHMF', making it substantially more difficult to grow the most
massive SMBHs observed at all redshifts. As a consequence, the individual
growth histories shown in Figs. 5.5 and 5.6 would appear far more uniform
for Teoherence = 1 Myr, with significantly reduced diversity in accretion
trajectories.

The Mpu—Mhalo relation discussed in Sec. 5.3.3.1 is likewise strongly
influenced by Tcoherence- A shorter coherence timescale greatly reduces the
scatter in this relation — forcing SMBH growth tracks to closely follow those
of their host halos — and suppresses the stochastic outliers that, in our model,
give rise to the brightest quasars across cosmic time. Following Eq. 5.12, and
consistent with the central limit theorem, the distribution of SMBH masses
at fixed halo mass approaches a narrow log-normal as T¢oherence decreases.
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Conversely, a longer coherence timescale preserves extended high-mass tails
in the distribution, enabling a subset of SMBHs to reach extreme masses
and power the billion-solar-mass quasars observed in the early Universe.

Despite its importance, the coherence timescale of accretion is inevitably
degenerate with other parameters that regulate SMBH growth. For instance,
a shorter Teonerence could, in principle, be offset by increasing the scatter in the
accretion rate distribution P(naCC|SMCO1d,aCC) — though this freedom is limited,
since the distribution is already anchored to the observed shape of the QLF —
or by introducing additional variance through seeding or merger prescriptions.
What makes the accretion timescale especially compelling, however, is that
it can also be constrained through completely independent methods that
probe quasar lifetimes and duty cycles (e.g., Martini 2004). For example,
proximity-zone measurements in quasar spectra suggest that quasars must
typically have been actively accreting for 10*-107 years to produce the
observed ionization structures around them (e.g., Eilers et al. 2017), setting
a firm lower limit on the accretion timescale. Meanwhile, clustering-based
duty cycle estimates provide complementary constraints by measuring how
long quasars, on average, remain above a given luminosity threshold (Martini
& Weinberg 2001; Haiman & Hui 2001). Taken together, these independent
probes elevate Tcoherence from a tunable modeling parameter to a physically
interpretable quantity with broad observational implications.

Indeed, from a physical standpoint, Tconerence Can be interpreted as
the characteristic timescale of the processes that regulate quasar activity.
These processes remain poorly constrained: it is still unclear whether most
variability arises from rapid, small-scale fluctuations in accretion flows, or
from longer-term, secular changes associated with galaxy and halo evolution,
with short-term variability contributing only secondarily (e.g., Alexander
et al. 2025). A more general framework than that developed here could, in
principle, capture the full hierarchy of variability timescales by parametrizing
the stochastic accretion process in terms of, e.g., its power spectral density,
thereby quantifying the relative importance of different physical mechanisms.
While developing such a framework lies beyond the scope of this work, it
represents a promising avenue for future research. Ultimately, by combining
the full suite of constraints — proximity zones and clustering-based estimates
of quasar lifetimes and duty cycles, instantaneous accretion traced by the
QLF, and long-term SMBH growth inferred from the cERDF and local
SMBH mass measurements — it may become possible to phenomenologically
uncover the processes that govern SMBH evolution across cosmic time.

5.3.3.3 The relative role of mergers and accretion

In Fig. 5.13, we examine the relative importance of mergers and gas accretion
in driving SMBH growth. The solid lines show the BHMF from our fiducial
run, where both accretion and mergers are included. The dashed lines
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Figure 5.13: Black hole mass function (BHMF) for all SMBHs in the simulation at
different redshifts (colors), illustrating the relative contributions of mergers and accretion
to SMBH growth in our fiducial model. Solid lines show the full BHMF including both
accretion and mergers. Dashed lines show the BHMF when only accretion is included
(merging SMBHs are removed without contributing mass), demonstrating that mergers
have only a marginal effect on the overall distribution. When accretion is switched off,
mergers alone fail to produce sufficiently massive SMBHs to match observations (dotted).

represent a run where mergers are switched off by simply discarding merged
SMBHs (i.e., black holes that are “sinked” or disrupted, see Sec. 5.2.1.2)
without adding their mass to the remnant. The comparison reveals that
mergers contribute only minimally across the entire redshift and mass range
probed. At high redshift, the solid and dashed curves are indistinguishable,
while at z < 4 a slight difference emerges around Mpy ~ 108-°-10%° M.
These SMBHs likely reside in massive halos where cold-gas accretion has
been suppressed; in such cases, mergers provide the only significant growth
channel, producing the small offset. However, this difference is marginal
and unlikely to affect any of the quasar observables considered here. This
conclusion is broadly consistent with previous studies, which suggest that
mergers become important only for the most massive SMBHs whose gas
accretion has already been quenched (e.g., Shankar et al. 2009; Volonteri
2012; Pacucci & Loeb 2020). Extending our model to lower redshifts will
allow us to probe this regime in more detail.

The dotted lines in Fig. 5.13 illustrate the BHMF when accretion is com-
pletely switched off and SMBHs grow only through mergers. In this scenario,
SMBH masses never exceed ~ 10% M, even by cosmic noon. The BHMF
evolves from being entirely seed-dominated at high redshift to gradually
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incorporating more growing SMBHs, reflecting the slow accumulation of
mass as black holes merge hierarchically in the ACDM paradigm.
Although mergers do not play a dominant role in shaping SMBH growth or
quasar observables in our current framework, quantifying their contribution
is nonetheless crucial for an independent and complementary test of SMBH
assembly. Gravitational-wave observations, in particular, are sensitive almost
exclusively to mergers and provide a window into a regime that is otherwise
invisible to traditional electromagnetic probes. Pulsar timing arrays (PTAs)
have already begun to place constraints on the gravitational-wave background
generated by SMBH binaries (e.g., Agazie et al. 2023), offering indirect
evidence for the demographics of massive black hole pairs at z < 2. The
upcoming LISA mission, on the other hand, will directly detect individual
SMBH merger events over a wide range of redshifts and masses, reaching
into the early Universe and probing the very systems responsible for seeding
and assembling today’s SMBH population (e.g., Amaro-Seoane et al. 2023).
Because our framework is explicitly constructed from cosmological merger
trees, it is particularly well suited to generate detailed predictions for the
merger rates, mass ratios, and redshift distribution of SMBH binaries. Even
if mergers are subdominant for quasar fueling, their gravitational-wave
signatures could provide the cleanest observational handle on SMBH assembly
histories. In this sense, gravitational-wave observatories will not only test the
merger-driven growth channel but also offer an entirely orthogonal way to
validate models like ours. In future work, we plan to extend our model in this
direction, leveraging its merger-based nature to make concrete predictions
for the SMBH merger landscape in the upcoming era of PTAs and LISA.

Discussion and summary

In this work we introduced BAQARO (Black hole Accretion and Quasar
Activity in a Realistic Observational framework), a new empirical model for
the cosmological evolution of supermassive black holes (SMBHs) and quasars
from cosmic dawn to cosmic noon. The framework is built on subhalo merger
trees from the N-body version of the FLAMINGO large-volume simulation
(Schaye et al. 2023; Kugel et al. 2023), and links SMBH growth to halo
assembly through a compact set of parametric prescriptions designed to
capture both average evolutionary trends and stochastic variability. A key
design choice is the absence of explicit redshift dependence: cosmic evolution
enters naturally through the changing specific halo accretion rate (sHAR),
allowing the same physical mapping to be applied seamlessly from the epoch
of reionization to cosmic noon. The model produces full SMBH mass growth
histories, quasar light curves, SMBH merger trees, and host-halo statistics,
providing a versatile platform for direct comparison with a wide range of
observational constraints.
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The model incorporates three main ingredients — seeding, accretion, and
mergers — implemented as follows. (i) Seeding. Because subhalos in our
merger trees are only resolved once they reach relatively large masses, we
initialize each newly formed halo with a fixed “seed” black hole of mass Mgtart

early growth and establishes the baseline of the Mpy-Mya, relation. In this
work we adopt a single fiducial value of Mgat, deferring exploration of a
distribution of seed masses to future extensions of the model.

(ii) Accretion. We tie the specific black hole accretion rate (sBHAR) to
the specific cold halo accretion rate, sMCOld’aCC = feold(My) sMaCC, measured
between two consecutive snapshots. The cold fraction feoa(My), taken from
Correa et al. (2018), accounts for the suppression of cold inflows in massive
halos due to virial shock heating, while allowing efficient accretion in low-mass
halos at high redshift. Conditional on sMcold,acc, we draw the Eddington-
normalized accretion rate, 1,cc = Mgn / Mgqd, from a log-normal distribution
whose mean and scatter scale as power laws of sMCOld’aCC (Sec. 5.2.2.3).
The radiative efficiency €(7acc) is prescribed following slim-disk models
(Sadowski et al. 2014; Madau et al. 2014), transitioning from a thin-disk
plateau at sub-Eddington rates to a saturated luminosity at super-Eddington
rates. This ensures that the bolometric luminosity, Lyol = € Nacc MEddCQ,
remains physically consistent across regimes. To model stochastic variability,
SMBH masses are advanced by sub-cycling each snapshot into intervals of
a coherence timescale, Tcoherence: Mace 1S held constant over Teoherence and
redrawn thereafter. This single parameter controls how strongly growth
histories “average out” versus retain long-lived bursts.

(iii) Mergers. When subhalos merge, their central SMBHs are assumed
to coalesce following a simplified and optimistic prescription: the remnant
SMBH has a mass equal to the sum of the progenitors, and no black hole is
ejected from the host subhalo as a result of gravitational recoil (Sec. 5.2.2.2).
This treatment is similar to that adopted in many large-scale cosmological
hydrodynamical simulations (e.g., Habouzit et al. 2021). We also perform
control experiments in which we suppress the mass contribution from mergers,
or conversely suppress accretion, to isolate their relative roles.

By construction, BAQARO is anchored to three observational diagnostics
that probe complementary aspects of quasar physics (Sec. 5.2.3): (a) the bolo-
metric quasar luminosity function (QLF), which traces the global abundance
of quasars as a function of luminosity; (b) the conditional Eddington-ratio
distribution function (cERDF), P(Agdd|Lbo1), which leverages broad-line
SMBH mass estimates to probe instantaneous fueling at fixed luminosity;
and (c) the large-scale clustering of UV-luminous quasars, which constrains
typical host halo masses and duty cycles. In practice, we compare our pre-
dictions with the bolometric QLF compilation of Shen et al. (2020), cERDF
measurements derived from SDSS and high-redshift samples (Wu & Shen
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2022; Fan et al. 2023), and the quasar auto-correlation functions from BOSS
and SDSS (Eftekharzadeh et al. 2015; Shen et al. 2007) as well as the recent
JWST constraints on the high-z quasar-galaxy cross-correlation function
(Eilers et al. 2024).

In the analysis presented here, we have focused on the results of a single
fiducial run, with the free parameters of the model fixed to the values
listed in Tab. 5.1. This calibration was chosen to approximately reproduce
the main quasar observables while enabling us to explore the qualitative
implications of the framework. In forthcoming work, we will move beyond
this fiducial calibration and perform a full Bayesian inference of the model
parameters. This will be made possible by developing an emulator trained
on the model outputs that can approximate the predicted observables at
negligible computational cost (Sec. 5.2.4). The emulator will enable Markov
Chain Monte Carlo (MCMC) exploration of the parameter space, allowing us
to rigorously quantify parameter degeneracies, assess the constraining power
of each observable, and obtain posterior distributions jointly constrained by
the QLF, cERDF, and clustering. Such an inference pipeline will sharpen
the predictive power of the model, provide robust uncertainty estimates, and
establish a systematic connection between phenomenological modeling and
observational data.

Our results show that the fiducial model provides a satisfactory match to
the bright end of the bolometric QLF (Lyo > 10%° — 10% ergs~1), the main
evolutionary trends of the cERDF, and the clustering of quasars at z =~ 2.5
and z ~ 6. Nonetheless, several tensions remain: the model overpredicts the
abundance of faint quasars, particularly at high redshift; it yields Eddington
ratios that are systematically biased toward slightly higher values than those
observed across all redshifts and luminosities; and it underestimates the
clustering amplitude at z ~ 4, failing to match the strong signal reported
by Shen et al. (2007). These discrepancies may point to missing physics
in our prescriptions — for example, more complex parametrizations of how
accretion is regulated in low-mass SMBHs, or refined treatments of radiative
efficiency and luminosity output across different accretion regimes.

At the same time, however, some of these relevant observational con-
straints remain highly uncertain. The faint end of the QLF is difficult
to measure due to incompleteness, obscuration, and contamination from
star-forming galaxies. Similarly, the extreme clustering amplitude at z ~ 4
is debated, with more recent studies reporting weaker signals (e.g., He et al.
2018). Addressing these issues thus requires advances on both the modeling
and observational fronts. Forthcoming wide-field surveys such as DESI,
Euclid, and Roman, combined with deep AGN samples from JWST, will
provide a far more complete view of quasar demographics and environments,
offering critical tests for models like BAQARO.
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In addition to confronting the model with key observables, we analyzed
the internal assembly of SMBHs in BAQARO and its connection to the
growth of their host halos. This leads to several conclusions:

e Accretion dominates SMBH growth. In our model, SMBHs grow pre-
dominantly through bursts of near- or super-critical accretion, whereas
mergers contribute only a minor fraction of the overall mass bud-
get (Fig. 5.13). Even under optimistic assumptions about merger
timescales and remnant survival, the impact of mergers remains
marginal. They can provide modest mass boosts for very massive
systems (Mpu ~ 10°Mg) in gas-poor halos at late times, but they
are incapable of producing the billion-solar-mass SMBHs observed as
luminous quasars at all redshifts. This result reinforces a broad con-
sensus from both analytical arguments and cosmological simulations
that sustained accretion, rather than mergers, is the dominant channel
of SMBH assembly across cosmic history (e.g., Shankar et al. 2009;
Volonteri et al. 2016).

e Accreting black holes undergo rapid mass assembly at z 2 6, followed
by a marked decline in growth rates toward cosmic noon (Fig. 5.5).
This overall trend reflects the evolution of halo accretion histories,
but stochasticity plays a decisive role in shaping the distribution of
SMBH masses. In particular, some black holes become extreme outliers,
building up significantly more mass than average through short-lived
episodes of very high, but radiatively inefficient, accretion (Fig. 5.6).
Such bursts allow rare SMBHs to reach ~ 10° M, by 2 ~ 6, consistent
with previous models of rapid early SMBH growth (e.g., Madau et al.
2014; Volonteri et al. 2015; Lupi et al. 2016). Crucially, these events
are not directly tied to halo mass assembly, but instead emerge from
stochastic fluctuations in the accretion rate distribution. Tracking these
rare, burst-driven growth histories — rather than focusing solely on
population averages — is therefore essential for explaining the emergence
of the most massive quasars in the early Universe.

e As a consequence of this SMBH-halo co-evolution, the predicted Mpy-
M1 relation in BAQARO is approximately linear and nearly constant
with redshift, with an intrinsic scatter of < 0.3 dex (Fig. 5.11). This
tight correlation reflects the average tendency of SMBH growth to follow
halo accretion. However, consistent with the stochastic growth episodes
discussed above, the most massive SMBHs powering luminous quasars
at all cosmic times do not emerge from the mean relation. Instead,
they appear as rare outliers, produced by bursts of unusually efficient
accretion rather than steady halo assembly. These stochastic extremes
are essential for explaining the billion-solar-mass SMBHs observed at
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high redshift, but they also complicate simple interpretations of quasar
environments that rely on a deterministic Mpg-Mpao mapping.

e A key driver of this stochasticity in SMBH evolution is the coherence
timescale of the accretion process, Teoherence- Short values of Teoherence
lead to SMBH mass functions that are narrow, with little diversity
in individual growth histories, as accretion fluctuations are averaged
out. In contrast, longer coherence timescales preserve broad high-mass
tails in the distribution, enabling rare SMBHs to reach Mpy = 10° Mg
already at early cosmic times (Fig. 5.12). This makes Tcoherence @ critical
parameter for determining whether the model can produce the most
massive quasars seen at z = 6. Independent constraints from proximity-
zone measurements and clustering-based duty cycle estimates suggest
timescales for SMBH accretion and quasar activity of ~ 104107 yr
(e.g., Eilers et al. 2017, 2024; Pizzati et al. 2024Db), placing Teoherence il
a regime where it directly connects phenomenological modeling with
observables. As such, it provides a promising avenue to tie SMBH
accretion physics to measurable quantities, and to test whether the
observed diversity in quasar activity is consistent with burst-driven
growth.

The version of BAQARO presented here is a preliminary implementation
of the framework. Several avenues for further development are already clear.
First, a full parameter inference must be carried out. This will enable
us to quantify parameter degeneracies, identify which observables drive
the strongest constraints, and obtain robust posteriors for SMBH growth
prescriptions. Such an inference pipeline will significantly strengthen the
predictive power of the model.

Second, the redshift range of the model must be extended. Our current
analysis is restricted to 2 < z < 15, mainly to reduce computational costs.
Extending BAQARO down to z = 0 will allow direct tests against the local
scaling relations, the observed black hole mass function, and the full history
of quasar downsizing. This step will also make it possible to connect high-z
accretion-driven growth to the observed demographics of SMBHs in the
nearby Universe.

Third, the treatment of the low-mass and seeding regime needs to be
improved. At present, the limited resolution of the FLAMINGO simulation
prevents us from resolving the formation and early growth of low-mass
SMBHs. We plan to tackle this in two complementary ways: (i) by rebuilding
the model on the larger, higher-resolution FLAMINGO-10k run (Schaller et
al. in prep.), and (ii) by incorporating analytical prescriptions to capture
the unresolved early phases of SMBH seeding and growth. Together, these
approaches will allow us to explore the critical regime of Mgy ~ 10*-10" My,
which remains one of the most uncertain aspects of SMBH evolution.
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With these developments, we hope to address several key questions that
remain open in our present analysis. For example: can the strong clustering
signal reported by Shen et al. (2007) at z ~ 4 be ruled out as an observational
systematic, or is there a physically consistent way to connect it with the
rapid SMBH buildup at higher redshift and the subsequent evolution to
lower redshift? More broadly, how much can we learn from clustering-based
estimates of the quasar duty cycle across cosmic time? And how can these
constraints be tied to lifetime estimates from quasar proximity zones and
damping-wing analyses (e.g., Eilers et al. 2017; Durovéikové et al. 2024),
and ultimately to the coherence timescale of the accretion process? Because
BAQARO resolves individual SMBH accretion histories, it naturally predicts
the fraction of time black holes spend above a given luminosity threshold.
This definition of duty cycle can be compared directly with clustering-based
estimates and with lifetime measurements from proximity zones, providing a
coherent test of whether short-lived, bursty accretion episodes are compatible
with the observed demographics of quasars.

Another major uncertainty concerns the role of super-critical accretion
in the assembly of early SMBHs. Our results suggest that bursts of highly
efficient accretion are essential for producing billion-solar-mass quasars by
z 2 6, with short-lived episodes of ~1-10 Myr compatible with lifetime and
duty cycle constraints at z & 6 (Pizzati et al. 2024b). Yet it remains unclear
how robust this channel is compared to alternative pathways, and to what
degree super-critical accretion can complement or replace heavy seeding
scenarios. In the current version of the model, SMBHs are initialized with a
fixed seed mass, meaning that the degeneracy between seed properties and
subsequent accretion histories remains unresolved. Breaking this degeneracy
will be critical for distinguishing between different theories of early black
hole formation.

Encouragingly, the next generation of observational constraints will
provide powerful tests of these ideas. Ongoing and upcoming surveys with
JWST, Euclid, and Roman will directly probe the abundance of 106-10° M,
SMBHSs at z 2 7, offering new leverage on the high-redshift early accretion
regime. At the same time, a complementary window is opening through
gravitational-wave astronomy. Extending the model to the local Universe
will allow us to connect with the recent evidence for a nano-Hz gravitational-
wave background from pulsar timing arrays — signals that are expected to
become even more constraining in the near future (e.g., Agazie et al. 2023).
Moreover, the model is well-suited to make forecasts for LISA, which will
detect individual SMBH mergers across cosmic time and a broad mass range
(e.g., Amaro-Seoane et al. 2023). These gravitational-wave observations will
provide an entirely orthogonal test of SMBH assembly, probing the merger-
driven channel that is otherwise invisible in traditional electromagnetic
surveys.
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In summary, our analysis shows that a simple, observationally anchored
framework can account for the main demographics of luminous quasars
across cosmic time while naturally incorporating the stochasticity required
to produce the most extreme SMBHs. Looking ahead, the combination of
large-volume simulations, flexible empirical prescriptions, and the rapidly
expanding suite of multi-wavelength and multi-messenger observations will
enable BAQARO and analogous models to refine our understanding of how
the Universe assembled its first quasars and, ultimately, the billion-solar-
mass black holes that continue to shape galaxy evolution to the present
day.

Acknowledgements

EP is grateful to Victor Forouhar Moreno and Rob McGibbon for help with
the HBT-HERONS catalogs. We are grateful to the FLAMINGO team
for making their dark matter only simulations available. We acknowledge
helpful conversations with the ENIGMA group at UC Santa Barbara and
Leiden University. JFH and EP acknowledge support from the European
Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (grant agreement No 885301). This work is partly
supported by funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sktodowska-Curie grant agreement
No 860744 (BiD4BESt). This work used the DIRAC Memory Intensive
service (Cosma8) at the University of Durham, which is part of the STFC
DiRAC HPC Facility (www.dirac.ac.uk). Access to DIRAC resources was
granted through a Director’s Discretionary Time allocation in 2023 /24, under
the auspices of the UKRI-funded DiRAC Federation Project. The equipment
was funded by BEIS capital funding via STFC capital grants ST /K00042X/1,
ST/P002293/1, ST/R002371/1 and ST/S002502/1, Durham University and
STFC operations grant ST/R000832/1. DIiRAC is part of the National
e-Infrastructure.


www.dirac.ac.uk




TOWARDS INFERENCE OF
OVERLAPPING GRAVITATIONAL
WAVE SIGNALS

Abstract

Merger rates of binary black holes, binary neutron stars, and neutron star-
black hole binaries in the local Universe (i.e., redshift z = 0), inferred from
the Laser Interferometer Gravitational Wave Observatory (LIGO) and Virgo,
are 16-130 Gpc™2 yr~!, 13-1900 Gpc~2 yr~!, and 7.4-320 Gpc=3 yr—!,
respectively. These rates suggest that there is a significant chance that two
or more of these signals will overlap with each other during their lifetime
in the sensitivity-band of future gravitational-wave detectors such as the
Cosmic Explorer and Einstein Telescope. The detection pipelines provide
the coalescence time of each signal with an accuracy O(10ms). We show
that using a prior on the coalescence time from a detection pipeline, it is
possible to correctly infer the properties of these overlapping signals with
the current data-analysis infrastructure. We study different configurations of
two overlapping signals created by non-spinning binaries, varying their time
and phase at coalescence, as well as their signal-to-noise ratios. We conclude
that, for the scenarios considered in this work, parameter inference is robust
provided that their coalescence times in the detector frame are more than
~ 1-2s. Signals whose coalescence epochs lie within ~ 0.5s of each other
suffer from significant biases in parameter inference, and new strategies and
algorithms would be required to overcome such biases.
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6.1 Introduction

The advent of the third generation (3G) gravitational-wave (GW) observato-
ries, such as the Cosmic Explorer (CE) (Evans et al. 2021; Reitze et al. 2019a;
Reitze et al. 2019b) and the Einstein Telescope (ET) (Punturo et al. 2010),
will offer the possibility to observe binary coalescence events from redshifts
z ~ 10-50, thanks to an order of magnitude improved strain and frequency
sensitivity compared to the current generation of detectors of Advanced
LIGO (Aasi et al. 2015), Advanced Virgo (Acernese et al. 2015), and KA-
GRA (Akutsu et al. 2019). Indeed, 3G observatories will have unprecedented
sensitivity to detect coalescence events from an epoch when the Universe
was still in its infancy assembling its first stars and will routinely detect
mergers with stupendously large signal-to-noise ratios of several thousands
(Sathyaprakash et al. 2012; Vitale & Evans 2017; Maggiore et al. 2020; Evans
et al. 2021). An order of magnitude greater redshift reach and access to
extremely high-fidelity signals compared to current interferometers promises
many new discoveries, while allowing completely independent, precision
tests of cosmological models, alternative gravity theories, and astrophysical
scenarios of compact binary formation and evolution (Evans et al. 2021;
Maggiore et al. 2020). With an expected rate of hundreds of thousands of
binary coalescence signals each year (Baibhav et al. 2019; Sachdev et al.
2020; Maggiore et al. 2020; Evans et al. 2021) on top of weak, but persistent,
radiation from isolated neutron stars (Sathyaprakash et al. 2012), rare bursts
from supernova and other transient sources and stochastic backgrounds
(Regimbau et al. 2017), 3G observatories demand novel algorithms for signal
detection and characterization. Therefore, a proper understanding of sys-
tematics arising from overlapping loud and quiet signals alike will answer a
range of scientific questions that are at the forefront of fundamental physics
and astronomy, as well as a realistic estimation of the computational cost.

According to current estimates, 3G observatories are expected to detect
hundreds of thousands of binary black hole (BBH) and binary neutron star
(BNS) mergers each year (Baibhav et al. 2019; Sachdev et al. 2020; Maggiore
et al. 2020; Evans et al. 2021). If we take account of the fact that signals
will last longer due to a lower starting frequency (3 Hz for ET and 5Hz for
CE), then it is clear that 3G data will be dominated by many overlapping
signals (Regimbau et al. 2012; Meacher et al. 2016; Regimbau et al. 2017;
Samajdar et al. 2021; Relton & Raymond 2021). The problem of overlapping
signals producing a confusion background in future terrestrial detectors was
identified more than a decade ago (Regimbau & Hughes 2009). The problem
poses two challenges: first, the detection of individual signals could, in
principle, be affected by the presence of multiple signals. Second, the current
Bayesian inference methods (Veitch et al. 2015; Ashton et al. 2019) may
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not guarantee unbiased estimation of source parameters, which is crucial to
deliver the science promises of 3G observatories.

A similar issue has been tackled, in a different context, by the LISA (Laser
Interferometer Space Antenna) community. LISA is expected to produce a
data set containing many overlapping astrophysical signals: galactic white
dwarf binaries are persistent sources of gravitational waves and they produce
a “foreground” noise (Crowder & Cornish 2004) that could masquerade the
detection and parameter estimation of other astrophysical signals. Several
authors have studied the problem of both detection (Cornish & Porter 2007;
Littenberg 2011; Babak et al. 2010) and Bayesian inference (Cornish &
Crowder 2005; Crowder & Cornish 2007) in this context, while others have
focused on searching for the global solution to the full family of potential
signals (Littenberg et al. 2020; Robson & Cornish 2017; Petiteau et al. 2013).
A parallel effort has been made by other studies (Cornish & Littenberg
2015; Chatziioannou et al. 2021; Cornish et al. 2021) to characterize the
overlapping between GW signals and glitches in the context of LIGO/Virgo
data analysis. These studies represent a useful reference that could guide the
development of new algorithms specifically suited to deal with the parameter
estimation of multiple signals in the context of terrestrial detectors.

However, no effort to study the problem of inference in the case of
3G terrestrial detectors has so far been made. Given the relevance of
this specific problem, an exploratory study of the capabilities of current
parameter estimation methods in the context of overlapping signals in
terrestrial detectors appears to be necessary. With this consideration in
mind, we aim to characterize the conditions for which parameter estimation
is possible with the current algorithms for overlapping signals and to identify
regions in the signal parameter space that create significant biases in the
inference process, for which novel algorithms would be required.

Detecting overlapping GW signals has been shown to be possible by two
ET mock data challenges (Regimbau et al. 2012; Meacher et al. 2016). These
studies were able to correctly identify and recover signals even when they
were overlapping with multiple others. Even though the signal detection may
provide unbiased results, however, there is no guarantee that the parameter
inference in the case of overlapping signals is possible within the current
framework. This is because current methods heavily rely on the efficiency of
sampling algorithms, which are used to explore the posterior distribution of
parameters. If we analyze overlapping signals with the current parameter
estimation (PE) procedures (i.e., the assumption that the parameter space
for multiple signals is the same as in the case of data containing only one
signal at a time), we expect Markov Chains and the posterior distribution
to exhibit a non-trivial behavior such as slowly or non-convergence of chains,
multi-modal and biased posterior distributions, etc.

To this end, we deploy the Fisher information matrix formalism to gauge
the limit between the region where overlapping signals could lead to biases in
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Figure 6.1: Contour diagram showing the number of times two or more signals have
their epoch of coalescence occurring within an interval At in a year’s worth of data as a
function of the chunk size At and the Poisson rate r. Also shown are the detection rate of
BBH and BNS signals in 3G observatories of one ET and 2 CEs (Samajdar et al. 2021).
As an example, if the detection rate is 8 mHz then we can expect in one year’s of data
1000 one-second long chunks in which two or more mergers would occur. For a pair of
signals whose coalescence times differ by an interval of At > 1s we do not expect to see
any biases in their parameter estimation, although the signals themselves might overlap.
Biases begin to show up for At < 1s and become severe as At — 0.

parameter inference and the region where they don’t. The Fisher study tells
us that as long as the difference in the merger time Ate of two overlapping
signals is larger than the accuracy 0t with which their merger times can be
measured (i.e., Ate > dt), irrespective of how long the individual signals
are, parameter inference will not cause significant biases. We exploit this
result in the Bayesian analysis of mock data by choosing the prior on the
merger epoch as determined by the signal detection pipelines, which is about
dtc ~ O(10ms) (Liting et al. 2014). Indeed, most signals are recovered by
search pipelines with a bias of §dtc < 20 ms. A conservative prior on the
merger time could be a factor of 10 to 20 larger or at most 500 ms. Thus,
two overlapping signals with their merger times separated by larger than
about &~ 2s are not expected to suffer from any systematic biases. Hence, it
suffices to consider the extent to which overlapping signals pose a problem
for Ate < 2s.

The rest of the paper is organized as follows: in Sec. 6.2, we compute the
number of chunks in a year’s worth of data containing more than one merger.
Section 6.3 is devoted to studying the covariance between overlapping signals
using the Fisher information matrix with the emphasis on what we might



CHAPTER 6 227

expect for parameter inference in case of overlaps. Bayesian inference of
overlapping signals is presented in Sec. 6.4. Our main conclusions and a brief
discussion of the type of problems that should be addressed in future studies
is presented in Sec. 6.5.

Number of overlapping signals

The number of overlapping signals depends on (a) the typical duration of
signals and (b) the rate at which they arrive at the detector. At the leading
order, the length & of a coalescing compact binary signal starting from a
gravitational-wave frequency f, until merger is given by

€= 5oc (GM/E) ™ (m 1), (6.1)

where G is Newton’s constant, ¢ is the speed of light and the chirp mass M
is related to the component masses m; and ms via M = (my m2)3/5/(m1 +
my)'/%. A BNS system consisting of a pair of 1.4 M would last for £ ~ 10%s
starting from a frequency of fs = 10Hz (relevant for Advanced LIGO and
Advanced Virgo), 1.8 hr for f; = 5Hz (CE) and almost 7 hr for f; = 3Hz
(ET). A source of intrinsic chirp mass M at a cosmological redshift of =
would appear in the detector to have a chirp mass of (1 + z).M, and hence
lives for a shorter duration in a detector’s sensitivity band. Thus, BNSs
(IMg < my,me < 3Mg) could last for tens of minutes to several hours in
band while BBH signals (3Mgy < my, ma < 50Mg) could last for tens of
seconds to thousands of seconds.

The cosmic merger rate of compact binary coalescences determined by
the first two observing runs of LIGO and Virgo (Abbott et al. 2019b, 2021)
implies that in a network of 3G observatories the detection rate r, defined
as the number of signals whose matched filter signal-to-noise ratio is larger
than 12, lies in the range 7gpn € [5 x 10*,1.5 x 10°] yr~! for BBHs and
rBNs € [10%,10%] yr=! for BNSs (Samajdar et al. 2021; Abbott et al. 2018b,
2016b). Thus, given that signals last for several hours, 3G data would
contain several loud overlapping signals at any one time. We shall see below
that for the purpose of parameter inference the relevant quantity is not how
many overlapping signals there are at any one time but if two or more signals
have their merger times lie within a duration At. This is what we will set
out to compute next.
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6.2.1 Overlapping signals of the same family

Let r denote the Poisson detection rate of a given signal family (BBH or
BNS). In an interval At, the expected Poisson rate is v = r At and the
probability of observing exactly k& mergers during At is given by

l/k e~V

Pe(v) = —

(6.2)

Thus, the probability of observing two or more mergers during At is

0 e vk eV
Pisy =Y Pu(v) =)~ =1-¢"(1+w). (6.3)
k=2 k=2 ’

We have made use of the fact that the Poisson distribution is normalized,
namely > .~ , Px(v) = 1. To compute the number of chunks Ni>o in which
two or more mergers will be observed we must multiply the probability P>
by the number of chunks na; = T'/At in an observational period T*

T
At
Substituting At = v/r and noting that Ny = rT is the total number of
signals detected during the period T, we get

Nizo = Prsonar = [1 —e™"(1 4 v)] (6.4)

Nis2 = [1—e " (14v)] % (6.5)

It is easy to see that in the limit At — 0 (equivalently, v — 0), Np>a >~
vNr7 /2. The factor of 1/2 assures that the number of instances when two
or more signals are found in a chunk is never greater than half of the total
number of observed signals but it is also weighed down by the Poisson rate
v. In the other limit, when At — T (and v > 1), Ni>2 ~ 1 but less than 1.

Figure 6.1 plots the number of chunks N>, in which we can expect to
find two or more mergers in a year’s worth of data (i.e., using T' = lyr
and v = r At). Also indicated in the plot are the detection rate of BBH
(BNS) which is expected to be in the range rppy € [1.6,4.8] x 1073571
(rens € [3.5,35] x 1073571, respectively) (Samajdar et al. 2021) in a 3G
detector network comprising of one ET and two CEs (one in north America
and the other in Australia). As we shall see in Sec. 6.3, parameter inference
should not be a problem if the difference in coalescence times of a pair of
signals is larger than ~ 1s; this is indicated in Fig. 6.1 by the horizontal
line drawn at At = 1s. Thus, in Sec. 6.4 we will focus on Bayesian inference
of signals whose merger times differ by about one second. We see that at the
higher end of the BNS rate, we expect ~ 15,000 one-second long chunks with
two or more mergers while at the lower end of the BNS rate this number
is ~ 200. Likewise, ~ 300 chunks will contain two or more BBH mergers at
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the higher end of the BBH detection rate while this number is ~ 40 at the
lower end of the BBH rate. Although the vast majority of events will have
their merger times larger than 1 s from their nearest neighbor, the number
of events with their merger times within a second is quite large.

The detection rate of BBH signals in the current detector network of
LIGO, Virgo and KAGRA at their design sensitivity is at best r ~ 2.3 X
107° s71 (or 730 yr=1) (Abbott et al. 2021). Thus, the probability of
observing multiple mergers in a chuck of size 1 s or less is negligibly small in
the Advanced detector era. This will also be the case in the A+ era (Abbott
et al. 2018a) where the detection rates are expected to be 3 times larger.

6.2.2 Overlapping signals from two different families

If the detection rate of signal families A and B are r4 and r g, then probability
that one or more mergers of each of these signal families would occur during
an interval At is

_At'r‘A7 PB,kzl =1— e_AtTB. (66)

PA,kZl =1-—ce¢
Thus, the probability Pap that an interval At contains one or more from
each of the two signal families is simply the product Pap = Pa r>1 PBk>1.
If the rates are small, this reduces to Pap = (At)? 74 75 and the number of
such chunks over a period T is Nap = (At)?rarg T = No Np/na¢, where
N4 and Np are the total number of mergers during the period 7' of families
A and B, respectively, and na; = T/At is the number of chunks of width
At during T'. Using the range of BNS and BBH rates quoted before, we find
that Nap would lie in the range 170-5100 for T'= 1yr and At = 1s.

From the foregoing discussions it is clear that a small but significant
fraction of signals would have their coalescence time within an interval of 1 s.
As we shall see in the next Section, due to their long duration, overlapping
BNS signals are far less correlated with each other than overlapping BBH
signals. For the same reason, a pair of overlapping BNS and BBH signals
are poorly correlated. Hence, in the Bayesian inference problem (Sec. 6.4)
we will only consider overlapping BBH signals.

Covariance among overlapping signals

If two signals are well separated then the covariance between their parameters
is zero and we do not expect one signal to affect the parameter inference
of the other. As we bring the two signals closer together in time, at some
point the presence of one of the signals will begin to bias the estimation of
parameters of the other. In this Section we estimate the covariance between
the parameters of a pair of overlapping signals using the Fisher matrix
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Figure 6.2: Plot shows the correlation coefficients, i.e., normalized covariances as defined
by Eq. (6.16) between the parameters of the two overlapping signals as a function of the
difference in merger times 7 = tg — té. The left panel is for Advanced LIGO and right for
Cosmic Explorer. Top row is for BBHs and bottom row BNSs. We assume the parameter
inference of overlapping signals to be negligibly affected when (the absolute value of) the
correlation coefficients are less than 10% (grey shaded regions).
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formalism. Although Fisher matrix is valid in the limit of large signal-to-
noise ratios, any inferences we can draw from the correlation will guide us in
choosing the parameter space of compact binaries where systematic biases
could be large.

To this end, we assume that the data contains a pair of signals s 4 and
sp buried in stationary, Gaussian noise n. The detector output is a sum of
the overlapping signals buried in detector noise:

x(t) = n(t) + sa(t, \D) + sp(t, \P)). (6.7)
where /\&A), AgB), for a =1,...,p, are the set of parameters corresponding

to signals s4 and sp, respectively. Note that since both s4 and sp are
assumed to belong to the same signal family they are specified by the same
number of parameters. Furthermore, we shall only consider a single detector
for this exercise. The relevant parameters for a binary with non-spinning
companions are the chirp mass M, symmetric mass ratio 7, the epoch to
when the signal amplitude reaches its peak and the phase ¢¢ of the signal
at that epoch and so: )\((XA) = (MW p), t(CA)7 qS(CA)) and similarly for signal
sp. We assume the IMRPHENOMPV2 waveform model.

For the computation of the covariance matrix it is more convenient to
consider that the data contains only one signal, i.e., the sum of the two
signals s = s4+spg, and it is characterized by a double number of parameters:
0, = )\gA) fora=1,...,pand 6, = )\((f)p fora=p+1,...,2p. For a noise
background that is stationary and Gaussian the covariance matrix C, which
is inverse of the Fisher matrix I', is given by:

0s Os
_ -1 _
Cw = ., Tw= <89(17 89b>. (6.8)

Here the scalar product of two waveforms (or any pair of functions of time
for that matter) h and g is defined as

Twen B(f) g* (f)
Frow Sh(f)

where R stands for the real part of the integral, h and g are the Fourier
transforms of the signals h and g, respectively, ¢g* denotes the complex
conjugate of g and Sy, (f) is the one-sided noise spectral density of the detector.
In our study we will use either the noise spectral density of Advanced LIGO
(Aasi et al. 2015) or that of the Cosmic Explorer (Reitze et al. 2019b). The
lower frequency cutoff fi.w is chosen to be 20 Hz for Advanced LIGO and
5 Hz for Cosmic Explorer. For BNSs, the upper frequency cutoff fuign is
assumed to be the larger of the inner-most stable circular orbit frequency
of the two overlapping signals, i.e., fnign = max[(6%/27M;) 1, (6327 M) Y],
where M; and M, are the total mass of the two overlapping signals. For

(h,g) = 4R df, (6.9)
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BBHs, the upper frequency cutoff is chosen to be the Nyquist frequency of
1024 Hz.
The Fisher matrix contains interference terms of the following type:

- 83,4 883
FO‘»5+P - <8)\((XA)’ 8)\23) > . (610)

Covariances are of primary interest in this Section as they can tell us the
degree to which the presence of one signal affects the parameter inference of
the other. In order to measure the extent of covariance we consider two sets
of overlapping signals (masses are specified in the detector frame):

1. overlapping BBHs with masses:

(m{M, m{Y) = (21 Mo, 15 M) (6.11)
mP) mPy = (33 Mg, 29 My). (6.12)

2. overlapping BNSs with companion masses:

MM, mi) = (145 My, 1.35 M) (6.13)
M, m{Py = (1.50 My, 1.40 M,). (6.14)

Furthermore, in all cases we choose
A) (A B) (B
(te”,6¢") = (0,0), (¢, 0c”) = (v, 0), (6.15)

and vary 7 over the range [—3, 3|s.

The covariances between the chirpmass, symmetric mass ratio and epoch

of coalescence are plotted in Fig.6.2 as a function of the parameter 7 for

overlapping BBHs (top panels) and BNSs (bottom panels) for noise spectral

densities of Advanced LIGO (left panels) and Cosmic Explorer (right panels).

Other cross-covariances are negligibly small and not shown. What we plot are

the normalized covariances, i.e., a combination of the correlation coefficients
defined as:

Oab = Aa

Vv Caacbb

This quantity is strictly bounded between —1 and +1. A correlation coefficient
of +1 implies that the parameters are perfectly correlated, —1 implies they are
perfectly anti-correlated, and a value of 0 would imply they are uncorrelated.
We will take o4, ~ 0.1 (grey shaded region in the plot) to be small enough
to indicate that the presence of the second signal does not significantly
bias parameter inference of the other signal. This threshold is inevitably
arbitrary, as a thorough analysis of the connection between the values of

a#b. (6.16)
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the correlation coefficients and the presence of biases in parameter inference
is beyond the scope of this paper. However, as we show in Sec. 6.4.4, the
regions of the parameter space where biases in PE arise are compatible with
the ones for which o4, 2 0.1.

The correlations displayed in Fig. 6.2 show a range of different behaviours.
In all cases, they have a peak for |7| < 0.5s. This is expected, as the
interaction between the signals is enhanced when the two signals coalesce
very close to each other. For || > 0.5s, all the different configurations stay
always below the threshold o, = 0.1, with the significant exception of BBH
in Advanced LIGO detectors. In this latter case, correlations remain very
high in the range —1.5s < 7 < 0s, and become small only for 7 < —2s. The
fact that correlations are not symmetric in 7 can be easily explained by the
different form of the two signals considered (see also Fig. 6.3).

Finally, we note that in the case of BNS, the correlation remains always
below the threshold both in Advanced LIGO and Cosmic Explorer, except
when 7 ~ 0. This implies that parameter inference of overlapping BNS
signals is likely to be less severe than that of overlapping BBH signals. We
will, therefore, consider only the latter class of signals in the remainder of
this paper, leaving the parameter estimation of overlapping BNS signals for
future work.

The analysis presented in this section is limited by the fact that we have
explored only for a few particular sets of source parameters. Therefore, we
cannot conclude that parameter estimation will never be a problem in the
case of overlapping BNSs. Indeed, very similar values of the chirp masses (as
well as other relevant parameters) will likely increase the correlation between
the two signals, especially in the proximity of 7 = Os.

In addition, we note that further work is necessary to assess the validity
of the correlation threshold we have considered here, especially in light of
the fact that sinusoidal features with amplitudes o4, = 0.05 — 0.1 are present
in the case of the Cosmic Explorer detector, even for large values of |7].
Despite the fact that these correlations are very low, their effects on the
results of parameter inference need to be evaluated quantitatively.

Bayesian inference of overlapping signals

In this Section, we support the results we have derived using the Fisher
information matrix formalism (Sec. 6.3) with a full Bayesian inference
procedure. With this parameter estimation (PE) process, we are able to
fully explore the posterior distribution of the parameters that generated
the signals. This is important, because it allows us to confirm the presence
(expected from the Fisher study) of distinct maxima in the posterior, one for
each signal coalescing within the time chunk considered. Moreover, thanks
to this numerical approach, we can explore more carefully the region where
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biases are expected assessing their significance and gauging the conditions
for which they seem to happen.

Within the Bayesian framework, given a set of parameters A describing
a compact binary coalescence (CBC) waveform h(\,t), we can write the
posterior distribution for A as:

_ m(A) L(x |\ h)

P(M o) = TSR,

(6.17)
where x is the detector output. This posterior can be explored by using a
sampling algorithm (e.g., MCMC, nested sampling). As in Sec. 6.3, assuming
that the data x contains two overlapping signals s (signal A) and sp (signal
B), then it can be written as:

x=n+ss+ g, (6.18)

where n is the noise of the interferometer. Note that, in principle, to perform
a Bayesian analysis of two or more overlapping signals we should broaden the
parameter space, e.g., § = {\**, AP}, in order to account for the presence of
multiple overlapping signals. However, since running a sampling algorithm
requires significant amount of computational resources, in most cases this is
not required. In fact, as argued in Sec. 6.3, if the signals’ coalescence times
are wide apart we do not expect the presence of one signals to influence
posterior distribution of parameters of the other. For this reason, in what
follows we consider the parameter space of a single CBC signal. We will
return to this point later on when discussing possible biases arising because
of this choice.

6.4.1 Choice of signal families

As already mentioned, in this analysis we focus only on BBH signals. This
choice is motivated by the fact that: (a) covariances among overlapping
BNS signals are smaller than the BBH ones (Sec. 6.3), and, therefore, biases
in the BNS case are expected to be less important; (b) BNS signals last
for several hours in 3G detectors and tens of minutes in Advanced LIGO
and Virgo, implying that Bayesian inference takes a formidable amount of
computational resources (although new algorithms are already showing the
promise of greatly reducing the computational requirement (Zackay et al.
2018; Cornish 2010; Finstad & Brown 2020)).

Furthermore, we also restrict our analysis using Advanced LIGO sensi-
tivity. As argued before, LIGO is not affected by the problem of overlapping
signals, because the rate and the duration of the signals are far too small to
create any overlap. Nonetheless, in this work we are not really interested
in reproducing a realistic set of overlapping data; instead, we want to focus
on the parameter estimation process. To do so, there is no substantial
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Figure 6.3: Signals in the time domain, for four different values of the time shift 7.
signal A, signal B, and the resulting overlapping signal are plotted. The waveforms are
generated using the approximant IMRPHENOMPV2. The two luminosity distances are

fixed to d(LA) = 1Gpc, d(LB) = 1 Gpc. Note that, if we neglect the effects of cosmological
redshift, then changing these distances just results on a scaling of the signals’ amplitude.

advantage in using 3G mock data: we expect that our conclusions will be
valid even if they are based on the analysis of Advanced LIGO mock data.

The parameters of the overlapping BBH signals used in Bayesian in-
ferences is the same as what we used in Sec. 6.3: nonspinning BBHs with
masses as given in Eq. (6.12) and coalescence times and phases as given
in Eq. (6.15). We ignore the position of the sources in the sky and their
orientation relative to the detectors (setting all angles to zero). We do,
however, include in our analysis the luminosity distance dj, of the source.
The parameter space we use in our analysis is thus:

A= {m17m23¢0at0adL}

Note that our choice of sky position is the worst case scenario, because we are
considering the two sources to have the same exact location in the celestial
sphere. In reality, if overlapping signals arrive from different directions in the
sky, they will have different phase coherence amongst a network of detectors
and thus easier to discriminate. Thus, since our choice of sky position is the
worst case scenario, the parameter estimation problem can only be better
when sky position and orientation are taken into account.

To explore different configurations of the parameters, we vary the time
shift 7 - defined in Eq. (6.15) as the epoch coalescence of signal B - in the
range 7 € {—2.0s,0.5s}. Along with the time shift, we also vary the two

luminosity distances of the sources d(LA) and d(LB)7 and their phases d)(CA)

and qb(CB). In the first set of runs, we fix ¢((:‘4) = qb(CB) = 0 and vary the two
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distances. We keep the distance of one of the sources fixed to 1 Gpc and set
the other at either 500 Mpc, 1 Gpc, or 2 Gpc. In the second set of runs,

we vary the phase of signal B ( éB) € {0,7/3,27/3}), keeping qb(CA) fixed to
zero and the two luminosity distances to d(LA) = d(LB) = 1Gpc.
The resulting variations in the parameter sets are:

7 = {-2.0s,—-1.5s,—-1.08,—0.5s,0.08,0.58} (6.19)
d®, di®» = {500 Mpc,1Gpc,2Gpe} (6.20)
o) = {0,7/3,27/3} (6.21)

With these choices, there are 48 different possible configurations, each of
which is analyzed for Bayesian parameter inference.

In the inference problem we use a signal model that accurately represents
the BBH waveforms. As in Sec. 6.3, we use the IMRPHENOMPV2 approxi-
mant to create waveforms in the frequency domain, fixing the low frequency
cutoff to be 20 Hz, which is consistent with the minimum frequency used
in the LIGO/Virgo PE. In Fig. 6.3, we plot the two waveforms in the time
domain, for the different configurations of the time shift 7. The resulting
overlapping waveform is plotted as well. In Table 6.1, we compute the
expected matched filter SNR for the different possible configurations of the
parameters, focusing on the distances, since neither the coalescence time nor
the phase affect the SNR value.

Table 6.1: SNRs for the two signals we have chosen to focus on in our analysis (considering
the two LIGO interferometers network), created with different values of the luminosity
distances dr,. Note that applying a time shift to the signals do not change the value of
the SNR.

SNR dr, =0.5Gpc | d, =1Gpc | d, =2Gpc
signal A 54.2 27.1 13.5
signal B 82.8 41.5 20.7

6.4.2 Setting up Bayesian inference runs

Having created the mock data with overlapping signals we next focus on
parameter inference. Our analysis uses two LIGO interferometers, but our
conclusions are not significantly affected by this choice: considering a different
detector network would simply result in different SNRs for the signals as we
are not focusing on the sky position of the source. Although this could in
principle change the heights of the peaks in the posterior distribution, we
do expect it to influence their relative ratios significantly, and hence the PE
process we consider is expected to hold for any network.
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The data set consists of 4 s of mock data from the two LIGO interfer-
ometers. 4s is large enough to span the full length of the longer signal. We
do not add any noise to the data — i.e., we set n = 0 in Eq. (6.18) —, as
we want to highlight the presence of biases created by the overlap between
the signals, and these biases could be covered by the statistical uncertainty
created by the presence of noise.

We use the BILBY package to perform Bayesian parameter inference of
the two signals, running the DYNESTY sampler (Speagle 2020). DYNESTY is a
dynamic, nested sampling algorithm (Skilling 2006; Higson et al. 2018), which
is well suited for our purposes because it quickly achieves convergence, but
at the same time it is able to handle non-trivial, multi-modal distributions
better than MCMC-based algorithms (Speagle 2020). We allow the sampler
to explore the likelihood surface with respect to all the parameters except
¢c, over which the likelihood is analytically marginalized, and dj,, over
which the likelihood is numerically maximized. Marginalization over ¢ and
dy, correctly accounts for the effects of the parameters ¢ and dy on the
resulting 3-d posterior (Veitch et al. 2015; Singer & Price 2016).

6.4.3 Bayesian priors

At the beginning of the analysis, we have to set the priors on the various
parameters. We consider a uniform prior on the phase ¢, with periodic
boundary conditions, a power-law prior on the luminosity distance, p(dy,) o
d} with a = 2, and a uniform prior on the two masses m; and my over
the range [10 Mg, 50 Mg]. As for the coalescence time, selecting the best
possible prior turns out to be a game-changing strategy. In fact, running a
simulation with a wide prior on the time ¢c that spans the merger times of
the two overlapping signals leads to significant problems: while one of the
two signals is always recovered correctly, the other is completely ignored by
the sampling algorithm. A wide prior on t¢, therefore, would only allow us
to infer the parameters of the louder signal, without access to the weaker
one.

However, as already pointed out, previous work suggests that signals
can always be detected, even if they are overlapping, and their merger time
correctly identified (Regimbau et al. 2012; Meacher et al. 2016). Although
these studies dealt only with BNS signals, we do expect that similar con-
clusions hold also in the case of BBH. This is because (as we show in Sec.
6.4.4, Fig. 6.5) biases on the values of t. recovered from our PE analysis are
minor (at the ms level) and the presence of the overlap does not seem to
hamper the time recovery of the signals. However, future efforts will need to
back up this assumption and confirm that BBH overlapping signals can be
correctly recovered in time domain. From current pipelines, we know that
the detection of a signal allows us to know its epoch of coalescence with very
low uncertainty (at the order of 10 ms). We then assume to know the time
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of coalescence of the two overlapping signals with a good degree of accuracy,
and constrain our parameter space choosing a prior on the coalescence time
which is centered on the (fiducial) true value of the time t¢, with a width
of 100 ms. In this way, for each of the signals we can isolate the region of
the parameter space where we expect to find the true values of the injection
parameters. This choice allows us to recover the correct parameters for both
signal A and signal B.

Therefore, for each of the 48 injections, we run the Bayesian inference
procedure two times: the first one (we refer to it as run A) aims to recover
the true values of the parameters of signal A; to this end, since t(cé ) = 0.0 S,
we set the prior on the coalescence time centered around zero. Run B, on
the other hand, focuses on the signal B peak in the parameter space; thus,
the prior is chosen to be centered in t¢c = 7.

6.4.4 Results

In this section, we study the posterior distributions obtained for the different
runs described in Sec. 6.4.1 and we compare them with the same results
obtained when only a single signal is present in the data. This comparison
allows us to assess the presence of biases created by the overlap of the signals.
In this analysis, we focus on the results for the two masses m; and msq
(which we can rewrite also as chirp mass M and mass ratio ¢), and for the
coalescence time to.

We start by plotting four different corner plots for specific values of the
parameters (Fig. 6.4). In the top row, we show the posterior distributions
for run A (left panel) and run B (right) for the following parameters:
d(LA) = d(LB) = 1Gpgc; ¢g‘) = (b(CB) = 0; 7 = —1.0s. The blue contours
represent the results obtained when the two signals are overlapping, while
the green ones are the results for a run where only signal A (B) is present
in the data. The agreement between these two posteriors (upper panels) is
remarkably good, and biases, if any, are negligible. The recovered values
of the parameters in the case of run A (run B) are perfectly compatible
with the injected ones A = {m1 = 21Mg,mz2 = 15Mg,tc = 0.0s}
(A = {m; = 33My, my = 29Mg,tc = 7}). This proves that using the
current parameter inference methods to deal with overlapping signals is
possible.

These results also imply that the posterior distribution for a run with
wider priors would be (at least) bi-modal, as the two peaks identified by
the two runs (corresponding to the true values of the parameters A4 and
Ap) with narrower priors would be preserved when the priors are extended
coherently to a larger parameter space. However, as already mentioned in
Sec. 6.4.3, when we try to extend the prior on the time shift 7, we find that
the sampling algorithm can identify only one peak in the posterior. This
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Figure 6.4: Corner plots for two runs A (left side) and two runs B (right side);
all the overlapping signals are created with the following choice of the parameters:
d(LA) = d(LB) = 1Gpc, ¢>(CA) = ¢(CB) = 0. The top row shows the case 7 = —1.0s, while the
bottom one shows 7 = 0.0s. The three parameters considered here are the two masses m1
and mg, and the coalescence time t. The true values of these parameters are highlighted
with red dashed lines in the corner plots. The blue histograms refer to the actual runs,
while the green ones are shown for comparison and they are obtained by injecting only
one signal in the data. The dashed vertical lines represent the 1o error on the parameters.
On top of each panel, the median values (and the 1o errors) of the parameters are shown.
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behavior is due to the fact that the heights of the two peaks differ by many
orders of magnitude, since the peak of log £ scales as the SNR squared, and
the SNRs for signal A and signal B are SNR“) = 27.1 and SNRP) = 41.5,
respectively (see also Table 6.1). Clearly, the sampling algorithm is not
able to sample such a subdominant peak in the posterior. Thus, setting the
appropriate prior on the coalescence time t¢, as determined by the search
pipeline, is critical in determining the parameters of both of the signals.

We note that a different approach could consist of imposing narrower
priors on the two masses m; and ms (or, equivalently, on the chirp mass
M) in order to isolate one peak and exclude the other. This is also a viable
alternative, provided that the information on the masses recovered from the
detection pipeline is accurate enough to give effective constraints for the
priors. Ultimately, combining the information on the coalescence time with
the one on the masses may be the best strategy in order to isolate the two
peaks even when the two signals are coalescing very close to each other. It
is, however, important to ascertain the extent to which such constraints can
imposed by carrying out the detection problem on a large sample of injections
and the accuracy with which detection pipelines are able to measure chirp
mass.

In fact, our approach fails when the two signals are overlapping within
100ms. In the bottom row of Figure 6.4, we show exactly this case: we
take the same distances and phases as described above, but we impose a
zero time shift between the two signals. Therefore, in this case the two runs
run A and run B yield the exact same results (as both the priors and the
likelihood are the same). As expected, only the louder signal (i.e., signal B)
is correctly recovered, with the posterior distribution resembling very closely
(although not perfectly matching) the one obtained in the single signal case.
We conclude that, once again, the bias is negligible for run B. As for signal
A, the peak corresponding to A(Y) is completely neglected by our inference
pipeline, and thus there is no way we can reconstruct the parameters of
signal A correctly. This is an intrinsic limitation of our method: different
inference prescriptions need to be devised in order to deal with the case of
closely coalescing signals.

6.4.4.1 Dependence on the luminosity distance

We now analyze the results of the other runs, where we changed the time

shift, luminosity distance, and phase of coalescence of the two signals (as

described in Sec. 6.4.1). The top row of Fig. 6.5 shows the posterior

distributions for the chirp mass M, the mass ratio ¢, and the coalescence

time t¢, for different combinations of luminosity distances d(LA), d(LB) and

coalescence times t¢; the phase at coalescence of the two signals are set to
2 g o,
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Figure 6.5: Summary of the results for the set of 48 runs, each one with a different
configuration of the parameters T, d(LA) and d(LB) (top panels), ¢>(CA) and ¢>(CB) (bottom);
for details about the parameters choice, see Sec. 6.4.1. A runs are shown on the left
panels, and B runs are on the right panel. Posterior distributions for the chirp mass M,
mass ratio g, and coalescence time t¢ — 7 are shown in the form of violin plots. Along
with the results for overlapping signals, posteriors for the “single signal" case (i.e., only
one signal is present in the data) are shown in the rightmost side of each panel in grey.
The true values of the masses and times for signal A and signal B are highlighted with
dashed horizontal lines. Note that the distributions in the plots referring to the same
time shift 7 are slightly shifted with respect to their exact value of 7 so that they do not
overlap with each other. The 7 = 0.0s runs are highlighted with a dark grey shadowed
band; other regions where non-negligible biases are present (see discussion in Sec. 6.4.4)
are highlighted in the same way with a lighter shade of grey. Note that in the 7 = 0.0s
case, part of the recovered values for the chirp masses are out of the range and thus not
shown.
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Posteriors are shown in the form of violin plots, and the results for a single
injection are shown in light grey color for reference on the right side of each
panel. In order to make the plots more accessible, we identify three different
regions, highlighted by the shaded grey boxes. In the first region (no shade),
biases are negligible: posteriors for run A (run B) closely resemble the ones
obtained by injecting only one signal with the same luminosity distance d(4)
(d(B)). In this region, the presence of overlapping signal does not create any
biases to parameter inference, and both signals can be recovered correctly.
As expected from our Fisher analysis (Sec. 6.3), this happens when the two
signals are not coalescing too close to each other. In particular, we find that
parameter inference is robust in the regions t¢ < —0.75s and t¢ 2 0.25s.
Note that the asymmetry of these boundary values are expected, as the
correlation between the two signals is not symmetric in 7 (Fig. 6.2).

When tc = —0.5s (light shaded region), we find that small biases (at
the 1 — 20 level) arise: this implies that the presence of the overlap causes a
shift of the posterior peak in the parameter space, preventing the correct
recovery of the true parameters A(Y) and A(Z) for the two signals. We note,
however that these relatively small biases may not be a problem in reality,
because the presence of the noise may create even larger biases, making
these effects totally irrelevant. This depends, of course, on the noise level in
the interferometer.

It is also interesting to note that intensity of the biases vary with the
relative strengths of the two signals (which are determined by the luminosity
distances). In particular, biases for run A (run B) are smaller whenever
signal A (signal B) is louder: this can be observed in the left (right) panel of
Fig. 6.5, top row, as the posteriors colored in yellow and purple (red, blue,
and green) are closer to the ones obtained in the case of a single signal.

Finally, in the last region (darker shade, 7 = 0.0s), two relevant effects
take place at the same time. First, as already discussed, only the parameters
of the louder signal can be recovered correctly. Since the results for run A
and run B are perfectly identical (because they have identical settings), this
implies that chirp masses are close to the one of signal A for the yellow and
purple cases (as seen in the left panel), and close to the one of signal B in
the red, blue, and green cases (as seen in the right one). On top of that, we
note that even the louder signal seems to suffer from significant bias in the
7 = 0.0s case. This is again expected from our Fisher analysis (Fig. 6.2), as
the correlations between the signals have a peak at zero time shift.

6.4.4.2 Dependence on the phase

In the bottom row of Fig. 6.5, we show the results for the runs with
varying ¢c. As described in Sec. 6.4.1, we fix the luminosity distances to
d(LA) = d(LB) = 1 Gpc and the phase at coalescence of signal A to (CA) =0,
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and vary gb(CB) in the set qS(CB) = {0,7/3,27/3}. Results are presented in the
same form as the top row of Fig. 6.5 (Sec. 6.4.4.1).

We find that the phase at coalescence plays an important role in deter-
mining whether inference suffers from significant biases or not. In particular,
biases are greater for the two configurations ¢gg) = 7/3 and ¢g3) = 2m/3.
On top of that, they extend in a larger time span: the region where 20
biases are present extend out to 7 = —1.0s; for 7 = —1.5s and 7 = —2.0s5,
they progressively become less severe until they become hardly detectable.
Again, we find that biases arise only for negative values of the time shift 7,
in accordance with the asymmetric correlation amplitudes found in Fig. 6.2.

Overall, our Bayesian inference analysis confirms the results we found in
Sec. 6.3 for BBH in Advanced LIGO detectors (Fig. 6.2, upper left panel).
If the two BBH signals do not coalesce too close in the time domain (i.e.,
their coalescence times are separated by more than a 1.55s), then inference
results are robust: two distinct peaks are present in the posterior, and they
can be well-sampled if a suitable prior on the coalescence time is chosen.
This is an interesting conclusion, as the vast majority of BBH signals are
expected to belong to this category: from Fig. 6.1, we can estimate that
only 0.01% of the signals are expected to coalesce within 1s.

When the BBH signals do coalesce very close to each other (|7 < 1s),
though, biases at the 2 — 3 ¢ level may arise, as the correlation between the
two signals increases. These biases become even more dramatic as the time
shift approaches to zero.

Discussion and Outlook

We presented a Bayesian inference analysis in the case of overlapping grav-
itational waves signals. Our goal was to assess the capabilities of current
Bayesian inference infrastructure to handle the non-trivial case of one or
multiple overlaps taking place within a data segment. This problem is
destined to play a major role in 3G detector planning, since the dramatic
increase in sensitivity will result in a great number of signals coalescing
within a few seconds.

We started from a study based on the Fisher matrix formalism, in which
we analyzed the correlation between two overlapping signals. In this way, we
were able to determine whether in some regions of the parameter space the
overlapping signals were strongly correlated with each other, thus preventing
a distinct inference procedure for one signal at a time. We found that
BNS signals are less strongly correlated, and that their inference will likely
be a problem only for coalescence times really close to each other (at the
10 — 100 ms level). BBHs, instead, suffer from the presence of a correlation
starting from a much greater time shift 7 (i.e., the difference between the
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two coalescence times). In particular, in the Advanced LIGO BBH scenario,
correlations are significant up until |7| ~ 2s.

We investigated these issues further with a full Bayesian analysis of the
two overlapping BBHs. The analysis used the DYNESTY sampling algorithm
to describe the posterior distribution for the parameters considered. We
showed that, in order to sample a single peak without worrying for the
presence of the other one, a possible solution is to impose a narrow prior
around the fiducial value (provided by the signal detection pipeline) of the
coalescence time of the signal of interest. This procedure allows to isolate
one single peak at a time, and works well in the configurations we explored.
However, as the time shift approaches zero, isolating one single peak at a
time is not possible, and within our framework we can recover only the
parameters for the louder signal (i.e., the highest peak in the posterior). In
our approach, we are implicitly assuming that signal detection will return
the coalescence times of the two signals with an uncertainty lower then
O(10 — 100) ms. This is a reasonable assumption, which, however, needs
to be tested by a dedicated analysis dealing with BBH signals’ recovery in
the context of 3G detectors (see also (Regimbau et al. 2012; Meacher et al.
2016) for the BNS case).

We also studied the emergence of biases in the overlapping signals sce-
narios considered, by varying some key parameters of the two signals such as
their coalescence time, coalescence phase, and luminosity distance. We found
that significant biases (at the 2 — 30 level) arise in the range —1s < 7 < 0s,
and that these biases are caused primarily by the relative phase of the
two signals and only marginally by the relative difference of the SNRs. As
suggested by our Fisher analysis (Fig. 6.2, upper left panel), these biases
tend to become minor for 7 < —1.5s and 7 > 0s.

Dealing with these biases needs a different approach that we did not
attempt in this work. One possible solution is to broaden the parameter
space searching for multiple signals in the same Bayesian inference run.
This is the approach that previous works have shown to be feasible in the
context of LISA data analysis (e.g., see (Cornish & Crowder 2005; Littenberg
et al. 2020)). Such approach could significantly increase the computational
costs of the Bayesian algorithms; however, this is compensated by the fact
that - as suggested here - novel algorithms may be needed only for closely-
coalescing signals, that are a very small minority of the total number of
signals expected in 3G detectors. Using current estimates for the BBH rates
in future detectors, we find that signals coalescing within 1s are expected to
be at most hundreds per year.

Another possible solution to the biases would be to create an iterative
procedure where one hierarchically determines the parameters of louder
signals (as inferred from search algorithms) and subtracts them from the
data before analysing weaker ones (Cutler & Harms 2006; Sachdev et al.
2020). Currently, it is unclear which approach will perform better in the
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context of 3G detectors, and further work is needed to gauge the potential
of both approaches.

In our exploratory study we did not deal with the consequences of varying
the mass parameters of the two signals, nor did we include in our analysis
other source parameters such as companion spins, the position of the source
in the sky and the orientation of the binary relative to the detector frame.
The SNR range explored in our study (20-100; see also Tab. 6.1) is also
limited compared to the range expected to be covered by 3G detectors
(Punturo et al. 2010; Reitze et al. 2019b; Borhanian & Sathyaprakash 2022).
In particular, when overlapping signals arrive from different positions in the
sky then they would, in general, have different coalescence times in different
detectors, which might help to isolate one of the peaks better (Christian et al.
2018). The inclusion of spins, on the other hand, introduces new physics in
the formation of these overlapping signals such as spin precession, and may
introduce another layer of complexity in the parameter inference problem
(Fairhurst et al. 2020). These and related problems will be explored in a
future study.
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CONSTRAINING TURBULENCE
IN PROTOPLANETARY DISCS
USING THE GAP CONTRAST:
AN APPLICATION TO THE
DSHARP SAMPLE

Abstract

Constraining the strength of gas turbulence in protoplanetary discs is an
open problem that has relevant implications for the physics of gas accretion
and planet formation. In this work, we gauge the amount of turbulence in 6
of the discs observed in the DSHARP programme by indirectly measuring
the vertical distribution of their dust component. We employ the differences
in the gap contrasts observed along the major and the minor axes due to
projection effects, and build a radiative transfer model to reproduce these
features for different values of the dust scale heights. We find that (a) the
scale heights that yield a better agreement with data are generally low
(S 4AU at a radial distance of 100 AU), and in almost all cases we are only
able to place upper limits on their exact values; these conclusions imply
(assuming an average Stokes number of ~ 10~2) low turbulence levels of
ass < 1073 —107%; (b) for the 9 other systems we considered out of the
DSHARP sample, our method yields no significant constraints on the disc
vertical structure; we conclude that this is because these discs have either a
low inclination or gaps that are not deep enough. Based on our analysis we
provide an empirical criterion to assess whether a given disc is suitable to
measure the vertical scale height.
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7.1 Introduction

Characterising the magnitude of turbulence in accretion discs is a classical
problem in astrophysics. This is because turbulence is often invoked (see
historical discussion in Pringle 1981) as the mechanism responsible for
powering accretion. On the one hand, therefore, the first scientific question
that any such study seeks to address is whether the level of turbulence,
commonly quantified through the agg parameter (Shakura & Sunyaev 1973),
is high enough to explain the observed accretion rates. For the specific
case of proto-planetary discs we study in this paper, this is a particularly
important question: the cold conditions of these discs, which are clearly in
the non-ideal magnetohydrodynamics regime, make it far from obvious to
understand whether the magneto-rotational instability (Balbus & Hawley
1991) can be a mechanism respounsible for generating the required level of
turbulence. Addressing this question, and studying in parallel other processes
that could generate turbulence in proto-planetary discs, is a subject of many
studies (see Lesur et al. 2022 for a recent review).

For proto-planetary discs, the issue runs even deeper than the question
about accretion; even if turbulence was ultimately found not to be responsible
for accretion, it would still affect a wealth of processes and therefore have
a strong impact on planet formation. A non-exhaustive list of processes
affected by turbulence includes the heating and cooling balance in the
terrestrial planet-forming region due to the importance of viscous heating
(Min et al. 2011), the diffusion of molecular species radially (Owen 2014)
and vertically (Semenov & Wiebe 2011; Krijt et al. 2020), the diffusion of
dust, setting both the dust disc vertical extent (Dubrulle et al. 1995) and the
leakiness of dust traps (e.g., Zormpas et al. 2022). For what concerns planets
in particular, turbulence has a profound impact on disc-planet interaction;
its magnitude affects (Paardekooper et al. 2022) the ability of planets to
open gaps in the disc and how fast they migrate by exchanging angular
momentum with the disc. Turbulence is also a crucial parameter setting how
quickly planets accrete gas (Bodenheimer et al. 2013) and dust (Johansen &
Lambrechts 2017) from the disc, determining the final masses of planetary
systems. Last but not least, turbulence controls the onset of the streaming
instability (Drazkowska et al. 2022), one of the best known mechanisms for
creating planetesimals and kick-starting the planet formation process.

It would thus be beneficial to have a method to constrain turbulence
observationally. Thankfully, in the last few years, the field has been com-
pletely transformed by the Atacama Large Millimeter Array (ALMA), which
provided order-of-magnitude improvements in sensitivity and angular resolu-
tion. First of all, by studying line broadening of emission lines, ALMA has
allowed to directly detect turbulence in two discs (Flaherty et al. 2020), and
only yielding upper limits in a limited number of other cases (Pinte et al.
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2022). In addition, ALMA has opened up many other observational routes
(recently reviewed in Rosotti 2023) for indirectly constraining turbulence.
These routes include the study of the disc vertical thickness, the radial extent
of dust and gas rings, and population studies that use disc demographics
studies (see Manara et al. 2022 for a review), that is, catalogues of the
fundamental disc properties (such as mass, radius and mass accretion rate)
for large disc samples. In this way, in the last few years the study of disc
turbulence has moved from an almost theoretical subject to an observational
one.

In this paper, we constrain turbulence by measuring the disc vertical
thickness. The vertical equilibrium of dust grains is a competition between
settling, which is determined by the joint action of gas drag and gravity,
and turbulence, which stirs up the grains in the vertical direction. In simple
terms, then, the more turbulent the disc is, the thicker it is, but it should be
highlighted that the presence of drag implies that the aerodynamic coupling
between gas and dust (normally parametrized by the Stokes number St) also
influences the thickness. Indeed, as we will recap in Sec. 7.5, the method is
only sensitive to agg/St.

We apply the technique developed by Pinte et al. (2016) in their study
of HL Tau. The technique relies on the fact that many observed discs (Bae
et al. 2022) present an emission pattern characterised by bright rings and
dark gaps. Pinte et al. (2016) realised that due to projection effects in a disc
with finite thickness the line of sight will intercept sections of the disc that
are out of the midplane. In a gap, this has the effect that the adjacent bright
regions partially contaminate the dark gap, lowering the gap depth. We will
refer to this in the rest of the paper as the gap-filling effect. It is easy to
realise that the geometry of projection is such that this filling effect is much
larger along the minor axis of the disc than along the major axis. Once the
image is deprojected in polar coordinates, as commonly done in the field,
the resulting effect is that the gaps are more “filled” (i.e., shallower) along
the disc minor axis and more “empty” (i.e., deeper) along the disc major
axis. The difference between minor and major axes increases with the disc
thickness and therefore it is a way to probe the vertical structure of the disc.
A simple sketch in Figure 7.1 shows the simple geometrical argument behind
the gap-filling effect. Extracting quantitative measurements from this effect
requires building radiative transfer models of the emission.

So far, in addition to HL Tau, the method has been applied to HD163296
(Liu et al. 2022) and to Oph163131 (Villenave et al. 2022). The goal of this
paper is to significantly expand this observational sample. For this purpose
we selected the sample of the Large Programme DSHARP (Andrews et al.
2018), which consists of twenty discs imaged at 0.05" resolution, since it
constitutes the largest homogeneous high-resolution survey of proto-planetary
discs. We aim to determine in which cases this technique is successful in
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Figure 7.1: Sketch of the gap-filling effect. The lines of sight intercept the disc’s plane
with an angle that depends on the disc inclination. In the presence of a gap, lines of
sights piercing through the gap (e.g., the one highlighted in green in the sketch) may still
intercept sections of the disc that are far from the mid-plane due to simple geometrical
effects. Therefore, the gap will be seen as partially filled by the observer. If the disc is
thicker (thinner), this filling effect is stronger (weaker); this implies that the gap-filling
effect can be used to indirectly gauge the vertical extension of the disc.

gauging the disc thickness, and, whenever possible, to place meaningful
constraints on the disc scale heights.

This paper is structured as follows: in Sec. 7.2, we discuss the basic
assumptions of our model and describe the steps of the analysis we perform
to match DSHARP data. A description of the data sample is presented in
Sec. 7.3. Sec. 7.4 presents the main results of the analysis, while Sec. 7.5
contains a discussion on the implications of our findings. Conclusions are
given in Sec. 7.6.

7.2  Methods

In this section, we describe the basic assumptions of the model and provide
details on the methodology we employ to compare our synthetic images with
DSHARP observations.
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7.2.1 Disc structure

In the following, we are only interested in modelling the dust component of
the protoplanetary discs, as the ALMA observations we use are only focusing
on the dust continuum emission. Therefore, in this section — whenever not
stated otherwise — we refer with the term “disc” to the dust component only.
In Sec. 7.5, we will discuss further how our results can be employed to
study the relationship between dust and gas in the disc, and ultimately to
constrain the amount of gas turbulence.

We model the disc as a cylindrically-symmetric system with a minimum
radius 7y, and a maximum radius 7.,;. We assume for the vertical density
distribution a Gaussian profile of the form:

_ X(n) oxn [ — 22
pd(T’Z)_\/%hd(’l“) p( Zhd(r)Q)’ (71)

where X(r) is the dust surface density and hqy(r) is the dust scale height.

This profile originates from an analogy to the gas component, which can
be assumed to be in hydrostatic equilibrium along the vertical direction and
thus follows a Gaussian profile identical to eq. 7.1. Formally, the dust has a
different equilibrium solution, but eq. 7.1 is a close approximation (Dubrulle
et al. 1995). Furthermore, defining the dust density in this way is convenient
as we can consider the ratio between gas and dust scale-heights, which will
be important to estimate turbulence.

In Sec. 7.2.2, we discuss our procedure to determine the disc surface
density 3(r). As for the dust scale height profile, we assume a simple flaring
model:

r

ha(r) = Hq ()125, (7.2)

To

In what follows, we set the reference radius r¢ to 100 AU and take the value
of the dust scale height at this radius, Hq = hg(r = 100 AU), as the only
free parameter of our model. The goal of our work is to gauge the value of
H, using the gap-filling effect on the disc minor axis.

In order to predict the observed surface brightness of the disc, we need to
determine the dust temperature profile. For this, we assume that the dust is
passively heated by the central star, and that a fraction ¢g,x of the total flux
emitted by the star is intercepted by the disc. Following radiative-transfer
models (e.g., Chiang & Goldreich 1997; D’Alessio et al. 1998; Dullemond
et al. 2001, 2018), we set ¢gux = 0.02 and write (o is the Stefan-Boltzmann

constant):
) 0‘5¢ﬂuxL* 1/4 Tin 0.5
ro- () o, (),

where we have expressed everything in terms of the temperature at the inner
radius, Tj,. For the sake of simplicity, we use this analytical description of
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the disc temperature for our model — instead of self-consistently computing
the temperature using a Montecarlo approach (see e.g., Liu et al. 2022). In
Sec. 7.5.4, we discuss the reasons for such choice and the caveats that come
with it.

The expected surface brightness of the disc can then be determined
assuming dust thermal emission. In order to create mock images of our disc
models, we use the code RADMC-3D'. We set the extrinsic parameters (such
as the distance, sky coordinates, inclination, position angle) in accordance
with observations (see Sec. 7.3), and we produce synthetic images of the
discs according to the radiative transfer computation. Then, we use the
CASA package (CASA Team et al. 2022) to produce mock observations with
the same beam and antennae configuration of the original ALMA data. In
order to do this we have retrieved from the DSHARP Data Release webpage”
the visibility files of the DSHARP observations. In our analysis we use
the same version of CASA used by the DSHARP team (v 5.1.1-5) to ensure
that the data and the models have been processed in the same way®. We
created synthetic visibilities from the radiative transfer image at the uv
coordinates of the observations using the CASA task ft. We then apply the
CLEAN algorithm to generate a synthetic ALMA image to compare with the
observed image. We use the scripts provided by the DSHARP team in order
to make sure that we use the same CLEAN parameters as the observations.
To reduce the computational time, it is common in the field to employ the
simpler approach of a convolution with a Gaussian beam. While this is often
satisfactory, we noticed in early tests that the detailed shape of the emission
profile in the gap is different from images produced by the CLEAN algorithm.
In addition, some of the DSHARP sources have clear CLEAN artefacts such
as negative emission that cannot be reproduced with a simple Gaussian
convolution. Therefore, we adopt here a consistent approach to include the
contribution of these cleaning artifacts.

7.2.2 Inferring the disc surface density

In order to proceed further with our analysis, we need to infer the surface
density X(r) of the observed disc. This is not straightforward, as simple
power-law models are not capable to reproduce the wealth of substructures
(gaps and rings) that are observed in the DSHARP images. Given that
our goal is to use the gap-filling effect as a probe of the disc vertical size,
modeling these substructures within a reliable framework is of paramount
importance. Therefore, similarly to what was done in Pinte et al. (2016), we

lhttp://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/

2https://almascience.eso.org/almadata/1p/DSHARP/

3That being said, for safety we have recomputed the CLEAN images for the data starting
from the visibility files, in order to be sure that we use the same CLEAN parameters in
the data as in the models.
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employ here an iterative procedure to find the correct surface density of our
discs. We outline the procedure in the following paragraphs, and provide an
overview of the different steps involved in the iteration cycle in Figure 7.2.

The fundamental idea we adopt in this procedure is that the intensity
observed along the major axis is a good proxy for the real surface density of
the disc. This is because, as already discussed in Sec. 7.1, the gap-filling
effect affects only marginally the major axis, whereas it has the strongest
effect on the minor axis. Therefore, our goal is to find via multiple iterations
a surface density profile that is able to match the intensity observed along
the major axis.

The procedure can be summarized as follows. First of all, we need to
extract the intensity along the major axis, Ir(lf:jta) (r), from the 2D images. In
order to do that, for every disc we analyze, deproject the image and average
two opposite slices of 1/8 (i.e., with a width of 7/4) of the disc centered on
the major axis. When deprojecting the disc emission maps, we make sure
that the images are aligned with the discs’ centres by using the offsets in
the = and y coordinates reported by Huang et al. (2018) (see their Tab. 2).
The resulting IS:J-m) (r) represents our benchmark profile that we aim to
reproduce with a suitable choice of the disc surface density.

Then, we use as a first guess for the surface density profile the output
of the FRANKENSTEIN (Jennings et al. 2020) fit of the DSHARP sources
presented in Jennings et al. (2022). FRANKENSTEIN is a code that uses
Gaussian processing to fit disc emission profiles in visibility space, using
the assumption that the emission is azimuthally symmetric. This gives a
good starting point for the initial surface density since FRANKENSTEIN can
achieve a spatial resolution higher than the CLEANed images we analyse in
this paper. While this gives us the shape of the surface density, note that we
also need a normalisation constant: Frankestein fits for the emission profile
(giving a profile IﬁFRANK)(T) as an output), while we need a surface density
to give as input to RADMC-3D. In order to convert the intensity profile into a
surface density, we use as a constraint the formula often employed (Beckwith
et al. 1990) to estimate the disc mass Mg,st from sub-mm observations:

F,d?
Mgt = ——20 7.4
dust HVBV(TdIISt) ( )

where F,, is the flux in the image, d the distance to the source; for Ty,s; we
take a temperature of 20 K and x, is the opacity of the dust we employ.
Since we consider a single grain population, the physical quantity we are
constraining is the dust optical depth (given the prescribed temperature
profile), and not the dust surface density. This implies that the value of the
opacity only acts as a normalisation for the dust surface density and does
not have any influence on our conclusions - with a different dust opacity we
would simply need to change the dust surface density accordingly in order
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to have the same optical depth. Notice also that the formula is only an
approximation (the emission is not guaranteed to be optically thin and 20
K may not be the correct value); however the value reported above is only
needed to kickstart the iteration and the iterative procedure will take care
of reaching the correct values, both for the normalisation and for the shape
of the surface density. Finally, because we fitted for the emission profile
but need the surface density, we multiply the resulting profile by /2 to
take into account the variation in disc temperature with radius’. Let us
call £ (r) the surface density we have obtained in this way. We use
this guess to define our disc structure (setting also the dust scale height
parameter H, to a fixed value) and produce synthetic observations using
RADMC3D + CASA (see Sec. 7.2.1).

Subsequently, we apply the same procedure as described above to de-
project these mock observations and to extract a mock intensity profile
along the major axis®, I (guess) (r). This profile can be directly compared

maj,0
to the observational one, Ingjm)(r). This comparison outputs a ratio,
éo(r) = Ifr?;.ta) /Ir(f;ﬁ(s)s) that parametrizes how well the initial guess for

the surface density is able to reproduce observations. We can improve this
match simply by multiplying the initial guess for the surface density profile,
2 (1) for the ratio &(r), finding a new guess for the disc surface den-
sity Zggucss) (r). To prevent large variations of the surface density from one
iteration to the next, we do not allow variations larger than a factor 4 in a
single iteration. We then iterate this procedure by using this new surface

density profile to produce mock observations Irglg;fis) and update the surface
density using the sequence:
( | I(da.ta)
uess uess ma, uess
SES (1) = ,(r)SE) (r) =~ i) () (7.5)
maj,n

We stop the iteration when a value of |{(r) — 1| < 0.05 is reached for
every radius 7. On average, this takes around 10 — 15 cycles. As expected,
the convergence is very easily achieved where the intensity profile is smooth,
whereas it takes more iterations in the regions where gaps and rings are
present, especially when they are narrow and deep. For a few systems, this
implies that convergence is not reached at the bottom of the deepest gaps
even after 15 iterations, with the difference between the model and data
being in the range 5—10%. We empirically find that increasing the number of
iterations does not give any significant advantage for these peculiar systems,
with only minimal gains in terms of model-data accordance despite the large

4In the same way as for the normalisation, this is only a first order correction; the iterative
procedure will better refine this radial scaling.

5With the exception of AS 209, where the procedure described here uses the azimuthally
averaged intensity profile rather than the major axis (see also Tab. 7.1).
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Figure 7.2: Overview of the iteration procedure we employ to extract the disc surface
density, (7). As described in Sec. 7.2.2, we choose the profile for the surface density
that matches the observed intenstity profile along the major axis. The various quantities
appearing in the sketch are defined in the main text. The top part of the sketch refers to
the kickstarting of the process (where we find a first guess for the surface density profile),
while the bottom part shows an instance of a single iteration.

number of iterations employed. Therefore, we decide to set a maximum
iteration number n = 15 and insert a caveat for the systems that are not
converged inside the gaps according to our criteria (Sec. 7.3).

7.2.3 Analysis of the gaps filling effect on the minor
axis

At the end of the iteration cycle described in Sec. 7.2.2, we obtain, for a
fixed value of dust scale height Hy, a fiducial profile for the disc surface
density, X(™de) (- ;). Note that the dependence of X(™m°dD (r: H,;) on Hy
is very mild, as the surface density is obtained by comparing the model with
the data along the major axis, where the vertical structure of the disc has
only a small effect on the final intensity. This X(model) (r; Hg) corresponds

to an intensity profile along the major axis — Ir(nn;?del) (r; Hq) — that matches

the observed one — I(data)(r) (see also the sketch in Fig. 7.2).

maj
Our goal is then to extract, both from the observational data and from
our fiducial model, the intensity profiles along the minor axis — I, (data) (r)

min
and Ir(nnllr? del)(r; H,), respectively. Similarly to what described in Sec. 7.2.2,
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in order to do this, we take the deprojected 2D images and average two
opposite slices of 1/8 of the disc centered on the minor axis.

Along the minor axis, the predicted intensity can depend quite strongly
on the value of the dust scale height Hy, as the vertical thickness of the
disc directly influences the gap filling along the minor axis. Therefore,
a simple comparison between Ix(fiita) (r) and Ir(rﬁ‘r?del) (r; Hy) offers a way to
place constraints on the vertical structure of the disc. A quantitative analysis
of this comparison and the implications of the results we find are presented
in Sec. 7.4 and 7.5.

DSHARP data sample

In this section, we describe the systems we use for our analysis. DSHARP
is a very high resolution (~0.035", or 5 AU) observational campaign that
targeted 20 proto-planetary discs with the goal of finding and characterising
substructures in the dust continuum emission at 240 GHz. We examined the
entire DSHARP catalogue and excluded the systems that are not suitable for
our study of the gap-filling effect. These include 3 single systems that show
signs of spirals (i.e, IM Lup, Elias 27, and WaOph 6) and two binary systems
(HT Lup and AS 205), where the individual discs either show signs of spirals
or lack clear substructure. Spirals are not compatible with the assumption
of perfect azimuthal symmetry in our disc model and we therefore discard
the discs showing this signature.

For the remaining 15 systems, we run our model to find the best matching
value(s) of the dust scale height Hy. We describe the results of this analysis
in the following section. Here, we provide more details on the properties
of these systems. In Table 7.1, we report the parameters of the systems as
listed by Andrews et al. (2018): these include the mass and luminosity of the
central star, the distance of the system, the inclination angle, the position
angle (PA), the outer radius of the disc, and the beam size. The inner radius
cannot be determined easily from observations, and thus we always set it to
rin = 2 AU. This choice has no relevant impact on the final results since we
are only interested here in radial locations with gaps.

Results

In this section, we apply the analysis described in Sec. 7.2 to the data
sample presented in Sec. 7.3. In order to follow in detail the different steps
of our analysis, we first focus on a single instance (i.e., GW Lup), and then
we provide an overview of the global results for the rest of the sample we
considered.
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Figure 7.3: Left: Intensity profiles of GW Lup along the minor (I, ™’; salmon line)

and major (IS:Fa); brick) axes, together with the azimuthally averaged profile (gray line).

Profiles along tJhe two axes are extracted according to the procedure described in Sec.
7.2.2. Errors are computed according to what outlined in Sec. 7.4.1. Right: Surface
density profiles »(model) (r; Hg) predicted by our model for different disc scale heights Hy.
The profiles are obtained by using the iteration procedure described in Sec. 7.2.2.

7.4.1 GW Lup as a case study

GW Lup is a disc with an average inclination of ¢ ~ 40° and a major structure
composed by a gap at r &~ 74 AU and a ring at r ~ 85 AU (Huang et al. 2018).
Because of these properties, it is very well suited for an exemplification of
our methodology.

In the first step of our analysis, we take the observational image and
extract the profiles along the major and the minor axes as described in Sec.
7.2 (i.e., by averaging the deprojected images in slices that are centred on
the axes and have an angular size of w/4). The resulting profiles are shown
in Fig. 7.3 (left panel). We also show the profile obtained by averaging the
deprojected image in concentric rings (i.e., the azimuthally-averaged profile).
All the different profiles clearly show the characteristic structure of the gap
+ ring feature. However, as expected, the intensity contrast along the minor
axes is smaller due to the gap-filling effect.

In order to quantify the statistical uncertainty on the three profiles, we
simply compute the standard deviation o of the data in the deprojected
images along the slices (or rings) considered, and divide it by the square root
of the number of independent data points considered (v/Npeams). This latter
quantity is simply the azimuthal extent of the slice/ring A¢R, divided by the
size of the beam — which we obtain by averaging the two axes of the beam:;
along the minor axis, we increase the size of the beam by a factor cosi to
take projection into account. In formula, we get: oprofie = 04/beam/A@R.
In Fig. 7.3 (left panel), we plot the error bars only every Npeams, so that
they are independent of each other. Note that these errors are very small,
and therefore hardly visible in the scale of the plot.
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As a second step, we choose a value for the dust scale height parameter
H,. In what follows (where not stated otherwise), we consider the following
set of values for Hy: {0.5,1,2,4,6,8} AU. For each of these values, then, we
apply an iteration procedure to match the intensity along the major axis,
with the goal of finding the best surface density for the disc (see Sec. 7.2 for
details on this iteration procedure). The right panel of Figure 7.3 shows the
fiducial surface density output by our iteration cycle for different H;. As
expected, the predicted surface density is almost identical for different Hy
values (with the notable exception of Hy = 0.5 AU).

Using these fiducial profiles for the surface density, we can produce mock
observations setting the same observational parameters as in Tab. 7.1 and
using the same configuration as the data (see Sec. 7.2.1 for more details
on mock images generation). Figure 7.4 shows these mock images for the
two extreme H, values of H; = 0.5 AU and Hy; = 8 AU, together with the
real observations from DSHARP. Even a quick look at the figures allows us
to appreciate how the different systems have a similar intensity along the
major axis, whereas they present a different gap filling along the minor one,
with the image of the thick disc being significantly more blurred than the
one referring to the thin disc.

This difference can be quantified by deprojecting the images and extract-
ing the profiles along the major and the minor axes in the same way as done
with the observational data (i.e., averaging two 1/8-slices of the deprojected
images centered along the axes). The resulting profiles for the major (minor)
axis are shown in the left (right) panel of Fig. 7.5, together with the same
observational data that are also shown in Fig. 7.3 (left panel). Given that
we are interested in the gap-filling effect, in the following, we focus only on
the region where the gap-+ring structure resides (i.e., between 70 and 95
AU).

As expected, the intensity along the major axis is almost the same
for any values of the disc scale height Hy: all of the different profiles are
perfectly compatible with the data. The azimuthally-average intensity from
observations is also shown as a reference, in order to highlight how the data
vary along different azimuthal axes. The intensity along the minor axis
(right panel), on the other hand, strongly varies with Hy. In this plot, we
can appreciate the predictive power of our method: the gap-filling effect
implies that for large values of the disc scale height Hy 2 6 AU the resulting
profile is much smoother (i.e., the gap is much more filled) with respect to
the thin disc cases (Hy < 4 AU). Given that the gap in the original data
image (salmon data points) is considerably empty, we can conclude that the
latter case is to be preferred by observations. Indeed, only the lines with
H; < 4 AU are compatible with the intensity profile of the gap + ring shown
by the data. Therefore, we can conclude that the disc GW Lup is thinner
than ~ 4 AU at » = 100 AU. In the last columns of Tab. 7.1, we report this
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conclusion by indicating the constraints we get on the scale height parameter
Hy.

In order to quantify the agreement between observations and our mock
profiles along the minor axis, we choose to employ the x? statistics. However,
we caveat that our aim is not to compare models and data in a way that sits
on solid statistical bases. This is because, although our iterative procedure
works quite well, discrepancies at the level of few percent from the observed
emission remain (even along the semi-major axis). These discrepancies are
significant given the signal to noise of the observations; in other words,
the noise in the data is smaller than our ability to build radiative transfer
models that reproduce them. This is a systematic source of error that is
not accounted for in a statistics like the x2. This does not entail that our
method is flawed: in practice, the difference brought upon by the gap-filling
effect is much larger than the residual discrepancy between data and model.
However, given the issues with a detailed comparison between our model and
data, we note that the absolute value of x2? should not be used to accept or
reject models, as it would be the case in a regular statistic test. Nevertheless,
for completeness, we report the minimum value of the reduced chi-squared
(X2.;m) in the second to last column of Table 7.1. This is the chi-squared
divided by the number of degree of freedom (i.e., the number of independent
data points + the number of free parameters in the model). We stress the
fact that this number, however, does not have statistical validity and it is
not a good parameter to accept/reject our model.

Instead, it is useful to employ the x? as a way to test which of the values
of H, considered in the analysis has a better quantitative agreement with
the data. In Fig. 7.7, we plot the logarithm of the likelihood function (i.e.,
log £ < —x2/2) normalized to its peak value, for different values of the
parameter Hy. GW Lup is shown in blue, whereas all the other systems for
which we get meaningful constraints on the scale height (see Sec. 7.4.2) are
shown in the same plot with different colours.

From Fig. 7.7, we can confirm visually that the best fitting value of the
disc scale height is H; = 4 AU. However, values that are smaller than 4 AU
are also compatible with data, as the value of the likelihood is smaller but
still comparable, especially for Hy = 1 AU and Hy = 2 AU. Values of Hy
greater than 4 AU have significantly smaller likelihoods, and therefore are
rejected by our analysis.

7.4.2 Overview of the other systems

In this section, we present the results of our analysis for the remaining
systems considered in Sec. 7.3. In Tab. 7.1 (last columns), we show the
constraints we are able to place on the values of the disc scale height based
on the comparison between our model and the data along the minor axis.
For most of the systems, however, we find that we are unable to place any



CHAPTER 7 261
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Figure 7.4: Original image of GW Lup (top left) from the DSHARP survey (Andrews
et al. 2018), together with our mock images created using two extreme values of Hy
(Hg = 0.5AU and Hy = 8 AU) as well as the surface density profiles shown in Fig. 7.4.
All images are plotted using an asinh stretch. Mock images are obtained using the same
CLEAN settings as used for the data in DSHARP (Andrews et al. 2018).
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Figure 7.5: Left: Comparison of the intensity profiles for GW Lup predicted by our disc
model along the major axis (for different values of the disc scale height Hg; see color bar)
and the one extracted from data (firebrick points). For reference, the observed intensity
averaged over the whole azimuthal angle is also plotted with a transparent grey line. The
plot only shows a small section of the disc between r = 70 AU and r = 95 AU, where the
major substructures (gap + ring) of GW Lup are present. Predicted intensities align very
well with data points, and therefore are almost indistinguishable in the plot. Right: Same
as the left panel, but for the predicted (see color bar) and observed (salmon data points)
intensities along the minor axis. Different values of Hy are connected with very different
predicted intensities, and this allows us to constrain the true value of H,.
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Figure 7.6: Same as the right panel of Fig. 7.5, but for the systems discussed in Sec.
7.4.2: DoAr 25 (top left), Elias 24 (top right), AS 209 (middle left), HD 163296 (middle
right), MY Lup (bottom left).
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constraints. This is because the gap-filling effect in those systems is not
strong enough to produce significant effects on the final predicted intensities.
Indeed, we find that for those systems different H; values produce very
similar profiles even along the minor axis. This implies that our approach
is not effective in these cases given the structure of the emission and the
resolution of observations. We discuss further in Sec. 7.5.3 under which
conditions our method is effective in determining the discs’ vertical structure.

We choose to focus our discussion in this section only on the systems
that yield relevant constraints on Hy. The remaining systems — where our
method fails to apply — are presented in Appendix 7.A.

Figure 7.6 shows the model intensities along the minor axes for the
systems where our method is successful in gauging H,, together with the
observed intensities along the same axis (see also the right panel of Fig. 7.5
for the case of GW Lup). In all of these plots (and in the fitting routine), we
focus only on the sections of the discs that are relevant for the application of
our method and allow us to constrain the value of Hy (e.g., major gaps/rings).

Analogue plots are shown in Appendix 7.8 (Fig. 7.10) for the same
systems, but focusing on the major axis instead of the minor one — same as
the left panel of Fig. 7.5, where we focus on the results of GW Lup only.
Intensities along the major axis are generally well recovered by our model
because the aim of the convergence procedure described in Sec. 7.2.2 is to
correctly reproduce the observed intensity along this axis. Therefore, this
figure serves as a reference in order to test the validity of our approach. For
completeness, we also include mock images of these systems for H; = 0.5 AU
and H; = 8 AU and compare them with observations in Appendix 7.B.

In Fig. 7.7, instead, we show the log-likelihood as a function of the
parameter Hy (normalized to the peak value) for all the systems together.
The log-likelihood is computed according to the models and data profiles
that are shown in Figure 7.6 (i.e., the intensities along the minor axis).

In the following, we discuss the results of these figures for each system
individually.

7.4.2.1 DoAr 25

Due to its large inclination angle (i &~ 67°) and to the presence of a major gap
structure, DoAr 25 is a disc where the gap-filling effect is quite prominent.
Therefore, we expect our method to be effective in discerning which disc
scale height is compatible with the observed emission. Indeed, we see (Fig.
7.6) that different scale heights give rise to very different intensity profiles
along the minor axes. However, none of these profiles is perfectly compatible
with the observed emission. In fact, the observed gap + ring structure
presents an offset with respect to all of the synthetic ones, making it hard to
achieve a fair comparison between observations and models. The origin of
this offset is unclear; we remark that all the models are converged and can
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well reproduce the emission profile along the major axis, as can be seen in
Fig. 7.10, at least out to 150 AU — beyond which the observations became
relatively noisy. The offset may be due to an intrinsic asymmetry in the disc,
whereas in our approach we had to assume that the disc is symmetric and
any asymmetry is coming from radiative transfer and projection effects °.

Nonetheless, we note that the presence of an observable gap in the minor
axis’ intensity profile is already a significant probe of a very small disc scale
height. This is because, due to the high inclination of the disc, any values of
H, that are 2 4 AU would result in an almost complete filling of the gap.
Therefore, we conclude that only Hy < 2 AU values are compatible with
the observed gap + ring structure along the minor axis. This conclusion is
supported by the x? analysis (Fig. 7.7), in which we find that the best fitting
value of the disc scale height is H; = 2 AU, with small values significantly
preferred to larger ones.

7.4.2.2 Elias 24

Elias 24 has a very wide and deep gap around r ~ 57 AU. The gap is so
deep that, even along the minor axis, the intensity profile presents some
negative values. These negatives are due to artefacts created by the CLEAN
algorithm; it is notable that they are not present along the major axis and
in the averaged profile (gray transparent line). However, given the fact that
we adopt the same cleaning procedure as the one used for the data, we can
correctly reproduce the profile even when it becomes negative.

Such a deep gap implies, once again, that the disc scale height is very
small: only the profiles for Hy < 2AU show an intensity that becomes
negative in the gap centre, whereas larger values of Hy imply at least a
partial gap filling along the minor axis and fail to reproduce the CLEANing
artefacts. The best x? value, as expected, sits in the range Hy = 0.5 — 2 AU.

7.4.2.3 AS 209

The intensity profile of AS 209 is particularly complex: many substructures
can be identified both in the inner region of the disc and in the outer one
(Huang et al. 2018). However, only three outer gaps are deep enough to be
considered for our analysis of the filling effect. A first major gap is present
at 7 = 61 AU, whereas two other gaps » ~ 90 AU and r ~ 105 AU form a
large, single structure that is delimited by two bright rings at r ~ 74 AU
and r = 120 AU, respectively. Therefore, in our analysis, we use this region
(40 AU < r < 130 AU) to study how the predicted intensities compare with
the data.

6We have also tried to vary the disc optical depth by changing the normalization of the
temperature profile by a factor 2 in either direction, in order to investigate whether
optical depth effects could be the cause of the offset. However, we found it to not be the
case: results presented here are valid for all the models we experimented with.
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Due to the complexity of the observed intensity profile, however, it is
hard to tell which profile fits the data better by simply looking at Fig. 7.6.
One thing that is particularly easy to observe is that gaps are fairly deep
(and rings fairly bright), and thus very large values of Hy — represented by
green/yellow lines — are to be excluded. See for example how the green line
(Hq = 6 AU) fails significantly to reproduce the depth of the gap along the
minor axis at 105 AU (Fig. 7.6), while being a good fit to the major axis
(Fig. 7.10). The x? analysis can quantify this, and it confirms that very
small values of the disc scale height (H < 2 AU) are preferred over larger
ones.

7.4.2.4 HD 163296

HD 163296 is another disc whose morphology is very promising for the
application of our method. It has an inclination of i ~ 47 deg, and two
major gaps at 7 &= 48 AU and r ~ 86 AU. The first gap is quite peculiar, as
the emission map shows a sizeable blob in the gap along the major axis. This
blob represents an issue for our disc modelling, as it is an obvious breaking of
azimuthal symmetry. Therefore, we choose to exclude the region containing
the blob from our analysis. In order to do that, whenever computing the
intensity along the major axis (e.g., to find the surface density with the
iteration procedure outlined in Sec. 7.2.2), we select only the slice on the
side where the blob is not present. We double-check that this choice does
not have an influence on the results we find for the outer gap by running a
model that includes both sides of the major axis (therefore including the
blob, so that the model is only meaningful for the outer gap) and confirming
that we obtain very similar emission profiles along the minor axis for the
outer gap region.

Looking at the intensity profiles along the minor axis (Fig. 7.6), we note
that there is a broad agreement with data for values of the disc scale height
in the range 1 AU < Hy < 6 AU, depending on the exact gap/ring considered.
As a rule of thumb, both gaps are well-fitted by relatively large scale heights
(Hy ~ 4 — 6 AU), whereas the two rings seem to be compatible with lower
values of Hy. The overall agreement is captured by our x? analysis, which
reveals a very strong preference for an intermediate value of the disc scale
height (Hq = 4 AU). Therefore, this disc is the only one for which we can
place relatively solid constraints on both the upper and the lower limits of
the disc thickness. We caveat the reader, however, that the strength of this
constraint should be not overestimated. In fact, as also discussed in Sec.
7.4.1, our x? analysis does not take into account the uncertainty associated
with our model and relies on some arbitrary assumptions such as the fact
that Hy does not vary in different gaps. Indeed, the value of Hy =~ 4 AU
seems to be a compromise between a slightly larger value of Hy in gaps and
a smaller value in rings (see Fig. 7.6). Therefore, we interpret this result as
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implying that our results do indeed show that HD 163296 is characterized by
an intermediate value of Hy ~ 2 — 6 AU (and take Hy ~ 4 AU as our final
results), but we do not explore further the exact range of values that are
allowed by our x? fitting.

Quite encouragingly, HD 163296 was also analyzed recently by Liu et al.
(2022). The authors of that study use an analogue method to constrain the
vertical structure of the disc, and try to find the best-fitting disc scale height
both globally and on every disc/gap separately. In both cases, we see that
the values of H, they find are in broad agreement with the one found here.
In particular, we can make a quantitative comparison with their former
method, since it is essentially the same as the one used here. Transforming
their parametrization of the disc thickness into values of Hy (we do this by
assuming a value for the scale height of the gas component, see Sec. 7.5.1),
they find that the best-fitting profile is the one with Hy ~ 3 AU. This value
is very close to the one we find in our analysis.

7.4.2.5 MY Lup

MY Lup is a very simple disc that does not show any major substructures.
The gap-filling effect here is thus totally absent. However, the outer edge
of the disc is still subject to the same projection effect, and therefore it
can be used to determine whether different scale heights produce significant
differences in the intensity profile. In other terms, even the outer edge of
the disc can be considered part of an "infinitely wide gap" that extends out
to infinity starting from the edge of the disc.

Thanks to the high inclination of MY Lup (i &~ 73°), we indeed find
that there is a significant difference in the predicted intensity profiles for
different values of H;. As shown in Fig. 7.6, larger H,; values correspond
to profiles that are significantly shallower than the observed ones. On the
other hand, small scale height (Hy; < 4 AU) profiles present a slope that is
generally compatible with data. Therefore, despite the absence of gaps, we
can still use MY Lup observations to constrain its disc scale height.

Discussion

In the last section, we applied the method outlined in Sec. 7.2 to gauge
the dust scale height of DSHARP discs by using the gap-filling effect. We
have found that: (a) only ~ 40% of discs yield significant constraints on
their dust scale height; (b) for the discs where these constraints are available,
we find that the dust scale height (parametrized by Hy) is generally low
(Hq S 4AU), with almost all systems yielding only upper limits to its value.
In this section, we discuss the implications of these findings, and we put our
results in a broader context by comparing them with previous relevant work
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Figure 7.7: Logarithm of the likelihood (log £ oc —x2/2) normalised to its peak value,
for the values of the parameter H,; considered in our analysis. The systems discussed in
Sec. 7.4 are shown with different colours.

Table 7.2: Summary of the constraints on the vertical scale-height and turbulence. Note
that, as described in the main text, we have assumed St = 10~2 to break the degeneracy
between agg and St.

1D ‘ Hd [AU] Hd/T‘ ] Ozss/st ass
GW Lup <4 <004 <044 <024 <24x1073
DoAr 25 <2 <002 <027 <0079 <79x107*
Elias 24 <2 <002 <020 <0042 <42x107*
AS 209 <2 <002 <025 <0065 <6.5x107*
HD 163296 ~ ~0.04 =056 =~045 =~45x1073
MY Lup <4 <004 <048 <029 <29x1073

on the subject. We conclude by highlighting a few caveats that need to be
kept in mind when interpreting our results.

7.5.1 Relative dust and gas scale heights

As mentioned at the start of Sec. 7.2, we have focused so far only on the
dust component of discs because this is the one that can be probed directly
by (sub-)mm observations. However, in order to get constraints on the level
of turbulence in the disc, we need to consider the vertical structure of the
gas component too.
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This can be done by assuming that the characteristic value of the gas
scale height hy is set by hydrostatic equilibrium (M, is the mass of the

central star):
| kKTr3
hg =4 57— 7.6
g GM*,ump ( )

where £ is the Boltzmann’s constant, G is the gravitational constant, m,, is
the mass of the proton, and p = 2.3 is the mean molecular weight.

Assuming the gas temperature follows the same relation we already
adopted for the dust (eq. 7.3), then, we can compute the gas temperature
everywhere in the disc. With the choice we have made for the radial
dependence of the dust scale height (eq 7.2), it can be shown that the gas
scale height follows the same dependence, and we can therefore introduce
a single parameter O, defined as the ratio between the two scale-heights:
hq(r) = ©hgy(r). Hereafter, we refer to the parameter © as the scale height
ratio.

Given the constraints on H; we have presented in the previous section,
we can use the values of M, and L, given in Table 7.1 and compute the
value of hy at r = 100 AU, and, subsequently, the scale height ratio ©. We
list the resulting values of © in Table 7.2. It is easy to note how in all cases
the dust scale height is smaller than the gas scale height, as expected from
dust settling.

7.5.2 Implications for turbulence

The ultimate goal of this work is to put constraints on the magnitude of
disc turbulence. In order to do this, we follow Dubrulle et al. (1995), who

showed that
St —1/2
o - (1 + ) | (7.7)
Qass

We list the resulting values of ags/St in Table 7.2. Note that turning these
constraints into a constraint on agg requires a measurement of St, which
at the moment is not available for our whole sample. In the future this
may become possible through multi-wavelength observations which measure
the spectral index, though significant uncertainties about the dust opacity
still remain (e.g., Sierra et al. 2021; Guidi et al. 2022). For the sake of
the discussion, we assume here a typical St = 1072, but we stress this is
not a measurement and this is an uncertainty that is carried over to the
measurement of agg.

The first thing to note is that all our measurements are incompatible
with a value of agg = 1072. This is in line with recent findings in the
field that turbulence in proto-planetary discs is relatively weak (see Rosotti
2023 for a review) and also in line with theoretical expectations in the cold
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conditions of proto-planetary discs, which are not capable to sustain the
magneto-rotational instability (Balbus & Hawley 1991). For 3 discs, namely
half of the sample where we can get constraints, we find even lower upper
limits, namely that agg < 1073, reinforcing the statement that turbulence
is weak in proto-planetary discs. Only for one case, HD 163296, our method
provides a measurement and not only upper limits, implying that turbulence
is (indirectly) detected in this disc. As already discussed, this is in line with
the study of Liu et al. (2022), who found similar results.

The other aspect we can investigate with our results is whether turbulence
is isotropic. In addition to HD163296, which was already discussed by Liu
et al. (2022), some of our sources have also constraints on turbulence in the
radial direction: namely AS209 (Rosotti et al. 2020), GW Lup and Elias 24
(Dullemond et al. 2018). Note that these constraints are also obtained by
indirectly measuring asg/St. Thus, a comparison between the turbulence
level measured in the radial direction and in the vertical one is independent of
the assumed Stokes number, St. It is notable that in all three cases the upper
limit we derive on agg/St is lower than the value derived by Rosotti et al.
(2020) for AS209 (0.06 with respect to 0.18 and 0.13, depending on which
gap/ring we consider) or the lower limit for the range derived by Dullemond
et al. (2018) for GW Lup and Elias 24 (0.3 and 0.08, respectively). At face
value, this would imply that turbulence in the vertical direction is in fact
weaker than in the radial direction. This could have implications regarding
the debate on the origin of turbulence, since for example mechanisms like the
Vertical Shear Instability (VSI, see Lesur et al. 2022 for a review) predict the
opposite behaviour because they are particularly effective at lifting particles
(e.g., Stoll & Kley 2016; Flock et al. 2017; Lin 2019; Dullemond et al. 2022).
Note however that the opposite behaviour is found for HD163296, although
the fact it is the only disc in our sample for which we are able to measure
the vertical scale height may mean it is exceptionally thick. Considering
the small sample size, we are not currently able to draw any conclusions on
turbulence anisotropy, but this aspect should be revisited in the future with
larger samples.

7.5.3 When does the method yield constraints on the
scale height?

As we already discussed, for a significant fraction of our discs we are not able
to get constraints on the dust scale height. It is worth asking under which
conditions the method we use in this paper can give constraints. Considering
the method relies on projection effects, we expect it to require discs to have
moderate inclinations to be effective. On the other hand, we also expect the
method to require deep gaps to work, in order to introduce an appreciable
difference between models with different scale heights. On the contrary,
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Figure 7.8: Gap depth (as defined in Huang et al. (2018)) as a function of the disc
inclination angle (as reported in Tab. 7.1) for all the gaps of the DSHARP sample
considered in this work for which it is possible to measure a gap depth (for more details,
see Huang et al. 2018). Different colours refer to different systems in the sample. Filled
(empty) circles stand for the gap that we (did not) use to measure the dust scale height
effectively. The gray shaded region is defined by the two conditions inclination > 25° and
gap depth < 0.65, and it marks the region where we find that our method proves to be
effective in constraining H.

shallow gaps are already filled by definition and there is less room for the
gap-filling effect to introduce a difference between the models.

In order to quantify more our expectations, we plot in Figure 7.8 the
properties of gaps in the DSHARP discs listed in Table 7.1. For every gap in
these discs, we plot on the x-axis the disc’s inclination, and on the y-axis the
gap depth taken from Huang et al. (2018). This latter quantity is defined
as the ratio between the (azimuthally-averaged) intensity in the radial bin
containing the centre of the gap and the intensity in the bin containing the
centre of the adjacent ring (for more details, see Huang et al. 2018). If the
gap depth could not be measured, we discard the gap from our sample. We
use filled (empty) circles to highlight gaps that we (did not) use to effectively
constrain the dust scale height. Different systems are plotted using different
colours. Note that some of the systems (i.e., AS 209, HD 163296, and GW
Lup) have gaps belonging to both of these categories. This is because, in
the analysis of these systems (Sec. 7.4), we have focused only on the regions
where the major (i.e., deeper and larger) gaps reside. Other secondary gaps
that were not considered in Sec. 7.4 are included in Fig. 7.8 with empty
circles.

The figure fully confirms our expectations: gaps that can constrain the
dust scale height effectively are all residing in a (gray-shaded) region for
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which ¢ > 25° and the gap depth is lower than 0.65. On the other hand,
gaps for which our method proves not to be effective are all outside this
region, and thus they have either a small inclination or a large gap depth.
The sole exception to this is a gap in AS 209 (red empty circle) which has a
gap depth of ~ 0.45 and thus fall in the gray shaded region; however, this
gap is located very close to the inner radius (r ~ 9 AU), and therefore it is
likely affected by limited spatial resolution.

We stress that the criterion in which the gray shaded was defined —
although it works well for our sample — is empirical and should not be taken
literally. It is conceivable for example that the specific conditions may vary
with the spatial resolution of the observations, as well as with the emission
morphology (whose potential variation is presumably larger than what the
simple gap depth parameter we introduced can catch).

Here, we have analysed only the DSHARP sample, as the largest and
most homogeneous sample of high-resolution continuum observations. It
is unlikely that a single programme will produce a larger sample of high-
resolution observations; however, ALMA is conducting more high-resolution
campaigns from many programs targeting smaller samples, and combining
them one may eventually have a comparable or larger sample than the one
we analysed here. The empirical criterion we have derived here may be
useful for deciding which ones of those would be worth investigating using
the gap-filling effect.

7.5.4 Caveats

The strongest caveat to make regarding this work is that we have implicitly
assumed that the disc is azimuthally symmetric. The fact that strong
asymmetries are relatively rare is indeed one of the main results of DSHARP
(Jennings et al. 2022; Andrews et al. 2021), which partially justifies our
assumption. We should caveat, however, that here we are interested in rather
subtle differences in the azimuthal angle. Therefore, we cannot exclude that
asymmetries are indeed present in the discs we observe, but weaker than
the obvious ones such as horseshoes, crescents and spirals. This caveat is
somehow mitigated by the fact that in the vast majority of cases we can
only put upper limits on the dust scale-height, implying that in fact that
emission is much more symmetrical (once the different spatial resolution
along the major and minor axis is taken into account) than it would be if the
disc were thick. The caveat remains however for the example we highlighted
of DoAr 25 — where we are not able to reproduce the emission with an
azimuthally symmetric disc — and for HD 163296 — where we do measure a
scale-height. Though this seems unlikely, we are not able to exclude that the
weak asymmetry introduced by the gap-filling effect is instead introduced
by an intrinsic asymmetry, and the disc is actually thinner.
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Another caveat is that we have taken here a greatly simplified disc tem-
perature structure and we have not set up a realistic grain size distribution.
This is done for the sake of simplicity; doing otherwise would introduce many
other free parameters regarding the choice of dust opacity, size distribution
and disc vertical structure. It is reassuring, though, that for HD163296 our
method produces similar results to Liu et al. (2022), who did take the more
complex route. This is probably because the method we use here is due to
projection effects, and as such it should not depend directly on the details
of the dust opacity or temperature.

Finally, we stress the fact that our method can gauge the value of the
disc scale height (and hence of agg/St) only locally, where substructures
such as gaps and rings reside. Despite the fact that we can reproduce the
observed intensity profiles everywhere, it may be that our assumption of a
single, global value for the disc scale height does not correspond to reality.
In principle, the vertical structure of the disc may vary from one gap to
the other one; physical processes such as vortexes at the edge of gaps or
meridional flows could also amplify the scale height in the proximity of gaps,
biasing the inferred value of the gas turbulence. Therefore, the reader should
keep in mind that our conclusions are based on a local effect, and that the
knowledge of the behaviour of the scale height globally is an assumption of
our model.

Summary

In this work, we have used the gap-filling effect to measure the dust scale
height in DSHARP discs, with the goal of constraining the amount of
turbulence they have. This effect originates from the fact that, in the
presence of substructures such as gaps and rings, the intensity profile along
the major axis differs from the profile along the minor one. This is because,
if the disc inclination is not too small, line-of-sights piercing through the
minor axis intercept a larger fraction of the disc’s external layers — which
are far from the midplane —, creating a projection effect that “fills" the gaps
along that axis.

Since this effect is stronger if the disc vertical size is larger, we can
probe the value of the disc scale height by building a model whose goal is
to reproduce the intensity profiles along the two principal axes. Following
previous work by Pinte et al. (2016) and Liu et al. (2022), we use radiative
transfer to predict the resulting emission maps based on our model. The disc
surface density is obtained via an iteration procedure that aims at matching
the intensity observed along the major axis. This procedure is successful
and convergence is reached at a satisfactory level in almost all cases (see
also Fig. 7.10).
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The values of the disc scale height (Hg; see eq. 7.2 for the definition) we
find with our analysis can be related to the level of gas turbulence, because
the vertical structure of dust grains is set by a competition between gravity
and turbulence. Assuming hydrostatic equilibrium for the gas component,
we can turn the value of Hy into an estimate for agg/St, and finally into an
estimate for the turbulence parameter agg by assuming a conventional value
St = 1072 (see Sec. 7.5.1 for more details).

We summarise here the main findings of this paper:

e We apply our method to 15 discs from the DSHARP survey (Andrews
et al. 2018). We manage to successfully constrain the value of disc
scale height in 6 of these discs: GW Lup, DoAr 25, Elias 24, AS 209,
HD163296, and MY Lup.

e The values of Hy we find are generally very low (Hy; < 4 AU), and
most estimates are upper limits only. In the single case of HD 163296,
we can gauge the value of Hy to Hy = 4 AU (in very good agreement

with Liu et al. 2022).

e Turning these values of the disc scale height into constraints for the
strength of turbulence (see Table 7.2), we find ags < 5 x 1073, For 3
dises (i.e., half of our sample) we find even lower constraints (ags <
1073). These values are in line with recent findings that suggest a
relatively low level of turbulence in protoplanetary discs (for more
details, see Rosotti 2023).

e For the remaining 9 systems in our sample, we find that our method is
not effective in constraining the value of the disc scale height: models
with very different values of Hy give rise to identical intensity profiles
along the minor axes (see Fig. 7.9). We find that all of these 9 systems
(=~ 60% of our sample) are either not very inclined (i < 25°) or they
host gaps that are not deep enough — i.e., the intensity at the bottom
of the gap is not much smaller than the one in the adjacent ring.
We provide an empirical criterion specifying in which region of the
inclination-gap depth plane (see Fig. 7.8) the method we employ here
can be successfully applied.

Looking at the future, the empirical criterion we derive can be used
to select from the ever-growing sample (see e.g. the catalogue assembled
by Bae et al. 2022) of high-resolution disc observations those where this
methodology can be applied, and in this way expand the disc sample with
constraints on the vertical scale-height.

Future observations should also focus on gauging the value of the Stokes
number. As we have shown in this work, the current sensitivity of observa-
tions make it possible to get good constraints on the disc vertical structure
(and hence on agg/St). However, the values we obtain for the level of gas
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turbulence are subject to our lack of knowledge about the value of the Stokes
number, St. Therefore, it is essential in the near future to have complemen-
tary multiwavelength observations (see e.g., Carrasco-Gonzalez et al. 2019;
Guidi et al. 2022) that can probe the dust grain size distribution - a sub-field
that should expand in the next few years thanks to the development of band
1 on ALMA.

Appendix: Discs with no constraints

We show here the results for the discs for which our method is not able to
place any constraints on the value of the disc scale height. These are (see
also Tab. 7.1): HD 142666, Elias 20, Sz 129, HD 143006, SR 4, RU Lup,
Sz 114, WSB 52, DoAr 33. A discussion on why these systems yield no
constraints on Hy is made in Sec. 7.5.3.

In Fig. 7.9, we show the intensity profiles along the minor axis extracted
from data (salmon lines) together with the ones predicted by our model for
different values of the disc scale height Hy (coloured lines). As it is clear
from all of the plots, the reason why it is not possible to constrain H; using
our method is that all models with different values of H; give rise to very
similar profiles.

Thus, despite the fact that these profiles are generally in good agreement
with data — apart from some specific cases where major asymmetries are
present, e.g., the outer region of HD 143006 —, we cannot draw any conclusions
on the vertical structure of the discs.

A significant exception to this is the outer region of HD 142666. Similarly
to what described in the case of MY Lup (Sec. 7.4.2), profiles with a small
(large) value of H; are much (steeper) shallower due to the same projection
effect that takes place in gaps and/or rings. However, in the case of HD
142666, the noise is to high to distinguish which of the different profiles is in
better agreement with the data points.

Appendix: Convergence along the major
axis and emission maps

In this section, we show the results of our model-data comparison for what
concerns the intensity profiles along the major axis (Figure 7.10) as well as
the full mock images of the discs for the two extreme cases H; = 0.05 AU
and Hy; = 8 AU (Figure 7.11- 7.12). We focus on the systems that yield
significant constraints on the value of the disc scale height (see also Sec. 7.4
for more details), with the exception of GW Lup which is discussed entirely
in the main text (results are in Fig. 7.5).
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Figure 7.9: Same as Fig. 7.6, but for the systems of Tab. 7.1 for which no constraints
on H,; can be placed.
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Figure 7.10: Same as the left panel of Fig. 7.5, but for the systems discussed in Sec.
7.4.2: DoAr 25 (top left), Elias 24 (top right), AS 209 (middle left), HD 163296 (middle
right), MY Lup (bottom left). The same figure focusing on intensity profiles along the
minor axis is in the main text (Fig. 7.6).
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ENGLISH SUMMARY

Research in astrophysics often advances by weaving together insights from
multiple domains: observations and theory, small- and large-scale phenomena,
and sometimes entirely different subfields. This thesis is a modest attempt
to navigate that breadth. It brings together six studies carried out with
collaborators, spanning topics from the large-scale clustering of quasars
and the growth of supermassive black holes, to the discovery of unexpected
populations of candidate active galactic nuclei (AGN) in the era of the James
Webb Space Telescope (JWST), to the challenges posed by gravitational
wave astronomy and the physics of planet-forming (protoplanetary) discs.
Despite their diversity, these studies share a common motivation: to develop
models and methods that connect theory with observation, and to use them
as tools for interpreting data that often defy expectations and sometimes
force us to rethink long-standing assumptions.

Quasar clustering and supermassive black hole growth

Quasars are the visible signposts of supermassive black hole growth. Powered
by gas spiraling onto supermassive black holes at the centers of galaxies,
they release extraordinary amounts of energy, making them detectable across
billions of light-years. Each quasar we observe reveals a black hole caught in
the act of accreting matter, offering a direct view of how these giants formed
and evolved when the Universe was still young.

The distribution of quasars across space is far from uniform. Some regions
are densely populated with quasars, while others are empty. This clustering
reflects the underlying pattern of dark matter halos and encodes information
about the environments that fuel black hole growth. By studying quasar
abundance, clustering, and luminosity together, we can begin to answer
fundamental questions: How often are supermassive black holes active as
quasars? How rapidly do they grow into billion-solar-mass giants? And how
do quasar populations at different cosmic epochs connect into a coherent
picture of black hole evolution?

The first set of studies in this thesis (Chapters 2, 3, and 5) tackles these
questions by developing models that link quasar luminosity functions and
clustering statistics, and by embedding black hole growth into the broader
framework of cosmological structure formation.

Chapter 2 addresses a long-standing puzzle: quasars observed about 1.5
billion years after the Big Bang appear to cluster far more strongly than
theory predicts. Using large cosmological simulations, I develop a framework
that ties quasar abundance and spatial distribution to halo demographics.
The results suggest that, if observations are correct, nearly all quasars at
that epoch were confined to the most massive halos, with little scatter
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between halo mass and quasar brightness. This implies an unusually tight
link between supermassive black holes and their host dark matter halos —
tighter than seen at later times — raising the question of whether quasars
evolve in fundamentally different ways across cosmic history.

Chapter 3 extends this framework to even earlier epochs, when the
Universe was less than a billion years old, and incorporates galaxies detected
by JWST alongside quasars. Employing one of the largest cosmological
simulations ever run, I reproduce key observations of both quasars and
galaxies. The resulting model shows that quasars in these early epochs
were active for only a tiny fraction of cosmic time. This contrasts sharply
with slightly later periods, when quasars seem to shine in nearly every
massive halo, and it intensifies the tension with the rapid, near-continuous
growth needed to build billion-solar-mass black holes in the young Universe.
Reconciling this tension remains a key challenge: are black holes truly so
intermittent, and if so, how can such sporadic activity produce the enormous
masses we observe?

Chapter 5 takes a first step to directly address these questions by intro-
ducing an evolutionary model that follows supermassive black holes across
cosmic history. Here, black hole growth is tied directly to the assembly of
their host halos, consistently tracking accretion and mergers. Despite its
simplicity, the model reproduces observations from the epoch of reionization
through cosmic noon, highlighting the importance of rapid, well-timed ac-
cretion episodes in producing the earliest supermassive black holes. It also
provides a flexible basis for incorporating new constraints in the future.

Taken together, these studies use quasars as powerful tracers of supermas-
sive black hole accretion and its connection to large-scale structure. They
reveal both progress and open questions: quasars offer a direct view of early
black hole growth, yet their activity patterns and clustering continue to
challenge our understanding of how black holes evolved in the Universe.

New black hole populations in the JWST era?

The launch of JWST has opened a new window on the early Universe.
With its ability to detect faint galaxies at great distances, it has revealed
sources that were invisible to previous telescopes. Among the most striking
discoveries is a population of compact, red objects, many showing broad
emission lines typically associated with active black holes. Because of their
appearance, these sources have been nicknamed “little red dots”.

What makes these objects remarkable is not just their appearance, but
their abundance. When corrected for obscuration, many of them appear to
be just as luminous as traditional quasars, yet they are found in surveys
that cover much smaller areas of the sky. This implies they must be far
more common than quasars of similar brightness — an observation that, if
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confirmed, would overturn the prevailing view of how frequent black holes
were in the early Universe.

In my work, I compared these new sources to the well-studied population
of ultraviolet-bright quasars. The results show that little red dots outnumber
quasars by a large and rapidly increasing factor with redshift. Their clustering
also points to a clear difference: whereas quasars occupy very massive halos
and show strong spatial correlations, little red dots cluster like ordinary
star-forming galaxies. This strongly suggests that little red dots are not
simply obscured quasars but instead mark a distinct phase of black hole
growth — or, in some cases, may not be powered by black holes at all.

Beyond quasars: overlapping gravitational wave signals
and the physics of protoplanetary discs

The final two studies in this thesis step outside the realm of quasars. Chapter
6 focuses on gravitational waves. Future detectors, such as the planned
Cosmic Explorer and Einstein Telescope, will be able to detect merging black
holes and neutron stars with extraordinary sensitivity. This will open new
opportunities for studying the Universe, but also new challenges. One of
these is that so many events will be detected that their signals will sometimes
overlap in time. When this happens, standard data-analysis methods may
not work properly, leading to biases in the inferred properties of the sources.

Through detailed simulations, I explored how overlapping signals affect
our ability to measure the masses and other properties of merging binaries.
The results show that if the mergers occur within less than about half a
second of each other, the overlap can significantly bias the results. But if
they are separated by more than a second, and if information from detection
pipelines is used wisely, the signals can still be disentangled reliably. These
findings underscore the need for new analysis strategies that can handle the
complex data that third-generation detectors will provide.

Chapter 7 returns to a more familiar astrophysical setting: discs of gas
and dust around young stars, the birthplaces of planets. A key question in
this field is the role of turbulence, which affects everything from how gas
accretes onto the star to how dust grains stick together to form planets.
Measuring turbulence directly is difficult, but one promising method is to
infer it from the vertical thickness of the dust layer in discs.

Using high-resolution observations from the Atacama Large Millime-
ter /submillimeter Array (ALMA), I developed models to infer dust thickness
by comparing how gaps in the discs appear from different viewing angles.
Where constraints are possible, the results indicate that the dust is confined
to thin layers, pointing to low levels of turbulence and raising interest-
ing questions about the role of turbulence in the long-term evolution of
protoplanetary discs.






NEDERLANDSE SAMENVATTING

Onderzoek in de astrofysica boekt vaak vooruitgang door inzichten uit meer-
dere domeinen met elkaar te verweven: observaties en theorie, kleinschalige
en grootschalige fenomenen, en soms zelfs geheel verschillende deelgebie-
den. Dit proefschrift is een bescheiden poging om met die breedte om te
gaan. Het bundelt zes studies, uitgevoerd in samenwerking met collega’s,
die onderwerpen bestrijken variérend van de grootschalige clustering van
quasars en de groei van superzware zwarte gaten, via de ontdekking van
onverwachte populaties kandidaat-actieve galactische kernen (AGN) in het
tijdperk van de James Webb-ruimtetelescoop (JWST), tot de uitdagingen
van de zwaartekrachtsgolfastronomie en de fysica van planeetvormende (pro-
toplanetaire) schijven. Ondanks hun verscheidenheid delen deze studies
een gemeenschappelijke drijfveer: modellen en methoden ontwikkelen die
theorie en observatie verbinden, en die inzetten als instrumenten om gege-
vens te interpreteren die vaak de verwachtingen tarten en ons soms dwingen
langgekoesterde aannames te herzien.

De clustering van quasars en de groei van superzware
zwarte gaten

Quasars zijn de zichtbare wegwijzers van de groei van superzware zwarte
gaten. Aangedreven door gas dat in een spiraal naar de centra van ster-
renstelsels valt, waar deze zwarte gaten zich bevinden, stoten zij enorme
hoeveelheden energie uit, waardoor ze over miljarden lichtjaren heen waar-
neembaar zijn. Elke quasar die we observeren toont een zwart gat dat actief
materie aan het accreteren is, en biedt ons zo een direct venster op hoe deze
reuzen zich vormden en evolueerden toen het heelal nog jong was.

De verdeling van quasars in de ruimte is verre van uniform. Sommige
regio’s zijn dichtbevolkt, terwijl andere leeg zijn. Deze clustering weerspiegelt
het onderliggende patroon van donkere-materiehalos en bevat informatie over
de omgevingen die de groei van zwarte gaten voeden. Door de abundantie,
clustering en lichtkracht van quasars gezamenlijk te bestuderen, kunnen
we fundamentele vragen benaderen: Hoe vaak zijn superzware zwarte ga-
ten actief als quasars? Hoe snel groeien zij uit tot reuzen van miljarden
zonsmassa’s? En hoe hangen quasar-populaties uit verschillende kosmische
tijdperken samen in een coherent beeld van de evolutie van zwarte gaten?

De eerste reeks studies in dit proefschrift (Hoofdstukken 2, 3 en §) behan-
delt deze vragen door modellen te ontwikkelen die quasar-lichtkrachtfuncties
en clusteringstatisticken koppelen, en door de groei van zwarte gaten in te
bedden in het bredere kader van de vorming van kosmische structuren.

Hoofdstuk 2 gaat in op een oud raadsel: quasars die ongeveer 1,5 mil-
jard jaar na de Oerknal werden waargenomen blijken zich veel sterker te
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clusteren dan de theorie voorspelt. Met behulp van grootschalige kosmo-
logische simulaties ontwikkelde ik een raamwerk dat quasar-abundantie en
ruimtelijke verdeling koppelt aan de eigenschappen van halos. De resultaten
suggereren dat, indien de observaties correct zijn, vrijwel alle quasars in die
periode beperkt waren tot de meest massieve halos, met weinig spreiding
tussen halomassa en quasar-helderheid. Dit impliceert een ongewoon sterke
koppeling tussen superzware zwarte gaten en hun gast-halos van donkere
materie — sterker dan later in de kosmische geschiedenis — en roept de
vraag op of quasars zich fundamenteel verschillend ontwikkelen doorheen de
kosmische tijd.

Hoofdstuk 8 breidt dit raamwerk uit naar nog vroegere tijdperken, toen
het heelal jonger was dan één miljard jaar, en neemt naast quasars ook door
JWST gedetecteerde sterrenstelsels mee. Door gebruik te maken van een
van de grootste kosmologische simulaties ooit uitgevoerd, reproduceerde ik
belangrijke observaties van zowel quasars als sterrenstelsels. Het resulterende
model toont dat quasars in deze vroege tijdperken slechts gedurende een
fractie van de kosmische tijd actief waren. Dit staat in scherp contrast met
iets latere perioden, waarin quasars in bijna elke massieve halo lijken te
stralen, en versterkt de spanning met de snelle, vrijwel continue groei die
nodig is om in het jonge heelal zwarte gaten van miljarden zonsmassa’s te
vormen. Deze spanning verzoenen blijft een belangrijke uitdaging: zijn zwarte
gaten werkelijk zo intermitterend, en zo ja, hoe kan een zulke sporadische
activiteit leiden tot de enorme massa’s die we observeren?

Hoofdstuk 5 zet een eerste stap om deze vragen direct aan te pakken
door een evolutionair model te introduceren dat superzware zwarte gaten
doorheen de kosmische geschiedenis volgt. Hier wordt de groei van zwarte
gaten rechtstreeks gekoppeld aan de opbouw van hun gast-halos, waarbij
accretie en fusies consistent worden bijgehouden. Ondanks zijn eenvoud weet
het model observaties te reproduceren van de reionisatie-epoque tot aan het
kosmische middaguur, en benadrukt het de rol van snelle, goed getimede
accretie-episoden bij het vormen van de vroegste superzware zwarte gaten.
Het biedt bovendien een flexibel uitgangspunt voor het opnemen van nieuwe
waarnemingsconstraints in de toekomst.

Gezamenlijk gebruiken deze studies quasars als krachtige tracers van de
accretie op superzware zwarte gaten en hun verbinding met grootschalige
structuur. Ze laten zowel vooruitgang als open vragen zien: quasars bieden
een direct venster op de vroege groei van zwarte gaten, maar hun activiteits-
patronen en clustering blijven een uitdaging vormen voor ons begrip van de
evolutie van zwarte gaten in het heelal.

Nieuwe zwartegatpopulaties in het JWST-tijdperk?

De lancering van JWST heeft een nieuw venster geopend op het vroege
heelal. Dankzij zijn vermogen om zwakke sterrenstelsels op grote afstanden
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te detecteren, heeft de telescoop bronnen onthuld die voorheen onzichtbaar
waren voor eerdere telescopen. Tot de meest opvallende ontdekkingen behoort
een populatie van compacte, rode objecten, waarvan vele brede emissielijnen
vertonen die typisch worden geassocieerd met actieve zwarte gaten. Vanwege
hun uiterlijk worden deze bronnen “little red dots” genoemd.

Wat deze objecten opmerkelijk maakt, is niet alleen hun verschijning,
maar ook hun overvloed. Na correctie voor verduistering blijken veel van hen
net zo lichtkrachtig te zijn als traditionele quasars, maar ze worden gevonden
in onderzoeken die slechts veel kleinere delen van de hemel bestrijken. Dit
impliceert dat ze veel talrijker moeten zijn dan quasars met een vergelijkbare
helderheid — een observatie die, indien bevestigd, het heersende beeld van
de frequentie van zwarte gaten in het vroege heelal volledig zou omgooien.

In mijn werk heb ik deze nieuwe bronnen vergeleken met de goed bestu-
deerde populatie van ultraviolet-heldere quasars. De resultaten tonen aan
dat little red dots quasars in aantal ruimschoots overtreffen, met een factor
die snel toeneemt bij hogere redshift. Hun clustering wijst bovendien op een
duidelijk verschil: terwijl quasars zich bevinden in zeer massieve halos en
sterke ruimtelijke correlaties vertonen, clusteren little red dots als gewone
stervormende sterrenstelsels. Dit suggereert sterk dat little red dots niet
simpelweg verduisterde quasars zijn, maar eerder een afzonderlijke fase in
de groei van zwarte gaten markeren — of, in sommige gevallen, misschien
helemaal niet door zwarte gaten worden aangedreven.

Voorbij quasars: overlappende zwaartekrachtsgolfsigna-
len en de fysica van protoplanetaire schijven

De laatste twee studies in dit proefschrift vallen buiten het domein van
quasars. Hoofdstuk 6 richt zich op zwaartekrachtsgolven. Toekomstige
detectoren, zoals de geplande Cosmic Explorer en Einstein Telescope, zul-
len samensmeltende zwarte gaten en neutronensterren met buitengewone
gevoeligheid kunnen detecteren. Dit opent nieuwe mogelijkheden om het
heelal te bestuderen, maar brengt ook nieuwe uitdagingen met zich mee. Eén
daarvan is dat er zoveel gebeurtenissen zullen worden waargenomen dat hun
signalen soms in de tijd overlappen. Wanneer dat gebeurt, kunnen standaard
data-analysemethoden niet goed meer werken, wat leidt tot vertekeningen
in de afgeleide eigenschappen van de bronnen.

Met behulp van gedetailleerde simulaties heb ik onderzocht hoe over-
lappende signalen ons vermogen beinvloeden om de massa’s en andere
eigenschappen van samensmeltende dubbelsterren te meten. De resultaten
laten zien dat, als de fusies binnen minder dan ongeveer een halve seconde
van elkaar plaatsvinden, de overlap de resultaten aanzienlijk kan vertekenen.
Vinden ze daarentegen meer dan een seconde uit elkaar plaats, en wordt
informatie uit detectiepijplijnen verstandig gebruikt, dan kunnen de signalen
nog steeds betrouwbaar van elkaar worden gescheiden. Deze bevindingen
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benadrukken de noodzaak van nieuwe analysemethoden die de complexe
gegevens van detectoren van de derde generatie aankunnen.

Hoofdstuk 7 keert terug naar een meer vertrouwde astrofysische omge-
ving: schijven van gas en stof rond jonge sterren, de geboorteplaatsen van
planeten. Een kernvraag in dit vakgebied is de rol van turbulentie, die alles
beinvloedt van de manier waarop gas op de ster accreteert tot hoe stofdeeltjes
samenklonteren om planeten te vormen. Turbulentie direct meten is moeilijk,
maar een veelbelovende methode is om die af te leiden uit de verticale dikte
van de stoflaag in de schijven.

Met hogeresolutie-waarnemingen van de Atacama Large Millimeter /sub-
millimeter Array (ALMA) heb ik modellen ontwikkeld om de stofdikte af
te leiden door te vergelijken hoe gaten in de schijven verschijnen onder ver-
schillende kijkhoeken. Waar beperkingen mogelijk zijn, wijzen de resultaten
erop dat het stof opgesloten zit in dunne lagen, wat duidt op lage niveaus
van turbulentie en belangrijke vragen oproept over de rol van turbulentie in
de langetermijnevolutie van protoplanetaire schijven.



RIASSUNTO IN ITALIANO

La ricerca in astrofisica progredisce spesso intrecciando contributi provenienti
da diversi ambiti: osservazioni e teoria, fenomeni su piccola e grande scala,
e talvolta persino ambiti del tutto differenti. Questo lavoro di tesi é un
modesto tentativo di navigare queste diverse dimensioni. Riunisce sei studi
condotti in collaborazione con colleghi, che spaziano dal clustering dei quasar
su larga scala e dalla crescita dei buchi neri supermassicci, alla scoperta
di nuove possibili popolazioni di nuclei galattici attivi (AGN) nell’era del
James Webb Space Telescope (JWST), fino alle sfide poste dall’astronomia
delle onde gravitazionali e dalla fisica dei dischi in cui si formano i pianeti.
Nonostante la loro diversita, questi studi condividono un obiettivo comune:
sviluppare modelli e metodi che colleghino teoria e osservazione, e utilizzarli
come strumenti per interpretare dati che spesso contraddicono le aspettative
e talvolta ci costringono a rivedere ipotesi di lunga data.

Il clustering dei quasar e la crescita dei buchi neri super-
massicci

I quasar sono i segnali visibili della crescita dei buchi neri supermassicci.
Alimentati dal gas che precipita verso i buchi neri supermassicci al centro
delle galassie, rilasciano quantita straordinarie di energia che li rendono
osservabili a miliardi di anni luce di distanza. Ogni quasar osservato rivela
un buco nero colto nell’atto di accrescere materia, offrendo una prospettiva
diretta su come questi giganti si siano formati ed evoluti quando 1’Universo
era ancora giovane.

La distribuzione dei quasar nello spazio non ¢ affatto uniforme. Alcune
regioni sono densamente popolate di quasar, altre quasi vuote. Questo
fenomeno, chiamato clustering, riflette la struttura sottostante degli aloni
di materia oscura e contiene informazioni sulle regioni che alimentano la
crescita dei buchi neri. Studiando insieme la densita numerica, il clustering
e la luminosita dei quasar, possiamo cercare di rispondere a domande fon-
damentali: con quale frequenza i buchi neri supermassicci sono attivi come
quasar? Con quale rapidita crescono fino a raggiungere miliardi di masse
solari? E come si collegano le popolazioni di quasar osservate in epoche
cosmiche diverse in un quadro coerente di evoluzione dei buchi neri?

La prima serie di studi di questa tesi (Capitoli 2, 3 e 5) affronta questi
interrogativi sviluppando modelli che collegano funzioni di luminosita e
statistiche di clustering dei quasar, e legando la crescita dei buchi neri alla
formazione delle strutture cosmiche nel modello cosmologico standard.

Il Capitolo 2 affronta un enigma di lunga data: i quasar osservati circa
1,5 miliardi di anni dopo il Big Bang sembrano avere un livello di clustering
piu elevato di quanto atteso. Utilizzando grandi simulazioni cosmologiche,
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ho sviluppato un modello che collega abbondanza e distribuzione spaziale
dei quasar alle proprieta degli aloni di materia oscura. I risultati del modello
suggeriscono che, se le osservazioni sono corrette, quasi tutti i quasar di
quell’epoca risiedono negli aloni pitt massicci, con poca dispersione tra massa
dell’alone e luminosita del quasar. Questo implica un legame sorprendente-
mente stretto tra i buchi neri supermassicci e gli aloni dove risiedono — molto
piu stretto di quanto osservato in epoche successive — e induce a domandarsi
se i quasar evolvano in modi fondamentalmente diversi a diverse epoche
cosmiche.

Il Capitolo 3 estende questo modello a epoche ancora pitt remote, quando
I’Universo aveva meno di un miliardo di anni, includendo insieme ai qua-
sar anche le galassie rilevate da JWST. Utilizzando una delle piu grandi
simulazioni cosmologiche mai eseguite, ho riprodotto osservazioni chiave di
entrambe le popolazioni, quasar e galassie. Il modello indica che i quasar a
quei tempi erano attivi solo per una frazione minima del tempo totale di vita
dell’Universo. Cid contrasta nettamente con quanto osserviamo in epoche
successive, quando i quasar sembrano brillare in quasi tutti gli aloni massicci,
e accentua la tensione con la crescita rapida e quasi continua necessaria per
formare cosi presto buchi neri di miliardi di masse solari. Riconciliare questa
tensione resta una sfida cruciale: i buchi neri sono davvero cosi intermittenti
nella loro attivita e, se si, come pud una crescita cosi sporadica produrre le
enormi masse dei buchi neri osservati nell’Universo giovane?

Il Capitolo 5 compie un primo passo per affrontare direttamente que-
ste domande, introducendo un modello evolutivo che segue i buchi neri
supermassicci lungo tutta la storia cosmica. In questo modello, la crescita
dei buchi neri é collegata direttamente allo sviluppo degli aloni in cui essi
risiedono, integrando in modo coerente episodi di accrescimento e “merger”.
Nonostante la sua semplicita, il modello riproduce osservazioni che vanno
dall’epoca della reionizzazione fino al mezzogiorno cosmico, e rivela I'impor-
tanza di episodi di accrescimento rapidi nella formazione dei primi buchi neri
supermassicci. Inoltre, fornisce una base flessibile per integrare in futuro
nuovi dati osservativi.

Nel loro insieme, questi studi utilizzano i quasar come utili strumenti per
tracciare I’accrescimento dei buchi neri supermassicci e il loro legame con la
struttura a larga scala dell’Universo. Evidenziano sia i progressi compiuti
sia le questioni che rimangono ancora aperte: i quasar offrono una visione
diretta della crescita precoce dei buchi neri, ma i loro “pattern” di attivita e
il loro clustering continuano a sfidare la nostra comprensione dell’evoluzione
dei buchi neri nell’Universo.

Nuove popolazioni di buchi neri nell’era di JWST?

Il lancio del telescopio spaziale JWST ha aperto una nuova finestra sull’Uni-
verso giovane. Grazie alla sua capacita di rilevare galassie deboli a grandi
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distanze, ha rivelato sorgenti che erano invisibili ai telescopi precedenti. Tra
le scoperte piu sorprendenti vi é¢ una popolazione di oggetti compatti e ros-
sicci, molti dei quali mostrano larghe linee di emissione che sono tipicamente
associate a buchi neri attivi. Per il loro aspetto, queste sorgenti sono state
soprannominate “little red dots” (letteralmente, “piccoli punti rossi”).

Cio che rende questi oggetti notevoli non ¢é solo il loro aspetto, ma la
loro abbondanza. Dopo aver applicato una correzione per l’attenuazione
causata da gas e polveri, molti di questi oggetti risultano luminosi quanto
i quasar tradizionali, eppure vengono trovati in campagne osservative che
coprono aree del cielo molto pit piccole. Questo implica che debbano essere
molto pitt comuni dei quasar con pari luminosita — una conclusione che, se
confermata, rivoluzionerebbe le teorie correnti sulla frequenza dei buchi neri
nell’Universo primordiale.

Nel mio lavoro ho confrontato queste nuove sorgenti con la popolazione
di quasar “classici”, che sono luminosi nell’ultravioletto. I risultati mostrano
che i little red dots superano in numero i quasar di un fattore molto grande
che evolve rapidamente con il redshift. Anche il loro clustering rivela una
chiara differenza: mentre i quasar si trovano in aloni molto massicci e sono
quindi fortemente correlati spazialmente, i little red dots si distribuiscono
come normali galassie “star-forming”. Questo indica che i little red dots non
sono semplici quasar oscurati, ma piuttosto rappresentano una fase distinta
della crescita dei buchi neri — o, in alcuni casi, che non sono affatto buchi
neri ma semplici galassie.

Oltre i quasar: segnali di onde gravitazionali sovrapposti
e la fisica dei dischi protoplanetari

Gli ultimi due studi di questa tesi si collocano al di fuori del dominio dei
quasar. Il Capitolo 6 é dedicato alle onde gravitazionali. Futuri rivelatori,
come il Cosmic Explorer e I'Einstein Telescope, saranno in grado di osservare
fusioni di buchi neri e stelle di neutroni con una sensibilita straordinaria.
Questo aprira nuove opportunita per studiare I’Universo, ma portera anche
nuove sfide. Una di queste & che verranno rilevati cosi tanti eventi che i loro
segnali talvolta si sovrapporranno nel tempo. Quando cio accade, i metodi
standard di analisi possono non funzionare, introducendo bias nelle proprieta
che inferiamo per le sorgenti che si stanno fondendo.

Usando simulazioni dettagliate, ho esplorato come i segnali sovrapposti
influenzino la nostra capacita di misurare masse e altre proprieta delle binarie
in fusione. I risultati mostrano che, se le fusioni avvengono entro meno di
mezzo secondo 'una dall’altra, la sovrapposizione puo distorcere in modo
significativo i risultati. Se invece avvengono a pitt di un secondo di distanza,
e se le informazioni delle pipeline di rilevamento vengono utilizzate nel modo
corretto, i segnali possono ancora essere separati in modo affidabile. Questi
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risultati sottolineano la necessita di nuove strategie di analisi in grado di
gestire la complessita dei dati che i rivelatori di terza generazione forniranno.

Il Capitolo 7 ritorna a un contesto astrofisico pit familiare: i dischi di
gas e polvere attorno a giovani stelle, le culle in cui nascono i pianeti. Una
questione centrale in questo campo é il ruolo della turbolenza del gas, che
influenza tutto: dal modo in cui il gas accresce sulla stella al modo in cui i
grani di polvere si aggregano per formare pianeti. Misurare direttamente la
turbolenza é difficile, ma un metodo promettente ¢ dedurla dallo spessore
verticale dello strato di polvere nei dischi.

Utilizzando osservazioni ad alta risoluzione dell’Atacama Large Milli-
meter /submillimeter Array (ALMA), ho sviluppato modelli per stimare lo
spessore della polvere confrontando come appaiono i gap nei dischi a diverse
angolazioni di osservazione. Dove le condizioni lo permettono, i risultati
indicano che la polvere é confinata in strati sottili, suggerendo bassi livelli di
turbolenza e sollevando interrogativi importanti sul ruolo della turbolenza
nell’evoluzione a lungo termine dei dischi protoplanetari.
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CURRICULUM VITAE

I was born in Abano Terme (Italy) on October 31st, 1997, the first of five
children. I grew up in Mira, a small town in northeastern Italy along the
Riviera del Brenta, the historic waterway connecting Padova to Venezia. 1
was the smallest kid in sight — shy, timid, and scared of just about everything.
At the same time, I was full of energy and curiosity, and I managed to do
well in school while being appreciated by both classmates and teachers. In
high school — finally an actual person, rather than the weird creature one
becomes in middle school — I spent some genuinely happy years at Liceo
Scientifico Galileo Galilei in Dolo. My feelings about school remain mixed:
on one hand, it was often boring and I rarely paid attention in class; on the
other, I loved the thrill of learning and discovering the world. I was especially
drawn to mathematics, physics, philosophy, and literature. A few professors
— those I actually listened to — left a profound mark on me. Among them
was my Italian literature teacher, Lucia Tosi. Though she spent little time
with us, as she was battling cancer during our final years, she taught me to
love the world in both its beauty and its suffering. In essence, she was a
poet, and whatever there is that is poetic in me, she helped awaken.

In high school, though, it was often outside the classroom that I lived
my most enriching experiences. The Scout association taught me lessons no
chalkboard ever could, and entertaining children in my parish gave me both
confidence and joy. Fueled by curiosity and by a tendency not to be content
with what was given, I threw myself into a range of extracurricular activities.
The ones I remember most fondly are the national Physics and Astronomy
Olympiads, the philosophy debate tournament organized by the University
of Padova, and a few small research internships at the University of Padova,
the Osservatorio Astronomico di Asiago, and the Haus der Astronomie in
Heidelberg. Through these experiences, my interest in physics and astronomy
steadily grew.

Finally, I chose to study physics at the university and was admitted
to the Scuola Normale Superiore (SNS) in Pisa. Passing the admission
test at SNS will always remain one of the hardest — and most unexpected
— accomplishments of my life. In 2016 I moved to Pisa and, as required,
attended courses both at SNS and at the University of Pisa, where I obtained
my Bachelor’s and Master’s degrees. SNS gives a lot and takes a lot: it gave
me a solid foundation in mathematics and physics, some of the best teachers
I will ever meet, and, most importantly, a group of brilliant people with
whom I shared everything — from endless hours of study and problem-solving
to water balloon wars, 24-hour table-soccer marathons, and much more.
What it demanded, essentially, were several years of my life. Time, interests,
social connections — everything was confined within the walls of the Scuola.
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I often wonder whether it was worth it. Perhaps the answer will take time
to emerge, but I know I am deeply grateful for the unique experience I was
able to live.

During my studies, I had the opportunity to take part in several research
experiences abroad, including a wonderful summer in Leiden as part of the
LEAPS program. The project I began there with Giovanni Rosotti and
Benoit Tabone eventually led to the publication that now forms one of the
chapters of this dissertation. For my Bachelor’s thesis, I decided to reach out
to Andrea Ferrara, who leads the Cosmology Group at SNS — a choice that
proved extremely rewarding. While Bachelor’s theses in Italy are usually
limited to short in-depth reviews of lecture topics, Andrea instead presented
me with some data to explain and an idea for how to tackle the problem.
I was hooked. That project became my first publication and later grew
into my Master’s thesis, which I completed in 2021 under the supervision
of Andrea Ferrara and Andrea Pallottini, earning special praise from the
examining committee (the so-called abbraccio accademico) as well as two
national-level prizes.

Thanks to the projects I undertook during my university years, I became
convinced that I wanted to explore the world of research further. I decided
to return to Leiden to pursue my Ph.D. under the joint supervision of Joe
Hennawi and Joop Schaye. Over these four years, the projects I worked on,
the guidance of my supervisors and mentors, and the inspiring environment
of the Observatory and the institutes I visited have transformed me from
a good student into a scientist. I now feel that academia — with all its
flaws and limitations — is the place where I belong at this stage of my life.
After receiving my doctorate, I will move to the Center for Astrophysics at
Harvard University to continue my research on quasars and the growth of
supermassive black holes as an NHFP Einstein Fellow.



ACKNOWLEDGEMENTS

To my supervisors, Joe and Joop: I have learned more from you than I
could ever put into words. You showed me not only what it takes to be an
astronomer, but how to approach research with enthusiasm and curiosity.
Working with you was demanding, yet always rewarding—and, above all, fun.
It was exactly what I needed. Matthieu, you often stepped in as a third
supervisor; I'm grateful for your help, your insights, and your kindness.

To all the other mentors who have shaped my path over these years.
Christina, collaborating with you was one of the highlights of my Ph.D.
Thank you for the care you showed during my visit to MIT, and for always
offering encouragement and perspective. Andrea, I am deeply grateful for
your support and advice throughout these years. Having you to look up to
gave me the confidence to face each step in my career with more courage
and trust. Giovanni, if working on protoplanetary discs in the middle of
a Ph.D. on quasars ever felt manageable, it was thanks to your patience
and guidance. And on the other side: Boyi, you were a fantastic Master’s
student—we both grew a lot through the journey we shared.

Being part of two groups was a gift—it broadened my perspective and
made each day richer. Riccardo, JT, and Caitlin—thank you for the many
ways you supported me; you all were deeply missed in the group. Timo,
Daming, Ben, and Lars—it was a pleasure to share this journey with you.
And Timo, getting to know you better over time—through climbing, skiing,
and more—was something I greatly enjoyed. To the gang at UCSB: meeting
you in person after so many online (and inevitably awkward) interactions
was wonderful. Joey and Roi, I often felt you were like older brothers I could
look up to academically. Victor and Rob, thank you for your patience with
all my HBT-related questions. Evgenii, Filip, Jeger, Orestis, Will, Yunhao,
and Zorry—I learned a great deal from each of you.

Who would have thought that leaving Italy I'd end up finding some of
my favorite Italians? Ale, the way you connect with people is rare. You've
changed me in many ways; I’d call it bullying, you’d call it painting on a
blank canvas—but I know we’ll both miss it dearly. Nicco, I admire the
passion and enthusiasm you bring to everything you do—it’s contagious.
Nicole, your humor never fails to make me laugh—it’s always more fun
when you're there. Karin, your energy was a breath of fresh air this past
year—thank you for bringing it into my life. Bianca and Paola, I'll thank
you together so I don’t mix up the names, but each of you made my time
here warmer and brighter. Riccardo, Arianna, Luca, Elisa, Joan: thank you
for the furniture hunts, the moves, the dinners, and everything in between.

These past four years have been the most intense of my life, filled with
experiences that will stay with me forever: (mud)runs, ski trips, wipeouts,

315



316 Acknowledgements

canal swims, camping nights, football tournaments, and more. To everyone
who helped turn those moments into memories, thank you. Andrew, whether
trying a new sport or doing something ordinary, it was always better with
you around. Josh, thank you for dragging me into so many things, and for
being the one I both dreaded and loved to find in my office. A special thanks
to the climbers—Amadeo, Thijs, Erik, Billy, Dario, Manuel, Yuze—and to the
members of the amazing Cosmos United team. To all the PhSki organizers:
you created a truly wonderful tradition and made me fall in love with skiing
again. And beyond Leiden, thank you Dominika, Teo, and Kai-Feng for
including me in your adventures. I look forward to many more!

But life isn’t just about big experiences—it’s also built on the small,
everyday moments. To my office mates, past and present—Piyush, Beth,
Filip, Yannick. Piyush, a special thanks for your constant support, and
for all the gossip. And finally, to everyone who made the observatory feel
more than just a workplace: Alberto, Alfred, Amy, Andres, Anna, Anniek,
Ani, Ben, Brigitte, Casper, Celine, Chloe, Christiaan, Christian, Ciaran,
Dennis, Dilovan, Elena, Esther, Fran, Fraser, Gijs, Ivana, Jelle, Jessica,
Julia, Jurjen, Kevin, Kirsty, Kostantinos, Leoni, Logan, Louis, Lucie, Luna,
Mantas, Marta, Martje, Naadiyah, Osmar, Pavel, Pranjal, Richelle, Roland,
Sam, Sid, Sill, Thomas, Veronica, Victorine, Willeke, Zeynab—thank you for
all the little things we shared.

To the friends both near and far: Seyma and Vanesa, I'm so glad our
paths have crossed again in many ways, and I know they will in the future.
Paolo, Marco, Max, Edo, Fede, Beppe, Ale, Luca, and Lavi—the chats,
travels, and video calls we’ve shared over the past four years have been like
carrying a piece of Pisa with me. And Albe, Gimmy, and Veronica: you
actually were that piece of Pisa in the Netherlands. Without all of you, I
would have missed that part of my life so much more. Don and Jet, thank
you for your constant support; visiting you again in State College was a
special moment. And to all my lifelong friends, especially Marco: having
people to return to is what gives a place its meaning.

Mamma and Papa, without you, I would never have had the courage
to come this far: you are my hidden strength. Emma, Chiara, Marco, and
Paolo: writing all your names costs me precious words, but I owe it to
you—I'm deeply proud of each of you, and happy for the joy we now find in
the time we share together. A cugini, zie, e zii: thank you for making our
family special, I feel lucky to have you all in my life. Ai miei nonni, a Marisa
e a Giampaolo, Leda, e Gino che non sono piu qui: mi avete accompagnato
e cresciuto con un amore incommensurabile. Questa tesi ¢ dedicata a voi.

Silvia. You gave me what I never thought I'd find: a place I can call
home, someone with whom I can be fully myself. Whatever the road ahead
brings, I know we’ll find the strength to walk it together—even from afar.

I love you.



	Introduction
	Setting the stage: ΛCDM cosmology and the large-scale structure of our Universe
	Dark matter halos as the building blocks of cosmic structure formation

	Galaxies and their central black holes
	Black holes: a journey through ten orders of magnitude in the mass spectrum
	Quasars as tracers of SMBH growth
	The high-redshift frontier

	Observations: the evolution of quasars and SMBHs across cosmic times
	The quasar luminosity function
	Quasar clustering and the duty cycle of quasars
	SMBH mergers and gravitational waves
	New challenges in the JWST era: the nature of ``little red dots'' and other broad-line AGN

	Theoretical models: key uncertainties and future directions
	This thesis

	Revisiting the extreme clustering of z ≈4 quasars with large volume cosmological simulations
	Introduction
	Methods
	The conditional luminosity function
	The quasar auto-correlation function
	Halo occupation distribution and duty cycle

	Dark matter only simulation setup
	Fitting the halo mass function
	Obtaining the cross-correlation functions


	Data-model comparison
	Overview of observational data
	Likelihood functions

	Results
	Analysis at z≈4
	MCMC analysis

	Comparison with z≈2.5

	Discussion
	Implications for quasars' physical properties
	Black hole mass and accretion efficiency
	Quasar lifetime and the growth of high-z black holes

	Comparison with previous work
	Caveats and final remarks

	Summary
	Appendix: Obtaining the quasar auto-correlation from the halo cross-correlation functions
	Appendix: Fitting the cross-correlation terms from simulations
	Appendix: Halo mass function and correlation functions for redshift z=2.5

	A unified model for the clustering of quasars and galaxies at z≈6
	Introduction
	Methods
	Quasar and galaxy population models
	Simulation setup
	Extending the suite of FLAMINGO runs: FLAMINGO-10k
	Obtaining the sub-halo catalogue with HBT+
	A simulation-based analytical description of halo properties


	Data-Model comparison
	Overview of observational data
	Parameter inference

	Results
	The quasar luminosity-halo mass relation and the host halos of quasars at z≈6
	Characterizing the properties of [OIII] emitters

	Discussion
	Quasar properties across cosmic time
	The quasar duty cycle and SMBH growth

	Summary
	Appendix: Details on the conditional luminosity function framework
	Appendix: Results for the fitting of the halo cross-correlation functions
	Appendix: Interpreting the auto-correlation measurements of z≈6 quasars
	Appendix: Quasar-host halo masses with a uniform luminosity threshold

	``Little red dots'' cannot reside in the same dark matter halos as comparably luminous unobscured quasars
	Introduction
	The staggeringly high abundance of UV-obscured AGN implied by little red dots
	Little red dots and UV-selected quasars: do they belong to the same population?
	The host dark matter halos and duty cycles of high-z unobscured quasars and their luminosity dependence
	Connecting the UV-luminous duty cycle to the AGN obscured population

	The host mass and duty cycle of little red dots: a mock analysis
	Discussion and summary

	Tracing individual black hole growth histories and quasar lightcurves in an N-body Universe
	Introduction
	Methods
	Extracting halo mass histories and merger trees from the FLAMINGO simulation
	Subhalo masses and specific halo accretion rates
	Construction of the merger tree catalogs

	Modeling SMBH and quasar evolution
	Black hole initialization
	Black hole mergers
	Black hole accretion and quasar radiation

	Overview of the observational constraints
	Fiducial model and parameter inference

	Results
	The buildup of supermassive black holes across cosmic history
	Comparison with quasar observables
	Implications for SMBH growth and scaling relations
	The black hole mass-halo mass relation across cosmic history
	The coherence timescale of the accretion process
	The relative role of mergers and accretion


	Discussion and summary

	Towards inference of overlapping grav. wave signals
	Introduction
	Number of overlapping signals
	Overlapping signals of the same family
	Overlapping signals from two different families

	Covariance among overlapping signals
	Bayesian inference of overlapping signals
	Choice of signal families
	Setting up Bayesian inference runs
	Bayesian priors
	Results
	Dependence on the luminosity distance
	Dependence on the phase


	Discussion and Outlook

	Constraining turbulence in protoplanetary discs using the gap contrast: an application to the DSHARP sample
	Introduction
	Methods
	Disc structure
	Inferring the disc surface density
	Analysis of the gaps filling effect on the minor axis

	DSHARP data sample
	Results
	GW Lup as a case study
	Overview of the other systems
	DoAr 25
	Elias 24
	AS 209
	HD 163296
	MY Lup


	Discussion
	Relative dust and gas scale heights
	Implications for turbulence
	When does the method yield constraints on the scale height?
	Caveats

	Summary
	Appendix: Discs with no constraints
	Appendix: Convergence along the major axis and emission maps

	Bibliography
	English summary
	Nederlandse samenvatting
	Riassunto in italiano
	List of Publications
	Curriculum Vitae
	Acknowledgements

